File size: 2,722 Bytes
a966aee 3e7de21 e2e2a0a a966aee 2ccadcf a966aee 2ccadcf a966aee 4e91f83 e4fd3e0 2ccadcf a966aee 3ac75d1 a966aee 2ccadcf a966aee e48b116 a966aee 3ac75d1 2ccadcf a966aee a06c6d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
license: apache-2.0
pipeline_tag: text-classification
language:
- en
metrics:
- accuracy
library_name: transformers
tags:
- finance
---
## **Sentiment Inferencing model for stock related commments**
#### *A project by NUS ISS students Frank Cao, Gerong Zhang, Jiaqi Yao, Sikai Ni, Yunduo Zhang*
<br />
### Description
This model is fine tuned with roberta-base model on 3200000 comments from stocktwits, with the user labeled tags 'Bullish' or 'Bearish'
try something that the individual investors may say on the investment forum on the inference API, for example, try 'red' and 'green'.
[code on github](https://github.com/Gitrexx/PLPPM_Sentiment_Analysis_via_Stocktwits/tree/main/SentimentEngine)
<br />
### Training information
- batch size 32
- learning rate 2e-5
| | Train loss | Validation loss | Validation accuracy |
| ----------- | ----------- | ---------------- | ------------------- |
| epoch1 | 0.3495 | 0.2956 | 0.8679 |
| epoch2 | 0.2717 | 0.2235 | 0.9021 |
| epoch3 | 0.2360 | 0.1875 | 0.9210 |
| epoch4 | 0.2106 | 0.1603 | 0.9343 |
<br />
# How to use
```python
from transformers import RobertaForSequenceClassification, RobertaTokenizer
from transformers import pipeline
import pandas as pd
import emoji
# the model was trained upon below preprocessing
def process_text(texts):
# remove URLs
texts = re.sub(r'https?://\S+', "", texts)
texts = re.sub(r'www.\S+', "", texts)
# remove '
texts = texts.replace(''', "'")
# remove symbol names
texts = re.sub(r'(\#)(\S+)', r'hashtag_\2', texts)
texts = re.sub(r'(\$)([A-Za-z]+)', r'cashtag_\2', texts)
# remove usernames
texts = re.sub(r'(\@)(\S+)', r'mention_\2', texts)
# demojize
texts = emoji.demojize(texts, delimiters=("", " "))
return texts.strip()
tokenizer_loaded = RobertaTokenizer.from_pretrained('zhayunduo/roberta-base-stocktwits-finetuned')
model_loaded = RobertaForSequenceClassification.from_pretrained('zhayunduo/roberta-base-stocktwits-finetuned')
nlp = pipeline("text-classification", model=model_loaded, tokenizer=tokenizer_loaded)
sentences = pd.Series(['just buy','just sell it',
'entity rocket to the sky!',
'go down','even though it is going up, I still think it will not keep this trend in the near future'])
# sentences = list(sentences.apply(process_text)) # if input text contains https, @ or # or $ symbols, better apply preprocess to get a more accurate result
sentences = list(sentences)
results = nlp(sentences)
print(results) # 2 labels, label 0 is bearish, label 1 is bullish
``` |