File size: 28,053 Bytes
9fccb26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17ebf79
9fccb26
17ebf79
9fccb26
 
 
17ebf79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fccb26
 
 
 
 
 
 
 
17ebf79
 
 
 
 
9fccb26
17ebf79
9fccb26
 
 
17ebf79
9fccb26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17ebf79
 
9fccb26
17ebf79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fccb26
17ebf79
 
9fccb26
17ebf79
 
 
 
9fccb26
17ebf79
 
 
 
 
 
 
 
9fccb26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17ebf79
9fccb26
17ebf79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fccb26
17ebf79
 
 
 
 
 
 
 
9fccb26
17ebf79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fccb26
17ebf79
 
 
 
 
 
 
 
 
 
 
9fccb26
17ebf79
 
9fccb26
17ebf79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fccb26
17ebf79
 
 
9fccb26
 
 
 
17ebf79
 
 
 
 
 
 
 
 
9fccb26
 
1d200d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fccb26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9baa98
9fccb26
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
---
language:
- ru
license: mit
datasets:
- misterkirill/ru-wikipedia
tags:
- pytorch
- neural-memory
- titan
- text-generation
---

# Neural Memory Model for Russian Text Generation

This model implements a neural memory architecture for Russian text generation using PyTorch and the Titans library. The architecture is based on the implementation from [lucidrains/titans-pytorch](https://github.com/lucidrains/titans-pytorch).

## Model Description

The model uses a Transformer architecture enhanced with neural memory capabilities from the Titans library for improved context handling and long-range dependencies in text generation.

### Architecture Source

The core architecture is derived from the [Titans PyTorch implementation](https://github.com/lucidrains/titans-pytorch) by Phil Wang ([@lucidrains](https://github.com/lucidrains)). The original implementation provides the following key components that we utilize:
- Memory-enhanced Transformer architecture
- Flexible attention mechanisms
- Neural memory layers

### Key Features

- Neural memory architecture with customizable depth and size
- Sliding window attention mechanism
- Gradient accumulation for stable training
- CUDA-optimized implementation

## Requirements

### Environment

- Python: 3.9.21
- CUDA: 11.8
- GPU with at least 16GB VRAM recommended

### Key Dependencies
```
Python version: 3.9.21
CUDA version: 11.8

Requirements:
adam-atan2-pytorch==0.1.18
datasets==3.2.0
nvidia-cuda-cupti-cu12==12.4.127
nvidia-cuda-nvrtc-cu12==12.4.127
nvidia-cuda-runtime-cu12==12.4.127
nvidia-cudnn-cu12==9.1.0.70
nvidia-cufft-cu12==11.2.1.3
nvidia-curand-cu12==10.3.5.147
nvidia-cusolver-cu12==11.6.1.9
nvidia-cusparselt-cu12==0.6.2
nvidia-nccl-cu12==2.21.5
nvidia-nvtx-cu12==12.4.127
titans-pytorch==0.3.25
torchaudio==2.5.1
torchvision==0.20.1
transformers==4.48.3
triton==3.1.0
wandb==0.19.6
```

# Example
The repository includes complete training and inference code. Key components:


- Data preprocessing (WikiDatasetPreprocessor)
- Custom dataset implementation (WikiTextDataset)
- Training loop with gradient accumulation
- Validation and checkpointing

