|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List, Dict, Any
|
|
|
|
from transformers import (
|
|
AutoModelForSequenceClassification,
|
|
AutoTokenizer,
|
|
AutoModelForTokenClassification,
|
|
pipeline
|
|
)
|
|
|
|
import torch
|
|
import re
|
|
from pprint import pprint
|
|
|
|
|
|
device = 0 if torch.cuda.is_available() else -1
|
|
|
|
|
|
ASPECT_MODEL_ID = "yangheng/deberta-v3-base-end2end-absa"
|
|
SENTI_MODEL_ID = "yangheng/deberta-v3-base-absa-v1.1"
|
|
|
|
|
|
USE_EXTRACTOR_SENTI_AS_FALLBACK = True
|
|
FALLBACK_CONFIDENCE_THRESHOLD = 0.8
|
|
|
|
|
|
TRUNCATION = True
|
|
MAX_LENGTH = 512
|
|
BATCH_SIZE = 16
|
|
|
|
|
|
|
|
|
|
try:
|
|
tok_asp = AutoTokenizer.from_pretrained(SENTI_MODEL_ID, use_fast=True)
|
|
mdl_asp = AutoModelForTokenClassification.from_pretrained(ASPECT_MODEL_ID)
|
|
|
|
aspect_extractor = pipeline(
|
|
task="token-classification",
|
|
model=mdl_asp,
|
|
tokenizer=tok_asp,
|
|
aggregation_strategy="simple",
|
|
device=device,
|
|
)
|
|
except Exception as e:
|
|
print(f"Error loading aspect extraction models: {e}")
|
|
raise
|
|
|
|
|
|
try:
|
|
sent_classifier = pipeline(
|
|
task="text-classification",
|
|
model=SENTI_MODEL_ID,
|
|
device=device,
|
|
return_all_scores=True,
|
|
function_to_apply="softmax",
|
|
top_k=None
|
|
)
|
|
except Exception as e:
|
|
print(f"Error loading sentiment classification model: {e}")
|
|
raise
|
|
|
|
|
|
|
|
|
|
def _clean_aspect(s: str) -> str:
|
|
"""Clean aspect string by removing leading/trailing punctuation and whitespace."""
|
|
if not s:
|
|
return ""
|
|
return re.sub(r'^[\s\.,;:!?\(\)\[\]\{\}"\']+|[\s\.,;:!?\(\)\[\]\{\}"\']+$', "", s).strip()
|
|
|
|
|
|
def _locate_span(text: str, phrase: str):
|
|
"""Locate the span of a phrase in text, with case-insensitive fallback."""
|
|
if not phrase:
|
|
return None
|
|
|
|
|
|
pat = re.escape(phrase)
|
|
m = re.search(pat, text)
|
|
if m:
|
|
return m.start(), m.end()
|
|
|
|
|
|
m = re.search(pat, text, flags=re.IGNORECASE)
|
|
if m:
|
|
return m.start(), m.end()
|
|
|
|
return None
|
|
|
|
|
|
def extract_aspects_for_text(text: str) -> List[Dict[str, Any]]:
|
|
"""
|
|
Extract aspects from a single text using the aspect extraction model.
|
|
|
|
Args:
|
|
text: Input text to extract aspects from
|
|
|
|
Returns:
|
|
List of aspect dictionaries with position and metadata
|
|
"""
|
|
if not text.strip():
|
|
return []
|
|
|
|
try:
|
|
ents = aspect_extractor(text)
|
|
print(f"Raw entities extracted: {ents}")
|
|
except Exception as e:
|
|
print(f"Error in aspect extraction for text '{text[:50]}...': {e}")
|
|
return []
|
|
|
|
aspects = []
|
|
seen = set()
|
|
|
|
for ent in ents:
|
|
label = (ent.get("entity_group") or "").lower()
|
|
print(f"Processing entity: {ent}, label: {label}")
|
|
|
|
|
|
if not any(keyword in label for keyword in ["asp", "aspect", "b-", "i-"]):
|
|
print(f"Skipping entity with label: {label}")
|
|
continue
|
|
|
|
word = _clean_aspect(ent.get("word", ""))
|
|
if not word:
|
|
print(f"Skipping empty aspect")
|
|
continue
|
|
|
|
start = ent.get("start")
|
|
end = ent.get("end")
|
|
|
|
|
|
if start is None or end is None:
|
|
loc = _locate_span(text, word)
|
|
if loc:
|
|
start, end = loc
|
|
else:
|
|
|
|
print(f"Could not locate aspect '{word}' in text")
|
|
continue
|
|
|
|
|
|
key = (word.lower(), int(start), int(end))
|
|
if key in seen:
|
|
continue
|
|
seen.add(key)
|
|
|
|
aspect_dict = {
|
|
"aspect": word,
|
|
"start": int(start),
|
|
"end": int(end),
|
|
"extractor_label": ent.get("entity_group", ""),
|
|
"extractor_score": float(ent.get("score", 0.0)),
|
|
}
|
|
aspects.append(aspect_dict)
|
|
print(f"Added aspect: {aspect_dict}")
|
|
|
|
print(f"Final aspects for text: {aspects}")
|
|
return aspects
|
|
|
|
|
|
def classify_aspects(text: str, aspects: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
|
"""
|
|
Classify sentiment polarity for each (text, aspect) pair.
|
|
Since the aspect extractor already provides sentiment labels (ASP-Positive, etc.),
|
|
we can use those directly or optionally run additional classification.
|
|
|
|
Args:
|
|
text: Original text
|
|
aspects: List of aspect dictionaries
|
|
|
|
Returns:
|
|
List of aspects enriched with sentiment and confidence information
|
|
"""
|
|
if not aspects:
|
|
return []
|
|
|
|
enriched = []
|
|
for asp in aspects:
|
|
|
|
extractor_label = asp.get("extractor_label", "")
|
|
extractor_confidence = asp.get("extractor_score", 0.0)
|
|
|
|
|
|
sentiment = "Neutral"
|
|
confidence = extractor_confidence
|
|
prob_map = {"Positive": 0.33, "Negative": 0.33, "Neutral": 0.33}
|
|
|
|
|
|
if "-" in extractor_label:
|
|
_, maybe_sentiment = extractor_label.split("-", 1)
|
|
if maybe_sentiment.capitalize() in ("Positive", "Negative", "Neutral"):
|
|
sentiment = maybe_sentiment.capitalize()
|
|
|
|
prob_map = {
|
|
"Positive": confidence if sentiment == "Positive" else (1 - confidence) / 2,
|
|
"Negative": confidence if sentiment == "Negative" else (1 - confidence) / 2,
|
|
"Neutral": confidence if sentiment == "Neutral" else (1 - confidence) / 2
|
|
}
|
|
|
|
|
|
if confidence < FALLBACK_CONFIDENCE_THRESHOLD:
|
|
try:
|
|
|
|
combined_input = f"{text} [SEP] {asp['aspect']}"
|
|
|
|
result = sent_classifier(
|
|
combined_input,
|
|
truncation=TRUNCATION,
|
|
max_length=MAX_LENGTH
|
|
)
|
|
|
|
if result and isinstance(result, list) and len(result) > 0:
|
|
if isinstance(result[0], dict):
|
|
best = max(result, key=lambda d: d.get("score", 0))
|
|
classifier_sentiment = best.get("label", sentiment)
|
|
classifier_confidence = float(best.get("score", confidence))
|
|
|
|
|
|
if classifier_confidence > confidence:
|
|
sentiment = classifier_sentiment
|
|
confidence = classifier_confidence
|
|
prob_map = {d.get("label", "Neutral"): float(d.get("score", 0)) for d in result}
|
|
|
|
except Exception as e:
|
|
print(f"Error in additional classification for aspect '{asp['aspect']}': {e}")
|
|
|
|
|
|
enriched.append({
|
|
**asp,
|
|
"sentiment": sentiment,
|
|
"confidence": confidence,
|
|
"probability": prob_map
|
|
})
|
|
|
|
return enriched
|
|
|
|
|
|
def absa(texts: List[str]) -> List[Dict[str, Any]]:
|
|
"""
|
|
Main entry point: Extract aspects from each text and classify their sentiment polarity.
