code
stringlengths 195
7.9k
| space_complexity
stringclasses 6
values | time_complexity
stringclasses 7
values |
---|---|---|
#include<iostream>
#include<bits/stdc++.h>
using namespace std;
void merge(int arr1[], int arr2[], int n, int m) {
int i=0;
// while loop till last element of array 1(sorted) is greater than
// first element of array 2(sorted)
while(arr1[n-1]>arr2[0])
{
if(arr1[i]>arr2[0])
{
// swap arr1[i] with first element
// of arr2 and sorting the updated
// arr2(arr1 is already sorted)
swap(arr1[i],arr2[0]);
sort(arr2,arr2+m);
}
i++;
}
}
int main()
{
int ar1[] = { 1, 5, 9, 10, 15, 20 };
int ar2[] = { 2, 3, 8, 13 };
int m = sizeof(ar1) / sizeof(ar1[0]);
int n = sizeof(ar2) / sizeof(ar2[0]);
merge(ar1, ar2, m, n);
cout << "After Merging \nFirst Array: ";
for (int i = 0; i < m; i++)
cout << ar1[i] << " ";
cout << "\nSecond Array: ";
for (int i = 0; i < n; i++)
cout << ar2[i] << " ";
return 0;
} | constant | linear |
#include <bits/stdc++.h>
using namespace std;
void swap(int& a, int& b)
{
int temp = a;
a = b;
b = temp;
}
void rotate(int a[], int n, int idx)
{
int i;
for (i = 0; i < idx / 2; i++)
swap(a[i], a[idx - 1 - i]);
for (i = idx; i < (n + idx) / 2; i++)
swap(a[i], a[n - 1 - (i - idx)]);
for (i = 0; i < n / 2; i++)
swap(a[i], a[n - 1 - i]);
}
void sol(int a1[], int a2[], int n, int m)
{
int l = 0, h = n - 1, idx = 0;
//---------------------------------------------------------
while (l <= h) {
// select the median of the remaining subarray
int c1 = (l + h) / 2;
// select the first elements from the larger array
// equal to the size of remaining portion to the
// right of the smaller array
int c2 = n - c1 - 1;
int l1 = a1[c1];
int l2 = a2[c2 - 1];
int r1 = c1 == n - 1 ? INT_MAX : a1[c1 + 1];
int r2 = c2 == m ? INT_MAX : a2[c2];
// compare the border elements and check for the
// target index
if (l1 > r2) {
h = c1 - 1;
if (h == -1)
idx = 0;
}
else if (l2 > r1) {
l = c1 + 1;
if (l == n - 1)
idx = n;
}
else {
idx = c1 + 1;
break;
}
}
for (int i = idx; i < n; i++)
swap(a1[i], a2[i - idx]);
sort(a1, a1 + n);
sort(a2, a2 + m);
}
void merge(int arr1[], int arr2[], int n, int m)
{
// code here
if (n > m) {
sol(arr2, arr1, m, n);
rotate(arr1, n, n - m);
for (int i = 0; i < m; i++)
swap(arr2[i], arr1[i]);
}
else {
sol(arr1, arr2, n, m);
}
}
int main()
{
int ar1[] = { 1, 5, 9, 10, 15, 20 };
int ar2[] = { 2, 3, 8, 13 };
int m = sizeof(ar1) / sizeof(ar1[0]);
int n = sizeof(ar2) / sizeof(ar2[0]);
merge(ar1, ar2, m, n);
cout << "After Merging \nFirst Array: ";
for (int i = 0; i < m; i++)
cout << ar1[i] << " ";
cout << "\nSecond Array: ";
for (int i = 0; i < n; i++)
cout << ar2[i] << " ";
return 0;
} | constant | nlogn |
#include <bits/stdc++.h>
using namespace std;
void merge(int arr1[], int arr2[], int n, int m)
{
// two pointer to iterate
int i = 0;
int j = 0;
while (i < n && j < m) {
// if arr1[i] <= arr2[j] then both array is already
// sorted
if (arr1[i] <= arr2[j]) {
i++;
}
else if (arr1[i] > arr2[j]) {
// if arr1[i]>arr2[j] then first we swap both
// element so that arr1[i] become smaller means
// arr1[] become sorted then we check that
// arr2[j] is smaller than all other element in
// right side of arr2[j] if arr2[] is not sorted
// then we linearly do sorting
// means while adjacent element are less than
// new arr2[j] we do sorting like by changing
// position of element by shifting one position
// toward left
swap(arr1[i], arr2[j]);
i++;
if (j < m - 1 && arr2[j + 1] < arr2[j]) {
int temp = arr2[j];
int tempj = j + 1;
while (arr2[tempj] < temp && tempj < m) {
arr2[tempj - 1] = arr2[tempj];
tempj++;
}
arr2[tempj - 1] = temp;
}
}
}
}
int main()
{
int ar1[] = { 1, 5, 9, 10, 15, 20 };
int ar2[] = { 2, 3, 8, 13 };
int m = sizeof(ar1) / sizeof(ar1[0]);
int n = sizeof(ar2) / sizeof(ar2[0]);
merge(ar1, ar2, m, n);
cout << "After Merging \nFirst Array: ";
for (int i = 0; i < m; i++)
cout << ar1[i] << " ";
cout << "\nSecond Array: ";
for (int i = 0; i < n; i++)
cout << ar2[i] << " ";
return 0;
} | constant | quadratic |
// C++ program to merge two sorted arrays without using extra space
#include <bits/stdc++.h>
using namespace std;
void merge(int arr1[], int arr2[], int n, int m)
{
// three pointers to iterate
int i = 0, j = 0, k = 0;
// for euclid's division lemma
int x = 10e7 + 1;
// in this loop we are rearranging the elements of arr1
while (i < n && (j < n && k < m)) {
// if both arr1 and arr2 elements are modified
if (arr1[j] >= x && arr2[k] >= x) {
if (arr1[j] % x <= arr2[k] % x) {
arr1[i] += (arr1[j++] % x) * x;
}
else {
arr1[i] += (arr2[k++] % x) * x;
}
}
// if only arr1 elements are modified
else if (arr1[j] >= x) {
if (arr1[j] % x <= arr2[k]) {
arr1[i] += (arr1[j++] % x) * x;
}
else {
arr1[i] += (arr2[k++] % x) * x;
}
}
// if only arr2 elements are modified
else if (arr2[k] >= x) {
if (arr1[j] <= arr2[k] % x) {
arr1[i] += (arr1[j++] % x) * x;
}
else {
arr1[i] += (arr2[k++] % x) * x;
}
}
// if none elements are modified
else {
if (arr1[j] <= arr2[k]) {
arr1[i] += (arr1[j++] % x) * x;
}
else {
arr1[i] += (arr2[k++] % x) * x;
}
}
i++;
}
// we can copy the elements directly as the other array
// is exchausted
while (j < n && i < n) {
arr1[i++] += (arr1[j++] % x) * x;
}
while (k < m && i < n) {
arr1[i++] += (arr2[k++] % x) * x;
}
// we need to reset i
i = 0;
// in this loop we are rearranging the elements of arr2
while (i < m && (j < n && k < m)) {
// if both arr1 and arr2 elements are modified
if (arr1[j] >= x && arr2[k] >= x) {
if (arr1[j] % x <= arr2[k] % x) {
arr2[i] += (arr1[j++] % x) * x;
}
else {
arr2[i] += (arr2[k++] % x) * x;
}
}
// if only arr1 elements are modified
else if (arr1[j] >= x) {
if (arr1[j] % x <= arr2[k]) {
arr2[i] += (arr1[j++] % x) * x;
}
else {
arr2[i] += (arr2[k++] % x) * x;
}
}
// if only arr2 elements are modified
else if (arr2[k] >= x) {
if (arr1[j] <= arr2[k] % x) {
arr2[i] += (arr1[j++] % x) * x;
}
else {
arr2[i] += (arr2[k++] % x) * x;
}
}
else {
// if none elements are modified
if (arr1[j] <= arr2[k]) {
arr2[i] += (arr1[j++] % x) * x;
}
else {
arr2[i] += (arr2[k++] % x) * x;
}
}
i++;
}
// we can copy the elements directly as the other array
// is exhausted
while (j < n && i < m) {
arr2[i++] += (arr1[j++] % x) * x;
}
while (k < m && i < m) {
arr2[i++] += (arr2[k++] % x) * x;
}
// we need to reset i
i = 0;
// we need to divide the whole arr1 by x
while (i < n) {
arr1[i++] /= x;
}
// we need to reset i
i = 0;
// we need to divide the whole arr2 by x
while (i < m) {
arr2[i++] /= x;
}
}
int main()
{
int ar1[] = { 1, 5, 9, 10, 15, 20 };
int ar2[] = { 2, 3, 8, 13 };
int m = sizeof(ar1) / sizeof(ar1[0]);
int n = sizeof(ar2) / sizeof(ar2[0]);
merge(ar1, ar2, m, n);
cout << "After Merging \nFirst Array: ";
for (int i = 0; i < m; i++)
cout << ar1[i] << " ";
cout << "\nSecond Array: ";
for (int i = 0; i < n; i++)
cout << ar2[i] << " ";
return 0;
}
// This code is contributed by @ancientmoon8 (Mayank Kashyap) | constant | linear |
// C++ program to calculate the
// product of max element of
// first array and min element
// of second array
#include <bits/stdc++.h>
using namespace std;
// Function to calculate
// the product
int minMaxProduct(int arr1[],
int arr2[],
int n1,
int n2)
{
// Sort the arrays to find
// the maximum and minimum
// elements in given arrays
sort(arr1, arr1 + n1);
sort(arr2, arr2 + n2);
// Return product of
// maximum and minimum.
return arr1[n1 - 1] * arr2[0];
}
// Driven code
int main()
{
int arr1[] = { 10, 2, 3, 6, 4, 1 };
int arr2[] = { 5, 1, 4, 2, 6, 9 };
int n1 = sizeof(arr1) / sizeof(arr1[0]);
int n2 = sizeof(arr1) / sizeof(arr1[0]);
cout << minMaxProduct(arr1, arr2, n1, n2);
return 0;
} | constant | nlogn |
// C++ program to find the to
// calculate the product of
// max element of first array
// and min element of second array
#include <bits/stdc++.h>
using namespace std;
// Function to calculate the product
int minMaxProduct(int arr1[], int arr2[],
int n1, int n2)
{
// Initialize max of first array
int max = arr1[0];
// initialize min of second array
int min = arr2[0];
int i;
for (i = 1; i < n1 && i < n2; ++i)
{
// To find the maximum
// element in first array
if (arr1[i] > max)
max = arr1[i];
// To find the minimum
// element in second array
if (arr2[i] < min)
min = arr2[i];
}
// Process remaining elements
while (i < n1)
{
if (arr1[i] > max)
max = arr1[i];
i++;
}
while (i < n2)
{
if (arr2[i] < min)
min = arr2[i];
i++;
}
return max * min;
}
// Driven code
int main()
{
int arr1[] = { 10, 2, 3, 6, 4, 1 };
int arr2[] = { 5, 1, 4, 2, 6, 9 };
int n1 = sizeof(arr1) / sizeof(arr1[0]);
int n2 = sizeof(arr1) / sizeof(arr1[0]);
cout << minMaxProduct(arr1, arr2, n1, n2)
<< endl;
return 0;
} | constant | linear |
// C++ program to implement linear
// search in unsorted array
#include <bits/stdc++.h>
using namespace std;
// Function to implement search operation
int findElement(int arr[], int n, int key)
{
int i;
for (i = 0; i < n; i++)
if (arr[i] == key)
return i;
// If the key is not found
return -1;
}
// Driver's Code
int main()
{
int arr[] = { 12, 34, 10, 6, 40 };
int n = sizeof(arr) / sizeof(arr[0]);
// Using a last element as search element
int key = 40;
// Function call
int position = findElement(arr, n, key);
if (position == -1)
cout << "Element not found";
else
cout << "Element Found at Position: "
<< position + 1;
return 0;
}
// This code is contributed
// by Akanksha Rai | constant | linear |
// C++ program to implement insert
// operation in an unsorted array.
#include <iostream>
using namespace std;
// Inserts a key in arr[] of given capacity.
// n is current size of arr[]. This
// function returns n + 1 if insertion
// is successful, else n.
int insertSorted(int arr[], int n, int key, int capacity)
{
// Cannot insert more elements if n is
// already more than or equal to capacity
if (n >= capacity)
return n;
arr[n] = key;
return (n + 1);
}
// Driver Code
int main()
{
int arr[20] = { 12, 16, 20, 40, 50, 70 };
int capacity = sizeof(arr) / sizeof(arr[0]);
int n = 6;
int i, key = 26;
cout << "\n Before Insertion: ";
for (i = 0; i < n; i++)
cout << arr[i] << " ";
// Inserting key
n = insertSorted(arr, n, key, capacity);
cout << "\n After Insertion: ";
for (i = 0; i < n; i++)
cout << arr[i] << " ";
return 0;
}
// This code is contributed by SHUBHAMSINGH10 | constant | constant |
// C Program to Insert an element
// at a specific position in an Array
#include <bits/stdc++.h>
using namespace std;
// Function to insert element
// at a specific position
void insertElement(int arr[], int n, int x, int pos)
{
// shift elements to the right
// which are on the right side of pos
for (int i = n - 1; i >= pos; i--)
arr[i + 1] = arr[i];
arr[pos] = x;
}
// Driver's code
int main()
{
int arr[15] = { 2, 4, 1, 8, 5 };
int n = 5;
cout<<"Before insertion : ";
for (int i = 0; i < n; i++)
cout<<arr[i]<<" ";
cout<<endl;
int x = 10, pos = 2;
// Function call
insertElement(arr, n, x, pos);
n++;
cout<<"After insertion : ";
for (int i = 0; i < n; i++)
cout<<arr[i]<<" ";
return 0;
} | constant | linear |
// C++ program to implement delete operation in a
// unsorted array
#include <iostream>
using namespace std;
// To search a key to be deleted
int findElement(int arr[], int n, int key);
// Function to delete an element
int deleteElement(int arr[], int n, int key)
{
// Find position of element to be deleted
int pos = findElement(arr, n, key);
if (pos == -1) {
cout << "Element not found";
return n;
}
// Deleting element
int i;
for (i = pos; i < n - 1; i++)
arr[i] = arr[i + 1];
return n - 1;
}
// Function to implement search operation
int findElement(int arr[], int n, int key)
{
int i;
for (i = 0; i < n; i++)
if (arr[i] == key)
return i;
return -1;
}
// Driver's code
int main()
{
int i;
int arr[] = { 10, 50, 30, 40, 20 };
int n = sizeof(arr) / sizeof(arr[0]);
int key = 30;
cout << "Array before deletion\n";
for (i = 0; i < n; i++)
cout << arr[i] << " ";
// Function call
n = deleteElement(arr, n, key);
cout << "\n\nArray after deletion\n";
for (i = 0; i < n; i++)
cout << arr[i] << " ";
return 0;
}
// This code is contributed by shubhamsingh10 | constant | linear |
// C++ program to implement binary search in sorted array
#include <bits/stdc++.h>
using namespace std;
int binarySearch(int arr[], int low, int high, int key)
{
if (high < low)
return -1;
int mid = (low + high) / 2; /*low + (high - low)/2;*/
if (key == arr[mid])
return mid;
if (key > arr[mid])
return binarySearch(arr, (mid + 1), high, key);
return binarySearch(arr, low, (mid - 1), key);
}
/* Driver code */
int main()
{
// Let us search 3 in below array
int arr[] = { 5, 6, 7, 8, 9, 10 };
int n, key;
n = sizeof(arr) / sizeof(arr[0]);
key = 10;
// Function call
cout << "Index: " << binarySearch(arr, 0, n - 1, key)
<< endl;
return 0;
}
// This code is contributed by NamrataSrivastava1 | logn | logn |
// C++ program to implement insert operation in
// an sorted array.
