xin0920's picture
Add new SparseEncoder model
692ba48 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sparse-encoder
  - sparse
  - splade
  - generated_from_trainer
  - dataset_size:99000
  - loss:SpladeLoss
  - loss:SparseMultipleNegativesRankingLoss
  - loss:FlopsLoss
base_model: distilbert/distilbert-base-uncased
widget:
  - source_sentence: Time Travel Is It Possible?
    sentences:
      - Why can you not accelerate to faster than light?
      - Is time travel possible? If yes how
      - >-
        What do you hAve to say about time travel (I am not science student but
        I read it on net and its so exciting topic but still no clear idea that
        is it possible or it's just a rumour)?
  - source_sentence: How can one be a good product manager?
    sentences:
      - How Do I become a product manager?
      - Can you make online friends with other people on Quora?
      - How do I become a product designer?
  - source_sentence: >-
      How do I start a business? Where can I get a funding in India if I have a
      really good idea?
    sentences:
      - >-
        I have an awesome app/website idea which may get more than a billion
        users. But I don't have required money and coding skills. I tried
        crowd-funding but didn't help. What should I do?
      - How do I get funding for my web based startup idea?
      - What is the most powerful dog?
  - source_sentence: What are your favorite questions asked on Quora?
    sentences:
      - What are your favorite Quora questions and answers?
      - How do you become a Successfull Game Developer?
      - Who is your favorite Quora follower?
  - source_sentence: Which laptop is best under 25000 INR?
    sentences:
      - Why was the 1000 rupee note replaced with a 2000 rupee note?
      - What is the best laptop under 45k?
      - What are the best laptops under 25k?
datasets:
  - sentence-transformers/quora-duplicates
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
  - dot_accuracy@1
  - dot_accuracy@3
  - dot_accuracy@5
  - dot_accuracy@10
  - dot_precision@1
  - dot_precision@3
  - dot_precision@5
  - dot_precision@10
  - dot_recall@1
  - dot_recall@3
  - dot_recall@5
  - dot_recall@10
  - dot_ndcg@10
  - dot_mrr@10
  - dot_map@100
  - row_non_zero_mean_query
  - row_sparsity_mean_query
  - row_non_zero_mean_corpus
  - row_sparsity_mean_corpus
model-index:
  - name: splade-distilbert-base-uncased trained on Quora Duplicates Questions
    results:
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoClimateFEVER
          type: NanoClimateFEVER
        metrics:
          - type: dot_accuracy@1
            value: 0.2
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.34
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.38
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.46
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.2
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.12
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.084
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.05800000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.08833333333333332
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.15333333333333332
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.17166666666666663
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.2223333333333333
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.19096782240643292
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.27904761904761904
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.1448665229843916
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 83.12000274658203
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.997276782989502
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 196.82540893554688
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9935513138771057
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoDBPedia
          type: NanoDBPedia
        metrics:
          - type: dot_accuracy@1
            value: 0.46
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.66
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.76
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.82
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.46
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.4599999999999999
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.41200000000000003
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.34800000000000003
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.024992243870767848
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.08610042820194802
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.1356349864336842
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.2108700010340366
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.4008410950979539
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5753888888888887
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.23475075762293293
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 110.18000030517578
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9963901042938232
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 146.9065399169922
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9951868057250977
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoFEVER
          type: NanoFEVER
        metrics:
          - type: dot_accuracy@1
            value: 0.56
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.64
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.72
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.82
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.56
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.2333333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.15600000000000003
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.088
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.5266666666666666
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.6333333333333333
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.7133333333333333
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.8133333333333332
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6697436984572378
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6316349206349205
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.6281723194238796
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 96.77999877929688
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9968292117118835
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 219.1212921142578
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9928209185600281
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoFiQA2018
          type: NanoFiQA2018
        metrics:
          - type: dot_accuracy@1
            value: 0.14
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.32
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.36
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.44
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.14
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.12
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.10400000000000001
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.068
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.06783333333333333
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.14569047619047618
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.20004761904761903
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.2636825396825397
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.19745078204560165
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.23552380952380955
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.14731140504396462
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 80.33999633789062
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9973678588867188
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 125.915771484375
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9958745241165161
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoHotpotQA
          type: NanoHotpotQA
        metrics:
          - type: dot_accuracy@1
            value: 0.46
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.66
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.72
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.84
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.46
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.25333333333333335
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.176
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.11
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.23
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.38
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.44
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.55
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.4642094806420616
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5762777777777778
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.3781729878529178
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 87.26000213623047
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9971410632133484
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 166.47190856933594
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9945458173751831
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO
          type: NanoMSMARCO
        metrics:
          - type: dot_accuracy@1
            value: 0.16
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.26
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.36
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.46
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.16
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.08666666666666666
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.07200000000000001
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.046000000000000006
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.16
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.26
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.36
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.46
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.2889744107825637
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.23699999999999996
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.2547054047317205
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 96.05999755859375
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.996852695941925
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 105.46202850341797
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9965446591377258
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNFCorpus
          type: NanoNFCorpus
        metrics:
          - type: dot_accuracy@1
            value: 0.28
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.36
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.4
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.44
