text
stringlengths
3
1.04M
lang
stringclasses
4 values
len
int64
3
1.04M
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # Name: naturalLanguageObjects.py # Purpose: Multi-lingual conversion of pitch, etc. objects # Authors: David Perez # Michael Scott Cuthbert # # Copyright: Copyright © 2014, 2016 Michael Scott Cuthbert and the music21 Project # License: BSD, see license.txt # ------------------------------------------------------------------------------ ''' Multi-lingual conversion of pitch, etc. objects ''' import unittest from music21 import pitch SUPPORTED_LANGUAGES = ['de', 'fr', 'it', 'es'] SUPPORTED_ACCIDENTALS = ['----', '---', '--', '-', '', '#', '##', '###', '####'] SUPPORTED_MICROTONES = ['A', 'B', 'C', 'D', 'E', 'F', 'G'] def generateLanguageDictionary(languageString): # Helper method for toPitch # Generates a dictionary that allows the conversion of pitches from any language supported, # consistent with the standards set by pitch.py if languageString not in SUPPORTED_LANGUAGES: return {} dictionary = {} pitchStrings = [] for microtone in SUPPORTED_MICROTONES: for accidental in SUPPORTED_ACCIDENTALS: pitchStrings.append(microtone + accidental) if languageString == 'de': for pitchString in pitchStrings: p = pitch.Pitch(pitchString) dictionary[p.german] = pitchString elif languageString == 'fr': for pitchString in pitchStrings: p = pitch.Pitch(pitchString) dictionary[p.french] = pitchString elif languageString == 'it': for pitchString in pitchStrings: p = pitch.Pitch(pitchString) dictionary[p.italian] = pitchString elif languageString == 'es': for pitchString in pitchStrings: p = pitch.Pitch(pitchString) dictionary[p.spanish] = pitchString return dictionary def toPitch(pitchString, languageString): ''' Converts a string to a :class:`music21.pitch.Pitch` object given a language. Supported languages are French, German, Italian, and Spanish Defaults to C natural >>> languageExcerpts.naturalLanguageObjects.toPitch('Es', 'de') <music21.pitch.Pitch E-> >>> languageExcerpts.naturalLanguageObjects.toPitch('H', 'de') <music21.pitch.Pitch B> >>> for i in ['As', 'A', 'Ais']: ... print(languageExcerpts.naturalLanguageObjects.toPitch(i, 'de')) A- A A# ''' langDict = generateLanguageDictionary(languageString) if pitchString not in langDict: return pitch.Pitch('C') return pitch.Pitch(langDict[pitchString]) def toNote(pitchString, languageString): ''' Converts a string to a :class:`music21.note.Note` object given a language Supported languages are French, German, Italian, and Spanish Defaults to C Natural >>> languageExcerpts.naturalLanguageObjects.toNote('Es', 'de') <music21.note.Note E-> >>> languageExcerpts.naturalLanguageObjects.toNote('H', 'de') <music21.note.Note B> >>> for i in ['As', 'A', 'Ais']: ... print(languageExcerpts.naturalLanguageObjects.toNote(i, 'de')) <music21.note.Note A-> <music21.note.Note A> <music21.note.Note A#> ''' from music21 import note return note.Note(toPitch(pitchString, languageString)) def toChord(pitchArray, languageString): ''' Converts a list of strings to a :class:`music21.chord.Chord` object given a language Supported languages are French, German, Italian, and Spanish Unsupported strings default to pitch C Natural >>> languageExcerpts.naturalLanguageObjects.toChord(['Es', 'E', 'Eis'], 'de') <music21.chord.Chord E- E E#> ''' from music21 import chord noteList = [toNote(pitchObj, languageString) for pitchObj in pitchArray] return chord.Chord(noteList) # ----------------------------------------------------------------------------- class Test(unittest.TestCase): def testConvertPitches(self): # testing defaults in case of invalid language and invalid input self.assertEqual('<music21.pitch.Pitch C>', repr(toPitch('hello', ''))) self.assertEqual('<music21.pitch.Pitch C>', repr(toPitch('', 'hello'))) self.assertEqual('<music21.pitch.Pitch C>', repr(toPitch('hello', 'hello'))) self.assertEqual('<music21.pitch.Pitch C>', repr(toPitch('', ''))) # testing defaults in case of invalid language and valid input self.assertEqual('<music21.pitch.Pitch C>', repr(toPitch('Eis', 'hello'))) self.assertEqual('<music21.pitch.Pitch C>', repr(toPitch('Eis', ''))) self.assertEqual('<music21.pitch.Pitch C>', repr(toPitch('H', 'hello'))) self.assertEqual('<music21.pitch.Pitch C>', repr(toPitch('H', ''))) self.assertEqual('<music21.pitch.Pitch C>', repr(toPitch('Sol', 'hello'))) self.assertEqual('<music21.pitch.Pitch C>', repr(toPitch('Sol', ''))) self.assertEqual('<music21.pitch.Pitch C>', repr(toPitch('Re', 'hello'))) self.assertEqual('<music21.pitch.Pitch C>', repr(toPitch('Re', ''))) # testing defaults in case of invalid input string and valid language self.assertEqual('<music21.pitch.Pitch C>', repr(toPitch('hello', 'de'))) self.assertEqual('<music21.pitch.Pitch C>', repr(toPitch('', 'de'))) self.assertEqual('<music21.pitch.Pitch C>', repr(toPitch('hello', 'fr'))) self.assertEqual('<music21.pitch.Pitch C>', repr(toPitch('', 'fr'))) self.assertEqual('<music21.pitch.Pitch C>', repr(toPitch('hello', 'es'))) self.assertEqual('<music21.pitch.Pitch C>', repr(toPitch('', 'es'))) self.assertEqual('<music21.pitch.Pitch C>', repr(toPitch('hello', 'it'))) self.assertEqual('<music21.pitch.Pitch C>', repr(toPitch('', 'it'))) # testing defaults in case of valid input string and valid language self.assertEqual('<music21.pitch.Pitch C##>', repr(toPitch('do doppio diesis', 'it'))) self.assertEqual('<music21.pitch.Pitch F##>', repr(toPitch('fa doble sostenido', 'es'))) self.assertEqual('<music21.pitch.Pitch G--->', repr(toPitch('sol triple bèmol', 'es'))) self.assertEqual('<music21.pitch.Pitch D>', repr(toPitch('re', 'it'))) self.assertEqual('<music21.pitch.Pitch B-->', repr(toPitch('Heses', 'de'))) self.assertEqual('<music21.pitch.Pitch E##>', repr(toPitch('Eisis', 'de'))) self.assertEqual('<music21.pitch.Pitch A####>', repr(toPitch('la quadruple dièse', 'fr'))) self.assertEqual('<music21.pitch.Pitch B--->', repr(toPitch('si triple bémol', 'fr'))) def testConvertNotes(self): # testing defaults in case of invalid language and invalid input self.assertEqual('<music21.note.Note C>', repr(toNote('hello', ''))) self.assertEqual('<music21.note.Note C>', repr(toNote('', 'hello'))) self.assertEqual('<music21.note.Note C>', repr(toNote('hello', 'hello'))) self.assertEqual('<music21.note.Note C>', repr(toNote('', ''))) # testing defaults in case of invalid language and valid input self.assertEqual('<music21.note.Note C>', repr(toNote('Eis', 'hello'))) self.assertEqual('<music21.note.Note C>', repr(toNote('Eis', ''))) self.assertEqual('<music21.note.Note C>', repr(toNote('H', 'hello'))) self.assertEqual('<music21.note.Note C>', repr(toNote('H', ''))) self.assertEqual('<music21.note.Note C>', repr(toNote('Sol', 'hello'))) self.assertEqual('<music21.note.Note C>', repr(toNote('Sol', ''))) self.assertEqual('<music21.note.Note C>', repr(toNote('Re', 'hello'))) self.assertEqual('<music21.note.Note C>', repr(toNote('Re', ''))) # testing defaults in case of invalid input string and valid language self.assertEqual('<music21.note.Note C>', repr(toNote('hello', 'de'))) self.assertEqual('<music21.note.Note C>', repr(toNote('', 'de'))) self.assertEqual('<music21.note.Note C>', repr(toNote('hello', 'fr'))) self.assertEqual('<music21.note.Note C>', repr(toNote('', 'fr'))) self.assertEqual('<music21.note.Note C>', repr(toNote('hello', 'es'))) self.assertEqual('<music21.note.Note C>', repr(toNote('', 'es'))) self.assertEqual('<music21.note.Note C>', repr(toNote('hello', 'it'))) self.assertEqual('<music21.note.Note C>', repr(toNote('', 'it'))) # testing defaults in case of valid input string and valid language self.assertEqual('<music21.note.Note C##>', repr(toNote('do doppio diesis', 'it'))) self.assertEqual('<music21.note.Note F##>', repr(toNote('fa doble sostenido', 'es'))) self.assertEqual('<music21.note.Note G--->', repr(toNote('sol triple bèmol', 'es'))) self.assertEqual('<music21.note.Note D>', repr(toNote('re', 'it'))) self.assertEqual('<music21.note.Note B-->', repr(toNote('Heses', 'de'))) self.assertEqual('<music21.note.Note E##>', repr(toNote('Eisis', 'de'))) self.assertEqual('<music21.note.Note A####>', repr(toNote('la quadruple dièse', 'fr'))) self.assertEqual('<music21.note.Note B--->', repr(toNote('si triple bémol', 'fr'))) def testConvertChords(self): # testing defaults in case of invalid language and no input self.assertEqual((), toChord([], '').pitches) self.assertEqual((), toChord([], 'hello').pitches) # testing defaults in case of valid language and no input self.assertEqual((), toChord([], 'de').pitches) self.assertEqual((), toChord([], 'fr').pitches) self.assertEqual((), toChord([], 'es').pitches) self.assertEqual((), toChord([], 'it').pitches) # testing defaults in case of invalid language and valid list self.assertEqual('<music21.chord.Chord C>', repr(toChord(['Eis'], 'hello'))) self.assertEqual('<music21.chord.Chord C>', repr(toChord(['Eis'], ''))) self.assertEqual('<music21.chord.Chord C>', repr(toChord(['H'], 'hello'))) self.assertEqual('<music21.chord.Chord C>', repr(toChord(['H'], ''))) self.assertEqual('<music21.chord.Chord C>', repr(toChord(['Sol'], 'hello'))) self.assertEqual('<music21.chord.Chord C>', repr(toChord(['Sol'], ''))) self.assertEqual('<music21.chord.Chord C>', repr(toChord(['Re'], 'hello'))) self.assertEqual('<music21.chord.Chord C>', repr(toChord(['Re'], ''))) # testing defaults in case of invalid input list and valid language self.assertEqual('<music21.chord.Chord C>', repr(toChord(['hello'], 'de'))) self.assertEqual('<music21.chord.Chord C>', repr(toChord([''], 'de'))) self.assertEqual('<music21.chord.Chord C>', repr(toChord(['hello'], 'fr'))) self.assertEqual('<music21.chord.Chord C>', repr(toChord([''], 'fr'))) self.assertEqual('<music21.chord.Chord C>', repr(toChord(['hello'], 'es'))) self.assertEqual('<music21.chord.Chord C>', repr(toChord([''], 'es'))) self.assertEqual('<music21.chord.Chord C>', repr(toChord(['hello'], 'it'))) self.assertEqual('<music21.chord.Chord C>', repr(toChord([''], 'it'))) # testing defaults in case of valid input list and valid language self.assertEqual('<music21.chord.Chord C##>', repr(toChord(['do doppio diesis'], 'it'))) self.assertEqual('<music21.chord.Chord F##>', repr(toChord(['fa doble sostenido'], 'es'))) self.assertEqual('<music21.chord.Chord G--->', repr(toChord(['sol triple bèmol'], 'es'))) self.assertEqual('<music21.chord.Chord D>', repr(toChord(['re'], 'it'))) self.assertEqual('<music21.chord.Chord B-->', repr(toChord(['Heses'], 'de'))) self.assertEqual('<music21.chord.Chord E##>', repr(toChord(['Eisis'], 'de'))) self.assertEqual('<music21.chord.Chord A####>', repr(toChord(['la quadruple dièse'], 'fr'))) self.assertEqual('<music21.chord.Chord B--->', repr(toChord(['si triple bémol'], 'fr'))) self.assertEqual('<music21.chord.Chord C## D>', repr(toChord(['do doppio diesis', 're'], 'it'))) self.assertEqual('<music21.chord.Chord F## G--->', repr(toChord(['fa doble sostenido', 'sol triple bèmol'], 'es'))) self.assertEqual('<music21.chord.Chord B-- E##>', repr(toChord(['Heses', 'Eisis'], 'de'))) self.assertEqual('<music21.chord.Chord A#### B--->', repr(toChord(['la quadruple dièse', 'si triple bémol'], 'fr'))) # ----------------------------------------------------------------------------- # define presented order in documentation _DOC_ORDER = [] if __name__ == '__main__': import music21 music21.mainTest(Test)
python
13,170
from copy import deepcopy from flask import Flask, request, redirect, session, abort from flask_login import LoginManager from flask_wtf.csrf import CSRFProtect, CSRFError from werkzeug.local import Local, LocalProxy import dmapiclient from dmutils import init_app from dmcontent.content_loader import ContentLoader from dmcontent.utils import try_load_manifest, try_load_metadata, try_load_messages from dmutils.user import User from dmutils.external import external as external_blueprint from dmutils.timing import logged_duration from govuk_frontend_jinja.flask_ext import init_govuk_frontend from config import configs login_manager = LoginManager() data_api_client = dmapiclient.DataAPIClient() search_api_client = dmapiclient.SearchAPIClient() csrf = CSRFProtect() # we use our own Local for objects we explicitly want to be able to retain between requests but shouldn't # share a common object between concurrent threads/contexts _local = Local() def _make_content_loader_factory(application, frameworks, initial_instance=None): # for testing purposes we allow an initial_instance to be provided master_cl = initial_instance if initial_instance is not None else ContentLoader('app/content') for framework_data in frameworks: if not framework_data['slug'] in application.config.get('DM_FRAMEWORK_CONTENT_MAP', {}): if framework_data['framework'] == 'g-cloud': master_cl.load_manifest(framework_data['slug'], 'services', 'services_search_filters') # we need to be able to display old services, even on expired frameworks master_cl.load_manifest(framework_data['slug'], 'services', 'display_service') master_cl.load_manifest(framework_data['slug'], 'services', 'download_results') try_load_metadata(master_cl, application, framework_data, ['following_framework']) elif framework_data['framework'] == 'digital-outcomes-and-specialists': master_cl.load_manifest(framework_data['slug'], 'briefs', 'display_brief') try_load_manifest(master_cl, application, framework_data, 'briefs', 'briefs_search_filters') # seal master_cl in a closure by returning a function which will only ever return an independent copy of it. # this is of course only guaranteed when the initial_instance argument wasn't used. return lambda: deepcopy(master_cl) def _content_loader_factory(): # this is a placeholder _content_loader_factory implementation that should never get called, instead being # replaced by one created using _make_content_loader_factory once an `application` is available to # initialize it with raise LookupError("content loader not ready yet: must be initialized & populated by create_app") @logged_duration(message="Spent {duration_real}s in get_content_loader") def get_content_loader(): if not hasattr(_local, "content_loader"): _local.content_loader = _content_loader_factory() return _local.content_loader content_loader = LocalProxy(get_content_loader) from .main.helpers.framework_helpers import get_latest_live_framework from .main.helpers.search_save_helpers import SavedSearchStateEnum def create_app(config_name): application = Flask(__name__) # allow using govuk-frontend Nunjucks templates init_govuk_frontend(application) init_app( application, configs[config_name], data_api_client=data_api_client, login_manager=login_manager, search_api_client=search_api_client, ) # replace placeholder _content_loader_factory with properly initialized one global _content_loader_factory _content_loader_factory = _make_content_loader_factory( application, data_api_client.find_frameworks().get('frameworks'), ) from .metrics import metrics as metrics_blueprint, gds_metrics from .main import main as main_blueprint from .main import direct_award as direct_award_blueprint from .main import direct_award_public as direct_award_public_blueprint from .status import status as status_blueprint application.register_blueprint(metrics_blueprint) application.register_blueprint(status_blueprint) application.register_blueprint(main_blueprint) application.register_blueprint(direct_award_blueprint) # direct_award_blueprint and direct_award_public_blueprint cover the same url prefix - direct_award_blueprint takes # precedence application.register_blueprint(direct_award_public_blueprint) # Must be registered last so that any routes declared in the app are registered first (i.e. take precedence over # the external NotImplemented routes in the dm-utils external blueprint). application.register_blueprint(external_blueprint) login_manager.login_view = '/user/login' login_manager.login_message = None # don't flash message to user gds_metrics.init_app(application) csrf.init_app(application) @application.before_request def remove_trailing_slash(): if request.path != '/' and request.path.endswith('/'): if request.query_string: return redirect( '{}?{}'.format( request.path[:-1], request.query_string.decode('utf-8') ), code=301 ) else: return redirect(request.path[:-1], code=301) @application.before_request def refresh_session(): session.permanent = True session.modified = True @application.context_processor def inject_saved_search_temp_message_statuses(): return {state.name: state.value for state in SavedSearchStateEnum} return application @login_manager.user_loader def load_user(user_id): return User.load_user(data_api_client, user_id)
python
5,889
# -*- Mode: Python -*- import coro import coro.db.postgres as PG import struct W = coro.write_stderr # postgres implements the COPY FROM STDIN command inside the protocol, # if you emit a COPY command (via SQL), it will put the connection into # copyin mode. Feed it the exact same data you would have from a file, # and you have a much faster way of populating a database. class writer: def __init__ (self, forms, fout, chunk_size=16000): self.forms = forms self.fout = fout self.buffer = [] self.size = 0 self.chunk_size = chunk_size self.append ('PGCOPY\n\xff\r\n\x00') self.append (struct.pack ('>L', 0)) # flags self.append (struct.pack ('>L', 0)) # ext len self.count = 0 def append (self, data): self.buffer.append (data) self.size += len (data) if self.size > self.chunk_size: self.flush() def flush (self): block, self.buffer = self.buffer, [] self.size = 0 block = ''.join (block) self.fout (block) def write_row (self, row): row_data = [struct.pack ('>h', len(row))] for i in range (len (self.forms)): if row[i] is None: row_data.append (struct.pack ('>l', -1)) else: data = struct.pack ('>%s' % (self.forms[i],), row[i]) row_data.append (struct.pack ('>l', len(data))) row_data.append (data) self.count += 1 self.append (''.join (row_data,)) def done (self): self.append (struct.pack ('>h', -1)) self.flush() def t0(): db = PG.postgres_client ('t0', 'foo', 'bar') db.connect() try: db.Q ('drop table squares;') except PG.QueryError: pass db.Q ('create table squares (n int, n2 int);') db.query ('copy squares from stdin binary;') w = writer (('i', 'i'), db.putline) for i in range (1000): w.write_row ([i, i*i]) w.done() db.endcopy() coro.spawn (t0) coro.event_loop()
python
2,061
from data import disasters as df from predicts import disaster_model as model def predict_categories(query): """ This function classifies the text in input :param query: the text to classify :return: the categories of the text """ # use model to predict classification for query classification_labels = model.predict([query])[0] classification_results = dict(zip(df.columns[4:], classification_labels)) return classification_results
python
472
from math import ceil FNAME = 'submit' def main(): output = '' for p, problem in enumerate(load_input(), 1): output += 'Case #%d:%s\n' % (p, solve(*problem)) with open('%sOutput' % FNAME, 'w', encoding='utf-8') as fp: fp.write(output) def load_input(): with open('%sInput' % FNAME, 'r', encoding='utf-8') as fp: problems = int(fp.readline()) for p in range(problems): w, h, f, p = map(int, fp.readline().split(' ')) folds = [fp.readline().strip() for fold in range(f)] punches = [tuple(map(int, fp.readline().split(' '))) for punch in range(p)] yield w, h, folds, punches def solve(w, h, folds, punches): res = punches for fold in folds: if fold == 'T': punches = [(x, h - y - 1) for x, y in punches] + [(x, h + y) for x, y in punches] h *= 2 elif fold == 'B': punches = punches + [(x, 2 * h - y - 1) for x, y in punches] h *= 2 elif fold == 'L': punches = [(w - x - 1, y) for x, y in punches] + [(w + x, y) for x, y in punches] w *= 2 elif fold == 'R': punches = punches + [(2 * w - x - 1, y) for x, y in punches] w *= 2 return '\n' + '\n'.join('%s %s' % punch for punch in sorted(punches)) def draw(punches, w, h): draw = [['x' for e in range(w)] for _ in range(h)] for x, y in punches: draw[y][x] = 'o' print('\n'.join(''.join(line) for line in draw)) if __name__ == '__main__': main()
python
1,359
from JumpScale import j from OSISCMDS import OSISCMDS from OSISClientForCat import OSISClientForCat from OSISBaseObject import OSISBaseObject from OSISBaseObjectComplexType import OSISBaseObjectComplexType import JumpScale.portal.codegentools import inspect import imp import sys import ujson import lz4 class FileLikeStreamObject(object): def __init__(self): self.out="" def write(self, buf,**args): for line in buf.rstrip().splitlines(): #print "###%s"%line self.out+="%s\n"%line class ClassEmpty(): pass class NameSpaceClient(object): def __init__(self, client, namespace): self._client = client self._namespace = namespace for category in client.listNamespaceCategories(namespace): cclient = j.core.osis.getClientForCategory(self._client, self._namespace, category) setattr(self, category, cclient) def __getattr__(self, category): categories = self._client.listNamespaceCategories(self._namespace) if category not in categories: raise AttributeError("Category %s does not exists in namespace %s" % (category, self._namespace)) cclient = j.core.osis.getClientForCategory(self._client, self._namespace, category) setattr(self, category, cclient) return cclient class OSISFactory: """ """ def _redirect(self): self._out=FileLikeStreamObject() if not self._sysstdout: self._sysstdout=sys.stdout # sys.stdout=self._out def _stopRedirect(self,pprint=False): if self._sysstdout: sys.stdout=self._sysstdout out = None if self._out: out=self._out.out if pprint: print out self._out=None return out def __init__(self): self._sysstdout = None self.osisConnections = {} self.osisConnectionsCat={} self.nodeguids={} self.osisModels={} self.namespacesInited={} def encrypt(self,obj): if not j.basetype.string.check(obj): if j.basetype.dictionary.check(obj): val=obj else: val=obj.__dict__ val=ujson.dumps(val) else: val = obj val=lz4.dumps(val) val=j.db.serializers.blowfish.dumps(val,self.key) return val def decrypt(self,val,json=False): if not j.basetype.string.check(val): raise RuntimeError("needs to be string") val=j.db.serializers.blowfish.loads(val,self.key) val=lz4.loads(val) if json: val=ujson.loads(val) return val def getLocal(self, path="", overwriteHRD=False, overwriteImplementation=False, namespacename=None): """ create local instance starting from path """ osis=OSISCMDS() osis.init() return osis def startDaemon(self, path="", overwriteHRD=False, overwriteImplementation=False, key="",port=5544,superadminpasswd=None,dbconnections={},hrd=None): """ start deamon """ if hrd<>None: self.hrd=hrd self.key=key self.superadminpasswd=superadminpasswd self.dbconnections=dbconnections if self.superadminpasswd=="": j.events.inputerror_critical("cannot start osis, superadminpasswd needs to be specified") daemon = j.servers.geventws.getServer(port=port) OSISCMDS.dbconnections = dbconnections daemon.addCMDsInterface(OSISCMDS, category="osis") # pass as class not as object !!! daemon.daemon.cmdsInterfaces["osis"].init(path=path)#,esip=elasticsearchip,esport=elasticsearchport,db=db) self.cmds=daemon.daemon.cmdsInterfaces["osis"] daemon.schedule("checkchangelog", self.cmds.checkChangeLog) daemon.start() def getClient(self, ipaddr=None, port=5544,user=None,passwd=None,ssl=False,gevent=False): if ipaddr==None or user==None or passwd==None: osisjp=j.packages.findNewest(name="osis_client",domain="jumpscale") inames=osisjp.getInstanceNames() if len(inames)==1: osisjp=osisjp.load(instance=inames[0]) hrd=osisjp.hrd_instance if ipaddr==None: ipaddr=hrd.get("osis.client.addr") if user==None: user=hrd.get("osis.client.login") if passwd==None: passwd=hrd.get("osis.client.passwd") port=int(hrd.get("osis.client.port")) if passwd=="EMPTY": passwd="" if ipaddr<>None: if not isinstance(ipaddr, list): ips = [ipaddr] else: ips = ipaddr elif j.application.config.exists('osis.ip'): ips = j.application.config.getList('osis.ip') else: ips = [ j.application.config.get('grid.master.ip') ] connections = [ (ip, port) for ip in ips ] key = "%s_%s_%s" % (connections, user, passwd) if key in self.osisConnections: return self.osisConnections[key] if user==None or user=="node": user="node" passwd=j.application.config.get("grid.node.machineguid") elif user=="root" and not passwd: if j.application.config.exists("osis.superadmin.passwd"): passwd=j.application.config.get("osis.superadmin.passwd") else: raise RuntimeError("Osis superadmin passwd has not been defined on this node, please put in #hrd (osis.superadmin.passwd) or use argument 'passwd'.") with j.logger.nostdout(): #client = j.core.zdaemon.getZDaemonHAClient(connections, category="osis", user=user, passwd=passwd,ssl=ssl,sendformat="j", returnformat="j",gevent=gevent) client= j.servers.geventws.getHAClient(connections, user=user, passwd=passwd,category="osis") self.osisConnections[key] = client return client def getClientByInstance(self, instance=None, ssl=False, gevent=False,die=True): if instance is None: if hasattr(j.application, 'instanceconfig'): instance = j.application.instanceconfig.get('osis.connection') else: instance = 'main' osisjp=j.packages.findNewest(name="osis_client",domain="jumpscale") osisjp.load(instance=instance) if osisjp.isInstalled(): hrd=osisjp.hrd_instance ipaddr=hrd.getList("osis.client.addr") port=int(hrd.get("osis.client.port")) user=hrd.get("osis.client.login") passwd=hrd.get("osis.client.passwd") return self.getClient(ipaddr=ipaddr, port=port, user=user, passwd=passwd, ssl=ssl, gevent=gevent) if die: j.events.inputerror_critical("Could not find osis_client with instance:%s, could not load osis,"%instance) def getClientForNamespace(self, namespace, client=None): if client==None: client = self.getClientByInstance('main') return NameSpaceClient(client, namespace) def getClientForCategory(self, client, namespace, category): """ how to use client=j.core.osis.getClientByInstance('main') client4node=j.core.osis.getClientForCategory(client,"system","node") """ if client==None: raise RuntimeError("Client cannot be None: getClientForCategory %s/%s"%(namespace, category)) return OSISClientForCat(client, namespace, category) def getOsisBaseObjectClass(self): return OSISBaseObject def getOSISBaseObjectComplexType(self): return OSISBaseObjectComplexType def getOsisImplementationParentClass(self, namespacename): """ return parent class for osis implementation (is the implementation from which each namespace & category inherits) """ implpath = j.system.fs.joinPaths("logic", namespacename, "OSIS_parent.py") classs = self._loadModuleClass(implpath) return classs def _generateOsisModelClassFromSpec(self,namespace,specpath,modelName="",classpath=""): """ generate class files for spec (can be more than 1) generated in classpath/modelName/OsisGeneratedRootObject.py and also classpath/modelName/model.py @return classpath """ import JumpScale.baselib.specparser j.core.specparser.parseSpecs(specpath, appname="osismodel", actorname=namespace) # spec = j.core.specparser.getModelSpec(namespace, category, "root") modelNames = j.core.specparser.getModelNames("osismodel", namespace) if classpath=="": classpath=j.system.fs.joinPaths(j.dirs.varDir,"code","osismodel",namespace) extpath=j.system.fs.getDirName(inspect.getfile(self.getClient)) templpath=j.system.fs.joinPaths(extpath,"_templates","osiscomplextypes") j.system.fs.copyDirTree(templpath, classpath, keepsymlinks=False, eraseDestination=False, \ skipProtectedDirs=False, overwriteFiles=False, applyHrdOnDestPaths=None) if len(modelNames) > 0: for modelName in modelNames: modelspec = j.core.specparser.getModelSpec("osismodel", namespace, modelName) modeltags = j.core.tags.getObject(modelspec.tags) # # will generate the tasklets # modelHasTasklets = modeltags.labelExists("tasklets") # if modelHasTasklets: # j.core.codegenerator.generate(modelspec, "osis", codepath=actorpath, returnClass=False, args=args) # if spec.hasTasklets: # self.loadOsisTasklets(actorobject, actorpath, modelName=modelspec.name) code = j.core.codegenerator.getCodeJSModel("osismodel", namespace, modelName) if modelspec.tags == None: modelspec.tags = "" index = j.core.tags.getObject(modelspec.tags).labelExists("index") tags = j.core.tags.getObject(modelspec.tags) classnameGenerated="JSModel_%s_%s_%s"%("osismodel", namespace, modelName) classnameNew="%s_%s"%(namespace,modelName) classnameNew2="%s_%s_osismodelbase"%(namespace,modelName) code=code.replace(classnameGenerated,classnameNew2) classpathForModel=j.system.fs.joinPaths(classpath,modelName) j.system.fs.createDir(classpathForModel) classpath3=j.system.fs.joinPaths(classpathForModel,"%s_osismodelbase.py"%classnameNew) j.system.fs.writeFile(filename=classpath3,contents=code) mpath=j.system.fs.joinPaths(classpathForModel,"model.py") if not j.system.fs.exists(path=mpath): j.system.fs.copyFile(j.system.fs.joinPaths(classpath,"model_template.py"),mpath) content=j.system.fs.fileGetContents(mpath) content=content.replace("$modelbase","%s"%classnameNew) j.system.fs.writeFile(filename=mpath,contents=content) return classpath def generateOsisModelDefaults(self,namespace,specpath=""): import JumpScale.portal.codegentools if specpath=="": specpath=j.system.fs.joinPaths("logic", namespace, "model.spec") basepathspec=j.system.fs.getDirName(specpath) if j.system.fs.exists(path=specpath): self._generateOsisModelClassFromSpec(namespace,specpath=basepathspec,classpath=basepathspec) def getModelTemplate(self): extpath=j.system.fs.getDirName(inspect.getfile(self.getClient)) return j.system.fs.joinPaths(extpath,"_templates","model_template.py") def getOsisModelClass(self,namespace,category,specpath=""): """ returns class generated from spec file or from model.py file """ key="%s_%s"%(namespace,category) if not self.osisModels.has_key(key): # #need to check if there is a specfile or we go from model.py if specpath=="": specpath=j.system.fs.joinPaths("logic", namespace, "model.spec") basepathspec=j.system.fs.getDirName(specpath) basepath=j.system.fs.joinPaths(basepathspec,category) modelpath=j.system.fs.joinPaths(basepath,"model.py") if j.system.fs.exists(path=modelpath): klass= j.system.fs.fileGetContents(modelpath) name="" for line in klass.split("\n"): if line.find("(OsisBaseObject")<>-1 and line.find("class ")<>-1: name=line.split("(")[0].lstrip("class").strip() if name=="": raise RuntimeError("could not find: class $modelName(OsisBaseObject) in model class file, should always be there") sys.path.append(basepath) module = imp.load_source(key,modelpath) self.osisModels[key]=module.__dict__[name] else: raise RuntimeError("Could not find model.py in %s"%basepath) return self.osisModels[key] def _loadModuleClass(self, path): '''Load the Python module from disk using a random name''' modname = "osis_%s"%path.replace("/","_").replace("logic_","")[:-3] # while modname in sys.modules: # modname = generate_module_name() module = imp.load_source(modname, path) # find main classname of module # classes=[item for item in module.__dict__.keys() if (item<>"q" and item[0]<>"_")] # if len(classes)<>1: # j.errorconditionhandler.raiseBug(message="there must be only 1 class implemented in %s"%path,category="osis.init") # classname=classes[0] # return module.__dict__[classname] try: return module.mainclass except Exception,e: raise RuntimeError("Could not load module on %s, could not find 'mainclass', check code on path. Error:%s"% (path,e))
