Tiberiw's picture
Upload README.md with huggingface_hub
de1f5d5 verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: openai/whisper-base
tags:
  - wft
  - whisper
  - automatic-speech-recognition
  - audio
  - speech
  - generated_from_trainer
datasets:
  - Shamus/multimed_short
metrics:
  - wer
model-index:
  - name: whisper-BASE-LORA-med
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Shamus/multimed_short
          type: Shamus/multimed_short
        metrics:
          - type: wer
            value: 21.47240659965864
            name: Wer

whisper-BASE-LORA-med

This model is a fine-tuned version of openai/whisper-base on the Shamus/multimed_short dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5848
  • Wer: 21.4724
  • Cer: 12.0240

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.2829 1.0 7077 0.6521 24.4961 14.2032
0.8621 2.0 14154 0.6147 24.9126 14.5952
0.3164 3.0 21231 0.5794 22.2598 12.4891
0.3039 4.0 28308 0.5678 22.0960 12.5164
0.5835 5.0 35385 0.5848 21.4724 12.0240

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1