|
--- |
|
license: mit |
|
language: |
|
- en |
|
--- |
|
# Evolla |
|
|
|
<a href="https://doi.org/10.1101/2025.01.05.630192"><img src="https://img.shields.io/badge/Paper-bioRxiv-green" style="max-width: 100%;"></a> |
|
<a href="https://x.com/duguyuan/status/1876446845951492221"><img src="https://img.shields.io/badge/Post-X-black" style="max-width: 100%;"></a> |
|
|
|
A frontier protein-language generative model designed to decode the molecular language of proteins. |
|
|
|
## Comparative analysis |
|
|
|
In our paper, we conducted a comparative analysis against two state-of-the-art general-purpose language models: *Deepseek-v3* and *gpt-4o-2024-11-20*. |
|
|
|
| **Model** | **Mean GPT score (± 95% confidence interval)** | |
|
|-------------------------|-----------------------------| |
|
| *Evolla* | 74.10 ± 0.81 | |
|
| *Deepseek-v3* | 40.49 ± 0.56 | |
|
| *gpt-4o-2024-11-20* | 37.07 ± 0.54 | |
|
|
|
|
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/643bb8ba6eeb746f5ad0a2db/k3WaRvNm_FDcF1ITWMQE6. |