Datasets:

ArXiv:
License:
File size: 19,502 Bytes
ae81f33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
/******************************************************************************
 *	 Copyright 2024 NVIDIA Corporation. All rights reserved.	 *
 ******************************************************************************
 
Permission is hereby granted by NVIDIA Corporation ("NVIDIA"), free of charge,
to any person obtaining a copy of the sample definition code that uses our 
Material Definition Language (the "MDL Materials"), to reproduce and distribute
the MDL Materials, including without limitation the rights to use, copy, merge,
publish, distribute, and sell modified and unmodified copies of the MDL 
Materials, and to permit persons to whom the MDL Materials is furnished to do
so, in all cases solely for use with NVIDIA's Material Definition Language,
subject to the following further conditions:

1. The above copyright notices, this list of conditions, and the disclaimer
that follows shall be retained in all copies of one or more of the MDL
Materials, including in any software with which the MDL Materials are bundled,
redistributed, and/or sold, and included either as stand-alone text files,
human-readable headers or in the appropriate machine-readable metadata fields
within text or binary files as long as those fields can be easily viewed by the
user, as applicable.
2. The name of NVIDIA shall not be used to promote, endorse or advertise any 
Modified Version without specific prior written permission, except a) to comply
 with the notice requirements otherwise contained herein; or b) to acknowledge
the contribution(s) of NVIDIA.

THE MDL MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT,
TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR 
ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY GENERAL, SPECIAL, 
INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF 
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE
THE MDL MATERIALS OR FROM OTHER DEALINGS IN THE MDL MATERIALS.
*/


mdl 1.6;

import ::anno::*;
import ::base::*;
import ::df::*;
import ::math::*;
import ::state::*;
import ::tex::*;
import ::nvidia::core_definitions::blend_colors;
import ::nvidia::core_definitions::dimension;


const string COPYRIGHT = 
" Copyright 2024 NVIDIA Corporation. All rights reserved.\n"
" MDL MATERIALS ARE PROVIDED PURSUANT TO AN END USER LICENSE  AGREEMENT,\n"
" WHICH WAS ACCEPTED IN ORDER TO GAIN ACCESS TO THIS FILE.  IN PARTICULAR,\n" 
" THE MDL MATERIALS ARE PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND,\n"
" EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF\n"
" MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF\n" 
" COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL NVIDIA\n"
" CORPORATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY\n"
" GENERAL, SPECIAL,  INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN\n"
" AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR\n"
" INABILITY TO USE THE MDL MATERIALS OR FROM OTHER DEALINGS IN THE MDL MATERIALS.\n";

const string DESCRIPTION = "Clear PET (Polyethylene terephthalate) material with IOR, Abbe Number and volumetric exhaustion";


export enum unit_scale
[[
	::anno::hidden()
]]
{
	unit_mm = 1,
	unit_cm = 2,
	unit_m = 3
};

struct volume_info
[[
	::anno::hidden()
]]
{
	color absorption_coefficient;
	color scattering_coefficient;
};


// simplified volume coefficients
// This function takes a transmittance value and and albedo and translates it into meaningful
// scattering and volume coefficients that are userfriendly
//
volume_info volume_transmittance_albedo(
	uniform float density_scale = 1.0,
	uniform color transmittance = color(0.5f), // transmittance color after unit distance
	uniform color albedo = color(1.0f)
)
{
	color sigma_t = -::math::log(::math::saturate(transmittance)) * density_scale;
	color sigma_s = sigma_t * ::math::saturate(albedo);
	return volume_info(
	scattering_coefficient: sigma_s,
	absorption_coefficient: sigma_t - sigma_s);
}

// This function calculates the apropriate scattering and volume coefficients
// for a material of a given thickness. 
// The user specifies the thickness of the material, e.g. 3mm and the amount 
// of light passing through. The rest is automatically calculated for the material
// and the material_volume is returned.
volume_info custom_volume_transmittance(
	uniform unit_scale unit_scale_select = unit_mm,
	uniform float absorption_thickness = 3.0f,
	uniform color transmittance = color(0.5f),
	uniform color albedo = color(0.0f)
)
{
	absorption_thickness = (absorption_thickness <= 0.0f) ? 0.00001 : absorption_thickness;
	float scalefactor;
	switch(unit_scale_select){
		case unit_mm: scalefactor = 0.001f; break;
		case unit_cm: scalefactor = 0.01f; break;
		case unit_m: scalefactor = 1.0f; break;
		default: scalefactor = 1.0f;
	}
	