## Example Code
```python
import os
import warnings
from pathlib import Path
from typing import List, Dict, Optional, Tuple

import torch
from torch import nn
from torch.utils.data import Dataset, DataLoader
from transformers import (
    GPT2TokenizerFast,
    PreTrainedModel,
    PreTrainedTokenizer,
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    PretrainedConfig,
    GenerationMixin,
    pipeline
)
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
from huggingface_hub import HfApi, login
from datasets import load_dataset
from tqdm import tqdm
from adam_atan2_pytorch import AdoptAtan2

from titans_pytorch import (
    MemoryAsContextTransformer,
    MemoryMLP,
    MemoryAttention
)

# Отключаем предупреждения
warnings.filterwarnings("ignore", category=UserWarning)
torch._dynamo.config.suppress_errors = True
torch._dynamo.config.cache_size_limit = 100000
torch._dynamo.config.disable = True

# Настройки CUDA
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:32'

# Константы
repo_id = 'Grpp/memory-transformer-ru'
NUM_BATCHES = int(1e5)
BATCH_SIZE = 4
GRADIENT_ACCUMULATE_EVERY = 4
LEARNING_RATE = 2e-4
VALIDATE_EVERY = 100
GENERATE_EVERY = 500
PRIME_LENGTH = 100
GENERATE_LENGTH = 512
SHOULD_GENERATE = True
SEQ_LEN = 512

# Константы для нейронной памяти
NEURAL_MEMORY_DEPTH = 2
NUM_PERSIST_MEM = 4
NUM_LONGTERM_MEM = 4
NEURAL_MEM_LAYERS = (2, 4, 6)
NEURAL_MEM_GATE_ATTN_OUTPUT = False
NEURAL_MEM_MOMENTUM = True
NEURAL_MEM_MOMENTUM_ORDER = 1
NEURAL_MEM_QK_NORM = True
NEURAL_MEM_MAX_LR = 1e-1
USE_MEM_ATTENTION_MODEL = False
WINDOW_SIZE = 32
NEURAL_MEM_SEGMENT_LEN = 4
NEURAL_MEM_BATCH_SIZE = 128
SLIDING_WINDOWS = True
STORE_ATTN_POOL_CHUNKS = True
MEMORY_MODEL_PER_LAYER_LEARNED_LR = True
NEURAL_MEM_WEIGHT_RESIDUAL = True


class MemoryTransformerConfig(PretrainedConfig):
    model_type = "memory_transformer"
    
    def __init__(
        self,
        vocab_size=50257,
        dim=384,
        depth=8,
        segment_len=32,
        num_persist_mem=4,
        num_longterm_mem=4,
        neural_mem_layers=(2, 4, 6),
        pad_token_id=0,
        bos_token_id=1,
        eos_token_id=2,
        **kwargs
    ):
        self.vocab_size = vocab_size
        self.dim = dim
        self.depth = depth
        self.segment_len = segment_len
        self.num_persist_mem = num_persist_mem
        self.num_longterm_mem = num_longterm_mem
        self.neural_mem_layers = neural_mem_layers
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            **kwargs
        )


class MemoryTransformerForCausalLM(PreTrainedModel, GenerationMixin):
    config_class = MemoryTransformerConfig
    supports_gradient_checkpointing = True
    
    def __init__(self, config):
        super().__init__(config)
        
        neural_memory_model = (
            MemoryAttention(dim=64) if USE_MEM_ATTENTION_MODEL 
            else MemoryMLP(dim=64, depth=NEURAL_MEMORY_DEPTH)
        )
            
        self.transformer = MemoryAsContextTransformer(
            num_tokens=config.vocab_size,
            dim=config.dim,
            depth=config.depth,
            segment_len=config.segment_len,
            num_persist_mem_tokens=config.num_persist_mem,
            num_longterm_mem_tokens=config.num_longterm_mem,
            neural_memory_layers=config.neural_mem_layers,
            neural_memory_segment_len=NEURAL_MEM_SEGMENT_LEN,
            neural_memory_batch_size=NEURAL_MEM_BATCH_SIZE,
            neural_mem_gate_attn_output=NEURAL_MEM_GATE_ATTN_OUTPUT,
            neural_mem_weight_residual=NEURAL_MEM_WEIGHT_RESIDUAL,
