audio
audioduration (s) 0.83
21
| transcription
stringlengths 3
127
| LaTeX
stringlengths 7
142
| Source
stringclasses 89
values |
---|---|---|---|
ax plus by plus cz equals d
|
$ax + by + cz = d$
|
https://www.youtube.com/watch?v=YBajUR3EFSM
|
|
x plus 5y plus 10z equals zero
|
$x + 5y + 10z = 0$
|
https://www.youtube.com/watch?v=YBajUR3EFSM
|
|
x minus two y minus one and z plus one dot product with one, five, ten
|
$[x-2,y-1,z+1]\cdot[1,5,10]$
|
https://www.youtube.com/watch?v=YBajUR3EFSM
|
|
x minus two plus five times y minus one plus ten times z plus one equals zero
|
$ (x - 2) + 5(y - 1) + 10(z + 1) = 0 $
|
https://www.youtube.com/watch?v=YBajUR3EFSM
|
|
Ax plus By plus Cz equals D
|
$Ax + By + Cz = D$
|
https://www.youtube.com/watch?v=YBajUR3EFSM
|
|
x plus y plus three z equals five
|
$x + y + 3z = 5$
|
https://www.youtube.com/watch?v=YBajUR3EFSM
|
|
x plus z equals one
|
$x + z = 1$
|
https://www.youtube.com/watch?v=YBajUR3EFSM
|
|
x plus y equals two
|
$x + y = 2$
|
https://www.youtube.com/watch?v=YBajUR3EFSM
|
|
A inverse is one over determinant of A times the adjoint matrix
|
$A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A)$
|
https://www.youtube.com/watch?v=YBajUR3EFSM
|
|
X equals A inverse B
|
$X = A^{-1}B$
|
https://www.youtube.com/watch?v=YBajUR3EFSM
|
|
log two minus log one
|
$\log2-\log1$
|
https://www.youtube.com/watch?v=zUEuKrxgHws
|
|
b minus a over n
|
$\frac{b - a}{n}$
|
https://www.youtube.com/watch?v=zUEuKrxgHws
|
|
a half times one plus two thirds plus a half times a half
|
$1/2\cdot1+2/3+1/2\cdot1/2$
|
https://www.youtube.com/watch?v=zUEuKrxgHws
|
|
y0 plus 4y1 plus y2
|
$\displaystyle y_0 + 4y_1 + y_2$
|
https://www.youtube.com/watch?v=zUEuKrxgHws
|
|
a half plus n minus 1 plus a half
|
$\frac{1}{2}+n-1+\frac{1}{2}$
|
https://www.youtube.com/watch?v=zUEuKrxgHws
|
|
two pi r e to the minus r squared dr
|
$2\pi r e^{-r^2} dr$
|
https://www.youtube.com/watch?v=zUEuKrxgHws
|
|
pi minus pi e to the minus r squared
|
$\pi - \pi e^{-r^2}$
|
https://www.youtube.com/watch?v=zUEuKrxgHws
|
|
square root of pi over 2
|
$\frac{\sqrt{\pi}}{2}$
|
https://www.youtube.com/watch?v=zUEuKrxgHws
|
|
e to the minus b squared plus x squared
|
$e^{-(b^2 + x^2)}$
|
https://www.youtube.com/watch?v=zUEuKrxgHws
|
|
e to the minus b squared times e to the minus x squared
|
$e^{-b^2} e^{-x^2}$
|
https://www.youtube.com/watch?v=zUEuKrxgHws
|
|
minus b squared times the integral from minus infinity to infinity of e to the minus x squared dx
|
$\displaystyle -b^2 \int_{-\infty}^{\infty} e^{-x^2} \, dx$
|
https://www.youtube.com/watch?v=zUEuKrxgHws
|
|
integral from minus infinity to infinity e to the minus y squared dy
|
$\displaystyle \int_{-\infty}^{\infty} e^{-y^2} dy$
|
https://www.youtube.com/watch?v=zUEuKrxgHws
|
|
pi x2 squared minus x1 squared
|
$\pi ({x_2}^{2} - {x_1}^{2})$
|
https://www.youtube.com/watch?v=zUEuKrxgHws
|
|
h of x equal to sine of x plus square root of 3 times cosine of x