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.28
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.18666666666666665
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.18
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.14800000000000002
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.01004738213752895
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.017620026805744985
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.031161291315801767
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.04364801295748046
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.16900908943281664
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.3281666666666666
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.04873203232918475
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 122.94000244140625
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9959720373153687
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 199.5936279296875
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9934607744216919
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNQ
          type: NanoNQ
        metrics:
          - type: dot_accuracy@1
            value: 0.18
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.34
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.4
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.48
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.18
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.11333333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.08
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.04800000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.17
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.32
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.38
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.46
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.30557584177037744
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.26749206349206345
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.26111102151483273
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 79.22000122070312
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9974044561386108
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 145.250244140625
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.995241105556488
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoQuoraRetrieval
          type: NanoQuoraRetrieval
        metrics:
          - type: dot_accuracy@1
            value: 0.92
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.96
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 1
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 1
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.92
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.3733333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.256
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.132
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.8206666666666667
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.8986666666666667
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.9726666666666667
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.9826666666666667
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.9456812009077233
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.95
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.9232605046294702
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 73.83999633789062
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9975807070732117
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 74.96769714355469
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9975438117980957
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoSCIDOCS
          type: NanoSCIDOCS
        metrics:
          - type: dot_accuracy@1
            value: 0.36
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.5
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.62
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.7
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.36
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.26
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.19199999999999995
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.12399999999999999
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.07666666666666666
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.16166666666666665
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.19766666666666666
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.25466666666666665
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.2640445339047696
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.45502380952380955
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.18681370322897212
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 95.91999816894531
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9968574047088623
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 184.44908142089844
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9939568638801575
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoArguAna
          type: NanoArguAna
        metrics:
          - type: dot_accuracy@1
            value: 0.1
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.28
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.32
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.38
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.1
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.09333333333333332
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.064
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.038000000000000006
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.1
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.28
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.32
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.38
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.24652298080535653
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.2033571428571429
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.2089304613637203
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 181.27999877929688
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9940606951713562
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 160.55982971191406
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9947395324707031
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoSciFact
          type: NanoSciFact
        metrics:
          - type: dot_accuracy@1
            value: 0.38
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.56
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.64
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.66
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.38
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.19333333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.14
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.07200000000000001
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.365
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.54
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.61
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.63
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5012811403788975
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.4666666666666666
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.4647112383054177
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 90.80000305175781
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9970251321792603
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 197.8948211669922
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9935163259506226
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoTouche2020
          type: NanoTouche2020
        metrics:
          - type: dot_accuracy@1
            value: 0.4897959183673469
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.7551020408163265
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.8367346938775511
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.9387755102040817
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.4897959183673469
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.43537414965986393
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.42857142857142855
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.336734693877551
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.03231843040459851
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.08325211008018112
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.13623768956747034
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.20745266217275266
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.3790647958645717
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.6323372206025266
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.2305586843086588
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 78.7755126953125
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9974190592765808
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 140.8109588623047
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.9953866004943848
            name: Row Sparsity Mean Corpus
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean
          type: NanoBEIR_mean
        metrics:
          - type: dot_accuracy@1
            value: 0.3607535321821036
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.510392464678179
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.578210361067504
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.6491365777080063
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.3607535321821036
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.2252851909994767
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.18035164835164832
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.1243642072213501
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.20557882485227402
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.3045894647137193
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.3591088399767622
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.42143486275744696
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.3864128363458742
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.44907050659091463
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.31631515718000486
            name: Dot Map@100
          - type: row_non_zero_mean_query
            value: 98.19350081223708
            name: Row Non Zero Mean Query
          - type: row_sparsity_mean_query
            value: 0.9967828622231116
            name: Row Sparsity Mean Query
          - type: row_non_zero_mean_corpus
            value: 158.7868622999925
            name: Row Non Zero Mean Corpus
          - type: row_sparsity_mean_corpus
            value: 0.994797619489523
            name: Row Sparsity Mean Corpus

