metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:57306
- loss:MultipleNegativesRankingLoss
base_model: allenai/specter2_base
widget:
- source_sentence: UCLR RTS timing
sentences:
- 'Timing without a timer. '
- >-
Global structural changes in annexin 12. The roles of phospholipid,
Ca2+, and pH.
- >-
Length of time between surgery and return to sport after ulnar
collateral ligament reconstruction in Major League Baseball pitchers
does not predict need for revision surgery.
- source_sentence: Levofloxacin efficacy in bone and joint infections
sentences:
- 'Levofloxacin. '
- >-
Squamous cell carcinoma of the uterine cervix producing granulocyte
colony-stimulating factor: a report of 4 cases and a review of the
literature.
- >-
Levofloxacin at the usual dosage to treat bone and joint infections: a
cohort analysis.
- source_sentence: Electrical impedance tomography in Barrett's oesophagus
sentences:
- 'Barrett''s oesophagus: epidemiology, diagnosis and clinical management. '
- >-
Assessing the conditions for in vivo electrical virtual biopsies in
Barrett's oesophagus.
- >-
Serum aminoterminal propeptide of type III procollagen: a potential
predictor of the response to growth hormone therapy.
- source_sentence: Population Aging Theory
sentences:
- 'A cybernetic theory of aging. '
- '[In process]. '
- >-
Robine and Michel's "Looking forward to a general theory on population
aging": commentary.
- source_sentence: Algesimetric study of hypoalgesic effect
sentences:
- >-
Regulation of ATG4B stability by RNF5 limits basal levels of autophagy
and influences susceptibility to bacterial infection.
- '[Pain analysis is basis for correct choice of therapeutic method]. '
- >-
[Experimental algesimetric study of the hypoalgesic effect of body
acupuncture].
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on allenai/specter2_base
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: cosine_accuracy@1
value: 0.02
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.06
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.08
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.22
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.02
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.02
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.016
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.022000000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.01
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.05
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.07
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.19
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.08358031930860417
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.060047619047619044
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.05702682179889267
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: cosine_accuracy@1
value: 0.12
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.3
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.34
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.44
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.12
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.068
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.044000000000000004
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.12
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.3
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.34
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.44
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.2718119392465092
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.21891269841269842
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.22988006901512154
name: Cosine Map@100
- task:
type: nano-beir
name: Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: cosine_accuracy@1
value: 0.06999999999999999
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.18
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.21000000000000002
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.33
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.06999999999999999
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.060000000000000005
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.042
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.033
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.065
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.175
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.20500000000000002
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.315
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.17769612927755668
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.13948015873015873
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.1434534454070071
name: Cosine Map@100
SentenceTransformer based on allenai/specter2_base
This is a sentence-transformers model finetuned from allenai/specter2_base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: allenai/specter2_base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Algesimetric study of hypoalgesic effect',
'[Experimental algesimetric study of the hypoalgesic effect of body acupuncture]. ',
'[Pain analysis is basis for correct choice of therapeutic method]. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
NanoNQ
andNanoMSMARCO
- Evaluated with
InformationRetrievalEvaluator
Metric | NanoNQ | NanoMSMARCO |
---|---|---|
cosine_accuracy@1 | 0.02 | 0.12 |
cosine_accuracy@3 | 0.06 | 0.3 |
cosine_accuracy@5 | 0.08 | 0.34 |
cosine_accuracy@10 | 0.22 | 0.44 |
cosine_precision@1 | 0.02 | 0.12 |
cosine_precision@3 | 0.02 | 0.1 |
cosine_precision@5 | 0.016 | 0.068 |
cosine_precision@10 | 0.022 | 0.044 |
cosine_recall@1 | 0.01 | 0.12 |
cosine_recall@3 | 0.05 | 0.3 |
cosine_recall@5 | 0.07 | 0.34 |
cosine_recall@10 | 0.19 | 0.44 |
cosine_ndcg@10 | 0.0836 | 0.2718 |
cosine_mrr@10 | 0.06 | 0.2189 |
cosine_map@100 | 0.057 | 0.2299 |
Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
NanoBEIREvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.07 |
cosine_accuracy@3 | 0.18 |
cosine_accuracy@5 | 0.21 |
cosine_accuracy@10 | 0.33 |
cosine_precision@1 | 0.07 |
cosine_precision@3 | 0.06 |
cosine_precision@5 | 0.042 |
cosine_precision@10 | 0.033 |
cosine_recall@1 | 0.065 |
cosine_recall@3 | 0.175 |
cosine_recall@5 | 0.205 |
cosine_recall@10 | 0.315 |
cosine_ndcg@10 | 0.1777 |
cosine_mrr@10 | 0.1395 |
cosine_map@100 | 0.1435 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 57,306 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 4 tokens
- mean: 7.57 tokens
- max: 25 tokens
- min: 4 tokens
- mean: 20.36 tokens
- max: 78 tokens
- min: 3 tokens
- mean: 12.38 tokens
- max: 49 tokens
- Samples:
anchor positive negative Intramedullary Hemangioblastoma
Hydrocephalus: a rare initial manifestation of sporadic intramedullary hemangioblastoma : Intramedullary hemangioblastoma presenting as hydrocephalus.
Intramedullary capillary haemangioma.
Density-based load estimation algorithm
A contact algorithm for density-based load estimation.
Density propagation based adaptive multi-density clustering algorithm.
