|
|
--- |
|
|
license: apache-2.0 |
|
|
task_categories: |
|
|
- other |
|
|
tags: |
|
|
- poi-recommendation |
|
|
- trajectory-prediction |
|
|
- human-mobility |
|
|
dataset_info: |
|
|
- config_name: default |
|
|
features: |
|
|
- name: user_id |
|
|
dtype: string |
|
|
- name: trail_id |
|
|
dtype: string |
|
|
- name: inputs |
|
|
dtype: string |
|
|
- name: targets |
|
|
dtype: string |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 1636839 |
|
|
num_examples: 3836 |
|
|
- name: validation |
|
|
num_bytes: 231399 |
|
|
num_examples: 549 |
|
|
- name: test |
|
|
num_bytes: 469775 |
|
|
num_examples: 1097 |
|
|
download_size: 590806 |
|
|
dataset_size: 2338013 |
|
|
- config_name: tabular |
|
|
features: |
|
|
- name: trail_id |
|
|
dtype: string |
|
|
- name: user_id |
|
|
dtype: int64 |
|
|
- name: venue_id |
|
|
dtype: int64 |
|
|
- name: latitude |
|
|
dtype: float64 |
|
|
- name: longitude |
|
|
dtype: float64 |
|
|
- name: name |
|
|
dtype: string |
|
|
- name: address |
|
|
dtype: string |
|
|
- name: venue_category |
|
|
dtype: string |
|
|
- name: venue_category_id |
|
|
dtype: string |
|
|
- name: venue_category_id_code |
|
|
dtype: int64 |
|
|
- name: venue_city |
|
|
dtype: string |
|
|
- name: venue_city_latitude |
|
|
dtype: float64 |
|
|
- name: venue_city_longitude |
|
|
dtype: float64 |
|
|
- name: venue_country |
|
|
dtype: string |
|
|
- name: timestamp |
|
|
dtype: string |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 2005420 |
|
|
num_examples: 9691 |
|
|
- name: validation |
|
|
num_bytes: 281184 |
|
|
num_examples: 1357 |
|
|
- name: test |
|
|
num_bytes: 577126 |
|
|
num_examples: 2791 |
|
|
download_size: 762968 |
|
|
dataset_size: 2863730 |
|
|
configs: |
|
|
- config_name: default |
|
|
data_files: |
|
|
- split: train |
|
|
path: data/train-* |
|
|
- split: validation |
|
|
path: data/validation-* |
|
|
- split: test |
|
|
path: data/test-* |
|
|
- config_name: tabular |
|
|
data_files: |
|
|
- split: train |
|
|
path: tabular/train-* |
|
|
- split: validation |
|
|
path: tabular/validation-* |
|
|
- split: test |
|
|
path: tabular/test-* |
|
|
--- |
|
|
|
|
|
# Massive-STEPS-Tokyo |
|
|
|
|
|
<div align="center"> |
|
|
|
|
|
[](https://huggingface.co/collections/CRUISEResearchGroup/massive-steps-point-of-interest-check-in-dataset-682716f625d74c2569bc7a73) |
|
|
[](https://huggingface.co/papers/2505.11239) |
|
|
[](https://arxiv.org/abs/2505.11239) |
|
|
[](https://github.com/cruiseresearchgroup/Massive-STEPS) |
|
|
|
|
|
</div> |
|
|
|
|
|
## Dataset Summary |
|
|
|
|
|
**[Massive-STEPS](https://github.com/cruiseresearchgroup/Massive-STEPS)** is a large-scale dataset of semantic trajectories intended for understanding POI check-ins. The dataset is derived from the [Semantic Trails Dataset](https://github.com/D2KLab/semantic-trails) and [Foursquare Open Source Places](https://huggingface.co/datasets/foursquare/fsq-os-places), and includes check-in data from 15 cities across 10 countries. The dataset is designed to facilitate research in various domains, including trajectory prediction, POI recommendation, and urban modeling. Massive-STEPS emphasizes the importance of geographical diversity, scale, semantic richness, and reproducibility in trajectory datasets. |
|
