audio
audioduration (s) 0.83
21
| transcription
stringlengths 3
127
| LaTeX
stringlengths 7
142
| Source
stringclasses 89
values |
---|---|---|---|
one over n cubed
|
$\frac{1}{n^{3}}$
|
https://www.youtube.com/watch?v=MK_0QHbUnIA
|
|
one plus one over two plus all the way up to one over n minus one plus 1 over n
|
$1+\frac{1}{2}+\mathrm{\ldots}+\frac{1}{n-1}+\frac{1}{n}$
|
https://www.youtube.com/watch?v=MK_0QHbUnIA
|
|
a half plus a third
|
$\frac{1}{2}+\frac{1}{3}$
|
https://www.youtube.com/watch?v=MK_0QHbUnIA
|
|
1 over n squared plus 1 square root
|
$\frac{1}{n^{2} + 1}$
|
https://www.youtube.com/watch?v=MK_0QHbUnIA
|
|
sum one over n to the five-halves
|
$\sum\frac{1}{n^{5/2}}$
|
https://www.youtube.com/watch?v=MK_0QHbUnIA
|
|
one times one plus two times minus two plus minus three times one
|
$1\times1+2\times(-2)+(-3)\times1$
|
https://www.youtube.com/watch?v=U1EcnfTKXJ0
|
|
x plus 3y plus z equals zero
|
$x+3y+z=0$
|
https://www.youtube.com/watch?v=U1EcnfTKXJ0
|
|
minus 2x minus z will be x plus 3y plus z
|
$-2x-z\operatorname{=}x+3y+z$
|
https://www.youtube.com/watch?v=U1EcnfTKXJ0
|
|
x equals minus 3t
|
$x=-3t$
|
https://www.youtube.com/watch?v=U1EcnfTKXJ0
|
|
y equals 3t
|
$y=3\mathfrak{t}$
|
https://www.youtube.com/watch?v=U1EcnfTKXJ0
|
|
z equals negative 6t
|
$z\!=\!-6t$
|
https://www.youtube.com/watch?v=U1EcnfTKXJ0
|
|
dr dt dot r plus r dot dr dt
|
$\displaystyle \frac{dr}{dt}\cdot{r}+r\cdot\frac{dr}{dt}$
|
https://www.youtube.com/watch?v=U1EcnfTKXJ0
|
|
d by dt of r dot r is zero
|
$\displaystyle \frac{d}{dt}(\mathbf{r}\cdot\mathbf{r})=0$
|
https://www.youtube.com/watch?v=U1EcnfTKXJ0
|
|
minus v dot v
|
$-\mathbf{v}\cdot\mathbf{v}$
|
https://www.youtube.com/watch?v=U1EcnfTKXJ0
|
|
f of x y equals one over x plus y
|
$f(x,y)=\frac{1}{x+y}$
|
https://www.youtube.com/watch?v=dK3NEf13nPc
|
|
f of x y equals one minus x squared minus y squared
|
$f(x,y)=1-x^{2}-y^{2}$
|
https://www.youtube.com/watch?v=dK3NEf13nPc
|
|
z equals one minus x squared minus y squared
|
$z=1-x^{2}-y^{2}$
|
https://www.youtube.com/watch?v=dK3NEf13nPc
|
|
x squared plus y squared equals one
|
$x^{2}+y^{2}=1$
|
https://www.youtube.com/watch?v=dK3NEf13nPc
|
|
f prime at x0 times delta x
|
$ f^{\prime}(x_{0})\Delta x$
|
https://www.youtube.com/watch?v=dK3NEf13nPc
|
|
d dy of y to the n times dy dx
|
$\displaystyle (\frac{d}{dy}y^{n})\frac{dy}{dx}$
|
https://www.youtube.com/watch?v=5q_3FDOkVRQ
|
|
m x to the n minus one
|
$(mx^{m-1})$
|
https://www.youtube.com/watch?v=5q_3FDOkVRQ
|
|
n y to the n minus 1
|
$(ny^{n-1})$
|
https://www.youtube.com/watch?v=5q_3FDOkVRQ
|
|
x to the m minus one
|
$\mathcal{x}^{m-1}$
|
https://www.youtube.com/watch?v=5q_3FDOkVRQ
|
|
x to the m over n times n minus 1
|
$x^\frac{m}{n}{(n-1)}$
|
https://www.youtube.com/watch?v=5q_3FDOkVRQ
|
|
minus one plus m over n
|
$-1+\frac{m}{n}$
|
https://www.youtube.com/watch?v=5q_3FDOkVRQ
|
|
a minus one
|
$\mathsf{a}-1$
|
https://www.youtube.com/watch?v=5q_3FDOkVRQ
|
|
a x to the a minus one
|
$(ax^{a-1})$
|
https://www.youtube.com/watch?v=5q_3FDOkVRQ
|
|
y is equal to plus or minus square root of 1 minus x squared