Herbicide Adjuvant Efficacy
The efficiency of adjuvants combined with flupyrsulfuron-methyl plus metsulfuron-methyl (Lexus XPE) on weed control.
Are herbicides a once in a century method of weed control?
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64gradient_accumulation_steps
: 4learning_rate
: 2e-07num_train_epochs
: 1lr_scheduler_type
: cosine_with_restartswarmup_ratio
: 0.1bf16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 4eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-07weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: cosine_with_restartslr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | NanoNQ_cosine_ndcg@10 | NanoMSMARCO_cosine_ndcg@10 | NanoBEIR_mean_cosine_ndcg@10 |
---|---|---|---|---|---|
0 | 0 | - | 0.0682 | 0.2560 | 0.1621 |
0.0134 | 1 | 14.8664 | - | - | - |
0.0268 | 2 | 14.6017 | - | - | - |
0.0401 | 3 | 14.8474 | - | - | - |
0.0535 | 4 | 14.7156 | - | - | - |
0.0669 | 5 | 14.5967 | - | - | - |
0.0803 | 6 | 14.8373 | - | - | - |
0.0936 | 7 | 14.7819 | - | - | - |
0.1070 | 8 | 14.5891 | - | - | - |
0.1204 | 9 | 14.5531 | - | - | - |
0.1338 | 10 | 14.5441 | - | - | - |
0.1472 | 11 | 14.5516 | - | - | - |
0.1605 | 12 | 14.5739 | - | - | - |
0.1739 | 13 | 14.5974 | - | - | - |
0.1873 | 14 | 14.4102 | - | - | - |
0.2007 | 15 | 14.3615 | - | - | - |
0.2140 | 16 | 14.2877 | - | - | - |
0.2274 | 17 | 14.2774 | - | - | - |
0.2408 | 18 | 14.4985 | - | - | - |
0.2542 | 19 | 14.2307 | - | - | - |
0.2676 | 20 | 14.3657 | - | - | - |
0.2809 | 21 | 14.3261 | - | - | - |
0.2943 | 22 | 14.2946 | - | - | - |
0.3077 | 23 | 14.2311 | - | - | - |
0.3211 | 24 | 14.0789 | - | - | - |
0.3344 | 25 | 13.9392 | 0.0764 | 0.2652 | 0.1708 |
0.3478 | 26 | 14.0972 | - | - | - |
0.3612 | 27 | 14.0966 | - | - | - |
0.3746 | 28 | 13.9205 | - | - | - |
0.3880 | 29 | 13.8919 | - | - | - |
0.4013 | 30 | 14.1233 | - | - | - |
0.4147 | 31 | 14.1351 | - | - | - |
0.4281 | 32 | 14.1106 | - | - | - |
0.4415 | 33 | 14.166 | - | - | - |
0.4548 | 34 | 13.7817 | - | - | - |
0.4682 | 35 | 14.0178 | - | - | - |
0.4816 | 36 | 13.8457 | - | - | - |
0.4950 | 37 | 14.074 | - | - | - |
0.5084 | 38 | 13.9665 | - | - | - |
0.5217 | 39 | 13.9726 | - | - | - |
0.5351 | 40 | 13.8546 | - | - | - |
0.5485 | 41 | 13.9037 | - | - | - |
0.5619 | 42 | 13.6977 | - | - | - |
0.5753 | 43 | 14.0445 | - | - | - |
0.5886 | 44 | 13.93 | - | - | - |
0.6020 | 45 | 13.7835 | - | - | - |
0.6154 | 46 | 13.819 | - | - | - |
0.6288 | 47 | 13.6248 | - | - | - |
0.6421 | 48 | 13.846 | - | - | - |
0.6555 | 49 | 13.6079 | - | - | - |
0.6689 | 50 | 13.6848 | 0.0836 | 0.2724 | 0.1780 |
0.6823 | 51 | 13.668 | - | - | - |
0.6957 | 52 | 13.5784 | - | - | - |
0.7090 | 53 | 13.7519 | - | - | - |
0.7224 | 54 | 13.6455 | - | - | - |
0.7358 | 55 | 13.6757 | - | - | - |
0.7492 | 56 | 13.5647 | - | - | - |
0.7625 | 57 | 13.7072 | - | - | - |
0.7759 | 58 | 13.5603 | - | - | - |
0.7893 | 59 | 13.6437 | - | - | - |
0.8027 | 60 | 13.6656 | - | - | - |
0.8161 | 61 | 13.479 | - | - | - |
0.8294 | 62 | 13.5965 | - | - | - |
0.8428 | 63 | 13.6793 | - | - | - |
0.8562 | 64 | 13.6121 | - | - | - |
0.8696 | 65 | 13.841 | - | - | - |
0.8829 | 66 | 13.4793 | - | - | - |
0.8963 | 67 | 13.5875 | - | - | - |
0.9097 | 68 | 13.4063 | - | - | - |
0.9231 | 69 | 13.6365 | - | - | - |
0.9365 | 70 | 13.4696 | - | - | - |
0.9498 | 71 | 13.5018 | - | - | - |
0.9632 | 72 | 13.5956 | - | - | - |
0.9766 | 73 | 13.3945 | - | - | - |
0.9900 | 74 | 13.5684 | 0.0836 | 0.2718 | 0.1777 |
Framework Versions
- Python: 3.12.3
- Sentence Transformers: 3.3.1
- Transformers: 4.49.0
- PyTorch: 2.5.1
- Accelerate: 1.2.1
- Datasets: 2.19.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}