Datasets:

Tasks:
Other
Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
Massive-STEPS-Tokyo / README.md
w11wo's picture
update dataset card
aec2047
---
license: apache-2.0
task_categories:
- other
tags:
- poi-recommendation
- trajectory-prediction
- human-mobility
dataset_info:
- config_name: default
features:
- name: user_id
dtype: string
- name: trail_id
dtype: string
- name: inputs
dtype: string
- name: targets
dtype: string
splits:
- name: train
num_bytes: 1636839
num_examples: 3836
- name: validation
num_bytes: 231399
num_examples: 549
- name: test
num_bytes: 469775
num_examples: 1097
download_size: 590806
dataset_size: 2338013
- config_name: tabular
features:
- name: trail_id
dtype: string
- name: user_id
dtype: int64
- name: venue_id
dtype: int64
- name: latitude
dtype: float64
- name: longitude
dtype: float64
- name: name
dtype: string
- name: address
dtype: string
- name: venue_category
dtype: string
- name: venue_category_id
dtype: string
- name: venue_category_id_code
dtype: int64
- name: venue_city
dtype: string
- name: venue_city_latitude
dtype: float64
- name: venue_city_longitude
dtype: float64
- name: venue_country
dtype: string
- name: timestamp
dtype: string
splits:
- name: train
num_bytes: 2005420
num_examples: 9691
- name: validation
num_bytes: 281184
num_examples: 1357
- name: test
num_bytes: 577126
num_examples: 2791
download_size: 762968
dataset_size: 2863730
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
- config_name: tabular
data_files:
- split: train
path: tabular/train-*
- split: validation
path: tabular/validation-*
- split: test
path: tabular/test-*
---
# Massive-STEPS-Tokyo
<div align="center">
[![huggingface](https://img.shields.io/badge/%F0%9F%A4%97-Hugging_Face_Collections-yellow)](https://huggingface.co/collections/CRUISEResearchGroup/massive-steps-point-of-interest-check-in-dataset-682716f625d74c2569bc7a73)
[![huggingface](https://img.shields.io/badge/%F0%9F%A4%97-Hugging_Face_Papers-yellow)](https://huggingface.co/papers/2505.11239)
[![arXiv](https://img.shields.io/badge/arXiv-2505.11239-b31b1b.svg)](https://arxiv.org/abs/2505.11239)
[![GitHub](https://img.shields.io/badge/github-%23121011.svg?logo=github&logoColor=white)](https://github.com/cruiseresearchgroup/Massive-STEPS)
</div>
## Dataset Summary
**[Massive-STEPS](https://github.com/cruiseresearchgroup/Massive-STEPS)** is a large-scale dataset of semantic trajectories intended for understanding POI check-ins. The dataset is derived from the [Semantic Trails Dataset](https://github.com/D2KLab/semantic-trails) and [Foursquare Open Source Places](https://huggingface.co/datasets/foursquare/fsq-os-places), and includes check-in data from 15 cities across 10 countries. The dataset is designed to facilitate research in various domains, including trajectory prediction, POI recommendation, and urban modeling. Massive-STEPS emphasizes the importance of geographical diversity, scale, semantic richness, and reproducibility in trajectory datasets.
| **City** | **URL** |
| --------------- | :---------------------------------------------------------------------: |
| Bandung ๐Ÿ‡ฎ๐Ÿ‡ฉ | [๐Ÿค—](https://huggingface.co/datasets/CRUISEResearchGroup/Massive-STEPS-Bandung/) |
| Beijing ๐Ÿ‡จ๐Ÿ‡ณ | [๐Ÿค—](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Beijing/) |
| Istanbul ๐Ÿ‡น๐Ÿ‡ท | [๐Ÿค—](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Istanbul/) |
| Jakarta ๐Ÿ‡ฎ๐Ÿ‡ฉ | [๐Ÿค—](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Jakarta/) |
| Kuwait City ๐Ÿ‡ฐ๐Ÿ‡ผ | [๐Ÿค—](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Kuwait-City/) |
| Melbourne ๐Ÿ‡ฆ๐Ÿ‡บ | [๐Ÿค—](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Melbourne/) |
| Moscow ๐Ÿ‡ท๐Ÿ‡บ | [๐Ÿค—](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Moscow/) |
| New York ๐Ÿ‡บ๐Ÿ‡ธ | [๐Ÿค—](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-New-York/) |
| Palembang ๐Ÿ‡ฎ๐Ÿ‡ฉ | [๐Ÿค—](https://huggingface.co/datasets/CRUISEResearchGroup/Massive-STEPS-Palembang/) |
| Petaling Jaya ๐Ÿ‡ฒ๐Ÿ‡พ | [๐Ÿค—](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Petaling-Jaya/) |
| Sรฃo Paulo ๐Ÿ‡ง๐Ÿ‡ท | [๐Ÿค—](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Sao-Paulo/) |
| Shanghai ๐Ÿ‡จ๐Ÿ‡ณ | [๐Ÿค—](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Shanghai/) |
| Sydney ๐Ÿ‡ฆ๐Ÿ‡บ | [๐Ÿค—](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Sydney/) |
| Tangerang ๐Ÿ‡ฎ๐Ÿ‡ฉ | [๐Ÿค—](https://huggingface.co/datasets/CRUISEResearchGroup/Massive-STEPS-Tangerang/) |
| Tokyo ๐Ÿ‡ฏ๐Ÿ‡ต | [๐Ÿค—](https://huggingface.co/datasets/cruiseresearchgroup/Massive-STEPS-Tokyo/) |
### Dataset Sources
The dataset is derived from two sources:
1. **Semantic Trails Dataset**:
- Repository: [D2KLab/semantic-trails](https://github.com/D2KLab/semantic-trails)
- Paper: Monti, D., Palumbo, E., Rizzo, G., Troncy, R., Ehrhart, T., & Morisio, M. (2018). Semantic trails of city explorations: How do we live a city. *arXiv preprint [arXiv:1812.04367](https://arxiv.org/abs/1812.04367)*.
