metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- splade
- generated_from_trainer
- dataset_size:99000
- loss:SpladeLoss
- loss:SparseMultipleNegativesRankingLoss
- loss:FlopsLoss
base_model: distilbert/distilbert-base-uncased
widget:
- source_sentence: Time Travel Is It Possible?
sentences:
- Why can you not accelerate to faster than light?
- Is time travel possible? If yes how
- >-
What do you hAve to say about time travel (I am not science student but
I read it on net and its so exciting topic but still no clear idea that
is it possible or it's just a rumour)?
- source_sentence: How can one be a good product manager?
sentences:
- How Do I become a product manager?
- Can you make online friends with other people on Quora?
- How do I become a product designer?
- source_sentence: >-
How do I start a business? Where can I get a funding in India if I have a
really good idea?
sentences:
- >-
I have an awesome app/website idea which may get more than a billion
users. But I don't have required money and coding skills. I tried
crowd-funding but didn't help. What should I do?
- How do I get funding for my web based startup idea?
- What is the most powerful dog?
- source_sentence: What are your favorite questions asked on Quora?
sentences:
- What are your favorite Quora questions and answers?
- How do you become a Successfull Game Developer?
- Who is your favorite Quora follower?
- source_sentence: Which laptop is best under 25000 INR?
sentences:
- Why was the 1000 rupee note replaced with a 2000 rupee note?
- What is the best laptop under 45k?
- What are the best laptops under 25k?
datasets:
- sentence-transformers/quora-duplicates
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- row_non_zero_mean_query
- row_sparsity_mean_query
- row_non_zero_mean_corpus
- row_sparsity_mean_corpus
model-index:
- name: splade-distilbert-base-uncased trained on Quora Duplicates Questions
results:
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoClimateFEVER
type: NanoClimateFEVER
metrics:
- type: dot_accuracy@1
value: 0.2
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.34
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.38
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.46
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.2
name: Dot Precision@1
- type: dot_precision@3
value: 0.12
name: Dot Precision@3
- type: dot_precision@5
value: 0.084
name: Dot Precision@5
- type: dot_precision@10
value: 0.05800000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.08833333333333332
name: Dot Recall@1
- type: dot_recall@3
value: 0.15333333333333332
name: Dot Recall@3
- type: dot_recall@5
value: 0.17166666666666663
name: Dot Recall@5
- type: dot_recall@10
value: 0.2223333333333333
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.19096782240643292
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.27904761904761904
name: Dot Mrr@10
- type: dot_map@100
value: 0.1448665229843916
name: Dot Map@100
- type: row_non_zero_mean_query
value: 83.12000274658203
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.997276782989502
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 196.82540893554688
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.9935513138771057
name: Row Sparsity Mean Corpus
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoDBPedia
type: NanoDBPedia
metrics:
- type: dot_accuracy@1
value: 0.46
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.66
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.76
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.82
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.46
name: Dot Precision@1
- type: dot_precision@3
value: 0.4599999999999999
name: Dot Precision@3
- type: dot_precision@5
value: 0.41200000000000003
name: Dot Precision@5
- type: dot_precision@10
value: 0.34800000000000003
name: Dot Precision@10
- type: dot_recall@1
value: 0.024992243870767848
name: Dot Recall@1
- type: dot_recall@3
value: 0.08610042820194802
name: Dot Recall@3
- type: dot_recall@5
value: 0.1356349864336842
name: Dot Recall@5
- type: dot_recall@10
value: 0.2108700010340366
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.4008410950979539
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5753888888888887
name: Dot Mrr@10
- type: dot_map@100
value: 0.23475075762293293
name: Dot Map@100
- type: row_non_zero_mean_query
value: 110.18000030517578
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.9963901042938232
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 146.9065399169922
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.9951868057250977
name: Row Sparsity Mean Corpus
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoFEVER
type: NanoFEVER
metrics:
- type: dot_accuracy@1
value: 0.56