            use_flex_attn=True,
            sliding_window_attn=SLIDING_WINDOWS,
            neural_memory_model=neural_memory_model,
            neural_memory_kwargs=dict(
                dim_head=64,
                heads=4,
                attn_pool_chunks=STORE_ATTN_POOL_CHUNKS,
                qk_rmsnorm=NEURAL_MEM_QK_NORM,
                momentum=NEURAL_MEM_MOMENTUM,
                momentum_order=NEURAL_MEM_MOMENTUM_ORDER,
                default_step_transform_max_lr=NEURAL_MEM_MAX_LR,
                use_accelerated_scan=True,
                per_parameter_lr_modulation=MEMORY_MODEL_PER_LAYER_LEARNED_LR
            )
        )
        
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        return_dict: Optional[bool] = None,
        **kwargs
    ):
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        outputs = self.transformer(input_ids)
        
        if labels is not None:
            loss = self.transformer(input_ids, return_loss=True)
            return CausalLMOutputWithCrossAttentions(
                loss=loss,
                logits=outputs,
                past_key_values=None,
                hidden_states=None,
                attentions=None,
                cross_attentions=None
            )
        
        return CausalLMOutputWithCrossAttentions(
            loss=None,
            logits=outputs,
            past_key_values=None,
            hidden_states=None,
            attentions=None,
            cross_attentions=None
        )
    
    def prepare_inputs_for_generation(
        self, 
        input_ids, 
        past=None, 
        attention_mask=None, 
        **kwargs
    ):
        if past:
            input_ids = input_ids[:, -1].unsqueeze(-1)
            
        return {
            "input_ids": input_ids,
            "past_key_values": past,
            "attention_mask": attention_mask,
        }
        
    @property
    def device(self):
        return next(self.parameters()).device


def setup_custom_model():
    """Регистрация кастомной модели"""
    AutoConfig.register("memory_transformer", MemoryTransformerConfig)
    AutoModelForCausalLM.register(MemoryTransformerConfig, MemoryTransformerForCausalLM)


def generate_example(model, tokenizer, text, max_length=100):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = model.to(device)
    model.eval()
    
    input_ids = tokenizer.encode(text, return_tensors="pt").to(device)
    attention_mask = torch.ones_like(input_ids, device=device)
    
    print(f"Model device: {next(model.parameters()).device}")
    print(f"Input device: {input_ids.device}")

    with torch.no_grad():
        outputs = model.generate(
            input_ids=input_ids,
            attention_mask=attention_mask,
            max_length=max_length,
            num_return_sequences=1,
            no_repeat_ngram_size=2,
            do_sample=True,
            top_k=50,
            top_p=0.95,
            temperature=0.7,
            pad_token_id=tokenizer.pad_token_id,
            eos_token_id=tokenizer.eos_token_id,
        )

    return tokenizer.decode(outputs[0], skip_special_tokens=True)


if __name__ == "__main__":
    torch.manual_seed(42)
    torch.cuda.manual_seed_all(42)

    setup_custom_model()
    config = AutoConfig.from_pretrained(repo_id)
    model = AutoModelForCausalLM.from_pretrained(repo_id)
    tokenizer = AutoTokenizer.from_pretrained(repo_id)

    test_text = "Московский кремль является"
    generated_text = generate_example(model, tokenizer, test_text)
    print(generated_text)
```