|
|
|
|
Args:
|
|
texts: List of input texts
|
|
|
|
Returns:
|
|
List of structured results for each text
|
|
"""
|
|
if not texts:
|
|
return []
|
|
|
|
results = []
|
|
for i, text in enumerate(texts):
|
|
if not isinstance(text, str):
|
|
print(f"Warning: Text at index {i} is not a string, skipping")
|
|
continue
|
|
|
|
try:
|
|
aspects = extract_aspects_for_text(text)
|
|
aspects = classify_aspects(text, aspects)
|
|
|
|
results.append({
|
|
"text": text,
|
|
"aspects": [a["aspect"] for a in aspects],
|
|
"positions": [[a["start"], a["end"]] for a in aspects],
|
|
"sentiments": [a["sentiment"] for a in aspects],
|
|
"confidence": [a["confidence"] for a in aspects],
|
|
"details": aspects
|
|
})
|
|
except Exception as e:
|
|
print(f"Error processing text at index {i}: {e}")
|
|
results.append({
|
|
"text": text,
|
|
"aspects": [],
|
|
"positions": [],
|
|
"sentiments": [],
|
|
"confidence": [],
|
|
"details": []
|
|
})
|
|
|
|
return results
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
samples = [
|
|
"The user interface is brilliant, but the documentation is a total mess.",
|
|
|
|
"这家餐厅的牛排很好吃,但是服务很慢。",
|
|
|
|
"La batería es malísima, aunque la cámara está muy bien.",
|
|
|
|
"Le film était captivant, mais la fin était décevante.",
|
|
|
|
"Das Auto ist sehr sparsam, aber die Sitze sind unbequem.",
|
|
|
|
"Il design è elegante, però il software è pieno di bug.",
|
|
|
|
"O hotel tem uma vista incrível, mas o café da manhã é fraco.",
|
|
|
|
"Книга очень интересная, но перевод оставляет желать лучшего.",
|
|
|
|
"このアプリは便利だけど、バッテリーの消費が激しい。",
|
|
|
|
"음식은 맛있었지만, 가격이 너무 비쌌어요.",
|
|
|
|
"الخدمة ممتازة، لكن الموقع صعب الوصول إليه.",
|
|
|
|
"फ़ोन का कैमरा शानदार है, लेकिन बैटरी लाइफ खराब है।",
|
|
|
|
"De locatie is perfect, alleen is het personeel onvriendelijk.",
|
|
|
|
"Boken är välskriven, men handlingen är förutsägbar.",
|
|
|
|
"Grafika w grze jest niesamowita, ale fabuła jest nudna.",
|
|
|
|
"Ürün kaliteli görünüyor ama kargo çok geç geldi.",
|
|
|
|
"Chất lượng âm thanh tốt, tuy nhiên tai nghe không thoải mái lắm.",
|
|
|
|
"การแสดงดีมาก แต่บทภาพยนตร์ค่อนข้างอ่อน",
|
|
|
|
"Η τοποθεσία είναι φανταστική, αλλά το δωμάτιο ήταν πολύ μικρό.",
|
|
|
|
"המשחק מהנה, אבל יש בו יותר מדי פרסומות.",
|
|
|
|
"Ponsel ini cepat, tetapi cenderung cepat panas.",
|
|
|
|
"Ohjelma on tehokas, mutta käyttöliittymä on sekava.",
|
|
|
|
"Maden var lækker, men portionerne var for små.",
|
|
|
|
"Počítač je rychlý, ale software je zastaralý.",
|
|
|
|
]
|
|
|
|
|
|
print("Running ABSA analysis...")
|
|
try:
|
|
results = absa(samples)
|
|
print("\nResults:")
|
|
pprint(results, width=120)
|
|
except Exception as e:
|
|
print(f"Error running ABSA: {e}")
|
|
|
|
|
|
|
|
"""
|
|
Running ABSA analysis...
|
|
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.51754177), 'word': 'user interface', 'start': 3, 'end': 18}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.52044636), 'word': 'documentation', 'start': 40, 'end': 54}]
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.51754177), 'word': 'user interface', 'start': 3, 'end': 18}, label: asp-neutral
|
|
Added aspect: {'aspect': 'user interface', 'start': 3, 'end': 18, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.517541766166687}
|
|
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.52044636), 'word': 'documentation', 'start': 40, 'end': 54}, label: asp-negative
|
|
Added aspect: {'aspect': 'documentation', 'start': 40, 'end': 54, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.5204463601112366}
|
|
Final aspects for text: [{'aspect': 'user interface', 'start': 3, 'end': 18, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.517541766166687}, {'aspect': 'documentation', 'start': 40, 'end': 54, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.5204463601112366}]
|
|
Raw entities extracted: [{'entity_group': 'ASP-Positive', 'score': np.float32(0.5346123), 'word': '牛排', 'start': 5, 'end': 7}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.5622819), 'word': '服务', 'start': 13, 'end': 15}]
|
|
Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.5346123), 'word': '牛排', 'start': 5, 'end': 7}, label: asp-positive
|
|
Added aspect: {'aspect': '牛排', 'start': 5, 'end': 7, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.5346122980117798}
|
|
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.5622819), 'word': '服务', 'start': 13, 'end': 15}, label: asp-negative
|
|
Added aspect: {'aspect': '服务', 'start': 13, 'end': 15, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.5622819066047668}
|
|
Final aspects for text: [{'aspect': '牛排', 'start': 5, 'end': 7, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.5346122980117798}, {'aspect': '服务', 'start': 13, 'end': 15, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.5622819066047668}]
|
|
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.4336498), 'word': 'batería', 'start': 2, 'end': 10}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.44364822), 'word': 'cámara', 'start': 33, 'end': 40}]
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.4336498), 'word': 'batería', 'start': 2, 'end': 10}, label: asp-neutral
|
|
Added aspect: {'aspect': 'batería', 'start': 2, 'end': 10, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.43364980816841125}
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.44364822), 'word': 'cámara', 'start': 33, 'end': 40}, label: asp-neutral
|
|
Added aspect: {'aspect': 'cámara', 'start': 33, 'end': 40, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.44364821910858154}
|
|
Final aspects for text: [{'aspect': 'batería', 'start': 2, 'end': 10, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.43364980816841125}, {'aspect': 'cámara', 'start': 33, 'end': 40, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.44364821910858154}]
|
|
Raw entities extracted: [{'entity_group': 'ASP-Positive', 'score': np.float32(0.6539798), 'word': 'film', 'start': 2, 'end': 7}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.41829002), 'word': 'fin', 'start': 32, 'end': 36}]
|
|
Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.6539798), 'word': 'film', 'start': 2, 'end': 7}, label: asp-positive
|
|
Added aspect: {'aspect': 'film', 'start': 2, 'end': 7, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.6539797782897949}
|
|
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.41829002), 'word': 'fin', 'start': 32, 'end': 36}, label: asp-negative
|
|
Added aspect: {'aspect': 'fin', 'start': 32, 'end': 36, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.41829001903533936}
|
|
Final aspects for text: [{'aspect': 'film', 'start': 2, 'end': 7, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.6539797782897949}, {'aspect': 'fin', 'start': 32, 'end': 36, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.41829001903533936}]
|
|
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.5750168), 'word': 'Auto', 'start': 3, 'end': 8}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.49865413), 'word': 'Sitze', 'start': 35, 'end': 41}]
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5750168), 'word': 'Auto', 'start': 3, 'end': 8}, label: asp-neutral
|
|
Added aspect: {'aspect': 'Auto', 'start': 3, 'end': 8, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5750167965888977}