#include <bits/stdc++.h>
using namespace std;
// Inserts a key in arr[] of given capacity. n is current
// size of arr[]. This function returns n+1 if insertion
// is successful, else n.
int insertSorted(int arr[], int n, int key, int capacity)
{
// Cannot insert more elements if n is already
// more than or equal to capacity
if (n >= capacity)
return n;
int i;
for (i = n - 1; (i >= 0 && arr[i] > key); i--)
arr[i + 1] = arr[i];
arr[i + 1] = key;
return (n + 1);
}
/* Driver code */
int main()
{
int arr[20] = { 12, 16, 20, 40, 50, 70 };
int capacity = sizeof(arr) / sizeof(arr[0]);
int n = 6;
int i, key = 26;
cout << "\nBefore Insertion: ";
for (i = 0; i < n; i++)
cout << arr[i] << " ";
// Function call
n = insertSorted(arr, n, key, capacity);
cout << "\nAfter Insertion: ";
for (i = 0; i < n; i++)
cout << arr[i] << " ";
return 0;
}
// This code is contributed by SHUBHAMSINGH10 | constant | linear |
// C++ program to implement delete operation in a
// sorted array
#include <bits/stdc++.h>
using namespace std;
// To search a key to be deleted
int binarySearch(int arr[], int low, int high, int key);
/* Function to delete an element */
int deleteElement(int arr[], int n, int key)
{
// Find position of element to be deleted
int pos = binarySearch(arr, 0, n - 1, key);
if (pos == -1) {
cout << "Element not found";
return n;
}
// Deleting element
int i;
for (i = pos; i < n - 1; i++)
arr[i] = arr[i + 1];
return n - 1;
}
int binarySearch(int arr[], int low, int high, int key)
{
if (high < low)
return -1;
int mid = (low + high) / 2;
if (key == arr[mid])
return mid;
if (key > arr[mid])
return binarySearch(arr, (mid + 1), high, key);
return binarySearch(arr, low, (mid - 1), key);
}
// Driver code
int main()
{
int i;
int arr[] = { 10, 20, 30, 40, 50 };
int n = sizeof(arr) / sizeof(arr[0]);
int key = 30;
cout << "Array before deletion\n";
for (i = 0; i < n; i++)
cout << arr[i] << " ";
// Function call
n = deleteElement(arr, n, key);
cout << "\n\nArray after deletion\n";
for (i = 0; i < n; i++)
cout << arr[i] << " ";
}
// This code is contributed by shubhamsingh10 | logn | linear |
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
// Function to find and print pair
bool chkPair(int A[], int size, int x)
{
for (int i = 0; i < (size - 1); i++) {
for (int j = (i + 1); j < size; j++) {
if (A[i] + A[j] == x) {
return 1;
}
}
}
return 0;
}
// Driver code
int main()
{
int A[] = { 0, -1, 2, -3, 1 };
int x = -2;
int size = sizeof(A) / sizeof(A[0]);
if (chkPair(A, size, x)) {
cout << "Yes" << endl;
}
else {
cout << "No" << x << endl;
}
return 0;
}
// This code is contributed by Samim Hossain Mondal. | constant | quadratic |
// C++ program to check if given array
// has 2 elements whose sum is equal
// to the given value
#include <bits/stdc++.h>
using namespace std;
// Function to check if array has 2 elements
// whose sum is equal to the given value
bool hasArrayTwoCandidates(int A[], int arr_size, int sum)
{
int l, r;
/* Sort the elements */
sort(A, A + arr_size);
/* Now look for the two candidates in
the sorted array*/
l = 0;
r = arr_size - 1;
while (l < r) {
if (A[l] + A[r] == sum)
return 1;
else if (A[l] + A[r] < sum)
l++;
else // A[l] + A[r] > sum
r--;
}
return 0;
}
/* Driver program to test above function */
int main()
{
int A[] = { 1, 4, 45, 6, 10, -8 };
int n = 16;
int arr_size = sizeof(A) / sizeof(A[0]);
// Function calling
if (hasArrayTwoCandidates(A, arr_size, n))
cout << "Yes";
else
cout << "No";
return 0;
} | constant | nlogn |
// C++ program to check if given array
// has 2 elements whose sum is equal
// to the given value
#include <bits/stdc++.h>
using namespace std;
bool binarySearch(int A[], int low, int high, int searchKey)
{
while (low <= high) {
int m = low + (high - low) / 2;
// Check if searchKey is present at mid
if (A[m] == searchKey)
return true;
// If searchKey greater, ignore left half
if (A[m] < searchKey)
low = m + 1;
// If searchKey is smaller, ignore right half
else
high = m - 1;
}
// if we reach here, then element was
// not present
return false;
}
bool checkTwoSum(int A[], int arr_size, int sum)
{
int l, r;
/* Sort the elements */
sort(A, A + arr_size);
// Traversing all element in an array search for
// searchKey
for (int i = 0; i < arr_size - 1; i++) {
int searchKey = sum - A[i];
// calling binarySearch function
if (binarySearch(A, i + 1, arr_size - 1, searchKey)
== true) {
return true;
}
}
return false;
}
/* Driver program to test above function */
int main()
{
int A[] = { 1, 4, 45, 6, 10, -8 };
int n = 14;
int arr_size = sizeof(A) / sizeof(A[0]);
// Function calling
if (checkTwoSum(A, arr_size, n))
cout << "Yes";
else
cout << "No";
return 0;
} | constant | nlogn |
// C++ program to check if given array
// has 2 elements whose sum is equal
// to the given value
#include <bits/stdc++.h>
using namespace std;
void printPairs(int arr[], int arr_size, int sum)
{
unordered_set<int> s;
for (int i = 0; i < arr_size; i++) {
int temp = sum - arr[i];
if (s.find(temp) != s.end()) {
cout << "Yes" << endl;
return;
}
s.insert(arr[i]);
}
cout << "No" << endl;
}
/* Driver Code */
int main()
{
int A[] = { 1, 4, 45, 6, 10, 8 };
int n = 16;
int arr_size = sizeof(A) / sizeof(A[0]);
// Function calling
printPairs(A, arr_size, n);
return 0;
} | linear | linear |
// Code in cpp to tell if there exists a pair in array whose
// sum results in x.
#include <iostream>
using namespace std;
// Function to print pairs
void printPairs(int a[], int n, int x)
{
int i;
int rem[x];
// initializing the rem values with 0's.
for (i = 0; i < x; i++)
rem[i] = 0;
// Perform the remainder operation only if the element
// is x, as numbers greater than x can't be used to get
// a sum x. Updating the count of remainders.
for (i = 0; i < n; i++)
if (a[i] < x)
rem[a[i] % x]++;
// Traversing the remainder list from start to middle to
// find pairs
for (i = 1; i < x / 2; i++) {
if (rem[i] > 0 && rem[x - i] > 0) {
// The elements with remainders i and x-i will
// result to a sum of x. Once we get two
// elements which add up to x , we print x and
// break.
cout << "Yes\n";
break;
}
}
// Once we reach middle of remainder array, we have to
// do operations based on x.
if (i >= x / 2) {
if (x % 2 == 0) {
// if x is even and we have more than 1 elements
// with remainder x/2, then we will have two
// distinct elements which add up to x. if we
// dont have more than 1 element, print "No".
if (rem[x / 2] > 1)
cout << "Yes\n";
else
cout << "No\n";
}
else {
// When x is odd we continue the same process
// which we did in previous loop.
if (rem[x / 2] > 0 && rem[x - x / 2] > 0)
cout << "Yes\n";
else
cout << "No\n";
}
}
}
/* Driver Code */
int main()
{
int A[] = { 1, 4, 45, 6, 10, 8 };
int n = 16;
int arr_size = sizeof(A) / sizeof(A[0]);
// Function calling
printPairs(A, arr_size, n);
return 0;
}
// This code is contributed by Aditya Kumar (adityakumar129) | linear | linear |
// C++ program to search an element in an array
// where difference between adjacent elements is atmost k
#include<bits/stdc++.h>
using namespace std;
// x is the element to be searched in arr[0..n-1]
// such that all elements differ by at-most k.
int search(int arr[], int n, int x, int k)
{
// Traverse the given array starting from
// leftmost element
int i = 0;
while (i < n)
{
// If x is found at index i
if (arr[i] == x)
return i;
// Jump the difference between current
// array element and x divided by k
// We use max here to make sure that i
// moves at-least one step ahead.
i = i + max(1, abs(arr[i]-x)/k);
}
cout << "number is not present!";
return -1;
}
// Driver program to test above function
int main()
{
int arr[] = {2, 4, 5, 7, 7, 6};
int x = 6;
int k = 2;
int n = sizeof(arr)/sizeof(arr[0]);
cout << "Element " << x << " is present at index "
<< search(arr, n, x, k);
return 0;
} | constant | linear |
// C++ program to print common elements in three arrays
#include <bits/stdc++.h>
using namespace std;
// This function prints common elements in ar1
void findCommon(int ar1[], int ar2[], int ar3[], int n1,
int n2, int n3)
{
// Initialize starting indexes for ar1[], ar2[] and
// ar3[]
int i = 0, j = 0, k = 0;
// Iterate through three arrays while all arrays have
// elements
while (i < n1 && j < n2 && k < n3) {
// If x = y and y = z, print any of them and move
// ahead in all arrays
if (ar1[i] == ar2[j] && ar2[j] == ar3[k]) {
cout << ar1[i] << " ";
i++;
j++;
k++;
}
// x < y
else if (ar1[i] < ar2[j])
i++;
// y < z
else if (ar2[j] < ar3[k])
j++;
// We reach here when x > y and z < y, i.e., z is
// smallest
else
k++;
}
}
// Driver code
int main()
{
int ar1[] = { 1, 5, 10, 20, 40, 80 };
int ar2[] = { 6, 7, 20, 80, 100 };
int ar3[] = { 3, 4, 15, 20, 30, 70, 80, 120 };
int n1 = sizeof(ar1) / sizeof(ar1[0]);
int n2 = sizeof(ar2) / sizeof(ar2[0]);
int n3 = sizeof(ar3) / sizeof(ar3[0]);
cout << "Common Elements are ";
findCommon(ar1, ar2, ar3, n1, n2, n3);
return 0;
}
// This code is contributed by Sania Kumari Gupta (kriSania804) | constant | linear |
// C++ program to print common elements in three arrays
#include <bits/stdc++.h>
using namespace std;
// This function prints common elements in ar1
void findCommon(int ar1[], int ar2[], int ar3[], int n1, int n2, int n3)
{
// Initialize starting indexes for ar1[], ar2[] and ar3[]
int i = 0, j = 0, k = 0;
// Declare three variables prev1, prev2, prev3 to track
// previous element
int prev1, prev2, prev3;
// Initialize prev1, prev2, prev3 with INT_MIN
prev1 = prev2 = prev3 = INT_MIN;
// Iterate through three arrays while all arrays have
// elements
while (i < n1 && j < n2 && k < n3) {
// If ar1[i] = prev1 and i < n1, keep incrementing i
while (ar1[i] == prev1 && i < n1)
i++;
// If ar2[j] = prev2 and j < n2, keep incrementing j
while (ar2[j] == prev2 && j < n2)
j++;
// If ar3[k] = prev3 and k < n3, keep incrementing k
while (ar3[k] == prev3 && k < n3)
k++;
// If x = y and y = z, print any of them, update
// prev1 prev2, prev3 and move ahead in each array
if (ar1[i] == ar2[j] && ar2[j] == ar3[k]) {
cout << ar1[i] << " ";
prev1 = ar1[i++];
prev2 = ar2[j++];
prev3 = ar3[k++];
}
// If x < y, update prev1 and increment i
else if (ar1[i] < ar2[j])
prev1 = ar1[i++];
// If y < z, update prev2 and increment j
else if (ar2[j] < ar3[k])
prev2 = ar2[j++];
// We reach here when x > y and z < y, i.e., z is
// smallest update prev3 and increment k
else
prev3 = ar3[k++];
}
}
// Driver code
int main()
{
int ar1[] = { 1, 5, 10, 20, 40, 80, 80 };
int ar2[] = { 6, 7, 20, 80, 80, 100 };
int ar3[] = { 3, 4, 15, 20, 30, 70, 80, 80, 120 };
int n1 = sizeof(ar1) / sizeof(ar1[0]);
int n2 = sizeof(ar2) / sizeof(ar2[0]);
int n3 = sizeof(ar3) / sizeof(ar3[0]);
cout << "Common Elements are ";
findCommon(ar1, ar2, ar3, n1, n2, n3);
return 0;
}
// This code is contributed by Aditya Kumar (adityakumar129) | constant | linear |
#include <bits/stdc++.h>
using namespace std;
void findCommon(int a[], int b[], int c[], int n1, int n2,
int n3)
{
// three sets to maintain frequency of elements
unordered_set<int> uset, uset2, uset3;
for (int i = 0; i < n1; i++) {
uset.insert(a[i]);
}
for (int i = 0; i < n2; i++) {
uset2.insert(b[i]);
}
// checking if elements of 3rd array are present in
// first 2 sets
for (int i = 0; i < n3; i++) {
if (uset.find(c[i]) != uset.end()
&& uset2.find(c[i]) != uset.end()) {
// using a 3rd set to prevent duplicates
if (uset3.find(c[i]) == uset3.end())
cout << c[i] << " ";
uset3.insert(c[i]);
}
}
}
// Driver code
int main()
{
int ar1[] = { 1, 5, 10, 20, 40, 80 };
int ar2[] = { 6, 7, 20, 80, 100 };
int ar3[] = { 3, 4, 15, 20, 30, 70, 80, 120 };
int n1 = sizeof(ar1) / sizeof(ar1[0]);
int n2 = sizeof(ar2) / sizeof(ar2[0]);
int n3 = sizeof(ar3) / sizeof(ar3[0]);
cout << "Common Elements are " << endl;
findCommon(ar1, ar2, ar3, n1, n2, n3);
return 0;
} | linear | linear |
// C++ program to find the only repeating
// element in an array where elements are
// from 1 to N-1.
#include <bits/stdc++.h>
using namespace std;
int findRepeating(int arr[], int N)
{
for (int i = 0; i < N; i++) {
for (int j = i + 1; j < N; j++) {
if (arr[i] == arr[j])
return arr[i];
}
}
}
// Driver's code
int main()
{
int arr[] = { 9, 8, 2, 6, 1, 8, 5, 3, 4, 7 };
int N = sizeof(arr) / sizeof(arr[0]);
// Function call
cout << findRepeating(arr, N);
return 0;
}
// This code is added by Arpit Jain | constant | quadratic |
// CPP program to find the only repeating
// element in an array where elements are
// from 1 to N-1.
#include <bits/stdc++.h>
using namespace std;
int findRepeating(int arr[], int N)
{
sort(arr, arr + N); // sort array
for (int i = 0; i < N; i++) {
// compare array element with its index
if (arr[i] != i + 1) {
return arr[i];
}
}
return -1;
}
// driver's code
int main()
{
int arr[] = { 9, 8, 2, 6, 1, 8, 5, 3, 4, 7 };
int N = sizeof(arr) / sizeof(arr[0]);
// Function call
cout << findRepeating(arr, N);
return 0;
}
// this code is contributed by devendra solunke | constant | nlogn |
// C++ program to find the only repeating
// element in an array where elements are
// from 1 to N-1.
#include <bits/stdc++.h>
using namespace std;
int findRepeating(int arr[], int N)
{
unordered_set<int> s;
for (int i = 0; i < N; i++) {
if (s.find(arr[i]) != s.end())
return arr[i];
s.insert(arr[i]);
}
// If input is correct, we should
// never reach here
return -1;
}
// Driver's code
int main()
{
int arr[] = { 9, 8, 2, 6, 1, 8, 5, 3, 4, 7 };
int N = sizeof(arr) / sizeof(arr[0]);
// Function call
cout << findRepeating(arr, N);
return 0;
} | linear | linear |
// CPP program to find the only repeating
// element in an array where elements are
// from 1 to N-1.
#include <bits/stdc++.h>
using namespace std;
int findRepeating(int arr[], int N)
{
// Find array sum and subtract sum
// first N-1 natural numbers from it
// to find the result.
return accumulate(arr, arr + N, 0) - ((N - 1) * N / 2);
}
// Driver's code
int main()
{
int arr[] = { 9, 8, 2, 6, 1, 8, 5, 3, 4, 7 };
int N = sizeof(arr) / sizeof(arr[0]);
// Function call
cout << findRepeating(arr, N);
return 0;
} | constant | linear |
// CPP program to find the only repeating
// element in an array where elements are
// from 1 to N-1.
#include <bits/stdc++.h>
using namespace std;
int findRepeating(int arr[], int N)
{
// res is going to store value of
// 1 ^ 2 ^ 3 .. ^ (N-1) ^ arr[0] ^
// arr[1] ^ .... arr[N-1]
int res = 0;
for (int i = 0; i < N - 1; i++)
res = res ^ (i + 1) ^ arr[i];
res = res ^ arr[N - 1];
return res;
}
// Driver code
int main()
{
int arr[] = { 9, 8, 2, 6, 1, 8, 5, 3, 4, 7 };
int N = sizeof(arr) / sizeof(arr[0]);
// Function call
cout << findRepeating(arr, N);
return 0;
} | constant | linear |
// CPP program to find the only
// repeating element in an array
// where elements are from 1 to N-1.