|
$h(x) = \sin(x) + \sqrt{3} \cos(x)$
|
https://www.youtube.com/watch?v=Bb-bgJdOqig
|
|
cosine x minus square root of 3 times sine x
|
$\cos(x) - \sqrt{3} \sin(x)$
|
https://www.youtube.com/watch?v=Bb-bgJdOqig
|
|
square root of 3 times tan x
|
$\sqrt{3} \tan(x)$
|
https://www.youtube.com/watch?v=Bb-bgJdOqig
|
|
tan of x is equal to one divided by square root of three
|
$\tan(x) = \frac{1}{\sqrt{3}}$
|
https://www.youtube.com/watch?v=Bb-bgJdOqig
|
|
pi over 6
|
$\frac{\pi}{6}$
|
https://www.youtube.com/watch?v=Bb-bgJdOqig
|
|
pi over 6 plus pi
|
$\frac{\pi}{6} + \pi$
|
https://www.youtube.com/watch?v=Bb-bgJdOqig
|
|
minus five pi over six
|
$-\frac{5\pi}{6}$
|
https://www.youtube.com/watch?v=Bb-bgJdOqig
|
|
pi over 6 minus pi
|
$\frac{\pi}{6} - \pi$
|
https://www.youtube.com/watch?v=Bb-bgJdOqig
|
|
sine of x plus square root of 3 times cosine x
|
$\sin(x) + \sqrt{3} \cos(x)$
|
https://www.youtube.com/watch?v=Bb-bgJdOqig
|
|
h of x equals two times one-half sine x plus square root of three over two
|
$h(x) = 2 \frac{1}{2} \sin(x) + \frac{\sqrt{3}}{2}$
|
https://www.youtube.com/watch?v=Bb-bgJdOqig
|
|
pi over 3 sine x plus sine pi over 3 cosine x
|
$\displaystyle \frac{\pi}{3} \sin(x) + \sin\frac{\pi}{3} \cos(x)$
|
https://www.youtube.com/watch?v=Bb-bgJdOqig
|
|
two times sine of x plus pi over three
|
$2\sin(x) + \frac{\pi}{3}$
|
https://www.youtube.com/watch?v=Bb-bgJdOqig
|
|
x equals minus pi over three
|
$x = -\frac{\pi}{3}$
|
https://www.youtube.com/watch?v=Bb-bgJdOqig
|
|
x equals 7 pi over 6
|
$x = 7\pi/6$
|
https://www.youtube.com/watch?v=Bb-bgJdOqig
|
|
pi over 2 minus pi over 3 is pi over 6
|
$\pi/2 - \pi/3 = \pi/6$
|
https://www.youtube.com/watch?v=Bb-bgJdOqig
|
|
negative sine x times x squared times the sine x
|
$- \sin x \cdot x^{2} \cdot \sin x$
|
https://www.youtube.com/watch?v=55ncRlBZstA
|
|
cosine x cosine x is cosine squared x
|
$\cos x \cos x = \cos^{2}x$
|
https://www.youtube.com/watch?v=55ncRlBZstA
|
|
minus x squared sine squared x
|
$ -x^2 \sin^{2}x$
|
https://www.youtube.com/watch?v=55ncRlBZstA
|
|
dy dx times dx dw times dw d theta
|
$ \frac{dy}{dx} \times \frac{dx}{dw} \times \frac{dw}{d\theta} $
|
https://www.youtube.com/watch?v=aeQA5d3gZTI
|
|
dw d theta is four theta to the third
|
$\frac{dw}{d\theta} = 4\theta^{3}$
|
https://www.youtube.com/watch?v=aeQA5d3gZTI
|
|
cosine of theta to the fourth
|
$\cos(\theta^{4})$
|
https://www.youtube.com/watch?v=aeQA5d3gZTI
|
|
two cosine of theta to the fourth times negative sine
|
$2\cos(\theta^{4}) (-\sin) $
|
https://www.youtube.com/watch?v=aeQA5d3gZTI
|
|
cosine of pi over two is equal to zero
|
$\cos(\pi/2) = 0$
|
https://www.youtube.com/watch?v=aeQA5d3gZTI
|
|
theta to the fourth equals pi over two
|
$ \theta^{4} = \frac{\pi}{2} $
|
https://www.youtube.com/watch?v=aeQA5d3gZTI
|
|
theta is equal to pi over 2 to the 1 4th
|
$\theta = (\frac{\pi}{2}) ^ \frac{1}{4}$
|
https://www.youtube.com/watch?v=aeQA5d3gZTI