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.49865413), 'word': 'Sitze', 'start': 35, 'end': 41}, label: asp-neutral
|
|
Added aspect: {'aspect': 'Sitze', 'start': 35, 'end': 41, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.4986541271209717}
|
|
Final aspects for text: [{'aspect': 'Auto', 'start': 3, 'end': 8, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5750167965888977}, {'aspect': 'Sitze', 'start': 35, 'end': 41, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.4986541271209717}]
|
|
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.6298937), 'word': 'design', 'start': 2, 'end': 9}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.605807), 'word': 'software', 'start': 29, 'end': 38}]
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.6298937), 'word': 'design', 'start': 2, 'end': 9}, label: asp-neutral
|
|
Added aspect: {'aspect': 'design', 'start': 2, 'end': 9, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.6298937201499939}
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.605807), 'word': 'software', 'start': 29, 'end': 38}, label: asp-neutral
|
|
Added aspect: {'aspect': 'software', 'start': 29, 'end': 38, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.6058070063591003}
|
|
Final aspects for text: [{'aspect': 'design', 'start': 2, 'end': 9, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.6298937201499939}, {'aspect': 'software', 'start': 29, 'end': 38, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.6058070063591003}]
|
|
You seem to be using the pipelines sequentially on GPU. In order to maximize efficiency please use a dataset
|
|
Raw entities extracted: [{'entity_group': 'ASP-Negative', 'score': np.float32(0.56500643), 'word': 'café', 'start': 37, 'end': 42}]
|
|
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.56500643), 'word': 'café', 'start': 37, 'end': 42}, label: asp-negative
|
|
Added aspect: {'aspect': 'café', 'start': 37, 'end': 42, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.56500643491745}
|
|
Final aspects for text: [{'aspect': 'café', 'start': 37, 'end': 42, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.56500643491745}]
|
|
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.42165104), 'word': 'Кни', 'start': 0, 'end': 3}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.56838894), 'word': 'пере', 'start': 26, 'end': 31}]
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.42165104), 'word': 'Кни', 'start': 0, 'end': 3}, label: asp-neutral
|
|
Added aspect: {'aspect': 'Кни', 'start': 0, 'end': 3, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.42165103554725647}
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.56838894), 'word': 'пере', 'start': 26, 'end': 31}, label: asp-neutral
|
|
Added aspect: {'aspect': 'пере', 'start': 26, 'end': 31, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5683889389038086}
|
|
Final aspects for text: [{'aspect': 'Кни', 'start': 0, 'end': 3, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.42165103554725647}, {'aspect': 'пере', 'start': 26, 'end': 31, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5683889389038086}]
|
|
Raw entities extracted: [{'entity_group': 'ASP-Negative', 'score': np.float32(0.5808011), 'word': 'バッテリー', 'start': 12, 'end': 17}]
|
|
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.5808011), 'word': 'バッテリー', 'start': 12, 'end': 17}, label: asp-negative
|
|
Added aspect: {'aspect': 'バッテリー', 'start': 12, 'end': 17, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.5808011293411255}
|
|
Final aspects for text: [{'aspect': 'バッテリー', 'start': 12, 'end': 17, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.5808011293411255}]
|
|
Raw entities extracted: [{'entity_group': 'ASP-Positive', 'score': np.float32(0.49294925), 'word': '', 'start': 0, 'end': 1}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5432428), 'word': '음식', 'start': 0, 'end': 2}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.46728912), 'word': '가격', 'start': 10, 'end': 13}]
|
|
Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.49294925), 'word': '', 'start': 0, 'end': 1}, label: asp-positive
|
|
Skipping empty aspect
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5432428), 'word': '음식', 'start': 0, 'end': 2}, label: asp-neutral
|
|
Added aspect: {'aspect': '음식', 'start': 0, 'end': 2, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5432428121566772}
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.46728912), 'word': '가격', 'start': 10, 'end': 13}, label: asp-neutral
|
|
Added aspect: {'aspect': '가격', 'start': 10, 'end': 13, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.46728911995887756}
|
|
Final aspects for text: [{'aspect': '음식', 'start': 0, 'end': 2, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5432428121566772}, {'aspect': '가격', 'start': 10, 'end': 13, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.46728911995887756}]
|
|
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.5339548), 'word': 'الخ', 'start': 0, 'end': 3}, {'entity_group': 'ASP-Positive', 'score': np.float32(0.50554234), 'word': 'دمة', 'start': 3, 'end': 6}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.44124436), 'word': 'الموق', 'start': 18, 'end': 24}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.45630246), 'word': 'ع', 'start': 24, 'end': 25}]
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5339548), 'word': 'الخ', 'start': 0, 'end': 3}, label: asp-neutral
|
|
Added aspect: {'aspect': 'الخ', 'start': 0, 'end': 3, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5339547991752625}
|
|
Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.50554234), 'word': 'دمة', 'start': 3, 'end': 6}, label: asp-positive
|
|
Added aspect: {'aspect': 'دمة', 'start': 3, 'end': 6, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.5055423378944397}
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.44124436), 'word': 'الموق', 'start': 18, 'end': 24}, label: asp-neutral
|
|
Added aspect: {'aspect': 'الموق', 'start': 18, 'end': 24, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.44124436378479004}
|
|
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.45630246), 'word': 'ع', 'start': 24, 'end': 25}, label: asp-negative
|
|
Added aspect: {'aspect': 'ع', 'start': 24, 'end': 25, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.4563024640083313}
|
|
Final aspects for text: [{'aspect': 'الخ', 'start': 0, 'end': 3, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5339547991752625}, {'aspect': 'دمة', 'start': 3, 'end': 6, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.5055423378944397}, {'aspect': 'الموق', 'start': 18, 'end': 24, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.44124436378479004}, {'aspect': 'ع', 'start': 24, 'end': 25, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.4563024640083313}]
|
|
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.45512593), 'word': 'कैमरा', 'start': 7, 'end': 13}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.47939613), 'word': 'बैट', 'start': 30, 'end': 34}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.43590102), 'word': 'री', 'start': 34, 'end': 36}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.46086523), 'word': 'लाइफ', 'start': 36, 'end': 41}]