python
14,281
"""swapi_explorer URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import include, path urlpatterns = [ path("admin/", admin.site.urls), path("", include("swapi_explorer.explorer.urls")), ]
python
820
from blinker import signal pre_request = signal('pre-request')
python
64
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2018 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import Iterable, defaultdict from datetime import datetime from operator import attrgetter import numpy as np from ..core import Entity, TileableEntity, ChunkData, Chunk, TileableData, is_eager_mode, build_mode, Serializable from ..tiles import handler from ..serialize import ProviderType, ValueType, DataTypeField, ListField, TupleField, \ BoolField, StringField, AnyField from ..compat import Enum from ..utils import log_unhandled, on_serialize_shape, on_deserialize_shape from .utils import get_chunk_slices import logging logger = logging.getLogger(__name__) class TensorOrder(Enum): # C order C_ORDER = 'C' # Fortran order F_ORDER = 'F' class TensorChunkData(ChunkData): __slots__ = () # required fields _shape = TupleField('shape', ValueType.int64, on_serialize=on_serialize_shape, on_deserialize=on_deserialize_shape) _order = StringField('order', on_serialize=attrgetter('value'), on_deserialize=TensorOrder) # optional fields _dtype = DataTypeField('dtype') def __init__(self, op=None, index=None, shape=None, dtype=None, order=None, **kw): super(TensorChunkData, self).__init__(_op=op, _index=index, _shape=shape, _dtype=dtype, _order=order, **kw) @classmethod def cls(cls, provider): if provider.type == ProviderType.protobuf: from ..serialize.protos.tensor_pb2 import TensorChunkDef return TensorChunkDef return super(TensorChunkData, cls).cls(provider) @property def params(self): # params return the properties which useful to rebuild a new chunk return { 'shape': self.shape, 'dtype': self.dtype, 'order': self.order, 'index': self.index, } def __len__(self): try: return self.shape[0] except IndexError: if build_mode().is_build_mode: return 0 raise TypeError('len() of unsized object') @property def shape(self): return getattr(self, '_shape', None) @property def ndim(self): return len(self.shape) @property def size(self): return np.prod(self.shape).item() @property def dtype(self): return getattr(self, '_dtype', None) or self.op.dtype @property def order(self): return getattr(self, '_order', None) @property def nbytes(self): return np.prod(self.shape) * self.dtype.itemsize class TensorChunk(Chunk): __slots__ = () _allow_data_type_ = (TensorChunkData,) def __len__(self): return len(self._data) class TensorData(TileableData): __slots__ = () # required fields _order = StringField('order', on_serialize=attrgetter('value'), on_deserialize=TensorOrder) # optional fields _dtype = DataTypeField('dtype') _chunks = ListField('chunks', ValueType.reference(TensorChunkData), on_serialize=lambda x: [it.data for it in x] if x is not None else x, on_deserialize=lambda x: [TensorChunk(it) for it in x] if x is not None else x) def __init__(self, op=None, shape=None, dtype=None, order=None, nsplits=None, chunks=None, **kw): super(TensorData, self).__init__(_op=op, _shape=shape, _dtype=dtype, _order=order, _nsplits=nsplits, _chunks=chunks, **kw) @classmethod def cls(cls, provider): if provider.type == ProviderType.protobuf: from ..serialize.protos.tensor_pb2 import TensorDef return TensorDef return super(TensorData, cls).cls(provider) def __str__(self): if is_eager_mode(): return 'Tensor(op={0}, shape={1}, data=\n{2})'.format(self.op.__class__.__name__, self.shape, str(self.fetch())) else: return 'Tensor(op={0}, shape={1})'.format(self.op.__class__.__name__, self.shape) def __repr__(self): if is_eager_mode(): return 'Tensor <op={0}, shape={1}, key={2}, data=\n{3}>'.format(self.op.__class__.__name__, self.shape, self.key, repr(self.fetch())) else: return 'Tensor <op={0}, shape={1}, key={2}>'.format(self.op.__class__.__name__, self.shape, self.key) @property def params(self): # params return the properties which useful to rebuild a new tileable object return { 'shape': self.shape, 'dtype': self.dtype, 'order': self.order } @property def flags(self): c_order = True if self.ndim <= 1 else self.order == TensorOrder.C_ORDER f_order = True if self.ndim <= 1 else self.order == TensorOrder.F_ORDER return { 'C_CONTIGUOUS': c_order, 'F_CONTIGUOUS': f_order } @property def real(self): from .arithmetic import real return real(self) @property def imag(self): from .arithmetic import imag return imag(self) @property def dtype(self): return getattr(self, '_dtype', None) or self.op.dtype @property def order(self): return getattr(self, '_order', None) @property def nbytes(self): return np.prod(self.shape) * self.dtype.itemsize def get_chunk_slices(self, idx): return get_chunk_slices(self.nsplits, idx) def is_scalar(self): return self.ndim == 0 isscalar = is_scalar def tosparse(self): if self.issparse(): return self from .datasource import fromdense return fromdense(self) def todense(self): if not self.issparse(): return self from .datasource import fromsparse return fromsparse(self) def transpose(self, *axes): from .base import transpose if len(axes) == 1 and isinstance(axes[0], Iterable): axes = axes[0] return transpose(self, axes) @property def T(self): return self.transpose() def reshape(self, shape, *shapes, **kw): from .reshape import reshape order = kw.pop('order', 'C') if kw: raise TypeError( "'{0}' is an invalid keyword argument for this function".format(tuple(kw)[0])) if isinstance(shape, Iterable): shape = tuple(shape) else: shape = (shape,) shape += shapes return reshape(self, shape, order=order) def _equals(self, o): return self is o def totiledb(self, uri, ctx=None, key=None, timestamp=None): from .datastore import totiledb return totiledb(uri, self, ctx=ctx, key=key, timestamp=timestamp) @staticmethod def from_dataframe(in_df): from .datasource import from_dataframe return from_dataframe(in_df) def to_dataframe(self, *args, **kwargs): from ..dataframe.datasource.from_tensor import from_tensor return from_tensor(self, *args, **kwargs) @property def flat(self): return flatiter(self) class Tensor(TileableEntity): __slots__ = () _allow_data_type_ = (TensorData,) def __len__(self): return len(self._data) def tiles(self): return handler.tiles(self) def single_tiles(self): return handler.single_tiles(self) @property def shape(self): return self.data.shape @shape.setter def shape(self, new_shape): self._data = self._data.reshape(new_shape).data def _update_shape(self, new_shape): self._data._update_shape(new_shape) @property def real(self): return self.data.real @real.setter def real(self, new_real): from .arithmetic.setreal import set_real self._data = set_real(self._data, new_real).data @property def imag(self): return self.data.imag @imag.setter def imag(self, new_imag): from .arithmetic.setimag import set_imag self._data = set_imag(self._data, new_imag).data def __array__(self, dtype=None): if is_eager_mode(): return np.asarray(self.fetch(), dtype=dtype) else: return np.asarray(self.execute(), dtype=dtype) def __array_function__(self, func, types, args, kwargs): from .. import tensor as module for submodule in func.__module__.split('.')[1:]: try: module = getattr(module, submodule) except AttributeError: return NotImplemented if not hasattr(module, func.__name__): return NotImplemented mars_func = getattr(module, func.__name__) if mars_func is func: # avoid Numpy func return NotImplemented return mars_func(*args, **kwargs) def transpose(self, *axes): """ Returns a view of the tensor with axes transposed. For a 1-D tensor, this has no effect. (To change between column and row vectors, first cast the 1-D tensor into a matrix object.) For a 2-D tensor, this is the usual matrix transpose. For an n-D tensor, if axes are given, their order indicates how the axes are permuted (see Examples). If axes are not provided and ``a.shape = (i[0], i[1], ... i[n-2], i[n-1])``, then ``a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0])``. Parameters ---------- axes : None, tuple of ints, or `n` ints * None or no argument: reverses the order of the axes. * tuple of ints: `i` in the `j`-th place in the tuple means `a`'s `i`-th axis becomes `a.transpose()`'s `j`-th axis. * `n` ints: same as an n-tuple of the same ints (this form is intended simply as a "convenience" alternative to the tuple form) Returns ------- out : Tensor View of `a`, with axes suitably permuted. See Also -------- Tensor.T : Tensor property returning the tensor transposed. Examples -------- >>> import mars.tensor as mt >>> a = mt.array([[1, 2], [3, 4]]) >>> a.execute() array([[1, 2], [3, 4]]) >>> a.transpose().execute() array([[1, 3], [2, 4]]) >>> a.transpose((1, 0)) array([[1, 3], [2, 4]]) >>> a.transpose(1, 0).execute() array([[1, 3], [2, 4]]) """ return self._data.transpose(*axes) @property def T(self): """ Same as self.transpose(), except that self is returned if self.ndim < 2. Examples -------- >>> import mars.tensor as mt >>> x = mt.array([[1.,2.],[3.,4.]]) >>> x.execute() array([[ 1., 2.], [ 3., 4.]]) >>> x.T.execute() array([[ 1., 3.], [ 2., 4.]]) >>> x = mt.array([1.,2.,3.,4.]) >>> x.execute() array([ 1., 2., 3., 4.]) >>> x.T.execute() array([ 1., 2., 3., 4.]) """ return self._data.T def totiledb(self, uri, ctx=None, key=None, timestamp=None): return self._data.totiledb(uri, ctx=ctx, key=key, timestamp=timestamp) def copy(self, order='C'): return super(Tensor, self).copy().astype(self.dtype, order=order, copy=False) @property def flat(self): """ Flat iterator object to iterate over arrays. A `flatiter` iterator is returned by ``x.flat`` for any tensor `x`. It allows iterating over the tensor as if it were a 1-D array, either in a for-loop or by calling its `next` method. Iteration is done in row-major, C-style order (the last index varying the fastest). The iterator can also be indexed using basic slicing or advanced indexing. See Also -------- Tensor.flat : Return a flat iterator over a tensor. Tensor.flatten : Returns a flattened copy of a tensor. Examples -------- >>> import mars.tensor as mt >>> x = mt.arange(6).reshape(2, 3) >>> fl = x.flat >>> fl[2:4].execute() array([2, 3]) """ return self._data.flat def from_dataframe(self, in_df): return self._data.from_dataframe(in_df) def to_dataframe(self, *args, **kwargs): return self._data.to_dataframe(*args, **kwargs) def execute(self, session=None, **kw): return self._data.execute(session, **kw) class SparseTensor(Tensor): __slots__ = () class flatiter(object): def __init__(self, tensor): # flatten creates a copy self._flatten_tensor = tensor.flatten() # ravel creates a view self._ravel_tensor = tensor.ravel() def __getitem__(self, item): # a.flat[item] create a copy return self._flatten_tensor[item] def __setitem__(self, key, value): # a.flat[item] = value will apply changes to original tensor self._ravel_tensor[key] = value class Indexes(Serializable): _indexes = AnyField('indexes') def __init__(self, indexes=None, **kw): self._indexes = indexes super(Indexes, self).__init__(**kw) @property def indexes(self): return self._indexes class MutableTensorData(TensorData): __slots__ = () # required fields _name = StringField('name') _compression = BoolField("compression") _chunk_eps = ListField('chunk_eps') def __init__(self, name=None, op=None, shape=None, dtype=None, key=None, chunk_eps=None, nsplits=None, chunks=None, **kw): super(MutableTensorData, self).__init__(op=op, shape=shape, dtype=dtype, nsplits=nsplits, chunks=chunks, _name=name, _key=key, _chunk_eps=chunk_eps, **kw) @classmethod def cls(cls, provider): return super(MutableTensorData, cls).cls(provider) def __str__(self): return 'MutableTensor(op={0}, name={1}, shape={2})'.format(self.op.__class__.__name__, self.name, self.shape) def __repr__(self): return 'MutableTensor <op={0}, name={1}, shape={2}, key={3}>'.format(self.op.__class__.__name__, self.name, self.shape, self.key) @property def params(self): # params return the properties which useful to rebuild a new tileable object return { 'shape': self.shape, 'dtype': self.dtype, 'name': self.name, 'compression': self.compression, "chunk_eps": self.chunk_eps, } @property def name(self): return getattr(self, '_name', None) @property def compression(self): return getattr(self, '_compression', None) @property def chunk_eps(self): return getattr(self, '_chunk_eps', None) class MutableTensor(Entity): __slots__ = ("_chunk_to_endpoint", "_chunk_buffers", "_record_type", "_buffer_size") _allow_data_type_ = (MutableTensorData,) def __init__(self, *args, **kwargs): super(MutableTensor, self).__init__(*args, **kwargs) self._chunk_buffers = defaultdict(lambda: []) self._record_type = np.dtype([("index", np.uint32), ("ts", np.dtype('datetime64[ns]')), ("value", self.dtype)]) if self.chunks: self._buffer_size = np.prod(self.chunks[0].shape) else: # MutableTensor doesn't hold chunks in LocalSession, thus we don't care the buffer self._buffer_size = 0 if self._data.chunk_eps is not None: self._chunk_to_endpoint = dict((c.key, ep) for c, ep in zip(self.chunks, self._data.chunk_eps)) else: self._chunk_to_endpoint = dict() def __len__(self): return len(self._data) @property def name(self): return self._data.name @property def chunk_to_endpoint(self): return self._chunk_to_endpoint def __setitem__(self, index, value): from ..session import Session session = Session.default_or_local() return session.write_mutable_tensor(self, index, value) def seal(self): from ..session import Session session = Session.default_or_local() return session.seal(self) @log_unhandled def _do_write(self, tensor_index, value): ''' Notes [buffer management of mutable tensor]: Write operations on a mutable tensor are buffered at client. Every chunk has a corresponding buffer in the form of {chunk_key: [(index, ts, value)]} Every time we write to a chunk, we will append the new operation records to the list At the end of write, if the buffer size exceeds `buffer_size`, the buffer will be send to the corresponding worker. The insights for above design are: 1. `append` on (small) list is fast 2. We try to flush the (affected) buffer to worker at the end of every write, the buffer size is guaranteed to less than 2 * chunk_size. ''' from .indexing.core import process_index, calc_shape from .indexing.setitem import TensorIndex from .utils import setitem_as_records tensor_index = process_index(self.ndim, tensor_index) output_shape = calc_shape(self.shape, tensor_index) index_tensor_op = TensorIndex(dtype=self.dtype, sparse=False, indexes=tensor_index) index_tensor = index_tensor_op.new_tensor([self], tuple(output_shape)).single_tiles() output_chunks = index_tensor.chunks is_scalar = np.isscalar(value) or isinstance(value, tuple) and self.dtype.fields if not is_scalar: value = np.broadcast_to(value, output_shape).astype(self.dtype) nsplits_acc = [np.cumsum((0,) + tuple(c.shape[i] for c in output_chunks if all(idx == 0 for j, idx in enumerate(c.index) if j != i))) for i in range(len(output_chunks[0].shape))] now = np.datetime64(datetime.now()) affected_chunk_keys = [] for output_chunk in output_chunks: records = self._chunk_buffers[output_chunk.op.input.key] records += setitem_as_records(nsplits_acc, output_chunk, value, now, is_scalar=is_scalar) affected_chunk_keys.append(output_chunk.op.input.key) # Try to flush affected chunks return self._do_flush(self._buffer_size, affected_chunk_keys) @log_unhandled def _do_flush(self, buffer_size_limit=1, affected_chunk_keys=None): chunk_records_to_send = [] affected_chunk_keys = affected_chunk_keys or self._chunk_buffers.keys() for chunk_key in affected_chunk_keys: records = self._chunk_buffers[chunk_key] if len(records) >= buffer_size_limit: chunk_records_to_send.append((chunk_key, self._chunk_to_endpoint[chunk_key], np.array(records, dtype=self._record_type))) self._chunk_buffers[chunk_key] = [] return chunk_records_to_send def mutable_tensor(name, shape=None, dtype=np.float_, fill_value=None, chunk_size=None): """ Create or get a mutable tensor using the local or default session. When `shape` is `None`, it will try to get the mutable tensor with name `name`. Otherwise, it will try to create a mutable tensor using the provided `name` and `shape`. Parameters ---------- name : str Name of the mutable tensor. shape : int or sequence of ints Shape of the new mutable tensor, e.g., ``(2, 3)`` or ``2``. dtype : data-type, optional The desired data-type for the mutable tensor, e.g., `mt.int8`. Default is `mt.float_`. chunk_size: int or tuple of ints, optional Specifies chunk size for each dimension. fill_value: scalar, optional The created mutable tensor will be filled by `fill_value` defaultly, if the parameter is None, the newly created mutable tensor will be initialized with `np.zeros`. See also `numpy.full`. """ from ..session import Session session = Session.default_or_local() if shape is None: return session.get_mutable_tensor(name) else: return session.create_mutable_tensor(name, shape=shape, dtype=dtype, fill_value=fill_value, chunk_size=chunk_size) TENSOR_TYPE = (Tensor, TensorData) CHUNK_TYPE = (TensorChunk, TensorChunkData)
python
21,944
from .cars import car_bp
python
25
import unittest import os from classy_blocks.util import grading_calculator as gc from classy_blocks.classes import grading from classy_blocks.classes.grading import Grading # numbers are calculated with the calculator all this is 'borrowed' from # https://openfoamwiki.net/index.php/Scripts/blockMesh_grading_calculation # with a few differences: # - scipy.optimize.<whatever> can be used here instead of barbarian bisection # - all floats are converted to integers by rounding down (only matters for border cases) class TestGradingCalculator(unittest.TestCase): def test_get_start_size__count__c2c_expansion(self): # valid cases self.assertEqual(gc.get_start_size__count__c2c_expansion(1, 10, 1), 0.1) self.assertAlmostEqual(gc.get_start_size__count__c2c_expansion(1, 10, 1.1), 0.06274539488, places=5) # invalid cases with self.assertRaises(AssertionError): gc.get_start_size__count__c2c_expansion(0, 10, 1) with self.assertRaises(AssertionError): gc.get_start_size__count__c2c_expansion(1, 0.5, 1) def test_get_start_size__end_size__total_expansion(self): self.assertEqual(gc.get_start_size__end_size__total_expansion(1, 0.1, 1), 0.1) with self.assertRaises(AssertionError): gc.get_start_size__end_size__total_expansion(0, 0.1, 1) with self.assertRaises(AssertionError): gc.get_start_size__end_size__total_expansion(1, 0.1, 0) def test_get_end_size__start_size__total_expansion(self): self.assertEqual(gc.get_end_size__start_size__total_expansion(1, 0.1, 10), 1) with self.assertRaises(AssertionError): gc.get_end_size__start_size__total_expansion(-1, 0.1, 0) def test_get_count__start__size__c2c_expansion(self): # valid cases self.assertEqual(gc.get_count__start_size__c2c_expansion(1, 1, 1), 1) self.assertEqual(gc.get_count__start_size__c2c_expansion(1, 0.1, 1), 10) self.assertEqual(gc.get_count__start_size__c2c_expansion(1, 0.1, 1.1), 7) # border cases self.assertEqual(gc.get_count__start_size__c2c_expansion(1, 2, 1), 1) self.assertEqual(gc.get_count__start_size__c2c_expansion(1, 1, 2), 1) # invalid cases with self.assertRaises(AssertionError): gc.get_count__start_size__c2c_expansion(0, 0.1, 1.1) # length < 0 with self.assertRaises(AssertionError): gc.get_count__start_size__c2c_expansion(1, 0, 1.1) # start_size = 0 with self.assertRaises(ValueError): gc.get_count__start_size__c2c_expansion(1, 0.95, 0) # c2c_expansion < 1 def test_get_count__end_size__c2c_expansion(self): # valid cases self.assertEqual(gc.get_count__end_size__c2c_expansion(1, 0.1, 1), 10) self.assertEqual(gc.get_count__end_size__c2c_expansion(1, 0.1, 1.1), 25) self.assertEqual(gc.get_count__end_size__c2c_expansion(1, 0.1, 0.9), 7) # border cases self.assertEqual(gc.get_count__end_size__c2c_expansion(1, 1, 1), 1) self.assertEqual(gc.get_count__end_size__c2c_expansion(1, 1, 2), 1) # invalid cases with self.assertRaises(ValueError): gc.get_count__end_size__c2c_expansion(1, 0.1, 1.5) def test_get_count__total_expansion__c2c_expansion(self): # valid cases self.assertEqual(gc.get_count__total_expansion__c2c_expansion(1, 3, 1.1), 12) # border cases self.assertEqual(gc.get_count__total_expansion__c2c_expansion(1, 1, 1.1), 1) # invalid cases with self.assertRaises(AssertionError): gc.get_count__total_expansion__c2c_expansion(1, 1, 1) with self.assertRaises(AssertionError): gc.get_count__total_expansion__c2c_expansion(1, -1, 1.1) def test_get_count__total_expansion__start_size(self): # valid cases self.assertEqual(gc.get_count__total_expansion__start_size(1, 1, 0.1), 10) self.assertEqual(gc.get_count__total_expansion__start_size(1, 2, 0.1), 6) self.assertEqual(gc.get_count__total_expansion__start_size(1, 8, 0.1), 2) # border cases self.assertEqual(gc.get_count__total_expansion__start_size(1, 0.9, 0.5), 2) self.assertEqual(gc.get_count__total_expansion__start_size(1, 0.3, 1), 1) def test_get_c2c_expansion__count__start_size(self): # valid cases self.assertEqual(gc.get_c2c_expansion__count__start_size(1, 10, 0.1), 1) self.assertEqual(gc.get_c2c_expansion__count__start_size(1, 2, 0.1), 9) self.assertAlmostEqual(gc.get_c2c_expansion__count__start_size(1, 5, 0.1), 1.352395572, places=5) self.assertEqual(gc.get_c2c_expansion__count__start_size(1, 2, 0.5), 1) self.assertAlmostEqual(gc.get_c2c_expansion__count__start_size(1, 10, 0.05), 1.1469127, places=5) # border cases self.assertEqual(gc.get_c2c_expansion__count__start_size(1, 1, 0.1), 1) self.assertAlmostEqual(gc.get_c2c_expansion__count__start_size(1, 20, 0.1), 0.9181099911, places=5) # invalid cases with self.assertRaises(AssertionError): gc.get_c2c_expansion__count__start_size(0, 1, 0.1) # length = 0 with self.assertRaises(AssertionError): gc.get_c2c_expansion__count__start_size(1, 0, 0.1) # count < 1 with self.assertRaises(AssertionError): gc.get_c2c_expansion__count__start_size(1, 10, 1.1) # start_size > length with self.assertRaises(AssertionError): gc.get_c2c_expansion__count__start_size(1, 10, 0) # start_size = 0 with self.assertRaises(ValueError): gc.get_c2c_expansion__count__start_size(1, 10, 0.9) def test_get_c2c_expansion__count__end_size(self): # valid cases self.assertEqual(gc.get_c2c_expansion__count__end_size(1, 10, 0.1), 1) self.assertAlmostEqual(gc.get_c2c_expansion__count__end_size(1, 10, 0.01), 0.6784573173, places=5) self.assertAlmostEqual(gc.get_c2c_expansion__count__end_size(1, 10, 0.2), 1.202420088, places=5) # border cases self.assertEqual(gc.get_c2c_expansion__count__end_size(1, 1, 1), 1) # invalid cases with self.assertRaises(AssertionError): gc.get_c2c_expansion__count__end_size(1, 0.5, 1) with self.assertRaises(AssertionError): gc.get_c2c_expansion__count__end_size(1, 10, -0.5) with self.assertRaises(ValueError): gc.get_c2c_expansion__count__end_size(1, 10, 1) def test_get_c2c_expansion__count__total_expansion(self): # valid cases self.assertAlmostEqual(gc.get_c2c_expansion__count__total_expansion(1, 10, 5), 1.195813175, places=5) self.assertAlmostEqual(gc.get_c2c_expansion__count__total_expansion(1, 10, 0.5), 0.9258747123, places=5) # border cases self.assertEqual(gc.get_c2c_expansion__count__total_expansion(1, 10, 1), 1) # invalid cases with self.assertRaises(AssertionError): gc.get_c2c_expansion__count__total_expansion(1, 1, 1) def test_get_total_expansion__count__c2c_expansion(self): # valid cases self.assertEqual(gc.get_total_expansion__count__c2c_expansion(1, 10, 1), 1) self.assertEqual(gc.get_total_expansion__count__c2c_expansion(1, 1, 1), 1) self.assertAlmostEqual(gc.get_total_expansion__count__c2c_expansion(1, 10, 1.1), 2.3579476, places=5) # border cases self.assertEqual(gc.get_total_expansion__count__c2c_expansion(1, 1, 1), 1) # invalid cases with self.assertRaises(AssertionError): gc.get_total_expansion__count__c2c_expansion(1, 0.5, 1) def test_get_total_expansion__start_size__end_size(self): self.assertEqual(gc.get_total_expansion__start_size__end_size(1, 1, 1), 1) self.assertAlmostEqual(gc.get_total_expansion__start_size__end_size(1, 0.1, 0.01), 0.1) self.assertAlmostEqual(gc.get_total_expansion__start_size__end_size(1, 0.01, 0.1), 10) with self.assertRaises(AssertionError): gc.get_total_expansion__start_size__end_size(1, 0, 0.1) class TestGrading(unittest.TestCase): def setUp(self): self.g = Grading() def test_calculator_functions(self): expected_functions = [ # return_value | param1 | param2 (param0 = length) ['c2c_expansion', ['count', 'end_size'], gc.get_c2c_expansion__count__end_size], ['c2c_expansion', ['count', 'start_size'], gc.get_c2c_expansion__count__start_size], ['c2c_expansion', ['count', 'total_expansion'], gc.get_c2c_expansion__count__total_expansion], ['count', ['end_size', 'c2c_expansion'], gc.get_count__end_size__c2c_expansion], ['count', ['start_size', 'c2c_expansion'], gc.get_count__start_size__c2c_expansion], ['count', ['total_expansion', 'c2c_expansion'], gc.get_count__total_expansion__c2c_expansion], ['count', ['total_expansion', 'start_size'], gc.get_count__total_expansion__start_size], ['end_size', ['start_size', 'total_expansion'], gc.get_end_size__start_size__total_expansion], ['start_size', ['count', 'c2c_expansion'], gc.get_start_size__count__c2c_expansion], ['start_size', ['end_size', 'total_expansion'], gc.get_start_size__end_size__total_expansion], ['total_expansion', ['count', 'c2c_expansion'], gc.get_total_expansion__count__c2c_expansion], ['total_expansion', ['start_size', 'end_size'], gc.get_total_expansion__start_size__end_size] ] self.assertListEqual(expected_functions, grading.functions) def test_calculate(self): test_cases = [ # [{keys}, count, total_expansion]; length=1 for all cases [{'count': 10, 'total_expansion': 5}, 10, 5], [{'count': 10, 'c2c_expansion': 1.1}, 10, 2.357947691], [{'count': 10, 'c2c_expansion': 0.9}, 10, 0.387420489], [{'count': 10, 'start_size': 0.2}, 10, 0.1903283012], [{'count': 10, 'end_size': 0.2}, 10, 5.254123465509412], [{'count': 10, 'end_size': 0.05}, 10, 0.2912203517], [{'total_expansion': 5, 'c2c_expansion': 1.1}, 17, 5], [{'total_expansion': 0.2, 'c2c_expansion': 0.9}, 16, 0.2], [{'total_expansion': 0.2, 'start_size': 0.1}, 19, 0.2], [{'total_expansion': 5, 'start_size': 0.1}, 3, 5], [{'total_expansion': 5, 'end_size': 0.5}, 3, 5], [{'total_expansion': 0.2, 'end_size': 0.1}, 3, 0.2], [{'c2c_expansion': 1.1, 'start_size': 0.1}, 7, 1.771561], [{'c2c_expansion': 0.95, 'start_size': 0.1}, 13, 0.540360087662636], [{'c2c_expansion': 1.1, 'end_size': 0.1}, 25, 9.849732676], [{'c2c_expansion': 0.95, 'end_size': 0.1}, 8, 0.6983372961], [{'start_size': 0.1, 'end_size': 0.05}, 13, 0.5], [{'start_size': 0.05, 'end_size': 0.1}, 13, 2], ] for t in test_cases: results = grading.calculate(1, t[0]) self.assertEqual(results[0], t[1]) self.assertAlmostEqual(results[1], t[2], places=5) def add_division(self, length_ratio, count_ratio, total_expansion): self.g.divisions.append([ length_ratio, count_ratio, total_expansion ]) def test_output_empty(self): self.assertEqual(str(self.g), 'Undefined') def test_output_single(self): self.add_division(1, 1, 3) self.assertEqual(str(self.g), '3') def test_output_multi(self): self.add_division(0.25, 0.4, 2) self.add_division(0.5, 0.2, 1) self.add_division(0.25, 0.4, 0.5) expected_output = "(" + os.linesep + \ "\t(0.25 0.4 2)" + os.linesep + \ "\t(0.5 0.2 1)" + os.linesep + \ "\t(0.25 0.4 0.5)" + os.linesep + \ ")" self.assertEqual(str(self.g), expected_output) def test_copy(self): """ check that copy doesn't spoil the original """ self.add_division(1, 1, 3) h = self.g.copy() h.divisions[0][2] = 5 self.assertEqual(self.g.divisions[0][2], 3) def test_copy_invert_simple(self): self.add_division(1, 1, 5) h = self.g.copy(invert=True) self.assertEqual(self.g.divisions[0][2], 5) self.assertEqual(h.divisions[0][2], 0.2) def test_add_division_fail(self): with self.assertRaises(AssertionError): self.g.length = 0 self.g.add_division(count=10) self.g.length = 1 with self.assertRaises(ValueError): # when using only 1 parameter, c2c_expansion is assumed 1; # when specifying that as well, another parameter must be provided self.g.add_division(c2c_expansion=1.1) with self.assertRaises(AssertionError): # specified total_expansion and c2c_expansion=1 aren't compatible self.g.add_division(total_expansion=5) def test_add_division_1(self): """ double grading, set start_size and c2c_expansion """ self.g.set_block_size(2) self.g.add_division(0.5, 0.1, 1.1) self.g.add_division(0.5, 0.1, 1.1, invert=True) self.assertListEqual( self.g.divisions, [ [0.5, 7, 1.7715610000000008], [0.5, 7, 0.5644739300537772] ] ) def test_add_division_2(self): """ single grading, set c2c_expansion and count """ self.g.set_block_size(1) self.g.add_division(1, c2c_expansion=1.1, count=10) self.assertListEqual( self.g.divisions, [[1, 10, 2.357947691000002]] ) def test_add_division_3(self): """ single grading, set count and start_size """ self.g.set_block_size(1) self.g.add_division(1, count=10, start_size=0.05) self.assertListEqual( self.g.divisions, [[1, 10, 3.433788027752166]] )