## Finetine Code

```python
import os
import torch
from pathlib import Path
from torch.utils.data import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
from tqdm import tqdm
from adam_atan2_pytorch import AdoptAtan2

# Импортируем классы из кода обучения
from run_train_pep8 import (
    WikiDatasetPreprocessor,
    WikiTextDataset,
    create_dataloaders,
    cycle
)  # From Train Code

from test_load import setup_custom_model  # From Example Code

# Настройки CUDA
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:32'

# Константы для файнтьюнинга
BATCH_SIZE = 2
GRADIENT_ACCUMULATE_EVERY = 2
LEARNING_RATE = 1e-5
NUM_EPOCHS = 3
STEPS_PER_EPOCH = 1000  # Количество шагов на эпоху
SEQ_LEN = 256
PROCESSED_DATA_DIR = 'processed_data'
CACHE_DIR = 'cache'
REPO_ID = 'Grpp/memory-transformer-ru'

def finetune_model(
    model,
    train_loader,
    val_loader,
    num_epochs,
    device,
    save_path='finetuned_model'
):
    """Файнтьюнинг модели."""
    
    model = model.to(device)
    optimizer = AdoptAtan2(model.parameters(), lr=LEARNING_RATE)
    
    best_val_loss = float('inf')
    
    for epoch in range(num_epochs):
        model.train()
        total_train_loss = 0
        train_steps = 0
        
        # Прогресс-бар для фиксированного количества шагов
        train_pbar = tqdm(range(STEPS_PER_EPOCH), 
                         desc=f'Epoch {epoch+1}/{num_epochs} [Train]')
        
        for step in train_pbar:
            total_loss = 0
            
            # Градиентное накопление
            for _ in range(GRADIENT_ACCUMULATE_EVERY):
                batch = next(train_loader)
                batch = batch.to(device)
                
                # Получаем входные данные и метки
                inputs = batch[:, :-1]
                labels = batch[:, 1:]
                
                # Прямой проход
                outputs = model(input_ids=inputs, labels=labels)
                loss = outputs.loss / GRADIENT_ACCUMULATE_EVERY
                
                # Обратное распространение
                loss.backward()
                total_loss += loss.item()
            
            # Обновление параметров
            torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
            optimizer.step()
            optimizer.zero_grad()
            
            total_train_loss += total_loss
            train_steps += 1
            
            # Обновление прогресс-бара
            train_pbar.set_postfix({
                'loss': f'{total_loss:.4f}',
                'avg_loss': f'{total_train_loss/train_steps:.4f}'
            })
            
            # Валидация каждые 100 шагов
            if step % 100 == 0:
                model.eval()
                val_loss = 0
                val_steps = 0
                
                with torch.no_grad():
                    for _ in range(10):  # Ограничиваем количество валидационных шагов
                        val_batch = next(val_loader)
                        val_batch = val_batch.to(device)
                        
                        val_inputs = val_batch[:, :-1]
                        val_labels = val_batch[:, 1:]
                        
                        val_outputs = model(input_ids=val_inputs, labels=val_labels)
                        val_loss += val_outputs.loss.item()
                        val_steps += 1
                
                avg_val_loss = val_loss / val_steps
                
                print(f"\nValidation loss: {avg_val_loss:.4f}")
                
                # Сохраняем лучшую модель
                if avg_val_loss < best_val_loss:
                    best_val_loss = avg_val_loss
                    torch.save({
                        'epoch': epoch,
                        'model_state_dict': model.state_dict(),
                        'optimizer_state_dict': optimizer.state_dict(),
                        'loss': best_val_loss,
                    }, f'{save_path}_best.pt')
                
                model.train()
        
        # Сохраняем чекпойнт после каждой эпохи
        torch.save({
            'epoch': epoch,
            'model_state_dict': model.state_dict(),
            'optimizer_state_dict': optimizer.state_dict(),
            'loss': total_train_loss / train_steps,
        }, f'{save_path}_epoch_{epoch}.pt')
        
        print(f"\nEpoch {epoch+1} completed. Average loss: {total_train_loss/train_steps:.4f}")
    
    return model

def main():
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print(f"Using device: {device}")
    
    # Загружаем и подготавливаем данные
    processed_data_path = Path(PROCESSED_DATA_DIR) / 'processed_wiki.pt'
    
    if not processed_data_path.exists():
        print("Processing dataset...")
        preprocessor = WikiDatasetPreprocessor(CACHE_DIR, PROCESSED_DATA_DIR)
        preprocessor.process_and_save(max_articles=10000)
    
    print("Creating dataloaders...")
    train_loader, val_loader = create_dataloaders(
        processed_data_path,
        batch_size=BATCH_SIZE,
        seq_len=SEQ_LEN
    )
    
    train_loader = cycle(train_loader)
    val_loader = cycle(val_loader)
    
    # Загружаем предобученную модель
    print("Loading pretrained model...")
    setup_custom_model()
    config = AutoConfig.from_pretrained(REPO_ID)
    model = AutoModelForCausalLM.from_pretrained(REPO_ID)
    
    print("Starting finetuning...")
    # Файнтьюним модель
    model = finetune_model(
        model,
        train_loader,
        val_loader,
        NUM_EPOCHS,
        device
    )
    
    # Сохраняем финальную версию модели
    print("Saving final model...")
    model.save_pretrained('final_finetuned_model')
    
    return model

if __name__ == "__main__":
    torch.manual_seed(42)
    torch.cuda.manual_seed_all(42)
    torch.backends.cudnn.benchmark = True
    
    try:
        model = main()
        print("Finetuning completed successfully!")
    except Exception as e:
        print(f"An error occurred: {str(e)}")
```