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.45512593), 'word': 'कैमरा', 'start': 7, 'end': 13}, label: asp-neutral
|
|
Added aspect: {'aspect': 'कैमरा', 'start': 7, 'end': 13, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.45512592792510986}
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.47939613), 'word': 'बैट', 'start': 30, 'end': 34}, label: asp-neutral
|
|
Added aspect: {'aspect': 'बैट', 'start': 30, 'end': 34, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.47939613461494446}
|
|
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.43590102), 'word': 'री', 'start': 34, 'end': 36}, label: asp-negative
|
|
Added aspect: {'aspect': 'री', 'start': 34, 'end': 36, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.435901015996933}
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.46086523), 'word': 'लाइफ', 'start': 36, 'end': 41}, label: asp-neutral
|
|
Added aspect: {'aspect': 'लाइफ', 'start': 36, 'end': 41, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.46086522936820984}
|
|
Final aspects for text: [{'aspect': 'कैमरा', 'start': 7, 'end': 13, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.45512592792510986}, {'aspect': 'बैट', 'start': 30, 'end': 34, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.47939613461494446}, {'aspect': 'री', 'start': 34, 'end': 36, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.435901015996933}, {'aspect': 'लाइफ', 'start': 36, 'end': 41, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.46086522936820984}]
|
|
Raw entities extracted: [{'entity_group': 'ASP-Positive', 'score': np.float32(0.4961163), 'word': 'locatie', 'start': 2, 'end': 10}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.48402262), 'word': 'personeel', 'start': 36, 'end': 46}]
|
|
Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.4961163), 'word': 'locatie', 'start': 2, 'end': 10}, label: asp-positive
|
|
Added aspect: {'aspect': 'locatie', 'start': 2, 'end': 10, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.4961163103580475}
|
|
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.48402262), 'word': 'personeel', 'start': 36, 'end': 46}, label: asp-negative
|
|
Added aspect: {'aspect': 'personeel', 'start': 36, 'end': 46, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.4840226173400879}
|
|
Final aspects for text: [{'aspect': 'locatie', 'start': 2, 'end': 10, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.4961163103580475}, {'aspect': 'personeel', 'start': 36, 'end': 46, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.4840226173400879}]
|
|
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.4699115), 'word': 'Bok', 'start': 0, 'end': 3}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.44758555), 'word': 'handling', 'start': 24, 'end': 33}]
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.4699115), 'word': 'Bok', 'start': 0, 'end': 3}, label: asp-neutral
|
|
Added aspect: {'aspect': 'Bok', 'start': 0, 'end': 3, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.46991148591041565}
|
|
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.44758555), 'word': 'handling', 'start': 24, 'end': 33}, label: asp-negative
|
|
Added aspect: {'aspect': 'handling', 'start': 24, 'end': 33, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.4475855529308319}
|
|
Final aspects for text: [{'aspect': 'Bok', 'start': 0, 'end': 3, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.46991148591041565}, {'aspect': 'handling', 'start': 24, 'end': 33, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.4475855529308319}]
|
|
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.55233693), 'word': 'Grafika', 'start': 0, 'end': 7}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.38001376), 'word': 'g', 'start': 9, 'end': 11}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5456186), 'word': 'fabuła', 'start': 36, 'end': 43}]
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.55233693), 'word': 'Grafika', 'start': 0, 'end': 7}, label: asp-neutral
|
|
Added aspect: {'aspect': 'Grafika', 'start': 0, 'end': 7, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5523369312286377}
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.38001376), 'word': 'g', 'start': 9, 'end': 11}, label: asp-neutral
|
|
Added aspect: {'aspect': 'g', 'start': 9, 'end': 11, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.38001376390457153}
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5456186), 'word': 'fabuła', 'start': 36, 'end': 43}, label: asp-neutral
|
|
Added aspect: {'aspect': 'fabuła', 'start': 36, 'end': 43, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5456185936927795}
|
|
Final aspects for text: [{'aspect': 'Grafika', 'start': 0, 'end': 7, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5523369312286377}, {'aspect': 'g', 'start': 9, 'end': 11, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.38001376390457153}, {'aspect': 'fabuła', 'start': 36, 'end': 43, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5456185936927795}]
|
|
Raw entities extracted: [{'entity_group': 'ASP-Negative', 'score': np.float32(0.64053774), 'word': 'kargo', 'start': 27, 'end': 33}]
|
|
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.64053774), 'word': 'kargo', 'start': 27, 'end': 33}, label: asp-negative
|
|
Added aspect: {'aspect': 'kargo', 'start': 27, 'end': 33, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.6405377388000488}
|
|
Final aspects for text: [{'aspect': 'kargo', 'start': 27, 'end': 33, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.6405377388000488}]
|
|
Raw entities extracted: [{'entity_group': 'ASP-Positive', 'score': np.float32(0.6112579), 'word': 'Ch', 'start': 0, 'end': 2}, {'entity_group': 'ASP-Positive', 'score': np.float32(0.6159069), 'word': 'lượng âm thanh', 'start': 4, 'end': 19}]
|
|
Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.6112579), 'word': 'Ch', 'start': 0, 'end': 2}, label: asp-positive
|
|
Added aspect: {'aspect': 'Ch', 'start': 0, 'end': 2, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.6112579107284546}
|
|
Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.6159069), 'word': 'lượng âm thanh', 'start': 4, 'end': 19}, label: asp-positive
|
|
Added aspect: {'aspect': 'lượng âm thanh', 'start': 4, 'end': 19, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.6159068942070007}
|
|
Final aspects for text: [{'aspect': 'Ch', 'start': 0, 'end': 2, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.6112579107284546}, {'aspect': 'lượng âm thanh', 'start': 4, 'end': 19, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.6159068942070007}]
|
|
Raw entities extracted: []
|
|
Final aspects for text: []
|
|
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.64732456), 'word': 'τοποθεσία', 'start': 1, 'end': 11}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.49225593), 'word': 'δω', 'start': 37, 'end': 40}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.4857553), 'word': 'μάτιο', 'start': 40, 'end': 45}]
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.64732456), 'word': 'τοποθεσία', 'start': 1, 'end': 11}, label: asp-neutral
|
|
Added aspect: {'aspect': 'τοποθεσία', 'start': 1, 'end': 11, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.6473245620727539}
