TeX
stringlengths 1
269k
⌀ |
---|
v_{1},v_{2}\in\overline{V_{m}}
|
|\Delta E|^{\prime}=w^{*}
|
1\leq j\leq k
|
{\mathcal{R}}
|
\pi\left(G^{\prime}\right)\leq\pi(G)-d
|
\displaystyle\underbrace{n_{R}\times|y-C|\times k^{\prime}}_{\text{between the%
subpath of }w_{2}\text{ and the vertices in }u}+\underbrace{n_{R}\times|y-B-C%
|\times k}_{{\text{between the subpath of }w_{2}\text{ and the vertices in }v}}+
|
\operatorname{min}(\mathcal{E}(M_{L}^{*}),\mathcal{E}(M_{R}^{*}))
|
E_{m}=\{e^{*}\}
|
\displaystyle n_{L}\times n_{R}\times|x+y-A-B-C|\xrightarrow{n_{R}=0}
|
P
|
v_{i}\in V_{L}
|
M_{R}^{*}\xleftarrow[]{}\emptyset
|
\alpha_{1}=A-x+x-A-B<B\xrightarrow{}0<2B
|
M_{R}
|
u,v\in V
|
n_{L}=3
|
\left|\sum_{k=i}^{j-2}(w_{k}+\epsilon_{k})-w^{*}-\sum_{k=i}^{j-2}w_{k}\right|=%
\left|w^{*}-\sum_{k=i}^{j-2}\epsilon_{k}\right|
|
n_{L}(|x-A|+|x-A-B|)
|
\mathcal{E}_{L}^{(i+1)}-\mathcal{E}_{L}^{(i)}=n_{L}\times\big{(}(i+1)\;w_{i+1}%
-(k-i)\;w_{i+1}\big{)}
|
w^{\prime}(e_{i})=w(e_{i})+w(e^{*})
|
S_{R}\xleftarrow{}\sum_{\forall e_{i}\in E_{R}}R_{i}
|
u,v\in G_{1}
|
x\geq A
|
\Delta({\text{MARK\_RIGHT}})
|
\operatorname{min}(\mathcal{E}(M_{R}^{*}),\mathcal{E}(M_{L}^{*}))\leq\mathcal{%
E}(M)
|
{\mathcal{L}}-(\frac{{\mathcal{L}}{n_{L}}+{n_{R}}(1-{\mathcal{R}})}{2{n_{L}}})%
=\frac{{\mathcal{L}}{n_{L}}-{n_{R}}(1-{\mathcal{R}})}{2{n_{L}}}
|
u_{j+1}
|
T_{j}^{R}
|
\varphi(x)=x/\alpha-\beta
|
\mathcal{E}=\mathcal{E}_{R}
|
S_{R}-S_{L}\leq R_{i}
|
e_{3}
|
a\geq 0
|
V_{L}
|
{n_{L}}
|
n_{R}
|
n_{L}\geq 0
|
c_{2}\geq\epsilon
|
{n^{2}_{L}}\times((i+1)({\mathcal{L}}-i-1)-i({\mathcal{L}}-i))={n^{2}_{L}}%
\times(i{\mathcal{L}}-i^{2}-i+{\mathcal{L}}-i-1-i{\mathcal{L}}+i^{2})={n^{2}_{%
L}}\times({\mathcal{L}}-2i-1)
|
e^{*}_{k}=(u_{j},u_{j+1})
|
|\Delta E|=|\overline{V_{m}}|(w^{*}_{1}+\dots+w^{*}_{k})=(n-2k)(w^{*}_{1}+%
\dots+w^{*}_{k})
|
e_{1},e_{2},\dots,e_{k}
|
-\left|\sum_{k=n_{1}+1}^{j-2}\epsilon_{k}\right|
|
\overline{E_{m}}
|
e^{*}\in E
|
\epsilon_{1}+\epsilon_{2}=B
|
n_{L}+n_{R}=n-2
|
c^{\prime}_{1}+c^{\prime}_{2}=1
|
\mathcal{E}_{L}^{(j)},j\neq\frac{k}{2}
|
L_{i}\geq S_{L}-S_{R}
|
j>0
|
\Delta_{1}({\text{MARK\_LEFT}})
|
L_{i}\times R_{j}\times w^{*}
|
e_{j}\neq e_{1}
|
x-A
|
j\leq\frac{{\mathcal{R}}}{2}+\frac{{n_{L}}(1-{\mathcal{L}})}{2{n_{R}}}
|
|a|=a
|
2\times L_{i}\times(S_{LM})
|
n_{L}+n_{R}=|\overline{V_{m}}|=n-(k+k^{\prime})
|
M_{L}^{*}\xleftarrow[]{}\emptyset
|
\frac{\mathcal{E}_{L}}{n_{L}}
|
\displaystyle(\frac{{\mathcal{L}}{n_{L}}+{n_{R}}(1-{\mathcal{R}})}{2{n_{L}}})(%
{n^{2}_{L}}\times({\mathcal{L}}-1)+{n_{L}}{n_{R}}({\mathcal{R}}))+\frac{{%
