Datasets:

Modalities:
Image
Text
Formats:
text
Size:
< 1K
Libraries:
Datasets
License:
GEM_Arsenal / gem_trainer.py
Firoj112's picture
files updation
042770c verified
# ================================================
# GEM Model Trainer & Evaluator - Callable Version
# ================================================
import torch
import torch.quantization
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification, get_linear_schedule_with_warmup
from sklearn.cluster import MiniBatchKMeans
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm
import numpy as np
def run_gem_pipeline(
dataset,
model_name="bert-base-uncased",
num_classes=77,
num_epochs=3,
batch_size=16,
learning_rate=2e-5,
max_seq_length=128,
gradient_accum_steps=2,
cluster_size=256,
threshold=0.65
):
"""
Runs the GEM model training & evaluation pipeline on a custom dataset.
Args:
dataset: HuggingFace DatasetDict or custom dataset (must have 'train' and 'test').
model_name: Name of the transformer model.
num_classes: Number of output classes.
num_epochs: Training epochs.
batch_size: Batch size for dataloaders.
learning_rate: Learning rate for optimizer.
max_seq_length: Max sequence length for tokenizer.
gradient_accum_steps: Gradient accumulation steps.
cluster_size: Number of clusters for routing.
threshold: Routing threshold.
Returns:
final_accuracy: Final evaluation accuracy on test set.
avg_loss: Average training loss.
"""
# ========================
# Config
# ========================
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
hidden_size = 768
num_heads = 12
# ========================
# Tokenizer & Dataloaders
# ========================
tokenizer = AutoTokenizer.from_pretrained(model_name)
def tokenize_fn(examples):
return tokenizer(
examples['text'],
padding='max_length',
truncation=True,
max_length=max_seq_length
)
dataset = dataset.map(tokenize_fn, batched=True)
def collate_fn(batch):
return {
'input_ids': torch.stack([torch.tensor(x['input_ids']) for x in batch]),
'attention_mask': torch.stack([torch.tensor(x['attention_mask']) for x in batch]),
'labels': torch.tensor([x['label'] for x in batch])
}
train_loader = DataLoader(
dataset['train'],
batch_size=batch_size,
shuffle=True,
collate_fn=collate_fn
)
test_loader = DataLoader(
dataset['test'],
batch_size=batch_size,
collate_fn=collate_fn
)
# ========================
# GEM Model (Modular)
# ========================
class QuantizedBERT(nn.Module):
def __init__(self):
super().__init__()
self.bert = AutoModel.from_pretrained(model_name)
self.quant = torch.quantization.QuantStub()
self.dequant = torch.quantization.DeQuantStub()
def forward(self, input_ids, attention_mask=None):
outputs = self.bert(input_ids, attention_mask=attention_mask)
return self.dequant(self.quant(outputs.last_hidden_state))
class TokenRouter(nn.Module):
def __init__(self):
super().__init__()
self.clusterer = MiniBatchKMeans(n_clusters=cluster_size)
self.W_r = nn.Parameter(torch.randn(num_classes, hidden_size))
self.threshold = threshold
def forward(self, x):
cluster_input = x.detach().cpu().numpy().reshape(-1, x.shape[-1])
cluster_ids = self.clusterer.fit_predict(cluster_input)
cluster_ids = torch.tensor(cluster_ids, device=device).reshape(x.shape[:2])
domain_logits = torch.einsum('bsh,nh->bsn', x, self.W_r.to(x.device))
domain_probs = F.softmax(domain_logits, dim=-1)
routing_mask = (domain_probs.max(-1).values > self.threshold).long()
return domain_probs, routing_mask, cluster_ids
class SCAR(nn.Module):
def __init__(self):
super().__init__()
self.num_heads = num_heads
self.head_dim = hidden_size // num_heads
self.qkv = nn.Linear(hidden_size, 3 * hidden_size)
self.out = nn.Linear(hidden_size, hidden_size)
def create_mask(self, cluster_ids, routing_mask):
cluster_mask = (cluster_ids.unsqueeze(-1) == cluster_ids.unsqueeze(-2))
domain_mask = (routing_mask.unsqueeze(-1) == routing_mask.unsqueeze(-2))
return cluster_mask | domain_mask
def forward(self, x, cluster_ids, routing_mask):
B, N, _ = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
attn = (q @ k.transpose(-2, -1)) / np.sqrt(self.head_dim)
mask = self.create_mask(cluster_ids, routing_mask).unsqueeze(1)
attn = attn.masked_fill(~mask, -1e9)
attn = F.softmax(attn, dim=-1)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
return self.out(x)
class GEM(nn.Module):
def __init__(self):
super().__init__()
self.bert = QuantizedBERT()
self.router = TokenRouter()
self.scar = SCAR()
self.classifier = nn.Linear(hidden_size, num_classes)
self.teacher = AutoModelForSequenceClassification.from_pretrained(
model_name, num_labels=num_classes
).eval().to(device).requires_grad_(False)
def forward(self, input_ids, attention_mask=None):
x = self.bert(input_ids, attention_mask)
domain_probs, routing_mask, cluster_ids = self.router(x)
x = self.scar(x, cluster_ids, routing_mask)
return self.classifier(x[:, 0, :])
def qakp_loss(self, outputs, labels, input_ids):
task_loss = F.cross_entropy(outputs, labels)
quant_error = F.mse_loss(self.bert.quant(self.bert.dequant(outputs)), outputs)
with torch.no_grad():
teacher_logits = self.teacher(input_ids).logits
kd_loss = F.kl_div(
F.log_softmax(outputs, dim=-1),
F.softmax(teacher_logits, dim=-1),
reduction='batchmean'
)
return task_loss + 0.3 * quant_error + 0.7 * kd_loss
# ========================
# Training Setup
# ========================
model = GEM().to(device)
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model, device_ids=list(range(torch.cuda.device_count())))
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=100,
num_training_steps=len(train_loader) * num_epochs
)
# ========================
# Training Loop
# ========================
model.train()
avg_loss = 0
for epoch in range(num_epochs):
total_loss = 0
for step, batch in enumerate(tqdm(train_loader)):
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['labels'].to(device)
outputs = model(input_ids, attention_mask)
loss = model.module.qakp_loss(outputs, labels, input_ids) if hasattr(model, 'module') else model.qakp_loss(outputs, labels, input_ids)
loss.backward()
if (step + 1) % gradient_accum_steps == 0:
optimizer.step()
scheduler.step()
optimizer.zero_grad()
total_loss += loss.item()
avg_loss = total_loss / len(train_loader)
print(f"Epoch {epoch+1}/{num_epochs} | Avg Loss: {avg_loss:.4f}")
# ========================
# Evaluation Loop
# ========================
model.eval()
correct = total = 0
with torch.no_grad():
for batch in tqdm(test_loader):
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['labels'].to(device)
outputs = model(input_ids, attention_mask)
preds = outputs.argmax(dim=-1)
correct += (preds == labels).sum().item()
total += labels.size(0)
final_accuracy = 100 * correct / total
print(f"Final Accuracy: {final_accuracy:.2f}%")
return {
'accuracy': final_accuracy,
'average_loss': avg_loss
}