all-MiniLM-L6-v18-pair_score
This is a sentence-transformers model finetuned from youssefkhalil320/all-MiniLM-L6-v14-pair_score. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: youssefkhalil320/all-MiniLM-L6-v14-pair_score
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'medical accessory',
'bedroom chair',
'handball',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 128per_device_eval_batch_size
: 128learning_rate
: 2e-05num_train_epochs
: 2warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.0244 | 100 | 15.2955 |
0.0488 | 200 | 12.0245 |
0.0732 | 300 | 9.5958 |
0.0977 | 400 | 9.0251 |
0.1221 | 500 | 8.8519 |
0.1465 | 600 | 8.7625 |
0.1709 | 700 | 8.7085 |
0.1953 | 800 | 8.6742 |
0.2197 | 900 | 8.6344 |
0.2441 | 1000 | 8.5984 |
0.2686 | 1100 | 8.5607 |
0.2930 | 1200 | 8.5395 |
0.3174 | 1300 | 8.4973 |
0.3418 | 1400 | 8.4809 |
0.3662 | 1500 | 8.4588 |
0.3906 | 1600 | 8.4489 |
0.4150 | 1700 | 8.4255 |
0.4395 | 1800 | 8.4189 |
0.4639 | 1900 | 8.4012 |
0.4883 | 2000 | 8.3793 |
0.5127 | 2100 | 8.3654 |
0.5371 | 2200 | 8.3369 |
0.5615 | 2300 | 8.3483 |
0.5859 | 2400 | 8.3441 |
0.6104 | 2500 | 8.3357 |
0.6348 | 2600 | 8.3009 |
0.6592 | 2700 | 8.2997 |
0.6836 | 2800 | 8.2901 |
0.7080 | 2900 | 8.2797 |
0.7324 | 3000 | 8.2837 |
0.7568 | 3100 | 8.2856 |
0.7812 | 3200 | 8.2753 |
0.8057 | 3300 | 8.275 |
0.8301 | 3400 | 8.2577 |
0.8545 | 3500 | 8.2296 |
0.8789 | 3600 | 8.2368 |
0.9033 | 3700 | 8.244 |
0.9277 | 3800 | 8.2259 |
0.9521 | 3900 | 8.2262 |
0.9766 | 4000 | 8.252 |
1.0010 | 4100 | 8.1966 |
1.0254 | 4200 | 8.1923 |
1.0498 | 4300 | 8.1938 |
1.0742 | 4400 | 8.1771 |
1.0986 | 4500 | 8.1956 |
1.1230 | 4600 | 8.1826 |
1.1475 | 4700 | 8.1726 |
1.1719 | 4800 | 8.1826 |
1.1963 | 4900 | 8.1699 |
1.2207 | 5000 | 8.1576 |
1.2451 | 5100 | 8.1849 |
1.2695 | 5200 | 8.1753 |
1.2939 | 5300 | 8.1661 |
1.3184 | 5400 | 8.153 |
1.3428 | 5500 | 8.158 |
1.3672 | 5600 | 8.1577 |
1.3916 | 5700 | 8.152 |
1.4160 | 5800 | 8.1716 |
1.4404 | 5900 | 8.1528 |
1.4648 | 6000 | 8.1561 |
1.4893 | 6100 | 8.1658 |
1.5137 | 6200 | 8.1379 |
1.5381 | 6300 | 8.1437 |
1.5625 | 6400 | 8.1329 |
1.5869 | 6500 | 8.1251 |
1.6113 | 6600 | 8.1359 |
1.6357 | 6700 | 8.1334 |
1.6602 | 6800 | 8.1187 |
1.6846 | 6900 | 8.1461 |
1.7090 | 7000 | 8.1294 |
1.7334 | 7100 | 8.0935 |
1.7578 | 7200 | 8.1494 |
1.7822 | 7300 | 8.105 |
1.8066 | 7400 | 8.0987 |
1.8311 | 7500 | 8.1524 |
1.8555 | 7600 | 8.1228 |
1.8799 | 7700 | 8.1228 |
1.9043 | 7800 | 8.1315 |
1.9287 | 7900 | 8.1236 |
1.9531 | 8000 | 8.1499 |
1.9775 | 8100 | 8.1092 |
Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.4.1+cu118
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for youssefkhalil320/all-MiniLM-L6-v18-pair_score
Base model
sentence-transformers/all-MiniLM-L6-v2