	
	volume_info vol_coefficients = volume_transmittance_albedo(
												density_scale: 1.0f/(absorption_thickness * scalefactor),
												transmittance: transmittance,
												albedo: albedo
	);
	
	return vol_coefficients;
}


::base::texture_coordinate_info transform_coordinate_2(
	float4x4 transform										 
		[[ ::anno::description("A transformation to be applied to the source coordinates. rotation_translation_scale() is a suggested means to compute the transformation matrix.") ]],
	::base::texture_coordinate_info coordinate = ::base::texture_coordinate_info()
		[[ ::anno::description("Coordinate, typically sourced from coordinate_source or coordinate_projection.") ]]
) [[ 
	::anno::description("Transform a texture coordinate by a matrix.") ,
	::anno::noinline()
  ]]
{
	// Version 2
	float4 r_position = transform * float4(coordinate.position.x,coordinate.position.y,coordinate.position.z,1);
	//Try aproximating it for the case that the rotation is only aroud z and assuming the texture layout is nice and z is ~constant.
	//just pretend there is no other rotation happening
	//get rid of scaling and translation. Then extract fields where sin and cos would be in a simple 2d transform around z.
	float4 u = transform[0];
	float3 ru = ::math::normalize(float3(u.x,u.y,u.z));
	float cos =  ru.x; 
	float sin =  -ru.y;
	//TODO: at least also handle sign of z?
	//TODO: handle tangent becoming 0 
	
	
	return ::base::texture_coordinate_info(
		float3(r_position.x,r_position.y,r_position.z),
		::math::normalize(cos * coordinate.tangent_u - sin * coordinate.tangent_v),
		::math::normalize(cos * coordinate.tangent_v + sin * coordinate.tangent_u));
}


// Takes the standard input that every material has. It combines a couple of
// functions in one convenience function.
::base::texture_coordinate_info vmat_transform(
								float2 translation = float2(0.0, 0.0),
								float rotation	 = 0.0,				// rotation in degrees
								float2 scaling	 = float2(1.0, 1.0),
								uniform ::base::texture_coordinate_system system = ::base::texture_coordinate_uvw,
								uniform int uv_space	   = 0
)
{
	float rotation_rad = (rotation * 3.1415926535897932384626433832f) / 180.f;
	float4x4 scale =
	float4x4(1.0 /scaling.x, 0.			 ,  0. ,	 0.,
			 0.			, 1.0 /scaling.y ,  0. ,	 0.,
			 0.			, 0.			 ,  1.0,	 0.,
			 translation.x , translation.y  ,  0.0,	 1.);

	float s = ::math::sin(rotation_rad);
	float c = ::math::cos(rotation_rad);
	float4x4 rotate =
	float4x4(  c  ,  -s   , 0.0 , 0.0,
			   s  ,   c   , 0.0 , 0.0,
			   0.0,   0.0 , 1.0 , 0.0,
			   0. ,   0.0 , 0.0 , 1.);
	
	return transform_coordinate_2(scale*rotate, ::base::coordinate_source(system, uv_space));
}



float2x2 invert_2x2(float2x2 M)
{
	float det = M[0][0]*M[1][1] - M[0][1]*M[1][0];
	//https://www.chilimath.com/lessons/advanced-algebra/inverse-of-a-2x2-matrix/
	return (1.0 / det) * float2x2(M[1][1], -M[0][1], -M[1][0], M[0][0]);
}

// https://nullprogram.com/blog/2018/07/31/
//bias: 0.17353355999581582 ( very probably the best of its kind )
// NOTE: To turn this back to a float, one must divide the value by 4294967296.f 
// which corresponds to 0xffffffff, however MDL seems to turn this into -1.
int lowbias32(int x)
{
	x ^= x >>> 16;
	x *= 0x7feb352d;
	x ^= x >>> 15;
	x *= 0x846ca68b;
	x ^= x >>> 16;
	return x;
}

float uint2float(int x)
{
	return float(x & 0x7FFFFFFF) + (x < 0 ? 2147483648.0 : 0.0);
}