#include <bits/stdc++.h>
using namespace std;
// Function to find repeated element
int findRepeating(int arr[], int N)
{
int missingElement = 0;
// indexing based
for (int i = 0; i < N; i++) {
int element = arr[abs(arr[i])];
if (element < 0) {
missingElement = arr[i];
break;
}
arr[abs(arr[i])] = -arr[abs(arr[i])];
}
return abs(missingElement);
}
// Driver code
int main()
{
int arr[] = { 9, 8, 2, 6, 1, 8, 5, 3, 4, 7 };
int N = sizeof(arr) / sizeof(arr[0]);
// Function call
cout << findRepeating(arr, N);
return 0;
} | constant | linear |
#include <bits/stdc++.h>
using namespace std;
int findDuplicate(vector<int>& nums)
{
int slow = nums[0];
int fast = nums[0];
do {
slow = nums[slow];
fast = nums[nums[fast]];
} while (slow != fast);
fast = nums[0];
while (slow != fast) {
slow = nums[slow];
fast = nums[fast];
}
return slow;
}
// Driver code
int main()
{
vector<int> v{ 9, 8, 2, 6, 1, 8, 5, 3, 4, 7 };
// Function call
int ans = findDuplicate(v);
cout << ans << endl;
return 0;
} | constant | linear |
// C++ program to find the array element
// that appears only once
#include <iostream>
using namespace std;
// Function to find the
int findSingle(int A[], int ar_size)
{
// Iterate over every element
for (int i = 0; i < ar_size; i++) {
// Initialize count to 0
int count = 0;
for (int j = 0; j < ar_size; j++) {
// Count the frequency
// of the element
if (A[i] == A[j]) {
count++;
}
}
// if the frequency of the
// element is one
if (count == 1) {
return A[i];
}
}
// if no element exist at most once
return -1;
}
// Driver code
int main()
{
int ar[] = { 2, 3, 5, 4, 5, 3, 4 };
int n = sizeof(ar) / sizeof(ar[0]);
// Function call
cout << "Element occurring once is "
<< findSingle(ar, n);
return 0;
}
// This code is contributed by Arpit Jain | constant | quadratic |
// C++ program to find the array element
// that appears only once
#include <iostream>
using namespace std;
int findSingle(int ar[], int ar_size)
{
// Do XOR of all elements and return
int res = ar[0];
for (int i = 1; i < ar_size; i++)
res = res ^ ar[i];
return res;
}
// Driver code
int main()
{
int ar[] = { 2, 3, 5, 4, 5, 3, 4 };
int n = sizeof(ar) / sizeof(ar[0]);
cout << "Element occurring once is "
<< findSingle(ar, n);
return 0;
}
// This code is contributed by Aditya Kumar (adityakumar129) | constant | linear |
// C++ program to find
// element that appears once
#include <bits/stdc++.h>
using namespace std;
// function which find number
int singleNumber(int nums[],int n)
{
map<int,int> m;
long sum1 = 0,sum2 = 0;
for(int i = 0; i < n; i++)
{
if(m[nums[i]] == 0)
{
sum1 += nums[i];
m[nums[i]]++;
}
sum2 += nums[i];
}
// applying the formula.
return 2 * (sum1) - sum2;
}
// Driver code
int main()
{
int a[] = {2, 3, 5, 4, 5, 3, 4};
int n = 7;
cout << singleNumber(a,n) << "\n";
int b[] = {15, 18, 16, 18, 16, 15, 89};
cout << singleNumber(b,n);
return 0;
}
// This code is contributed by mohit kumar 29 | linear | nlogn |
#include <bits/stdc++.h>
using namespace std;
int singleelement(int arr[], int n)
{
int low = 0, high = n - 2;
int mid;
while (low <= high) {
mid = (low + high) / 2;
if (arr[mid] == arr[mid ^ 1])
low = mid + 1;
else
high = mid - 1;
}
return arr[low];
}
int main()
{
int arr[] = { 2, 3, 5, 4, 5, 3, 4 };
int size = sizeof(arr) / sizeof(arr[0]);
sort(arr, arr + size);
cout << singleelement(arr, size);
return 0;
}
// This code is contributed by Sania Kumari Gupta | constant | nlogn |
// C++ Program to find max subarray
// sum excluding some elements
#include <bits/stdc++.h>
using namespace std;
// Function to check the element
// present in array B
bool isPresent(int B[], int m, int x)
{
for (int i = 0; i < m; i++)
if (B[i] == x)
return true;
return false;
}
// Utility function for findMaxSubarraySum()
// with the following parameters
// A => Array A,
// B => Array B,
// n => Number of elements in Array A,
// m => Number of elements in Array B
int findMaxSubarraySumUtil(int A[], int B[], int n, int m)
{
// set max_so_far to INT_MIN
int max_so_far = INT_MIN, curr_max = 0;
for (int i = 0; i < n; i++)
{
// if the element is present in B,
// set current max to 0 and move to
// the next element */
if (isPresent(B, m, A[i]))
{
curr_max = 0;
continue;
}
// Proceed as in Kadane's Algorithm
curr_max = max(A[i], curr_max + A[i]);
max_so_far = max(max_so_far, curr_max);
}
return max_so_far;
}
// Wrapper for findMaxSubarraySumUtil()
void findMaxSubarraySum(int A[], int B[], int n, int m)
{
int maxSubarraySum = findMaxSubarraySumUtil(A, B, n, m);
// This case will occur when all elements
// of A are present in B, thus
// no subarray can be formed
if (maxSubarraySum == INT_MIN)
{
cout << "Maximum Subarray Sum cant be found"
<< endl;
}
else
{
cout << "The Maximum Subarray Sum = "
<< maxSubarraySum << endl;
}
}
// Driver Code
int main()
{
int A[] = { 3, 4, 5, -4, 6 };
int B[] = { 1, 8, 5 };
int n = sizeof(A) / sizeof(A[0]);
int m = sizeof(B) / sizeof(B[0]);
// Function call
findMaxSubarraySum(A, B, n, m);
return 0;
} | constant | quadratic |
// C++ Program to find max subarray
// sum excluding some elements
#include <bits/stdc++.h>
using namespace std;
// Utility function for findMaxSubarraySum()
// with the following parameters
// A => Array A,
// B => Array B,
// n => Number of elements in Array A,
// m => Number of elements in Array B
int findMaxSubarraySumUtil(int A[], int B[], int n, int m)
{
// set max_so_far to INT_MIN
int max_so_far = INT_MIN, curr_max = 0;
for (int i = 0; i < n; i++) {
// if the element is present in B,
// set current max to 0 and move to
// the next element
if (binary_search(B, B + m, A[i])) {
curr_max = 0;
continue;
}
// Proceed as in Kadane's Algorithm
curr_max = max(A[i], curr_max + A[i]);
max_so_far = max(max_so_far, curr_max);
}
return max_so_far;
}
// Wrapper for findMaxSubarraySumUtil()
void findMaxSubarraySum(int A[], int B[], int n, int m)
{
// sort array B to apply Binary Search
sort(B, B + m);
int maxSubarraySum = findMaxSubarraySumUtil(A, B, n, m);
// This case will occur when all elements
// of A are present in B, thus no subarray
// can be formed
if (maxSubarraySum == INT_MIN) {
cout << "Maximum subarray sum cant be found"
<< endl;
}
else {
cout << "The Maximum subarray sum = "
<< maxSubarraySum << endl;
}
}
// Driver Code
int main()
{
int A[] = { 3, 4, 5, -4, 6 };
int B[] = { 1, 8, 5 };
int n = sizeof(A) / sizeof(A[0]);
int m = sizeof(B) / sizeof(B[0]);
// Function call
findMaxSubarraySum(A, B, n, m);
return 0;
} | constant | nlogn |
// C++ Program implementation of the
// above idea
#include<bits/stdc++.h>
using namespace std;
// Function to calculate the max sum of contiguous
// subarray of B whose elements are not present in A
int findMaxSubarraySum(vector<int> A,vector<int> B)
{
unordered_map<int,int> m;
// mark all the elements present in B
for(int i=0;i<B.size();i++)
{
m[B[i]]=1;
}
// initialize max_so_far with INT_MIN
int max_so_far=INT_MIN;
int currmax=0;
// traverse the array A
for(int i=0;i<A.size();i++)
{
if(currmax<0 || m[A[i]]==1)
{
currmax=0;
continue;
}
currmax=max(A[i],A[i]+currmax);
// if current max is greater than
// max so far then update max so far
if(max_so_far<currmax)
{
max_so_far=currmax;
}
}
return max_so_far;
}
// Driver Code
int main()
{
vector<int> a = { 3, 4, 5, -4, 6 };
vector<int> b = { 1, 8, 5 };
// Function call
cout << findMaxSubarraySum(a,b);
return 0;
}
//This code is contributed by G.Vivek | linear | linear |
// CPP program to find
// maximum equilibrium sum.
#include <bits/stdc++.h>
using namespace std;
// Function to find
// maximum equilibrium sum.
int findMaxSum(int arr[], int n)
{
int res = INT_MIN;
for (int i = 0; i < n; i++)
{
int prefix_sum = arr[i];
for (int j = 0; j < i; j++)
prefix_sum += arr[j];
int suffix_sum = arr[i];
for (int j = n - 1; j > i; j--)
suffix_sum += arr[j];
if (prefix_sum == suffix_sum)
res = max(res, prefix_sum);
}
return res;
}
// Driver Code
int main()
{
int arr[] = {-2, 5, 3, 1,
2, 6, -4, 2 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << findMaxSum(arr, n);
return 0;
} | linear | quadratic |
// CPP program to find
// maximum equilibrium sum.
#include <bits/stdc++.h>
using namespace std;
// Function to find maximum
// equilibrium sum.
int findMaxSum(int arr[], int n)
{
// Array to store prefix sum.
int preSum[n];
// Array to store suffix sum.
int suffSum[n];
// Variable to store maximum sum.
int ans = INT_MIN;
// Calculate prefix sum.
preSum[0] = arr[0];
for (int i = 1; i < n; i++)
preSum[i] = preSum[i - 1] + arr[i];
// Calculate suffix sum and compare
// it with prefix sum. Update ans
// accordingly.
suffSum[n - 1] = arr[n - 1];
if (preSum[n - 1] == suffSum[n - 1])
ans = max(ans, preSum[n - 1]);
for (int i = n - 2; i >= 0; i--)
{
suffSum[i] = suffSum[i + 1] + arr[i];
if (suffSum[i] == preSum[i])
ans = max(ans, preSum[i]);
}
return ans;
}
// Driver Code
int main()
{
int arr[] = { -2, 5, 3, 1,
2, 6, -4, 2 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << findMaxSum(arr, n);
return 0;
} | linear | linear |
// CPP program to find
// maximum equilibrium sum.
#include <bits/stdc++.h>
using namespace std;
// Function to find
// maximum equilibrium sum.
int findMaxSum(int arr[], int n)
{
int sum = accumulate(arr, arr + n, 0);
int prefix_sum = 0, res = INT_MIN;
for (int i = 0; i < n; i++)
{
prefix_sum += arr[i];
if (prefix_sum == sum)
res = max(res, prefix_sum);
sum -= arr[i];
}
return res;
}
// Driver Code
int main()
{
int arr[] = { -2, 5, 3, 1,
2, 6, -4, 2 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << findMaxSum(arr, n);
return 0;
} | constant | linear |
// C++ program to find equilibrium
// index of an array
#include <bits/stdc++.h>
using namespace std;
int equilibrium(int arr[], int n)
{
int i, j;
int leftsum, rightsum;
/* Check for indexes one by one until
an equilibrium index is found */
for (i = 0; i < n; ++i) {
/* get left sum */
leftsum = 0;
for (j = 0; j < i; j++)
leftsum += arr[j];
/* get right sum */
rightsum = 0;
for (j = i + 1; j < n; j++)
rightsum += arr[j];
/* if leftsum and rightsum
are same, then we are done */
if (leftsum == rightsum)
return i;
}
/* return -1 if no equilibrium
index is found */
return -1;
}
// Driver code
int main()
{
int arr[] = { -7, 1, 5, 2, -4, 3, 0 };
int arr_size = sizeof(arr) / sizeof(arr[0]);
// Function call
cout << equilibrium(arr, arr_size);
return 0;
}
// This code is contributed
// by Akanksha Rai(Abby_akku) | constant | quadratic |
// C++ program to find equilibrium
// index of an array
#include <bits/stdc++.h>
using namespace std;
int equilibrium(int arr[], int n)
{
int sum = 0; // initialize sum of whole array
int leftsum = 0; // initialize leftsum
/* Find sum of the whole array */
for (int i = 0; i < n; ++i)
sum += arr[i];
for (int i = 0; i < n; ++i) {
sum -= arr[i]; // sum is now right sum for index i
if (leftsum == sum)
return i;
leftsum += arr[i];
}
/* If no equilibrium index found, then return 0 */
return -1;
}
// Driver code
int main()
{
int arr[] = { -7, 1, 5, 2, -4, 3, 0 };
int arr_size = sizeof(arr) / sizeof(arr[0]);
// Function call
cout << "First equilibrium index is "
<< equilibrium(arr, arr_size);
return 0;
}
// This is code is contributed by rathbhupendra | constant | linear |
// C++ program to find equilibrium index of an array
#include <bits/stdc++.h>
using namespace std;
int equilibrium(int a[], int n)
{
if (n == 1)
return (0);
int forward[n] = { 0 };
int rev[n] = { 0 };
// Taking the prefixsum from front end array
for (int i = 0; i < n; i++) {
if (i) {
forward[i] = forward[i - 1] + a[i];
}
else {
forward[i] = a[i];
}
}
// Taking the prefixsum from back end of array
for (int i = n - 1; i > 0; i--) {
if (i <= n - 2) {
rev[i] = rev[i + 1] + a[i];
}
else {
rev[i] = a[i];
}
}
// Checking if forward prefix sum
// is equal to rev prefix
// sum
for (int i = 0; i < n; i++) {
if (forward[i] == rev[i]) {
return i;
}
}
return -1;
// If You want all the points
// of equilibrium create
// vector and push all equilibrium
// points in it and
// return the vector
}
// Driver code
int main()
{
int arr[] = { -7, 1, 5, 2, -4, 3, 0 };
int n = sizeof(arr) / sizeof(arr[0]);
// Function call
cout << "First Point of equilibrium is at index "
<< equilibrium(arr, n) << "\n";
return 0;
} | linear | linear |
#include<iostream>
using namespace std;
/*C++ Function to print leaders in an array */
void printLeaders(int arr[], int size)
{
for (int i = 0; i < size; i++)
{
int j;
for (j = i+1; j < size; j++)
{
if (arr[i] <=arr[j])
break;
}
if (j == size) // the loop didn't break
cout << arr[i] << " ";
}
}
/* Driver program to test above function */
int main()
{
int arr[] = {16, 17, 4, 3, 5, 2};
int n = sizeof(arr)/sizeof(arr[0]);
printLeaders(arr, n);
return 0;
} | constant | quadratic |
#include <iostream>
using namespace std;
/* C++ Function to print leaders in an array */
void printLeaders(int arr[], int size)
{
int max_from_right = arr[size-1];
/* Rightmost element is always leader */
cout << max_from_right << " ";
for (int i = size-2; i >= 0; i--)
{
if (max_from_right < arr[i])
{
max_from_right = arr[i];
cout << max_from_right << " ";
}
}
}
/* Driver program to test above function*/
int main()
{
int arr[] = {16, 17, 4, 3, 5, 2};
int n = sizeof(arr)/sizeof(arr[0]);
printLeaders(arr, n);
return 0;
} | constant | linear |
#include <bits/stdc++.h>
using namespace std;
/* C++ Function to print leaders in an array */
void printLeaders(int arr[], int size)
{
/* create stack to store leaders*/
stack<int> sk;
sk.push(arr[size-1]);
for (int i = size-2; i >= 0; i--)
{
if(arr[i] >= sk.top())
{
sk.push(arr[i]);
}
}
/* print stack elements*/
/* run loop till stack is not empty*/
while(!sk.empty()){
cout<<sk.top()<<" ";
sk.pop();
}
}
/* Driver program to test above function*/
int main()
{
int arr[] = {16, 17, 4, 3, 5, 2};
int n = sizeof(arr)/sizeof(arr[0]);
printLeaders(arr, n);
return 0;
} | linear | linear |
// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
/* Function to get index of ceiling of x in arr[low..high] */
int ceilSearch(int arr[], int low, int high, int x)
{
int i;
/* If x is smaller than or equal to first element,
then return the first element */
if(x <= arr[low])
return low;
/* Otherwise, linearly search for ceil value */
for(i = low; i < high; i++)
{
if(arr[i] == x)
return i;
/* if x lies between arr[i] and arr[i+1] including
arr[i+1], then return arr[i+1] */
if(arr[i] < x && arr[i+1] >= x)
return i+1;
}
/* If we reach here then x is greater than the last element
of the array, return -1 in this case */
return -1;
}
/* Driver code*/
int main()
{
int arr[] = {1, 2, 8, 10, 10, 12, 19};
int n = sizeof(arr)/sizeof(arr[0]);
int x = 3;
int index = ceilSearch(arr, 0, n-1, x);
if(index == -1)
cout << "Ceiling of " << x << " doesn't exist in array ";
else
cout << "ceiling of " << x << " is " << arr[index];
return 0;
}
// This is code is contributed by rathbhupendra | constant | linear |
#include <bits/stdc++.h>
using namespace std;
/* Function to get index of
ceiling of x in arr[low..high]*/
int ceilSearch(int arr[], int low, int high, int x)
{
int mid;
/* If x is smaller than
or equal to the first element,
then return the first element */
if (x <= arr[low])
return low;
/* If x is greater than the last element,
then return -1 */
if (x > arr[high])
return -1;
/* get the index of middle element of arr[low..high]*/
mid = (low + high) / 2; /* low + (high - low)/2 */
/* If x is same as middle element,
then return mid */
if (arr[mid] == x)
return mid;
/* If x is greater than arr[mid],
then either arr[mid + 1] is ceiling of x
or ceiling lies in arr[mid+1...high] */
else if (arr[mid] < x) {
if (mid + 1 <= high && x <= arr[mid + 1])
return mid + 1;
else
return ceilSearch(arr, mid + 1, high, x);
}
/* If x is smaller than arr[mid],
then either arr[mid] is ceiling of x
or ceiling lies in arr[low...mid-1] */
else {
if (mid - 1 >= low && x > arr[mid - 1])
return mid;
else
return ceilSearch(arr, low, mid - 1, x);
}
}
// Driver Code
int main()
{
int arr[] = { 1, 2, 8, 10, 10, 12, 19 };
int n = sizeof(arr) / sizeof(arr[0]);
int x = 20;
int index = ceilSearch(arr, 0, n - 1, x);
if (index == -1)
cout << "Ceiling of " << x
<< " doesn't exist in array ";
else
cout << "ceiling of " << x << " is " << arr[index];
return 0;
}
// This code is contributed by rathbhupendra | constant | logn |
#include <bits/stdc++.h>
using namespace std;
/* Function to get index of
ceiling of x in arr[low..high]*/
int ceilSearch(int arr[], int low, int high, int x)
{
// base condition if length of arr == 0 then return -1
if (x == 0) {
return -1;
}
int mid;
// this while loop function will run until condition not
// break once condition break loop will return start and
// ans is low which will be next smallest greater than
// target which is ceiling
while (low <= high) {
mid = low + (high - low) / 2;
if (arr[mid] == x)
return mid;
else if (x < arr[mid])
high = mid - 1;
else
low = mid + 1;
}
return low;
}
/* step 1 : { low = 1, 2, 8, 10= mid, 10, 12, 19= high};
if( x < mid) yes set high = mid -1;
step 2 : { low = 1, 2 = mid, 8 = high, 10, 10, 12,
19}; if( x < mid) no set low = mid + 1; step 3 : {1, 2, 8
= high,low,low, 10, 10, 12, 19}; if( x == mid ) yes
return mid if(x < mid ) no low = mid + 1 step 4 : {1, 2,
8 = high,mid, 10 = low, 10, 12, 19}; check while(low < =
high) condition break and return low which will next
greater of target */
/* Driver program to check above functions */
int main()
{
int arr[] = { 1, 2, 8, 10, 10, 12, 19 };
int n = sizeof(arr) / sizeof(arr[0]);
int x = 8;
int index = ceilSearch(arr, 0, n - 1, x);
if (index == -1)
printf("Ceiling of %d does not exist in an array", x);
else
printf("Ceiling of %d is %d", x, arr[index]);
return 0;
} | constant | logn |
// Hashing based C++ program to find if there
// is a majority element in input array.