python
14,150
import pandas as pd import spicy from sklearn.metrics.pairwise import cosine_similarity def standardize(row): return (row - row.mean()) / (row.max() - row.min()) def get_similar_movies(movie_name, user_rating): # 2.5 is the mean, not sure if this is right but it works similar_score = item_similarity_df[movie_name] * (user_rating - 2.5) similar_score = similar_score.sort_values(ascending=False) return similar_score if __name__ == '__main__': ratings = pd.read_csv('user_example.csv', index_col=0) ratings = ratings.fillna(0) ratings_std = ratings.apply(standardize) print(ratings_std) print('--------------------------------------------------------') # taking a transpose since we want similarity between items which need to be in rows item_similarity = cosine_similarity(ratings_std.T) print(item_similarity) print('--------------------------------------------------------') item_similarity_df = pd.DataFrame(item_similarity, index=ratings.columns, columns=ratings.columns) print(item_similarity_df) print('--------------------------------------------------------') print(get_similar_movies('romantic3', 1)) print('--------------------------------------------------------') action_lover = [('action1', 5), ('romantic2', 1), ('romantic3', 1)] similar_movies = pd.DataFrame() for movie, rating in action_lover: similar_movies = similar_movies.append(get_similar_movies(movie, rating), ignore_index=True) print(similar_movies.head()) print('--------------------------------------------------------') print(similar_movies.sum().sort_values(ascending=False)) """" HOW THIS IS SUPPOSED TO WORK This algorithm is supposed to compare the movies of two different users, and if like similar movies recommend to each other movies they haven't watched yet. Example: Mike likes: Avatar, Avengers, Dark Knight Michelangelo likes: Dark Knight, Spider-man, Avengers then the engine should recommend Mike to watch the movie Spider-man and Michelangelo to watch the movie Avengers, or something like that """
python
2,125
import numpy as np import pylab as pylab #Evaluate the linear regression def compute_cost(X, y, theta): ''' Comput cost for linear regression ''' #Number of training samples m = y.size predictions = X.dot(theta).flatten() sqErrors = (predictions - y) ** 2 J = (1.0 / (2 * m)) * sqErrors.sum() return J def gradient_descent(X, y, theta, alpha, parada): ''' Performs gradient descent to learn theta by taking num_items gradient steps with learning rate alpha ''' m = y.size custo_atual = 9999999999 i = 0 J_history = np.zeros(shape=(4000, 1)) while custo_atual > parada: i = i + 1 predictions = X.dot(theta).flatten() errors_x1 = (predictions - y) * X[:, 0] errors_x2 = (predictions - y) * X[:, 1] theta[0][0] = theta[0][0] - alpha * (1.0 / m) * errors_x1.sum() theta[1][0] = theta[1][0] - alpha * (1.0 / m) * errors_x2.sum() custo_atual = compute_cost(X, y, theta) J_history[i, 0] = custo_atual print 'numero de iteracoes', i return theta, custo_atual, J_history #Load the dataset data = np.genfromtxt('height.csv', delimiter=',') X = data[:, 0] y = data[:, 1] #Some gradient descent settings alpha = 0.01 parada = 0.001 m = y.size #Add a column of ones to X (interception data) it = np.ones(shape=(m, 2)) it[:, 1] = X #Initialize theta parameters theta = np.zeros(shape=(2, 1)) pylab.plot( X, y, 'o') pylab.title('Idade vs Altura') pylab.xlabel('Idade') pylab.ylabel('Altura') pylab.show() theta, custo, J_history = gradient_descent(it, y, theta, alpha, parada) print '\nthetas', theta, '\ncusto', custo def minha_funcao(x, theta): return theta[0][0] + theta[1][0]*x print J_history pylab.plot(J_history) pylab.title('Erro reduzindo a cada iteracao') pylab.xlabel('Iteracao') pylab.ylabel('Erro') pylab.show() pylab.plot(X, minha_funcao(X, theta), X, y, 'o') pylab.title('Idade vs Altura') pylab.xlabel('Idade') pylab.ylabel('Altura') pylab.show()
python
2,147
# -*- coding: utf-8 -*- """ Post-processing of WEST L and H modes J.Hillairet 03/09/2018 ICRH Antenna radial position in WEST : 2890-3060 (170mm). LPA radial position in WEST : 2880-3080 (200mm) LH Antenna radial position in WEST : 2910-3060 (150mm) """ import matplotlib.pyplot as plt import numpy as np import scipy.io as sio # There is three profiles # for three Averaged Line Density (LAD) R1_H, ne1_H = np.loadtxt('Ne_prof_WEST_Hmode_01_LAD6_Rsep_293.txt', skiprows=1, unpack=True) R2_H, ne2_H = np.loadtxt('Ne_prof_WEST_Hmode_01_LAD9_Rsep_293.txt', skiprows=1, unpack=True) R3_H, ne3_H = np.loadtxt('Ne_prof_WEST_Hmode_01_LAD12_Rsep_293.txt', skiprows=1, unpack=True) # These profile are defined vs the radial position (in metre) # In HFSS, the plasma profiles should start a x=0, so we reverse the abscisse # from a given radius def x(R, R_x0=2.93): return - R1_H + R_x0 plt.subplots() plt.plot(x(R1_H), ne1_H) plt.plot(x(R2_H), ne2_H) plt.plot(x(R3_H), ne3_H) # reverse the array in order to have increasing values of x for HFSS compatibility np.savetxt('HFSS_density_profile_LAD6.txt', np.flipud(np.array([x(R1_H), ne1_H]).T)) # export ascii files profiles for HFSS # # # #figure(1) #plot(R1_H, ne1_H, R2_H, ne2_H, R3_H, ne3_H, lw=2) #xlabel('R [m]') #ylabel('$n_e$ [$m^{-3}$]') #grid(True) #legend(('$\overline{n}_e=6.10^{19} m^{-2}$', '$\overline{n}_e=9.10^{19} m^{-2}$', '$\overline{n}_e=12.10^{19} m^{-2}$')) #title('WEST H-mode Density profile') #axvline(x=2.93, ymin=0, ymax=2e20, linestyle='--', color='k') # separatrix # ## ICRH limiter radial location ##gca().add_patch(Rectangle((2.890, 0), 0.170, 1.5e20, facecolor='r', alpha=0.2)) # (x, y), width, height # ## Proposed Antenna Limiter Radial Location #axvline(x=2.95, ymin=0, ymax=2e20, linestyle='-.', color='k') #axvline(x=2.975, ymin=0, ymax=2e20, linestyle='-.', color='k') #axvline(x=3.00, ymin=0, ymax=2e20, linestyle='-.', color='k') # # # ## ## L-mode ## #R1_L, ne1_L = np.loadtxt('Ne_prof_WEST_Lmode_02_LAD2_4_Rsep_293.txt', skiprows=1, unpack=True) #R2_L, ne2_L = np.loadtxt('Ne_prof_WEST_Lmode_02_LAD5_4_Rsep_293.txt', skiprows=1, unpack=True) #R3_L, ne3_L = np.loadtxt('Ne_prof_WEST_Lmode_02_LAD8_4_Rsep_293.txt', skiprows=1, unpack=True) # #fig2 = figure(2) #plot(R1_L, ne1_L, R2_L, ne2_L, R3_L, ne3_L, lw=2) #xlabel('R [m]') #ylabel('$n_e$ [$m^{-3}$]') #grid(True) #legend(('$\overline{n}_e=2.10^{19} m^{-2}$', '$\overline{n}_e=5.10^{19} m^{-2}$', '$\overline{n}_e=8.10^{19} m^{-2}$')) #title('WEST L-mode Density profile') # ## ICRH limiter radial location #gca().add_patch(Rectangle((2.890, 0), 0.170, 1.5e20, facecolor='r', alpha=0.2)) # (x, y), width, height # #axvline(x=2.93, ymin=0, ymax=2e20, linestyle='--', color='k') # sepratrix # # ## The profiles are exported for TOPICA evaluation, ## and corresponds to the larger antenna-separatrix distance; ## Then Daniele take care of the other two positions removing 2.5cm and 5cm from the low density side of the profile. #R_limiter = 3.0 # maximum radial location ## Find the index in the arrays corresponding to R=R_limiter #idx=np.where(R1_H == R_limiter) #R_export = R1_H[:idx[0][0]+1] #ne_LAD6 = ne1_H[:idx[0][0]+1] #ne_LAD9 = ne2_H[:idx[0][0]+1] #ne_LAD12 = ne3_H[:idx[0][0]+1] # #figure(3) #plot(R_export, ne_LAD6, R_export, ne_LAD9, R_export, ne_LAD12) # #np.savetxt('TOPICA_WEST_H-mode_ne_LAD6_Rsep_2.93m.txt', np.c_[R_export, ne_LAD6], # header=''' WEST H-mode density profile - 20/06/2014 \n Line Average Density = 6e19 m^-2 \n R [m] \t ne [m-3]''' ) #np.savetxt('TOPICA_WEST_H-mode_ne_LAD9_Rsep_2.93m.txt', np.c_[R_export, ne_LAD9], # header=''' WEST H-mode density profile - 20/06/2014 \n Line Average Density = 9e19 m^-2 \n R [m] \t ne [m-3]''' ) #np.savetxt('TOPICA_WEST_H-mode_ne_LAD12_Rsep_2.93m.txt', np.c_[R_export, ne_LAD12], # header=''' WEST H-mode density profile - 20/06/2014 \n Line Average Density = 12e19 m^-2 \n R [m] \t ne [m-3]''' ) # # ## Te profile #import scipy as sp ## H-mode Te profile from CRONOS #data = sio.loadmat('Te_WEST_MPHIMNHH_HR_eq_data.mat') #R_Te = data['RR'] #Te = data['Te'].transpose() # #figure(5) #plot(R_Te, Te) ## Take the same value than the min to fill the SOL up to R=3.0 m #R_Te = np.append(R_Te, 3) #Te = np.append(Te, np.min(Te)) # #plot(R_Te, Te) # #Te_resample = np.interp(R_export, R_Te, Te) #np.savetxt('TOPICA_WEST_H-mode_Te.txt', np.c_[R_export, Te_resample], # header=''' WEST H-mode temperature profile - 20/06/2014 \n R [m] \t Te [eV]''' )
python
4,521
""" Deprecated: Not used. Integrated with SpaceConnector. """ import logging from google.protobuf.json_format import MessageToDict from spaceone.core.connector import BaseConnector from spaceone.core import pygrpc from spaceone.core.utils import parse_grpc_endpoint from spaceone.core.error import * __all__ = ['PluginConnector'] _LOGGER = logging.getLogger(__name__) class PluginConnector(BaseConnector): def __init__(self, transaction, config): super().__init__(transaction, config) self._check_config() self._init_client() def _init_client(self): for version, uri in self.config['endpoint'].items(): e = parse_grpc_endpoint(uri) self.client = pygrpc.client(endpoint=e['endpoint'], ssl_enabled=e['ssl_enabled']) def _check_config(self): if 'endpoint' not in self.config: raise ERROR_CONNECTOR_CONFIGURATION(backend=self.__class__.__name__) if len(self.config['endpoint']) > 1: raise ERROR_CONNECTOR_CONFIGURATION(backend=self.__class__.__name__) def get_plugin_endpoint(self, plugin_id, version, domain_id, upgrade_mode='AUTO'): response = self.client.Plugin.get_plugin_endpoint({ 'plugin_id': plugin_id, 'version': version, 'upgrade_mode': upgrade_mode, 'domain_id': domain_id }, metadata=self.transaction.get_connection_meta()) return response @staticmethod def _change_message(message): return MessageToDict(message, preserving_proto_field_name=True)
python
1,572
# Copyright 2019 Lorenzo Cabrini # # Use of this source code is governed by an MIT-style # license that can be found in the LICENSE file or at # https://opensource.org/licenses/MIT. from .service import Service class MariaDB(Service): def __init__(self, host, **kwargs): super().__init__(host, **kwargs) def connect(self, **kwargs): pass def backup(self, **kwargs): pass
python
411
"""Tests for pixel alogrithms""" # pylint: disable=no-name-in-module,redefined-outer-name,no-value-for-parameter # pyright: reportGeneralTypeIssues=false import numpy as np import pytest from seasmon_xr.ops import ( autocorr, autocorr_1d, autocorr_tyx, lroo, ws2dgu, ws2doptv, ws2doptvp, ws2doptvplc, ws2dpgu, ) from seasmon_xr.ops.spi import brentq, gammafit, spifun @pytest.fixture def ts(): """Testdata""" np.random.seed(42) x = np.random.gamma(1, size=10) return x def test_lroo(ts): x_lroo = lroo(np.array((ts > 0.9) * 1, dtype="uint8")) assert x_lroo == 3 def pearson_reference(X, Y): return ((X - X.mean()) * (Y - Y.mean())).mean() / (X.std() * Y.std()) def autocorr_1d_reference(x, nodata=None): if nodata is not None: _x = x.astype("float64") _x[x == nodata] = np.nan x = _x X = x[:-1] Y = x[1:] if np.isnan(x).any(): X, Y = X.copy(), Y.copy() X[np.isnan(X)] = np.nanmean(X) Y[np.isnan(Y)] = np.nanmean(Y) return pearson_reference(X, Y) def test_autocorr(ts): ac = autocorr(ts.reshape(1, 1, -1)) np.testing.assert_almost_equal(ac, 0.00398337) np.testing.assert_almost_equal(autocorr_1d(ts), 0.00398337) np.testing.assert_almost_equal(autocorr_1d_reference(ts), 0.00398337) np.testing.assert_almost_equal(autocorr_tyx(ts.reshape(-1, 1, 1)), 0.00398337) def test_autocorr_nodata(ts_ndvi): nodata, ts = ts_ndvi rr = autocorr_1d(ts, nodata) rr_ref = autocorr_1d_reference(ts, nodata) assert rr == pytest.approx(rr_ref, rel=1e-3) def test_brentq(): x = brentq(xa=0.6446262296476516, xb=1.5041278691778537, s=0.5278852360624721) assert x == pytest.approx(1.083449238500003) def test_gammafit(ts): parameters = gammafit(ts) assert parameters == pytest.approx((1.083449238500003, 0.9478709674697126)) def test_spi(ts): xspi = spifun(ts.reshape(1, 1, -1)) assert xspi.shape == (1, 1, 10) np.testing.assert_array_equal( xspi[0, 0, :], [-382.0, 1654.0, 588.0, 207.0, -1097.0, -1098.0, -1677.0, 1094.0, 213.0, 514.0], ) def test_spi_nofit(ts): xspi = spifun(ts.reshape(1, 1, -1), a=1, b=2) assert xspi.shape == (1, 1, 10) np.testing.assert_array_equal( xspi[0, 0, :], [ -809.0, 765.0, -44.0, -341.0, -1396.0, -1396.0, -1889.0, 343.0, -336.0, -101.0, ], ) def test_spi_selfit(ts): xspi = spifun(ts.reshape(1, 1, -1), cal_start=0, cal_stop=3) assert xspi.shape == (1, 1, 10) np.testing.assert_array_equal( xspi[0, 0, :], [ -1211.0, 1236.0, -32.0, -492.0, -2099.0, -2099.0, -2833.0, 572.0, -484.0, -120.0, ], ) def test_spi_selfit_2(ts): cal_start = 2 cal_stop = 8 a, b = gammafit(ts[cal_start:cal_stop]) xspi_ref = spifun(ts.reshape(1, 1, -1), a=a, b=b) xspi = spifun(ts.reshape(1, 1, -1), cal_start=cal_start, cal_stop=cal_stop) np.testing.assert_equal(xspi, xspi_ref) def test_ws2dgu(ts): _ts = ts * 10 z = ws2dgu(_ts, 10, 0) np.testing.assert_array_equal(z, [15, 14, 12, 9, 8, 7, 7, 9, 10, 12]) def test_ws2dpgu(ts): _ts = ts * 10 z = ws2dpgu(_ts, 10, 0, 0.9) np.testing.assert_array_equal(z, [26, 24, 22, 20, 18, 17, 16, 15, 15, 14]) def test_ws2doptv(ts): _ts = ts * 10 z, l = ws2doptv(_ts, 0, np.arange(-2, 2)) np.testing.assert_array_equal(z, [10, 21, 16, 9, 3, 2, 5, 13, 12, 12]) assert l == pytest.approx(0.31622776601683794) def test_ws2doptvp(ts): _ts = ts * 10 z, l = ws2doptvp(_ts, 0, 0.9, np.arange(-2, 2)) np.testing.assert_array_equal(z, [13, 28, 19, 9, 3, 2, 7, 19, 15, 12]) assert l == pytest.approx(0.03162277660168379) def test_ws2doptvplc(ts): _ts = (ts * 10).astype("int16") z, l = ws2doptvplc(_ts, 0, 0.9, 0.9) np.testing.assert_array_equal(z, [12, 28, 19, 9, 3, 4, 13, 19, 14, 12]) assert l == pytest.approx(0.03162277660168379)
python
4,219
from django.test import TestCase from django.forms.models import inlineformset_factory from regressiontests.inline_formsets.models import Poet, Poem, School, Parent, Child class DeletionTests(TestCase): def test_deletion(self): PoemFormSet = inlineformset_factory(Poet, Poem, can_delete=True) poet = Poet.objects.create(name='test') poem = poet.poem_set.create(name='test poem') data = { 'poem_set-TOTAL_FORMS': u'1', 'poem_set-INITIAL_FORMS': u'1', 'poem_set-MAX_NUM_FORMS': u'0', 'poem_set-0-id': str(poem.pk), 'poem_set-0-poet': str(poet.pk), 'poem_set-0-name': u'test', 'poem_set-0-DELETE': u'on', } formset = PoemFormSet(data, instance=poet) formset.save() self.failUnless(formset.is_valid()) self.assertEqual(Poem.objects.count(), 0) def test_add_form_deletion_when_invalid(self): """ Make sure that an add form that is filled out, but marked for deletion doesn't cause validation errors. """ PoemFormSet = inlineformset_factory(Poet, Poem, can_delete=True) poet = Poet.objects.create(name='test') data = { 'poem_set-TOTAL_FORMS': u'1', 'poem_set-INITIAL_FORMS': u'0', 'poem_set-MAX_NUM_FORMS': u'0', 'poem_set-0-id': u'', 'poem_set-0-poem': u'1', 'poem_set-0-name': u'x' * 1000, } formset = PoemFormSet(data, instance=poet) # Make sure this form doesn't pass validation. self.assertEqual(formset.is_valid(), False) self.assertEqual(Poem.objects.count(), 0) # Then make sure that it *does* pass validation and delete the object, # even though the data isn't actually valid. data['poem_set-0-DELETE'] = 'on' formset = PoemFormSet(data, instance=poet) self.assertEqual(formset.is_valid(), True) formset.save() self.assertEqual(Poem.objects.count(), 0) def test_change_form_deletion_when_invalid(self): """ Make sure that a change form that is filled out, but marked for deletion doesn't cause validation errors. """ PoemFormSet = inlineformset_factory(Poet, Poem, can_delete=True) poet = Poet.objects.create(name='test') poet.poem_set.create(name='test poem') data = { 'poem_set-TOTAL_FORMS': u'1', 'poem_set-INITIAL_FORMS': u'1', 'poem_set-MAX_NUM_FORMS': u'0', 'poem_set-0-id': u'1', 'poem_set-0-poem': u'1', 'poem_set-0-name': u'x' * 1000, } formset = PoemFormSet(data, instance=poet) # Make sure this form doesn't pass validation. self.assertEqual(formset.is_valid(), False) self.assertEqual(Poem.objects.count(), 1) # Then make sure that it *does* pass validation and delete the object, # even though the data isn't actually valid. data['poem_set-0-DELETE'] = 'on' formset = PoemFormSet(data, instance=poet) self.assertEqual(formset.is_valid(), True) formset.save() self.assertEqual(Poem.objects.count(), 0) def test_save_new(self): """ Make sure inlineformsets respect commit=False regression for #10750 """ # exclude some required field from the forms ChildFormSet = inlineformset_factory(School, Child, exclude=['father', 'mother']) school = School.objects.create(name=u'test') mother = Parent.objects.create(name=u'mother') father = Parent.objects.create(name=u'father') data = { 'child_set-TOTAL_FORMS': u'1', 'child_set-INITIAL_FORMS': u'0', 'child_set-MAX_NUM_FORMS': u'0', 'child_set-0-name': u'child', } formset = ChildFormSet(data, instance=school) self.assertEqual(formset.is_valid(), True) objects = formset.save(commit=False) for obj in objects: obj.mother = mother obj.father = father obj.save() self.assertEqual(school.child_set.count(), 1)
python
4,212
import os import sys print "*** Simple Planets - As easy as ABC! ***" name = str(raw_input('Enter run name: ')) steps = int(raw_input('Enter number of pmc steps: ')) eps = float(raw_input('Enter initial tolerance size: ')) min_part = int(raw_input('Enter sample size: ')) n_procs = int(raw_input('Enter number of cores (max 20)')) print "Running {:}, steps = {:}, epsilon = {:}, samples = {:}".format(name, steps, eps, min_part) os.makedirs('RUNS/{:}'.format(name)) os.makedirs('RUNS/{:}/KNOWN'.format(name)) os.makedirs('RUNS/{:}/SCIENCE'.format(name)) pbs_head = ''' #!/bin/bash # #PBS -N {0:} #PBS -M [email protected] #PBS -m abe #PBS -A ebf11_collab #PBS -l pmem={1:}gb #PBS -l nodes=1:ppn={1:} #PBS -l walltime=048:00:00 #PBS -o runs/ #PBS -e runs/ #PBS -j oe # cd $PBS_O_WORKDIR'''.format(name, n_procs) science = 'pbs_scripts/{:}_science.pbs'.format(name) known = 'pbs_scripts/{:}_known.pbs'.format(name) sci_file = file(science, 'w') print >> sci_file, pbs_head print >> sci_file, """python simpleplanets_kepler.py {:} {:} {:} {:} {:} False """.format(name, steps, eps, min_part, n_procs) print >> sci_file, """python testandplot.py RUNS/{0}/SCIENCE/{0}_{1}samples_{2}.pkl """.format(name, min_part, steps-1) sci_file.close() known_file = file(known, 'w') print >> known_file, pbs_head print >> known_file, """python simpleplanets_kepler.py {:} {:} {:} {:} {:} True """.format(name, steps, eps, min_part, n_procs) print >> known_file, """python testandplot.py RUNS/{0}/KNOWN/{0}_{1}samples_{2}.pkl """.format(name, min_part, steps-1) known_file.close() os.system('echo "steps = {1:}, epsilon = {2:}, samples = {3:}" > RUNS/{0:}/{0:}_log.txt'.format(name, steps, eps, min_part)) os.system(' git status -u none >> RUNS/{0:}/{0:}_log.txt'.format(name)) os.system(' git rev-parse HEAD >> RUNS/{0:}/{0:}_log.txt'.format(name)) if len(sys.argv) > 1 and sys.argv[1] == 'local': os.system("python simpleplanets_kepler.py {:} {:} {:} {:} False".format(name, steps, eps, min_part)) os.system("python simpleplanets_kepler.py {:} {:} {:} {:} True".format(name, steps, eps, min_part)) os.system("python testandplot.py RUNS/{0}/SCIENCE/{0}_{1}samples_{2}.pkl".format(name, min_part, steps-1)) os.system("python testandplot.py RUNS/{0}/KNOWN/{0}_{1}samples_{2}.pkl".format(name, min_part, steps-1)) else: os.system("qsub {:}".format(known)) os.system("qsub {:}".format(science))
python
2,902
# coding: utf-8 """pypool_pump package allows to compute the duration of the swiming pool filtering. """ from .__version__ import VERSION, __version__ from .run import Run from datetime import timedelta, datetime from typing import List class FilteringDuration(object): """Root class with common parts""" def __init__(self, percentage: float = 100, schedule_config:dict = {}) -> None: self._computed_filtering_duration: float = None self._modifier_pecentage: float = percentage self._total_duration = None self._schedule_config = schedule_config def duration(self) -> float: #TODO: rename method """Filtering duration in hours If modifier have been set, they will be applied to the computed filtering duration. Maximum duration is always 24 hours. """ self._total_duration: float = max( min(self._computed_filtering_duration * self._modifier_pecentage / 100, 24), 0 ) return self._total_duration def update_schedule(self,pivot_time:datetime) -> List[Run]: # TODO: Add protection on total duration and schedule config # TODO: define strategy if total duration + break > 24 first_start = pivot_time - timedelta(hours=(self._total_duration + self._schedule_config['break_duration']) / 3) first_duration = self._total_duration / 3 second_start = pivot_time + timedelta(hours=2/3 * self._schedule_config['break_duration']) second_duration = 2 * first_duration return [Run(first_start, first_duration), Run(second_start, second_duration)] class DumbFilteringDuration(FilteringDuration): """Dumb duration calulation method with taking temperature/2""" def duration(self, pool_temperature: float) -> float: """Filtering duration in hours""" self._computed_filtering_duration = pool_temperature / 2 return super().duration() class BasicFilteringDuration(FilteringDuration): """Basic duration calculation method with: - 0 below 10°C - temperature/3 between 10°C and 14°C - temperature/2 between 14°C and 30°C - continuous filtration above 30°C """ def duration(self, pool_temperature: float) -> float: """Filtering duration in hours""" if pool_temperature < 10: # No need to filter below 10°C. self._computed_filtering_duration = 0 elif pool_temperature < 14: # between 10 and 14 we can reduce filtering self._computed_filtering_duration = pool_temperature / 3 elif pool_temperature >= 30: # Above 30°C it is recommanded to filter continuously. self._computed_filtering_duration = 24 else: self._computed_filtering_duration = pool_temperature / 2 return super().duration() class AbacusFilteringDuration(FilteringDuration): """Advanced calculation method using an abacus. D = a*T^3 + b*T^2 + c*T +d T is forced at a 10°C minimum Formula discovered here: https://github.com/scadinot/pool """ def duration(self, pool_temperature: float) -> float: """Filtering duration in hours""" # Force temperature at a 10°C minimum to ensure minimum filtration. temperature: float = max(pool_temperature, 10) self._computed_filtering_duration = ( 0.00335 * temperature ** 3 - 0.14953 * temperature ** 2 + 2.43489 * temperature - 10.72859 ) return super().duration() class PumpCaracteristicFilteringDuration(FilteringDuration): """Advanced calculatin method using the caracteristic of your water pump and your pool. """ def __init__( self, pool_volume: float, pump_flow: float, percentage: float = 100 ) -> None: self.pool_volume = pool_volume self.pump_flow = pump_flow super().__init__(percentage) def duration( self, pool_temperature: float, number_of_bathers: float = None, schedule_config:dict = {} ) -> float: """Filtering duration in hours""" cycle_duration: float = self.pool_volume / self.pump_flow if pool_temperature > 25: self._computed_filtering_duration = 3 * cycle_duration # TODO: +2 hours if > 28°c ? elif pool_temperature > 20: self._computed_filtering_duration = 2 * cycle_duration elif pool_temperature > 15: self._computed_filtering_duration = 1 * cycle_duration elif pool_temperature > 10: self._computed_filtering_duration = 0.5 * cycle_duration else: self._computed_filtering_duration = 0 if number_of_bathers is not None: bather_modifier: float = number_of_bathers / self.pump_flow * 2 self._computed_filtering_duration = ( self._computed_filtering_duration + bather_modifier ) return super().duration() # TODO: caractéristique pompe. # TODO: ajouter modificateur nombre de personne. # TODO: ajouter modificateur pour temps lours ou orageux
python
5,164
def backward_string_by_word(text: str) -> str: return " ".join([i[::-1] for i in text.split(" ")])
python
102
from DNAtool import * print(DNAtool("AATCCGG")) print(count_nuc("ATTTTA")) transcriptionDNA("ACT") GCpercentage("ACGA") AminoAcidSearch("ALU")
python
159
