TeX
stringlengths 1
269k
⌀ |
---|
c^{\prime}_{i}=c_{j}
|
\mathcal{W}^{*}(E^{(v_{1},u_{5})})=w^{*}_{1}+w^{*}_{2}
|
|w_{1}+w^{*}+w_{2}+w^{*}-w_{1}-w_{2}|=2w^{*}
|
e_{i}\in E_{m},1\leq i\leq k
|
|w^{*}|
|
P^{{}^{\prime}}\subseteq P
|
P^{\prime}\subseteq P
|
k-i
|
c_{1}+c_{2}>1
|
c_{j}>0
|
e_{1},e_{2}
|
\displaystyle\pi^{\prime\prime}_{v_{i},u_{j}}
|
n_{R}(|y-C|+|y-B-C|)
|
\operatorname{min}(\mathcal{E}(M_{R}^{*}),\mathcal{E}(M_{L}^{*}))=\mathcal{E}(%
M_{L}^{*})
|
i\xleftarrow{}i
|
\displaystyle\leq
|
\mathcal{E}_{L}=n_{L}\times\big{(}\underbrace{|x-w_{0}|}_{\text{between the %
vertices of }V_{L}\text{ and }v_{2}}+\underbrace{|x-w_{0}-w_{1}|}_{\text{%
between the vertices of }V_{L}\text{ and }v_{3}}+\dots+\underbrace{|x-w_{0}-w_%
{1}-\dots-w_{k}|}_{\text{between the vertices of }V_{L}\text{ and }v_{k+2}}%
\big{)}
|
{n^{2}_{L}}\times{\mathcal{L}}({\mathcal{L}}-1)\leq{n^{2}_{R}}\times{\mathcal{%
R}}({\mathcal{R}}-1)
|
M_{L}^{*}
|
{n_{L}}\times{n_{L}}\times 2w^{*}
|
M^{\prime\prime}
|
f\in\mathcal{F}=\{{\text{MARK\_LEFT}},{\text{UNMARK\_LEFT}},{\text{MARK\_RIGHT%
}},{\text{UNMARK\_RIGHT}}\}
|
7-21\leq 2=L_{2}
|
\displaystyle n_{L}\times\big{(}\sum_{j=0}^{i}j\;w_{j}+\sum_{j=i+1}^{k}(k+1-j)%
\;w_{j}+(i+1)\;w_{i+1}-(k-i)\;w_{i+1}\big{)}
|
x=w_{0}+w_{1}+\dots+w_{i}
|
x>w_{0}+\dots+w_{k}
|
L_{1}\times L_{2}\times w^{*}
|
e_{2}=(v_{1},v_{4})
|
e_{1}
|
H
|
S_{L}-L_{i}-S_{R}\leq 0\xrightarrow[]{}S_{L}-S_{R}\leq L_{i}
|
j>\frac{{\mathcal{R}}}{2}+\frac{{n_{L}}(1-{\mathcal{L}})}{2{n_{R}}}
|
\mathcal{E}(M)=\mathcal{E}(M^{\prime})+\Delta_{1}({\text{MARK\_LEFT}})
|
w_{i}
|
u,v
|
v_{5}
|
n_{2}=n_{R}
|
u\in G_{2}
|
e_{i}\in E
|
\frac{\mathcal{E}^{(\frac{k}{2})}_{L}}{n_{L}}
|
\alpha_{2}
|
w(e^{\prime})\xleftarrow[]{}w(e^{\prime})+w(e)
|
V_{L}=\{v_{i}|1\leq i\leq n_{1}+1\}
|
\mathcal{E}_{L}^{(i)}=n_{L}\times\big{(}\sum_{j=0}^{i}j\;w_{j}+\sum_{j=i+1}^{k%
}(k+1-j)\;w_{j}\big{)}
|
n_{L}\times\big{(}(k-i)\;w_{i+1}\big{)}
|
{T_{i}^{L}},i\in\{1,2\}
|
\mathcal{W}^{\prime}(E^{\prime})
|
e^{\prime}\in E_{m}
|
\displaystyle n_{L}\times n_{R}\times|x+y-A-B-C|
|
M^{*}\xleftarrow[]{}\operatorname{argmin}(\mathcal{E}(M_{L}^{*}),\mathcal{E}(M%
_{R}^{*}))
|
u,v\in G_{2}
|
\Delta({\text{UNMARK\_LEFT}})=L_{i}\times\bigg{(}-(S_{LM}-L_{i})-S_{LU}-S_{RM}%
+S_{RU}\bigg{)}
|
\mathcal{E}(M^{\prime\prime})<\mathcal{E}(M)
|
L_{i}=n_{L},\;1\leq i\leq{\mathcal{L}}
|
u\in G_{1}
|
|w^{*}|-\left|\sum_{k=i}^{n_{1}}\epsilon_{k}\right|\leq\left|w^{*}-\sum_{k=i}^%
{n_{1}}\epsilon_{k}\right|
|
\beta\geq 0
