|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: Qwen/Qwen2.5-Coder-7B-Instruct |
|
tags: |
|
- generated_from_trainer |
|
- axolotl |
|
datasets: |
|
- winglian/codeforces-cot-16k-context-topk64-prepared |
|
model-index: |
|
- name: outputs/out-kd-7b |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.8.0.dev0` |
|
```yaml |
|
base_model: Qwen/Qwen2.5-Coder-7B-Instruct |
|
|
|
plugins: |
|
- axolotl.integrations.kd.KDPlugin |
|
- axolotl.integrations.liger.LigerPlugin |
|
|
|
liger_rms_norm: true |
|
liger_glu_activation: true |
|
|
|
# torch_compile: true |
|
|
|
strict: false |
|
|
|
chat_template_jinja: "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n<think>' }}\n{%- endif %}\n" |
|
|
|
kd_trainer: true |
|
kd_ce_alpha: 0.2 |
|
kd_alpha: 0.8 |
|
kd_temperature: 1.0 |
|
# kd_zscore_base_temp: 1.0 |
|
kd_top_k_before_softmax: true |
|
|
|
dataloader_prefetch_factor: 256 |
|
dataloader_num_workers: 4 |
|
dataloader_pin_memory: true |
|
|
|
gc_steps: -1 # gc at the end of each epoch |
|
|
|
datasets: |
|
- field_messages: messages |
|
message_field_content: content |
|
message_field_role: role |
|
logprobs_field: llm_text_generation_vllm_logprobs |
|
path: winglian/codeforces-cot-16k-context-topk64-prepared |
|
name: solutions_decontaminated |
|
type: axolotl.integrations.kd.chat_template |
|
split: train |
|
temperature: 1.0 |
|
|
|
dataset_prepared_path: last_run_prepared |
|
val_set_size: 0.0 |
|
output_dir: ./outputs/out-kd-7b |
|
skip_prepare_dataset: true |
|
|
|
sequence_len: 16384 |
|
sample_packing: true |
|
pad_to_sequence_len: true |
|
|
|
wandb_project: kd-7b-codeforces |
|
wandb_entity: axolotl-ai |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 8 |
|
micro_batch_size: 1 |
|
num_epochs: 10 |
|
optimizer: adamw_torch_fused |
|
lr_scheduler: rex |
|
learning_rate: 4e-5 |
|
save_safetensors: true |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: true |
|
fp16: |
|
tf32: true |
|
|
|
gradient_checkpointing: offload |
|
gradient_checkpointing_kwargs: |
|
use_reentrant: false |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_steps: 280 |
|
evals_per_epoch: |
|
eval_table_size: |
|
saves_per_epoch: 1 |
|
debug: |
|
deepspeed: deepspeed_configs/zero2.json |
|
weight_decay: 0.0 |
|
special_tokens: |
|
pad_token: <|endoftext|> |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# outputs/out-kd-7b |
|
|
|
This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the winglian/codeforces-cot-16k-context-topk64-prepared dataset. |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 4e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 64 |
|
- total_eval_batch_size: 8 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: rex |
|
- lr_scheduler_warmup_steps: 280 |
|
- num_epochs: 10.0 |
|
|
|
### Training results |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.49.0 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|