audio
audioduration (s) 0.83
21
| transcription
stringlengths 3
127
| LaTeX
stringlengths 7
142
| Source
stringclasses 89
values |
---|---|---|---|
the limit of 1 minus cosine x divided by x x goes to 0 is 0
|
$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$
|
https://www.youtube.com/watch?v=ryLdyDrBfvI
|
|
limit as x goes to x0 of f of x is equal to f of x0
|
$\lim_{x\to x_{0}}f(x)=f(x_{0})$
|
https://www.youtube.com/watch?v=ryLdyDrBfvI
|
|
sine a cos b plus cos a sin b
|
$\sin(a)\cos(b)+\cos(a)\sin(b)$
|
https://www.youtube.com/watch?v=kCPVBl953eY
|
|
cosine delta x minus 1 divided by delta x
|
$\cos\Delta x - 1 \over \Delta x$
|
https://www.youtube.com/watch?v=kCPVBl953eY
|
|
minus cosine x divided by delta x
|
$-\frac{\cos x}{\Delta x}$
|
https://www.youtube.com/watch?v=kCPVBl953eY
|
|
sine delta x divided by delta x
|
$\frac{\sin\Delta x}{\Delta x}$
|
https://www.youtube.com/watch?v=kCPVBl953eY
|
|
cosine delta x minus 1 divided by delta x
|
$\frac{\cos\Delta x - 1}{\Delta x}$
|
https://www.youtube.com/watch?v=kCPVBl953eY
|
|
the limit as delta x goes to 0 of sine delta x over delta x
|
$\lim_{\Delta x\to 0} \frac{\sin \Delta x}{\Delta x}$
|
https://www.youtube.com/watch?v=kCPVBl953eY
|
|
delta y over delta theta
|
$\frac{\Delta y}{\Delta \theta}$
|
https://www.youtube.com/watch?v=kCPVBl953eY
|
|
u prime v minus u v prime
|
$u^{\prime}v-uv^{\prime}$
|
https://www.youtube.com/watch?v=kCPVBl953eY
|
|
n x to the n minus 1
|
$nx^{n-1}$
|
https://www.youtube.com/watch?v=4sTKcvYMNxk
|
|
x to the n times sine of x
|
$x^{n}\sin(x)$
|
https://www.youtube.com/watch?v=4sTKcvYMNxk
|
|
u times v of x plus delta x
|
$uv(x + \Delta x)$
|
https://www.youtube.com/watch?v=4sTKcvYMNxk
|
|
delta of uv divided by delta x
|
$\frac{\Delta (uv)}{\Delta x}$
|
https://www.youtube.com/watch?v=4sTKcvYMNxk
|
|
delta u divided by delta x times v of x plus delta x
|
$\frac{\Delta u}{\Delta x}\cdot v(x+\Delta x)$
|
https://www.youtube.com/watch?v=4sTKcvYMNxk
|
|
u of x plus delta x times v of x plus delta x
|
$u(x+\Delta x)v(x+\Delta x)$
|
https://www.youtube.com/watch?v=4sTKcvYMNxk
|
|
u prime v minus uv prime divided by v squared
|
$u^{\prime}v - uv^{\prime} \over v^{2}$
|
https://www.youtube.com/watch?v=4sTKcvYMNxk
|
|
v plus delta v
|
$v+\Delta v$
|
https://www.youtube.com/watch?v=4sTKcvYMNxk
|
|
v to the minus 2 v prime minus v prime divided by v squared
|
$v^{-2}v^{\prime} - \frac{v^{\prime}}{v^2}$
|
https://www.youtube.com/watch?v=4sTKcvYMNxk
|
|
10 times sine of t raised to the 9th power
|
$10 \sin^{9}(t)$
|
https://www.youtube.com/watch?v=4sTKcvYMNxk
|
|
sine to the 9th of t cosine of t
|
$\sin^{9}(t)\cos(t)$
|
https://www.youtube.com/watch?v=4sTKcvYMNxk
|
|
D cubed x to the n
|
$D^{3}x^{n}$
|
https://www.youtube.com/watch?v=4sTKcvYMNxk
|
|
n times n minus 1
|
$n\times (n-1)$
|
https://www.youtube.com/watch?v=4sTKcvYMNxk
|
|
D to the n plus 1 applied to x to the n
|
$\mathcal{D}^{n+1}(x^{n})$
|
https://www.youtube.com/watch?v=4sTKcvYMNxk
|
|
length A squared equals length B squared plus one