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.64
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.72
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.82
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.56
name: Dot Precision@1
- type: dot_precision@3
value: 0.2333333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.15600000000000003
name: Dot Precision@5
- type: dot_precision@10
value: 0.088
name: Dot Precision@10
- type: dot_recall@1
value: 0.5266666666666666
name: Dot Recall@1
- type: dot_recall@3
value: 0.6333333333333333
name: Dot Recall@3
- type: dot_recall@5
value: 0.7133333333333333
name: Dot Recall@5
- type: dot_recall@10
value: 0.8133333333333332
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6697436984572378
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6316349206349205
name: Dot Mrr@10
- type: dot_map@100
value: 0.6281723194238796
name: Dot Map@100
- type: row_non_zero_mean_query
value: 96.77999877929688
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.9968292117118835
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 219.1212921142578
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.9928209185600281
name: Row Sparsity Mean Corpus
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoFiQA2018
type: NanoFiQA2018
metrics:
- type: dot_accuracy@1
value: 0.14
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.32
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.36
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.44
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.14
name: Dot Precision@1
- type: dot_precision@3
value: 0.12
name: Dot Precision@3
- type: dot_precision@5
value: 0.10400000000000001
name: Dot Precision@5
- type: dot_precision@10
value: 0.068
name: Dot Precision@10
- type: dot_recall@1
value: 0.06783333333333333
name: Dot Recall@1
- type: dot_recall@3
value: 0.14569047619047618
name: Dot Recall@3
- type: dot_recall@5
value: 0.20004761904761903
name: Dot Recall@5
- type: dot_recall@10
value: 0.2636825396825397
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.19745078204560165
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.23552380952380955
name: Dot Mrr@10
- type: dot_map@100
value: 0.14731140504396462
name: Dot Map@100
- type: row_non_zero_mean_query
value: 80.33999633789062
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.9973678588867188
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 125.915771484375
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.9958745241165161
name: Row Sparsity Mean Corpus
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoHotpotQA
type: NanoHotpotQA
metrics:
- type: dot_accuracy@1
value: 0.46
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.66
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.72
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.84
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.46
name: Dot Precision@1
- type: dot_precision@3
value: 0.25333333333333335
name: Dot Precision@3
- type: dot_precision@5
value: 0.176
name: Dot Precision@5
- type: dot_precision@10
value: 0.11
name: Dot Precision@10
- type: dot_recall@1
value: 0.23
name: Dot Recall@1
- type: dot_recall@3
value: 0.38
name: Dot Recall@3
- type: dot_recall@5
value: 0.44
name: Dot Recall@5
- type: dot_recall@10
value: 0.55
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.4642094806420616
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5762777777777778
name: Dot Mrr@10
- type: dot_map@100
value: 0.3781729878529178
name: Dot Map@100
- type: row_non_zero_mean_query
value: 87.26000213623047
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.9971410632133484
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 166.47190856933594
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.9945458173751831
name: Row Sparsity Mean Corpus
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: dot_accuracy@1
value: 0.16
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.26
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.36
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.46
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.16
name: Dot Precision@1
- type: dot_precision@3
value: 0.08666666666666666
name: Dot Precision@3
- type: dot_precision@5
value: 0.07200000000000001
name: Dot Precision@5
- type: dot_precision@10
value: 0.046000000000000006
name: Dot Precision@10
- type: dot_recall@1
value: 0.16
name: Dot Recall@1
- type: dot_recall@3
value: 0.26
name: Dot Recall@3
- type: dot_recall@5
value: 0.36
name: Dot Recall@5
- type: dot_recall@10
value: 0.46
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.2889744107825637
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.23699999999999996
name: Dot Mrr@10