""" This module contains these Primitives classes: `Polyline` and `Primitives`. """ from __future__ import absolute_import # noreorder import math import os import time from collections import OrderedDict from pyaedt.application.Variables import Variable from pyaedt.generic.constants import PLANE from pyaedt.generic.general_methods import _retry_ntimes from pyaedt.generic.general_methods import is_number from pyaedt.generic.general_methods import pyaedt_function_handler from pyaedt.modeler.GeometryOperators import GeometryOperators from pyaedt.modeler.Object3d import _dim_arg from pyaedt.modeler.Object3d import _uname from pyaedt.modeler.Object3d import EdgePrimitive from pyaedt.modeler.Object3d import FacePrimitive from pyaedt.modeler.Object3d import Object3d from pyaedt.modules.MaterialLib import Material from pyaedt.modeler.object3dlayout import Point default_materials = { "Icepak": "air", "HFSS": "vacuum", "Maxwell 3D": "vacuum", "Maxwell 2D": "vacuum", "2D Extractor": "copper", "Q3D Extractor": "copper", "HFSS 3D Layout": "copper", "Mechanical": "copper", } aedt_wait_time = 0.1 class PolylineSegment: """Creates and manipulates a segment of a polyline. Parameters ---------- type : str Type of the object. Choices are ``"Line"``, ``"Arc"``, ``"Spline"``, and ``"AngularArc"``. num_seg : int, optional Number of segments for the types ``"Arc"``, ``"Spline"``, and ``"AngularArc"``. The default is ``0``. For the type ``Line``, this parameter is ignored. num_points : int, optional Number of control points for the type ``Spline``. For other types, this parameter is defined automatically. arc_angle : float or str, optional Sweep angle in radians or a valid value string. For example, ``"35deg"`` or ``"Specific to type AngularArc"``. arc_center : list or str, optional List of values in model units or a valid value string. For example, a list of ``[x, y, z]`` coordinates or ``"Specific to type AngularArc"``. arc_plane : str, int optional Plane in which the arc sweep is performed in the active coordinate system ``"XY"``, ``"YZ"`` or ``"ZX"``. The default is ``None``, in which case the plane is determined automatically by the first coordinate for which the starting point and center point have the same value. Examples -------- See :class:`pyaedt.Primitives.Polyline`. """ def __init__(self, type, num_seg=0, num_points=0, arc_angle=0, arc_center=None, arc_plane=None): valid_types = ["Line", "Arc", "Spline", "AngularArc"] assert type in valid_types, "Segment type must be in {}.".format(valid_types) self.type = type if type != "Line": self.num_seg = num_seg if type == "Line": self.num_points = 2 if type == "Spline": self.num_points = num_points if "Arc" in type: self.num_points = 3 if type == "AngularArc": self.arc_angle = arc_angle if not arc_center: arc_center = [0, 0, 0] assert len(arc_center) == 3, "Arc center must be a list of length 3." self.arc_center = arc_center if isinstance(arc_plane, int): if arc_plane == PLANE.XY: self.arc_plane = "XY" elif arc_plane == PLANE.ZX: self.arc_plane = "ZX" else: self.arc_plane = "YZ" else: self.arc_plane = arc_plane class Polyline(Object3d): """Creates and manipulates a polyline. The constructor for this class is intended to be called from the :func:`pyaedt.modeler.Primitives.Primitives.create_polyline` method. The documentation is provided there. The returned Polyline object exposes the methods for manipulating the polyline. Parameters ---------- primitives : :class:`pyaedt.modeler.Primitives3D.Primitives3D` Pointer to the parent Primitives object. src_object : optional The default is ``None``. position_list : list, optional List of positions in the ``[x, y, z]`` format. The default is ``None``. segment_type : str or list, optional Define the list of segment types. Valid arguments are ``"Line"``, ``"Arc"``, ``"Spline"``, ``"AngularArc"``. The default is ``None``. cover_surface : bool, optional The default is ``False``. close_surface : bool, optional The default is ``False``. name : str, optional The default is ``None``. matname : str, optional Name of the material. The default is ``None``. xsection_type : str, optional Type of the cross-section. Options are ``"Line"``, ``"Circle"``, ``"Rectangle"``, and ``"Isosceles Trapezoid"``. The default is ``None``. xsection_orient : str, optional Direction of the normal vector to the width of the cross-section. Options are ``"X"``, ``"Y"``, ``"Z"``, and ``"Auto"``. The default is ``None``. xsection_width : float or str, optional Width or diameter of the cross-section for all types. The default is ``1``. xsection_topwidth : float or str, optional Top width of the cross-section for the type ``"Isosceles Trapezoid"`` only. The default is ``1``. xsection_height : float or str, optional Height of the cross-section for the types ``"Rectangle"`` and ``"Isosceles Trapezoid"`` only. The default is ``1``. xsection_num_seg : int, optional Number of segments in the cross-section surface for the types ``"Circle"``, ``"Rectangle"`` and ``"Isosceles Trapezoid"``. The default is ``0``. The value must be ``0`` or greater than ``2``. xsection_bend_type : str, optional Type of the bend. The default is ``None``, in which case the bend type is set to ``"Corner"``. For the type ``"Circle"``, the bend type should be set to ``"Curved"``. """ def __init__( self, primitives, src_object=None, position_list=None, segment_type=None, cover_surface=False, close_surface=False, name=None, matname=None, xsection_type=None, xsection_orient=None, xsection_width=1, xsection_topwidth=1, xsection_height=1, xsection_num_seg=0, xsection_bend_type=None, non_model=False, ): self._primitives = primitives if src_object: self.__dict__ = src_object.__dict__.copy() if name: self._m_name = name # This is conimg from else: self._id = src_object.id self._m_name = src_object.name else: self._xsection = self._primitives._crosssection_arguments( type=xsection_type, orient=xsection_orient, width=xsection_width, topwidth=xsection_topwidth, height=xsection_height, num_seg=xsection_num_seg, bend_type=xsection_bend_type, ) self._positions = [i for i in position_list] # When close surface or cover_surface are set to True, ensure the start point and end point are coincident, # and insert a line segment to achieve this if necessary if cover_surface: close_surface = True self._is_closed = close_surface self._is_covered = cover_surface self._segment_types = None if segment_type: if isinstance(segment_type, (list, tuple)): # self._segment_types = copy(segment_type) self._segment_types = [i for i in segment_type] else: self._segment_types = segment_type varg1 = self._point_segment_string_array() if non_model: flag = "NonModel#" else: flag = "" varg2 = self._primitives._default_object_attributes(name=name, matname=matname, flags=flag) new_object_name = _retry_ntimes(10, self.m_Editor.CreatePolyline, varg1, varg2) Object3d.__init__(self, primitives, name=new_object_name) self._primitives.objects[self.id] = self self._primitives.object_id_dict[self.name] = self.id @property def start_point(self): """List of the ``[x, y, z]`` coordinates for the starting point in the polyline object in the object's coordinate system. Returns ------- list List of the ``[x, y, z]`` coordinates for the starting point in the polyline object. """ return self.vertices[0].position @property def end_point(self): """List of the ``[x, y, z]`` coordinates for the ending point in the polyline object in the object's coordinate system. Returns ------- list List of the ``[x, y, z]`` coordinates for the ending point in the polyline object. References ---------- >>> oEditor.GetVertexIDsFromObject >>> oEditor.GetVertexPosition """ return self.vertices[-1].position @property def points(self): """Polyline Points.""" return self._positions @property def vertex_positions(self): """List of the ``[x, y, z]`` coordinates for all vertex positions in the polyline object in the object's coordinate system. Returns ------- list List of the ``[x, y, z]`` coordinates for all vertex positions in the polyline object. References ---------- >>> oEditor.GetVertexIDsFromObject >>> oEditor.GetVertexPosition """ id_list = self._primitives.get_object_vertices(partID=self.id) position_list = [self._primitives.get_vertex_position(id) for id in id_list] return position_list @pyaedt_function_handler() def _pl_point(self, pt): pt_data = ["NAME:PLPoint"] pt_data.append("X:=") pt_data.append(_dim_arg(pt[0], self._primitives.model_units)) pt_data.append("Y:=") pt_data.append(_dim_arg(pt[1], self._primitives.model_units)) pt_data.append("Z:=") pt_data.append(_dim_arg(pt[2], self._primitives.model_units)) return pt_data @pyaedt_function_handler() def _point_segment_string_array(self): """Retrieve the parameter arrays for specifying the points and segments of a polyline used in the :class:`pyaedt.modeler.Primitives.Polyline` constructor. Returns ------- list """ position_list = self._positions segment_types = self._segment_types assert ( len(position_list) > 0 ), "The ``position_list`` argument must be a list of positions with at least one point." if not segment_types: segment_types = [PolylineSegment("Line")] * (len(position_list) - 1) elif isinstance(segment_types, str): segment_types = [PolylineSegment(segment_types, num_points=len(position_list))] elif isinstance(segment_types, PolylineSegment): segment_types = [segment_types] elif isinstance(segment_types, list): # Convert all string-type entries in the segment_types list to PolylineSegments for ind, seg in enumerate(segment_types): if isinstance(seg, str): segment_types[ind] = PolylineSegment(seg) else: raise ("Invalid segment_types input of type {}".format(type(segment_types))) # Add a closing point if needed #TODO check for all combinations varg1 = ["NAME:PolylineParameters"] varg1.append("IsPolylineCovered:=") varg1.append(self._is_covered) varg1.append("IsPolylineClosed:=") varg1.append(self._is_closed) # PointsArray points_str = ["NAME:PolylinePoints"] points_str.append(self._pl_point(position_list[0])) # Segments Array segment_str = ["NAME:PolylineSegments"] pos_count = 0 vertex_count = 0 index_count = 0 while vertex_count <= len(segment_types): try: current_segment = None if vertex_count == len(segment_types): if self._is_closed: # Check the special case of a closed polyline needing an additional Line segment if position_list[0] != position_list[-1]: position_list.append(position_list[0]) current_segment = PolylineSegment("Line") else: break else: current_segment = segment_types[vertex_count] except IndexError: raise ("Number of segments inconsistent with the number of points!") if current_segment: seg_str = self._segment_array( current_segment, start_index=index_count, start_point=position_list[pos_count] ) segment_str.append(seg_str) pos_count_incr = 0 for i in range(1, current_segment.num_points): if current_segment.type == "AngularArc": points_str.append(self._pl_point(current_segment.extra_points[i - 1])) index_count += 1 else: if (pos_count + i) == len(position_list): if current_segment.type == "Arc" and self._is_closed: position_list.append(position_list[0]) else: err_str = "Insufficient points in position_list to complete the specified segment list" raise IndexError(err_str) points_str.append(self._pl_point(position_list[pos_count + i])) pos_count_incr += 1 index_count += 1 pos_count += pos_count_incr vertex_count += 1 else: break varg1.append(points_str) varg1.append(segment_str) # Poly Line Cross Section varg1.append(self._xsection) return varg1 @pyaedt_function_handler() def _segment_array(self, segment_data, start_index=0, start_point=None): """Retrieve a property array for a polyline segment for use in the :class:`pyaedt.modeler.Primitives.Polyline` constructor. Parameters ---------- segment_data : :class:`pyaedt.modeler.Primitives.PolylineSegment` or str Pointer to the calling object that provides additional functionality or a string with the segment type ``Line`` or ``Arc``. start_index : int, string Starting vertex index of the segment within a compound polyline. The default is ``0``. start_point : list, optional Position of the first point for type ``AngularArc``. The default is ``None``. Float values are considered in model units. Returns ------ list List of properties defining a polyline segment. """ if isinstance(segment_data, str): segment_data = PolylineSegment(segment_data) seg = [ "NAME:PLSegment", "SegmentType:=", segment_data.type, "StartIndex:=", start_index, "NoOfPoints:=", segment_data.num_points, ] if segment_data.type != "Line": seg += ["NoOfSegments:=", "{}".format(segment_data.num_seg)] if segment_data.type == "AngularArc": # from start-point and angle, calculate the mid- and end-points # Also identify the plane of the arc ("YZ", "ZX", "XY") plane_axes = {"YZ": [1, 2], "ZX": [2, 0], "XY": [0, 1]} assert start_point, "Start-point must be defined for an AngularArc Segment" c_xyz = self._primitives.value_in_object_units(segment_data.arc_center) p0_xyz = self._primitives.value_in_object_units(start_point) if segment_data.arc_plane: # Accept the user input for the plane of rotation - let the modeler fail if invalid plane_def = (segment_data.arc_plane, plane_axes[segment_data.arc_plane]) else: # Compare the numeric values of start-point and center-point to determine the orientation plane if c_xyz[0] == p0_xyz[0]: plane_def = ("YZ", plane_axes["YZ"]) elif c_xyz[1] == p0_xyz[1]: plane_def = ("ZX", plane_axes["ZX"]) elif c_xyz[2] == p0_xyz[2]: plane_def = ("XY", plane_axes["XY"]) else: raise ("Start point and arc-center do not lie on a common base plane.") mod_units = self._primitives.model_units seg += [ "ArcAngle:=", segment_data.arc_angle, "ArcCenterX:=", "{}".format(_dim_arg(segment_data.arc_center[0], mod_units)), "ArcCenterY:=", "{}".format(_dim_arg(segment_data.arc_center[1], mod_units)), "ArcCenterZ:=", "{}".format(_dim_arg(segment_data.arc_center[2], mod_units)), "ArcPlane:=", plane_def[0], ] # Calculate the extra two points of the angular arc in the alpha-beta plane alph_index = plane_def[1][0] beta_index = plane_def[1][1] c_alph = c_xyz[alph_index] c_beta = c_xyz[beta_index] p0_alph = p0_xyz[alph_index] - c_alph p0_beta = p0_xyz[beta_index] - c_beta # rotate to generate the new points arc_ang_rad = self._primitives._app.evaluate_expression(segment_data.arc_angle) rot_angle = arc_ang_rad * 0.5 p1_alph = p0_alph * math.cos(rot_angle) + p0_beta * math.sin(rot_angle) p1_beta = p0_beta * math.cos(rot_angle) - p0_alph * math.sin(rot_angle) p2_alph = p1_alph * math.cos(rot_angle) + p1_beta * math.sin(rot_angle) p2_beta = p1_beta * math.cos(rot_angle) - p1_alph * math.sin(rot_angle) # Generate the 2 new points in XYZ p1 = list(p0_xyz) p1[alph_index] = p1_alph + c_alph p1[beta_index] = p1_beta + c_alph p2 = list(p0_xyz) p2[alph_index] = p2_alph + c_alph p2[beta_index] = p2_beta + c_beta segment_data.extra_points = [p1, p2] return seg @pyaedt_function_handler() def clone(self): """Clone a polyline object. Returns ------- pyaedt.modeler.Primitives.Polyline Polyline object that was created. References ---------- >>> oEditor.Copy >>> oEditor.Paste Examples -------- >>> primitives = self.aedtapp.modeler >>> P1 = modeler.create_polyline([[0, 1, 2], [0, 2, 3], [2, 1, 4]]) >>> P2 = P1.clone() """ vArg1 = ["NAME:Selections", "Selections:=", self.name] self._primitives.oeditor.Copy(vArg1) self._primitives.oeditor.Paste() return self._add_new_polyline() @pyaedt_function_handler() def _add_new_polyline(self): new_objects = self._primitives.find_new_objects() assert len(new_objects) == 1 new_name = new_objects[0] new_polyline = Polyline(self._primitives, src_object=self, name=new_name) new_polyline._id = None self._primitives.objects[new_polyline.id] = new_polyline self._primitives.object_id_dict[new_name] = new_polyline.id return new_polyline @pyaedt_function_handler() def remove_vertex(self, position, abstol=1e-9): """Remove a vertex from an existing polyline by position. You must enter the exact position of the vertex as a list of ``[x, y, z]`` coordinates in the object's coordinate system. Parameters ---------- position : list List of ``[x, y, z]`` coordinates specifying the vertex to remove. abstol : float, optional Absolute tolerance of the comparison of a specified position to the vertex positions. The default is ``1e-9``. Returns ------- bool ``True`` when successful, ``False`` when failed. References ---------- >>> oEditor.DeletePolylinePoint Examples -------- Use floating point values for the vertex positions. >>> P = modeler.create_polyline([[0, 1, 2], [0, 2, 3], [2, 1, 4]]) >>> P.remove_vertex([0, 1, 2]) Use string expressions for the vertex position. >>> P = modeler.create_polyline([[0, 1, 2], [0, 2, 3], [2, 1, 4]]) >>> P.remove_vertex(["0mm", "1mm", "2mm"]) Use string expressions for the vertex position and include an absolute tolerance when searching for the vertex to be removed. >>> P = modeler.create_polyline([[0, 1, 2], [0, 2, 3], [2, 1, 4]]) >>> P.remove_vertex(["0mm", "1mm", "2mm"], abstol=1e-6) """ found_vertex = False if self._primitives._app._is_object_oriented_enabled(): obj = self._primitives.oeditor.GetChildObject(self._m_name).GetChildObject("CreatePolyline:1") segments = obj.GetChildNames() seg_id = 0 for seg in segments: point = obj.GetChildObject(seg).GetPropValue("Point1") p = self._primitives.value_in_object_units([point[1], point[3], point[5]]) pos_xyz = self._primitives.value_in_object_units(position) found_vertex = GeometryOperators.points_distance(p, pos_xyz) <= abstol if found_vertex: at_start = True break point = obj.GetChildObject(seg).GetPropValue("Point2") p = self._primitives.value_in_object_units([point[1], point[3], point[5]]) found_vertex = GeometryOperators.points_distance(p, pos_xyz) <= abstol if found_vertex: at_start = False break seg_id += 1 else: # pragma: no cover pos_xyz = self._primitives.value_in_object_units(position) for ind, vertex_pos in enumerate(self.vertex_positions): # compare the specified point with the vertex data using an absolute tolerance # (default of math.isclose is 1e-9 which should be ok in almost all cases) found_vertex = GeometryOperators.points_distance(vertex_pos, pos_xyz) <= abstol if found_vertex: if ind == len(self.vertex_positions) - 1: seg_id = ind - 1 at_start = True else: seg_id = ind at_start = False break assert found_vertex, "Specified vertex {} not found in polyline {}.".format(position, self._m_name) self._primitives.oeditor.DeletePolylinePoint( [ "NAME:Delete Point", "Selections:=", self._m_name + ":CreatePolyline:1", "Segment Indices:=", [seg_id], "At Start:=", at_start, ] ) return True @pyaedt_function_handler() def remove_edges(self, edge_id): """Remove a vertex from an existing polyline by position. You must enter the exact position of the vertex as a list of ``[x, y, z]`` coordinates in the object's coordinate system. Parameters ---------- edge_id : int or list of int One or more edge IDs within the total number of edges within the polyline. Returns ------- bool ``True`` when successful, ``False`` when failed. References ---------- >>> oEditor.DeletePolylinePoint Examples -------- >>> P = modeler.create_polyline([[0, 1, 2], [0, 2, 3], [2, 1, 4]]) >>> P.remove_edges(edge_id=0) """ if isinstance(edge_id, int): edge_id = [edge_id] try: self._primitives.oeditor.DeletePolylinePoint( [ "NAME:Delete Point", "Selections:=", self.name + ":CreatePolyline:1", "Segment Indices:=", edge_id, "At Start:=", True, ] ) except: raise ValueError("Invalid edge ID {} is specified on polyline {}.".format(edge_id, self.name)) return True @pyaedt_function_handler() def set_crosssection_properties( self, type=None, orient=None, width=0, topwidth=0, height=0, num_seg=0, bend_type=None ): """Set the properties of an existing polyline object. Parameters ---------- type : str, optional Types of the cross-sections. Options are ``"Line"``, ``"Circle"``, ``"Rectangle"``, and ``"Isosceles Trapezoid"``. The default is ``None``. orient : str, optional Direction of the normal vector to the width of the cross-section. Options are ``"X"``, ``"Y"``, ``"Z"``, and ``"Auto"``. The default is ``None``, which sets the orientation to ``"Auto"``. width : float or str, optional Width or diameter of the cross-section for all types. The default is ``0``. topwidth : float or str Top width of the cross-section for the type ``"Isosceles Trapezoid"`` only. The default is ``0``. height : float or str Height of the cross-section for the types ``"Rectangle"`` and `"Isosceles Trapezoid"`` only. The default is ``0``. num_seg : int, optional Number of segments in the cross-section surface for the types ``"Circle"``, ``"Rectangle"``, and ``"Isosceles Trapezoid"``. The default is ``0``. The value must be ``0`` or greater than ``2``. bend_type : str, optional Type of the bend. The default is ``None``, in which case the bend type is set to ``"Corner"``. For the type ``"Circle"``, the bend type should be set to ``"Curved"``. Returns ------- bool ``True`` when successful, ``False`` when failed. References ---------- >>> oEditor.ChangeProperty Examples -------- >>> P = modeler.create_polyline([[0, 1, 2], [0, 2, 3], [2, 1, 4]]) >>> P.set_crosssection_properties(type="Circle", width="1mm") """ # Set the default section type to "None" section_type = type if not section_type: section_type = "None" # Set the default orientation to "Auto" section_orient = orient if not section_orient: section_orient = "Auto" # Set the default bend-type to "Corner" section_bend = bend_type if not section_bend: section_bend = "Corner" # Ensure number-of segments is valid if num_seg: assert num_seg > 2, "Number of segments for a cross-section must be 0 or greater than 2." model_units = self._primitives.model_units arg1 = ["NAME:AllTabs"] arg2 = ["NAME:Geometry3DCmdTab", ["NAME:PropServers", self._m_name + ":CreatePolyline:1"]] arg3 = ["NAME:ChangedProps"] arg3.append(["NAME:Type", "Value:=", section_type]) arg3.append(["NAME:Orientation", "Value:=", section_orient]) arg3.append(["NAME:Bend Type", "Value:=", section_bend]) arg3.append(["NAME:Width/Diameter", "Value:=", _dim_arg(width, model_units)]) if section_type == "Rectangle": arg3.append(["NAME:Height", "Value:=", _dim_arg(height, model_units)]) elif section_type == "Circle": arg3.append(["NAME:Number of Segments", "Value:=", num_seg]) elif section_type == "Isosceles Trapezoid": arg3.append(["NAME:Top Width", "Value:=", _dim_arg(topwidth, model_units)]) arg3.append(["NAME:Height", "Value:=", _dim_arg(height, model_units)]) arg2.append(arg3) arg1.append(arg2) self._primitives.oeditor.ChangeProperty(arg1) self._update() return True @pyaedt_function_handler() def insert_segment(self, position_list, segment=None, segment_number=0): """Add a segment to an existing polyline. Parameters ---------- position_list : list List of positions of the points that define the segment to insert. Either the starting point or ending point of the segment list must match one of the vertices of the existing polyline. segment : str or :class:`pyaedt.modeler.Primitives.PolylineSegment` Definition of the segment to insert. For the types ``"Line"`` and ``"Arc"``, use their string values ``"Line"`` and ``"Arc"``. For the types ``"AngularArc"`` and ``"Spline"``, use the :class:`pyaedt.modeler.Primitives.PolylineSegment` object to define the segment precisely. Returns ------- bool ``True`` when successful, ``False`` when failed. References ---------- >>> oEditor.InsertPolylineSegment """ # Check for a valid number of points num_points = len(position_list) # define the segment type from the number of points given if not segment: if num_points == 2: segment = PolylineSegment("Line") elif num_points == 3: segment = PolylineSegment("Arc") else: segment = PolylineSegment("Spline", num_points=num_points) else: if isinstance(segment, str): segment = PolylineSegment(segment) num_points = segment.num_points # Check whether start-point of the segment is in the existing vertices start_point = self._primitives.value_in_object_units(position_list[0]) # End point does not exist e.g. for an AngularArc try: end_point = self._primitives.value_in_object_units(position_list[num_points - 1]) except: end_point = [] segment_id = 1 segment_index = 0 num_vertices = len(self.vertices) for vertex in self.vertices: if vertex.position == end_point: if vertex.id == self.vertices[0].id: if segment_id > 0: segment_id -= 1 at_start = True break # If start_point=[0, 0, 0] (a list of integers provided by the user), it won't be equal to vertex.position # that returns a list of float: [0., 0., 0.]. Thus we cast start_point as a list of floats. elif vertex.position == [float(x) for x in start_point]: at_start = False if segment_index > 0: segment_index -= 1 break segment_index += 1 id_v = 0 if isinstance(self._segment_types, list): s_types = [i for i in self._segment_types] else: s_types = [self._segment_types] for el in s_types: if isinstance(s_types, PolylineSegment): id_v += el.num_seg - 1 if id_v > segment_index: id_v -= el.num_seg - 1 break segment_index -= id_v assert segment_index < num_vertices, "Vertex for the insert is not found." type = segment.type varg1 = ["NAME:Insert Polyline Segment="] varg1.append("Selections:=") varg1.append(self._m_name + ":CreatePolyline:1") varg1.append("Segment Indices:=") varg1.append([segment_index]) varg1.append("At Start:=") varg1.append(at_start) varg1.append("SegmentType:=") varg1.append(type) # Points and segment data varg2 = ["NAME:PolylinePoints"] if segment.type == "Line" or segment.type == "Spline" or segment.type == "Arc": for pt in position_list[0:num_points]: varg2.append(self._pl_point(pt)) varg1.append(varg2) elif segment.type == "AngularArc": seg_str = self._segment_array(segment, start_point=start_point) varg2.append(self._pl_point(start_point)) varg2.append(self._pl_point(segment.extra_points[0])) varg2.append(self._pl_point(segment.extra_points[1])) varg1.append(varg2) varg1 += seg_str[9:] self._primitives.oeditor.InsertPolylineSegment(varg1) if segment.type == "Spline": varg1 = ["NAME:AllTabs"] varg2 = ["NAME:Geometry3DPolylineTab"] varg3 = ["NAME:PropServers"] varg3.append(self._m_name + ":CreatePolyline:1" + ":Segment" + str(segment_id)) varg2.append(varg3) varg4 = ["NAME:ChangedProps"] varg5 = ["NAME:Number of Segments"] varg5.append("Value:=") varg5.append(str(segment_number)) varg4.append(varg5) varg2.append(varg4) varg1.append(varg2) self._primitives.oeditor.ChangeProperty(varg1) return True class Primitives(object): """Provides common functionalities for primitives. Parameters ---------- application : :class:`pyaedt.modeler.Model3D.Modeler3D`, :class:`pyaedt.modeler.Model2D.Modeler2D` Pointer to the parent object. Examples -------- Basic usage demonstrated with an HFSS design: >>> from pyaedt import Hfss >>> aedtapp = Hfss() >>> prim = aedtapp.modeler """ def __init__(self): self.refresh() @property def _modeler(self): return self._app.modeler @property def solid_objects(self): """List of all solid objects.""" return [self[name] for name in self.solid_names] @property def sheet_objects(self): """List of all sheet objects.""" return [self[name] for name in self.sheet_names] @property def line_objects(self): """List of all line objects.""" return [self[name] for name in self.line_names] @property def points(self): """List of points.""" return self._points @property def points_by_name(self): """Dictionary containing all points where the keys are the name of the points.""" return self._point_names @property def unclassified_objects(self): """List of all unclassified objects.""" self._refresh_unclassified() return [self[name] for name in self._unclassified] @property def object_list(self): """List of all objects.""" self._refresh_object_types() return [self[name] for name in self._all_object_names] @property def solid_names(self): """List of the names of all solid objects.""" self._refresh_solids() return self._solids @property def sheet_names(self): """List of the names of all sheet objects.""" self._refresh_sheets() return self._sheets @property def line_names(self): """List of the names of all line objects.""" self._refresh_lines() return self._lines @property def unclassified_names(self): """List of the names of all unclassified objects.""" self._refresh_unclassified() return self._unclassified @property def object_names(self): """List of the names of all objects.""" self._refresh_object_types() return self._all_object_names @property def components_3d_names(self): """List of the names of all 3d components objects. References ---------- >>> oEditor.Get3DComponentDefinitionNames >>> oEditor.Get3DComponentInstanceNames """ obs3d = [] try: comps3d = self.oeditor.Get3DComponentDefinitionNames() for comp3d in comps3d: obs3d += list(self.oeditor.Get3DComponentInstanceNames(comp3d)) except Exception as e: obs3d = [] return obs3d @property def _oproject(self): """Project.""" return self._app.oproject @property def _odesign(self): """Design.""" return self._app._odesign @property def _materials(self): """Material Manager that is used to manage materials in the project. Returns ------- :class:`pyaedt.modules.MaterialLib.Materials` Material Manager that is used to manage materials in the project. """ return self._app.materials @property def defaultmaterial(self): """Default material.""" return default_materials[self._app._design_type] @property def logger(self): """Logger.""" return self._app.logger @property def version(self): """Version.""" return self._app._aedt_version @property def modeler(self): """Modeler.""" return