|
|
|
|
| **City** | **URL** | |
|
|
| --------------- | :---------------------------------------------------------------------: | |
|
|
| Bandung ๐ฎ๐ฉ | [๐ค](https://huggingface.co/datasets/CRUISEResearchGroup/Massive-STEPS-Bandung/) | |
|
|
| Beijing ๐จ๐ณ | [๐ค](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Beijing/) | |
|
|
| Istanbul ๐น๐ท | [๐ค](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Istanbul/) | |
|
|
| Jakarta ๐ฎ๐ฉ | [๐ค](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Jakarta/) | |
|
|
| Kuwait City ๐ฐ๐ผ | [๐ค](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Kuwait-City/) | |
|
|
| Melbourne ๐ฆ๐บ | [๐ค](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Melbourne/) | |
|
|
| Moscow ๐ท๐บ | [๐ค](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Moscow/) | |
|
|
| New York ๐บ๐ธ | [๐ค](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-New-York/) | |
|
|
| Palembang ๐ฎ๐ฉ | [๐ค](https://huggingface.co/datasets/CRUISEResearchGroup/Massive-STEPS-Palembang/) | |
|
|
| Petaling Jaya ๐ฒ๐พ | [๐ค](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Petaling-Jaya/) | |
|
|
| Sรฃo Paulo ๐ง๐ท | [๐ค](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Sao-Paulo/) | |
|
|
| Shanghai ๐จ๐ณ | [๐ค](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Shanghai/) | |
|
|
| Sydney ๐ฆ๐บ | [๐ค](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Sydney/) | |
|
|
| Tangerang ๐ฎ๐ฉ | [๐ค](https://huggingface.co/datasets/CRUISEResearchGroup/Massive-STEPS-Tangerang/) | |
|
|
| Tokyo ๐ฏ๐ต | [๐ค](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Tokyo/) | |
|
|
|
|
|
### Dataset Sources |
|
|
|
|
|
The dataset is derived from two sources: |
|
|
|
|
|
1. **Semantic Trails Dataset**: |
|
|
- Repository: [D2KLab/semantic-trails](https://github.com/D2KLab/semantic-trails) |
|
|
- Paper: Monti, D., Palumbo, E., Rizzo, G., Troncy, R., Ehrhart, T., & Morisio, M. (2018). Semantic trails of city explorations: How do we live a city. *arXiv preprint [arXiv:1812.04367](https://arxiv.org/abs/1812.04367)*. |
|
|
2. **Foursquare Open Source Places**: |
|
|
- Repository: [foursquare/fsq-os-places](https://huggingface.co/datasets/foursquare/fsq-os-places) |
|
|
- Documentation: [Foursquare Open Source Places](https://docs.foursquare.com/data-products/docs/access-fsq-os-places) |
|
|
|
|
|
## Dataset Structure |
|
|
|
|
|
```shell |
|
|
. |
|
|
โโโ tokyo_checkins_test.csv # test set check-ins |
|
|
โโโ tokyo_checkins_train.csv # train set check-ins |
|
|
โโโ tokyo_checkins_validation.csv # validation set check-ins |
|
|
โโโ tokyo_checkins.csv # all check-ins |
|
|
โโโ data # trajectory prompts |
|
|
โย ย โโโ test-00000-of-00001.parquet |
|
|
โย ย โโโ train-00000-of-00001.parquet |
|
|
โย ย โโโ validation-00000-of-00001.parquet |
|
|
โโโ README.md |
|
|
``` |
|
|
|
|
|
### Data Instances |
|
|
|
|
|
An example of entries in `tokyo_checkins.csv`: |
|
|
|
|
|
```csv |
|
|
trail_id,user_id,venue_id,latitude,longitude,name,address,venue_category,venue_category_id,venue_category_id_code,venue_city,venue_city_latitude,venue_city_longitude,venue_country,timestamp |
|
|
2018_18009,901,1425,35.59492076661418,139.34504702908666,JR ๆฉๆฌ้ง