|
|
y cubed plus x cubed equals three xy
|
$y^{3} + x^{3} = 3xy$
|
https://www.youtube.com/watch?v=fK6cu99OSEU
|
|
four thirds cubed plus two thirds cubed is equal to three times two thirds times four thirds
|
$(4/3)^{3}+(2/3)^{3}=3\times(2/3)\times(4/3)$
|
https://www.youtube.com/watch?v=fK6cu99OSEU
|
|
y minus x squared over y squared minus x
|
$ \frac{y - x^{2}} {y^{2} - x}$
|
https://www.youtube.com/watch?v=fK6cu99OSEU
|
|
6 minus 16 over 4 minus 12
|
$\frac{6 - 16}{4 - 12}$
|
https://www.youtube.com/watch?v=fK6cu99OSEU
|
|
d over dx of tan x is equal to secant squared of x
|
$\frac{\mathrm{d}}{\mathrm{dx}}(\tan x) = \mathrm{\sec^2(x)}$
|
https://www.youtube.com/watch?v=aYMt2ZVGd7g
|
|
pi over two
|
$\frac{\pi}{2}$
|
https://www.youtube.com/watch?v=aYMt2ZVGd7g
|
|
y equals arctan x
|
$y = \arctan x$
|
https://www.youtube.com/watch?v=aYMt2ZVGd7g
|
|
dy dx is equal to minus 1 divided by sine y
|
$\frac{dy}{dx} = -\frac{1}{\sin y}$
|
https://www.youtube.com/watch?v=cdRMY39EYbs
|
|
square root of 1 minus x squared
|
$\sqrt{1 - x^{2}}$
|
https://www.youtube.com/watch?v=cdRMY39EYbs
|
|
f of x is equal to x to the pi plus pi to the x
|
$f(x) = x^{\pi} + \pi^{x}$
|
https://www.youtube.com/watch?v=wezQdmwolMU
|
|
g of x is equal to natural log of cosine of x
|
$g(x) = \ln(\cos(x))$
|
https://www.youtube.com/watch?v=wezQdmwolMU
|
|
pi times x to the pi minus 1
|
$\pi x^{\pi - 1}$
|
https://www.youtube.com/watch?v=wezQdmwolMU
|
|
x times pi to the x minus 1
|
$x \cdot \pi^{x-1}$
|
https://www.youtube.com/watch?v=wezQdmwolMU
|
|
1 over cosine x
|
$\frac{1}{\cos x}$
|
https://www.youtube.com/watch?v=wezQdmwolMU
|
|
e to the x squared
|
$\mathrm{e}^{x^{2}}$
|
https://www.youtube.com/watch?v=wezQdmwolMU
|
|
natural log of e to the x squared
|
$\ln(e^{x^{2}})$
|
https://www.youtube.com/watch?v=wezQdmwolMU
|
|
x squared times natural log of e
|
$x^{2}\cdot\ln e$
|
https://www.youtube.com/watch?v=wezQdmwolMU
|
|
natural log of e is equal to 1
|
$\ln(e)=1$
|
https://www.youtube.com/watch?v=wezQdmwolMU
|
|
natural log of m times n is equal to the natural log of m plus natural log of n
|
$\ln(mn) = \ln(m) + \ln(n)$
|
https://www.youtube.com/watch?v=9YgOmJdom6o
|
|
e to the a equals m
|
$e^\mathrm{a} = m$
|
https://www.youtube.com/watch?v=9YgOmJdom6o
|
|
a is equal to natural log of m
|
$a=\ln m$
|
https://www.youtube.com/watch?v=9YgOmJdom6o
|
|
natural log of e to the a plus b
|
$\ln(e^{a+b})$
|
https://www.youtube.com/watch?v=9YgOmJdom6o
|
|
natural log of e to the x is x
|
$\ln(e^{x}) = x$
|
https://www.youtube.com/watch?v=9YgOmJdom6o
|
|
1 half natural log x plus 1 half
|
$\frac{1}{2}\ln x + \frac{1}{2}$
|
https://www.youtube.com/watch?v=9YgOmJdom6o
|
|
1 over 2x plus 1 over 2 times x plus 4
|
$\frac{1}{2x} + \frac{1}{2(x + 4)}$
|
https://www.youtube.com/watch?v=9YgOmJdom6o
|
|
e to the x plus e to the minus x
|
$e^{x} + e^{-x}$
|
https://www.youtube.com/watch?v=er_tQOBgo-I
|
|
1 plus x squared
|
$1 + x^2$