float2 rnd22(int2 p) {
	float2 ret_val = float2(
		uint2float(lowbias32(p[0] + lowbias32(p[1]))) / 4294967296.f,
		uint2float(lowbias32(p[0] + 32000 + lowbias32(p[1]))) / 4294967296.f
	);
	return ret_val;
}  

float3 srgb2rgb(float3 val) 
{
	return ::math::pow(::math::max(val, float3(0.0f)), 2.2);
}

float3 nonrepeat_lookup(
	uniform texture_2d texture = texture_2d(),
	::base::texture_coordinate_info uvw = ::base::coordinate_source(),
	float texture_scale = 1.0,
	float3 average_color = float3(0.5),
	float patch_size = 8.0
)
{
	float2 uv_in = float2(uvw.position[0], uvw.position[1]) * texture_scale;
	float Z =  patch_size;	 // patch scale inside example texture
	
	float3 O = float3(0.f);
	float2x2 M0 = float2x2(1.f,0.f, 0.5f, ::math::sqrt(3.f)/2.f);
	float2x2 M = invert_2x2(M0); // transform matrix <-> tilted space
	
	float2 U = uv_in;
	float2 V = M * uv_in; //pre-tilted hexa coordinates
	int2 I = int2(::math::floor(V)); // hexa-tile id
	
	// The mean color needs to be determined in Photoshop 
	float3 m = average_color;
	
	float3 F = float3(::math::frac(V)[0], ::math::frac(V)[1], 0.f), W;
	F[2] = 1.0 - F[0] - F[1]; // local hexa coordinates
	
	if( F[2] > 0.f )

		O = (W[0] = F[2]) * (( ::tex::lookup_float3(texture, U/Z-rnd22(I))) - m)
		  + (W[1] = F[1]) * (( ::tex::lookup_float3(texture, U/Z-rnd22(I+int2(0,1)))) - m)
		  + (W[2] = F[0]) * (( ::tex::lookup_float3(texture, U/Z-rnd22(I+int2(1,0)))) - m);
	else
		O = (W[0] =	  -F[2]) * (( ::tex::lookup_float3(texture, U/Z-rnd22(I+int2(1))))   - m)
		  + (W[1] = 1.f - F[1]) * (( ::tex::lookup_float3(texture, U/Z-rnd22(I+int2(1, 0)))) - m)
		  + (W[2] = 1.f - F[0]) * (( ::tex::lookup_float3(texture, U/Z-rnd22(I+int2(0, 1)))) - m);
	O = m + O/::math::length(W);
	O = ::math::clamp( (O), 0.0, 1.0);
	
	return float3(O);
}


// NOTE: tex_resource must be in linear space (ensure that ::tex::gamma_linear is used)
color endless_texture(
	uniform texture_2d texture = texture_2d(),
	::base::texture_coordinate_info uvw = ::base::coordinate_source(),
	float texture_scale = 10.0,
	float3 average_color = float3(0.5, 0.5, 1.0),
	float patch_size = 8.0,
	bool gamma_correct_lookup = true
)
{
	return gamma_correct_lookup ? color(srgb2rgb(
			nonrepeat_lookup (
				texture: texture,
				uvw: uvw,
				texture_scale: texture_scale,
				average_color: average_color,
				patch_size: patch_size
			))
		) : color(nonrepeat_lookup (
			texture: texture,
			uvw: uvw,
			texture_scale: texture_scale,
			average_color: average_color,
			patch_size: patch_size
		));
}