- type: dot_map@100
value: 0.2547054047317205
name: Dot Map@100
- type: row_non_zero_mean_query
value: 96.05999755859375
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.996852695941925
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 105.46202850341797
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.9965446591377258
name: Row Sparsity Mean Corpus
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNFCorpus
type: NanoNFCorpus
metrics:
- type: dot_accuracy@1
value: 0.28
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.36
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.4
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.44
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.28
name: Dot Precision@1
- type: dot_precision@3
value: 0.18666666666666665
name: Dot Precision@3
- type: dot_precision@5
value: 0.18
name: Dot Precision@5
- type: dot_precision@10
value: 0.14800000000000002
name: Dot Precision@10
- type: dot_recall@1
value: 0.01004738213752895
name: Dot Recall@1
- type: dot_recall@3
value: 0.017620026805744985
name: Dot Recall@3
- type: dot_recall@5
value: 0.031161291315801767
name: Dot Recall@5
- type: dot_recall@10
value: 0.04364801295748046
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.16900908943281664
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.3281666666666666
name: Dot Mrr@10
- type: dot_map@100
value: 0.04873203232918475
name: Dot Map@100
- type: row_non_zero_mean_query
value: 122.94000244140625
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.9959720373153687
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 199.5936279296875
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.9934607744216919
name: Row Sparsity Mean Corpus
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: dot_accuracy@1
value: 0.18
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.34
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.4
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.48
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.18
name: Dot Precision@1
- type: dot_precision@3
value: 0.11333333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.08
name: Dot Precision@5
- type: dot_precision@10
value: 0.04800000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.17
name: Dot Recall@1
- type: dot_recall@3
value: 0.32
name: Dot Recall@3
- type: dot_recall@5
value: 0.38
name: Dot Recall@5
- type: dot_recall@10
value: 0.46
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.30557584177037744
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.26749206349206345
name: Dot Mrr@10
- type: dot_map@100
value: 0.26111102151483273
name: Dot Map@100
- type: row_non_zero_mean_query
value: 79.22000122070312
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.9974044561386108
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 145.250244140625
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.995241105556488
name: Row Sparsity Mean Corpus
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoQuoraRetrieval
type: NanoQuoraRetrieval
metrics:
- type: dot_accuracy@1
value: 0.92
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.96
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 1
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.92
name: Dot Precision@1
- type: dot_precision@3
value: 0.3733333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.256
name: Dot Precision@5
- type: dot_precision@10
value: 0.132
name: Dot Precision@10
- type: dot_recall@1
value: 0.8206666666666667
name: Dot Recall@1
- type: dot_recall@3
value: 0.8986666666666667
name: Dot Recall@3
- type: dot_recall@5
value: 0.9726666666666667
name: Dot Recall@5
- type: dot_recall@10
value: 0.9826666666666667
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9456812009077233
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.95
name: Dot Mrr@10
- type: dot_map@100
value: 0.9232605046294702
name: Dot Map@100
- type: row_non_zero_mean_query
value: 73.83999633789062
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.9975807070732117
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 74.96769714355469
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.9975438117980957
name: Row Sparsity Mean Corpus
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoSCIDOCS
type: NanoSCIDOCS
metrics:
- type: dot_accuracy@1
value: 0.36
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.5
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.62
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.36
name: Dot Precision@1
- type: dot_precision@3
value: 0.26
name: Dot Precision@3
- type: dot_precision@5
value: 0.19199999999999995
name: Dot Precision@5
- type: dot_precision@10
value: 0.12399999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.07666666666666666