\mathcal{L}}{n_{L}}-{n_{R}}(1-{\mathcal{R}})}{2{n_{L}}}({n^{2}_{L}}\times({%
\mathcal{L}}-1)+{n_{L}}{n_{R}}(-{\mathcal{R}}))
|
\displaystyle\mathcal{E}_{L}^{(0)}=n_{L}\times\big{(}w_{1}+w_{1}+w_{2}+w_{1}+w%
_{2}+w_{3}+\dots+w_{1}+w_{2}+\dots+w_{k}\big{)}
|
\mathcal{W}^{\prime}(E^{(v_{1},u_{5})})=\epsilon_{1}+\epsilon_{2}+\epsilon_{2}%
+\epsilon_{3}+\epsilon_{4}
|
v_{i}\in\overline{V_{m}}
|
e_{4}=(v_{2},v_{6})
|
u\in\overline{V_{m}}
|
{T_{i}^{L}},i\in\{1,\dots,{\mathcal{L}}\}
|
\operatorname{CONTRACTION}
|
{{\mathcal{L}}\choose{2}}\times n_{L}\times n_{L}\times 2w^{*}={n^{2}_{L}}%
\times{\mathcal{L}}({\mathcal{L}}-1)\times w^{*}
|
\displaystyle n_{L}(|x-A|+|x-A-B|)+n_{R}(|y-C|+|y-B-C|)+n_{L}n_{R}|x+y-A-B-C|
|
e_{3}=(v_{2},v_{5})
|
\mathcal{E}(M_{R}^{*})=\underbrace{\mathcal{E}(M_{0})}_{\text{The error %
associated with the empty marking}}+\underbrace{\sum_{e_{i}\in E_{R}}R_{i}%
\times w^{*}\times(S_{R}-R_{i}-S_{L})}_{\text{The sum of all }\Delta({\text{%
MARK\_RIGHT}})\text{'s that
transform }M_{0}\text{ into }M_{R}^{*}}
|
{\mathcal{L}}=2
|
\displaystyle\geq\mathcal{E}(M_{0})+\epsilon_{1}\times\sum_{e_{i}\in E_{L}}L_{%
i}\times w^{*}\times(S_{L}-L_{i}-S_{R})+\epsilon_{2}\times\sum_{e_{i}\in E_{L}%
}L_{i}\times w^{*}\times(S_{L}-L_{i}-S_{R})
|
\mathcal{E}_{LR}=n_{L}\times n_{R}\times|x+y-w_{0}-w_{1}-\dots-w_{k+1}|
|
w_{j}
|
\displaystyle 0
|
\Delta({\text{MARK\_LEFT}})
|
j\xleftarrow{}j
|
M_{0}
|
x=A+\epsilon_{1}
|
\Delta_{v_{i},u_{j}}+\Delta_{v_{i},u_{j+1}}\leq\left|w^{*}_{k}-\mathcal{W}^{%
\prime}(E^{(v_{i},u_{j})})+\mathcal{W}^{*}(E^{(v_{i},u_{j})})\right|-\left|w^{%
*}_{k}+\mathcal{W}^{*}(E^{(v_{i},u_{j})})-\mathcal{W}^{\prime}(E^{(v_{i},u_{j}%
)})\right|\leq 0
|
L_{i}=|\{v|v\in{T_{i}^{L}}\}|
|
R_{j}=|\{v|v\in{T_{j}^{R}}\}|
|
E^{\prime}=E-e^{*}
|
e^{\prime}=e_{1}
|
n_{L}
|
E_{R}=\{(v,w)|(v,w)\in E,w\neq u\}
|
e^{*}_{k}=e^{*}_{3}=(u_{5},u_{6})
|
(S_{LM}+(S_{LU}-L_{i})+S_{RM}-S_{RU})\leq 0\xrightarrow[]{S_{LM}+S_{LU}=S_{L}}%
S_{L}-L_{i}+S_{RM}-S_{RU}\leq 0
|
S_{R}^{\prime}=S_{R}-R_{1}
|
\mathcal{E}_{1}=|x-w_{0}|+\dots+|w-w_{0}-\dots-w_{k}|
|
S_{LM}>0
|
\Delta({\text{MARK\_LEFT}})\leq 0\text{ if }{n_{L}}\times({\mathcal{L}}-1)\leq%
{n_{R}}({\mathcal{R}}-2j)\xrightarrow[]{\text{Rearranging the terms}}j\leq%
\frac{{\mathcal{R}}}{2}+\frac{{n_{L}}(1-{\mathcal{L}})}{2{n_{R}}}
|
\displaystyle\underbrace{\epsilon_{2}\times\sum_{e_{i}\in E_{R}}R_{i}\times w^%
{*}\times(S_{R}-R_{i}-S_{L})}_{\text{The sum of all }\Delta({\text{MARK\_RIGHT%
}})\text{'s by }\epsilon_{2}}
|
k\geq k^{\prime}
|
c^{\prime}_{i}=0
|
w_{i+1}
|
(v_{1},v_{4})
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.