|
$y =\pm\sqrt{1-x^{2}}$
|
https://www.youtube.com/watch?v=5q_3FDOkVRQ
|
|
2 x plus 2 y y prime
|
$2x+2yy^{\prime}$
|
https://www.youtube.com/watch?v=5q_3FDOkVRQ
|
|
y to the fourth plus xy squared minus two is equal to zero
|
$y^{4}+xy^{2}-2=0$
|
https://www.youtube.com/watch?v=5q_3FDOkVRQ
|
|
four y cubed y prime
|
$4y^{3}y^{\prime}$
|
https://www.youtube.com/watch?v=5q_3FDOkVRQ
|
|
minus y squared divided by 4y cubed plus 2xy
|
$-\frac{y^{2}}{4y^{3}+2xy}$
|
https://www.youtube.com/watch?v=5q_3FDOkVRQ
|
|
y to the fourth plus xy squared minus 2 is equal to zero
|
$y^{4}+xy^{2}-2=0$
|
https://www.youtube.com/watch?v=5q_3FDOkVRQ
|
|
minus 1 squared divided by 4 times 1 cubed plus 2 times 1 times 1
|
$\frac{(-1)^2}{4\times1^{3}+2\times1\times1}$
|
https://www.youtube.com/watch?v=5q_3FDOkVRQ
|
|
tan inverse x is equal to pi over two
|
$\operatorname{\tan}^{-1}x=\frac{\pi}{2}$
|
https://www.youtube.com/watch?v=5q_3FDOkVRQ
|
|
d by dy tan y times dy dx
|
$\displaystyle \frac{d}{dy}\tan(y)\frac{dy}{dx}$
|
https://www.youtube.com/watch?v=5q_3FDOkVRQ
|
|
d by dx of tan inverse of x
|
$\frac{d}{dx}(tan^{-1}(x))$
|
https://www.youtube.com/watch?v=5q_3FDOkVRQ
|
|
cosine squared of tan inverse x
|
$\cos^{2}(tan^{-1}x)$
|
https://www.youtube.com/watch?v=5q_3FDOkVRQ
|
|
one over 1 plus x squared
|
$\frac{1}{1+x^{2}}$
|
https://www.youtube.com/watch?v=5q_3FDOkVRQ
|
|
d by dx of tan inverse x is equal to one over 1 plus x squared
|
$\frac{d}{dx}(tan^{-1}x)=\frac{1}{1 + x^{2}}$
|
https://www.youtube.com/watch?v=5q_3FDOkVRQ
|
|
1 over square root of 1 minus x squared
|
$\frac{1}{\sqrt{1-x^{2}}}$
|
https://www.youtube.com/watch?v=5q_3FDOkVRQ
|
|
a to the x1 plus x2 is a to the x1 times a to the x2
|
$\displaystyle a^{x_1 + x_2} = a^{x_{1}}\cdot a^{x_{2}}$
|
https://www.youtube.com/watch?v=9v25gg2qJYE
|
|
a to the x plus delta x
|
$a^{x+\Delta x}$
|
https://www.youtube.com/watch?v=9v25gg2qJYE
|
|
M of a is equal to the limit as delta x goes to 0 of a to the delta x minus 1 divided by delta x
|
$M(a)=\lim_{\Delta x\to 0}\frac{a^{\Delta x}-1}{\Delta x}$
|
https://www.youtube.com/watch?v=9v25gg2qJYE
|
|
k times f prime of kx
|
$k\cdot f^{\prime}(kx)$
|
https://www.youtube.com/watch?v=9v25gg2qJYE
|
|
e to the log x is equal to x
|
$\mathrm{e}^{\log x}=x$
|
https://www.youtube.com/watch?v=9v25gg2qJYE
|
|
d by dx e to the w
|
$\frac{d}{dx}\mathbf{e}^{w}$
|
https://www.youtube.com/watch?v=9v25gg2qJYE
|
|
e to the power log a to the power x
|
$(e^{\ln a})^{x}$
|
https://www.youtube.com/watch?v=9v25gg2qJYE
|
|
d by dx of a to the x is equal to d by dx of e to the x log a
|
$\frac{d}{dx}(a^{x})=\frac{d}{dx}(e^{x}\log a)$
|
https://www.youtube.com/watch?v=9v25gg2qJYE
|
|
log a times e to the x log a
|
$\log a\,\mathrm{e}^{x\log a}$
|
https://www.youtube.com/watch?v=9v25gg2qJYE
|
|
The derivative with respect to x of 2 to the x is log 2 times 2 to the x
|
$\frac{d}{dx}(2^{x})=\log{2}(2^{x})$
|
https://www.youtube.com/watch?v=9v25gg2qJYE
|
|
log 10 times 10 to the x
|
$\log 10\times 10^{x}$
|
https://www.youtube.com/watch?v=9v25gg2qJYE
|
|
log u prime is equal to u primie over u
