|
--- |
|
language: vi |
|
tags: |
|
- emotion-recognition |
|
- vietnamese |
|
- bartpho |
|
license: apache-2.0 |
|
datasets: |
|
- VSMEC |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: bartpho-emotion |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Emotion Recognition |
|
dataset: |
|
name: VSMEC |
|
type: custom |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: <INSERT_ACCURACY> |
|
- name: F1 Score |
|
type: f1 |
|
value: <INSERT_F1_SCORE> |
|
base_model: |
|
- vinai/bartpho-syllable |
|
pipeline_tag: text-classification |
|
--- |
|
|
|
# bartpho-emotion: Emotion Recognition for Vietnamese Text |
|
|
|
This model is a fine-tuned version of [`vinai/bartpho-syllable`](https://huggingface.co/vinai/bartpho-syllable) on the **VSMEC** dataset for emotion recognition in Vietnamese text. It achieves state-of-the-art performance on this task. |
|
|
|
## Model Details |
|
|
|
- **Base Model**: [`vinai/bartpho-syllable`](https://huggingface.co/vinai/bartpho-syllable) |
|
- **Dataset**: [VSMEC](https://github.com/uitnlp/vsmec) (Vietnamese Social Media Emotion Corpus) |
|
- **Fine-tuning Framework**: HuggingFace Transformers |
|
- **Hyperparameters**: |
|
- Batch size: `32` |
|
- Learning rate: `5e-5` |
|
- Epochs: `100` |
|
- Max sequence length: `256` |
|
|
|
## Dataset |
|
|
|
The model was trained on the **VSMEC** dataset, which contains Vietnamese social media text annotated with emotion labels. The dataset includes the following emotion categories: |
|
`{"Anger": 0, "Disgust": 1, "Enjoyment": 2, "Fear": 3, "Other": 4, "Sadness": 5, "Surprise": 6}`. |
|
|
|
## Results |
|
|
|
The model was evaluated using the following metrics: |
|
|
|
- **Accuracy**: `<INSERT_ACCURACY>` |
|
- **F1 Score**: `<INSERT_F1_SCORE>` |
|
|
|
## Usage |
|
|
|
You can use this model for emotion recognition in Vietnamese text. Below is an example of how to use it with the HuggingFace Transformers library: |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("visolex/bartpho-emotion") |
|
model = AutoModelForSequenceClassification.from_pretrained("visolex/bartpho-emotion") |
|
|
|
text = "Tôi rất vui vì hôm nay trời đẹp!" |
|
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=256) |
|
outputs = model(**inputs) |
|
predicted_class = outputs.logits.argmax(dim=-1).item() |
|
|
|
print(f"Predicted emotion: {predicted_class}") |