# Training

The model was trained on a cleaned subset of Russian Wikipedia articles using the following parameters:


Batch size: 4
Sequence length: 512
Learning rate: 2e-4
Gradient accumulation steps: 4
Neural memory depth: 2
Window size: 32

## Train Code
```python
import json
import os
import random
import re
from pathlib import Path
from typing import List, Dict

import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, Dataset
from transformers import GPT2TokenizerFast
from tqdm import tqdm
from datasets import load_dataset
from adam_atan2_pytorch import AdoptAtan2
from titans_pytorch import (
    MemoryAsContextTransformer,
    MemoryMLP,
    MemoryAttention
)

# CUDA memory settings
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:32'

# Training constants
NUM_BATCHES = int(1e5)
BATCH_SIZE = 4
GRADIENT_ACCUMULATE_EVERY = 4
LEARNING_RATE = 2e-4
VALIDATE_EVERY = 100
GENERATE_EVERY = 500
PRIME_LENGTH = 100
GENERATE_LENGTH = 512
SHOULD_GENERATE = True
SEQ_LEN = 512

# Neural memory constants
NEURAL_MEMORY_DEPTH = 2
NUM_PERSIST_MEM = 4
NUM_LONGTERM_MEM = 4
NEURAL_MEM_LAYERS = (2, 4, 6)
NEURAL_MEM_GATE_ATTN_OUTPUT = False
NEURAL_MEM_MOMENTUM = True
NEURAL_MEM_MOMENTUM_ORDER = 1
NEURAL_MEM_QK_NORM = True
NEURAL_MEM_MAX_LR = 1e-1
USE_MEM_ATTENTION_MODEL = False
WINDOW_SIZE = 32
NEURAL_MEM_SEGMENT_LEN = 4
NEURAL_MEM_BATCH_SIZE = 128
SLIDING_WINDOWS = True
STORE_ATTN_POOL_CHUNKS = True
MEMORY_MODEL_PER_LAYER_LEARNED_LR = True
NEURAL_MEM_WEIGHT_RESIDUAL = True

# Initialize tokenizer
tokenizer = GPT2TokenizerFast.from_pretrained('sberbank-ai/rugpt3small_based_on_gpt2')


class WikiDatasetPreprocessor:
    def __init__(self, cache_dir: str = 'cache', output_dir: str = 'processed_data'):
        self.cache_dir = Path(cache_dir)
        self.output_dir = Path(output_dir)
        self.cache_dir.mkdir(parents=True, exist_ok=True)
        self.output_dir.mkdir(parents=True, exist_ok=True)
        self.tokenizer = GPT2TokenizerFast.from_pretrained(
            'sberbank-ai/rugpt3small_based_on_gpt2'
        )

    def load_wiki_dataset(self):
        """Загрузка датасета из Hugging Face."""
        print("Loading Wikipedia dataset...")
        dataset = load_dataset(
            "misterkirill/ru-wikipedia",
            cache_dir=str(self.cache_dir)
        )
        print(f"Dataset loaded. Size: {len(dataset['train'])} articles")
        return dataset

    def clean_text(self, text: str) -> str:
        """Базовая очистка текста."""
        return ' '.join(text.split())

    def process_wiki_article(self, text: str) -> List[str]:
        """Обработка одной статьи из википедии."""
        processed_chunks = []
        clean_text = self.clean_text(text)
        tokens = self.tokenizer.encode(clean_text)

        chunk_size = 256
        stride = 192

        for i in range(0, len(tokens), stride):
            chunk = tokens[i:i + chunk_size]
            if len(chunk) > 50:
                processed_chunks.append(chunk)

        return processed_chunks

    def process_and_save(
        self,
        batch_size: int = 1000,
        test_size: float = 0.1,
        max_articles: int = 10000
    ):
        """Обработка статей из датасета и сохранение результатов."""
        dataset = self.load_wiki_dataset()
        total_articles = min(len(dataset['train']), max_articles)
        print(f"Processing {total_articles} articles out of {len(dataset['train'])}")

        all_chunks = []
        for i in tqdm(range(0, total_articles, batch_size), desc="Processing articles"):
            batch = dataset['train'][i:i + batch_size]
            for text in batch['text']:
                chunks = self.process_wiki_article(text)
                all_chunks.extend(chunks)

                if len(all_chunks) > 50000:
                    break

            if len(all_chunks) > 50000:
                break

        print(f"Total chunks created: {len(all_chunks)}")

        random.seed(42)
        random.shuffle(all_chunks)

        test_size = int(len(all_chunks) * test_size)
        train_chunks = all_chunks[:-test_size]
        test_chunks = all_chunks[-test_size:]

        print(f"Saving {len(train_chunks)} training chunks and {len(test_chunks)} test chunks...")
        torch.save(
            {
                'train': train_chunks,
                'test': test_chunks
            },
            self.output_dir / 'processed_wiki.pt'
        )


class WikiTextDataset(Dataset):
    def __init__(self, chunks: List[List[int]], seq_len: int = 512):
        self.chunks = chunks
        self.seq_len = seq_len

    def __len__(self):
        return len(self.chunks)

    def __getitem__(self, idx):
        chunk = self.chunks[idx]
        if len(chunk) < self.seq_len + 1:
            chunk = chunk + [50256] * (self.seq_len + 1 - len(chunk))
        else:
            chunk = chunk[:self.seq_len + 1]
        return torch.tensor(chunk, device='cuda').long()


def create_dataloaders(
    processed_data_path: str,
    batch_size: int = 4,
    seq_len: int = 512,
    train_test_split: float = 0.9
) -> tuple:
    """Создание загрузчиков данных для обучения и валидации."""
    print(f"Loading processed data from {processed_data_path}")
    data = torch.load(processed_data_path)
    train_chunks = data['train']
    test_chunks = data['test']

    train_dataset = WikiTextDataset(train_chunks, seq_len)
    test_dataset = WikiTextDataset(test_chunks, seq_len)

    print(f"Created datasets with {len(train_dataset)} training and "
          f"{len(test_dataset)} test samples")

    train_loader = DataLoader(
        train_dataset,
        batch_size=batch_size,
        shuffle=True,
        num_workers=0,
        pin_memory=False
    )

    val_loader = DataLoader(
        test_dataset,
        batch_size=batch_size,
        shuffle=False,
        num_workers=0,
        pin_memory=False
    )

    return train_loader, val_loader


def cycle(loader):
    """Бесконечный итератор по загрузчику данных."""
    while True:
        for data in loader:
            yield data
            
            
def create_model():
    """Создание модели нейронной сети."""
    try:
        if USE_MEM_ATTENTION_MODEL:
            neural_memory_model = MemoryAttention(dim=64)
        else:
            neural_memory_model = MemoryMLP(dim=64, depth=NEURAL_MEMORY_DEPTH)

        model = MemoryAsContextTransformer(
            num_tokens=len(tokenizer),
            dim=384,
            depth=8,
            segment_len=WINDOW_SIZE,
            num_persist_mem_tokens=NUM_PERSIST_MEM,
            num_longterm_mem_tokens=NUM_LONGTERM_MEM,
            neural_memory_layers=NEURAL_MEM_LAYERS,
            neural_memory_segment_len=NEURAL_MEM_SEGMENT_LEN,
            neural_memory_batch_size=NEURAL_MEM_BATCH_SIZE,
            neural_mem_gate_attn_output=NEURAL_MEM_GATE_ATTN_OUTPUT,
            neural_mem_weight_residual=NEURAL_MEM_WEIGHT_RESIDUAL,
            use_flex_attn=True,
            sliding_window_attn=SLIDING_WINDOWS,
            neural_memory_model=neural_memory_model,
            neural_memory_kwargs=dict(
                dim_head=64,
                heads=4,
                attn_pool_chunks=STORE_ATTN_POOL_CHUNKS,
                qk_rmsnorm=NEURAL_MEM_QK_NORM,
                momentum=NEURAL_MEM_MOMENTUM,
                momentum_order=NEURAL_MEM_MOMENTUM_ORDER,
                default_step_transform_max_lr=NEURAL_MEM_MAX_LR,
                use_accelerated_scan=True,
                per_parameter_lr_modulation=MEMORY_MODEL_PER_LAYER_LEARNED_LR
            )
        ).cuda()

        assert next(model.parameters()).is_cuda, "Model is not on CUDA"
        return model