|
$\log u^{\prime}=u^{\prime}/u$
|
https://www.youtube.com/watch?v=9v25gg2qJYE
|
|
u prime is equal to u times log a
|
$u^{\prime}=u\cdot\log a$
|
https://www.youtube.com/watch?v=9v25gg2qJYE
|
|
v prime is equal to v times 1 plus log x
|
$v^{\prime}=v(1+\log x)$
|
https://www.youtube.com/watch?v=9v25gg2qJYE
|
|
d by dx x to the x
|
$(\frac{d}{dx}(x^{x}))$
|
https://www.youtube.com/watch?v=9v25gg2qJYE
|
|
one plus one over n to the power n
|
$(1+\frac{1}{n})^{n}$
|
https://www.youtube.com/watch?v=9v25gg2qJYE
|
|
n log one plus one over n
|
$n\log(1+1/n)$
|
https://www.youtube.com/watch?v=9v25gg2qJYE
|
|
one plus one over k to the kth power
|
$(1+\frac{1}{k})^{k}$
|
https://www.youtube.com/watch?v=eHJuAByQf5A
|
|
ln of one plus one over k
|
$\ln(1+\frac{1}{k})$
|
https://www.youtube.com/watch?v=eHJuAByQf5A
|
|
e to the r log x prime
|
$\mathrm{e}^{r}\log x^{\prime}$
|
https://www.youtube.com/watch?v=eHJuAByQf5A
|
|
u times r divided by x
|
$u\times\mathbb{r}/x$
|
https://www.youtube.com/watch?v=eHJuAByQf5A
|
|
r x to the r minus one
|
$rx^{r-1}$
|
https://www.youtube.com/watch?v=eHJuAByQf5A
|
|
y is ten x plus b
|
$y=10x+b$
|
https://www.youtube.com/watch?v=eHJuAByQf5A
|
|
fifty t plus ten a plus b
|
$50t+10a+b$
|
https://www.youtube.com/watch?v=eHJuAByQf5A
|
|
minus v to the minus 2 times v prime
|
$-v^{-2}v^{\prime}$
|
https://www.youtube.com/watch?v=eHJuAByQf5A
|
|
x to the ten plus eight x
|
$x^{10}+8x$
|
https://www.youtube.com/watch?v=eHJuAByQf5A
|
|
e to the x tan inverse x
|
$\mathrm{e}^{x}{\tan^{-1}x}$
|
https://www.youtube.com/watch?v=eHJuAByQf5A
|
|
x divided by 1 plus x squared
|
$\frac{x}{1+x^{2}}$
|
https://www.youtube.com/watch?v=eHJuAByQf5A
|
|
the limit as delta x goes to 0 of f of x plus delta x minus f of x divided by delta x
|
$\displaystyle \lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$
|
https://www.youtube.com/watch?v=eHJuAByQf5A
|
|
one over one plus y squared times y prime
|
$\frac{1}{1+y^{2}}y^{\prime}$
|
https://www.youtube.com/watch?v=eHJuAByQf5A
|
|
one divided by the square root of one plus x squared
|
$1/\sqrt{1+x^{2}}$
|
https://www.youtube.com/watch?v=eHJuAByQf5A
|
|
x zero plus f prime of x zero x minus x zero
|
$\displaystyle x_{0}+f^{\prime}(x_{0})(x - x_{0})$
|
https://www.youtube.com/watch?v=BSAA0akmPEU
|
|
y equals cosine x
|
$y=\cos x$
|
https://www.youtube.com/watch?v=BSAA0akmPEU
|
|
y equals e to the x
|
$y=\mathrm{e}^{x}$
|
https://www.youtube.com/watch?v=BSAA0akmPEU
|
|
y equals one plus x
|
$\displaystyle y=1+x$
|
https://www.youtube.com/watch?v=BSAA0akmPEU
|
|
f prime is one over one plus x
|
$f^{\prime}=\frac{1}{1+x}$
|
https://www.youtube.com/watch?v=BSAA0akmPEU
|
|
r one plus x to the r minus 1
|
$(r\cdot{1+x}^{r-1})$
|
https://www.youtube.com/watch?v=BSAA0akmPEU
|
|
e to the minus 3x divided by square root 1 plus x
|
$e^{-3x}/\sqrt{1+x}$
|
https://www.youtube.com/watch?v=BSAA0akmPEU
|
|
e to the minus three x one plus x to the minus a half
|
$e^{-3x}(1+x^{-1/2})$
|
https://www.youtube.com/watch?v=BSAA0akmPEU
|
|
one minus three x minus a half of x plus three halves x squared.