name: Dot Recall@1
- type: dot_recall@3
value: 0.16166666666666665
name: Dot Recall@3
- type: dot_recall@5
value: 0.19766666666666666
name: Dot Recall@5
- type: dot_recall@10
value: 0.25466666666666665
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.2640445339047696
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.45502380952380955
name: Dot Mrr@10
- type: dot_map@100
value: 0.18681370322897212
name: Dot Map@100
- type: row_non_zero_mean_query
value: 95.91999816894531
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.9968574047088623
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 184.44908142089844
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.9939568638801575
name: Row Sparsity Mean Corpus
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoArguAna
type: NanoArguAna
metrics:
- type: dot_accuracy@1
value: 0.1
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.28
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.32
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.38
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.1
name: Dot Precision@1
- type: dot_precision@3
value: 0.09333333333333332
name: Dot Precision@3
- type: dot_precision@5
value: 0.064
name: Dot Precision@5
- type: dot_precision@10
value: 0.038000000000000006
name: Dot Precision@10
- type: dot_recall@1
value: 0.1
name: Dot Recall@1
- type: dot_recall@3
value: 0.28
name: Dot Recall@3
- type: dot_recall@5
value: 0.32
name: Dot Recall@5
- type: dot_recall@10
value: 0.38
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.24652298080535653
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.2033571428571429
name: Dot Mrr@10
- type: dot_map@100
value: 0.2089304613637203
name: Dot Map@100
- type: row_non_zero_mean_query
value: 181.27999877929688
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.9940606951713562
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 160.55982971191406
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.9947395324707031
name: Row Sparsity Mean Corpus
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoSciFact
type: NanoSciFact
metrics:
- type: dot_accuracy@1
value: 0.38
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.56
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.64
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.66
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.38
name: Dot Precision@1
- type: dot_precision@3
value: 0.19333333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.14
name: Dot Precision@5
- type: dot_precision@10
value: 0.07200000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.365
name: Dot Recall@1
- type: dot_recall@3
value: 0.54
name: Dot Recall@3
- type: dot_recall@5
value: 0.61
name: Dot Recall@5
- type: dot_recall@10
value: 0.63
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5012811403788975
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4666666666666666
name: Dot Mrr@10
- type: dot_map@100
value: 0.4647112383054177
name: Dot Map@100
- type: row_non_zero_mean_query
value: 90.80000305175781
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.9970251321792603
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 197.8948211669922
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.9935163259506226
name: Row Sparsity Mean Corpus
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoTouche2020
type: NanoTouche2020
metrics:
- type: dot_accuracy@1
value: 0.4897959183673469
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.7551020408163265
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.8367346938775511
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9387755102040817
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.4897959183673469
name: Dot Precision@1
- type: dot_precision@3
value: 0.43537414965986393
name: Dot Precision@3
- type: dot_precision@5
value: 0.42857142857142855
name: Dot Precision@5
- type: dot_precision@10
value: 0.336734693877551
name: Dot Precision@10
- type: dot_recall@1
value: 0.03231843040459851
name: Dot Recall@1
- type: dot_recall@3
value: 0.08325211008018112
name: Dot Recall@3
- type: dot_recall@5
value: 0.13623768956747034
name: Dot Recall@5
- type: dot_recall@10
value: 0.20745266217275266
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.3790647958645717
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6323372206025266
name: Dot Mrr@10
- type: dot_map@100
value: 0.2305586843086588
name: Dot Map@100
- type: row_non_zero_mean_query
value: 78.7755126953125
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.9974190592765808
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 140.8109588623047
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.9953866004943848