    except Exception as e:
        print(f"Error creating model: {e}")
        raise e


def train_model(model, train_loader, val_loader, num_batches=int(1e4)):
    """Обучение модели."""
    optim = AdoptAtan2(model.parameters(), lr=2e-4)
    torch.cuda.empty_cache()
    pbar = tqdm(range(num_batches), desc='Training')
    running_loss = 0.0

    try:
        for i in pbar:
            model.train()
            total_loss = 0

            for __ in range(4):
                batch = next(train_loader)
                loss = model(batch, return_loss=True)
                loss = loss / 4
                loss.backward()
                total_loss += loss.item()

            torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
            optim.step()
            optim.zero_grad()

            if i % 100 == 0:
                torch.cuda.empty_cache()

            avg_loss = total_loss
            running_loss = 0.9 * running_loss + 0.1 * avg_loss if i > 0 else avg_loss

            pbar.set_postfix({
                'loss': f'{running_loss:.4f}',
                'batch_loss': f'{avg_loss:.4f}'
            })

            if i % 100 == 0:
                model.eval()
                with torch.no_grad():
                    val_batch = next(val_loader)
                    val_loss = model(val_batch, return_loss=True)
                    pbar.set_postfix({
                        'train_loss': f'{running_loss:.4f}',
                        'val_loss': f'{val_loss.item():.4f}'
                    })

            if i % 1000 == 0 and i > 0:
                torch.save({
                    'epoch': i,
                    'model_state_dict': model.state_dict(),
                    'optimizer_state_dict': optim.state_dict(),
                    'loss': running_loss,
                }, f'checkpoint_{i}.pt')

    except KeyboardInterrupt:
        print("\nTraining interrupted by user")
    except Exception as e:
        print(f"\nTraining stopped due to error: {e}")
        raise e

    return model


def main():
    """Основная функция программы."""
    try:
        if not torch.cuda.is_available():
            raise RuntimeError("CUDA is not available. This code requires GPU.")

        print(f"Using CUDA device: {torch.cuda.get_device_name(0)}")

        BATCH_SIZE = 4
        SEQ_LEN = 512
        CACHE_DIR = 'cache'
        PROCESSED_DATA_DIR = 'processed_data'
        NUM_BATCHES = 10000

        preprocessor = WikiDatasetPreprocessor(CACHE_DIR, PROCESSED_DATA_DIR)
        processed_data_path = Path(PROCESSED_DATA_DIR) / 'processed_wiki.pt'

        if not processed_data_path.exists():
            print("Processing Wikipedia dataset...")
            preprocessor.process_and_save(max_articles=10000)

        train_loader, val_loader = create_dataloaders(
            processed_data_path,
            batch_size=BATCH_SIZE,
            seq_len=SEQ_LEN
        )

        train_loader = cycle(train_loader)
        val_loader = cycle(val_loader)

        model = create_model()
        model = train_model(model, train_loader, val_loader, num_batches=NUM_BATCHES)

        torch.save(model.state_dict(), 'final_model.pt')
        return model, train_loader, val_loader

    except Exception as e:
        print(f"Error in main: {e}")
        raise e


if __name__ == "__main__":
    torch.manual_seed(42)
    torch.cuda.manual_seed_all(42)
    torch.backends.cudnn.benchmark = True
    model, train_loader, val_loader = main()
```

# License

This project is licensed under the MIT License. See LICENSE file for details.


# Citation

If you use this model in your research, please cite:
```bibtex
@software{neural_memory_model,
  title = {Neural Memory Model for Russian Text Generation},
  year = {2025},
  url = {https://huggingface.co/Grpp/memory-transformer-ru}
}
```