|
${a}^{2}={b}^{2} + 1$
|
https://www.youtube.com/watch?v=PxCxlsl_YwY
|
|
length of A is square root of length B squared plus one
|
$\mathrm{|A|} = \sqrt{\mathrm{|B|^{2} + 1}}$
|
https://www.youtube.com/watch?v=PxCxlsl_YwY
|
|
square root of 13 plus one is square root of 14
|
$\sqrt{{13}+1}=\sqrt{14}$
|
https://www.youtube.com/watch?v=PxCxlsl_YwY
|
|
the length of a is the square root of a one squared plus a two squared plus a three squared
|
$|a|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}$
|
https://www.youtube.com/watch?v=PxCxlsl_YwY
|
|
a dot b minus b dot a plus b dot b
|
$a\cdot b-b\cdot a+b\cdot b$
|
https://www.youtube.com/watch?v=PxCxlsl_YwY
|
|
a dot a is length a squared
|
$a\cdot a = |a|^2$
|
https://www.youtube.com/watch?v=PxCxlsl_YwY
|
|
cosine theta is PQ dot PR over length PQ length PR
|
$\cos(\theta) = \frac{{\mathsf{PQ} \cdot \mathsf{PR}}}{{|\mathsf{PQ}| \cdot |\mathsf{PR}|}}$
|
https://www.youtube.com/watch?v=PxCxlsl_YwY
|
|
minus one squared plus one squared plus zero squared square root
|
$\sqrt{(-1)^{2} + 1^{2} + 0^{2}}$
|
https://www.youtube.com/watch?v=PxCxlsl_YwY
|
|
x plus two y plus three z equals zero
|
$x+2y+3z=0$
|
https://www.youtube.com/watch?v=PxCxlsl_YwY
|
|
OP dot A equals zero
|
$\mathsf{OP}\cdot \mathsf{A}=0$
|
https://www.youtube.com/watch?v=PxCxlsl_YwY
|
|
x times one plus y times two plus z times three
|
$x\cdot 1 + y\cdot 2 + z\cdot 3$
|
https://www.youtube.com/watch?v=PxCxlsl_YwY
|
|
x equals r cosine theta
|
$x=r\cos \theta$
|
https://www.youtube.com/watch?v=60e4hdCi1D4
|
|
y equals r sine theta
|
$y=r\sin \theta$
|
https://www.youtube.com/watch?v=60e4hdCi1D4
|
|
one minus x squared minus y squared
|
$1-x^{2}-y^{2}$
|
https://www.youtube.com/watch?v=60e4hdCi1D4
|
|
r squared cosine squared theta
|
$r^{2}\cos^{2}\theta$
|
https://www.youtube.com/watch?v=60e4hdCi1D4
|
|
r squared sine squared theta
|
$r^{2}\sin^{2}\theta$
|
https://www.youtube.com/watch?v=60e4hdCi1D4
|
|
the integral from zero to pi over two integral from zero to one of one minus r squared r dr d theta
|
$\displaystyle\int_{0}^{\frac{\pi}{2}}\int_{0}^{1}(1-r^{2})r dr d\theta$
|
https://www.youtube.com/watch?v=60e4hdCi1D4
|
|
r minus r cubed
|
$(r-r^{3})$
|
https://www.youtube.com/watch?v=60e4hdCi1D4
|
|
r to the four over four
|
$\frac{r^4}{4}$
|
https://www.youtube.com/watch?v=60e4hdCi1D4
|
|
one-half m v squared
|
$\frac{1}{2}mv^{2}$
|
https://www.youtube.com/watch?v=60e4hdCi1D4
|
|
one-half m r squared omega squared
|
$\frac{1}{2}mr^{2}\omega^{2}$
|
https://www.youtube.com/watch?v=60e4hdCi1D4
|
|
x squared plus y squared
|
$x^{2}+y^{2}$
|
https://www.youtube.com/watch?v=60e4hdCi1D4
|
|
pi a to the four over two
|
$\pi a^{4} \over 2$
|
https://www.youtube.com/watch?v=60e4hdCi1D4
|
|
four a to the four cosine to the four theta
|
$4a^4\cos^{4}\theta$
|
https://www.youtube.com/watch?v=60e4hdCi1D4
|
|
three halves of pi a to the fourth
|
$\frac{3}{2}(\pi a^{4})$
|
https://www.youtube.com/watch?v=60e4hdCi1D4
|
|
y of t minus two equals t
|