export material PET_Clear(
// Appearance
	uniform bool thin_walled = false [[
		::anno::description("Makes the material thin-walled. This changes the behavior of the material in a way that light attenuation is not calculated volumetrically as light travels through the geometry but at the light surface level. Thin walled geometry mustbe modeled as a single sheet without any volume."),
		::anno::display_name("Thin Walled"),
		::anno::in_group("Appearance")
	]],
	uniform float ior = 1.573f [[
		::anno::description("Index of refraction"),
		::anno::display_name("IOR"),
		::anno::in_group("Appearance"),
		::anno::hard_range(0.f, 20.f),
		::anno::soft_range(0.f, 2.f)
	]],
	uniform float abbe_number = 27.897f [[
		::anno::description("Dispersion in relation to index of refraction"),
		::anno::display_name("Abbe Number"),
		::anno::in_group("Appearance"),
		::anno::soft_range(0.f, 100.f)
	]],
	float roughness = 0.f [[
		::anno::description("Creates a frosted look of the glass"),
		::anno::display_name("Roughness"),
		::anno::in_group("Appearance"),
		::anno::hard_range(0.f, 1.f)
	]],
	uniform unit_scale units_absorption_thickness = unit_cm [[
		::anno::description("Chooses the units that are used for setting the absorption thickness. Can be meters, centimeters or millimeters."),
		::anno::display_name("Units Absorption Thickness"),
		::anno::in_group("Appearance")
	]],
	uniform float absorption_thickness = 10.0f [[
		::anno::description("The thickness for which the transmittance (color) is set. Example: If thickness is set to 3mm and transmittance to 0.8, then 80% of the light will pass through a 3mm thick material."),
		::anno::display_name("Absorption Thickness"),
		::anno::in_group("Appearance")
	]],
	uniform color transmittance = color(1.0f) [[
		::anno::description("The transmittance sets the amount of light that is left after light has travelled through a given material thickness which can be set with the parameter \"absorption thickness\". The transmittance can be set for RGB components separately to achieve a tinted appearance of the material."),
		::anno::display_name("Transmittance"),
		::anno::in_group("Appearance")
	]],


// Smudges
	float smudges = 0.f [[
		::anno::description("Determines the amount of smudges that appears on the surface of the material"),
		::anno::display_name("Smudges"),
		::anno::in_group("Appearance", "Smudges"),
		::anno::hard_range(0.f, 1.f)
	]],
	float2 smudge_scale = float2(1.f) [[
		::anno::description("Larger numbers increase the size."),
		::anno::display_name("Smudge Scale"),
		::anno::in_group("Appearance", "Smudges"),
		::anno::soft_range(float2(0.f), float2(2.f))
	]],
	
	
// Transform
	float2 texture_translate = float2(0.f) [[
		::anno::description("Controls the position of the texture."),
		::anno::display_name("Texture Translate"),
		::anno::in_group("Transform")
	]],
	float texture_rotate = 0.f [[
		::anno::description("Rotates angle of the texture in degrees."),
		::anno::display_name("Texture Rotate"),
		::anno::in_group("Transform"),
		::anno::soft_range(0.f, 360.f)
	]],
	float2 texture_scale = float2(1.f) [[
		::anno::description("Larger numbers increase the size."),
		::anno::display_name("Texture Scale"),
		::nvidia::core_definitions::dimension(float2(0.45f, .45f)),
		::anno::in_group("Transform"),
		::anno::soft_range(float2(0.f), float2(2.f))
	]],
	

// Round Corners
	uniform bool round_corners = false [[
		::anno::description("Enables the round corner effect. Comes at a slight performance cost as additional raytracing calls are required to evaluate the round corner effect."),
		::anno::display_name("Round Corners"),
		::anno::in_group("Round Corners")
	]],
	uniform float radius = 1.5f [[
		::anno::description("Radius of the rounded corners."),
		::anno::display_name("Radius mm"),
		::anno::in_group("Round Corners"),
		::anno::soft_range(0.f, 10.f)
	]],
	uniform bool across_materials = false [[
		::anno::description("Applies the round corner effect across different materials when enabled."),
		::anno::display_name("Across Materials"),
		::anno::in_group("Round Corners")
	]],
	
// Advanced
	uniform int uv_space_index = 0 [[
		::anno::description("uses the selected UV space index."),
		::anno::display_name("UV Space Index"),
		::anno::in_group("Advanced"),
		::anno::soft_range(0, 4)
	]],
	float3 normal = ::state::normal() [[
		::anno::description("Override this input to provide a custom normal for the material."),
		::anno::display_name("Normal"),
		::anno::in_group("Advanced")
	]]
)
[[
	::anno::display_name("Polyethylene - Clear"),
	::anno::author("NVIDIA vMaterials"),
	::anno::contributor("Ruediger Raab"),
	::anno::contributor("Maik Rohland"),
	::anno::description(DESCRIPTION),
	::anno::key_words(string[]("plastic", "polyethylene", "terephthalate", "PET", "clear", "synthetic", "transparent", "design", "packagaing", "molded", "infinite tiling", "smooth")),
	::anno::thumbnail("./.thumbs/PET_Clear.PET_Clear.png"),
	::anno::copyright_notice(COPYRIGHT)
]]
 = 
	let {
		bool tmp0 = thin_walled;
		