splade-distilbert-base-uncased trained on Quora Duplicates Questions

This is a SPLADE Sparse Encoder model finetuned from distilbert/distilbert-base-uncased on the quora-duplicates dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: SPLADE Sparse Encoder
  • Base model: distilbert/distilbert-base-uncased
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 30522 dimensions
  • Similarity Function: Dot Product
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM 
  (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("xin0920/splade-distilbert-base-uncased-msmarco-mrl")
# Run inference
sentences = [
    'Which laptop is best under 25000 INR?',
    'What are the best laptops under 25k?',
    'What is the best laptop under 45k?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 30522)

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Sparse Information Retrieval

  • Datasets: NanoClimateFEVER, NanoDBPedia, NanoFEVER, NanoFiQA2018, NanoHotpotQA, NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoQuoraRetrieval, NanoSCIDOCS, NanoArguAna, NanoSciFact and NanoTouche2020
  • Evaluated with SparseInformationRetrievalEvaluator
Metric NanoClimateFEVER NanoDBPedia NanoFEVER NanoFiQA2018 NanoHotpotQA NanoMSMARCO NanoNFCorpus NanoNQ NanoQuoraRetrieval NanoSCIDOCS NanoArguAna NanoSciFact NanoTouche2020
dot_accuracy@1 0.2 0.46 0.56 0.14 0.46 0.16 0.28 0.18 0.92 0.36 0.1 0.38 0.4898
dot_accuracy@3 0.34 0.66 0.64 0.32 0.66 0.26 0.36 0.34 0.96 0.5 0.28 0.56 0.7551
dot_accuracy@5 0.38 0.76 0.72 0.36 0.72 0.36 0.4 0.4 1.0 0.62 0.32 0.64 0.8367
dot_accuracy@10 0.46 0.82 0.82 0.44 0.84 0.46 0.44 0.48 1.0 0.7 0.38 0.66 0.9388
dot_precision@1 0.2 0.46 0.56 0.14 0.46 0.16 0.28 0.18 0.92 0.36 0.1 0.38 0.4898
dot_precision@3 0.12 0.46 0.2333 0.12 0.2533 0.0867 0.1867 0.1133 0.3733 0.26 0.0933 0.1933 0.4354
dot_precision@5 0.084 0.412 0.156 0.104 0.176 0.072 0.18 0.08 0.256 0.192 0.064 0.14 0.4286
dot_precision@10 0.058 0.348 0.088 0.068 0.11 0.046 0.148 0.048 0.132 0.124 0.038 0.072 0.3367
dot_recall@1 0.0883 0.025 0.5267 0.0678 0.23 0.16 0.01 0.17 0.8207 0.0767 0.1 0.365 0.0323
dot_recall@3 0.1533 0.0861 0.6333 0.1457 0.38 0.26 0.0176 0.32 0.8987 0.1617 0.28 0.54 0.0833
dot_recall@5 0.1717 0.1356 0.7133 0.2 0.44 0.36 0.0312 0.38 0.9727 0.1977 0.32 0.61 0.1362
dot_recall@10 0.2223 0.2109 0.8133 0.2637 0.55 0.46 0.0436 0.46 0.9827 0.2547 0.38 0.63 0.2075
dot_ndcg@10 0.191 0.4008 0.6697 0.1975 0.4642 0.289 0.169 0.3056 0.9457 0.264 0.2465 0.5013 0.3791
dot_mrr@10 0.279 0.5754 0.6316 0.2355 0.5763 0.237 0.3282 0.2675 0.95 0.455 0.2034 0.4667 0.6323
dot_map@100 0.1449 0.2348 0.6282 0.1473 0.3782 0.2547 0.0487 0.2611 0.9233 0.1868 0.2089 0.4647 0.2306
row_non_zero_mean_query 83.12 110.18 96.78 80.34 87.26 96.06 122.94 79.22 73.84 95.92 181.28 90.8 78.7755
row_sparsity_mean_query 0.9973 0.9964 0.9968 0.9974 0.9971 0.9969 0.996 0.9974 0.9976 0.9969 0.9941 0.997 0.9974
row_non_zero_mean_corpus 196.8254 146.9065 219.1213 125.9158 166.4719 105.462 199.5936 145.2502 74.9677 184.4491 160.5598 197.8948 140.811
row_sparsity_mean_corpus 0.9936 0.9952 0.9928 0.9959 0.9945 0.9965 0.9935 0.9952 0.9975 0.994 0.9947 0.9935 0.9954

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "climatefever",
            "dbpedia",
            "fever",
            "fiqa2018",
            "hotpotqa",
            "msmarco",
            "nfcorpus",
            "nq",
            "quoraretrieval",
            "scidocs",
            "arguana",
            "scifact",
            "touche2020"
        ]
    }
    