#include <bits/stdc++.h>
using namespace std;
// Returns true if there is a majority element
// in a[]
bool isMajority(int a[], int n)
{
// Insert all elements in a hash table
unordered_map<int, int> mp;
for (int i = 0; i < n; i++)
mp[a[i]]++;
// Check if frequency of any element is
// n/2 or more.
for (auto x : mp)
if (x.second >= n/2)
return true;
return false;
}
// Driver code
int main()
{
int a[] = { 2, 3, 9, 2, 2 };
int n = sizeof(a) / sizeof(a[0]);
if (isMajority(a, n))
cout << "Yes";
else
cout << "No";
return 0;
} | linear | linear |
// A C++ program to find a peak element
// using divide and conquer
#include <bits/stdc++.h>
using namespace std;
// A binary search based function
// that returns index of a peak element
int findPeakUtil(int arr[], int low,
int high, int n)
{
// Find index of middle element
// low + (high - low) / 2
int mid = low + (high - low) / 2;
// Compare middle element with its
// neighbours (if neighbours exist)
if ((mid == 0 || arr[mid - 1] <= arr[mid]) &&
(mid == n - 1 || arr[mid + 1] <= arr[mid]))
return mid;
// If middle element is not peak and its
// left neighbour is greater than it,
// then left half must have a peak element
else if (mid > 0 && arr[mid - 1] > arr[mid])
return findPeakUtil(arr, low, (mid - 1), n);
// If middle element is not peak and its
// right neighbour is greater than it,
// then right half must have a peak element
else
return findPeakUtil(
arr, (mid + 1), high, n);
}
// A wrapper over recursive function findPeakUtil()
int findPeak(int arr[], int n)
{
return findPeakUtil(arr, 0, n - 1, n);
}
// Driver Code
int main()
{
int arr[] = { 1, 3, 20, 4, 1, 0 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << "Index of a peak point is "
<< findPeak(arr, n);
return 0;
}
// This code is contributed by rajdeep999 | logn | logn |
// A C++ program to find a peak element
// using divide and conquer
#include <bits/stdc++.h>
using namespace std;
// A binary search based function
// that returns index of a peak element
int findPeak(int arr[], int n)
{
int l = 0;
int r = n-1;
int mid;
while (l <= r) {
// finding mid by binary right shifting.
mid = (l + r) >> 1;
// first case if mid is the answer
if ((mid == 0 || arr[mid - 1] <= arr[mid])
and (mid == n - 1 || arr[mid + 1] <= arr[mid]))
break;
// move the right pointer
if (mid > 0 and arr[mid - 1] > arr[mid])
r = mid - 1;
// move the left pointer
else
l = mid + 1;
}
return mid;
}
// Driver Code
int main()
{
int arr[] = { 1, 3, 20, 4, 1, 0 };
int N = sizeof(arr) / sizeof(arr[0]);
cout << "Index of a peak point is " << findPeak(arr, N);
return 0;
}
// This code is contributed by Rajdeep Mallick (rajdeep999) | constant | logn |
// C++ program to Find the two repeating
// elements in a given array
#include <bits/stdc++.h>
using namespace std;
void printTwoRepeatNumber(int arr[], int size)
{
int i, j;
cout << "Repeating elements are ";
for (i = 0; i < size; i++) {
for (j = i + 1; j < size; j++) {
if (arr[i] == arr[j]) {
cout << arr[i] << " ";
break;
}
}
}
}
int main()
{
int arr[] = { 4, 2, 4, 5, 2, 3, 1 };
int arr_size = sizeof(arr) / sizeof(arr[0]);
printTwoRepeatNumber(arr, arr_size);
return 0;
} | constant | quadratic |
// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
void printRepeating(int arr[], int size)
{
int* count = new int[sizeof(int) * (size - 2)];
int i;
cout << " Repeating elements are ";
for (i = 0; i < size; i++) {
if (count[arr[i]] == 1)
cout << arr[i] << " ";
else
count[arr[i]]++;
}
}
// Driver code
int main()
{
int arr[] = { 4, 2, 4, 5, 2, 3, 1 };
int arr_size = sizeof(arr) / sizeof(arr[0]);
printRepeating(arr, arr_size);
return 0;
}
// This is code is contributed by rathbhupendra | linear | linear |
#include <bits/stdc++.h>
using namespace std;
/* function to get factorial of n */
int fact(int n);
void printRepeating(int arr[], int size)
{
int S = 0; /* S is for sum of elements in arr[] */
int P = 1; /* P is for product of elements in arr[] */
int x, y; /* x and y are two repeating elements */
int D; /* D is for difference of x and y, i.e., x-y*/
int n = size - 2, i;
/* Calculate Sum and Product of all elements in arr[] */
for (i = 0; i < size; i++) {
S = S + arr[i];
P = P * arr[i];
}
S = S - n * (n + 1) / 2; /* S is x + y now */
P = P / fact(n); /* P is x*y now */
D = sqrt(S * S - 4 * P); /* D is x - y now */
x = (D + S) / 2;
y = (S - D) / 2;
cout << "Repeating elements are " << x << " " << y;
}
int fact(int n) { return (n == 0) ? 1 : n * fact(n - 1); }
// Driver code
int main()
{
int arr[] = { 4, 2, 4, 5, 2, 3, 1 };
int arr_size = sizeof(arr) / sizeof(arr[0]);
printRepeating(arr, arr_size);
return 0;
}
// This code is contributed by rathbhupendra | constant | linear |
#include <bits/stdc++.h>
using namespace std;
void printRepeating(int arr[], int size)
{
int Xor = arr[0]; /* Will hold Xor of all elements */
int set_bit_no; /* Will have only single set bit of Xor
*/
int i;
int n = size - 2;
int x = 0, y = 0;
/* Get the Xor of all elements in arr[] and {1, 2 .. n}
*/
for (i = 1; i < size; i++)
Xor ^= arr[i];
for (i = 1; i <= n; i++)
Xor ^= i;
/* Get the rightmost set bit in set_bit_no */
set_bit_no = Xor & ~(Xor - 1);
/* Now divide elements in two sets by comparing
rightmost set bit of Xor with bit at same position in
each element. */
for (i = 0; i < size; i++) {
if (arr[i] & set_bit_no)
x = x ^ arr[i]; /*Xor of first set in arr[] */
else
y = y ^ arr[i]; /*Xor of second set in arr[] */
}
for (i = 1; i <= n; i++) {
if (i & set_bit_no)
x = x ^ i; /*Xor of first set in arr[] and {1,
2, ...n }*/
else
y = y ^ i; /*Xor of second set in arr[] and {1,
2, ...n } */
}
cout << "Repeating elements are " << y << " " << x;
}
// Driver code
int main()
{
int arr[] = { 4, 2, 4, 5, 2, 3, 1 };
int arr_size = sizeof(arr) / sizeof(arr[0]);
printRepeating(arr, arr_size);
return 0;
}
// This code is contributed by rathbhupendra | constant | linear |
#include <bits/stdc++.h>
using namespace std;
void printRepeating(int arr[], int size)
{
int i;
cout << "Repeating elements are ";
for (i = 0; i < size; i++) {
if (arr[abs(arr[i])] > 0)
arr[abs(arr[i])] = -arr[abs(arr[i])];
else
cout << abs(arr[i]) << " ";
}
}
// Driver code
int main()
{
int arr[] = { 4, 2, 4, 5, 2, 3, 1 };
int arr_size = sizeof(arr) / sizeof(arr[0]);
printRepeating(arr, arr_size);
return 0;
}
// This code is contributed by rathbhupendra | constant | linear |
#include <bits/stdc++.h>
using namespace std;
void twoRepeated(int arr[], int N)
{
int m = N - 1;
for (int i = 0; i < N; i++) {
arr[arr[i] % m - 1] += m;
if ((arr[arr[i] % m - 1] / m) == 2)
cout << arr[i] % m << " ";
}
}
// Driver Code
int main()
{
int arr[] = { 4, 2, 4, 5, 2, 3, 1 };
int n = sizeof(arr) / sizeof(arr[0]);
cout << "Repeating elements are ";
twoRepeated(arr, n);
return 0;
}
// This code is contributed by Aditya Kumar (adityakumar129) | constant | linear |
// C++ program to Find the two repeating
// elements in a given array
#include <bits/stdc++.h>
using namespace std;
void printRepeating(int arr[], int size)
{
unordered_set<int> s;
cout << "Repeating elements are ";
for (int i = 0; i < size; i++) {
if (s.empty() == false && s.find(arr[i]) != s.end())
cout << arr[i] << " ";
s.insert(arr[i]);
}
}
// Driver code
int main()
{
int arr[] = { 4, 2, 4, 5, 2, 3, 1 };
int arr_size = sizeof(arr) / sizeof(arr[0]);
printRepeating(arr, arr_size);
return 0;
}
// This code is contributed by nakul amate | linear | linear |
/* A simple program to print subarray
with sum as given sum */
#include <bits/stdc++.h>
using namespace std;
/* Returns true if the there is a subarray
of arr[] with sum equal to 'sum' otherwise
returns false. Also, prints the result */
void subArraySum(int arr[], int n, int sum)
{
// Pick a starting point
for (int i = 0; i < n; i++) {
int currentSum = arr[i];
if (currentSum == sum) {
cout << "Sum found at indexes " << i << endl;
return;
}
else {
// Try all subarrays starting with 'i'
for (int j = i + 1; j < n; j++) {
currentSum += arr[j];
if (currentSum == sum) {
cout << "Sum found between indexes "
<< i << " and " << j << endl;
return;
}
}
}
}
cout << "No subarray found";
return;
}
// Driver Code
int main()
{
int arr[] = { 15, 2, 4, 8, 9, 5, 10, 23 };
int n = sizeof(arr) / sizeof(arr[0]);
int sum = 23;
subArraySum(arr, n, sum);
return 0;
}
// This code is contributed
// by rathbhupendra | constant | quadratic |
/* An efficient program to print
subarray with sum as given sum */
#include <iostream>
using namespace std;
/* Returns true if the there is a subarray of
arr[] with a sum equal to 'sum' otherwise
returns false. Also, prints the result */
int subArraySum(int arr[], int n, int sum)
{
/* Initialize currentSum as value of
first element and starting point as 0 */
int currentSum = arr[0], start = 0, i;
/* Add elements one by one to currentSum and
if the currentSum exceeds the sum,
then remove starting element */
for (i = 1; i <= n; i++) {
// If currentSum exceeds the sum,
// then remove the starting elements
while (currentSum > sum && start < i - 1) {
currentSum = currentSum - arr[start];
start++;
}
// If currentSum becomes equal to sum,
// then return true
if (currentSum == sum) {
cout << "Sum found between indexes " << start
<< " and " << i - 1;
return 1;
}
// Add this element to currentSum
if (i < n)
currentSum = currentSum + arr[i];
}
// If we reach here, then no subarray
cout << "No subarray found";
return 0;
}
// Driver Code
int main()
{
int arr[] = { 15, 2, 4, 8, 9, 5, 10, 23 };
int n = sizeof(arr) / sizeof(arr[0]);
int sum = 23;
subArraySum(arr, n, sum);
return 0;
}
// This code is contributed by SHUBHAMSINGH10 | constant | linear |
// C++ implementation of smallest difference triplet
#include <bits/stdc++.h>
using namespace std;
// function to find maximum number
int maximum(int a, int b, int c)
{
return max(max(a, b), c);
}
// function to find minimum number
int minimum(int a, int b, int c)
{
return min(min(a, b), c);
}
// Finds and prints the smallest Difference Triplet
void smallestDifferenceTriplet(int arr1[], int arr2[],
int arr3[], int n)
{
// sorting all the three arrays
sort(arr1, arr1+n);
sort(arr2, arr2+n);
sort(arr3, arr3+n);
// To store resultant three numbers
int res_min, res_max, res_mid;
// pointers to arr1, arr2, arr3
// respectively
int i = 0, j = 0, k = 0;
// Loop until one array reaches to its end
// Find the smallest difference.
int diff = INT_MAX;
while (i < n && j < n && k < n)
{
int sum = arr1[i] + arr2[j] + arr3[k];
// maximum number
int max = maximum(arr1[i], arr2[j], arr3[k]);
// Find minimum and increment its index.