		texture_2d smudges_tex = texture_2d("./textures/plastic_smudges.jpg", ::tex::gamma_linear);
		
		color endless_tex_lookup = endless_texture(smudges_tex, vmat_transform(texture_translate, texture_rotate, texture_scale * smudge_scale, ::base::texture_coordinate_uvw, uv_space_index), 4.f, float3(0.0590000004f, 0.050999999f, 0.125f), 4.f, false);
		float roughness_smudges = ::math::pow(::math::max(float3(endless_tex_lookup)[0] * smudges, float3(endless_tex_lookup)[1] * smudges), ::math::lerp(2.5f, 0.5f, ::math::pow(smudges, 0.25f)));
		
		material_surface tmp1(
			::df::fresnel_layer(
				ior,
				1.f,
				::df::microfacet_ggx_smith_bsdf(
					roughness_smudges * roughness_smudges,
					roughness_smudges * roughness_smudges,
					color(1.f, 1.f, 1.f),
					color(0.f, 0.f, 0.f),
					::state::texture_tangent_u(0),
					::df::scatter_reflect),
					
					::df::tint(color(1.f, 1.f, 1.f), 
						thin_walled ? transmittance : color(1.0f), 
						::df::weighted_layer(
							1.f, 
							::df::microfacet_ggx_smith_bsdf(
								roughness * roughness, 
								roughness * roughness, 
								color(1.f, 1.f, 1.f), 
								color(0.f, 0.f, 0.f), 
								::state::texture_tangent_u(0), 
								::df::scatter_reflect_transmit
							),
							bsdf(),
							normal)
						), 
					
				normal), 
			material_emission(emission: edf(), intensity: color(0.f, 0.f, 0.f), mode: intensity_radiant_exitance));
		material_surface tmp2 = material_surface(scattering: bsdf(), emission: material_emission(emission: edf(), intensity: color(0.f, 0.f, 0.f), mode: intensity_radiant_exitance));
		color tmp3 = ::base::abbe_number_ior(ior, abbe_number);
		
		material_volume tmp4 = thin_walled ? material_volume(scattering: vdf(), absorption_coefficient: color(0.f, 0.f, 0.f), scattering_coefficient: color(0.f, 0.f, 0.f)) : material_volume(vdf(), custom_volume_transmittance(units_absorption_thickness, absorption_thickness, transmittance, color(0.f, 0.f, 0.f)).absorption_coefficient, custom_volume_transmittance(units_absorption_thickness, absorption_thickness, transmittance, color(0.f, 0.f, 0.f)).scattering_coefficient);
		material_geometry tmp5(float3(0.f), 1.f, round_corners ? ::state::rounded_corner_normal(radius * 0.00100000005f, across_materials, 1.f) : ::state::normal());
		hair_bsdf tmp6 = hair_bsdf();
	} in
		material(
			thin_walled: tmp0,
			surface: tmp1,
			backface: tmp2,
			ior: tmp3,
			volume: tmp4,
			geometry: tmp5,
			hair: tmp6);
			
export material PET_Smudged(*)
[[
	::anno::display_name("Polyethylene - Smudges"),
	::anno::author("NVIDIA vMaterials"),
	::anno::contributor("Ruediger Raab"),
	::anno::contributor("Maik Rohland"),
	::anno::description(DESCRIPTION),
	::anno::key_words(string[]("plastic", "polyethylene", "terephthalate", "PET", "clear", "synthetic", "transparent", "design", "packagaing", "molded", "smudged", "smudges", "infinite tiling", "smooth")),
	::anno::thumbnail("./.thumbs/PET_Clear.PET_Smudged.png"),
	::anno::copyright_notice(COPYRIGHT)
]]
 = PET_Clear (
	thin_walled:			false,
	ior:					1.573f,
	abbe_number:			27.897f,
	roughness:				0.0f,
	units_absorption_thickness: unit_cm,
	absorption_thickness:	10.0f,
	transmittance:			color(.98f),
	smudges:				0.85f,
	smudge_scale:			float2(1.0f),
	texture_translate:		float2(0.0f),
	texture_rotate:			0.0f,
	texture_scale:			float2(1.0f),
	round_corners:			false,
	radius:					0.5f,
	across_materials:		false,
	uv_space_index:			0,
	normal:					::state::normal()
);