Dataset Viewer
TeX
stringlengths 1
269k
⌀ |
---|
O(n^{2})
|
f
|
n
|
G(v)
|
s_{o}\oplus s_{a}\in\mathbb{V}^{n+m}
|
Z\in\mathbb{R}^{m\times d_{\text{token}}}
|
E_{\psi}(s)
|
\displaystyle=F^{i}(E_{\psi}(s_{o})\oplus\text{Proj}_{\psi}(Z)).
|
\displaystyle\cos(v,v_{t}^{image})+\lambda\cos(v,v_{t}^{text})
|
\cos(\psi_{i},\psi_{j})
|
{}^{4}
|
v_{t}^{text}=F^{t}(E_{\psi}(s^{\prime}))
|
{}^{*}
|
\displaystyle\text{argmax}_{Z}
|
\rightarrow
|
\mathcal{A}(x,t,s_{o})
|
\displaystyle=F^{i}(E_{\psi}(s_{o}\oplus s_{a}))
|
{}^{1}
|
\text{Proj}_{\psi}(Z)_{i}=Z_{i}+\text{sg}(\psi_{j}-Z_{i})
|
x_{t}
|
500\times 20=10000
|
w_{i},w_{j}
|
v_{t}^{image}\leftarrow F^{i}(x_{t})
|
m=4
|
s_{a}=E_{\psi}^{-1}(\text{Proj}_{\psi}(Z))
|
{}^{5}
|
Z_{i}
|
{}^{1,*}
|
\text{Proj}_{\psi}(Z)
|
s
|
\displaystyle\text{argmax}_{s_{a}}
|
t
|
s^{\prime}\leftarrow
|
v_{t}^{image}
|
5\times 4\times 100=2000
|
{}^{1,2}
|
\psi\in\mathbb{R}^{|\mathbb{V}|\times d_{\text{token}}}
|
bestloss\leftarrow\mathcal{L},bestZ\leftarrow Z
|
G
|
\lambda=0
|
\text{Proj}_{\psi}:\mathbb{R}^{m\times d_{\text{token}}}\rightarrow\mathbb{R}^%
{m\times d_{\text{token}}}
|
i\leftarrow 1
|
s\in\mathbb{V}^{*}
|
\displaystyle\text{argmax}_{s_{a}}\mathbb{E}_{x\sim G(F^{t}(E_{\psi}(s_{o}%
\oplus s_{a})))}\mathcal{A}(x,t,s_{o})~{},
|
\displaystyle\cos(v,v_{t}^{image})+\lambda\cos(v,v_{t}^{text}),
|
\cos(a,b)=\frac{a^{T}b}{\|a\|\|b\|}
|
\eta
|
512\times 512
|
x
|
E_{\psi}(s_{o}\oplus s_{a})=E_{\psi}(s_{o})\oplus E_{\psi}(s_{a})
|
N
|
bestloss>\mathcal{L}
|
v_{t}^{image}=F^{i}(x_{t})
|
d_{\text{emb}}
|
\displaystyle\text{argmax}_{s_{a}}\cos(F^{i}(E_{\psi}(s_{o}\oplus s_{a})),v_{t%
}).
|
s^{\prime}=
|
{}^{3,*}
|
Z\leftarrow Z-\eta\nabla_{Z}\mathcal{L}
|
100
|
s_{a}
|
s_{o}\oplus s_{a}
|
m
|
v
|
\displaystyle\text{s.t.}\quad v=F^{i}(E_{\psi}(s_{o}\oplus s_{a})),
|
\mathbb{V}=\{w_{1},w_{2},\cdots,w_{|\mathbb{V}|}\}
|
F^{i}
|
\psi
|
\displaystyle\text{s.t.}\quad v
|
s_{o}
|
F^{t}
|
{}^{2}
|
\oplus
|
E_{\psi}(s)_{i}=\psi_{j}
|
5\times 4=20
|
3\times 100
|
{}^{3}
|
v\leftarrow F^{t}(E_{\psi}(s_{o})\oplus\text{Proj}_{\psi}(Z))
|
\mathcal{L}=-\cos(v,v_{t}^{image})-\lambda\cos(v,v_{t}^{text})
|
s_{o}\in\mathbb{V}^{n}
|
s_{a}\leftarrow E_{\psi}^{-1}(\text{Proj}_{\psi}(bestZ))
|
bestloss\leftarrow\infty,bestZ\leftarrow Z
|
\displaystyle=F^{i}(E_{\psi}(s_{o}\oplus E_{\psi}^{-1}(\text{Proj}_{\psi}(Z))))
|
t\in\mathbb{V}
|
Z
|
(\cdot)
|
x\sim G(v)
|
d_{\text{token}}
|
s_{a}\in\mathbb{V}^{m}
|
v_{t}
|
\lambda
|
\mathbb{V}
|
w_{j}=s_{i}
|
t\in\mathcal{V}
|
x\sim G(F^{t}(E_{\psi}(s)))
|
E_{\psi}
|
j=\text{argmin}_{j^{\prime}}\|\psi_{j^{\prime}}-Z_{i}\|_{2}^{2}
|
|s|\times d_{\text{token}}
|
\displaystyle\text{argmax}_{v_{t}}\mathbb{E}_{x\sim G(v_{t})}\mathcal{A}(x,t,s%
_{o})~{}.
|
E_{L}\cup E_{R}
|
E_{L}=\{(u,w)|(u,w)\in E,w\neq v\}
|
End of preview. Expand
in Data Studio
TeX data from arXiv
- Using https://github.com/KyuDan1/TeX2Image code.
- We have categories Math, Physics, Statistics, ComputerScience.
Domain | Size |
---|---|
Mathematics | 4.22M |
Computer Science | 2.76M |
Statistics | 0.89M |
Physics | 0.78M |
Total (unique) | 7.17M |
- Downloads last month
- 56