|
|
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.49225593), 'word': 'δω', 'start': 37, 'end': 40}, label: asp-negative
|
|
Added aspect: {'aspect': 'δω', 'start': 37, 'end': 40, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.49225592613220215}
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.4857553), 'word': 'μάτιο', 'start': 40, 'end': 45}, label: asp-neutral
|
|
Added aspect: {'aspect': 'μάτιο', 'start': 40, 'end': 45, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.4857552945613861}
|
|
Final aspects for text: [{'aspect': 'τοποθεσία', 'start': 1, 'end': 11, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.6473245620727539}, {'aspect': 'δω', 'start': 37, 'end': 40, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.49225592613220215}, {'aspect': 'μάτιο', 'start': 40, 'end': 45, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.4857552945613861}]
|
|
Raw entities extracted: [{'entity_group': 'ASP-Positive', 'score': np.float32(0.41735768), 'word': 'ה', 'start': 0, 'end': 1}, {'entity_group': 'ASP-Positive', 'score': np.float32(0.39395496), 'word': 'משחק', 'start': 1, 'end': 5}]
|
|
Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.41735768), 'word': 'ה', 'start': 0, 'end': 1}, label: asp-positive
|
|
Added aspect: {'aspect': 'ה', 'start': 0, 'end': 1, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.4173576831817627}
|
|
Processing entity: {'entity_group': 'ASP-Positive', 'score': np.float32(0.39395496), 'word': 'משחק', 'start': 1, 'end': 5}, label: asp-positive
|
|
Added aspect: {'aspect': 'משחק', 'start': 1, 'end': 5, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.39395496249198914}
|
|
Final aspects for text: [{'aspect': 'ה', 'start': 0, 'end': 1, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.4173576831817627}, {'aspect': 'משחק', 'start': 1, 'end': 5, 'extractor_label': 'ASP-Positive', 'extractor_score': 0.39395496249198914}]
|
|
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.5927124), 'word': 'Pons', 'start': 0, 'end': 4}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.281419), 'word': 'el', 'start': 4, 'end': 6}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.56265074), 'word': 'tetapi', 'start': 17, 'end': 24}]
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5927124), 'word': 'Pons', 'start': 0, 'end': 4}, label: asp-neutral
|
|
Added aspect: {'aspect': 'Pons', 'start': 0, 'end': 4, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.59271240234375}
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.281419), 'word': 'el', 'start': 4, 'end': 6}, label: asp-neutral
|
|
Added aspect: {'aspect': 'el', 'start': 4, 'end': 6, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.2814190089702606}
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.56265074), 'word': 'tetapi', 'start': 17, 'end': 24}, label: asp-neutral
|
|
Added aspect: {'aspect': 'tetapi', 'start': 17, 'end': 24, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.562650740146637}
|
|
Final aspects for text: [{'aspect': 'Pons', 'start': 0, 'end': 4, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.59271240234375}, {'aspect': 'el', 'start': 4, 'end': 6, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.2814190089702606}, {'aspect': 'tetapi', 'start': 17, 'end': 24, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.562650740146637}]
|
|
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.50318885), 'word': 'Ohjelma', 'start': 0, 'end': 7}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.48775986), 'word': 'käyttöliittymä', 'start': 25, 'end': 40}]
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.50318885), 'word': 'Ohjelma', 'start': 0, 'end': 7}, label: asp-neutral
|
|
Added aspect: {'aspect': 'Ohjelma', 'start': 0, 'end': 7, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5031888484954834}
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.48775986), 'word': 'käyttöliittymä', 'start': 25, 'end': 40}, label: asp-neutral
|
|
Added aspect: {'aspect': 'käyttöliittymä', 'start': 25, 'end': 40, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.48775985836982727}
|
|
Final aspects for text: [{'aspect': 'Ohjelma', 'start': 0, 'end': 7, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5031888484954834}, {'aspect': 'käyttöliittymä', 'start': 25, 'end': 40, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.48775985836982727}]
|
|
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.4489361), 'word': 'Maden', 'start': 0, 'end': 5}, {'entity_group': 'ASP-Negative', 'score': np.float32(0.5446483), 'word': 'portion', 'start': 21, 'end': 29}]
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.4489361), 'word': 'Maden', 'start': 0, 'end': 5}, label: asp-neutral
|
|
Added aspect: {'aspect': 'Maden', 'start': 0, 'end': 5, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.4489361047744751}
|
|
Processing entity: {'entity_group': 'ASP-Negative', 'score': np.float32(0.5446483), 'word': 'portion', 'start': 21, 'end': 29}, label: asp-negative
|
|
Added aspect: {'aspect': 'portion', 'start': 21, 'end': 29, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.544648289680481}
|
|
Final aspects for text: [{'aspect': 'Maden', 'start': 0, 'end': 5, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.4489361047744751}, {'aspect': 'portion', 'start': 21, 'end': 29, 'extractor_label': 'ASP-Negative', 'extractor_score': 0.544648289680481}]
|
|
Raw entities extracted: [{'entity_group': 'ASP-Neutral', 'score': np.float32(0.5072303), 'word': 'Počítač', 'start': 0, 'end': 7}, {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5066106), 'word': 'software', 'start': 22, 'end': 31}]
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5072303), 'word': 'Počítač', 'start': 0, 'end': 7}, label: asp-neutral
|
|
Added aspect: {'aspect': 'Počítač', 'start': 0, 'end': 7, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.507230281829834}
|
|
Processing entity: {'entity_group': 'ASP-Neutral', 'score': np.float32(0.5066106), 'word': 'software', 'start': 22, 'end': 31}, label: asp-neutral
|
|
Added aspect: {'aspect': 'software', 'start': 22, 'end': 31, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5066105723381042}
|
|
Final aspects for text: [{'aspect': 'Počítač', 'start': 0, 'end': 7, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.507230281829834}, {'aspect': 'software', 'start': 22, 'end': 31, 'extractor_label': 'ASP-Neutral', 'extractor_score': 0.5066105723381042}]
|
|
|
|
Results:
|
|
[{'aspects': ['user interface', 'documentation'],
|
|
'confidence': [0.517541766166687, 0.5204463601112366],
|
|
'details': [{'aspect': 'user interface',
|
|
'confidence': 0.517541766166687,
|
|
'end': 18,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.517541766166687,
|
|
'probability': {'Negative': 0.2412291169166565,
|
|
'Neutral': 0.517541766166687,
|
|
'Positive': 0.2412291169166565},
|
|
'sentiment': 'Neutral',
|
|
'start': 3},
|
|
{'aspect': 'documentation',
|
|
'confidence': 0.5204463601112366,
|
|
'end': 54,
|
|
'extractor_label': 'ASP-Negative',
|
|
'extractor_score': 0.5204463601112366,
|
|
'probability': {'Negative': 0.5204463601112366,
|
|
'Neutral': 0.2397768199443817,
|
|
'Positive': 0.2397768199443817},