name: Row Sparsity Mean Corpus
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: dot_accuracy@1
value: 0.3607535321821036
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.510392464678179
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.578210361067504
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.6491365777080063
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.3607535321821036
name: Dot Precision@1
- type: dot_precision@3
value: 0.2252851909994767
name: Dot Precision@3
- type: dot_precision@5
value: 0.18035164835164832
name: Dot Precision@5
- type: dot_precision@10
value: 0.1243642072213501
name: Dot Precision@10
- type: dot_recall@1
value: 0.20557882485227402
name: Dot Recall@1
- type: dot_recall@3
value: 0.3045894647137193
name: Dot Recall@3
- type: dot_recall@5
value: 0.3591088399767622
name: Dot Recall@5
- type: dot_recall@10
value: 0.42143486275744696
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.3864128363458742
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.44907050659091463
name: Dot Mrr@10
- type: dot_map@100
value: 0.31631515718000486
name: Dot Map@100
- type: row_non_zero_mean_query
value: 98.19350081223708
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.9967828622231116
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 158.7868622999925
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.994797619489523
name: Row Sparsity Mean Corpus
splade-distilbert-base-uncased trained on Quora Duplicates Questions
This is a SPLADE Sparse Encoder model finetuned from distilbert/distilbert-base-uncased on the quora-duplicates dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
Model Details
Model Description
- Model Type: SPLADE Sparse Encoder
- Base model: distilbert/distilbert-base-uncased
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 30522 dimensions
- Similarity Function: Dot Product
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Sparse Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sparse Encoders on Hugging Face
Full Model Architecture
SparseEncoder(
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("xin0920/splade-distilbert-base-uncased-msmarco-mrl")
# Run inference
sentences = [
'Which laptop is best under 25000 INR?',
'What are the best laptops under 25k?',
'What is the best laptop under 45k?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 30522)
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Sparse Information Retrieval
- Datasets:
NanoClimateFEVER
,NanoDBPedia
,NanoFEVER
,NanoFiQA2018
,NanoHotpotQA
,NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoQuoraRetrieval
,NanoSCIDOCS
,NanoArguAna
,NanoSciFact
andNanoTouche2020
- Evaluated with
SparseInformationRetrievalEvaluator
Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dot_accuracy@1 | 0.2 | 0.46 | 0.56 | 0.14 | 0.46 | 0.16 | 0.28 | 0.18 | 0.92 | 0.36 | 0.1 | 0.38 | 0.4898 |
dot_accuracy@3 | 0.34 | 0.66 | 0.64 | 0.32 | 0.66 | 0.26 | 0.36 | 0.34 | 0.96 | 0.5 | 0.28 | 0.56 | 0.7551 |
dot_accuracy@5 | 0.38 | 0.76 | 0.72 | 0.36 | 0.72 | 0.36 | 0.4 | 0.4 | 1.0 | 0.62 | 0.32 | 0.64 | 0.8367 |
dot_accuracy@10 | 0.46 | 0.82 | 0.82 | 0.44 | 0.84 | 0.46 | 0.44 | 0.48 | 1.0 | 0.7 | 0.38 | 0.66 | 0.9388 |
dot_precision@1 | 0.2 | 0.46 | 0.56 | 0.14 | 0.46 | 0.16 | 0.28 | 0.18 | 0.92 | 0.36 | 0.1 | 0.38 | 0.4898 |
dot_precision@3 | 0.12 | 0.46 | 0.2333 | 0.12 | 0.2533 | 0.0867 | 0.1867 | 0.1133 | 0.3733 | 0.26 | 0.0933 | 0.1933 | 0.4354 |
dot_precision@5 | 0.084 | 0.412 | 0.156 | 0.104 | 0.176 | 0.072 | 0.18 | 0.08 | 0.256 | 0.192 | 0.064 | 0.14 | 0.4286 |
dot_precision@10 | 0.058 | 0.348 | 0.088 | 0.068 | 0.11 | 0.046 | 0.148 | 0.048 | 0.132 | 0.124 | 0.038 | 0.072 | 0.3367 |
dot_recall@1 | 0.0883 | 0.025 | 0.5267 | 0.0678 | 0.23 | 0.16 | 0.01 | 0.17 | 0.8207 | 0.0767 | 0.1 | 0.365 | 0.0323 |
dot_recall@3 | 0.1533 | 0.0861 | 0.6333 | 0.1457 | 0.38 | 0.26 | 0.0176 | 0.32 | 0.8987 | 0.1617 | 0.28 | 0.54 | 0.0833 |
dot_recall@5 | 0.1717 | 0.1356 | 0.7133 | 0.2 | 0.44 | 0.36 | 0.0312 | 0.38 | 0.9727 | 0.1977 | 0.32 | 0.61 | 0.1362 |
dot_recall@10 | 0.2223 | 0.2109 | 0.8133 | 0.2637 | 0.55 | 0.46 | 0.0436 | 0.46 | 0.9827 | 0.2547 | 0.38 | 0.63 | 0.2075 |
dot_ndcg@10 | 0.191 | 0.4008 | 0.6697 | 0.1975 | 0.4642 | 0.289 | 0.169 | 0.3056 | 0.9457 | 0.264 | 0.2465 | 0.5013 | 0.3791 |
dot_mrr@10 | 0.279 | 0.5754 | 0.6316 | 0.2355 | 0.5763 | 0.237 | 0.3282 | 0.2675 | 0.95 | 0.455 | 0.2034 | 0.4667 | 0.6323 |
dot_map@100 | 0.1449 | 0.2348 | 0.6282 | 0.1473 | 0.3782 | 0.2547 | 0.0487 | 0.2611 | 0.9233 | 0.1868 | 0.2089 | 0.4647 | 0.2306 |
row_non_zero_mean_query | 83.12 | 110.18 | 96.78 | 80.34 | 87.26 | 96.06 | 122.94 | 79.22 | 73.84 | 95.92 | 181.28 | 90.8 | 78.7755 |
