Datasets:

Tasks:
Other
Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
Massive-STEPS-Tokyo / README.md
w11wo's picture
update dataset card
aec2047
metadata
license: apache-2.0
task_categories:
  - other
tags:
  - poi-recommendation
  - trajectory-prediction
  - human-mobility
dataset_info:
  - config_name: default
    features:
      - name: user_id
        dtype: string
      - name: trail_id
        dtype: string
      - name: inputs
        dtype: string
      - name: targets
        dtype: string
    splits:
      - name: train
        num_bytes: 1636839
        num_examples: 3836
      - name: validation
        num_bytes: 231399
        num_examples: 549
      - name: test
        num_bytes: 469775
        num_examples: 1097
    download_size: 590806
    dataset_size: 2338013
  - config_name: tabular
    features:
      - name: trail_id
        dtype: string
      - name: user_id
        dtype: int64
      - name: venue_id
        dtype: int64
      - name: latitude
        dtype: float64
      - name: longitude
        dtype: float64
      - name: name
        dtype: string
      - name: address
        dtype: string
      - name: venue_category
        dtype: string
      - name: venue_category_id
        dtype: string
      - name: venue_category_id_code
        dtype: int64
      - name: venue_city
        dtype: string
      - name: venue_city_latitude
        dtype: float64
      - name: venue_city_longitude
        dtype: float64
      - name: venue_country
        dtype: string
      - name: timestamp
        dtype: string
    splits:
      - name: train
        num_bytes: 2005420
        num_examples: 9691
      - name: validation
        num_bytes: 281184
        num_examples: 1357
      - name: test
        num_bytes: 577126
        num_examples: 2791
    download_size: 762968
    dataset_size: 2863730
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: validation
        path: data/validation-*
      - split: test
        path: data/test-*
  - config_name: tabular
    data_files:
      - split: train
        path: tabular/train-*
      - split: validation
        path: tabular/validation-*
      - split: test
        path: tabular/test-*

Massive-STEPS-Tokyo

huggingface huggingface arXiv GitHub

Dataset Summary

Massive-STEPS is a large-scale dataset of semantic trajectories intended for understanding POI check-ins. The dataset is derived from the Semantic Trails Dataset and Foursquare Open Source Places, and includes check-in data from 15 cities across 10 countries. The dataset is designed to facilitate research in various domains, including trajectory prediction, POI recommendation, and urban modeling. Massive-STEPS emphasizes the importance of geographical diversity, scale, semantic richness, and reproducibility in trajectory datasets.

City URL
Bandung ๐Ÿ‡ฎ๐Ÿ‡ฉ ๐Ÿค—
Beijing ๐Ÿ‡จ๐Ÿ‡ณ ๐Ÿค—
Istanbul ๐Ÿ‡น๐Ÿ‡ท ๐Ÿค—
Jakarta ๐Ÿ‡ฎ๐Ÿ‡ฉ ๐Ÿค—
Kuwait City ๐Ÿ‡ฐ๐Ÿ‡ผ ๐Ÿค—
Melbourne ๐Ÿ‡ฆ๐Ÿ‡บ ๐Ÿค—
Moscow ๐Ÿ‡ท๐Ÿ‡บ ๐Ÿค—
New York ๐Ÿ‡บ๐Ÿ‡ธ ๐Ÿค—
Palembang ๐Ÿ‡ฎ๐Ÿ‡ฉ ๐Ÿค—
Petaling Jaya ๐Ÿ‡ฒ๐Ÿ‡พ ๐Ÿค—
Sรฃo Paulo ๐Ÿ‡ง๐Ÿ‡ท ๐Ÿค—
Shanghai ๐Ÿ‡จ๐Ÿ‡ณ ๐Ÿค—
Sydney ๐Ÿ‡ฆ๐Ÿ‡บ ๐Ÿค—
Tangerang ๐Ÿ‡ฎ๐Ÿ‡ฉ ๐Ÿค—
Tokyo ๐Ÿ‡ฏ๐Ÿ‡ต ๐Ÿค—

Dataset Sources

The dataset is derived from two sources:

  1. Semantic Trails Dataset:
    • Repository: D2KLab/semantic-trails
    • Paper: Monti, D., Palumbo, E., Rizzo, G., Troncy, R., Ehrhart, T., & Morisio, M. (2018). Semantic trails of city explorations: How do we live a city. arXiv preprint arXiv:1812.04367.
  2. Foursquare Open Source Places:

Dataset Structure

.
โ”œโ”€โ”€ tokyo_checkins_test.csv # test set check-ins
โ”œโ”€โ”€ tokyo_checkins_train.csv # train set check-ins
โ”œโ”€โ”€ tokyo_checkins_validation.csv # validation set check-ins
โ”œโ”€โ”€ tokyo_checkins.csv # all check-ins
โ”œโ”€โ”€ data # trajectory prompts
โ”‚   โ”œโ”€โ”€ test-00000-of-00001.parquet
โ”‚   โ”œโ”€โ”€ train-00000-of-00001.parquet
โ”‚   โ””โ”€โ”€ validation-00000-of-00001.parquet
โ””โ”€โ”€ README.md

Data Instances

An example of entries in tokyo_checkins.csv:

trail_id,user_id,venue_id,latitude,longitude,name,address,venue_category,venue_category_id,venue_category_id_code,venue_city,venue_city_latitude,venue_city_longitude,venue_country,timestamp
2018_18009,901,1425,35.59492076661418,139.34504702908666,JR ๆฉ‹ๆœฌ้ง… (JR Hashimoto Sta.),็ท‘ๅŒบๆฉ‹ๆœฌ6-1-25,Train Station,4bf58dd8d48988d129951735,59,Hachiลji,35.65583,139.32389,JP,2017-10-03 14:55:00
2018_18009,901,191,35.595137562150846,139.34373266637422,ไบฌ็Ž‹ ๆฉ‹ๆœฌ้ง… (KO45),็ท‘ๅŒบๆฉ‹ๆœฌ2-3-2,Train Station,4bf58dd8d48988d129951735,59,Hachiลji,35.65583,139.32389,JP,2017-10-03 14:59:00
2018_18010,901,38,35.64444469921653,139.35434304296533,ๅŒ—้‡Ž้ง… (Kitano Sta.) (KO33),ๆ‰“่ถŠ็”บ335-1,Train Station,4bf58dd8d48988d129951735,59,Hachiลji,35.65583,139.32389,JP,2017-10-04 11:57:00
2018_18010,901,3,35.65808032639735,139.34275103595496,ไบฌ็Ž‹ๅ…ซ็Ž‹ๅญ้ง… (Keiล-hachiลji Sta.),ๆ˜Ž็ฅž็”บ3-27-1,Train Station,4bf58dd8d48988d129951735,59,Hachiลji,35.65583,139.32389,JP,2017-10-04 12:00:00
2018_18010,901,2684,35.65829873991196,139.34315085411072,ใƒญใƒผใ‚ฝใƒณ ไบฌ็Ž‹ๅ…ซ็Ž‹ๅญ้ง…ๅ‰ๅบ—,ๆ˜Ž็ฅž็”บ4-6-13,Convenience Store,4d954b0ea243a5684a65b473,215,Hachiลji,35.65583,139.32389,JP,2017-10-04 12:04:00

Data Fields

Field Description
trail_id Numeric identifier of trail
user_id Numeric identifier of user
venue_id Numeric identifier of POI venue
latitude Latitude of POI venue
longitude Longitude of POI venue
name POI/business name
address Street address of POI venue
venue_category POI category name
venue_category_id Foursquare Category ID
venue_category_id_code Numeric identifier of category
venue_city Administrative region name
venue_city_latitude Latitude of administrative region
venue_city_longitude Longitude of administrative region
venue_country Country code
timestamp Check-in timestamp

Dataset Statistics

City Users Trails POIs Check-ins #train #val #test
Tokyo ๐Ÿ‡ฏ๐Ÿ‡ต 764 5,482 4,725 13,839 3,836 549 1,097

Additional Information

License

Copyright 2024 Foursquare Labs, Inc. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License.
You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

๐Ÿ”– Citation

If you find this repository useful for your research, please consider citing our paper:

@misc{wongso2025massivestepsmassivesemantictrajectories,
  title         = {Massive-STEPS: Massive Semantic Trajectories for Understanding POI Check-ins -- Dataset and Benchmarks},
  author        = {Wilson Wongso and Hao Xue and Flora D. Salim},
  year          = {2025},
  eprint        = {2505.11239},
  archiveprefix = {arXiv},
  primaryclass  = {cs.LG},
  url           = {https://arxiv.org/abs/2505.11239}
}

Contact

If you have any questions or suggestions, feel free to contact Wilson at w.wongso(at)unsw(dot)edu(dot)au.