|
--- |
|
license: mit |
|
base_model: OnomaAIResearch/Illustrious-xl-early-release-v0 |
|
tags: |
|
- stable-diffusion-xl |
|
- stable-diffusion-xl-diffusers |
|
- text-to-image |
|
- diffusers |
|
- lora |
|
- gradients-on-demand |
|
inference: true |
|
--- |
|
|
|
# LoRA Model for Illustrious-xl-early-release-v0 |
|
|
|
This is a LoRA (Low-Rank Adaptation) model trained on custom dataset. |
|
|
|
## Model Details |
|
|
|
- **Base Model**: OnomaAIResearch/Illustrious-xl-early-release-v0 |
|
- **LoRA Rank**: 128 |
|
- **LoRA Alpha**: 128 |
|
- **Training Framework**: Kohya SS |
|
- **Precision**: bfloat16 |
|
|
|
## Training Configuration |
|
|
|
- **Learning Rate**: 2e-5 |
|
- **Batch Size**: 8 |
|
- **Epochs**: 50 |
|
- **Optimizer**: AdamW8Bit |
|
- **LR Scheduler**: Cosine with Restarts |
|
- **Resolution**: 1024x1024 |
|
|
|
## Usage |
|
|
|
You can use this LoRA with any SDXL-compatible interface: |
|
|
|
### With Diffusers |
|
|
|
```python |
|
from diffusers import DiffusionPipeline |
|
import torch |
|
|
|
# Load base model |
|
pipe = DiffusionPipeline.from_pretrained( |
|
"OnomaAIResearch/Illustrious-xl-early-release-v0", |
|
torch_dtype=torch.float16, |
|
variant="fp16", |
|
use_safetensors=True |
|
) |
|
pipe.to("cuda") |
|
|
|
# Load LoRA weights |
|
pipe.load_lora_weights("dada22231/ba2b5d89-3688-448e-9197-d9fd377c4f5a") |
|
|
|
# Generate image |
|
prompt = "your prompt here, lora style" |
|
image = pipe( |
|
prompt, |
|
num_inference_steps=20, |
|
guidance_scale=7.5, |
|
).images[0] |
|
``` |
|
|
|
### With ComfyUI |
|
|
|
1. Download the .safetensors file |
|
2. Place it in `ComfyUI/models/loras/` |
|
3. Use the "Load LoRA" node in your workflow |
|
|
|
### With Automatic1111 |
|
|
|
1. Download the .safetensors file |
|
2. Place it in `stable-diffusion-webui/models/Lora/` |
|
3. Use `<lora:ba2b5d89-3688-448e-9197-d9fd377c4f5a:1>` in your prompt |
|
|
|
## Training Data |
|
|
|
This model was trained on a custom dataset as part of the Gradients on Demand subnet. |
|
|
|
## License |
|
|
|
This model is licensed under the MIT License. |
|
|