|
|
'sentiment': 'Negative',
|
|
'start': 40}],
|
|
'positions': [[3, 18], [40, 54]],
|
|
'sentiments': ['Neutral', 'Negative'],
|
|
'text': 'The user interface is brilliant, but the documentation is a total mess.'},
|
|
{'aspects': ['牛排', '服务'],
|
|
'confidence': [0.5346122980117798, 0.5622819066047668],
|
|
'details': [{'aspect': '牛排',
|
|
'confidence': 0.5346122980117798,
|
|
'end': 7,
|
|
'extractor_label': 'ASP-Positive',
|
|
'extractor_score': 0.5346122980117798,
|
|
'probability': {'Negative': 0.2326938509941101,
|
|
'Neutral': 0.2326938509941101,
|
|
'Positive': 0.5346122980117798},
|
|
'sentiment': 'Positive',
|
|
'start': 5},
|
|
{'aspect': '服务',
|
|
'confidence': 0.5622819066047668,
|
|
'end': 15,
|
|
'extractor_label': 'ASP-Negative',
|
|
'extractor_score': 0.5622819066047668,
|
|
'probability': {'Negative': 0.5622819066047668,
|
|
'Neutral': 0.21885904669761658,
|
|
'Positive': 0.21885904669761658},
|
|
'sentiment': 'Negative',
|
|
'start': 13}],
|
|
'positions': [[5, 7], [13, 15]],
|
|
'sentiments': ['Positive', 'Negative'],
|
|
'text': '这家餐厅的牛排很好吃,但是服务很慢。'},
|
|
{'aspects': ['batería', 'cámara'],
|
|
'confidence': [0.43364980816841125, 0.44364821910858154],
|
|
'details': [{'aspect': 'batería',
|
|
'confidence': 0.43364980816841125,
|
|
'end': 10,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.43364980816841125,
|
|
'probability': {'Negative': 0.2831750959157944,
|
|
'Neutral': 0.43364980816841125,
|
|
'Positive': 0.2831750959157944},
|
|
'sentiment': 'Neutral',
|
|
'start': 2},
|
|
{'aspect': 'cámara',
|
|
'confidence': 0.44364821910858154,
|
|
'end': 40,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.44364821910858154,
|
|
'probability': {'Negative': 0.27817589044570923,
|
|
'Neutral': 0.44364821910858154,
|
|
'Positive': 0.27817589044570923},
|
|
'sentiment': 'Neutral',
|
|
'start': 33}],
|
|
'positions': [[2, 10], [33, 40]],
|
|
'sentiments': ['Neutral', 'Neutral'],
|
|
'text': 'La batería es malísima, aunque la cámara está muy bien.'},
|
|
{'aspects': ['film', 'fin'],
|
|
'confidence': [0.6539797782897949, 0.41829001903533936],
|
|
'details': [{'aspect': 'film',
|
|
'confidence': 0.6539797782897949,
|
|
'end': 7,
|
|
'extractor_label': 'ASP-Positive',
|
|
'extractor_score': 0.6539797782897949,
|
|
'probability': {'Negative': 0.17301011085510254,
|
|
'Neutral': 0.17301011085510254,
|
|
'Positive': 0.6539797782897949},
|
|
'sentiment': 'Positive',
|
|
'start': 2},
|
|
{'aspect': 'fin',
|
|
'confidence': 0.41829001903533936,
|
|
'end': 36,
|
|
'extractor_label': 'ASP-Negative',
|
|
'extractor_score': 0.41829001903533936,
|
|
'probability': {'Negative': 0.41829001903533936,
|
|
'Neutral': 0.2908549904823303,
|
|
'Positive': 0.2908549904823303},
|
|
'sentiment': 'Negative',
|
|
'start': 32}],
|
|
'positions': [[2, 7], [32, 36]],
|
|
'sentiments': ['Positive', 'Negative'],
|
|
'text': 'Le film était captivant, mais la fin était décevante.'},
|
|
{'aspects': ['Auto', 'Sitze'],
|
|
'confidence': [0.5750167965888977, 0.4986541271209717],
|
|
'details': [{'aspect': 'Auto',
|
|
'confidence': 0.5750167965888977,
|
|
'end': 8,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.5750167965888977,
|
|
'probability': {'Negative': 0.21249160170555115,
|
|
'Neutral': 0.5750167965888977,
|
|
'Positive': 0.21249160170555115},
|
|
'sentiment': 'Neutral',
|
|
'start': 3},
|
|
{'aspect': 'Sitze',
|
|
'confidence': 0.4986541271209717,
|
|
'end': 41,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.4986541271209717,
|
|
'probability': {'Negative': 0.25067293643951416,
|
|
'Neutral': 0.4986541271209717,
|
|
'Positive': 0.25067293643951416},
|
|
'sentiment': 'Neutral',
|
|
'start': 35}],
|
|
'positions': [[3, 8], [35, 41]],
|
|
'sentiments': ['Neutral', 'Neutral'],
|
|
'text': 'Das Auto ist sehr sparsam, aber die Sitze sind unbequem.'},
|
|
{'aspects': ['design', 'software'],
|
|
'confidence': [0.6298937201499939, 0.6058070063591003],
|
|
'details': [{'aspect': 'design',
|
|
'confidence': 0.6298937201499939,
|
|
'end': 9,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.6298937201499939,
|
|
'probability': {'Negative': 0.18505313992500305,
|
|
'Neutral': 0.6298937201499939,
|
|
'Positive': 0.18505313992500305},
|
|
'sentiment': 'Neutral',
|
|
'start': 2},
|
|
{'aspect': 'software',
|
|
'confidence': 0.6058070063591003,
|
|
'end': 38,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.6058070063591003,
|
|
'probability': {'Negative': 0.19709649682044983,
|
|
'Neutral': 0.6058070063591003,
|
|
'Positive': 0.19709649682044983},
|
|
'sentiment': 'Neutral',
|
|
'start': 29}],
|
|
'positions': [[2, 9], [29, 38]],
|
|
'sentiments': ['Neutral', 'Neutral'],
|
|
'text': 'Il design è elegante, però il software è pieno di bug.'},
|
|
{'aspects': ['café'],
|
|
'confidence': [0.56500643491745],
|
|
'details': [{'aspect': 'café',
|
|
'confidence': 0.56500643491745,
|
|
'end': 42,
|
|
'extractor_label': 'ASP-Negative',
|
|
'extractor_score': 0.56500643491745,
|
|
'probability': {'Negative': 0.56500643491745,
|
|
'Neutral': 0.21749678254127502,
|
|
'Positive': 0.21749678254127502},
|
|
'sentiment': 'Negative',
|
|
'start': 37}],
|
|
'positions': [[37, 42]],
|
|
'sentiments': ['Negative'],
|
|
'text': 'O hotel tem uma vista incrível, mas o café da manhã é fraco.'},
|
|
{'aspects': ['Кни', 'пере'],
|
|
'confidence': [0.42165103554725647, 0.5683889389038086],
|
|
'details': [{'aspect': 'Кни',
|
|
'confidence': 0.42165103554725647,
|
|
'end': 3,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.42165103554725647,
|
|
'probability': {'Negative': 0.28917448222637177,
|
|
'Neutral': 0.42165103554725647,
|
|
'Positive': 0.28917448222637177},
|
|
'sentiment': 'Neutral',
|
|
'start': 0},
|
|
{'aspect': 'пере',
|
|
'confidence': 0.5683889389038086,
|
|
'end': 31,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.5683889389038086,
|
|
'probability': {'Negative': 0.2158055305480957,
|
|
'Neutral': 0.5683889389038086,
|
|
'Positive': 0.2158055305480957},
|
|
'sentiment': 'Neutral',
|
|
'start': 26}],
|
|
'positions': [[0, 3], [26, 31]],
|
|
'sentiments': ['Neutral', 'Neutral'],
|
|
'text': 'Книга очень интересная, но перевод оставляет желать лучшего.'},
|
|
{'aspects': ['バッテリー'],
|
|
'confidence': [0.5808011293411255],
|
|
'details': [{'aspect': 'バッテリー',
|
|
'confidence': 0.5808011293411255,
|
|
'end': 17,
|
|
'extractor_label': 'ASP-Negative',
|
|
'extractor_score': 0.5808011293411255,
|
|
'probability': {'Negative': 0.5808011293411255,
|
|
'Neutral': 0.20959943532943726,
|
|
'Positive': 0.20959943532943726},
|
|
'sentiment': 'Negative',
|
|
'start': 12}],
|
|
'positions': [[12, 17]],
|
|
'sentiments': ['Negative'],
|
|
'text': 'このアプリは便利だけど、バッテリーの消費が激しい。'},
|
|
{'aspects': ['음식', '가격'],
|
|
'confidence': [0.5432428121566772, 0.46728911995887756],
|
|
'details': [{'aspect': '음식',
|
|
'confidence': 0.5432428121566772,
|
|
'end': 2,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.5432428121566772,
|
|
'probability': {'Negative': 0.22837859392166138,
|
|
'Neutral': 0.5432428121566772,
|
|
'Positive': 0.22837859392166138},
|
|
'sentiment': 'Neutral',
|
|
'start': 0},
|
|
{'aspect': '가격',
|
|
'confidence': 0.46728911995887756,
|
|
'end': 13,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.46728911995887756,