self._modeler @property def model_units(self): """Model units.""" return self.modeler.model_units @property def model_objects(self): """List of the names of all model objects.""" return self._get_model_objects(model=True) @property def non_model_objects(self): """List of names of all non-model objects.""" return self._get_model_objects(model=False) @property def model_consistency_report(self): """Summary of detected inconsistencies between the AEDT modeler and PyAEDT structures. Returns ------- dict """ obj_names = self.object_names missing = [] for name in obj_names: if name not in self.object_id_dict: missing.append(name) non_existent = [] for name in self.object_id_dict: if name not in obj_names and name not in self.unclassified_names: non_existent.append(name) report = {"Missing Objects": missing, "Non-Existent Objects": non_existent} return report @pyaedt_function_handler() def _change_geometry_property(self, vPropChange, names_list): names = self._app.modeler.convert_to_selections(names_list, True) vChangedProps = ["NAME:ChangedProps", vPropChange] vPropServers = ["NAME:PropServers"] for el in names: vPropServers.append(el) vGeo3d = ["NAME:Geometry3DAttributeTab", vPropServers, vChangedProps] vOut = ["NAME:AllTabs", vGeo3d] _retry_ntimes(10, self.oeditor.ChangeProperty, vOut) if "NAME:Name" in vPropChange: self.cleanup_objects() return True @pyaedt_function_handler() def _change_point_property(self, vPropChange, names_list): names = self._app.modeler.convert_to_selections(names_list, True) vChangedProps = ["NAME:ChangedProps", vPropChange] vPropServers = ["NAME:PropServers"] for el in names: vPropServers.append(el) vGeo3d = ["NAME:Geometry3DPointTab", vPropServers, vChangedProps] vOut = ["NAME:AllTabs", vGeo3d] _retry_ntimes(10, self.oeditor.ChangeProperty, vOut) if "NAME:Name" in vPropChange: self.cleanup_objects() return True @pyaedt_function_handler() def update_object(self, obj): """Update any :class:`pyaedt.modeler.Object3d.Object3d` derivatives that have potentially been modified by a modeler operation. Parameters ---------- obj : int, str, or :class:`pyaedt.modeler.Object3d.Object3d` Object to be updated after a modeler operation. Returns ------- :class:`pyaedt.modeler.Object3d.Object3d` Updated 3D object. """ o = self._resolve_object(obj) o._update() return o @pyaedt_function_handler() def value_in_object_units(self, value): """Convert one or more strings for numerical lengths to floating point values. Parameters ---------- value : string or list of strings One or more strings for numerical lengths. For example, ``"10mm"`` or ``["10mm", "12mm", "14mm"]``. When a a list is given, the entire list is converted. Returns ------- float or list of floats Defined in object units :attr:`pyaedt.modeler.Primitives.Polyline.object_units` """ # Convert to a list if a scalar is presented scalar = False if not isinstance(value, list): value = [value] scalar = True numeric_list = [] for element in value: if is_number(element): num_val = element elif isinstance(element, str): # element is an existing variable si_value = self._app.evaluate_expression(element) v = Variable("{}meter".format(si_value)) v.rescale_to(self.model_units) num_val = v.numeric_value else: raise ("Inputs to value_in_object_units must be strings or numbers.") numeric_list.append(num_val) if scalar: return numeric_list[0] else: return numeric_list @pyaedt_function_handler() def does_object_exists(self, object): """ "Check to see if an object exists. Parameters ---------- object : str, int Object name or object ID. Returns ------- bool ``True`` when successful, ``False`` when failed """ if isinstance(object, int): if object in self.objects: return True else: return False else: for el in self.objects: if self.objects[el].name == object: return True return False @pyaedt_function_handler() def create_region(self, pad_percent=300): """Create an air region. Parameters ---------- pad_percent : float or list of floats, optional If a float, use padding in percent for all dimensions. The default is ``300``. If a list of floats, interpret as adding for ``["+X", "+Y", "+Z", "-X", "-Y", "-Z"]``. Returns ------- :class:`pyaedt.modeler.Object3d.Object3d` Region object. References ---------- >>> oEditor.CreateRegion """ if "Region" in self.object_names: return None if is_number(pad_percent): pad_percent = [pad_percent] * 6 arg = ["NAME:RegionParameters"] p = ["+X", "+Y", "+Z", "-X", "-Y", "-Z"] i = 0 for pval in p: pvalstr = str(pval) + "PaddingType:=" qvalstr = str(pval) + "Padding:=" arg.append(pvalstr) arg.append("Percentage Offset") arg.append(qvalstr) arg.append(str(pad_percent[i])) i += 1 arg2 = [ "NAME:Attributes", "Name:=", "Region", "Flags:=", "Wireframe#", "Color:=", "(143 175 143)", "Transparency:=", 0.75, "PartCoordinateSystem:=", "Global", "UDMId:=", "", "MaterialValue:=", '"air"', "SurfaceMaterialValue:=", '""', "SolveInside:=", True, "IsMaterialEditable:=", True, "UseMaterialAppearance:=", False, "IsLightweight:=", False, ] self.oeditor.CreateRegion(arg, arg2) return self._create_object("Region") @pyaedt_function_handler() def create_object_from_edge(self, edge): """Create a line object from an edge ID or from an :class:`pyaedt.modeler.Object3d.EdgePrimitive` object. Parameters ---------- edge : int or :class:`pyaedt.modeler.Object3d.EdgePrimitive` Edge ID or :class:`pyaedt.modeler.Object3d.EdgePrimitive` object. Returns ------- :class:`pyaedt.modeler.Object3d.Object3d` 3D object. References ---------- >>> oEditor.CreateObjectFromEdges """ if isinstance(edge, EdgePrimitive): edge_id = edge.id else: edge_id = edge obj = self._find_object_from_edge_id(edge_id) if obj is not None: varg1 = ["NAME:Selections"] varg1.append("Selections:="), varg1.append(obj) varg1.append("NewPartsModelFlag:="), varg1.append("Model") varg2 = ["NAME:BodyFromEdgeToParameters"] varg2.append("Edges:="), varg2.append([edge_id]) new_object_name = self.oeditor.CreateObjectFromEdges(varg1, ["NAME:Parameters", varg2])[0] return self._create_object(new_object_name) @pyaedt_function_handler() def create_object_from_face(self, face): """Create an object from a face. Parameters ---------- face : int or :class:`pyaedt.modeler.Object3d.FacePrimitive` Face ID or :class:`pyaedt.modeler.Object3d.FacePrimitive` object. Returns ------- :class:`pyaedt.modeler.Object3d.Object3d` 3D object. References ---------- >>> oEditor.CreateObjectFromFaces """ face_id = face if isinstance(face, FacePrimitive): face_id = face.id obj = self._find_object_from_face_id(face_id) if obj is not None: varg1 = ["NAME:Selections"] varg1.append("Selections:="), varg1.append(obj) varg1.append("NewPartsModelFlag:="), varg1.append("Model") varg2 = ["NAME:BodyFromFaceToParameters"] varg2.append("FacesToDetach:="), varg2.append([face_id]) new_object_name = self.oeditor.CreateObjectFromFaces(varg1, ["NAME:Parameters", varg2])[0] return self._create_object(new_object_name) @pyaedt_function_handler() def create_polyline( self, position_list, segment_type=None, cover_surface=False, close_surface=False, name=None, matname=None, xsection_type=None, xsection_orient=None, xsection_width=1, xsection_topwidth=1, xsection_height=1, xsection_num_seg=0, xsection_bend_type=None, non_model=False, ): """Draw a polyline object in the 3D modeler. This method retrieves the :class:`pyaedt.modeler.Primitives.Polyline` object, which has additional methods for manipulating the polyline. For example, you can use :func:`pyaedt.modeler.Primitives.Polyline.insert_segment` to insert a segment or :attr:`pyaedt.modeler.Primitives.Polyline.id` to retrieve the ID of the polyline object. Parameters ---------- position_list : list Array of positions of each point of the polyline. A position is a list of 2D or 3D coordinates. Position coordinate values can be numbers or valid AEDT string expressions. For example, ``[0, 1, 2]``, ``["0mm", "5mm", "1mm"]``, or ``["x1", "y1", "z1"]``. segment_type : str or PolylineSegment or list, optional The default behavior is to connect all points as ``"Line"`` segments. The default is ``None``. For a string, ``"Line"`` or ``"Arc"`` is valid. For a ``"PolylineSegment"``, for ``"Line",`` ``"Arc"``, ``"Spline"``, or ``"AngularArc"``, a list of segment types (str or :class:`pyaedt.modeler.Primitives.PolylineSegment`) is valid for a compound polyline. cover_surface : bool, optional The default is ``False``. close_surface : bool, optional The default is ``False``, which automatically joins the starting and ending points. name : str, optional Name of the polyline. The default is ``None``. matname : str, optional Name of the material. The default is ``None``, in which case the default material is assigned. xsection_type : str, optional Type of the cross-section. Options are ``"Line"``, ``"Circle"``, ``"Rectangle"``, and ``"Isosceles Trapezoid"``. The default is ``None``. xsection_orient : str, optional Direction of the normal vector to the width of the cross-section. Options are ``"X"``, ``"Y"``, ``"Z"``, and ``"Auto"``. The default is ``None``, which sets the direction to ``"Auto"``. xsection_width : float or str, optional Width or diameter of the cross-section for all types. The default is ``1``. xsection_topwidth : float or str, optional Top width of the cross-section for type ``"Isosceles Trapezoid"`` only. The default is ``1``. xsection_height : float or str Height of the cross-section for type ``"Rectangle"`` or ``"Isosceles Trapezoid"`` only. The default is ``1``. xsection_num_seg : int, optional Number of segments in the cross-section surface for type ``"Circle"``, ``"Rectangle"``, or ``"Isosceles Trapezoid"``. The default is ``0``. The value must be ``0`` or greater than ``2``. xsection_bend_type : str, optional Type of the bend for the cross-section. The default is ``None``, in which case the bend type is set to ``"Corner"``. For the type ``"Circle"``, the bend type should be set to ``"Curved"``. non_model : bool, optional Either if the polyline will be created as model or unmodel object. Returns ------- pyaedt.modeler.Primitives.Polyline Polyline object. References ---------- >>> oEditor.CreatePolyline Examples -------- Set up the desktop environment. >>> from pyaedt.desktop import Desktop >>> from pyaedt.maxwell import Maxwell3d >>> from pyaedt.modeler.Primitives import PolylineSegment >>> desktop=Desktop(specified_version="2021.2", new_desktop_session=False) >>> aedtapp = Maxwell3D() >>> aedtapp.modeler.model_units = "mm" >>> modeler = aedtapp.modeler Define some test data points. >>> test_points = [["0mm", "0mm", "0mm"], ["100mm", "20mm", "0mm"], ... ["71mm", "71mm", "0mm"], ["0mm", "100mm", "0mm"]] The default behavior assumes that all points are to be connected by line segments. Optionally specify the name. >>> P1 = modeler.create_polyline(test_points, name="PL_line_segments") Specify that the first segment is a line and the last three points define a three-point arc. >>> P2 = modeler.create_polyline(test_points, segment_type=["Line", "Arc"], name="PL_line_plus_arc") Redraw the 3-point arc alone from the last three points and additionally specify five segments using ``PolylineSegment``. >>> P3 = modeler.create_polyline(test_points[1:], ... segment_type=PolylineSegment(type="Arc", num_seg=7), ... name="PL_segmented_arc") Specify that the four points form a spline and add a circular cross-section with a diameter of 1 mm. >>> P4 = modeler.create_polyline(test_points, segment_type="Spline", name="PL_spline", ... xsection_type="Circle", xsection_width="1mm") Use the `PolylineSegment` object to specify more detail about the individual segments. Create a center point arc starting from the position ``test_points[1]``, rotating about the center point position ``test_points[0]`` in the XY plane. >>> start_point = test_points[1] >>> center_point = test_points[0] >>> segment_def = PolylineSegment(type="AngularArc", arc_center=center_point, arc_angle="90deg", arc_plane="XY") >>> modeler.create_polyline(start_point, segment_type=segment_def, name="PL_center_point_arc") Create a spline using a list of variables for the coordinates of the points. >>> x0, y0, z0 = "0", "0", "1" >>> x1, y1, z1 = "1", "3", "1" >>> x2, y2, z2 = "2", "2", "1" >>> P5 = modeler.create_polyline(position_list = [[x0, y0, z0], [x1, y1, z1], [x2, y2, z2]], ... segment_type="Spline", name="polyline_with_variables") """ new_polyline = Polyline( primitives=self, position_list=position_list, segment_type=segment_type, cover_surface=cover_surface, close_surface=close_surface, name=name, matname=matname, xsection_type=xsection_type, xsection_orient=xsection_orient, xsection_width=xsection_width, xsection_topwidth=xsection_topwidth, xsection_height=xsection_height, xsection_num_seg=xsection_num_seg, xsection_bend_type=xsection_bend_type, non_model=non_model, ) return new_polyline @pyaedt_function_handler() def create_spiral_on_face(self, face, poly_width, filling_factor=1.5): """Create a Spiral Polyline inside a face. Parameters ---------- face : int or str or :class:`pyaedt.modeler.Object3d.FacePrimitive` poly_width : float filling_factor : float Returns ------- :class:`pyaedt.modeler.Object3d.Polyline` """ # fmt: off if isinstance(face, FacePrimitive): face_id = face.id elif isinstance(face, int): face_id = face else: face_id = self.get_object_faces(face)[0] vertices = self.get_face_vertices(face_id) vertex_coordinates = [] for v in vertices: vertex_coordinates.append(self.get_vertex_position(v)) centroid = self.get_face_center(face_id) segments_lengths = [] for vc in vertex_coordinates: segments_lengths.append(GeometryOperators.points_distance(vc, centroid)) n = math.floor(min(segments_lengths) / (poly_width * filling_factor)) if n % 2 == 0: n_points = int(n / 2 - 1) else: n_points = int((n - 1) / 2) if n_points < 1: raise Exception inner_points = [] for vc in vertex_coordinates: temp = [[] for i in range(n_points)] for i in range(3): # loop for x, y, z delta = (centroid[i] - vc[i]) / (n_points + 1) for j in range(1, n_points + 1): temp[j - 1].append(vc[i] + delta * j) inner_points.append(temp) poly_points_list = [] for p in range(n_points): for v in inner_points: poly_points_list.append(v[p]) del poly_points_list[-1] # fmt: on return self.create_polyline(poly_points_list, xsection_type="Line", xsection_width=poly_width) @pyaedt_function_handler() def get_existing_polyline(self, object): """Retrieve a polyline object to manipulate it. Parameters ---------- src_object : :class:`pyaedt.modeler.Object3d.Object3d` An existing polyline object in the 3D Modeler. Returns ------- Polyline """ return Polyline(self, src_object=object) @pyaedt_function_handler() def create_udp(self, udp_dll_name, udp_parameters_list, upd_library="syslib", name=None, udp_type="Solid"): """Create a user-defined primitive (UDP). Parameters ---------- udp_dll_name : str Name of the UPD DLL. udp_parameters_list : List of the UDP parameters. upd_library : str, optional Name of the UDP library. The default is ``"syslib"``. name : str, optional Name of the component. The default is ``None``. udp_type : str, optional Type of the UDP. The default is ``"Solid"``. Returns ------- :class:`pyaedt.modeler.Object3d.Object3d` UDP object created. References ---------- >>> oEditor.CreateUserDefinedPart Examples -------- >>> my_udp = self.aedtapp.modeler.create_udp(udp_dll_name="RMxprt/ClawPoleCore", ... udp_parameters_list=my_udpPairs, ... upd_library="syslib", ... udp_type="Solid") <class 'pyaedt.modeler.Object3d.Object3d'> """ if ".dll" not in udp_dll_name: vArg1 = [ "NAME:UserDefinedPrimitiveParameters", "DllName:=", udp_dll_name + ".dll", "Library:=", upd_library, ] else: vArg1 = ["NAME:UserDefinedPrimitiveParameters", "DllName:=", udp_dll_name, "Library:=", upd_library] vArgParamVector = ["NAME:ParamVector"] for pair in udp_parameters_list: if isinstance(pair, list): vArgParamVector.append(["NAME:Pair", "Name:=", pair[0], "Value:=", pair[1]]) else: vArgParamVector.append(["NAME:Pair", "Name:=", pair.Name, "Value:=", pair.Value]) vArg1.append(vArgParamVector) if name: obj_name = name else: obj_name, ext = os.path.splitext(os.path.basename(udp_dll_name)) vArg2 = self._default_object_attributes(name=obj_name) obj_name = self.oeditor.CreateUserDefinedPart(vArg1, vArg2) return self._create_object(obj_name) @pyaedt_function_handler() def update_udp(self, object_name, operation_name, udp_parameters_list): """Update an existing geometrical object that was originally created using a user-defined primitive (UDP). Parameters ---------- object_name : str Name of the object to update. operation_name : str Name of the operation used to create the object. udp_parameters_list : list List of the UDP parameters to update and their value. Returns ------- bool ``True`` when successful. References ---------- >>> oEditor.CreateUserDefinedPart Examples -------- >>> self.aedtapp.modeler.update_udp(object_name="ClawPoleCore", ... operation_name="CreateUserDefinedPart", ... udp_parameters_list=[["Length","110mm"], ["DiaGap","125mm"]]) True """ vArg1 = ["NAME:AllTabs"] prop_servers = ["NAME:PropServers"] prop_servers.append("{0}:{1}:1".format(object_name, operation_name)) cmd_tab = ["NAME:Geometry3DCmdTab"] cmd_tab.append(prop_servers) changed_props = ["NAME:ChangedProps"] for pair in udp_parameters_list: if isinstance(pair, list): changed_props.append(["NAME:{0}".format(pair[0]), "Value:=", pair[1]]) else: changed_props.append(["NAME:", pair.Name, "Value:=", pair.Value]) cmd_tab.append(changed_props) vArg1.append(cmd_tab) self.oeditor.ChangeProperty(vArg1) return True @pyaedt_function_handler() def delete(self, objects=None): """Delete objects or groups. Parameters ---------- objects : list, optional List of objects or group names. The default is ``None``, in which case all objects are deleted. Returns ------- bool ``True`` when successful, ``False`` when failed References ---------- >>> oEditor.Delete """ if objects is None: objects = self.object_names objects = self._modeler.convert_to_selections(objects, return_list=True) for el in objects: if el not in self.object_names and not list(self.oeditor.GetObjectsInGroup(el)): objects.remove(el) if not objects: self.logger.warning("No objects to delete") return False slice = min(100, len(objects)) num_objects = len(objects) remaining = num_objects while remaining > 0: objs = objects[:slice] objects_str = self._modeler.convert_to_selections(objs, return_list=False) arg = ["NAME:Selections", "Selections:=", objects_str] try: self.oeditor.Delete(arg) except: self.logger.warning("Failed to delete {}.".format(objects_str)) remaining -= slice if remaining > 0: objects = objects[slice:] self._refresh_object_types() if len(objects) > 0: self.cleanup_objects() self.logger.info("Deleted {} Objects: {}.".format(num_objects, objects_str)) return True @pyaedt_function_handler() def delete_objects_containing(self, contained_string, case_sensitive=True): """Delete all objects with a given prefix. Parameters ---------- contained_string : str Prefix in the names of the objects to delete. case_sensitive : bool, optional Whether the prefix is case-senstive. The default is ``True``. Returns ------- bool ``True`` when successful, ``False`` when failed References ---------- >>> oEditor.Delete """ objnames = self.object_id_dict num_del = 0 for el in objnames: if case_sensitive: if contained_string in el: self.delete(el) num_del += 1 else: if contained_string.lower() in el.lower(): self.delete(el) num_del += 1 self.logger.info("Deleted %s objects", num_del) return True @pyaedt_function_handler() def get_model_bounding_box(self): """Retrieve the model's bounding box. Returns ------- list List of 6 float values ``[min_x, min_y, min_z, max_x, max_y, max_z]`` for the bounding box. References ---------- >>> oEditor.GetModelBoundingBox """ return self._app.modeler.get_model_bounding_box() @pyaedt_function_handler() def get_obj_id(self, objname): """Return the object ID from an object name. Parameters ---------- objname : str Name of the object. Returns ------- int Object ID. """ if objname in self.object_id_dict: return self.object_id_dict[objname] return None @pyaedt_function_handler() def get_object_from_name(self, objname): """Return the object from an object name. Parameters ---------- objname : str Name of the object. Returns ------- :class:`pyaedt.modeler.Object3d.Object3d` 3D object returned. """ if objname in self.object_id_dict: id = self.get_obj_id(objname) return self.objects[id] @pyaedt_function_handler() def get_objects_w_string(self, stringname, case_sensitive=True): """Retrieve all objects with a given string in their names. Parameters ---------- stringname : str String to search object names for. case_sensitive : bool, optional Whether the string is case-sensitive. The default is ``True``. Returns ------- list List of object names with the given string. """ list_objs = [] for el in self.objects: if case_sensitive: if stringname in self.objects[el].name: list_objs.append(self.objects[el].name) else: if stringname.lower() in self.objects[el].name.lower(): list_objs.append(self.objects[el].name) return list_objs @pyaedt_function_handler() def refresh(self): """Refresh this object.""" self._solids = [] self._sheets = [] self._lines = [] self._points = [] self._point_names = {} self._unclassified = [] self._all_object_names = [] self.objects = {} self.object_id_dict = {} self._currentId = 0 self.refresh_all_ids() # self._refresh_all_ids_from_aedt_file() @pyaedt_function_handler() def cleanup_objects(self): """Clean up objects that no longer exist in the modeler because they were removed by previous operations. This method also updates object IDs that may have changed via a modeler operation such as :func:`pyaedt.modeler.Model3D.Modeler3D.unite` or :func:`pyaedt.modeler.Model2D.Modeler2D.unite`. Returns ------- dict Dictionary of updated object IDs. """ new_object_dict = {} new_object_id_dict = {} all_objects = self.object_names all_unclassified = self.unclassified_objects for old_id, obj in self.objects.items(): if obj.name in all_objects or obj.name in all_unclassified: updated_id = obj.id # By calling the object property we get the new id new_object_id_dict[obj.name] = updated_id new_object_dict[updated_id] = obj self.objects = new_object_dict self.object_id_dict = new_object_id_dict @pyaedt_function_handler() def remove_point(self, name): """Remove a point. Parameters ---------- name : str Name of the point to be removed. Returns ------- """ self._points.remove(self.points_by_name[name]) del self.points_by_name[name] @pyaedt_function_handler() def find_new_objects(self): """Find any new objects in the modeler that were created by previous operations. Returns ------- dict Dictionary of new objects. """ new_objects = [] for obj_name in self.object_names: if obj_name not in self.object_id_dict: new_objects.append(obj_name) return new_objects @pyaedt_function_handler() def add_new_objects(self): """Add objects that have been created in the modeler by previous operations. Returns ------- list List of added objects. """ added_objects = [] for obj_name in self.object_names: if obj_name not in self.object_id_dict: self._create_object(obj_name) added_objects.append(obj_name) return added_objects # TODO Eliminate this - check about import_3d_cad # Should no longer be a problem @pyaedt_function_handler() def refresh_all_ids(self): """Refresh all IDs.""" self.add_new_objects() self.cleanup_objects() return len(self.objects) @pyaedt_function_handler() def get_objects_by_material(self, materialname): """Retrieve a list of the IDs for objects of a specified material. Parameters ---------- materialname : str Name of the material. Returns ------- list List of IDs for objects of the specified material. References ---------- >>> oEditor.GetObjectsByMaterial """ obj_lst = [] for el in self.objects: if ( self.objects[el].material_name == materialname or self.objects[el].material_name == '"' + materialname + '"' ): obj_lst.append(el) return obj_lst @pyaedt_function_handler() def find_closest_edges(self, start_obj, end_obj, port_direction=0): """Retrieve the two closest edges that are not perpendicular for two objects. Parameters ---------- start_obj : str Name of the starting object. end_obj : str Name of the ending object. port_direction : str, optional Direction of the port to which to give edges precedence when more than two couples are at the same distance. For example, for a coax or microstrip, precedence is given to the edges that are on the given axis direction, such as ``"XNeg"``. Options are ``"XNeg"``, ``"XPos"``, ``"YNeg"``, ``"YPos`"``, ``"ZNeg"``, and ``"ZPos"``. The default is ``0``. Returns ------- list List with two edges if present. """ start_obj = self._resolve_object(start_obj) end_obj = self._resolve_object(end_obj) edge_start_list = None edge_stop_list = None if port_direction == 0: if start_obj.bottom_face_x: edge_start_list = start_obj.bottom_face_x.edges if end_obj.bottom_face_x: edge_stop_list = end_obj.bottom_face_x.edges elif port_direction == 3: if start_obj.top_face_x: edge_start_list = start_obj.top_face_x.edges if end_obj.top_face_x: edge_stop_list = end_obj.top_face_x.edges elif port_direction == 1: if start_obj.bottom_face_y: edge_start_list = start_obj.bottom_face_y.edges if end_obj.bottom_face_y: edge_stop_list = end_obj.bottom_face_y.edges elif port_direction == 4: if start_obj.top_face_y: edge_start_list = start_obj.top_face_y.edges if end_obj.top_face_y: edge_stop_list = end_obj.top_face_y.edges elif port_direction == 2: if start_obj.bottom_face_z: edge_start_list = start_obj.bottom_face_z.edges if end_obj.bottom_face_z: edge_stop_list = end_obj.bottom_face_z.edges elif port_direction == 5: if start_obj.top_face_z: edge_start_list = start_obj.top_face_z.edges if end_obj.top_face_z: edge_stop_list = end_obj.top_face_z.edges if not edge_start_list: edge_start_list = start_obj.edges if not edge_stop_list: edge_stop_list = end_obj.edges mindist = 1e6 tol = 1e-12 pos_tol = 1e-6 edge_list = [] actual_point = None is_parallel = False for el in edge_start_list: vertices_i = el.vertices vertex1_i = None vertex2_i = None if len(vertices_i) == 2: # normal segment edge vertex1_i = vertices_i[0].position vertex2_i = vertices_i[1].position start_midpoint = el.midpoint elif len(vertices_i) == 1: # TODO why do we need this ? start_midpoint = vertices_i[0].position else: continue for el1 in edge_stop_list: vertices_j = el1.vertices vertex1_j = None vertex2_j = None if len(vertices_j) == 2: # normal segment edge vertex1_j = vertices_j[0].position vertex2_j = vertices_j[1].position end_midpoint = el1.midpoint elif len(vertices_j) == 1: end_midpoint = vertices_j[0].position else: continue parallel_edges = False vect = None if vertex1_i and vertex1_j: if ( abs( GeometryOperators._v_dot( GeometryOperators.v_points(vertex1_i, vertex2_i), GeometryOperators.v_points(vertex1_j, vertex2_j), ) ) < tol ): continue # skip perperndicular edges if GeometryOperators.is_parallel(vertex1_i, vertex2_i, vertex1_j, vertex2_j): parallel_edges = True vert_dist_sum = GeometryOperators.arrays_positions_sum( [vertex1_i, vertex2_i], [vertex1_j, vertex2_j] ) vect = GeometryOperators.distance_vector(start_midpoint, vertex1_j, vertex2_j) else: vert_dist_sum = GeometryOperators.arrays_positions_sum([start_midpoint], [end_midpoint]) # dist = abs(_v_norm(vect)) if parallel_edges: pd1 = GeometryOperators.points_distance(vertex1_i, vertex2_i) pd2 = GeometryOperators.points_distance(vertex1_j, vertex2_j) if pd1 < pd2 and not GeometryOperators.is_projection_inside( vertex1_i, vertex2_i, vertex1_j, vertex2_j ): continue elif pd1 >= pd2 and not GeometryOperators.is_projection_inside( vertex1_j, vertex2_j, vertex1_i, vertex2_i ): continue if actual_point is None: edge_list = [el, el1] is_parallel = parallel_edges actual_point = GeometryOperators.find_point_on_plane([start_midpoint, end_midpoint], port_direction) mindist = vert_dist_sum else: new_point = GeometryOperators.find_point_on_plane([start_midpoint, end_midpoint], port_direction) if (port_direction <= 2 and new_point - actual_point < 0) or ( port_direction > 2 and actual_point - new_point < 0 ): edge_list = [el, el1] is_parallel = parallel_edges actual_point = new_point mindist = vert_dist_sum elif port_direction <= 2 and new_point - actual_point < tol and vert_dist_sum - mindist < pos_tol: edge_list = [el, el1] is_parallel = parallel_edges actual_point = new_point mindist = vert_dist_sum elif port_direction > 2 and actual_point - new_point < tol and vert_dist_sum - mindist < pos_tol: edge_list = [el, el1] is_parallel = parallel_edges actual_point = new_point mindist = vert_dist_sum return edge_list, is_parallel @pyaedt_function_handler() def get_equivalent_parallel_edges(self, edgelist, portonplane=True, axisdir=0, startobj="", endobject=""): """Create two new edges that are parallel and equal to the smallest edge given a parallel couple of edges. Parameters ---------- edgelist : list List of two parallel edges. portonplane : bool, optional Whether edges are to be on the plane orthogonal to the axis direction. The default is ``True``. axisdir : int, optional Axis direction. Choices are ``0`` through ``5``. The default is ``0``. startobj : str, optional Name of the starting object. The default is ``""``. endobject : str, optional Name of the ending object. The default is ``""``. Returns ------- list List of two created edges. """ if isinstance(edgelist[0], str): edgelist[0] = self.get_object_from_name(edgelist[0]) if isinstance(edgelist[1], str): edgelist[1] = self.get_object_from_name(edgelist[1]) l1 = edgelist[0].length l2 = edgelist[1].length if l1 < l2: orig_edge = edgelist[0] dest_edge = edgelist[1] else: orig_edge = edgelist[1] dest_edge = edgelist[0] first_edge = self.create_object_from_edge(orig_edge) second_edge = self.create_object_from_edge(orig_edge) ver1 = orig_edge.vertices ver2 = dest_edge.vertices if len(ver2) == 2: p = ver1[0].position a1 = ver2[0].position a2 = ver2[1].position vect = GeometryOperators.distance_vector(p, a1, a2) if portonplane: vect[divmod(axisdir, 3)[1]] = 0 # TODO: can we avoid this translate operation - is there another way to check ? self.modeler.move(second_edge, vect) p_check = second_edge.vertices[0].position p_check2 = second_edge.vertices[1].position # elif len(ver2) == 1: # for circular edges with one vertex # p_check = first_edge.vertices[0].position # p_check2 = second_edge.vertices[0].position else: self.delete(first_edge) self.delete(second_edge) return False obj_check = self.get_bodynames_from_position(p_check) obj_check2 = self.get_bodynames_from_position(p_check2) # if (startobj in obj_check and endobject in obj_check2) or (startobj in obj_check2 and endobject in obj_check): if (startobj in obj_check or endobject in obj_check) and (startobj in obj_check2 or endobject in obj_check2): if l1 < l2: return_edges = [first_edge, second_edge] else: return_edges = [second_edge, first_edge] return return_edges else: self.delete(second_edge) self.delete(first_edge) return None @pyaedt_function_handler() def get_object_faces(self, partId): """Retrieve the face IDs of a given object ID or object name. Parameters ---------- partId : int or str Object ID or object name. Returns ------- List List of faces IDs. References ---------- >>> oEditor.GetFaceIDs """ oFaceIDs = [] if isinstance(partId, str) and partId in self.object_id_dict: oFaceIDs = self.oeditor.GetFaceIDs(partId) oFaceIDs = [int(i) for i in oFaceIDs] elif partId in self.objects: o = self.objects[partId] name = o.name oFaceIDs = self.oeditor.GetFaceIDs(name) oFaceIDs = [int(i) for i in oFaceIDs] return oFaceIDs @pyaedt_function_handler() def get_object_edges(self, partId): """Retrieve the edge IDs of a given object ID or object name. Parameters ---------- partId : int or str Object ID or object name. Returns ------- list List of edge IDs. References ---------- >>> oEditor.GetEdgeIDsFromObject """ oEdgeIDs = [] if isinstance(partId, str) and partId in self.object_id_dict: oEdgeIDs = self.oeditor.GetEdgeIDsFromObject(partId) oEdgeIDs = [int(i) for i in oEdgeIDs] elif partId in self.objects: o = self.objects[partId] oEdgeIDs = self.oeditor.GetEdgeIDsFromObject(o.name) oEdgeIDs = [int(i) for i in oEdgeIDs] return oEdgeIDs @pyaedt_function_handler() def get_face_edges(self, partId): """Retrieve the edge IDs of a given face name or face ID. Parameters ---------- partId : int or str Object ID or object name. Returns ------- list List of edge IDs. References ---------- >>> oEditor.GetEdgeIDsFromFace """ oEdgeIDs = self.oeditor.GetEdgeIDsFromFace(partId) oEdgeIDs = [int(i) for i in oEdgeIDs] return oEdgeIDs @pyaedt_function_handler() def get_object_vertices(self, partID): """Retrieve the vertex IDs of a given object name or object ID. Parameters ---------- partID : int or str Object ID or object name. Returns ------- list List of vertex IDs. References ---------- >>> oEditor.GetVertexIDsFromObject """ oVertexIDs = [] if isinstance(partID, str) and partID in self.object_id_dict: oVertexIDs = self.oeditor.GetVertexIDsFromObject(partID) oVertexIDs = [int(i) for i in oVertexIDs] elif partID in self.objects: o = self.objects[partID] oVertexIDs = self.oeditor.GetVertexIDsFromObject(o.name) oVertexIDs = [int(i) for i in oVertexIDs] return oVertexIDs @pyaedt_function_handler() def get_face_vertices(self, face_id): """Retrieve the vertex IDs of a given face ID or face name. Parameters ---------- face_id : int or str Object ID or object name, which is available using the methods :func:`pyaedt.modeler.Primitives3D.Primitives3D.get_object_vertices` or :func:`pyaedt.modeler.Primitives2D.Primitives2D.get_object_vertices`. Returns ------- list List of vertex IDs. References ---------- >>> oEditor.GetVertexIDsFromFace """ try: oVertexIDs = self.oeditor.GetVertexIDsFromFace(face_id) except: oVertexIDs = [] else: oVertexIDs = [int(i) for i in oVertexIDs] return oVertexIDs @pyaedt_function_handler() def get_edge_length(self, edgeID): """Get the length of an edge. Parameters ---------- edgeID : int ID of the edge. Returns ------- type Edge length. """ vertexID = self.get_edge_vertices(edgeID) pos1 = self.get_vertex_position(vertexID[0]) if len(vertexID) < 2: return 0 pos2 = self.get_vertex_position(vertexID[1]) length = GeometryOperators.points_distance(pos1, pos2) return length @pyaedt_function_handler() def get_edge_vertices(self, edgeID): """Retrieve the vertex IDs of a given edge ID or edge name. Parameters ---------- edgeID : int, str Object ID or object name, which is available using the methods :func:`pyaedt.modeler.Primitives3D.Primitives3D.get_object_vertices` or :func:`pyaedt.modeler.Primitives2D.Primitives2D.get_object_vertices`. Returns ------- list List of vertex IDs. References ---------- >>> oEditor.GetVertexIDsFromEdge """ try: oVertexIDs = self.oeditor.GetVertexIDsFromEdge(edgeID) except: oVertexIDs = [] else: oVertexIDs = [int(i) for i in oVertexIDs] return oVertexIDs @pyaedt_function_handler() def get_vertex_position(self, vertex_id): """Retrieve a vector of vertex coordinates. Parameters ---------- vertex_id : int or str ID or name of the vertex. Returns ------- list List of ``[x, y, z]`` coordinates indicating the position. References ---------- >>> oEditor.GetVertexPosition """ try: pos = self.oeditor.GetVertexPosition(vertex_id) except: position = [] else: position = [float(i) for i in pos] return position @pyaedt_function_handler() def get_face_area(self, face_id): """Retrieve the area of a given face ID. Parameters ---------- face_id : int ID of the face. Returns ------- float Value for the face area. References ---------- >>> oEditor.GetFaceArea """ area = self.oeditor.GetFaceArea(face_id) return area @pyaedt_function_handler() def get_face_center(self, face_id): """Retrieve the center position for a given planar face ID. Parameters ---------- face_id : int ID of the face. Returns ------- list A list of ``[x, y, z]`` coordinates for the planar face center position. References ---------- >>> oEditor.GetFaceCenter """ try: c = self.oeditor.GetFaceCenter(face_id) except: self.logger.warning("Non Planar Faces doesn't provide any Face Center") return False center = [float(i) for i in c] return center @pyaedt_function_handler() def get_mid_points_on_dir(self, sheet, axisdir): """Retrieve midpoints on a given axis direction. Parameters ---------- sheet : axisdir : int Axis direction. Choices are ``0`` through ``5``. Returns ------- type """ edgesid = self.get_object_edges(sheet) id = divmod(axisdir, 3)[1] midpoint_array = [] for ed in edgesid: midpoint_array.append(self.get_edge_midpoint(ed)) point0 = [] point1 = [] for el in midpoint_array: if not point0: point0 = el point1 = el elif axisdir < 3 and el[id] < point0[id] or axisdir > 2 and el[id] > point0[id]: point0 = el elif axisdir < 3 and el[id] > point1[id] or axisdir > 2 and el[id] < point1[id]: point1 = el return point0, point1 @pyaedt_function_handler() def get_edge_midpoint(self, partID): """Retrieve the midpoint coordinates of a given edge ID or edge name. Parameters ---------- partID : int or str Object ID or object name. Returns ------- list List of midpoint coordinates. If the edge is not a segment with two vertices, an empty list is returned. """ if isinstance(partID, str) and partID in self.object_id_dict: partID = self.object_id_dict[partID] if partID in self.objects and self.objects[partID].object_type == "Line": vertices = self.get_object_vertices(partID) else: try: vertices = self.get_edge_vertices(partID) except: vertices = [] if len(vertices) == 2: vertex1 = self.get_vertex_position(vertices[0]) vertex2 = self.get_vertex_position(vertices[1]) midpoint = GeometryOperators.get_mid_point(vertex1, vertex2) return list(midpoint) elif len(vertices) == 1: return list(self.get_vertex_position(vertices[0])) else: return [] @pyaedt_function_handler() def get_bodynames_from_position(self, position, units=None): """Retrieve the names of the objects that are in contact with a given point. Parameters ---------- position : list List of ``[x, y, z]`` coordinates for the point. units : str, optional Units, such as ``"m"``. The default is ``None``, in which case the model units are used. Returns ------- list List of object names. References ---------- >>> oEditor.GetBodyNamesByPosition """ XCenter, YCenter, ZCenter = self._pos_with_arg(position, units) vArg1 = ["NAME:Parameters"] vArg1.append("XPosition:="), vArg1.append(XCenter) vArg1.append("YPosition:="), vArg1.append(YCenter) vArg1.append("ZPosition:="), vArg1.append(ZCenter) list_of_bodies = list(self.oeditor.GetBodyNamesByPosition(vArg1)) return list_of_bodies @pyaedt_function_handler() def get_edgeid_from_position(self, position, obj_name=None, units=None): """Get an edge ID from a position. Parameters ---------- position : list List of ``[x, y, z]`` coordinates for the position. obj_name : str, optional Name of the object. The default is ``None``, in which case all objects are searched. units : str, optional Units for the position, such as ``"m"``. The default is ``None``, in which case the model units are used. Returns ------- type Edge ID of the first object touching this position. """ if isinstance(obj_name, str): object_list = [obj_name] else: object_list = self.object_names edgeID = -1 XCenter, YCenter, ZCenter = self._pos_with_arg(position, units) vArg1 = ["NAME:EdgeParameters"] vArg1.append("BodyName:="), vArg1.append("") vArg1.append("XPosition:="), vArg1.append(XCenter) vArg1.append("YPosition:="), vArg1.append(YCenter) vArg1.append("ZPosition:="), vArg1.append(ZCenter) for obj in object_list: vArg1[2] = obj try: edgeID = int(self.oeditor.GetEdgeByPosition(vArg1)) return edgeID except: pass @pyaedt_function_handler() def get_edgeids_from_vertexid(self, vertexid, obj_name): """Retrieve edge IDs for a vertex ID. Parameters ---------- vertexid : int Vertex ID. obj_name : Name of the object. Returns ------- List List of edge IDs for the vertex ID. References ---------- >>> oEditor.GetEdgeIDsFromObject >>> oEditor.GetVertexIDsFromEdge """ edgeID = [] edges = self.get_object_edges(obj_name) for edge in edges: vertx = self.get_edge_vertices(edge) if vertexid in vertx: edgeID.append(edge) return edgeID @pyaedt_function_handler() def get_faceid_from_position(self, position, obj_name=None, units=None): """Retrieve a face ID from a position. Parameters ---------- position : list List of ``[x, y, z]`` coordinates for the position. obj_name : str, optional Name of the object. The default is ``None``, in which case all objects are searched. units : str, optional Units, such as ``"m"``. The default is ``None``, in which case the model units are used. Returns ------- int Face ID of the first object touching this position. References ---------- >>> oEditor.GetFaceByPosition """ if isinstance(obj_name, str): object_list = [obj_name] else: object_list = self.object_names XCenter, YCenter, ZCenter = self._pos_with_arg(position, units) vArg1 = ["NAME:FaceParameters"] vArg1.append("BodyName:="), vArg1.append("") vArg1.append("XPosition:="), vArg1.append(XCenter) vArg1.append("YPosition:="), vArg1.append(YCenter) vArg1.append("ZPosition:="), vArg1.append(ZCenter) for obj in object_list: vArg1[2] = obj try: face_id = self.oeditor.GetFaceByPosition(vArg1) return face_id except: # Not Found, keep looking pass @pyaedt_function_handler() def get_edges_on_bounding_box(self, sheets, return_colinear=True, tol=1e-6): """Retrieve the edges of the sheets passed in the input that are lying on the bounding box. This method creates new lines for the detected edges and returns the IDs of these lines. If required, only colinear edges are returned. Parameters ---------- sheets : int, str, or list ID or name for one or more sheets. return_colinear : bool, optional Whether to return only colinear edges. The default is ``True``. If ``False``, all edges on the bounding box are returned. tol : float, optional Geometric tolerance. The default is ``1e-6``. Returns ------- list List of edge IDs lying on the bounding box. """ port_sheets = self._modeler.convert_to_selections(sheets, return_list=True) bb = self._modeler.get_model_bounding_box() candidate_edges = [] for p in port_sheets: edges = self[p].edges for edge in edges: vertices = edge.vertices v_flag = False for vertex in vertices: v = vertex.position xyz_flag = 0 if abs(v[0] - bb[0]) < tol or abs(v[0] - bb[3]) < tol: xyz_flag += 1 if abs(v[1] - bb[1]) < tol or abs(v[1] - bb[4]) < tol: xyz_flag += 1 if abs(v[2] - bb[2]) < tol or abs(v[2] - bb[5]) < tol: xyz_flag += 1 if xyz_flag >= 2: v_flag = True else: v_flag = False break if v_flag: candidate_edges.append(edge) if not return_colinear: return candidate_edges selected_edges = [] for i, edge_i in enumerate(candidate_edges[:-1]): vertex1_i = edge_i.vertices[0].position midpoint_i = edge_i.midpoint for j, edge_j in enumerate(candidate_edges[i + 1 :]): midpoint_j = edge_j.midpoint area = GeometryOperators.get_triangle_area(midpoint_i, midpoint_j, vertex1_i) if area < tol**2: selected_edges.extend([edge_i, edge_j]) break selected_edges = list(set(selected_edges)) for edge in selected_edges: self.create_object_from_edge(edge) time.sleep(aedt_wait_time) return selected_edges @pyaedt_function_handler() def get_edges_for_circuit_port_from_sheet( self, sheet, XY_plane=True, YZ_plane=True, XZ_plane=True, allow_perpendicular=False, tol=1e-6 ): """Retrieve two edge IDs that are suitable for a circuit port from a sheet. One edge belongs to the sheet passed in the input, and the second edge is the closest edge's coplanar to the first edge (aligned to the XY, YZ, or XZ plane). This method creates new lines for the detected edges and returns the IDs of these lines. This method accepts one or more sheet objects as input, while the method :func:`Primitives.get_edges_for_circuit_port` accepts a face ID. Parameters ---------- sheet : int, str, or list ID or name for one or more sheets. XY_plane : bool, optional Whether the edge's pair are to be on the XY plane. The default is ``True``. YZ_plane : bool, optional Whether the edge's pair are to be on the YZ plane. The default is ``True``. XZ_plane : bool, optional Whether the edge's pair are to be on the XZ plane. The default is ``True``. allow_perpendicular : bool, optional Whether the edge's pair are to be perpendicular. The default is ``False``. tol : float, optional Geometric tolerance. The default is ``1e-6``. Returns ------- list List of edge IDs. """ tol2 = tol**2 port_sheet = self._modeler.convert_to_selections(sheet, return_list=True) if len(port_sheet) > 1: return [] else: port_sheet = port_sheet[0] port_edges = self.get_object_edges(port_sheet) # find the bodies to exclude port_sheet_midpoint = self.get_face_center(self.get_object_faces(port_sheet)[0]) point = self._modeler.Position(*port_sheet_midpoint) list_of_bodies = self.get_bodynames_from_position(point) # select all edges all_edges = [] solids = [s for s in self.solid_names if s not in list_of_bodies] for solid in solids: edges = self.get_object_edges(solid) all_edges.extend(edges) all_edges = list(set(all_edges)) # remove duplicates # select edges coplanar to port edges (aligned to XY, YZ, or XZ plane) ux = [1.0, 0.0, 0.0] uy = [0.0, 1.0, 0.0] uz = [0.0, 0.0, 1.0] midpoints = {} candidate_edges = [] for ei in port_edges: vertices_i = self.get_edge_vertices(ei) if len(vertices_i) == 1: # maybe a circle vertex1_i = self.get_vertex_position(vertices_i[0]) area_i = self.get_face_area(self.get_object_faces(port_sheet)[0]) if area_i is None or area_i < tol2: # degenerated face continue center_i = self.get_face_center(self.get_object_faces(port_sheet)[0]) if not center_i: # non planar face continue radius_i = GeometryOperators.points_distance(vertex1_i, center_i) area_i_eval = math.pi * radius_i**2 if abs(area_i - area_i_eval) < tol2: # it is a circle vertex2_i = center_i midpoints[ei] = center_i else: # not a circle continue elif len(vertices_i) == 2: # normal segment edge vertex1_i = self.get_vertex_position(vertices_i[0]) vertex2_i = self.get_vertex_position(vertices_i[1]) midpoints[ei] = self.get_edge_midpoint(ei) else: # undetermined edge --> skip continue for ej in all_edges: vertices_j = self.get_edge_vertices(ej) if len(vertices_j) == 1: # edge is an arc, not supported continue elif len(vertices_j) == 2: # normal segment edge vertex1_j = self.get_vertex_position(vertices_j[0]) vertex2_j = self.get_vertex_position(vertices_j[1]) else: # undetermined edge --> skip continue if ( not allow_perpendicular and abs( GeometryOperators._v_dot( GeometryOperators.v_points(vertex1_i, vertex2_i), GeometryOperators.v_points(vertex1_j, vertex2_j), ) ) < tol ): continue normal1 = GeometryOperators.v_cross( GeometryOperators.v_points(vertex1_i, vertex2_i), GeometryOperators.v_points(vertex1_i, vertex1_j) ) normal1_norm = GeometryOperators.v_norm(normal1) if YZ_plane and abs(abs(GeometryOperators._v_dot(normal1, ux)) - normal1_norm) < tol: pass elif XZ_plane and abs(abs(GeometryOperators._v_dot(normal1, uy)) - normal1_norm) < tol: pass elif XY_plane and abs(abs(GeometryOperators._v_dot(normal1, uz)) - normal1_norm) < tol: pass else: continue vec1 = GeometryOperators.v_points(vertex1_i, vertex2_j) if abs(GeometryOperators._v_dot(normal1, vec1)) < tol2: # the 4th point is coplanar candidate_edges.append(ej) minimum_distance = tol**-1 selected_edges = [] for ei in midpoints: midpoint_i = midpoints[ei] for ej in candidate_edges: midpoint_j = self.get_edge_midpoint(ej) d = GeometryOperators.points_distance(midpoint_i, midpoint_j) if d < minimum_distance: minimum_distance = d selected_edges = [ei, ej] if selected_edges: new_edge1 = self.create_object_from_edge(selected_edges[0]) time.sleep(aedt_wait_time) new_edge2 = self.create_object_from_edge(selected_edges[1]) return selected_edges else: return [] pass @pyaedt_function_handler() def get_edges_for_circuit_port( self, face_id, XY_plane=True, YZ_plane=True, XZ_plane=True, allow_perpendicular=False, tol=1e-6 ): """Retrieve two edge IDs suitable for the circuit port. One edge belongs to the face ID passed in the input, and the second edge is the closest edge's coplanar to the first edge (aligned to the XY, YZ, or XZ plane). This method creates new lines for the detected edges and returns the IDs of these lines. This method accepts a face ID in the input, while the `get_edges_for_circuit_port_from_port` method accepts one or more sheet objects. Parameters ---------- face_id : ID of the face. XY_plane : bool, optional Whether the edge's pair are to be on the XY plane. The default is ``True``. YZ_plane : bool, optional Whether the edge's pair are to be on the YZ plane. The default is ``True``. XZ_plane : bool, optional Whether the edge's pair are to be on the XZ plane. The default is ``True``. allow_perpendicular : bool, optional Whether the edge's pair are to be perpendicular. The default is ``False``. tol : float, optional Geometric tolerance. The default is ``1e-6``. Returns ------- list List of edge IDs. """ tol2 = tol**2 port_edges = self.get_face_edges(face_id) # find the bodies to exclude port_sheet_midpoint = self.get_face_center(face_id) point = self._modeler.Position(port_sheet_midpoint) list_of_bodies = self.get_bodynames_from_position(point) # select all edges all_edges = [] solids = [s for s in self.solid_names if s not in list_of_bodies] for solid in solids: edges = self.get_object_edges(solid) all_edges.extend(edges) all_edges = list(set(all_edges)) # remove duplicates # select edges coplanar to port edges (aligned to XY, YZ, or XZ plane) ux = [1.0, 0.0, 0.0] uy = [0.0, 1.0, 0.0] uz = [0.0, 0.0, 1.0] midpoints = {} candidate_edges = [] for ei in port_edges: vertices_i = self.get_edge_vertices(ei) if len(vertices_i) == 1: # maybe a circle vertex1_i = self.get_vertex_position(vertices_i[0]) area_i = self.get_face_area(face_id) if area_i is None or area_i < tol2: # degenerated face continue center_i = self.get_face_center(face_id) if not center_i: # non planar face continue radius_i = GeometryOperators.points_distance(vertex1_i, center_i) area_i_eval = math.pi * radius_i**2 if abs(area_i - area_i_eval) < tol2: # it is a circle vertex2_i = center_i midpoints[ei] = center_i else: # not a circle continue elif len(vertices_i) == 2: # normal segment edge vertex1_i = self.get_vertex_position(vertices_i[0]) vertex2_i = self.get_vertex_position(vertices_i[1]) midpoints[ei] = self.get_edge_midpoint(ei) else: # undetermined edge --> skip continue for ej in all_edges: vertices_j = self.get_edge_vertices(ej) if len(vertices_j) == 1: # edge is an arc, not supported continue elif len(vertices_j) == 2: # normal segment edge vertex1_j = self.get_vertex_position(vertices_j[0]) vertex2_j = self.get_vertex_position(vertices_j[1]) else: # undetermined edge --> skip continue if ( not allow_perpendicular and abs( GeometryOperators._v_dot( GeometryOperators.v_points(vertex1_i, vertex2_i), GeometryOperators.v_points(vertex1_j, vertex2_j), ) ) < tol ): continue normal1 = GeometryOperators.v_cross( GeometryOperators.v_points(vertex1_i, vertex2_i), GeometryOperators.v_points(vertex1_i, vertex1_j) ) normal1_norm = GeometryOperators.v_norm(normal1) if YZ_plane and abs(abs(GeometryOperators._v_dot(normal1, ux)) - normal1_norm) < tol: pass elif XZ_plane and abs(abs(GeometryOperators._v_dot(normal1, uy)) - normal1_norm) < tol: pass elif XY_plane and abs(abs(GeometryOperators._v_dot(normal1, uz)) - normal1_norm) < tol: pass else: continue vec1 = GeometryOperators.v_points(vertex1_i, vertex2_j) if abs(GeometryOperators._v_dot(normal1, vec1)) < tol2: # the 4th point is coplanar candidate_edges.append(ej) minimum_distance = tol**-1 selected_edges = [] for ei in midpoints: midpoint_i = midpoints[ei] for ej in candidate_edges: midpoint_j = self.get_edge_midpoint(ej) d = GeometryOperators.points_distance(midpoint_i, midpoint_j) if d < minimum_distance: minimum_distance = d selected_edges = [ei, ej] if selected_edges: new_edge1 = self.create_object_from_edge(selected_edges[0]) time.sleep(aedt_wait_time) new_edge2 = self.create_object_from_edge(selected_edges[1]) return selected_edges else: return [] pass @pyaedt_function_handler() def get_closest_edgeid_to_position(self, position, units=None): """Get the edge ID closest to a given position. Parameters ---------- position : list List of ``[x,y,z]`` coordinates for the position. units : Units for the position, such as ``"m"``. The default is ``None``, which means the model units are used. Returns ------- int Edge ID of the edge closest to this position. """ if isinstance(position, list): position = self.modeler.Position(position) bodies = self.get_bodynames_from_position(position, units) # the function searches in all bodies, not efficient face_id = self.get_faceid_from_position(position, obj_name=bodies[0], units=units) edges = self.get_face_edges(face_id) distance = 1e6 selected_edge = None for edge in edges: midpoint = self.get_edge_midpoint(edge) if self.model_units == "mm" and units == "meter": midpoint = [i / 1000 for i in midpoint] elif self.model_units == "meter" and units == "mm": midpoint = [i * 1000 for i in midpoint] d = GeometryOperators.points_distance(midpoint, [position.X, position.Y, position.Z]) if d < distance: selected_edge = int(edge) distance = d return selected_edge @pyaedt_function_handler() def _resolve_object(self, object): if isinstance(object, Object3d): return object else: return self[object] @pyaedt_function_handler() def _get_model_objects(self, model=True): """Retrieve all model objects. Parameters ---------- model : bool, optional Whether to retrieve all model objects. The default is ``True``. When ``False``, all non-model objects are retrieved. Returns ------- list List of retrieved objects. """ list_objs = [] for id, obj in self.objects.items(): if obj.model == model: list_objs.append(obj.name) return list_objs @pyaedt_function_handler() def _check_material(self, matname, defaultmatname): """Check for a material name. If a material name exists, it is assigned. Otherwise, the material specified as the default is assigned. Parameters ---------- matname : str Name of the material. defaultmatname : str Name of the default material to assign if ``metname`` does not exist. Returns ------- str or bool String if a material name, Boolean if the material is a dielectric. """ if isinstance(matname, Material): if self._app._design_type == "HFSS": return matname.name, matname.is_dielectric() else: return matname.name, True if matname: if self._app.materials[matname]: if self._app._design_type == "HFSS": return self._app.materials[matname].name, self._app.materials[matname].is_dielectric() else: return self._app.materials[matname].name, True else: self.logger.warning("Material %s doesn not exists. Assigning default material", matname) if self._app._design_type == "HFSS": return defaultmatname, self._app.materials.material_keys[defaultmatname].is_dielectric() else: return defaultmatname, True @pyaedt_function_handler() def _refresh_solids(self): test = list(self.oeditor.GetObjectsInGroup("Solids")) if test is None or test is False: assert False, "Get Solids is failing" elif test is True: self._solids = [] # In IronPython True is returned when no sheets are present else: self._solids = list(test) self._all_object_names = self._solids + self._sheets + self._lines + self._points @pyaedt_function_handler() def _refresh_sheets(self): test = list(self.oeditor.GetObjectsInGroup("Sheets")) if test is None or test is False: assert False, "Get Sheets is failing" elif test is True: self._sheets = [] # In IronPython True is returned when no sheets are present else: self._sheets = list(test) self._all_object_names = self._solids + self._sheets + self._lines + self._points @pyaedt_function_handler() def _refresh_lines(self): test = list(self.oeditor.GetObjectsInGroup("Lines")) if test is None or test is False: assert False, "Get Lines is failing" elif test is True: self._lines = [] # In IronPython True is returned when no lines are present else: self._lines = list(test) self._all_object_names = self._solids + self._sheets + self._lines + self._points @pyaedt_function_handler() def _refresh_points(self): test = list(self.oeditor.GetObjectsInGroup("Points")) if test is None or test is False: assert False, "Get Points is failing" elif test is True: self._points = [] # In IronPython True is returned when no points are present else: self._points = list(test) self._all_object_names = self._solids + self._sheets + self._lines + self._points @pyaedt_function_handler() def _refresh_unclassified(self): test = _retry_ntimes(10, self.oeditor.GetObjectsInGroup, "Unclassified") if test is None or test is False: self._unclassified = [] self.logger.debug("Unclassified is failing") elif test is True: self._unclassified = [] # In IronPython True is returned when no unclassified are present else: self._unclassified = list(test) @pyaedt_function_handler() def _refresh_object_types(self): self._refresh_solids() self._refresh_sheets() self._refresh_lines() self._refresh_points() self._all_object_names = self._solids + self._sheets + self._lines + self._points @pyaedt_function_handler() def _create_object(self, name): o = Object3d(self, name) new_id = o.id self.objects[new_id] = o self.object_id_dict[o.name] = new_id return o @pyaedt_function_handler() def _create_point(self, name): point = Point(self, name) self._point_names[name] = point self._points.append(point) return point @pyaedt_function_handler() def _refresh_all_ids_from_aedt_file(self): if not self._app.design_properties or "ModelSetup" not in self._app.design_properties: return False try: groups = self._app.design_properties["ModelSetup"]["GeometryCore"]["GeometryOperations"]["Groups"]["Group"] except KeyError: groups = [] if not isinstance(groups, list): groups = [groups] try: self._app.design_properties["ModelSetup"]["GeometryCore"]["GeometryOperations"]["ToplevelParts"][ "GeometryPart" ] except KeyError: return 0 for el in self._app.design_properties["ModelSetup"]["GeometryCore"]["GeometryOperations"]["ToplevelParts"][ "GeometryPart" ]: if isinstance(el, (OrderedDict, dict)): attribs = el["Attributes"] else: attribs = self._app.design_properties["ModelSetup"]["GeometryCore"]["GeometryOperations"][ "ToplevelParts" ]["GeometryPart"]["Attributes"] if attribs["Name"] in self._all_object_names: o = self._create_object(name=attribs["Name"]) o._part_coordinate_system = attribs["PartCoordinateSystem"] if "NonModel" in attribs["Flags"]: o._model = False else: o._model = True if "Wireframe" in attribs["Flags"]: o._wireframe = True else: o._wireframe = False groupname = "" for group in groups: if attribs["GroupId"] == group["GroupID"]: groupname = group["Attributes"]["Name"] o._m_groupName = groupname try: o._color = tuple(int(x) for x in attribs["Color"][1:-1].split(" ")) except: o._color = None o._surface_material = attribs.get("SurfaceMaterialValue", None) if o._surface_material: o._surface_material = o._surface_material[1:-1].lower() if "MaterialValue" in attribs: o._material_name = attribs["MaterialValue"][1:-1].lower() else: o._material_name = attribs.get("MaterialName", None) o._is_updated = True return len(self.objects) @pyaedt_function_handler() def _default_object_attributes(self, name=None, matname=None, flags=""): if not matname: matname = self.defaultmaterial material, is_dielectric = self._check_material(matname, self.defaultmaterial) solve_inside = False if is_dielectric: solve_inside = True if not name: name = _uname() try: color = str(tuple(self._app.materials.material_keys[material].material_appearance)).replace(",", " ") except: color = "(132 132 193)" if material in ["vacuum", "air", "glass", "water_distilled", "water_fresh", "water_sea"]: transparency = 0.8 else: transparency = 0.2 args = [ "NAME:Attributes", "Name:=", name, "Flags:=", flags, "Color:=", color, "Transparency:=", transparency, "PartCoordinateSystem:=", "Global", "SolveInside:=", solve_inside, ] if self.version >= "2019.3": args += [ "MaterialValue:=", chr(34) + material + chr(34), "UDMId:=", "", "SurfaceMaterialValue:=", chr(34) + "Steel-oxidised-surface" + chr(34), ] else: args += ["MaterialName:=", material] if self.version >= "2021.2": args += [ "ShellElement:=", False, "ShellElementThickness:=", "0mm", "IsMaterialEditable:=", True, "UseMaterialAppearance:=", False, "IsLightweight:=", False, ] return args @pyaedt_function_handler() def _crosssection_arguments(self, type, orient, width, topwidth, height, num_seg, bend_type=None): """Generate the properties array for the polyline cross-section.""" arg_str = ["NAME:PolylineXSection"] # Set the default section type to "None" section_type = type if not section_type: section_type = "None" # Set the default orientation to "Auto" section_orient = orient if not section_orient: section_orient = "Auto" # Set the default bend-type to "Corner" section_bend = bend_type if not section_bend: section_bend = "Corner" # Ensure number-of segments is valid if num_seg: assert num_seg > 2, "Number of segments for a cross-section must be 0 or greater than 2." model_units = self.model_units arg_str += ["XSectionType:=", section_type] arg_str += ["XSectionOrient:=", section_orient] arg_str += ["XSectionWidth:=", _dim_arg(width, model_units)] arg_str += ["XSectionTopWidth:=", _dim_arg(topwidth, model_units)] arg_str += ["XSectionHeight:=", _dim_arg(height, model_units)] arg_str += ["XSectionNumSegments:=", "{}".format(num_seg)] arg_str += ["XSectionBendType:=", section_bend] return arg_str @pyaedt_function_handler() def _arg_with_dim(self, value, units=None): if isinstance(value, str): val = value else: if units is None: units = self.model_units val = "{0}{1}".format(value, units) return val @pyaedt_function_handler() def _pos_with_arg(self, pos, units=None): xpos = self._arg_with_dim(pos[0], units) if len(pos) < 2: ypos = self._arg_with_dim(0, units) else: ypos = self._arg_with_dim(pos[1], units) if len(pos) < 3: zpos = self._arg_with_dim(0, units) else: zpos = self._arg_with_dim(pos[2], units) return xpos, ypos, zpos @pyaedt_function_handler() def _str_list(self, theList): szList = "" for id in theList: o = self.objects[id] if len(szList): szList += "," szList += str(o.name) return szList @pyaedt_function_handler() def _find_object_from_edge_id(self, lval): objList = [] objListSheets = self.sheet_names if len(objListSheets) > 0: objList.extend(objListSheets) objListSolids = self.solid_names if len(objListSolids) > 0: objList.extend(objListSolids) for obj in objList: val = _retry_ntimes(10, self.oeditor.GetEdgeIDsFromObject, obj) if not (isinstance(val, bool)) and str(lval) in list(val): return obj return None @pyaedt_function_handler() def _find_object_from_face_id(self, lval): if self.oeditor is not None: objList = [] objListSheets = self.sheet_names if len(objListSheets) > 0: objList.extend(objListSheets) objListSolids = self.solid_names if len(objListSolids) > 0: objList.extend(objListSolids) for obj in objList: face_ids = list(self.oeditor.GetFaceIDs(obj)) if str(lval) in face_ids: return obj return None @pyaedt_function_handler() def __getitem__(self, partId): """Return the object ``Object3D`` for a given object ID or object name. Parameters ---------- partId : int or str Object ID or object name from the 3D modeler. Returns ------- :class:`pyaedt.modeler.Object3d.Object3d` Returns None if the part ID or the object name is not found. """ if isinstance(partId, int) and partId in self.objects: return self.objects[partId] elif partId in self.object_id_dict: return self.objects[self.object_id_dict[partId]] elif isinstance(partId, Object3d): return partId return None
python
124,715
""" Copyright (C) 2018-2020 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging as log import os import numpy as np from extensions.back.TopKNormalizer import TopKNormalizer from extensions.ops.Cast import Cast from extensions.ops.ReduceOps import ReduceOp from extensions.ops.activation_ops import Activation from extensions.ops.elementwise import Elementwise, LogicalElementwise, BiasAdd, Div, Mul, Pow, Sub from extensions.ops.embedding_bag import EmbeddingBagBase from extensions.ops.psroipooling import DeformablePSROIPoolingOp from extensions.ops.scatter import Scatter from extensions.ops.scatternd import ScatterNDBase from extensions.ops.split import Split, VariadicSplit from mo.front.common.partial_infer.utils import int64_array from mo.graph.graph import Graph, Node from mo.ops.clamp import AttributedClamp from mo.ops.convolution import Convolution from mo.ops.deconvolution import Deconvolution from mo.ops.op import Op from mo.ops.pooling import Pooling from mo.ops.result import Result from mo.utils.class_registration import update_registration from mo.utils.import_extensions import import_by_path from mo.utils.ir_reader.extender import Extender # Operations not registered in collect_ops() function custom_ops = { 'AvgPool': Pooling, 'BiasAdd': BiasAdd, 'Convert': Cast, 'ConvolutionBackpropData': Deconvolution, 'DeformablePSROIPooling': DeformablePSROIPoolingOp, 'Divide': Div, 'GroupConvolution': Convolution, 'GroupConvolutionBackpropData': Deconvolution, 'MaxPool': Pooling, 'Multiply': Mul, 'Power': Pow, 'Split': Split, 'Subtract': Sub, 'VariadicSplit': VariadicSplit, 'Clamp': AttributedClamp, } def collect_ops(path: str): """ A function to registrate all MO ops :param path: Path to Model Optimizer folder :return: """ import_by_path(os.path.join(path, 'mo', 'ops'), ['mo', 'ops']) import_by_path(os.path.join(path, 'extensions', 'ops'), ['extensions', 'ops']) update_registration(classes=[Op, Activation, Elementwise, EmbeddingBagBase, LogicalElementwise, ReduceOp, Scatter, ScatterNDBase], enabled_transforms=[], disabled_transforms=[]) def collect_extenders(path: str): """ A function to registrate all MO IR Reader extenders :param path: Path to Model Optimizer folder :return: """ import_by_path(os.path.join(path, 'mo', 'utils', 'ir_reader', 'extenders'), ['mo', 'utils', 'ir_reader', 'extenders']) update_registration(classes=[Extender], enabled_transforms=[], disabled_transforms=[]) def collect_node_outputs(node: Node) -> dict: """ Function to collects output connections of node. :param node: node to collect connections :return: dictionary of the form {out_port: [(input_port, destination_node_id)]} """ result = dict() for out_port_idx, out_port in node.out_ports().items(): dest_info = [] for d in out_port.get_destinations(): dest_info.append((d.idx, d.node.id)) result[out_port_idx] = dest_info return result def restore_correct_ports(graph: Graph): """ Function renumbers from IE to MO port numbering and add ports to all nodes in graph. :param graph: :return: """ for node_id, attrs in graph.nodes(data=True): if '_in_ports' not in attrs: attrs['_in_ports'] = set() if '_out_ports' not in attrs: attrs['_out_ports'] = set() for u, v, k, d in graph.edges(data=True, keys=True): from_node_attrs = graph.node[u] to_node_attrs = graph.node[v] is_control_flow = 'control_flow_edge' in d and d['control_flow_edge'] is True if 'in' in d: in_port_id = d['in'] if not is_control_flow else 'control_flow_' + str(d['in']) to_node_attrs['_in_ports'].update({in_port_id: {'control_flow': is_control_flow}}) if 'out' in d: num_of_in_nodes = len(Node(graph, u).in_nodes()) decremented_number = d['out'] - num_of_in_nodes out_port_id = decremented_number if not is_control_flow else 'control_flow_' + str(decremented_number) from_node_attrs['_out_ports'].update({out_port_id: {'control_flow': is_control_flow}}) d['out'] = decremented_number def propagate_const_values(op: Node): """ Function propagates const value from input data node and reshape it to correct shape. :param op: :return: """ assert op.soft_get('type') == 'Const', 'Wrong operation type, {} instead of Const!' \ ''.format(op.soft_get('type')) in_data_node = op.in_node() out_data_node = op.out_node() value = in_data_node.value assert len(op.out_node(0).out_nodes()) > 0, 'Const node {} have no consumers.'.format(op.soft_get('name')) if op.out_node(0).out_node(0).type == 'BinaryConvolution': # Unpack binary weights for binary convolution (revert PackBinaryWeights transformation) weights_rounded = np.unpackbits(value) weights_rounded.dtype = np.int8 for elem in range(len(weights_rounded)): if weights_rounded[elem] == 0: weights_rounded[elem] -= 1 # pylint: disable=unsupported-assignment-operation assert len(weights_rounded) % 8 == 0 weights_rounded = weights_rounded.reshape([len(weights_rounded) // 8, 8]) # pylint: disable=no-member weights_rounded = np.flip(weights_rounded, axis=1) value = weights_rounded.flatten() op['shape'] = out_data_node.shape # Reshape data node value for correct shape op['value'] = np.reshape(value, op.shape) def groupconv_to_conv(op: Node): """ Function makes GroupConv op back to Conv op with weights reshaping :param op: :return: """ assert op.soft_get('type') == 'GroupConvolution', \ 'Wrong operation type, {} instead of GroupConvolution!'.format(op.soft_get('type')) weights_shape = op.in_port(1).data.get_shape() group = weights_shape[0] new_shape = [weights_shape[1] * group, *weights_shape[2:]] weights_node = op.in_port(1).get_source().node if weights_node.type == 'Const': weights_node.value = np.reshape(weights_node.value, new_shape) elif weights_node.type == 'Reshape': # we remove reshape node added in ConvolutionWithGroupsResolver pass assert weights_node.in_port(0).get_source().data.get_shape() == new_shape, \ 'Weight shape and calculated shape mismatch in GroupConv node {}.'.format(op.name) op.in_port(1).disconnect() weights_node.in_port(0).get_source().get_connection().set_destination(op.in_port(1)) else: assert op.in_port(1).get_source().data.get_shape() == new_shape, \ 'Weight shape and calculated shape mismatch in GroupConv node {}.'.format(op.name) # we need to set this attrs for correct shape infer as convolution op['group'] = group op.type = 'Convolution' def backprop_to_deconv(op: Node): """ Function changes BackpropData operations type to correct creation :param op: :return: """ assert op.soft_get('type') in ('ConvolutionBackpropData', 'GroupConvolutionBackpropData'), \ 'Wrong operation type, {} instead of ConvolutionBackpropData/GroupConvolutionBackpropData!' \ ''.format(op.soft_get('type')) if op.has_valid('output_padding'): # In this case we need to create Deconvolution as Convolution op['type_to_create'] = 'Convolution' op['old_input_shapes'] = list() for n in op.in_nodes(): op.old_input_shapes.append(int64_array(op.in_node(n).shape)) def ti_add_edge_attrs(op: Node): """ Function adds necessary edge attrs in TensorIterator node :param op: :return: """ assert op.soft_get('type') == 'TensorIterator', 'Wrong operation type, {} instead of TensorIterator!' \ ''.format(op.soft_get('type')) i = 0 for num in range(len(op.in_ports())): op.in_port(num).external_port_id = i i += 1 for num in range(len(op.out_ports())): op.out_port(num).external_port_id = i i += 1 def assign_add_output_result(op: Node): """ Function adds necessary output result node for Assign node :param op: :return: """ assert op.soft_get('type') == 'Assign', 'Wrong operation type, {} instead of Assign!' \ ''.format(op.soft_get('type')) tmp_result = Result(op.graph, {'name': op.soft_get('name', op.id) + '/Result'}).create_node() op.out_port(0).connect(tmp_result.in_port(0)) def copy_input_blobs(op: Node, copy_op: Node): """ Function copy input blob data nodes from restored graph to copied one :param op: Node from restored graph :param copy_op: Node from copied graph :return: """ for u, d in op.get_sorted_inputs(): if 'bin' in d: Op.create_and_connect_input_data_node(copy_op.graph, copy_op, {'value': op.in_node(d['in']).value, 'shape': op.in_node(d['in']).shape}, d) # Map with preprocessing functions preprocessing_op_nodes = { 'Const': propagate_const_values, 'GroupConvolution': groupconv_to_conv, 'ConvolutionBackpropData': backprop_to_deconv, 'GroupConvolutionBackpropData': backprop_to_deconv, } # Map with postprocessing functions for nodes postprocessing_op_nodes = { 'Assign': assign_add_output_result, 'TensorIterator': ti_add_edge_attrs, 'TopK': TopKNormalizer.normalize_outputs, } def copy_graph_with_ops(graph: Graph) -> Graph: """ Function to copy graph and apply extenders to appropriate nodes :param graph: Graph to copy :return:Copied graph with applied extenders """ new_graph = Graph() new_graph.stage = 'back' new_graph.graph = graph.graph node_connections = dict() mapping_of_old_idx_into_new = dict() restore_correct_ports(graph) # Nodes preprocessing stage in source graph # Firstly propagate values only for Const nodes, because other preprocessings # assumes Const nodes are already preprocessed. for op in graph.get_op_nodes(type='Const'): preprocessing_op_nodes[op.type](op) for op in graph.get_op_nodes(): if op.soft_get('type') != 'Const' and op.soft_get('type') in preprocessing_op_nodes: preprocessing_op_nodes[op.type](op) # Create a new copy of graph with correct attributes (shape & type infer, backend attrs etc.) for op in graph.get_op_nodes(): # Apply extenders to nodes in source graph if op.type in Extender.registered_ops: Extender.get_extender_class_by_name(op.type).extend(op) else: log.debug('Extender for node {} with type={} not found, please note.'.format(op.name, op.type)) # Add node with necessary type and extended attrs in new graph op_type = op.soft_get('type_to_create', op.type) if op_type in custom_ops: node = custom_ops[op_type](new_graph, op.attrs()).create_node() else: assert op_type in Op.registered_ops, 'Operation {} not found in MO operations, ' \ 'please check it!'.format(op_type) node = Op.get_op_class_by_name(op_type)(new_graph, op.attrs()).create_node() if op.has_and_set('need_copy_input_blobs'): copy_input_blobs(op, node) # Collect node connections mapping_of_old_idx_into_new[op.id] = node.id node_connections[op.id] = collect_node_outputs(op) # Restore connections in new graph for input_node_idx, its_outputs in list(node_connections.items()): for out_port_idx, out_port_dest in its_outputs.items(): for dest_in_port_idx, dest_node_idx in out_port_dest: src = Node(new_graph, mapping_of_old_idx_into_new[input_node_idx]) dst = Node(new_graph, mapping_of_old_idx_into_new[dest_node_idx]) src.out_port(out_port_idx).connect(dst.in_port(dest_in_port_idx)) # Nodes postprocessing stage in new graph for op in new_graph.get_op_nodes(): if op.soft_get('type') in postprocessing_op_nodes: postprocessing_op_nodes[op.type](op) # clean up graph to shape inference new_graph.clean_up() return new_graph
python
13,084
# -*- coding: utf-8 -*- # This file is part of the Ingram Micro Cloud Blue Connect SDK. # Copyright (c) 2019-2020 Ingram Micro. All Rights Reserved. from .activation import Activation from .activation_template_response import ActivationTemplateResponse from .activation_tile_response import ActivationTileResponse from .agreement import Agreement from .agreement_stats import AgreementStats from .anniversary import Anniversary from .asset_request import AssetRequest from .asset import Asset from .base import BaseModel from .billing import Billing from .commitment import Commitment from .company import Company from .configuration import Configuration from .connection import Connection from .constraints import Constraints from .contact import Contact from .contact_info import ContactInfo from .contract import Contract from .country import Country from .conversation import Conversation from .conversation_message import ConversationMessage from .customer_ui_settings import CustomerUiSettings from .document import Document from .download_link import DownloadLink from .event import Event from .events import Events from .ext_id_hub import ExtIdHub from .fulfillment import Fulfillment from .hub import Hub from .hub_instance import HubInstance from .hub_stats import HubStats from .item import Item from .last_request import LastRequest from .marketplace import Marketplace from .param import Param from .phone_number import PhoneNumber from .product import Product from .product_category import ProductCategory from .product_configuration import ProductConfiguration from .product_configuration_parameter import ProductConfigurationParameter from .product_family import ProductFamily from .product_stats import ProductStats from .product_stats_info import ProductStatsInfo from .renewal import Renewal from .server_error_response import ServerErrorResponse from .stat import Stat from .stats import Stats from .template import Template from .tier_account import TierAccount from .tier_accounts import TierAccounts from .tier_account_request import TierAccountRequest from .tier_config import TierConfig from .tier_config_request import TierConfigRequest from .ui import UI from .unit import Unit from .usage_file import UsageFile from .usage_listing import UsageListing from .usage_record import UsageRecord from .usage_records import UsageRecords from .usage_stats import UsageStats from .user import User from .value_choice import ValueChoice from .billing_request import BillingRequest from .period import Period from .attributes import Attributes from .recurring_asset import RecurringAsset __all__ = [ 'Activation', 'ActivationTemplateResponse', 'ActivationTileResponse', 'Agreement', 'AgreementStats', 'Anniversary', 'AssetRequest', 'Asset', 'Attributes', 'BaseModel', 'Billing', 'BillingRequest', 'Company', 'Configuration', 'Commitment', 'Connection', 'Constraints', 'Contact', 'ContactInfo', 'Contract', 'Country', 'Conversation', 'ConversationMessage', 'CustomerUiSettings', 'Document', 'DownloadLink', 'Event', 'Events', 'ExtIdHub', 'Fulfillment', 'Hub', 'HubInstance', 'HubStats', 'Item', 'LastRequest', 'Marketplace', 'Param', 'Period', 'PhoneNumber', 'Product', 'ProductCategory', 'ProductConfiguration', 'ProductConfigurationParameter', 'ProductFamily', 'ProductStats', 'ProductStatsInfo', 'RecurringAsset', 'Renewal', 'ServerErrorResponse', 'Stat', 'Stats', 'Template', 'TierAccount', 'TierAccountRequest', 'TierAccounts', 'TierConfig', 'TierConfigRequest', 'UI', 'Unit', 'UsageFile', 'UsageListing', 'UsageRecord', 'UsageRecords', 'UsageStats', 'User', 'ValueChoice', ]
python
3,864
"""Platform Models.""" from marshmallow import fields, Schema from marshmallow.validate import OneOf from ..enums import * from ..models.BaseSchema import BaseSchema class SortMethod(BaseSchema): # Feedback swagger.json name = fields.Str(required=False) selected = fields.Boolean(required=False) type = fields.Str(required=False)
python
377
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities __all__ = [ 'GetDatabaseAccountGremlinDatabaseResult', 'AwaitableGetDatabaseAccountGremlinDatabaseResult', 'get_database_account_gremlin_database', ] @pulumi.output_type class GetDatabaseAccountGremlinDatabaseResult: """ An Azure Cosmos DB Gremlin database. """ def __init__(__self__, etag=None, id=None, location=None, name=None, rid=None, tags=None, ts=None, type=None): if etag and not isinstance(etag, str): raise TypeError("Expected argument 'etag' to be a str") pulumi.set(__self__, "etag", etag) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if rid and not isinstance(rid, str): raise TypeError("Expected argument 'rid' to be a str") pulumi.set(__self__, "rid", rid) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if ts and not isinstance(ts, dict): raise TypeError("Expected argument 'ts' to be a dict") pulumi.set(__self__, "ts", ts) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) @property @pulumi.getter def etag(self) -> Optional[str]: """ A system generated property representing the resource etag required for optimistic concurrency control. """ return pulumi.get(self, "etag") @property @pulumi.getter def id(self) -> str: """ The unique resource identifier of the database account. """ return pulumi.get(self, "id") @property @pulumi.getter def location(self) -> Optional[str]: """ The location of the resource group to which the resource belongs. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> str: """ The name of the database account. """ return pulumi.get(self, "name") @property @pulumi.getter def rid(self) -> Optional[str]: """ A system generated property. A unique identifier. """ return pulumi.get(self, "rid") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ Tags are a list of key-value pairs that describe the resource. These tags can be used in viewing and grouping this resource (across resource groups). A maximum of 15 tags can be provided for a resource. Each tag must have a key no greater than 128 characters and value no greater than 256 characters. For example, the default experience for a template type is set with "defaultExperience": "Cassandra". Current "defaultExperience" values also include "Table", "Graph", "DocumentDB", and "MongoDB". """ return pulumi.get(self, "tags") @property @pulumi.getter def ts(self) -> Optional[Any]: """ A system generated property that denotes the last updated timestamp of the resource. """ return pulumi.get(self, "ts") @property @pulumi.getter def type(self) -> str: """ The type of Azure resource. """ return pulumi.get(self, "type") class AwaitableGetDatabaseAccountGremlinDatabaseResult(GetDatabaseAccountGremlinDatabaseResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetDatabaseAccountGremlinDatabaseResult( etag=self.etag, id=self.id, location=self.location, name=self.name, rid=self.rid, tags=self.tags, ts=self.ts, type=self.type) def get_database_account_gremlin_database(account_name: Optional[str] = None, database_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetDatabaseAccountGremlinDatabaseResult: """ An Azure Cosmos DB Gremlin database. :param str account_name: Cosmos DB database account name. :param str database_name: Cosmos DB database name. :param str resource_group_name: Name of an Azure resource group. """ __args__ = dict() __args__['accountName'] = account_name __args__['databaseName'] = database_name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:documentdb/v20150401:getDatabaseAccountGremlinDatabase', __args__, opts=opts, typ=GetDatabaseAccountGremlinDatabaseResult).value return AwaitableGetDatabaseAccountGremlinDatabaseResult( etag=__ret__.etag, id=__ret__.id, location=__ret__.location, name=__ret__.name, rid=__ret__.rid, tags=__ret__.tags, ts=__ret__.ts, type=__ret__.type)
python
5,901
# loop inside loop - O(n2) def anagramDetection(string1, string2): l2 = list(string2) isAnagram = True pos1 = 0 while pos1 < len(string1) and isAnagram: character = string1[pos1] characterFound = False pos2 = 0 while pos2 < len(l2) and not characterFound: if character == l2[pos2]: l2[pos2] = None characterFound = True else: pos2 += 1 if not characterFound: isAnagram = False else: pos1 += 1 return isAnagram print(anagramDetection("python", "typhon")) print(anagramDetection("baba", "abba")) print(anagramDetection("babb", "abba"))
python
704