|
https://www.youtube.com/watch?v=er_tQOBgo-I
|
|
1 plus 1 over 2
|
$1 + \frac{1}{2}$
|
https://www.youtube.com/watch?v=er_tQOBgo-I
|
|
e to the x minus e to the minus x over 2
|
$e^{x} - e^{-x} \over 2$
|
https://www.youtube.com/watch?v=er_tQOBgo-I
|
|
x squared plus y squared equals 1
|
$x^{2} + y^{2} = 1$
|
https://www.youtube.com/watch?v=er_tQOBgo-I
|
|
x squared minus y squared
|
$x^{2} - y^{2}$
|
https://www.youtube.com/watch?v=er_tQOBgo-I
|
|
cosh squared u
|
$\cosh^{2}u$
|
https://www.youtube.com/watch?v=er_tQOBgo-I
|
|
e to the u plus e to the minus u over 2 quantity squared
|
$(\frac{e^{u} + e^{-u}}{2})^2$
|
https://www.youtube.com/watch?v=er_tQOBgo-I
|
|
e to the u minus e to the minus u over 2 quantity squared
|
$( \frac {e^{u} - e^{-u}} {2} )^2$
|
https://www.youtube.com/watch?v=er_tQOBgo-I
|
|
2 times e to the u times e to the minus u
|
$2 e^{u}e^{-u}$
|
https://www.youtube.com/watch?v=er_tQOBgo-I
|
|
2 plus e to the minus 2u minus e to the 2u minus 2
|
$2 + e^{-2u} - e^{2u} - 2$
|
https://www.youtube.com/watch?v=er_tQOBgo-I
|
|
w of x plus one
|
$\displaystyle w(x) + 1$
|
https://www.youtube.com/watch?v=8gGbViZjoRw
|
|
w of x plus 2 times e to the w of x
|
$w(x) + 2e^{w(x)}$
|
https://www.youtube.com/watch?v=8gGbViZjoRw
|
|
1 over w of x plus 2 times e to the w of x
|
$\frac{1}{w(x)} + 2e^{w(x)}$
|
https://www.youtube.com/watch?v=8gGbViZjoRw
|
|
w of one plus two times e to the w of one
|
$w(1) + 2 e^{w(1)}$
|
https://www.youtube.com/watch?v=8gGbViZjoRw
|
|
1 half times x minus 1
|
$\frac{1}{2}(x - 1)$
|
https://www.youtube.com/watch?v=8gGbViZjoRw
|
|
1 over x0 plus delta x
|
$ \frac{1}{x_{0} +\Delta x}$
|
https://www.youtube.com/watch?v=7K1sB05pE0A
|
|
minus 1 over x0 plus delta x times x0
|
$\displaystyle-\frac{1}{x_{0} + \Delta x x_{0}}$
|
https://www.youtube.com/watch?v=7K1sB05pE0A
|
|
minus 1 over 3 plus delta x times 3
|
$-\frac{1}{3} + \Delta x \times 3$
|
https://www.youtube.com/watch?v=7K1sB05pE0A
|
|
minus 1 over x0 squared x minus x0
|
$-\frac{1}{x_{0}^{2}}(x-x_{0})$
|
https://www.youtube.com/watch?v=7K1sB05pE0A
|
|
delta f is x plus delta x to the n minus x to the n divided by delta x
|
$\displaystyle \Delta f = \frac{(x + \Delta x)^{n} - x^{n}}{\Delta x}$
|
https://www.youtube.com/watch?v=7K1sB05pE0A
|
|
x to the n plus n x to the n minus 1 delta x
|
$x^{n}+nx^{n-1}\Delta x$
|
https://www.youtube.com/watch?v=7K1sB05pE0A
|
|
n x to the n minus one
|
$nx^{n-1}$
|
https://www.youtube.com/watch?v=7K1sB05pE0A
|
|
minus 1 over x squared
|
$-\frac{1}{x^{2}}$
|
https://www.youtube.com/watch?v=ryLdyDrBfvI
|
|
x plus 3 over x squared plus 1
|
$\frac{x + 3}{x^{2} + 1}$
|
https://www.youtube.com/watch?v=ryLdyDrBfvI
|
|
4 plus 3 divided by 4 squared plus 1
|
$\frac{4+3}{4^{2}+1}$
|
https://www.youtube.com/watch?v=ryLdyDrBfvI
|
|
1 minus cosine x over x
|
$\frac{1 - \cos x}{x}$
|
https://www.youtube.com/watch?v=ryLdyDrBfvI
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.