|
$1-3x-\frac{1}{2}x+\frac{3}{2}x^{2}$
|
https://www.youtube.com/watch?v=BSAA0akmPEU
|
|
t prime is equal to t divided by the square root of 1 minus v squared over c squared
|
$t^{\prime}= t/\sqrt{1-v^{2}/c^{2}}$
|
https://www.youtube.com/watch?v=BSAA0akmPEU
|
|
v squared over c squared
|
$\frac{v^{2}}{c^{2}}$
|
https://www.youtube.com/watch?v=BSAA0akmPEU
|
|
t times 1 plus a half v squared over c squared
|
$t(1+\frac{1}{2}\frac{v^{2}}{c^{2}})$
|
https://www.youtube.com/watch?v=BSAA0akmPEU
|
|
y equals one minus a half x squared
|
$y=1-\frac{1}{2}x^{2}$
|
https://www.youtube.com/watch?v=BSAA0akmPEU
|
|
one plus a half v squared over c squared
|
$1+\frac{1}{2}v^{2}/c^{2}$
|
https://www.youtube.com/watch?v=eRCN3daFCmU
|
|
f double prime of zero divided by two
|
$f^{\prime\prime}(0)/2$
|
https://www.youtube.com/watch?v=eRCN3daFCmU
|
|
sine x is approximately x
|
$\sin x\approx x$
|
https://www.youtube.com/watch?v=eRCN3daFCmU
|
|
cosine x is approximately one minus a half x squared
|
$\cos x\approx 1-\frac{1}{2}x^{2}$
|
https://www.youtube.com/watch?v=eRCN3daFCmU
|
|
e to the x is approximately one plus x plus a half x squared
|
$e^{x}\approx 1+x+\frac{1}{2}x^{2}$
|
https://www.youtube.com/watch?v=eRCN3daFCmU
|
|
x minus a half x squared
|
$x-\frac{1}{2}x^{2}$
|
https://www.youtube.com/watch?v=eRCN3daFCmU
|
|
1 plus x to the power r
|
$(1+x^{r})$
|
https://www.youtube.com/watch?v=eRCN3daFCmU
|
|
one plus rx plus r times r minus one divided by two x squared
|
$1+rx+\frac{r(r-1)}{2}x^{2}$
|
https://www.youtube.com/watch?v=eRCN3daFCmU
|
|
e to the minus three x one plus x to the minus a half
|
$e^{-3x}(1+x)^{-1/2}$
|
https://www.youtube.com/watch?v=eRCN3daFCmU
|
|
one minus a half x plus a half times minus a half times minus three halves x squared
|
$1-\frac{1}{2}x+\frac{1}{2}\times(-\frac{1}{2})\times(-\frac{3}{2})x^{2}$
|
https://www.youtube.com/watch?v=eRCN3daFCmU
|
|
f double prime is minus one over one plus x squared
|
$f^{\prime\prime}=-\frac{1}{1 + x^{2}}$
|
https://www.youtube.com/watch?v=eRCN3daFCmU
|
|
r one plus x to the r minus one
|
$(r\cdot 1+x^{r-1})$
|
https://www.youtube.com/watch?v=eRCN3daFCmU
|
|
r times r minus one x plus one to the r minus two
|
$r(r-1)(x+1)^{r-2}$
|
https://www.youtube.com/watch?v=eRCN3daFCmU
|
|
3 times 1 minus x times 1 plus x
|
$3(1-x)(1+x)$
|
https://www.youtube.com/watch?v=eRCN3daFCmU
|
|
one minus x times 1 plus x is zero
|
$(1 - x)(1 + x) = 0$
|
https://www.youtube.com/watch?v=eRCN3daFCmU
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.