|
--- |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
inference: true |
|
widget: |
|
- text: Hello! |
|
example_title: Hello world |
|
group: Python |
|
--- |
|
|
|
This tiny model is for debugging. It is randomly initialized with the config adapted from [openbmb/MiniCPM4-8B](https://huggingface.co/openbmb/MiniCPM4-8B). |
|
|
|
### Example usage: |
|
|
|
```python |
|
import torch |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_id = "yujiepan/minicpm4-tiny-random" |
|
|
|
device = "cuda" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True) |
|
|
|
# User can directly use the chat interface |
|
# responds, history = model.chat(tokenizer, "Write an article about Artificial Intelligence.", temperature=0.7, top_p=0.7) |
|
# print(responds) |
|
|
|
# User can also use the generate interface |
|
messages = [ |
|
{"role": "user", "content": "Write an article about Artificial Intelligence."}, |
|
] |
|
prompt_text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True, |
|
) |
|
model_inputs = tokenizer([prompt_text], return_tensors="pt").to(device) |
|
|
|
model_outputs = model.generate( |
|
**model_inputs, |
|
max_new_tokens=32, |
|
top_p=0.7, |
|
temperature=0.7 |
|
) |
|
output_token_ids = [ |
|
model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs['input_ids'])) |
|
] |
|
|
|
responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0] |
|
print(responses) |
|
``` |
|
|
|
### Codes to create this repo: |
|
|
|
```python |
|
import json |
|
from pathlib import Path |
|
|
|
import torch |
|
|
|
import accelerate |
|
from huggingface_hub import hf_hub_download |
|
from transformers import ( |
|
AutoConfig, |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
GenerationConfig, |
|
set_seed, |
|
) |
|
|
|
source_model_id = "openbmb/MiniCPM4-8B" |
|
save_folder = "/tmp/yujiepan/minicpm4-tiny-random" |
|
|
|
processor = AutoTokenizer.from_pretrained(source_model_id) |
|
processor.save_pretrained(save_folder) |
|
|
|
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: |
|
config_json = json.load(f) |
|
config_json["hidden_size"] = 64 |
|
config_json['intermediate_size'] = 128 |
|
config_json['num_attention_heads'] = 2 |
|
config_json['num_key_value_heads'] = 1 |
|
config_json['dim_model_base'] = 32 |
|
config_json['num_hidden_layers'] = 2 |
|
config_json['tie_word_embeddings'] = True |
|
for k, v in config_json['auto_map'].items(): |
|
config_json['auto_map'][k] = f'{source_model_id}--{v}' |
|
automap = config_json['auto_map'] |
|
factor = config_json['rope_scaling']['long_factor'] |
|
config_json['rope_scaling']['long_factor'] = factor[:16] |
|
config_json['rope_scaling']['short_factor'] = factor[:16] |
|
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: |
|
json.dump(config_json, f, indent=2) |
|
|
|
config = AutoConfig.from_pretrained( |
|
save_folder, |
|
trust_remote_code=True, |
|
) |
|
print(config) |
|
torch.set_default_dtype(torch.bfloat16) |
|
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True) |
|
torch.set_default_dtype(torch.float32) |
|
model.generation_config = GenerationConfig.from_pretrained( |
|
source_model_id, trust_remote_code=True, |
|
) |
|
set_seed(42) |
|
with torch.no_grad(): |
|
for name, p in sorted(model.named_parameters()): |
|
torch.nn.init.normal_(p, 0, 0.2) |
|
print(name, p.shape) |
|
pass |
|
model.save_pretrained(save_folder) |
|
with open(f"{save_folder}/config.json", "r", encoding='utf-8') as f: |
|
config_json = json.load(f) |
|
config_json['auto_map'] = automap |
|
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: |
|
json.dump(config_json, f, indent=2) |
|
for python_file in Path(save_folder).glob('*.py'): |
|
python_file.unlink() |
|
``` |