int min = minimum(arr1[i], arr2[j], arr3[k]);
if (min == arr1[i])
i++;
else if (min == arr2[j])
j++;
else
k++;
// comparing new difference with the
// previous one and updating accordingly
if (diff > (max-min))
{
diff = max - min;
res_max = max;
res_mid = sum - (max + min);
res_min = min;
}
}
// Print result
cout << res_max << ", " << res_mid << ", " << res_min;
}
// Driver program to test above
int main()
{
int arr1[] = {5, 2, 8};
int arr2[] = {10, 7, 12};
int arr3[] = {9, 14, 6};
int n = sizeof(arr1) / sizeof(arr1[0]);
smallestDifferenceTriplet(arr1, arr2, arr3, n);
return 0;
} | constant | nlogn |
// A simple C++ program to find three elements
// whose sum is equal to zero
#include <bits/stdc++.h>
using namespace std;
// Prints all triplets in arr[] with 0 sum
void findTriplets(int arr[], int n)
{
bool found = false;
for (int i = 0; i < n - 2; i++) {
for (int j = i + 1; j < n - 1; j++) {
for (int k = j + 1; k < n; k++) {
if (arr[i] + arr[j] + arr[k] == 0) {
cout << arr[i] << " " << arr[j] << " "
<< arr[k] << endl;
found = true;
}
}
}
}
// If no triplet with 0 sum found in array
if (found == false)
cout << " not exist " << endl;
}
// Driver code
int main()
{
int arr[] = { 0, -1, 2, -3, 1 };
int n = sizeof(arr) / sizeof(arr[0]);
findTriplets(arr, n);
return 0;
}
// This code is contributed by Aditya Kumar (adityakumar129) | constant | cubic |
// C++ program to find triplets in a given
// array whose sum is zero
#include <bits/stdc++.h>
using namespace std;
// function to print triplets with 0 sum
void findTriplets(int arr[], int n)
{
bool found = false;
for (int i = 0; i < n - 1; i++) {
// Find all pairs with sum equals to
// "-arr[i]"
unordered_set<int> s;
for (int j = i + 1; j < n; j++) {
int x = -(arr[i] + arr[j]);
if (s.find(x) != s.end()) {
printf("%d %d %d\n", x, arr[i], arr[j]);
found = true;
}
else
s.insert(arr[j]);
}
}
if (found == false)
cout << " No Triplet Found" << endl;
}
// Driver code
int main()
{
int arr[] = { 0, -1, 2, -3, 1 };
int n = sizeof(arr) / sizeof(arr[0]);
findTriplets(arr, n);
return 0;
} | linear | quadratic |
// C++ program to find triplets in a given
// array whose sum is zero
#include <bits/stdc++.h>
using namespace std;
// function to print triplets with 0 sum
void findTriplets(int arr[], int n)
{
bool found = false;
// sort array elements
sort(arr, arr + n);
for (int i = 0; i < n - 1; i++) {
// initialize left and right
int l = i + 1;
int r = n - 1;
int x = arr[i];
while (l < r) {
if (x + arr[l] + arr[r] == 0) {
// print elements if it's sum is zero
printf("%d %d %d\n", x, arr[l], arr[r]);
l++;
r--;
found = true;
// break;
}
// If sum of three elements is less
// than zero then increment in left
else if (x + arr[l] + arr[r] < 0)
l++;
// if sum is greater than zero then
// decrement in right side
else
r--;
}
}
if (found == false)
cout << " No Triplet Found" << endl;
}
// Driven source
int main()
{
int arr[] = { 0, -1, 2, -3, 1 };
int n = sizeof(arr) / sizeof(arr[0]);
findTriplets(arr, n);
return 0;
} | constant | quadratic |
// C++ program to rotate a matrix
#include <bits/stdc++.h>
#define R 4
#define C 4
using namespace std;
// A function to rotate a matrix mat[][] of size R x C.
// Initially, m = R and n = C
void rotatematrix(int m, int n, int mat[R][C])
{
int row = 0, col = 0;
int prev, curr;
/*
row - Starting row index
m - ending row index
col - starting column index
n - ending column index
i - iterator
*/
while (row < m && col < n)
{
if (row + 1 == m || col + 1 == n)
break;
// Store the first element of next row, this
// element will replace first element of current
// row
prev = mat[row + 1][col];
/* Move elements of first row from the remaining rows */
for (int i = col; i < n; i++)
{
curr = mat[row][i];
mat[row][i] = prev;
prev = curr;
}
row++;
/* Move elements of last column from the remaining columns */
for (int i = row; i < m; i++)
{
curr = mat[i][n-1];
mat[i][n-1] = prev;
prev = curr;
}
n--;
/* Move elements of last row from the remaining rows */
if (row < m)
{
for (int i = n-1; i >= col; i--)
{
curr = mat[m-1][i];
mat[m-1][i] = prev;
prev = curr;
}
}
m--;
/* Move elements of first column from the remaining rows */
if (col < n)
{
for (int i = m-1; i >= row; i--)
{
curr = mat[i][col];
mat[i][col] = prev;
prev = curr;
}
}
col++;
}
// Print rotated matrix
for (int i=0; i<R; i++)
{
for (int j=0; j<C; j++)
cout << mat[i][j] << " ";
cout << endl;
}
}
/* Driver program to test above functions */
int main()
{
// Test Case 1
int a[R][C] = { {1, 2, 3, 4},
{5, 6, 7, 8},
{9, 10, 11, 12},
{13, 14, 15, 16} };
// Test Case 2
/* int a[R][C] = {{1, 2, 3},
{4, 5, 6},
{7, 8, 9}
};
*/ rotatematrix(R, C, a);
return 0;
} | constant | quadratic |
// C++ program to rotate a matrix
// by 90 degrees
#include <bits/stdc++.h>
#define N 4
using namespace std;
// An Inplace function to
// rotate a N x N matrix
// by 90 degrees in
// anti-clockwise direction
void rotateMatrix(int mat[][N])
{
// Consider all squares one by one
for (int x = 0; x < N / 2; x++) {
// Consider elements in group
// of 4 in current square
for (int y = x; y < N - x - 1; y++) {
// Store current cell in
// temp variable
int temp = mat[x][y];
// Move values from right to top
mat[x][y] = mat[y][N - 1 - x];
// Move values from bottom to right
mat[y][N - 1 - x] = mat[N - 1 - x][N - 1 - y];
// Move values from left to bottom
mat[N - 1 - x][N - 1 - y] = mat[N - 1 - y][x];
// Assign temp to left
mat[N - 1 - y][x] = temp;
}
}
}
// Function to print the matrix
void displayMatrix(int mat[N][N])
{
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
cout << mat[i][j] << " ";
}
cout << endl;
}
cout << endl;
}
/* Driver code */
int main()
{
// Test Case 1
int mat[N][N] = { { 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 } };
// Function call
rotateMatrix(mat);
// Print rotated matrix
displayMatrix(mat);
return 0;
} | constant | quadratic |
// C++ program to rotate a matrix
// by 90 degrees
#include <bits/stdc++.h>
using namespace std;
#define N 4
// An Inplace function to
// rotate a N x N matrix
// by 90 degrees in
// anti-clockwise direction
void rotateMatrix(int mat[][N])
{ // REVERSE every row
for (int i = 0; i < N; i++)
reverse(mat[i], mat[i] + N);
// Performing Transpose
for (int i = 0; i < N; i++) {
for (int j = i; j < N; j++)
swap(mat[i][j], mat[j][i]);
}
}
// Function to print the matrix
void displayMatrix(int mat[N][N])
{
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
cout << mat[i][j] << " ";
}
cout << endl;
}
cout << endl;
}
/* Driver code */
int main()
{
int mat[N][N] = { { 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 } };
// Function call
rotateMatrix(mat);
// Print rotated matrix
displayMatrix(mat);
return 0;
} | constant | quadratic |
#include <bits/stdc++.h>
using namespace std;
//Function to rotate matrix anticlockwise by 90 degrees.
void rotateby90(vector<vector<int> >& matrix)
{
int n=matrix.size();
int mid;
if(n%2==0)
mid=n/2-1;
else
mid=n/2;
for(int i=0,j=n-1;i<=mid;i++,j--)
{
for(int k=0;k<j-i;k++)
{
swap(matrix[i][j-k],matrix[j][i+k]); //ru ld
swap(matrix[i+k][i],matrix[j][i+k]); //lu ld
swap(matrix[i][j-k],matrix[j-k][j]); //ru rd
}
}
}
void printMatrix(vector<vector<int>>& arr)
{
int n=arr.size();
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
cout<<arr[i][j]<<" ";
}
cout<<endl;
}
}
int main() {
vector<vector<int>> arr = { { 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 } };
rotateby90(arr);
printMatrix(arr);
return 0;
} | constant | quadratic |
// C++ program to rotate a matrix by 180 degrees
#include <bits/stdc++.h>
#define N 3
using namespace std;
// Function to Rotate the matrix by 180 degree
void rotateMatrix(int mat[][N])
{
// Simply print from last cell to first cell.
for (int i = N - 1; i >= 0; i--) {
for (int j = N - 1; j >= 0; j--)
printf("%d ", mat[i][j]);
printf("\n");
}
}
// Driven code
int main()
{
int mat[N][N] = {
{ 1, 2, 3 },
{ 4, 5, 6 },
{ 7, 8, 9 }
};
rotateMatrix(mat);
return 0;
} | constant | quadratic |
// C++ program for left rotation of matrix by 180
#include <bits/stdc++.h>
using namespace std;
#define R 4
#define C 4
// Function to rotate the matrix by 180 degree
void reverseColumns(int arr[R][C])
{
for (int i = 0; i < C; i++)
for (int j = 0, k = C - 1; j < k; j++, k--)
swap(arr[j][i], arr[k][i]);
}
// Function for transpose of matrix
void transpose(int arr[R][C])
{
for (int i = 0; i < R; i++)
for (int j = i; j < C; j++)
swap(arr[i][j], arr[j][i]);
}
// Function for display the matrix
void printMatrix(int arr[R][C])
{
for (int i = 0; i < R; i++) {
for (int j = 0; j < C; j++)
cout << arr[i][j] << " ";
cout << '\n';
}
}
// Function to anticlockwise rotate matrix
// by 180 degree
void rotate180(int arr[R][C])
{
transpose(arr);
reverseColumns(arr);
transpose(arr);
reverseColumns(arr);
}
// Driven code
int main()
{
int arr[R][C] = { { 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 } };
rotate180(arr);
printMatrix(arr);
return 0;
} | constant | quadratic |
#include <bits/stdc++.h>
using namespace std;
/**
* Reverse Row at specified index in the matrix
* @param data matrix
* @param index row index
*/
void reverseRow(vector<vector<int>>& data,
int index)
{
int cols = data[index].size();
for(int i = 0; i < cols / 2; i++)
{
int temp = data[index][i];
data[index][i] = data[index][cols - i - 1];
data[index][cols - i - 1] = temp;
}
}
/**
* Print Matrix data
* @param data matrix
*/
void printMatrix(vector<vector<int>>& data)
{
for(int i = 0; i < data.size(); i++)
{
for(int j = 0; j < data[i].size(); j++)
{
cout << data[i][j] << " ";
}
cout << endl;
}
}
/**
* Rotate Matrix by 180 degrees
* @param data matrix
*/
void rotateMatrix180(vector<vector<int>>& data)
{
int rows = data.size();
int cols = data[0].size();
if (rows % 2 != 0)
{
// If N is odd reverse the middle
// row in the matrix
reverseRow(data, data.size() / 2);
}
// Swap the value of matrix [i][j] with
// [rows - i - 1][cols - j - 1] for half
// the rows size.
for(int i = 0; i <= (rows/2) - 1; i++)
{
for(int j = 0; j < cols; j++)
{
int temp = data[i][j];
data[i][j] = data[rows - i - 1][cols - j - 1];
data[rows - i - 1][cols - j - 1] = temp;
}
}
}
// Driver code
int main()
{
vector<vector<int>> data{ { 1, 2, 3, 4, 5 },
{ 6, 7, 8, 9, 10 },
{ 11, 12, 13, 14, 15 },
{ 16, 17, 18, 19, 20 },
{ 21, 22, 23, 24, 25 } };
// Rotate Matrix
rotateMatrix180(data);
// Print Matrix
printMatrix(data);
return 0;
}
// This code is contributed by divyeshrabadiya07 | constant | quadratic |
// C++ program to rotate individual rings by k in
// spiral order traversal.
#include<bits/stdc++.h>
#define MAX 100
using namespace std;
// Fills temp array into mat[][] using spiral order
// traversal.
void fillSpiral(int mat[][MAX], int m, int n, int temp[])
{
int i, k = 0, l = 0;
/* k - starting row index
m - ending row index
l - starting column index
n - ending column index */
int tIdx = 0; // Index in temp array
while (k < m && l < n)
{
/* first row from the remaining rows */
for (int i = l; i < n; ++i)
mat[k][i] = temp[tIdx++];
k++;
/* last column from the remaining columns */
for (int i = k; i < m; ++i)
mat[i][n-1] = temp[tIdx++];
n--;
/* last row from the remaining rows */
if (k < m)
{
for (int i = n-1; i >= l; --i)
mat[m-1][i] = temp[tIdx++];
m--;
}
/* first column from the remaining columns */
if (l < n)
{
for (int i = m-1; i >= k; --i)
mat[i][l] = temp[tIdx++];
l++;
}
}
}
// Function to spirally traverse matrix and
// rotate each ring of matrix by K elements
// mat[][] --> matrix of elements
// M --> number of rows
// N --> number of columns
void spiralRotate(int mat[][MAX], int M, int N, int k)
{
// Create a temporary array to store the result
int temp[M*N];
/* s - starting row index
m - ending row index
l - starting column index
n - ending column index; */
int m = M, n = N, s = 0, l = 0;
int *start = temp; // Start position of current ring
int tIdx = 0; // Index in temp
while (s < m && l < n)
{
// Initialize end position of current ring
int *end = start;
// copy the first row from the remaining rows
for (int i = l; i < n; ++i)
{
temp[tIdx++] = mat[s][i];
end++;
}
s++;
// copy the last column from the remaining columns
for (int i = s; i < m; ++i)
{
temp[tIdx++] = mat[i][n-1];
end++;
}
n--;
// copy the last row from the remaining rows
if (s < m)
{
for (int i = n-1; i >= l; --i)
{
temp[tIdx++] = mat[m-1][i];
end++;
}
m--;
}
/* copy the first column from the remaining columns */
if (l < n)
{
for (int i = m-1; i >= s; --i)
{
temp[tIdx++] = mat[i][l];
end++;
}
l++;
}
// if elements in current ring greater than
// k then rotate elements of current ring
if (end-start > k)
{
// Rotate current ring using reversal
// algorithm for rotation
reverse(start, start+k);
reverse(start+k, end);
reverse(start, end);
// Reset start for next ring
start = end;
}
}
// Fill temp array in original matrix.
fillSpiral(mat, M, N, temp);
}
// Driver program to run the case
int main()
{
// Your C++ Code
int M = 4, N = 4, k = 3;
int mat[][MAX]= {{1, 2, 3, 4},
{5, 6, 7, 8},
{9, 10, 11, 12},
{13, 14, 15, 16} };
spiralRotate(mat, M, N, k);
// print modified matrix
for (int i=0; i<M; i++)
{
for (int j=0; j<N; j++)
cout << mat[i][j] << " ";
cout << endl;
}
return 0;
} | quadratic | quadratic |
// C++ program to check if all rows of a matrix
// are rotations of each other
#include <bits/stdc++.h>
using namespace std;
const int MAX = 1000;
// Returns true if all rows of mat[0..n-1][0..n-1]
// are rotations of each other.
bool isPermutedMatrix( int mat[MAX][MAX], int n)
{
// Creating a string that contains elements of first
// row.