row_sparsity_mean_query | 0.9973 | 0.9964 | 0.9968 | 0.9974 | 0.9971 | 0.9969 | 0.996 | 0.9974 | 0.9976 | 0.9969 | 0.9941 | 0.997 | 0.9974 |
row_non_zero_mean_corpus | 196.8254 | 146.9065 | 219.1213 | 125.9158 | 166.4719 | 105.462 | 199.5936 | 145.2502 | 74.9677 | 184.4491 | 160.5598 | 197.8948 | 140.811 |
row_sparsity_mean_corpus | 0.9936 | 0.9952 | 0.9928 | 0.9959 | 0.9945 | 0.9965 | 0.9935 | 0.9952 | 0.9975 | 0.994 | 0.9947 | 0.9935 | 0.9954 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "climatefever", "dbpedia", "fever", "fiqa2018", "hotpotqa", "msmarco", "nfcorpus", "nq", "quoraretrieval", "scidocs", "arguana", "scifact", "touche2020" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.3608 |
dot_accuracy@3 | 0.5104 |
dot_accuracy@5 | 0.5782 |
dot_accuracy@10 | 0.6491 |
dot_precision@1 | 0.3608 |
dot_precision@3 | 0.2253 |
dot_precision@5 | 0.1804 |
dot_precision@10 | 0.1244 |
dot_recall@1 | 0.2056 |
dot_recall@3 | 0.3046 |
dot_recall@5 | 0.3591 |
dot_recall@10 | 0.4214 |
dot_ndcg@10 | 0.3864 |
dot_mrr@10 | 0.4491 |
dot_map@100 | 0.3163 |
row_non_zero_mean_query | 98.1935 |
row_sparsity_mean_query | 0.9968 |
row_non_zero_mean_corpus | 158.7869 |
row_sparsity_mean_corpus | 0.9948 |
Training Details
Training Dataset
quora-duplicates
- Dataset: quora-duplicates at 451a485
- Size: 99,000 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 14.1 tokens
- max: 39 tokens
- min: 6 tokens
- mean: 13.83 tokens
- max: 41 tokens
- min: 6 tokens
- mean: 15.21 tokens
- max: 75 tokens
- Samples:
anchor positive negative What are the best GMAT coaching institutes in Delhi NCR?
Which are the best GMAT coaching institutes in Delhi/NCR?
What are the best GMAT coaching institutes in Delhi-Noida Area?
Is a third world war coming?
Is World War 3 more imminent than expected?
Since the UN is unable to control terrorism and groups like ISIS, al-Qaeda and countries that promote terrorism (even though it consumed those countries), can we assume that the world is heading towards World War III?
Should I build iOS or Android apps first?
Should people choose Android or iOS first to build their App?
How much more effort is it to build your app on both iOS and Android?
- Loss:
SpladeLoss
with these parameters:{'loss': SparseMultipleNegativesRankingLoss( (model): SparseEncoder( (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None}) ) (cross_entropy_loss): CrossEntropyLoss() ), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05}
Evaluation Dataset
quora-duplicates
- Dataset: quora-duplicates at 451a485
- Size: 1,000 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 14.05 tokens
- max: 40 tokens
- min: 6 tokens
- mean: 14.14 tokens
- max: 44 tokens
- min: 6 tokens
- mean: 14.56 tokens
- max: 60 tokens
- Samples:
anchor positive negative What happens if we use petrol in diesel vehicles?
Why can't we use petrol in diesel?
Why are diesel engines noisier than petrol engines?
Why is Saltwater taffy candy imported in Switzerland?
Why is Saltwater taffy candy imported in Laos?
Is salt a consumer product?
Which is your favourite film in 2016?
What movie is the best movie of 2016?
What will the best movie of 2017 be?
- Loss:
SpladeLoss
with these parameters:{'loss': SparseMultipleNegativesRankingLoss( (model): SparseEncoder( (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None}) ) (cross_entropy_loss): CrossEntropyLoss() ), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 12per_device_eval_batch_size
: 12learning_rate
: 2e-05num_train_epochs
: 1bf16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 12per_device_eval_batch_size
: 12per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1938 | 200 | 12.7715 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3876 | 400 | 0.2719 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5814 | 600 | 0.234 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7752 | 800 | 0.2068 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9690 | 1000 | 0.2041 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
-1 | -1 | - | 0.1910 | 0.4008 | 0.6697 | 0.1975 | 0.4642 | 0.2890 | 0.1690 | 0.3056 | 0.9457 | 0.2640 | 0.2465 | 0.5013 | 0.3791 | 0.3864 |
Framework Versions
- Python: 3.9.22
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.52.1
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
SpladeLoss
@misc{formal2022distillationhardnegativesampling,
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
year={2022},
eprint={2205.04733},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2205.04733},
}
SparseMultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
FlopsLoss
@article{paria2020minimizing,
title={Minimizing flops to learn efficient sparse representations},
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
journal={arXiv preprint arXiv:2004.05665},
year={2020}
}