$y(t)-2=t$
|
https://www.youtube.com/watch?v=57jzPlxf4fk
|
|
z of t minus two equals minus 3t
|
$z(t)-2=-3t$
|
https://www.youtube.com/watch?v=57jzPlxf4fk
|
|
minus one plus two t
|
$\displaystyle -1+2t$
|
https://www.youtube.com/watch?v=57jzPlxf4fk
|
|
y of t equals two plus t
|
$y(t)=2+t$
|
https://www.youtube.com/watch?v=57jzPlxf4fk
|
|
z of t equals two minus 3t
|
$z(t)=2-3t$
|
https://www.youtube.com/watch?v=57jzPlxf4fk
|
|
Q of t is Q0 plus t times the vector Q0 Q1
|
$Q(t)=Q_{0}+t\vec{Q_{0},Q_{1}}$
|
https://www.youtube.com/watch?v=57jzPlxf4fk
|
|
x plus 2y plus 4z equals seven
|
$x+2y+4z=7$
|
https://www.youtube.com/watch?v=57jzPlxf4fk
|
|
minus one plus 2t plus twice two plus t plus four times two minus 3t
|
$(-1+2t)+2(2+t)+4(2-3t)$
|
https://www.youtube.com/watch?v=57jzPlxf4fk
|
|
minus one plus four plus eight is eleven
|
$-1+4+8=11$
|
https://www.youtube.com/watch?v=57jzPlxf4fk
|
|
one times two plus two times one plus four times minus three
|
$1\times2+2\times1+4\times(-3)$.
|
https://www.youtube.com/watch?v=57jzPlxf4fk
|
|
a theta minus a sine theta
|
$a\theta-a\sin \theta $
|
https://www.youtube.com/watch?v=57jzPlxf4fk
|
|
x of theta is theta minus sine theta
|
$x(\theta) = \theta-\sin \theta$
|
https://www.youtube.com/watch?v=57jzPlxf4fk
|
|
one minus theta squared over two
|
$1-\theta^{2}\over2$
|
https://www.youtube.com/watch?v=57jzPlxf4fk
|
|
theta minus theta cubed over six
|
$\theta-\frac{\theta^{3}}{6}$
|
https://www.youtube.com/watch?v=57jzPlxf4fk
|
|
theta squared over two
|
$\frac{\theta^2}{2}$
|
https://www.youtube.com/watch?v=57jzPlxf4fk
|
|
square root of one minus cosine t squared plus sine squared t
|
$\sqrt{1-\cos^{2}t+\sin^{2}t}$
|
https://www.youtube.com/watch?v=0D4BbCa4gHo
|
|
square root of one minus two cosine t plus cosine squared t plus sine squared t
|
$\displaystyle\sqrt{1-2\cos t+\cos ^{2}t+\sin ^{2}t}$
|
https://www.youtube.com/watch?v=0D4BbCa4gHo
|
|
cosine squared plus sine squared
|
$\cos ^{2}+\sin ^{2}$
|
https://www.youtube.com/watch?v=0D4BbCa4gHo
|
|
square root of two minus two cosine t
|
$\sqrt{2-2\cos t}$
|
https://www.youtube.com/watch?v=0D4BbCa4gHo
|
|
d by dt of r cross v is the zero vector
|
$\displaystyle\frac{d}{dt}(\mathbf{r}\times\mathbf{v})=\mathbf{0}$
|
https://www.youtube.com/watch?v=0D4BbCa4gHo
|
|
uv prime equals u prime v plus u v prime
|
$(uv)^{\prime}=u^{\prime}v+uv^{\prime}$
|
https://www.youtube.com/watch?v=0D4BbCa4gHo
|
|
dr dt cross v plus r cross dv dt
|
$\displaystyle\frac{d\mathbf{r}}{dt}\times \mathbf{v}+\mathbf{r}\times \frac{d\mathbf{v}}{dt}$
|
https://www.youtube.com/watch?v=0D4BbCa4gHo
|
|
the antiderivative of sine x cosine x
|
$\int{\sin x \cos x} dx$
|
https://www.youtube.com/watch?v=60VGKnYBpbg
|
|
C1 minus C2 plus a half is equal to zero
|
$\mathcal{C}_{1}-\mathcal{C}_{2}+\frac{1}{2}=0$
|
https://www.youtube.com/watch?v=60VGKnYBpbg
|
|
minus x squared over two
|
$-\frac{x^{2}}{2}$
|
https://www.youtube.com/watch?v=60VGKnYBpbg
|
|
A e to the minus x squared over two
|
$Ae^{-\frac{x^{2}}{2}}$