string str_cat = "";
for (int i = 0 ; i < n ; i++)
str_cat = str_cat + "-" + to_string(mat[0][i]);
// Concatenating the string with itself so that
// substring search operations can be performed on
// this
str_cat = str_cat + str_cat;
// Start traversing remaining rows
for (int i=1; i<n; i++)
{
// Store the matrix into vector in the form
// of strings
string curr_str = "";
for (int j = 0 ; j < n ; j++)
curr_str = curr_str + "-" + to_string(mat[i][j]);
// Check if the current string is present in
// the concatenated string or not
if (str_cat.find(curr_str) == string::npos)
return false;
}
return true;
}
// Drivers code
int main()
{
int n = 4 ;
int mat[MAX][MAX] = {{1, 2, 3, 4},
{4, 1, 2, 3},
{3, 4, 1, 2},
{2, 3, 4, 1}
};
isPermutedMatrix(mat, n)? cout << "Yes" :
cout << "No";
return 0;
} | linear | cubic |
// C++ implementation to sort the given matrix
#include <bits/stdc++.h>
using namespace std;
#define SIZE 10
// function to sort the given matrix
void sortMat(int mat[SIZE][SIZE], int n)
{
// temporary matrix of size n^2
int temp[n * n];
int k = 0;
// copy the elements of matrix one by one
// into temp[]
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
temp[k++] = mat[i][j];
// sort temp[]
sort(temp, temp + k);
// copy the elements of temp[] one by one
// in mat[][]
k = 0;
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
mat[i][j] = temp[k++];
}
// function to print the given matrix
void printMat(int mat[SIZE][SIZE], int n)
{
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++)
cout << mat[i][j] << " ";
cout << endl;
}
}
// Driver program to test above
int main()
{
int mat[SIZE][SIZE] = { { 5, 4, 7 },
{ 1, 3, 8 },
{ 2, 9, 6 } };
int n = 3;
cout << "Original Matrix:\n";
printMat(mat, n);
sortMat(mat, n);
cout << "\nMatrix After Sorting:\n";
printMat(mat, n);
return 0;
} | quadratic | quadratic |
// C++ program to find median of a matrix
// sorted row wise
#include<bits/stdc++.h>
using namespace std;
const int MAX = 100;
// function to find median in the matrix
int binaryMedian(int m[][MAX], int r ,int c)
{
int min = INT_MAX, max = INT_MIN;
for (int i=0; i<r; i++)
{
// Finding the minimum element
if (m[i][0] < min)
min = m[i][0];
// Finding the maximum element
if (m[i][c-1] > max)
max = m[i][c-1];
}
int desired = (r * c + 1) / 2;
while (min < max)
{
int mid = min + (max - min) / 2;
int place = 0;
// Find count of elements smaller than or equal to mid
for (int i = 0; i < r; ++i)
place += upper_bound(m[i], m[i]+c, mid) - m[i];
if (place < desired)
min = mid + 1;
else
max = mid;
}
return min;
}
// driver program to check above functions
int main()
{
int r = 3, c = 3;
int m[][MAX]= { {1,3,5}, {2,6,9}, {3,6,9} };
cout << "Median is " << binaryMedian(m, r, c) << endl;
return 0;
} | constant | nlogn |
// C++ program to print Lower
// triangular and Upper triangular
// matrix of an array
#include<iostream>
using namespace std;
// Function to form
// lower triangular matrix
void lower(int matrix[3][3], int row, int col)
{
int i, j;
for (i = 0; i < row; i++)
{
for (j = 0; j < col; j++)
{
if (i < j)
{
cout << "0" << " ";
}
else
cout << matrix[i][j] << " ";
}
cout << endl;
}
}
// Function to form upper triangular matrix
void upper(int matrix[3][3], int row, int col)
{
int i, j;
for (i = 0; i < row; i++)
{
for (j = 0; j < col; j++)
{
if (i > j)
{
cout << "0" << " ";
}
else
cout << matrix[i][j] << " ";
}
cout << endl;
}
}
// Driver Code
int main()
{
int matrix[3][3] = {{1, 2, 3},
{4, 5, 6},
{7, 8, 9}};
int row = 3, col = 3;
cout << "Lower triangular matrix: \n";
lower(matrix, row, col);
cout << "Upper triangular matrix: \n";
upper(matrix, row, col);
return 0;
} | constant | quadratic |
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
vector<int> spiralOrder(vector<vector<int> >& matrix)
{
int m = matrix.size(), n = matrix[0].size();
vector<int> ans;
if (m == 0)
return ans;
vector<vector<bool> > seen(m, vector<bool>(n, false));
int dr[] = { 0, 1, 0, -1 };
int dc[] = { 1, 0, -1, 0 };
int x = 0, y = 0, di = 0;
// Iterate from 0 to m * n - 1
for (int i = 0; i < m * n; i++) {
ans.push_back(matrix[x][y]);
// on normal geeksforgeeks ui page it is showing
// 'ans.push_back(matrix[x])' which gets copied as
// this only and gives error on compilation,
seen[x][y] = true;
int newX = x + dr[di];
int newY = y + dc[di];
if (0 <= newX && newX < m && 0 <= newY && newY < n
&& !seen[newX][newY]) {
x = newX;
y = newY;
}
else {
di = (di + 1) % 4;
x += dr[di];
y += dc[di];
}
}
return ans;
}
// Driver code
int main()
{
vector<vector<int> > a{ { 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 } };
// Function call
for (int x : spiralOrder(a)) {
cout << x << " ";
}
return 0;
}
// This code is contributed by Yashvendra Singh | linear | linear |
// C++ Program to print a matrix spirally
#include <bits/stdc++.h>
using namespace std;
#define R 4
#define C 4
void spiralPrint(int m, int n, int a[R][C])
{
int i, k = 0, l = 0;
/* k - starting row index
m - ending row index
l - starting column index
n - ending column index
i - iterator
*/
while (k < m && l < n) {
/* Print the first row from
the remaining rows */
for (i = l; i < n; ++i) {
cout << a[k][i] << " ";
}
k++;
/* Print the last column
from the remaining columns */
for (i = k; i < m; ++i) {
cout << a[i][n - 1] << " ";
}
n--;
/* Print the last row from
the remaining rows */
if (k < m) {
for (i = n - 1; i >= l; --i) {
cout << a[m - 1][i] << " ";
}
m--;
}
/* Print the first column from
the remaining columns */
if (l < n) {
for (i = m - 1; i >= k; --i) {
cout << a[i][l] << " ";
}
l++;
}
}
}
/* Driver Code */
int main()
{
int a[R][C] = { { 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 } };
// Function Call
spiralPrint(R, C, a);
return 0;
}
// This is code is contributed by rathbhupendra | constant | quadratic |
// C++. program for the above approach
#include <bits/stdc++.h>
using namespace std;
#define R 4
#define C 4
// Function for printing matrix in spiral
// form i, j: Start index of matrix, row
// and column respectively m, n: End index
// of matrix row and column respectively
void print(int arr[R][C], int i, int j, int m, int n)
{
// If i or j lies outside the matrix
if (i >= m or j >= n)
return;
// Print First Row
for (int p = j; p < n; p++)
cout << arr[i][p] << " ";
// Print Last Column
for (int p = i + 1; p < m; p++)
cout << arr[p][n - 1] << " ";
// Print Last Row, if Last and
// First Row are not same
if ((m - 1) != i)
for (int p = n - 2; p >= j; p--)
cout << arr[m - 1][p] << " ";
// Print First Column, if Last and
// First Column are not same
if ((n - 1) != j)
for (int p = m - 2; p > i; p--)
cout << arr[p][j] << " ";
print(arr, i + 1, j + 1, m - 1, n - 1);
}
// Driver Code
int main()
{
int a[R][C] = { { 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 } };
// Function Call
print(a, 0, 0, R, C);
return 0;
}
// This Code is contributed by Ankur Goel | constant | quadratic |
// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
#define R 4
#define C 4
bool isInBounds(int i, int j)
{
if (i < 0 || i >= R || j < 0 || j >= C)
return false;
return true;
}
// check if the position is blocked
bool isBlocked(int matrix[R][C], int i, int j)
{
if (!isInBounds(i, j))
return true;
if (matrix[i][j] == -1)
return true;
return false;
}
// DFS code to traverse spirally
void spirallyDFSTravserse(int matrix[R][C], int i, int j,
int dir, vector<int>& res)
{
if (isBlocked(matrix, i, j))
return;
bool allBlocked = true;
for (int k = -1; k <= 1; k += 2) {
allBlocked = allBlocked
&& isBlocked(matrix, k + i, j)
&& isBlocked(matrix, i, j + k);
}
res.push_back(matrix[i][j]);
matrix[i][j] = -1;
if (allBlocked) {
return;
}
// dir: 0 - right, 1 - down, 2 - left, 3 - up
int nxt_i = i;
int nxt_j = j;
int nxt_dir = dir;
if (dir == 0) {
if (!isBlocked(matrix, i, j + 1)) {
nxt_j++;
}
else {
nxt_dir = 1;
nxt_i++;
}
}
else if (dir == 1) {
if (!isBlocked(matrix, i + 1, j)) {
nxt_i++;
}
else {
nxt_dir = 2;
nxt_j--;
}
}
else if (dir == 2) {
if (!isBlocked(matrix, i, j - 1)) {
nxt_j--;
}
else {
nxt_dir = 3;
nxt_i--;
}
}
else if (dir == 3) {
if (!isBlocked(matrix, i - 1, j)) {
nxt_i--;
}
else {
nxt_dir = 0;
nxt_j++;
}
}
spirallyDFSTravserse(matrix, nxt_i, nxt_j, nxt_dir,
res);
}
// To traverse spirally
vector<int> spirallyTraverse(int matrix[R][C])
{
vector<int> res;
spirallyDFSTravserse(matrix, 0, 0, 0, res);
return res;
}
// Driver Code
int main()
{
int a[R][C] = { { 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 } };
// Function Call
vector<int> res = spirallyTraverse(a);
int size = res.size();
for (int i = 0; i < size; ++i)
cout << res[i] << " ";
cout << endl;
return 0;
} // code contributed by Ephi F | constant | quadratic |
// C++ program to find unique element in matrix
#include <bits/stdc++.h>
using namespace std;
#define R 4
#define C 4
// function that calculate unique element
int unique(int mat[R][C], int n, int m)
{
// declare map for hashing
unordered_map<int, int> mp;
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
// increase freq of mat[i][j] in map
mp[mat[i][j]]++;
int flag = false;
// print unique element
for (auto p : mp) {
if (p.second == 1) {
cout << p.first << " ";
flag = 1;
}
}
if (!flag) {
cout << "No unique element in the matrix";
}
}
// Driver program
int main()
{
int mat[R][C] = { { 1, 2, 3, 20 },
{ 5, 6, 20, 25 },
{ 1, 3, 5, 6 },
{ 6, 7, 8, 15 } };
// function that calculate unique element
unique(mat, R, C);
return 0;
} | quadratic | quadratic |
// CPP Program to swap diagonal of a matrix
#include <bits/stdc++.h>
using namespace std;
// size of square matrix
#define N 3
// Function to swap diagonal of matrix
void swapDiagonal(int matrix[][N]) {
for (int i = 0; i < N; i++)
swap(matrix[i][i], matrix[i][N - i - 1]);
}
// Driver Code
int main() {
int matrix[N][N] = {{0, 1, 2},
{3, 4, 5},
{6, 7, 8}};
swapDiagonal(matrix);
// Displaying modified matrix
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++)
cout << matrix[i][j] << " ";
cout << endl;
}
return 0;
} | constant | quadratic |
// CPP program for finding max path in matrix
#include <bits/stdc++.h>
#define N 4
#define M 6
using namespace std;
// To calculate max path in matrix
int findMaxPath(int mat[][M])
{
for (int i = 1; i < N; i++) {
for (int j = 0; j < M; j++) {
// When all paths are possible
if (j > 0 && j < M - 1)
mat[i][j] += max(mat[i - 1][j],
max(mat[i - 1][j - 1],
mat[i - 1][j + 1]));
// When diagonal right is not possible
else if (j > 0)
mat[i][j] += max(mat[i - 1][j],
mat[i - 1][j - 1]);
// When diagonal left is not possible
else if (j < M - 1)
mat[i][j] += max(mat[i - 1][j],
mat[i - 1][j + 1]);
// Store max path sum
}
}
int res = 0;
for (int j = 0; j < M; j++)
res = max(mat[N-1][j], res);
return res;
}
// Driver program to check findMaxPath
int main()
{
int mat1[N][M] = { { 10, 10, 2, 0, 20, 4 },
{ 1, 0, 0, 30, 2, 5 },
{ 0, 10, 4, 0, 2, 0 },
{ 1, 0, 2, 20, 0, 4 } };
cout << findMaxPath(mat1) << endl;
return 0;
} | constant | quadratic |
// C++ code to move matrix elements
// in given direction with add
// element with same value
#include <bits/stdc++.h>
using namespace std;
#define MAX 50
// Function to shift the matrix
// in the given direction
void moveMatrix(char d[], int n,
int a[MAX][MAX])
{
// For right shift move.
if (d[0] == 'r') {
// for each row from
// top to bottom
for (int i = 0; i < n; i++) {
vector<int> v, w;
int j;
// for each element of
// row from right to left
for (j = n - 1; j >= 0; j--) {
// if not 0
if (a[i][j])
v.push_back(a[i][j]);
}
// for each temporary array
for (j = 0; j < v.size(); j++) {
// if two element have same
// value at consecutive position.
if (j < v.size() - 1 && v[j] == v[j + 1]) {
// insert only one element
// as sum of two same element.
w.push_back(2 * v[j]);
j++;
}
else
w.push_back(v[j]);
}
// filling the each row element to 0.
for (j = 0; j < n; j++)
a[i][j] = 0;
j = n - 1;
// Copying the temporary
// array to the current row.
for (auto it = w.begin();
it != w.end(); it++)
a[i][j--] = *it;
}
}
// for left shift move
else if (d[0] == 'l') {
// for each row
for (int i = 0; i < n; i++) {
vector<int> v, w;
int j;
// for each element of the
// row from left to right
for (j = 0; j < n; j++) {
// if not 0
if (a[i][j])
v.push_back(a[i][j]);
}
// for each temporary array
for (j = 0; j < v.size(); j++) {
// if two element have same
// value at consecutive position.
if (j < v.size() - 1 && v[j] == v[j + 1]) {
// insert only one element
// as sum of two same element.
w.push_back(2 * v[j]);
j++;
}
else
w.push_back(v[j]);
}
// filling the each row element to 0.
for (j = 0; j < n; j++)
a[i][j] = 0;
j = 0;
for (auto it = w.begin();
it != w.end(); it++)
a[i][j++] = *it;
}
}
// for down shift move.
else if (d[0] == 'd') {
// for each column
for (int i = 0; i < n; i++) {
vector<int> v, w;
int j;
// for each element of
// column from bottom to top
for (j = n - 1; j >= 0; j--) {
// if not 0
if (a[j][i])
v.push_back(a[j][i]);
}
// for each temporary array
for (j = 0; j < v.size(); j++) {
// if two element have same
// value at consecutive position.
if (j < v.size() - 1 && v[j] == v[j + 1]) {
// insert only one element
// as sum of two same element.
w.push_back(2 * v[j]);
j++;
}
else
w.push_back(v[j]);
}
// filling the each column element to 0.
for (j = 0; j < n; j++)
a[j][i] = 0;
j = n - 1;
// Copying the temporary array
// to the current column
for (auto it = w.begin();
it != w.end(); it++)
a[j--][i] = *it;
}
}
// for up shift move
else if (d[0] == 'u') {
// for each column
for (int i = 0; i < n; i++) {
vector<int> v, w;
int j;
// for each element of column
// from top to bottom
for (j = 0; j < n; j++) {
// if not 0
if (a[j][i])
v.push_back(a[j][i]);
}
// for each temporary array
for (j = 0; j < v.size(); j++) {
// if two element have same
// value at consecutive position.
if (j < v.size() - 1 && v[j] == v[j + 1]) {
// insert only one element
// as sum of two same element.
w.push_back(2 * v[j]);
j++;
}
else
w.push_back(v[j]);
}
// filling the each column element to 0.
for (j = 0; j < n; j++)
a[j][i] = 0;
j = 0;
// Copying the temporary array
// to the current column
for (auto it = w.begin();
it != w.end(); it++)
a[j++][i] = *it;
}
}
}
// Driven Program
int main()
{
char d[2] = "l";
int n = 5;
int a[MAX][MAX] = { { 32, 3, 3, 3, 3 },
{ 0, 0, 1, 0, 0 },
{ 10, 10, 8, 1, 2 },
{ 0, 0, 0, 0, 1 },
{ 4, 5, 6, 7, 8 } };
moveMatrix(d, n, a);
// Printing the final array
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++)
cout << a[i][j] << " ";
cout << endl;
}
return 0;
} | linear | quadratic |
// C++ program to find number of subarrays
// having product exactly equal to k.