Metric Value
dot_accuracy@1 0.3608
dot_accuracy@3 0.5104
dot_accuracy@5 0.5782
dot_accuracy@10 0.6491
dot_precision@1 0.3608
dot_precision@3 0.2253
dot_precision@5 0.1804
dot_precision@10 0.1244
dot_recall@1 0.2056
dot_recall@3 0.3046
dot_recall@5 0.3591
dot_recall@10 0.4214
dot_ndcg@10 0.3864
dot_mrr@10 0.4491
dot_map@100 0.3163
row_non_zero_mean_query 98.1935
row_sparsity_mean_query 0.9968
row_non_zero_mean_corpus 158.7869
row_sparsity_mean_corpus 0.9948

Training Details

Training Dataset

quora-duplicates

  • Dataset: quora-duplicates at 451a485
  • Size: 99,000 training samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 14.1 tokens
    • max: 39 tokens
    • min: 6 tokens
    • mean: 13.83 tokens
    • max: 41 tokens
    • min: 6 tokens
    • mean: 15.21 tokens
    • max: 75 tokens
  • Samples:
    anchor positive negative
    What are the best GMAT coaching institutes in Delhi NCR? Which are the best GMAT coaching institutes in Delhi/NCR? What are the best GMAT coaching institutes in Delhi-Noida Area?
    Is a third world war coming? Is World War 3 more imminent than expected? Since the UN is unable to control terrorism and groups like ISIS, al-Qaeda and countries that promote terrorism (even though it consumed those countries), can we assume that the world is heading towards World War III?
    Should I build iOS or Android apps first? Should people choose Android or iOS first to build their App? How much more effort is it to build your app on both iOS and Android?
  • Loss: SpladeLoss with these parameters:
    {'loss': SparseMultipleNegativesRankingLoss(
      (model): SparseEncoder(
        (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM 
        (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
      )
      (cross_entropy_loss): CrossEntropyLoss()
    ), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05}
    

Evaluation Dataset

quora-duplicates

  • Dataset: quora-duplicates at 451a485
  • Size: 1,000 evaluation samples
  • Columns: anchor, positive, and negative
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative
    type string string string
    details
    • min: 6 tokens
    • mean: 14.05 tokens
    • max: 40 tokens
    • min: 6 tokens
    • mean: 14.14 tokens
    • max: 44 tokens
    • min: 6 tokens
    • mean: 14.56 tokens
    • max: 60 tokens
  • Samples:
    anchor positive negative
    What happens if we use petrol in diesel vehicles? Why can't we use petrol in diesel? Why are diesel engines noisier than petrol engines?
    Why is Saltwater taffy candy imported in Switzerland? Why is Saltwater taffy candy imported in Laos? Is salt a consumer product?
    Which is your favourite film in 2016? What movie is the best movie of 2016? What will the best movie of 2017 be?
  • Loss: SpladeLoss with these parameters:
    {'loss': SparseMultipleNegativesRankingLoss(
      (model): SparseEncoder(
        (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM 
        (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
      )
      (cross_entropy_loss): CrossEntropyLoss()
    ), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05}
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 12
  • per_device_eval_batch_size: 12
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • bf16: True
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 12
  • per_device_eval_batch_size: 12
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss NanoClimateFEVER_dot_ndcg@10 NanoDBPedia_dot_ndcg@10 NanoFEVER_dot_ndcg@10 NanoFiQA2018_dot_ndcg@10 NanoHotpotQA_dot_ndcg@10 NanoMSMARCO_dot_ndcg@10 NanoNFCorpus_dot_ndcg@10 NanoNQ_dot_ndcg@10 NanoQuoraRetrieval_dot_ndcg@10 NanoSCIDOCS_dot_ndcg@10 NanoArguAna_dot_ndcg@10 NanoSciFact_dot_ndcg@10 NanoTouche2020_dot_ndcg@10 NanoBEIR_mean_dot_ndcg@10
0.1938 200 12.7715 - - - - - - - - - - - - - -
0.3876 400 0.2719 - - - - - - - - - - - - - -
0.5814 600 0.234 - - - - - - - - - - - - - -
0.7752 800 0.2068 - - - - - - - - - - - - - -
0.9690 1000 0.2041 - - - - - - - - - - - - - -
-1 -1 - 0.1910 0.4008 0.6697 0.1975 0.4642 0.2890 0.1690 0.3056 0.9457 0.2640 0.2465 0.5013 0.3791 0.3864

Framework Versions

  • Python: 3.9.22
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.52.1
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.7.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

SpladeLoss

@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}

SparseMultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

FlopsLoss

@article{paria2020minimizing,
    title={Minimizing flops to learn efficient sparse representations},
    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
    journal={arXiv preprint arXiv:2004.05665},
    year={2020}
    }