(JR Hashimoto Sta.),็ทๅบๆฉๆฌ6-1-25,Train Station,4bf58dd8d48988d129951735,59,Hachiลji,35.65583,139.32389,JP,2017-10-03 14:55:00 |
|
|
2018_18009,901,191,35.595137562150846,139.34373266637422,ไบฌ็ ๆฉๆฌ้ง
(KO45),็ทๅบๆฉๆฌ2-3-2,Train Station,4bf58dd8d48988d129951735,59,Hachiลji,35.65583,139.32389,JP,2017-10-03 14:59:00 |
|
|
2018_18010,901,38,35.64444469921653,139.35434304296533,ๅ้้ง
(Kitano Sta.) (KO33),ๆ่ถ็บ335-1,Train Station,4bf58dd8d48988d129951735,59,Hachiลji,35.65583,139.32389,JP,2017-10-04 11:57:00 |
|
|
2018_18010,901,3,35.65808032639735,139.34275103595496,ไบฌ็ๅ
ซ็ๅญ้ง
(Keiล-hachiลji Sta.),ๆ็ฅ็บ3-27-1,Train Station,4bf58dd8d48988d129951735,59,Hachiลji,35.65583,139.32389,JP,2017-10-04 12:00:00 |
|
|
2018_18010,901,2684,35.65829873991196,139.34315085411072,ใญใผใฝใณ ไบฌ็ๅ
ซ็ๅญ้ง
ๅๅบ,ๆ็ฅ็บ4-6-13,Convenience Store,4d954b0ea243a5684a65b473,215,Hachiลji,35.65583,139.32389,JP,2017-10-04 12:04:00 |
|
|
``` |
|
|
|
|
|
### Data Fields |
|
|
|
|
|
| **Field** | **Description** | |
|
|
| ------------------------ | ---------------------------------- | |
|
|
| `trail_id` | Numeric identifier of trail | |
|
|
| `user_id` | Numeric identifier of user | |
|
|
| `venue_id` | Numeric identifier of POI venue | |
|
|
| `latitude` | Latitude of POI venue | |
|
|
| `longitude` | Longitude of POI venue | |
|
|
| `name` | POI/business name | |
|
|
| `address` | Street address of POI venue | |
|
|
| `venue_category` | POI category name | |
|
|
| `venue_category_id` | Foursquare Category ID | |
|
|
| `venue_category_id_code` | Numeric identifier of category | |
|
|
| `venue_city` | Administrative region name | |
|
|
| `venue_city_latitude` | Latitude of administrative region | |
|
|
| `venue_city_longitude` | Longitude of administrative region | |
|
|
| `venue_country` | Country code | |
|
|
| `timestamp` | Check-in timestamp | |
|
|
|
|
|
### Dataset Statistics |
|
|
|
|
|
| City | Users | Trails | POIs | Check-ins | #train | #val | #test | |
|
|
| ----------- | :----: | :-----: | :---: | :-------: | :----: | :---: | :---: | |
|
|
| Tokyo ๐ฏ๐ต | 764 | 5,482 | 4,725 | 13,839 | 3,836 | 549 | 1,097 | |
|
|
|
|
|
## Additional Information |
|
|
|
|
|
### License |
|
|
|
|
|
``` |
|
|
Copyright 2024 Foursquare Labs, Inc. All rights reserved. |
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. |
|
|
You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0 |
|
|
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
See the License for the specific language governing permissions and limitations under the License. |
|
|
``` |
|
|
|
|
|
## ๐ Citation |
|
|
|
|
|
If you find this repository useful for your research, please consider citing our paper: |
|
|
|
|
|
```bibtex |
|
|
@misc{wongso2025massivestepsmassivesemantictrajectories, |
|
|
title = {Massive-STEPS: Massive Semantic Trajectories for Understanding POI Check-ins -- Dataset and Benchmarks}, |
|
|
author = {Wilson Wongso and Hao Xue and Flora D. Salim}, |
|
|
year = {2025}, |
|
|
eprint = {2505.11239}, |
|
|
archiveprefix = {arXiv}, |
|
|
primaryclass = {cs.LG}, |
|
|
url = {https://arxiv.org/abs/2505.11239} |
|
|
} |
|
|
``` |
|
|
|
|
|
### Contact |
|
|
|
|
|
If you have any questions or suggestions, feel free to contact Wilson at `w.wongso(at)unsw(dot)edu(dot)au`. |