#include <bits/stdc++.h>
using namespace std;
// Function to find number of subarrays
// having product equal to 1.
int countOne(int arr[], int n){
int i = 0;
// To store number of ones in
// current segment of all 1s.
int len = 0;
// To store number of subarrays
// having product equal to 1.
int ans = 0;
while(i < n){
// If current element is 1, then
// find length of segment of 1s
// starting from current element.
if(arr[i] == 1){
len = 0;
while(i < n && arr[i] == 1){
i++;
len++;
}
// add number of possible
// subarrays of 1 to result.
ans += (len*(len+1)) / 2;
}
i++;
}
return ans;
}
/// Function to find number of subarrays having
/// product exactly equal to k.
int findSubarrayCount(int arr[], int n, int k)
{
int start = 0, endval = 0, p = 1,
countOnes = 0, res = 0;
while (endval < n)
{
p *= (arr[endval]);
// If product is greater than k then we need to decrease
// it. This could be done by shifting starting point of
// sliding window one place to right at a time and update
// product accordingly.
if(p > k)
{
while(start <= endval && p > k)
{
p /= arr[start];
start++;
}
}
if(p == k)
{
// Count number of succeeding ones.
countOnes = 0;
while(endval + 1 < n && arr[endval + 1] == 1)
{
countOnes++;
endval++;
}
// Update result by adding both new subarray
// and effect of succeeding ones.
res += (countOnes + 1);
// Update sliding window and result according
// to change in sliding window. Here preceding
// 1s have same effect on subarray as succeeding
// 1s, so simply add.
while(start <= endval && arr[start] == 1 && k!=1)
{
res += (countOnes + 1);
start++;
}
// Move start to correct position to find new
// subarray and update product accordingly.
p /= arr[start];
start++;
}
endval++;
}
return res;
}
// Driver code
int main()
{
int arr1[] = { 2, 1, 1, 1, 3, 1, 1, 4};
int n1 = sizeof(arr1) / sizeof(arr1[0]);
int k = 1;
if(k != 1)
cout << findSubarrayCount(arr1, n1, k) << "\n";
else
cout << countOne(arr1, n1) << "\n";
int arr2[] = { 2, 1, 1, 1, 4, 5};
int n2 = sizeof(arr2) / sizeof(arr2[0]);
k = 4;
if(k != 1)
cout << findSubarrayCount(arr2, n2, k) << "\n";
else
cout << countOne(arr2, n2) << "\n";
return 0;
} | constant | linear |
// CPP program to find all those
// elements of arr1[] that are not
// present in arr2[]
#include <iostream>
using namespace std;
void relativeComplement(int arr1[], int arr2[],
int n, int m) {
int i = 0, j = 0;
while (i < n && j < m) {
// If current element in arr2[] is
// greater, then arr1[i] can't be
// present in arr2[j..m-1]
if (arr1[i] < arr2[j]) {
cout << arr1[i] << " ";
i++;
// Skipping smaller elements of
// arr2[]
} else if (arr1[i] > arr2[j]) {
j++;
// Equal elements found (skipping
// in both arrays)
} else if (arr1[i] == arr2[j]) {
i++;
j++;
}
}
// Printing remaining elements of
// arr1[]
while (i < n)
cout << arr1[i] << " ";
}
// Driver code
int main() {
int arr1[] = {3, 6, 10, 12, 15};
int arr2[] = {1, 3, 5, 10, 16};
int n = sizeof(arr1) / sizeof(arr1[0]);
int m = sizeof(arr2) / sizeof(arr2[0]);
relativeComplement(arr1, arr2, n, m);
return 0;
} | constant | linear |
// Program to make all array equal
#include <bits/stdc++.h>
using namespace std;
// function for calculating min operations
int minOps(int arr[], int n, int k)
{
// max elements of array
int max = *max_element(arr, arr + n);
int res = 0;
// iterate for all elements
for (int i = 0; i < n; i++) {
// check if element can make equal to
// max or not if not then return -1
if ((max - arr[i]) % k != 0)
return -1;
// else update res for required operations
else
res += (max - arr[i]) / k;
}
// return result
return res;
}
// driver program
int main()
{
int arr[] = { 21, 33, 9, 45, 63 };
int n = sizeof(arr) / sizeof(arr[0]);
int k = 6;
cout << minOps(arr, n, k);
return 0;
} | constant | linear |
// C++ code for above approach
#include<bits/stdc++.h>
using namespace std;
int solve(int A[], int B[], int C[], int i, int j, int k)
{
int min_diff, current_diff, max_term;
// calculating min difference from last
// index of lists
min_diff = abs(max(A[i], max(B[j], C[k]))
- min(A[i], min(B[j], C[k])));;
while (i != -1 && j != -1 && k != -1)
{
current_diff = abs(max(A[i], max(B[j], C[k]))
- min(A[i], min(B[j], C[k])));
// checking condition
if (current_diff < min_diff)
min_diff = current_diff;
// calculating max term from list
max_term = max(A[i], max(B[j], C[k]));
// Moving to smaller value in the
// array with maximum out of three.
if (A[i] == max_term)
i -= 1;
else if (B[j] == max_term)
j -= 1;
else
k -= 1;
}
return min_diff;
}
// Driver code
int main()
{
int D[] = { 5, 8, 10, 15 };
int E[] = { 6, 9, 15, 78, 89 };
int F[] = { 2, 3, 6, 6, 8, 8, 10 };
int nD = sizeof(D) / sizeof(D[0]);
int nE = sizeof(E) / sizeof(E[0]);
int nF = sizeof(F) / sizeof(F[0]);
cout << solve(D, E, F, nD-1, nE-1, nF-1);
return 0;
}
// This code is contributed by Ravi Maurya. | constant | linear |
/* A program to convert Binary Tree to Binary Search Tree */
#include <iostream>
using namespace std;
/* A binary tree node structure */
struct node {
int data;
struct node* left;
struct node* right;
};
/* A helper function that stores inorder
traversal of a tree rooted with node */
void storeInorder(struct node* node, int inorder[], int* index_ptr)
{
// Base Case
if (node == NULL)
return;
/* first store the left subtree */
storeInorder(node->left, inorder, index_ptr);
/* Copy the root's data */
inorder[*index_ptr] = node->data;
(*index_ptr)++; // increase index for next entry
/* finally store the right subtree */
storeInorder(node->right, inorder, index_ptr);
}
/* A helper function to count nodes in a Binary Tree */
int countNodes(struct node* root)
{
if (root == NULL)
return 0;
return countNodes(root->left) + countNodes(root->right) + 1;
}
// Following function is needed for library function qsort()
int compare(const void* a, const void* b)
{
return (*(int*)a - *(int*)b);
}
/* A helper function that copies contents of arr[]
to Binary Tree. This function basically does Inorder
traversal of Binary Tree and one by one copy arr[]
elements to Binary Tree nodes */
void arrayToBST(int* arr, struct node* root, int* index_ptr)
{
// Base Case
if (root == NULL)
return;
/* first update the left subtree */
arrayToBST(arr, root->left, index_ptr);
/* Now update root's data and increment index */
root->data = arr[*index_ptr];
(*index_ptr)++;
/* finally update the right subtree */
arrayToBST(arr, root->right, index_ptr);
}
// This function converts a given Binary Tree to BST
void binaryTreeToBST(struct node* root)
{
// base case: tree is empty
if (root == NULL)
return;
/* Count the number of nodes in Binary Tree so that
we know the size of temporary array to be created */
int n = countNodes(root);
// Create a temp array arr[] and store inorder
// traversal of tree in arr[]
int* arr = new int[n];
int i = 0;
storeInorder(root, arr, &i);
// Sort the array using library function for quick sort
qsort(arr, n, sizeof(arr[0]), compare);
// Copy array elements back to Binary Tree
i = 0;
arrayToBST(arr, root, &i);
// delete dynamically allocated memory to
// avoid memory leak
delete[] arr;
}
/* Utility function to create a new Binary Tree node */
struct node* newNode(int data)
{
struct node* temp = new struct node;
temp->data = data;
temp->left = NULL;
temp->right = NULL;
return temp;
}
/* Utility function to print inorder
traversal of Binary Tree */
void printInorder(struct node* node)
{
if (node == NULL)
return;
/* first recur on left child */
printInorder(node->left);
/* then print the data of node */
cout <<" "<< node->data;
/* now recur on right child */
printInorder(node->right);
}
/* Driver function to test above functions */
int main()
{
struct node* root = NULL;
/* Constructing tree given in the above figure
10
/ \
30 15
/ \
20 5 */
root = newNode(10);
root->left = newNode(30);
root->right = newNode(15);
root->left->left = newNode(20);
root->right->right = newNode(5);
// convert Binary Tree to BST
binaryTreeToBST(root);
cout <<"Following is Inorder Traversal of the converted BST:" << endl ;
printInorder(root);
return 0;
}
// This code is contributed by shivanisinghss2110 | linear | nlogn |
// C++ program to print BST in given range
#include<bits/stdc++.h>
using namespace std;
/* A Binary Tree node */
class TNode
{
public:
int data;
TNode* left;
TNode* right;
};
TNode* newNode(int data);
/* A function that constructs Balanced
Binary Search Tree from a sorted array */
TNode* sortedArrayToBST(int arr[],
int start, int end)
{
/* Base Case */
if (start > end)
return NULL;
/* Get the middle element and make it root */
int mid = (start + end)/2;
TNode *root = newNode(arr[mid]);
/* Recursively construct the left subtree
and make it left child of root */
root->left = sortedArrayToBST(arr, start,
mid - 1);
/* Recursively construct the right subtree
and make it right child of root */
root->right = sortedArrayToBST(arr, mid + 1, end);
return root;
}
/* Helper function that allocates a new node
with the given data and NULL left and right
pointers. */
TNode* newNode(int data)
{
TNode* node = new TNode();
node->data = data;
node->left = NULL;
node->right = NULL;
return node;
}
/* A utility function to print
preorder traversal of BST */
void preOrder(TNode* node)
{
if (node == NULL)
return;
cout << node->data << " ";
preOrder(node->left);
preOrder(node->right);
}
// Driver Code
int main()
{
int arr[] = {1, 2, 3, 4, 5, 6, 7};
int n = sizeof(arr) / sizeof(arr[0]);
/* Convert List to BST */
TNode *root = sortedArrayToBST(arr, 0, n-1);
cout << "PreOrder Traversal of constructed BST \n";
preOrder(root);
return 0;
}
// This code is contributed by rathbhupendra | logn | linear |
// C++ program to transform a BST to sum tree
#include<iostream>
using namespace std;
// A BST node
struct Node
{
int data;
struct Node *left, *right;
};
// A utility function to create a new Binary Tree Node
struct Node *newNode(int item)
{
struct Node *temp = new Node;
temp->data = item;
temp->left = temp->right = NULL;
return temp;
}
// Recursive function to transform a BST to sum tree.
// This function traverses the tree in reverse inorder so
// that we have visited all greater key nodes of the currently
// visited node
void transformTreeUtil(struct Node *root, int *sum)
{
// Base case
if (root == NULL) return;
// Recur for right subtree
transformTreeUtil(root->right, sum);
// Update sum
*sum = *sum + root->data;
// Store old sum in current node
root->data = *sum - root->data;
// Recur for left subtree
transformTreeUtil(root->left, sum);
}
// A wrapper over transformTreeUtil()
void transformTree(struct Node *root)
{
int sum = 0; // Initialize sum
transformTreeUtil(root, ∑);
}
// A utility function to print indorder traversal of a
// binary tree
void printInorder(struct Node *root)
{
if (root == NULL) return;
printInorder(root->left);
cout << root->data << " ";
printInorder(root->right);
}
// Driver Program to test above functions
int main()
{
struct Node *root = newNode(11);
root->left = newNode(2);
root->right = newNode(29);
root->left->left = newNode(1);
root->left->right = newNode(7);
root->right->left = newNode(15);
root->right->right = newNode(40);
root->right->right->left = newNode(35);
cout << "Inorder Traversal of given tree\n";
printInorder(root);
transformTree(root);
cout << "\n\nInorder Traversal of transformed tree\n";
printInorder(root);
return 0;
} | linear | linear |
//C++ Program to convert a BST into a Min-Heap
// in O(n) time and in-place
#include <bits/stdc++.h>
using namespace std;
// Node for BST/Min-Heap
struct Node
{
int data;
Node *left, *right;
};
// Utility function for allocating node for BST
Node* newNode(int data)
{
Node* node = new Node;
node->data = data;
node->left = node->right = NULL;
return node;
}
// Utility function to print Min-heap level by level
void printLevelOrder(Node *root)
{
// Base Case
if (root == NULL) return;
// Create an empty queue for level order traversal
queue<Node *> q;
q.push(root);
while (!q.empty())
{
int nodeCount = q.size();
while (nodeCount > 0)
{
Node *node = q.front();
cout << node->data << " ";
q.pop();
if (node->left)
q.push(node->left);
if (node->right)
q.push(node->right);
nodeCount--;
}
cout << endl;
}
}
// A simple recursive function to convert a given
// Binary Search tree to Sorted Linked List
// root --> Root of Binary Search Tree
// head_ref --> Pointer to head node of created
// linked list
void BSTToSortedLL(Node* root, Node** head_ref)
{
// Base cases
if(root == NULL)
return;
// Recursively convert right subtree
BSTToSortedLL(root->right, head_ref);
// insert root into linked list
root->right = *head_ref;
// Change left pointer of previous head
// to point to NULL
if (*head_ref != NULL)
(*head_ref)->left = NULL;
// Change head of linked list
*head_ref = root;
// Recursively convert left subtree
BSTToSortedLL(root->left, head_ref);
}
// Function to convert a sorted Linked
// List to Min-Heap.
// root --> Root of Min-Heap
// head --> Pointer to head node of sorted
// linked list
void SortedLLToMinHeap(Node* &root, Node* head)
{
// Base Case
if (head == NULL)
return;
// queue to store the parent nodes
queue<Node *> q;
// The first node is always the root node
root = head;
// advance the pointer to the next node
head = head->right;
// set right child to NULL
root->right = NULL;
// add first node to the queue
q.push(root);
// run until the end of linked list is reached
while (head)
{
// Take the parent node from the q and remove it from q
Node* parent = q.front();
q.pop();
// Take next two nodes from the linked list and
// Add them as children of the current parent node
// Also in push them into the queue so that
// they will be parents to the future nodes
Node *leftChild = head;
head = head->right; // advance linked list to next node
leftChild->right = NULL; // set its right child to NULL
q.push(leftChild);
// Assign the left child of parent
parent->left = leftChild;
if (head)
{
Node *rightChild = head;
head = head->right; // advance linked list to next node
rightChild->right = NULL; // set its right child to NULL
q.push(rightChild);
// Assign the right child of parent
parent->right = rightChild;
}
}
}
// Function to convert BST into a Min-Heap
// without using any extra space
Node* BSTToMinHeap(Node* &root)
{
// head of Linked List
Node *head = NULL;
// Convert a given BST to Sorted Linked List
BSTToSortedLL(root, &head);
// set root as NULL
root = NULL;
// Convert Sorted Linked List to Min-Heap
SortedLLToMinHeap(root, head);
}
// Driver code
int main()
{
/* Constructing below tree
8
/ \
4 12
/ \ / \
2 6 10 14
*/
Node* root = newNode(8);
root->left = newNode(4);
root->right = newNode(12);
root->right->left = newNode(10);
root->right->right = newNode(14);
root->left->left = newNode(2);
root->left->right = newNode(6);
BSTToMinHeap(root);
/* Output - Min Heap
2
/ \
4 6
/ \ / \
8 10 12 14
*/
printLevelOrder(root);
return 0;
} | linear | linear |
// C++ implementation to convert the given
// BST to Min Heap
#include <bits/stdc++.h>
using namespace std;
// Structure of a node of BST
struct Node {
int data;
Node *left, *right;
};
/* Helper function that allocates a new node
with the given data and NULL left and right
pointers. */
struct Node* getNode(int data)
{
struct Node* newNode = new Node;
newNode->data = data;
newNode->left = newNode->right = NULL;
return newNode;
}
// function prototype for preorder traversal
// of the given tree
void preorderTraversal(Node*);
// function for the inorder traversal of the tree
// so as to store the node values in 'arr' in
// sorted order
void inorderTraversal(Node* root, vector<int>& arr)
{
if (root == NULL)
return;
// first recur on left subtree
inorderTraversal(root->left, arr);
// then copy the data of the node
arr.push_back(root->data);
// now recur for right subtree
inorderTraversal(root->right, arr);
}
// function to convert the given BST to MIN HEAP
// performs preorder traversal of the tree
void BSTToMinHeap(Node* root, vector<int> arr, int* i)
{
if (root == NULL)
return;
// first copy data at index 'i' of 'arr' to
// the node
root->data = arr[++*i];
// then recur on left subtree
BSTToMinHeap(root->left, arr, i);
// now recur on right subtree
BSTToMinHeap(root->right, arr, i);
}
// utility function to convert the given BST to
// MIN HEAP
void convertToMinHeapUtil(Node* root)
{
// vector to store the data of all the
// nodes of the BST
vector<int> arr;
int i = -1;
// inorder traversal to populate 'arr'
inorderTraversal(root, arr);
// BST to MIN HEAP conversion
BSTToMinHeap(root, arr, &i);
}
// function for the preorder traversal of the tree
void preorderTraversal(Node* root)
{
if (!root)
return;
// first print the root's data
cout << root->data << " ";
// then recur on left subtree
preorderTraversal(root->left);
// now recur on right subtree
preorderTraversal(root->right);
}
// Driver program to test above
int main()
{
// BST formation
struct Node* root = getNode(4);
root->left = getNode(2);
root->right = getNode(6);
root->left->left = getNode(1);
root->left->right = getNode(3);
root->right->left = getNode(5);
root->right->right = getNode(7);
// Function call
convertToMinHeapUtil(root);
cout << "Preorder Traversal:" << endl;
preorderTraversal(root);
return 0;
} | linear | linear |
// C++ implementation to construct a BST
// from its level order traversal
#include <bits/stdc++.h>
using namespace std;
// node of a BST
struct Node {
int data;
Node *left, *right;
};
// function to get a new node
Node* getNode(int data)
{
// Allocate memory
Node* newNode = (Node*)malloc(sizeof(Node));
// put in the data
newNode->data = data;
newNode->left = newNode->right = NULL;
return newNode;
}
// function to construct a BST from
// its level order traversal
Node* LevelOrder(Node* root, int data)
{
if (root == NULL) {
root = getNode(data);
return root;
}
if (data <= root->data)
root->left = LevelOrder(root->left, data);
else
root->right = LevelOrder(root->right, data);
return root;
}
Node* constructBst(int arr[], int n)
{
if (n == 0)
return NULL;
Node* root = NULL;
for (int i = 0; i < n; i++)
root = LevelOrder(root, arr[i]);
return root;
}
// function to print the inorder traversal
void inorderTraversal(Node* root)
{
if (!root)
return;
inorderTraversal(root->left);
cout << root->data << " ";
inorderTraversal(root->right);
}
// Driver program to test above
int main()
{
int arr[] = { 7, 4, 12, 3, 6, 8, 1, 5, 10 };
int n = sizeof(arr) / sizeof(arr[0]);
Node* root = constructBst(arr, n);
cout << "Inorder Traversal: ";
inorderTraversal(root);
return 0;
} | linear | nlogn |
// C++ implementation to construct a BST
// from its level order traversal
#include <bits/stdc++.h>
using namespace std;
// node of a BST
struct Node {
int data;
Node *left, *right;
Node(int x)
{
data = x;
right = NULL;
left = NULL;
}
};
// Function to construct a BST from
// its level order traversal
Node* constructBst(int arr[], int n)
{
// Create queue to store the tree nodes
queue<pair<Node*, pair<int, int> > > q;
// If array is empty we return NULL
if (n == 0)
return NULL;
// Create root node and store a copy of it in head
Node *root = new Node(arr[0]), *head = root;
// Push the root node and the initial range
q.push({ root, { INT_MIN, INT_MAX } });
// Loop over the contents of arr to process all the
// elements
for (int i = 1; i < n; i++) {
// Get the node and the range at the front of the
// queue
Node* temp = q.front().first;
pair<int, int> range = q.front().second;
// Check if arr[i] can be a child of the temp node
if (arr[i] > range.first && arr[i] < range.second) {
// Check if arr[i] can be left child
if (arr[i] < temp->data) {
// Set the left child and range
temp->left = new Node(arr[i]);
q.push({ temp->left,
{ range.first, temp->data } });
}
// Check if arr[i] can be left child
else {
// Pop the temp node from queue, set the
// right child and new range
q.pop();
temp->right = new Node(arr[i]);
q.push({ temp->right,
{ temp->data, range.second } });
}
}
else {
q.pop();
i--;
}
}
return head;
}
// Function to print the inorder traversal
void inorderTraversal(Node* root)
{
if (!root)
return;
inorderTraversal(root->left);
cout << root->data << " ";
inorderTraversal(root->right);
}
// Driver program to test above
int main()
{
int arr[] = { 7, 4, 12, 3, 6, 8, 1, 5, 10 };
int n = sizeof(arr) / sizeof(arr[0]);
Node* root = constructBst(arr, n);
cout << "Inorder Traversal: ";
inorderTraversal(root);
return 0;
}
// This code is contributed by Rohit Iyer (rohit_iyer) | linear | linear |
/* CPP program to convert a Binary tree to BST
using sets as containers. */
#include <bits/stdc++.h>
using namespace std;
struct Node {
int data;
struct Node *left, *right;
};
// function to store the nodes in set while
// doing inorder traversal.