|
|
'probability': {'Negative': 0.2663554400205612,
|
|
'Neutral': 0.46728911995887756,
|
|
'Positive': 0.2663554400205612},
|
|
'sentiment': 'Neutral',
|
|
'start': 10}],
|
|
'positions': [[0, 2], [10, 13]],
|
|
'sentiments': ['Neutral', 'Neutral'],
|
|
'text': '음식은 맛있었지만, 가격이 너무 비쌌어요.'},
|
|
{'aspects': ['الخ', 'دمة', 'الموق', 'ع'],
|
|
'confidence': [0.5339547991752625, 0.5055423378944397, 0.44124436378479004, 0.4563024640083313],
|
|
'details': [{'aspect': 'الخ',
|
|
'confidence': 0.5339547991752625,
|
|
'end': 3,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.5339547991752625,
|
|
'probability': {'Negative': 0.23302260041236877,
|
|
'Neutral': 0.5339547991752625,
|
|
'Positive': 0.23302260041236877},
|
|
'sentiment': 'Neutral',
|
|
'start': 0},
|
|
{'aspect': 'دمة',
|
|
'confidence': 0.5055423378944397,
|
|
'end': 6,
|
|
'extractor_label': 'ASP-Positive',
|
|
'extractor_score': 0.5055423378944397,
|
|
'probability': {'Negative': 0.24722883105278015,
|
|
'Neutral': 0.24722883105278015,
|
|
'Positive': 0.5055423378944397},
|
|
'sentiment': 'Positive',
|
|
'start': 3},
|
|
{'aspect': 'الموق',
|
|
'confidence': 0.44124436378479004,
|
|
'end': 24,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.44124436378479004,
|
|
'probability': {'Negative': 0.279377818107605,
|
|
'Neutral': 0.44124436378479004,
|
|
'Positive': 0.279377818107605},
|
|
'sentiment': 'Neutral',
|
|
'start': 18},
|
|
{'aspect': 'ع',
|
|
'confidence': 0.4563024640083313,
|
|
'end': 25,
|
|
'extractor_label': 'ASP-Negative',
|
|
'extractor_score': 0.4563024640083313,
|
|
'probability': {'Negative': 0.4563024640083313,
|
|
'Neutral': 0.27184876799583435,
|
|
'Positive': 0.27184876799583435},
|
|
'sentiment': 'Negative',
|
|
'start': 24}],
|
|
'positions': [[0, 3], [3, 6], [18, 24], [24, 25]],
|
|
'sentiments': ['Neutral', 'Positive', 'Neutral', 'Negative'],
|
|
'text': 'الخدمة ممتازة، لكن الموقع صعب الوصول إليه.'},
|
|
{'aspects': ['कैमरा', 'बैट', 'री', 'लाइफ'],
|
|
'confidence': [0.45512592792510986, 0.47939613461494446, 0.435901015996933, 0.46086522936820984],
|
|
'details': [{'aspect': 'कैमरा',
|
|
'confidence': 0.45512592792510986,
|
|
'end': 13,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.45512592792510986,
|
|
'probability': {'Negative': 0.27243703603744507,
|
|
'Neutral': 0.45512592792510986,
|
|
'Positive': 0.27243703603744507},
|
|
'sentiment': 'Neutral',
|
|
'start': 7},
|
|
{'aspect': 'बैट',
|
|
'confidence': 0.47939613461494446,
|
|
'end': 34,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.47939613461494446,
|
|
'probability': {'Negative': 0.26030193269252777,
|
|
'Neutral': 0.47939613461494446,
|
|
'Positive': 0.26030193269252777},
|
|
'sentiment': 'Neutral',
|
|
'start': 30},
|
|
{'aspect': 'री',
|
|
'confidence': 0.435901015996933,
|
|
'end': 36,
|
|
'extractor_label': 'ASP-Negative',
|
|
'extractor_score': 0.435901015996933,
|
|
'probability': {'Negative': 0.435901015996933,
|
|
'Neutral': 0.2820494920015335,
|
|
'Positive': 0.2820494920015335},
|
|
'sentiment': 'Negative',
|
|
'start': 34},
|
|
{'aspect': 'लाइफ',
|
|
'confidence': 0.46086522936820984,
|
|
'end': 41,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.46086522936820984,
|
|
'probability': {'Negative': 0.2695673853158951,
|
|
'Neutral': 0.46086522936820984,
|
|
'Positive': 0.2695673853158951},
|
|
'sentiment': 'Neutral',
|
|
'start': 36}],
|
|
'positions': [[7, 13], [30, 34], [34, 36], [36, 41]],
|
|
'sentiments': ['Neutral', 'Neutral', 'Negative', 'Neutral'],
|
|
'text': 'फ़ोन का कैमरा शानदार है, लेकिन बैटरी लाइफ खराब है।'},
|
|
{'aspects': ['locatie', 'personeel'],
|
|
'confidence': [0.4961163103580475, 0.4840226173400879],
|
|
'details': [{'aspect': 'locatie',
|
|
'confidence': 0.4961163103580475,
|
|
'end': 10,
|
|
'extractor_label': 'ASP-Positive',
|
|
'extractor_score': 0.4961163103580475,
|
|
'probability': {'Negative': 0.25194184482097626,
|
|
'Neutral': 0.25194184482097626,
|
|
'Positive': 0.4961163103580475},
|
|
'sentiment': 'Positive',
|
|
'start': 2},
|
|
{'aspect': 'personeel',
|
|
'confidence': 0.4840226173400879,
|
|
'end': 46,
|
|
'extractor_label': 'ASP-Negative',
|
|
'extractor_score': 0.4840226173400879,
|
|
'probability': {'Negative': 0.4840226173400879,
|
|
'Neutral': 0.25798869132995605,
|
|
'Positive': 0.25798869132995605},
|
|
'sentiment': 'Negative',
|
|
'start': 36}],
|
|
'positions': [[2, 10], [36, 46]],
|
|
'sentiments': ['Positive', 'Negative'],
|
|
'text': 'De locatie is perfect, alleen is het personeel onvriendelijk.'},
|
|
{'aspects': ['Bok', 'handling'],
|
|
'confidence': [0.46991148591041565, 0.4475855529308319],
|
|
'details': [{'aspect': 'Bok',
|
|
'confidence': 0.46991148591041565,
|
|
'end': 3,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.46991148591041565,
|
|
'probability': {'Negative': 0.2650442570447922,
|
|
'Neutral': 0.46991148591041565,
|
|
'Positive': 0.2650442570447922},
|
|
'sentiment': 'Neutral',
|
|
'start': 0},
|
|
{'aspect': 'handling',
|
|
'confidence': 0.4475855529308319,
|
|
'end': 33,
|
|
'extractor_label': 'ASP-Negative',
|
|
'extractor_score': 0.4475855529308319,
|
|
'probability': {'Negative': 0.4475855529308319,
|
|
'Neutral': 0.27620722353458405,
|
|
'Positive': 0.27620722353458405},
|
|
'sentiment': 'Negative',
|
|
'start': 24}],
|
|
'positions': [[0, 3], [24, 33]],
|
|
'sentiments': ['Neutral', 'Negative'],
|
|
'text': 'Boken är välskriven, men handlingen är förutsägbar.'},
|
|
{'aspects': ['Grafika', 'g', 'fabuła'],
|
|
'confidence': [0.5523369312286377, 0.38001376390457153, 0.5456185936927795],
|
|
'details': [{'aspect': 'Grafika',
|
|
'confidence': 0.5523369312286377,
|
|
'end': 7,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.5523369312286377,
|
|
'probability': {'Negative': 0.22383153438568115,
|
|
'Neutral': 0.5523369312286377,
|
|
'Positive': 0.22383153438568115},
|
|
'sentiment': 'Neutral',
|
|
'start': 0},
|
|
{'aspect': 'g',
|
|
'confidence': 0.38001376390457153,
|
|
'end': 11,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.38001376390457153,
|
|
'probability': {'Negative': 0.30999311804771423,
|
|
'Neutral': 0.38001376390457153,
|
|
'Positive': 0.30999311804771423},
|
|
'sentiment': 'Neutral',
|
|
'start': 9},
|
|
{'aspect': 'fabuła',
|
|
'confidence': 0.5456185936927795,
|
|
'end': 43,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.5456185936927795,
|
|
'probability': {'Negative': 0.22719070315361023,
|
|
'Neutral': 0.5456185936927795,
|
|
'Positive': 0.22719070315361023},
|
|
'sentiment': 'Neutral',
|
|
'start': 36}],
|
|
'positions': [[0, 7], [9, 11], [36, 43]],
|
|
'sentiments': ['Neutral', 'Neutral', 'Neutral'],
|
|
'text': 'Grafika w grze jest niesamowita, ale fabuła jest nudna.'},
|
|
{'aspects': ['kargo'],
|
|
'confidence': [0.6405377388000488],
|
|
'details': [{'aspect': 'kargo',
|
|
'confidence': 0.6405377388000488,
|
|
'end': 33,
|
|
'extractor_label': 'ASP-Negative',
|
|
'extractor_score': 0.6405377388000488,
|
|
'probability': {'Negative': 0.6405377388000488,
|
|
'Neutral': 0.17973113059997559,
|
|
'Positive': 0.17973113059997559},
|
|
'sentiment': 'Negative',
|
|
'start': 27}],
|
|
'positions': [[27, 33]],
|
|
'sentiments': ['Negative'],
|
|
'text': 'Ürün kaliteli görünüyor ama kargo çok geç geldi.'},
|
|