|
https://www.youtube.com/watch?v=60VGKnYBpbg
|
|
a times d by dx of e to the minus x squared over two
|
$\displaystyle a\frac{d}{dx}(e^{-\frac{x^{2}}{2}})$
|
https://www.youtube.com/watch?v=60VGKnYBpbg
|
|
h inverse of f of x plus c
|
$h^{-1}(f(x))+c$
|
https://www.youtube.com/watch?v=60VGKnYBpbg
|
|
natural log of absolute y is equal to minus x squared over 2 plus c
|
$\ln(|y|)=-\frac{x^{2}}{2}+c$
|
https://www.youtube.com/watch?v=60VGKnYBpbg
|
|
plus or minus a e to the minus x squared over two
|
$\pm ae^{-x^{2}/2}$
|
https://www.youtube.com/watch?v=60VGKnYBpbg
|
|
log y plus c one is equal to minus x squared over two plus c two
|
$\log y+c_{1}=-\frac{x^{2}}{2}+c_2$
|
https://www.youtube.com/watch?v=60VGKnYBpbg
|
|
log y is equal to minus x squared over 2 plus c2 minus c1
|
$\log y=-\frac{x^{2}}{2}+c_{2}-c_{1}$
|
https://www.youtube.com/watch?v=60VGKnYBpbg
|
|
a times e to the minus 0 squared over 2 is equal to 3
|
$ae^{-\frac{0^{2}}{2}}=3$
|
https://www.youtube.com/watch?v=60VGKnYBpbg
|
|
y is equal to 3e to the minus x squared over 2
|
$y = 3e^{-x^{2}/2}$
|
https://www.youtube.com/watch?v=60VGKnYBpbg
|
|
twice the logarithm of x plus a constant
|
$2\log(x)+\text{c}$
|
https://www.youtube.com/watch?v=60VGKnYBpbg
|
|
e to the log y is equal to e to the 2 log x plus c
|
$e^{\log y} = e^{2\log(x)+c}$
|
https://www.youtube.com/watch?v=60VGKnYBpbg
|
|
e to the log x squared
|
$(e^{\log x})^2$
|
https://www.youtube.com/watch?v=60VGKnYBpbg
|
|
minus 1 divided by 2 y divided by x
|
$-\frac{1}{2(y/x)}$
|
https://www.youtube.com/watch?v=60VGKnYBpbg
|
|
dy dx is equal to minus x over 2y
|
$\frac{dy}{dx} = -\frac{x}{2y}$
|
https://www.youtube.com/watch?v=60VGKnYBpbg
|
|
x squared over 2 plus y squared
|
$\frac{x^{2}}{2}+y^{2}$
|
https://www.youtube.com/watch?v=60VGKnYBpbg
|
|
y is equal to minus the square root of a squared minus x squared over two
|
$y=-\sqrt{a^{2}-\frac{x^{2}}{2}}$
|
https://www.youtube.com/watch?v=60VGKnYBpbg
|
|
x to the 1 half times 2
|
$x^{\frac{1}{2}} \times (2)$
|
https://www.youtube.com/watch?v=MK_0QHbUnIA
|
|
dx over x to the p
|
$\frac{dx}{x^{p}}$
|
https://www.youtube.com/watch?v=MK_0QHbUnIA
|
|
1 over 1 minus p
|
$\frac{1}{1-p}$
|
https://www.youtube.com/watch?v=MK_0QHbUnIA
|
|
the integral from 1 to infinity dx over x
|
$\int_{1}^{\infty} \frac{dx}{x}$
|
https://www.youtube.com/watch?v=MK_0QHbUnIA
|
|
y equals 1 over the square root of x
|
$y=1/\sqrt{x}$
|
https://www.youtube.com/watch?v=MK_0QHbUnIA
|
|
y equals 1 over x minus 3 squared
|
$y=\frac{1}{(x-3)^{2}}$
|
https://www.youtube.com/watch?v=MK_0QHbUnIA
|
|
1 plus a plus a squared
|
$1+a+a^{2}$
|
https://www.youtube.com/watch?v=MK_0QHbUnIA
|
|
one over one minus a
|
$\frac{1}{1-a}$
|
https://www.youtube.com/watch?v=MK_0QHbUnIA
|
|
sum 1 over n squared n equals 1 to infinity
|
$\sum_{n=1}^{\infty} 1/n^{2}$
|
https://www.youtube.com/watch?v=MK_0QHbUnIA
|
|
pi squared over 6
|
$\frac{\pi^{2}}{6}$
|
https://www.youtube.com/watch?v=MK_0QHbUnIA
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.