2. **Foursquare Open Source Places**:
- Repository: [foursquare/fsq-os-places](https://huggingface.co/datasets/foursquare/fsq-os-places)
- Documentation: [Foursquare Open Source Places](https://docs.foursquare.com/data-products/docs/access-fsq-os-places)
## Dataset Structure
```shell
.
โ”œโ”€โ”€ tokyo_checkins_test.csv # test set check-ins
โ”œโ”€โ”€ tokyo_checkins_train.csv # train set check-ins
โ”œโ”€โ”€ tokyo_checkins_validation.csv # validation set check-ins
โ”œโ”€โ”€ tokyo_checkins.csv # all check-ins
โ”œโ”€โ”€ data # trajectory prompts
โ”‚ย ย  โ”œโ”€โ”€ test-00000-of-00001.parquet
โ”‚ย ย  โ”œโ”€โ”€ train-00000-of-00001.parquet
โ”‚ย ย  โ””โ”€โ”€ validation-00000-of-00001.parquet
โ””โ”€โ”€ README.md
```
### Data Instances
An example of entries in `tokyo_checkins.csv`:
```csv
trail_id,user_id,venue_id,latitude,longitude,name,address,venue_category,venue_category_id,venue_category_id_code,venue_city,venue_city_latitude,venue_city_longitude,venue_country,timestamp
2018_18009,901,1425,35.59492076661418,139.34504702908666,JR ๆฉ‹ๆœฌ้ง… (JR Hashimoto Sta.),็ท‘ๅŒบๆฉ‹ๆœฌ6-1-25,Train Station,4bf58dd8d48988d129951735,59,Hachiลji,35.65583,139.32389,JP,2017-10-03 14:55:00
2018_18009,901,191,35.595137562150846,139.34373266637422,ไบฌ็Ž‹ ๆฉ‹ๆœฌ้ง… (KO45),็ท‘ๅŒบๆฉ‹ๆœฌ2-3-2,Train Station,4bf58dd8d48988d129951735,59,Hachiลji,35.65583,139.32389,JP,2017-10-03 14:59:00
2018_18010,901,38,35.64444469921653,139.35434304296533,ๅŒ—้‡Ž้ง… (Kitano Sta.) (KO33),ๆ‰“่ถŠ็”บ335-1,Train Station,4bf58dd8d48988d129951735,59,Hachiลji,35.65583,139.32389,JP,2017-10-04 11:57:00
2018_18010,901,3,35.65808032639735,139.34275103595496,ไบฌ็Ž‹ๅ…ซ็Ž‹ๅญ้ง… (Keiล-hachiลji Sta.),ๆ˜Ž็ฅž็”บ3-27-1,Train Station,4bf58dd8d48988d129951735,59,Hachiลji,35.65583,139.32389,JP,2017-10-04 12:00:00
2018_18010,901,2684,35.65829873991196,139.34315085411072,ใƒญใƒผใ‚ฝใƒณ ไบฌ็Ž‹ๅ…ซ็Ž‹ๅญ้ง…ๅ‰ๅบ—,ๆ˜Ž็ฅž็”บ4-6-13,Convenience Store,4d954b0ea243a5684a65b473,215,Hachiลji,35.65583,139.32389,JP,2017-10-04 12:04:00
```
### Data Fields
| **Field** | **Description** |
| ------------------------ | ---------------------------------- |
| `trail_id` | Numeric identifier of trail |
| `user_id` | Numeric identifier of user |
| `venue_id` | Numeric identifier of POI venue |
| `latitude` | Latitude of POI venue |
| `longitude` | Longitude of POI venue |
| `name` | POI/business name |
| `address` | Street address of POI venue |
| `venue_category` | POI category name |
| `venue_category_id` | Foursquare Category ID |
| `venue_category_id_code` | Numeric identifier of category |
| `venue_city` | Administrative region name |
| `venue_city_latitude` | Latitude of administrative region |
| `venue_city_longitude` | Longitude of administrative region |
| `venue_country` | Country code |
| `timestamp` | Check-in timestamp |
### Dataset Statistics
| City | Users | Trails | POIs | Check-ins | #train | #val | #test |
| ----------- | :----: | :-----: | :---: | :-------: | :----: | :---: | :---: |
| Tokyo ๐Ÿ‡ฏ๐Ÿ‡ต | 764 | 5,482 | 4,725 | 13,839 | 3,836 | 549 | 1,097 |
## Additional Information
### License
```
Copyright 2024 Foursquare Labs, Inc. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License.
You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.
```
## ๐Ÿ”– Citation
If you find this repository useful for your research, please consider citing our paper:
```bibtex
@misc{wongso2025massivestepsmassivesemantictrajectories,
title = {Massive-STEPS: Massive Semantic Trajectories for Understanding POI Check-ins -- Dataset and Benchmarks},
author = {Wilson Wongso and Hao Xue and Flora D. Salim},
year = {2025},
eprint = {2505.11239},
archiveprefix = {arXiv},
primaryclass = {cs.LG},
url = {https://arxiv.org/abs/2505.11239}
}
```
### Contact
If you have any questions or suggestions, feel free to contact Wilson at `w.wongso(at)unsw(dot)edu(dot)au`.