void storeinorderInSet(Node* root, set<int>& s)
{
if (!root)
return;
// visit the left subtree first
storeinorderInSet(root->left, s);
// insertion takes order of O(logn) for sets
s.insert(root->data);
// visit the right subtree
storeinorderInSet(root->right, s);
} // Time complexity = O(nlogn)
// function to copy items of set one by one
// to the tree while doing inorder traversal
void setToBST(set<int>& s, Node* root)
{
// base condition
if (!root)
return;
// first move to the left subtree and
// update items
setToBST(s, root->left);
// iterator initially pointing to the
// beginning of set
auto it = s.begin();
// copying the item at beginning of
// set(sorted) to the tree.
root->data = *it;
// now erasing the beginning item from set.
s.erase(it);
// now move to right subtree and update items
setToBST(s, root->right);
} // T(n) = O(nlogn) time
// Converts Binary tree to BST.
void binaryTreeToBST(Node* root)
{
set<int> s;
// populating the set with the tree's
// inorder traversal data
storeinorderInSet(root, s);
// now sets are by default sorted as
// they are implemented using self-
// balancing BST
// copying items from set to the tree
// while inorder traversal which makes a BST
setToBST(s, root);
} // Time complexity = O(nlogn),
// Auxiliary Space = O(n) for set.
// helper function to create a node
Node* newNode(int data)
{
// dynamically allocating memory
Node* temp = new Node();
temp->data = data;
temp->left = temp->right = NULL;
return temp;
}
// function to do inorder traversal
void inorder(Node* root)
{
if (!root)
return;
inorder(root->left);
cout << root->data << " ";
inorder(root->right);
}
int main()
{
Node* root = newNode(5);
root->left = newNode(7);
root->right = newNode(9);
root->right->left = newNode(10);
root->left->left = newNode(1);
root->left->right = newNode(6);
root->right->right = newNode(11);
/* Constructing tree given in the above figure
5
/ \
7 9
/\ / \
1 6 10 11 */
// converting the above Binary tree to BST
binaryTreeToBST(root);
cout << "Inorder traversal of BST is: " << endl;
inorder(root);
return 0;
} | linear | nlogn |
// C++ Code for the above approach
#include <bits/stdc++.h>
using namespace std;
/* A binary tree node has data,
a pointer to left child
and a pointer to right child */
class Node {
public:
int data;
Node* left;
Node* right;
};
// Function to return a new Node
Node* newNode(int data)
{
Node* node = new Node();
node->data = data;
node->left = NULL;
node->right = NULL;
return (node);
}
// Function to convert bst to
// a doubly linked list
void bstTodll(Node* root, Node*& head)
{
// if root is NULL
if (!root)
return;
// Convert right subtree recursively
bstTodll(root->right, head);
// Update root
root->right = head;
// if head is not NULL
if (head) {
// Update left of the head
head->left = root;
}
// Update head
head = root;
// Convert left subtree recursively
bstTodll(root->left, head);
}
// Function to merge two sorted linked list
Node* mergeLinkedList(Node* head1, Node* head2)
{
/*Create head and tail for result list*/
Node* head = NULL;
Node* tail = NULL;
while (head1 && head2) {
if (head1->data < head2->data) {
if (!head)
head = head1;
else {
tail->right = head1;
head1->left = tail;
}
tail = head1;
head1 = head1->right;
}
else {
if (!head)
head = head2;
else {
tail->right = head2;
head2->left = tail;
}
tail = head2;
head2 = head2->right;
}
}
while (head1) {
tail->right = head1;
head1->left = tail;
tail = head1;
head1 = head1->right;
}
while (head2) {
tail->right = head2;
head2->left = tail;
tail = head2;
head2 = head2->right;
}
// Return the created DLL
return head;
}
// function to convert list to bst
Node* sortedListToBST(Node*& head, int n)
{
// if no element is left or head is null
if (n <= 0 || !head)
return NULL;
// Create left part from the list recursively
Node* left = sortedListToBST(head, n / 2);
Node* root = head;
root->left = left;
head = head->right;
// Create left part from the list recursively
root->right = sortedListToBST(head, n - (n / 2) - 1);
// Return the root of BST
return root;
}
// This function merges two balanced BSTs
Node* mergeTrees(Node* root1, Node* root2, int m, int n)
{
// Convert BSTs into sorted Doubly Linked Lists
Node* head1 = NULL;
bstTodll(root1, head1);
head1->left = NULL;
Node* head2 = NULL;
bstTodll(root2, head2);
head2->left = NULL;
// Merge the two sorted lists into one
Node* head = mergeLinkedList(head1, head2);
// Construct a tree from the merged lists
return sortedListToBST(head, m + n);
}
void printInorder(Node* node)
{
// if current node is NULL
if (!node) {
return;
}
printInorder(node->left);
// Print node of current data
cout << node->data << " ";
printInorder(node->right);
}
/* Driver code*/
int main()
{
/* Create following tree as first balanced BST
100
/ \
50 300
/ \
20 70 */
Node* root1 = newNode(100);
root1->left = newNode(50);
root1->right = newNode(300);
root1->left->left = newNode(20);
root1->left->right = newNode(70);
/* Create following tree as second balanced BST
80
/ \
40 120
*/
Node* root2 = newNode(80);
root2->left = newNode(40);
root2->right = newNode(120);
// Function Call
Node* mergedTree = mergeTrees(root1, root2, 5, 3);
cout << "Following is Inorder traversal of the merged "
"tree \n";
printInorder(mergedTree);
return 0;
}
// This code is contributed by Tapesh(tapeshdua420) | constant | linear |
#include <bits/stdc++.h>
using namespace std;
// Structure of a BST Node
class node
{
public:
int data;
node *left;
node *right;
};
//.................... START OF STACK RELATED STUFF....................
// A stack node
class snode
{
public:
node *t;
snode *next;
};
// Function to add an element k to stack
void push(snode **s, node *k)
{
snode *tmp = new snode();
//perform memory check here
tmp->t = k;
tmp->next = *s;
(*s) = tmp;
}
// Function to pop an element t from stack
node *pop(snode **s)
{
node *t;
snode *st;
st=*s;
(*s) = (*s)->next;
t = st->t;
free(st);
return t;
}
// Function to check whether the stack is empty or not
int isEmpty(snode *s)
{
if (s == NULL )
return 1;
return 0;
}
//.................... END OF STACK RELATED STUFF....................
/* Utility function to create a new Binary Tree node */
node* newNode (int data)
{
node *temp = new node;
temp->data = data;
temp->left = NULL;
temp->right = NULL;
return temp;
}
/* A utility function to print Inorder traversal of a Binary Tree */
void inorder(node *root)
{
if (root != NULL)
{
inorder(root->left);
cout<<root->data<<" ";
inorder(root->right);
}
}
// The function to print data of two BSTs in sorted order
void merge(node *root1, node *root2)
{
// s1 is stack to hold nodes of first BST
snode *s1 = NULL;
// Current node of first BST
node *current1 = root1;
// s2 is stack to hold nodes of second BST
snode *s2 = NULL;
// Current node of second BST
node *current2 = root2;
// If first BST is empty, then output is inorder
// traversal of second BST
if (root1 == NULL)
{
inorder(root2);
return;
}
// If second BST is empty, then output is inorder
// traversal of first BST
if (root2 == NULL)
{
inorder(root1);
return ;
}
// Run the loop while there are nodes not yet printed.
// The nodes may be in stack(explored, but not printed)
// or may be not yet explored
while (current1 != NULL || !isEmpty(s1) ||
current2 != NULL || !isEmpty(s2))
{
// Following steps follow iterative Inorder Traversal
if (current1 != NULL || current2 != NULL )
{
// Reach the leftmost node of both BSTs and push ancestors of
// leftmost nodes to stack s1 and s2 respectively
if (current1 != NULL)
{
push(&s1, current1);
current1 = current1->left;
}
if (current2 != NULL)
{
push(&s2, current2);
current2 = current2->left;
}
}
else
{
// If we reach a NULL node and either of the stacks is empty,
// then one tree is exhausted, print the other tree
if (isEmpty(s1))
{
while (!isEmpty(s2))
{
current2 = pop (&s2);
current2->left = NULL;
inorder(current2);
}
return ;
}
if (isEmpty(s2))
{
while (!isEmpty(s1))
{
current1 = pop (&s1);
current1->left = NULL;
inorder(current1);
}
return ;
}
// Pop an element from both stacks and compare the
// popped elements
current1 = pop(&s1);
current2 = pop(&s2);
// If element of first tree is smaller, then print it
// and push the right subtree. If the element is larger,
// then we push it back to the corresponding stack.
if (current1->data < current2->data)
{
cout<<current1->data<<" ";
current1 = current1->right;
push(&s2, current2);
current2 = NULL;
}
else
{
cout<<current2->data<<" ";
current2 = current2->right;
push(&s1, current1);
current1 = NULL;
}
}
}
}
/* Driver program to test above functions */
int main()
{
node *root1 = NULL, *root2 = NULL;
/* Let us create the following tree as first tree
3
/ \
1 5
*/
root1 = newNode(3);
root1->left = newNode(1);
root1->right = newNode(5);
/* Let us create the following tree as second tree
4
/ \
2 6
*/
root2 = newNode(4);
root2->left = newNode(2);
root2->right = newNode(6);
// Print sorted nodes of both trees
merge(root1, root2);
return 0;
}
//This code is contributed by rathbhupendra | logn | linear |
#include <bits/stdc++.h>
using namespace std;
// Structure of a BST Node
class Node {
public:
int val;
Node* left;
Node* right;
};
/* Utility function to create a new Binary Tree Node */
Node* newNode(int data)
{
Node* temp = new Node;
temp->val = data;
temp->left = nullptr;
temp->right = nullptr;
return temp;
}
vector<int> mergeTwoBST(Node* root1, Node* root2)
{
vector<int> res;
stack<Node*> s1, s2;
while (root1 || root2 || !s1.empty() || !s2.empty()) {
while (root1) {
s1.push(root1);
root1 = root1->left;
}
while (root2) {
s2.push(root2);
root2 = root2->left;
}
// Step 3 Case 1:-
if (s2.empty()
|| (!s1.empty()
&& s1.top()->val <= s2.top()->val)) {
root1 = s1.top();
s1.pop();
res.push_back(root1->val);
root1 = root1->right;
}
// Step 3 case 2 :-
else {
root2 = s2.top();
s2.pop();
res.push_back(root2->val);
root2 = root2->right;
}
}
return res;
}
/* Driver program to test above functions */
int main()
{
Node *root1 = nullptr, *root2 = nullptr;
/* Let us create the following tree as first tree
3
/ \
1 5
*/
root1 = newNode(3);
root1->left = newNode(1);
root1->right = newNode(5);
/* Let us create the following tree as second tree
4
/ \
2 6
*/
root2 = newNode(4);
root2->left = newNode(2);
root2->right = newNode(6);
// Print sorted Nodes of both trees
vector<int> ans = mergeTwoBST(root1, root2);
for (auto it : ans)
cout << it << " ";
return 0;
}
// This code is contributed by Aditya kumar (adityakumar129) | logn | linear |
// C++ program to find minimum value node in binary search
// Tree.
#include <bits/stdc++.h>
using namespace std;
/* A binary tree node has data, pointer to left child
and a pointer to right child */
struct node {
int data;
struct node* left;
struct node* right;
};
/* Helper function that allocates a new node
with the given data and NULL left and right
pointers. */
struct node* newNode(int data)
{
struct node* node
= (struct node*)malloc(sizeof(struct node));
node->data = data;
node->left = NULL;
node->right = NULL;
return (node);
}
/* Give a binary search tree and a number,
inserts a new node with the given number in
the correct place in the tree. Returns the new
root pointer which the caller should then use
(the standard trick to avoid using reference
parameters). */
struct node* insert(struct node* node, int data)
{
/* 1. If the tree is empty, return a new,
single node */
if (node == NULL)
return (newNode(data));
else {
/* 2. Otherwise, recur down the tree */
if (data <= node->data)
node->left = insert(node->left, data);
else
node->right = insert(node->right, data);
/* return the (unchanged) node pointer */
return node;
}
}
/* Given a non-empty binary search tree,
return the minimum data value found in that
tree. Note that the entire tree does not need
to be searched. */
int minValue(struct node* node)
{
struct node* current = node;
/* loop down to find the leftmost leaf */
while (current->left != NULL) {
current = current->left;
}
return (current->data);
}
/* Driver Code*/
int main()
{
struct node* root = NULL;
root = insert(root, 4);
insert(root, 2);
insert(root, 1);
insert(root, 3);
insert(root, 6);
insert(root, 5);
// Function call
cout << "\n Minimum value in BST is " << minValue(root);
getchar();
return 0;
}
// This code is contributed by Mukul Singh. | linear | linear |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.