{'aspects': ['Ch', 'lượng âm thanh'],
|
|
'confidence': [0.6112579107284546, 0.6159068942070007],
|
|
'details': [{'aspect': 'Ch',
|
|
'confidence': 0.6112579107284546,
|
|
'end': 2,
|
|
'extractor_label': 'ASP-Positive',
|
|
'extractor_score': 0.6112579107284546,
|
|
'probability': {'Negative': 0.1943710446357727,
|
|
'Neutral': 0.1943710446357727,
|
|
'Positive': 0.6112579107284546},
|
|
'sentiment': 'Positive',
|
|
'start': 0},
|
|
{'aspect': 'lượng âm thanh',
|
|
'confidence': 0.6159068942070007,
|
|
'end': 19,
|
|
'extractor_label': 'ASP-Positive',
|
|
'extractor_score': 0.6159068942070007,
|
|
'probability': {'Negative': 0.19204655289649963,
|
|
'Neutral': 0.19204655289649963,
|
|
'Positive': 0.6159068942070007},
|
|
'sentiment': 'Positive',
|
|
'start': 4}],
|
|
'positions': [[0, 2], [4, 19]],
|
|
'sentiments': ['Positive', 'Positive'],
|
|
'text': 'Chất lượng âm thanh tốt, tuy nhiên tai nghe không thoải mái lắm.'},
|
|
{'aspects': [],
|
|
'confidence': [],
|
|
'details': [],
|
|
'positions': [],
|
|
'sentiments': [],
|
|
'text': 'การแสดงดีมาก แต่บทภาพยนตร์ค่อนข้างอ่อน'},
|
|
{'aspects': ['τοποθεσία', 'δω', 'μάτιο'],
|
|
'confidence': [0.6473245620727539, 0.49225592613220215, 0.4857552945613861],
|
|
'details': [{'aspect': 'τοποθεσία',
|
|
'confidence': 0.6473245620727539,
|
|
'end': 11,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.6473245620727539,
|
|
'probability': {'Negative': 0.17633771896362305,
|
|
'Neutral': 0.6473245620727539,
|
|
'Positive': 0.17633771896362305},
|
|
'sentiment': 'Neutral',
|
|
'start': 1},
|
|
{'aspect': 'δω',
|
|
'confidence': 0.49225592613220215,
|
|
'end': 40,
|
|
'extractor_label': 'ASP-Negative',
|
|
'extractor_score': 0.49225592613220215,
|
|
'probability': {'Negative': 0.49225592613220215,
|
|
'Neutral': 0.2538720369338989,
|
|
'Positive': 0.2538720369338989},
|
|
'sentiment': 'Negative',
|
|
'start': 37},
|
|
{'aspect': 'μάτιο',
|
|
'confidence': 0.4857552945613861,
|
|
'end': 45,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.4857552945613861,
|
|
'probability': {'Negative': 0.25712235271930695,
|
|
'Neutral': 0.4857552945613861,
|
|
'Positive': 0.25712235271930695},
|
|
'sentiment': 'Neutral',
|
|
'start': 40}],
|
|
'positions': [[1, 11], [37, 40], [40, 45]],
|
|
'sentiments': ['Neutral', 'Negative', 'Neutral'],
|
|
'text': 'Η τοποθεσία είναι φανταστική, αλλά το δωμάτιο ήταν πολύ μικρό.'},
|
|
{'aspects': ['ה', 'משחק'],
|
|
'confidence': [0.4173576831817627, 0.39395496249198914],
|
|
'details': [{'aspect': 'ה',
|
|
'confidence': 0.4173576831817627,
|
|
'end': 1,
|
|
'extractor_label': 'ASP-Positive',
|
|
'extractor_score': 0.4173576831817627,
|
|
'probability': {'Negative': 0.29132115840911865,
|
|
'Neutral': 0.29132115840911865,
|
|
'Positive': 0.4173576831817627},
|
|
'sentiment': 'Positive',
|
|
'start': 0},
|
|
{'aspect': 'משחק',
|
|
'confidence': 0.39395496249198914,
|
|
'end': 5,
|
|
'extractor_label': 'ASP-Positive',
|
|
'extractor_score': 0.39395496249198914,
|
|
'probability': {'Negative': 0.30302251875400543,
|
|
'Neutral': 0.30302251875400543,
|
|
'Positive': 0.39395496249198914},
|
|
'sentiment': 'Positive',
|
|
'start': 1}],
|
|
'positions': [[0, 1], [1, 5]],
|
|
'sentiments': ['Positive', 'Positive'],
|
|
'text': 'המשחק מהנה, אבל יש בו יותר מדי פרסומות.'},
|
|
{'aspects': ['Pons', 'el', 'tetapi'],
|
|
'confidence': [0.59271240234375, 0.2814190089702606, 0.562650740146637],
|
|
'details': [{'aspect': 'Pons',
|
|
'confidence': 0.59271240234375,
|
|
'end': 4,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.59271240234375,
|
|
'probability': {'Negative': 0.203643798828125,
|
|
'Neutral': 0.59271240234375,
|
|
'Positive': 0.203643798828125},
|
|
'sentiment': 'Neutral',
|
|
'start': 0},
|
|
{'aspect': 'el',
|
|
'confidence': 0.2814190089702606,
|
|
'end': 6,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.2814190089702606,
|
|
'probability': {'Negative': 0.3592904955148697,
|
|
'Neutral': 0.2814190089702606,
|
|
'Positive': 0.3592904955148697},
|
|
'sentiment': 'Neutral',
|
|
'start': 4},
|
|
{'aspect': 'tetapi',
|
|
'confidence': 0.562650740146637,
|
|
'end': 24,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.562650740146637,
|
|
'probability': {'Negative': 0.21867462992668152,
|
|
'Neutral': 0.562650740146637,
|
|
'Positive': 0.21867462992668152},
|
|
'sentiment': 'Neutral',
|
|
'start': 17}],
|
|
'positions': [[0, 4], [4, 6], [17, 24]],
|
|
'sentiments': ['Neutral', 'Neutral', 'Neutral'],
|
|
'text': 'Ponsel ini cepat, tetapi cenderung cepat panas.'},
|
|
{'aspects': ['Ohjelma', 'käyttöliittymä'],
|
|
'confidence': [0.5031888484954834, 0.48775985836982727],
|
|
'details': [{'aspect': 'Ohjelma',
|
|
'confidence': 0.5031888484954834,
|
|
'end': 7,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.5031888484954834,
|
|
'probability': {'Negative': 0.2484055757522583,
|
|
'Neutral': 0.5031888484954834,
|
|
'Positive': 0.2484055757522583},
|
|
'sentiment': 'Neutral',
|
|
'start': 0},
|
|
{'aspect': 'käyttöliittymä',
|
|
'confidence': 0.48775985836982727,
|
|
'end': 40,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.48775985836982727,
|
|
'probability': {'Negative': 0.25612007081508636,
|
|
'Neutral': 0.48775985836982727,
|
|
'Positive': 0.25612007081508636},
|
|
'sentiment': 'Neutral',
|
|
'start': 25}],
|
|
'positions': [[0, 7], [25, 40]],
|
|
'sentiments': ['Neutral', 'Neutral'],
|
|
'text': 'Ohjelma on tehokas, mutta käyttöliittymä on sekava.'},
|
|
{'aspects': ['Maden', 'portion'],
|
|
'confidence': [0.4489361047744751, 0.544648289680481],
|
|
'details': [{'aspect': 'Maden',
|
|
'confidence': 0.4489361047744751,
|
|
'end': 5,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.4489361047744751,
|
|
'probability': {'Negative': 0.27553194761276245,
|
|
'Neutral': 0.4489361047744751,
|
|
'Positive': 0.27553194761276245},
|
|
'sentiment': 'Neutral',
|
|
'start': 0},
|
|
{'aspect': 'portion',
|
|
'confidence': 0.544648289680481,
|
|
'end': 29,
|
|
'extractor_label': 'ASP-Negative',
|
|
'extractor_score': 0.544648289680481,
|
|
'probability': {'Negative': 0.544648289680481,
|
|
'Neutral': 0.22767585515975952,
|
|
'Positive': 0.22767585515975952},
|
|
'sentiment': 'Negative',
|
|
'start': 21}],
|
|
'positions': [[0, 5], [21, 29]],
|
|
'sentiments': ['Neutral', 'Negative'],
|
|
'text': 'Maden var lækker, men portionerne var for små.'},
|
|
{'aspects': ['Počítač', 'software'],
|
|
'confidence': [0.507230281829834, 0.5066105723381042],
|
|
'details': [{'aspect': 'Počítač',
|
|
'confidence': 0.507230281829834,
|
|
'end': 7,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.507230281829834,
|
|
'probability': {'Negative': 0.246384859085083,
|
|
'Neutral': 0.507230281829834,
|
|
'Positive': 0.246384859085083},
|
|
'sentiment': 'Neutral',
|
|
'start': 0},
|
|
{'aspect': 'software',
|
|
'confidence': 0.5066105723381042,
|
|
'end': 31,
|
|
'extractor_label': 'ASP-Neutral',
|
|
'extractor_score': 0.5066105723381042,
|
|
'probability': {'Negative': 0.24669471383094788,
|
|
'Neutral': 0.5066105723381042,
|
|
'Positive': 0.24669471383094788},
|
|
'sentiment': 'Neutral',
|
|
'start': 22}],
|
|
'positions': [[0, 7], [22, 31]],
|
|
'sentiments': ['Neutral', 'Neutral'],
|
|
'text': 'Počítač je rychlý, ale software je zastaralý.'}]
|
|
"""
|
|
|