|
{T_{j}^{R}},j\in\{1,\dots,{\mathcal{R}}\}
|
\Delta({\text{UNMARK\_LEFT}})
|
\displaystyle B\times k^{\prime}\times\underbrace{(n_{L}+n_{R})}_{=n-(k+k^{%
\prime})}=B\times k^{\prime}\times(n-(k+k^{\prime}))
|
P^{\prime}\subset P
|
0\leq i\leq k
|
e_{i},e_{j}
|
C\leq y\leq B+C
|
c_{i}\neq c_{j}
|
\alpha_{1}=B
|
x-A-B
|
\displaystyle\xrightarrow{\text{setting }x=A+B,y=C}=
|
v\in V_{s}
|
\mathcal{E}_{1}
|
L_{1}
|
X<0
|
V_{s}
|
|w^{*}-(c_{2}\times w^{*}+c_{j}\times w^{*}-\epsilon\times w^{*})|-|w^{*}-(c_{%
2}\times w^{*}+c_{j}\times w^{*})|\leq\epsilon\times w^{*}
|
e^{*}\in S
|
c^{\prime}_{2}=c_{2}-\epsilon
|
f\in\mathcal{F}=\{\text{MARK\_LEFT},\text{UNMARK\_RIGHT}\}
|
S_{RM}
|
|w_{1}+w^{*}+w_{3}+w^{*}-w_{1}-w^{*}-w_{3}|=w^{*}
|
M_{L}^{*}\xleftarrow[]{}M_{L}^{*}\cup\{e_{i}\}
|
\begin{array}[]{cc}\Delta_{1}({\text{UNMARK\_RIGHT}})\leq R_{1}\times\epsilon%
\times w^{*}\times\bigg{(}-S_{R}^{\prime}\underbrace{-L_{1}}_{<0}+S_{L}^{%
\prime}\bigg{)}&<R_{1}\times\epsilon\times w^{*}\times(\underbrace{-S_{R}^{%
\prime}+S_{L}^{\prime}}_{\leq 0})\leq 0\end{array}
|
\mathcal{E}^{v_{i},u_{j}}_{1}=\left|\pi_{v_{i},u_{j}}-\pi^{\prime}_{v_{i},u_{j%
}}\right|=\left|\pi^{\prime}_{v_{i},u_{j}}-\pi_{v_{i},u_{j}}\right|=\left|%
\mathcal{W}^{\prime}(E^{(v_{i},u_{j})})-\mathcal{W}^{*}(E^{(v_{i},u_{j})})\right|
|
\alpha_{1}=x-A+A+B-x<B\xrightarrow{}0<0
|
(u,v),\;\;u\in V_{m},\;v\in\overline{V_{m}}
|
w_{1}
|
|\Delta E|\geq B(n_{L}+n_{R})+n_{L}n_{R}|x+y-A-B-C|
|
v^{\prime}_{1}
|
\operatorname{d}_{G^{\prime}}(u,v)\geq\varphi\left(\operatorname{d}_{G}(u,v)\right)
|
S\xleftarrow[]{}E_{m}
|
\mathcal{E}^{v_{i},u_{j+1}}_{1}=\left|\pi_{v_{i},u_{j+1}}-\pi^{\prime}_{v_{i},%
u_{j+1}}\right|=\left|\pi_{v_{i},u_{j}}+w^{*}_{k}-\pi^{\prime}_{v_{i},u_{j}}%
\right|=\left|w^{*}_{k}+\mathcal{W}^{*}(E^{(v_{i},u_{j})})-\mathcal{W}^{\prime%
}(E^{(v_{i},u_{j})})\right|
|
7-21\leq 3=L_{3}
|
{n^{2}_{R}}\times 2\big{(}{j-1\choose 2}-{j\choose 2}\big{)}={n^{2}_{R}}\times%
(-2(j-1))
|
\mathcal{E}_{LR}=0
|
w^{\prime}(e_{i})=w(e_{i})+\epsilon_{i},\epsilon_{i}\in[0,w^{*}]
|
\displaystyle+
|
i+1-k+i<0\xrightarrow[]{}2i<k-1\xrightarrow[]{}i<\frac{k}{2}-\frac{1}{2}%
\xrightarrow[\text{since }k\text{ is even}]{}i\leq\frac{k}{2}-1
|
|x-A|
|
\alpha_{1}
|
V_{m}=\{v_{2},v_{3}\}
|
\Delta({\text{MARK\_LEFT}})={n^{2}_{L}}\times(2i+{\mathcal{L}}-2i-1)+{n_{L}}{n%
_{R}}(j+j-{\mathcal{R}})={n^{2}_{L}}\times({\mathcal{L}}-1)+{n_{L}}{n_{R}}(2j-%
{\mathcal{R}})
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.