#!/usr/bin/env python # -*- coding: utf-8 -*- """ A Pyro4 server batch submission system. """ from __future__ import print_function import os as _os import sys import errno as _errno # import atexit as _atexit import signal as _signal import socket as _socket # Used to get hostname import getpass as _getpass # Used to get usernames for queue import argparse as _argparse import subprocess import multiprocessing as mp from time import sleep as _sleep from datetime import datetime as _dt from datetime import timedelta as _td from collections import OrderedDict as _OD try: from Queue import Empty except ImportError: # python3 from queue import Empty from six import text_type as _txt from six import string_types as _str from six import integer_types as _int import psutil as _psutil import Pyro4 # Fyrd imports (not necessary for main functionality) no relative imports # as we run as a script also from fyrd import run as _run from fyrd import conf as _conf from fyrd import logme as _logme from fyrd import options as _options from fyrd import script_runners as _scrpts from fyrd import submission_scripts as _sscrpt _Script = _sscrpt.Script # For SQLAlchemy DB Base = _base() ############################# # User Editable Constants # ############################# PID = None RUN_DIR = _conf.CONFIG_PATH PID_FILE = _os.path.join(RUN_DIR, 'local_queue.pid') URI_FILE = _os.path.join(RUN_DIR, 'local_queue.uri') DATABASE = _os.path.join(RUN_DIR, 'local_queue.db') # Time to block between looping in job_runner SLEEP_LEN = 0.1 # Time in seconds to wait for QueueManager to terminate STOP_WAIT = 5 # Number of days to wait before cleaning out old jobs, obtained from the # config file, this just sets the default CLEAN_OLDER_THAN = 7 # Default max jobs, can be overriden by config file or QueueManager init MAX_JOBS = mp.cpu_count()-1 MAX_JOBS = MAX_JOBS if MAX_JOBS >= 0 else 1 ############################ # Do Not Edit Below Here # ############################ _WE_ARE_A_SERVER = False # Fyrd file prefix, we don't use file commands so this is empty PREFIX = '' # This will be appended to job submission scripts SUFFIX = 'job' # Reset broken multithreading # Some of the numpy C libraries can break multithreading, this command # fixes the issue. try: subprocess.check_output( "taskset -p 0xff %d >/dev/null 2>/dev/null" % _os.getpid(), shell=True ) except subprocess.CalledProcessError: pass # This doesn't work on Macs or Windows ############################################################################### # Exception # ############################################################################### class QueueError(Exception): """Generic Exception for handling errors.""" pass ############################################################################### # Database # ############################################################################### class Job(Base): """A Job record for every queued job. Attributes ---------- jobno : int Job ID name : str The name of the job command : str A full shell script that can be executed state : {'queued', 'running', 'completed', 'failed'} The current state of the job threads : int The requested number of cores exitcode : int The exit code of the job if state in {'completed', 'failed'} pid : int The pid of the process runpath : str, optional Path to the directory to run in outfile, errfile : str, optional Paths to the output files """ __tablename__ = 'jobs' jobno = _Column(_Integer, primary_key=True, index=True) name = _Column(_String, nullable=False) command = _Column(_String, nullable=False) submit_time = _Column(_DateTime, nullable=False) threads = _Column(_Integer, nullable=False) state = _Column(_String, nullable=False, index=True) exitcode = _Column(_Integer) pid = _Column(_Integer) runpath = _Column(_String) outfile = _Column(_String) errfile = _Column(_String) def __repr__(self): """Display summary.""" return 'LocalQueueJob<{0}:{1};{2};state:{3};exitcode:{4}>'.format( self.jobno, self.pid, self.name, self.state, self.exitcode ) class LocalQueue(object): """A database to hold job information. Should only be accessed by a running QueueManager daemon. """ db_file = DATABASE def __init__(self, db_file=None): """Attach to a database, create if does not exist.""" db_file = db_file if db_file else self.db_file self.db_file = _os.path.abspath(db_file) self.engine = _create_engine( 'sqlite:///{}?check_same_thread=False'.format(self.db_file) ) if not _os.path.isfile(self.db_file): self.create_database(confirm=False) ########################################################################## # Basic Connectivity # ########################################################################## def get_session(self): """Return session for this database.""" session_factory = _sessionmaker(bind=self.engine) Session = _scoped_session(session_factory) return Session() @property def session(self): """Simple wrapper for a new session.""" return self.get_session() ########################################################################## # Querying # ########################################################################## def query(self, *args): """Wrapper for the SQLAlchemy query method of session. Parameters ---------- args Any arguments allowed by session.query. If blank, Job is used, which will return the whole database. To limit by columns, simply pass columns: `query(Job.jobno)` would return only a list of job numbers. """ if not args: args = (Job,) session = self.get_session() return session.query(*args) ########################################################################## # Job State Searches # ########################################################################## def get_jobs(self, state=None): """Return list of Jobs for all jobs that match state.""" q = self.query() if state: q = q.filter(Job.state == state) return q.all() @property def running(self): """All running jobs.""" return self.get_jobs(state='running') @property def queued(self): """All queued jobs.""" return self.get_jobs(state='pending') @property def completed(self): """All completed jobs.""" return self.get_jobs(state='completed') @property def failed(self): """All failed jobs.""" return self.get_jobs(state='failed') ########################################################################## # Job Management # ########################################################################## def set_running_jobs_failed(self): """Change all running jobs to failed.""" pass ########################################################################## # Maintenance Methods # ########################################################################## def create_database(self, confirm=True): """Create the db from scratch. Note: Will DELETE the current database!!! """ if confirm: ans = _run.get_yesno( 'Are you sure you want to erase and recreate the db?' ) if not ans: sys.stderr.write('Aborting\n') return False _logme.log('Recreating database', 'info', also_write='stderr') if _os.path.exists(self.db_file): _os.remove(self.db_file) Base.metadata.create_all(self.engine) _logme.log('Done', 'info', also_write='stderr') ########################################################################## # Internals # ########################################################################## def __getitem__(self, x): """Quick access to jobs by ID.""" if isinstance(x, (_str, _txt)): return self.query().filter(Job.jobno == x).all() def __len__(self): """Print the length.""" return self.query(Job).count() def __repr__(self): """Basic information about self.""" return 'LocalQueue<{location}>'.format(location=self.db_file) def __str__(self): """Basic information about self.""" return self.__repr__() ############################################################################### # Management Functions # ############################################################################### def initialize(): """Initialize the database and config directory. Returns ------- success : bool """ if not _os.path.isdir(RUN_DIR): _os.makedirs(RUN_DIR) if not _os.path.isfile(DATABASE): db = LocalQueue(DATABASE) db.create_database(confirm=False) return True def check_conf(): """Make sure the config directory exists, initialize if not. Returns ------- success : bool """ if _os.path.isdir(RUN_DIR) and _os.path.isfile(DATABASE): return True return initialize() def server_running(): """Return True if server currently running.""" if not _os.path.isfile(PID_FILE): return False with open(PID_FILE) as fin: pid = int(fin.read().strip()) return _pid_exists(pid) def start_server(): """Start the server as a separate thread. Returns ------- pid : int """ _logme.log('Starting local queue server with 2 second sleep', 'info') _sleep(2) # subprocess.check_call([sys.executable, us, 'start']) if not server_running(): daemon_manager('start') _sleep(1) if not server_running(): _logme.log('Cannot start server', 'critical') raise QueueError('Cannot start server') with open(PID_FILE) as fin: pid = int(fin.read().strip()) return pid def get_server_uri(start=True): """Check status and return a server URI.""" check_conf() # Remote queue server (Pyro4) if not _WE_ARE_A_SERVER and not _os.path.isfile(PID_FILE): if _os.path.isfile(URI_FILE): with open(URI_FILE) as fin: return fin.read().strip() else: uri = get_uri() if uri is None: if start: raise QueueError('Cannot reach to remote queue server') else: return False else: return uri if (_WE_ARE_A_SERVER or not start) and not _os.path.isfile(PID_FILE): return False if not _os.path.isfile(PID_FILE): if _os.path.isfile(URI_FILE): _os.remove(URI_FILE) if not start_server(): return False with open(PID_FILE) as fin: pid = int(fin.read().strip()) if not _pid_exists(pid): _os.remove(PID_FILE) if _os.path.isfile(URI_FILE): _os.remove(URI_FILE) if _WE_ARE_A_SERVER or not start: return False pid = start_server() if not pid or not _pid_exists(pid): raise OSError('Server not starting') # Server running now with open(URI_FILE) as fin: return fin.read().strip() RESTART_TRY = False def get_server(start=True, raise_on_error=False): """Return a client-side QueueManager instance.""" uri = get_server_uri(start=start) if not uri: if raise_on_error: raise QueueError('Cannot get server') return None server = Pyro4.Proxy(uri) # Test for bad connection try: server._pyroBind() except Pyro4.errors.CommunicationError: global RESTART_TRY if RESTART_TRY: _logme.log( "Cannot bind to server still. Failing. Try to kill the " "process in {}".format(PID_FILE), 'critical' ) if raise_on_error: raise QueueError('Cannot get server') return None RESTART_TRY = True _logme.log("Cannot bind to server, killing and retrying.", 'error') kill_queue() server = get_server(start, raise_on_error) RESTART_TRY = False return server def _pid_exists(pid): """Check whether pid exists in the current process table. UNIX only. From: https://stackoverflow.com/questions/568271/#6940314 """ pid = int(pid) if pid < 0: return False if pid == 0: # According to "man 2 kill" PID 0 refers to every process # in the process group of the calling process. # On certain systems 0 is a valid PID but we have no way # to know that in a portable fashion. raise ValueError('invalid PID 0') try: _os.kill(pid, 0) except OSError as err: if err.errno == _errno.ESRCH: # ESRCH == No such process return False elif err.errno == _errno.EPERM: # EPERM clearly means there's a process to deny access to return True else: # According to "man 2 kill" possible error values are # (EINVAL, EPERM, ESRCH) raise else: return True ############################################################################### # Core Queue Manager and Runner # ############################################################################### def get_queue_manager(): """Return a client of QueueManager.""" return get_server() @Pyro4.expose class QueueManager(object): """Monitor a queue and run jobs. Actual job execution done by the job_runner process, which forks. .. note:: This class should not be accessed directly, it is intended to run as a daemon. Use `get_queue_manager()` to get the client class. Attributes ---------- jobs : dict Dictionary of running jobs max_jobs : int The maximum number of jobs to run at one time. Defaults to current CPUs - 1 """ jobs = {} all_jobs = [] max_jobs = None inqueue = mp.Queue() outqueue = mp.Queue() _job_runner = None def __init__(self, daemon, max_jobs=None): """Create the QueueManager Paramenters ----------- max_jobs : int, optional The maximum number of jobs to run at one time. Defaults to current CPUs - 1 """ if not max_jobs: cmax = _conf.get_option('local', 'max_jobs') max_jobs = cmax if cmax else MAX_JOBS self.max_jobs = int(max_jobs) # Don't use more than the available cores if self.max_jobs > mp.cpu_count(): self.max_jobs = mp.cpu_count() # Unless there are fewer than 4 cores, we need at least 4 for split # jobs, so we hard code 4 as the minimum if self.max_jobs < 4: self.max_jobs = 4 self.db = LocalQueue(DATABASE) self.daemon = daemon self.all_jobs = [i[0] for i in self.db.query(Job.jobno).all()] self.check_runner() # Set all existing to disappeared, as they must be dead if we are # starting again session = self.db.get_session() q = session.query(Job).filter( Job.state.in_(['running', 'pending', 'queued']) ) bad = [] for job in q.all(): bad.append(str(job.jobno)) job.state = 'killed' session.commit() session.close() if bad: _logme.log('Jobs {0} were marked as killed as we are restarting' .format(','.join(bad)), 'warn') ########################################################################## # Job Submission and Management # ########################################################################## @Pyro4.expose def submit(self, command, name, threads=1, dependencies=None, stdout=None, stderr=None, runpath=None): """Submit a job and add it to the database. Parameters ---------- command : str A full executable shell script/shell command. name : str A name to give the job threads : int, optional The number of cores required by the job dependencies : list of int, optional A list of job numbers that must be complete prior to execution stdout, stderr : str, optional A path to a file to write STDOUT and STDERR to respectively runpath : str, optional A path to execute the command in Returns ------- jobno : int Raises ------ QueueError If a dependency is not in the job db already or command is invalid """ _logme.log('Submitting: {}'.format(str(locals())), 'debug') session = self.db.get_session() threads = int(threads) if not isinstance(command, (_str, _txt)): raise ValueError('command is {0}, type{1}, cannot continue' .format(command, type(command))) depends = [] if dependencies: for dep in dependencies: dep = int(dep) if not self.check_jobno(dep): raise QueueError('Invalid dependencies') depends.append(dep) job = Job(name=name, command=command, threads=threads, state='pending', submit_time=_dt.now()) if stdout: job.outfile = stdout if stderr: job.errfile = stderr if runpath: job.runpath = runpath try: session.add(job) except InvalidRequestError: # In case open in another thread local_job = session.merge(job) other_session = session.object_session(job) session.add(local_job) session.commit() other_session.close() session.flush() jobno = int(job.jobno) session.commit() session.close() self.check_runner() self.inqueue.put( ('queue', (jobno, command, threads, depends, stdout, stderr, runpath)) ) self.jobs[jobno] = job self.all_jobs.append(jobno) return jobno @Pyro4.expose def get(self, jobs=None, preclean=True): """Return a list of updated jobs. Parameters ---------- jobs : list of int, optional A list of job numbers, a single job number is also fine preclean : bool If True run `clean()` first to remove old jobs Returns ------- jobs : list of tuple [(jobno, name, command, state, threads, exitcode, runpath, outfile, errfile)] """ if preclean: self.clean() session = self.db.get_session() # Pyro cannot serialize Job objects, so we get a tuple instead q = session.query( Job.jobno, Job.name, Job.command, Job.state, Job.threads, Job.exitcode, Job.runpath, Job.outfile, Job.errfile ) if jobs: jobs = [jobs] if isinstance(jobs, (_int, _str, _txt)) else jobs jobs = [int(j) for j in jobs] q = q.filter(Job.jobno.in_(jobs)) res = q.all() session.close() return res @Pyro4.expose def clean(self, days=None): """Delete all jobs in the queue older than days days. Very fast if no jobs are older than the cutoff as the query returns an empty set. Parameters ---------- days : int, optional Set number of days to clean, default set in the config file. """ if days: clean_days = int(days) else: clean_days = int(_conf.get_option( 'local', 'local_clean_days',CLEAN_OLDER_THAN )) current_time = _dt.now() cutoff = current_time - _td(days=clean_days) jobs = self.db.query().filter(Job.submit_time < cutoff).all() if not jobs: return session = self.db.get_session() for job in jobs: try: session.delete(job) except InvalidRequestError: # In case open in another thread local_job = session.merge(job) other_session = session.object_session(job) session.delete(local_job) session.commit() other_session.close() session.commit() session.close() @Pyro4.expose def kill(self, jobs): """Kill running or pending jobs. Parameters ---------- jobs : list of int """ if isinstance(jobs, (_str, _txt)): jobs = [int(jobs)] elif isinstance(jobs, int): jobs = [jobs] else: try: jobs = list(jobs) except TypeError: jobs = [jobs] for job in jobs: self.check_jobno(job) self.inqueue.put('kill', int(job)) jobs = self.get(jobs) ok_states = ['killed', 'completed', 'failed'] for job in jobs: if job.state not in ok_states: return False return True @Pyro4.expose @property def available_cores(self): """Return an integer count of free cores.""" self.inqueue.put('available_cores') cores = self.outqueue.get() return int(cores) @Pyro4.expose @property def python(self): """Return the python interpreter on the server""" python = _run.which(sys.executable) return python ########################################################################## # Database Management # ########################################################################## @Pyro4.expose def update_job(self, jobno, state=None, exitcode=None, pid=None): """Update either the state or the exitcode of a job in the DB.""" session = self.db.get_session() job = session.query(Job).filter(Job.jobno == int(jobno)).first() if state: job.state = state if isinstance(exitcode, int): job.exitcode = exitcode if isinstance(pid, int): job.pid = pid session.flush() session.commit() session.close() # def _housekeeping(self): # """Run by Pyro4, update all_jobs, db cache, and clean up.""" # self.clean() # all_jobs = [] # cache = {} # session = self.db.get_session() # for job in session.query(Job).all(): # all_jobs.append(job.id) # cache[job.id] = job # self.all_jobs = all_jobs # self._cache = cache ########################################################################## # Shutdown # ########################################################################## @Pyro4.expose def shutdown_jobs(self): """Kill all jobs and terminate.""" result = None if not self.inqueue._closed: self.inqueue.put('stop') print('waiting for jobs to terminate gracefully') try: result = self.outqueue.get(timeout=STOP_WAIT) except Empty: pass print('killing runner') _kill_proc_tree(self._job_runner.pid) if _pid_exists(self._job_runner.pid): _os.kill(self._job_runner.pid, _signal.SIGKILL) print('job_runner killing done') try: self.inqueue.close() self.outqueue.close() except AttributeError: pass self.daemon.shutdown() if result is None: return None elif result: return True return False ########################################################################## # Error Checking # ########################################################################## def check_jobno(self, jobno): """Check if jobno in self.all_jobs, raise QueueError if not.""" if jobno not in self.all_jobs: _logme.log('Job number {0} does not exist.'.format(jobno), 'error') return False return True def check_runner(self): """Make sure job_runner is active and start it if inactive.""" if self._job_runner and self._job_runner.is_alive(): return self._job_runner runner = mp.Process( target=job_runner, args=(self.inqueue, self.outqueue, self.max_jobs) ) runner.start() self._job_runner = runner @property def job_runner(self): """A job runner process.""" self.check_runner() return self._job_runner ########################################################################## # Interaction Stuff # ########################################################################## # @Pyro4.expose # @property # def running(self): # """Return all running job ids from the cache, no new database query.""" # return [job.id for job in self._cache if job.state == 'running'] # @Pyro4.expose # @property # def pending(self): # """Return all pending job ids from the cache, no new database query.""" # return [job.id for job in self._cache if job.state == 'pending'] # @Pyro4.expose # @property # def completed(self): # """Return all completed job ids from the cache, no new database query.""" # return [job.id for job in self._cache if job.state == 'completed'] # @Pyro4.expose # @property # def failed(self): # """Return all failed job ids from the cache, no new database query.""" # return [job.id for job in self._cache if job.state == 'failed'] # def __repr__(self): # """Simple information.""" # return "LocalQueue<running:{0};pending:{1};completed:{2}".format( # self.running, self.pending, self.completed # ) # def __str__(self): # """Simple information.""" # return self.__repr__() @Pyro4.expose def __len__(self): """Length from the cache, no new database query.""" return len(self.all_jobs) # @Pyro4.expose # def __getitem__(self, key): # """Get a job by id.""" # job = self._cache[key] # return ( # job.jobno, job.name, job.command, job.state, job.threads, # job.exitcode, job.runpath, job.outfile, job.errfile # ) def job_runner(inqueue, outqueue, max_jobs): """Run jobs with dependency tracking. Terminate by sending 'stop' to inqueue Parameters ---------- inqueue : multiprocessing.Queue inqueue puts must be in the form : (command, extra): `('stop')` : immediately shutdown this process `('queue', job_info)` : queue and run this job `('kill', jobno)` : immediately kill this job `('available_cores')` : put available core count in outqueue job_info must be in the form: `(int(jobno), str(command), int(threads), list(dependencies))` outqueue : multiprocessing.Queue job information available_cores if argument was available_cores max_jobs : int The maximum number of concurrently running jobs, will be adjusted to be 4 <= max_jobs <= cpu_count. The minimum of 4 jobs is a hard limit and is enforced, so a machine with only 2 cores will still end up with 4 jobs running. This is required to avoid hangs on some kinds of fyrd jobs, where a split job is created from a child process. Returns ------- bool If 'stop' is sent, will return `True` if there are no running or pending jobs and `False` if there are still running or pending jobs. Raises ------ QueueError If invalid argument put into inqueue """ if not _WE_ARE_A_SERVER: return tries = 5 while tries: qserver = get_server() if qserver: break _sleep(1) tries -= 1 continue if not qserver: qserver = get_server(raise_on_error=True) max_jobs = int(max_jobs) if max_jobs < mp.cpu_count(): max_jobs = mp.cpu_count() if max_jobs < 4: max_jobs = 4 available_cores = max_jobs running = {} # {jobno: Process} queued = _OD() # {jobno: {'command': command, 'depends': depends, ...} done = {} # {jobno: Process} jobs = [] # [jobno, ...] put_core_info = False while True: # Get everything from the input queue first, queue everything while True: if inqueue.empty(): break info = inqueue.get() # Will block if input queue empty if info == 'stop' or info[0] == 'stop': good = True pids = [] if running: good = False for jobno, job in running.items(): qserver.update_job(jobno, state='killed') pids.append(job.pid) job.terminate() if queued: good = False for jobno, job in queued.items(): qserver.update_job(jobno, state='killed') for pid in pids: if _pid_exists(pid): _os.kill(pid, _signal.SIGKILL) outqueue.put(good) return good if info == 'available_cores' or info[0] == 'available_cores': put_core_info = True continue if info[0] == 'kill': jobno = int(info[1]) if jobno in running: running[jobno].terminate() qserver.update_job(jobno, state='killed') running.pop(jobno) if jobno in queued: queued.pop(jobno) qserver.update_job(jobno, state='killed') continue if info[0] != 'queue': raise QueueError('Invalid argument: {0}'.format(info[0])) jobno, command, threads, depends, stdout, stderr, runpath = info[1] if not command: raise QueueError('Job command is {0}, cannot continue' .format(type(command))) jobno = int(jobno) threads = int(threads) # Run anyway if threads >= max_jobs: threads = max_jobs-1 # Add to queue if jobno in jobs: # This should never happen raise QueueError('Job already submitted!') jobs.append(jobno) queued[jobno] = {'command': command, 'threads': threads, 'depends': depends, 'stdout': stdout, 'stderr': stderr, 'runpath': runpath} qserver.update_job(jobno, state='pending') # Update running and done queues for jobno, process in running.items(): if process.is_alive(): continue # Completed process.join() code = process.exitcode state = 'completed' if code == 0 else 'failed' qserver.update_job(jobno, state=state, exitcode=code) done[jobno] = process # Remove completed jobs from running for jobno in done: if jobno in running: p = running.pop(jobno) available_cores += p.cores # Start jobs if can run if available_cores > max_jobs: available_cores = max_jobs if available_cores < 0: # Shouldn't happen available_cores = 0 if put_core_info: outqueue.put(available_cores) put_core_info = False for jobno, info in queued.items(): if info['depends']: not_done = [] for dep_id in info['depends']: if dep_id not in done: not_done.append(dep_id) if not_done: continue if info['threads'] <= available_cores: if info['runpath']: curpath = _os.path.abspath('.') _os.chdir(info['runpath']) p = mp.Process( target=_run.cmd, args=(info['command'],), kwargs={ 'stdout': info['stdout'], 'stderr': info['stderr'], } ) p.daemon = True p.start() running[jobno] = p available_cores -= info['threads'] p.cores = info['threads'] if info['runpath']: _os.chdir(curpath) qserver.update_job(jobno, state='running', pid=p.pid) # Clear running jobs from queue for jobno in running: if jobno in queued: queued.pop(jobno) # Block for a moment to avoid running at 100% cpu _sleep(SLEEP_LEN) ############################################################################### # Daemon Creation and Management Functions # ############################################################################### def get_uri(): """Get the URI from the config or file. Tests if URI is active before returning. Returns ------- uri : str or None If file does not exist or URI is inactive, returns None and deletes URI_FILE, else returns the URI as a string. """ curi = _conf.get_option('local', 'server_uri') if curi: t = _test_uri(curi) if t == 'connected': with open(URI_FILE, 'w') as fout: fout.write(str(curi)) return curi if t == 'invalid': _conf.set_option('local', 'server_uri', None) return None if not _os.path.isfile(URI_FILE): return None with open(URI_FILE) as fin: uri = fin.read().strip() t = _test_uri(uri) if t == 'connected': return uri _os.remove(URI_FILE) return None def _test_uri(uri): """Test if a URI refers to an accessible Pyro4 object.""" try: p = Pyro4.Proxy(uri) except Pyro4.errors.PyroError: _logme.log('URI {0} in an invalid URI'.format(uri), 'error') return 'invalid' try: if p._pyroBind(): out = 'connected' elif p.available_cores: out = 'connected' else: out = 'disconnect' if out == 'connected': p._pyroRelease() return out except Pyro4.errors.CommunicationError: _logme.log('URI {0} is not connected'.format(uri), 'warn') return 'disconnect' def daemonizer(): """Create the server daemon.""" # Get pre-configured URI if available curi = _conf.get_option('local', 'server_uri') utest = _test_uri(curi) if curi else None # Test if there is already another daemon running crun = True if utest == 'connected' else False if crun or server_running(): raise QueueError('Daemon already running, cannot start') # Set port and host if present in URI if utest == 'disconnect': uri = Pyro4.URI(curi) args = {'host': uri.host, 'port': uri.port} objId = uri.object else: args = {} objId = "QueueManager" # Create the daemon with Pyro4.Daemon(**args) as daemon: queue_manager = QueueManager(daemon) uri = daemon.register(queue_manager, objectId=objId) # daemon.housekeeping = queue_manager._housekeeping with open(PID_FILE, 'w') as fout: fout.write(str(_os.getpid())) with open(URI_FILE, 'w') as fout: fout.write(str(uri)) print("Ready. Object uri =", uri) daemon.requestLoop() def shutdown_queue(): """Kill the server and queue gracefully.""" good = True server = get_server(start=False) if server: try: res = server.shutdown_jobs() except OSError: res = None except Pyro4.errors.CommunicationError: res = None _logme.log('Local queue runner terminated.', 'debug') if res is None: _logme.log('Could not determine process completion state', 'warn') good = False elif res: _logme.log('All jobs completed', 'debug') else: _logme.log('Some jobs failed!', 'error', also_write='stderr') good = False else: _logme.log('Server appears already stopped', 'info') kill_queue() _logme.log('Local queue terminated', 'info') return 0 if good else 1 def kill_queue(): """Kill the server and queue without trying to clean jobs.""" if _os.path.isfile(PID_FILE): with open(PID_FILE) as fin: pid = int(fin.read().strip()) _os.remove(PID_FILE) _kill_proc_tree(pid, including_parent=True) if _pid_exists(pid): _os.kill(pid, _signal.SIGKILL) if _os.path.isfile(URI_FILE): _os.remove(URI_FILE) def daemon_manager(mode): """Manage the daemon process Parameters ---------- mode : {'start', 'stop', 'restart', 'status'} Returns ------- status : int 0 on success, 1 on failure """ global _WE_ARE_A_SERVER _WE_ARE_A_SERVER = True check_conf() if mode == 'start': return _start() elif mode == 'stop': return _stop() elif mode == 'restart': _stop() return _start() elif mode == 'status': running = server_running() if running: _logme.log('Local queue server is running', 'info', also_write='stderr') else: _logme.log('Local queue server is not running', 'info', also_write='stderr') return 0 if running else 1 _logme.log('Invalid mode {0}'.format(mode), 'error') return 1 def _start(): """Start the daemon process as a fork.""" if _os.path.isfile(PID_FILE): with open(PID_FILE) as fin: pid = fin.read().strip() if _pid_exists(pid): _logme.log('Local queue already running with pid {0}' .format(pid), 'info') return 1 _os.remove(PID_FILE) pid = _os.fork() if pid == 0: # The first child. daemonizer() else: _logme.log('Local queue starting', 'info') _sleep(1) if server_running(): return 0 _logme.log('Server failed to start', 'critical') return 1 def _stop(): """Stop the daemon process.""" if not _os.path.isfile(PID_FILE): _logme.log('Queue does not appear to be running, cannot stop', 'info') return 1 return shutdown_queue() def _kill_proc_tree(pid, including_parent=True): """Kill an entire process tree.""" parent = _psutil.Process(int(pid)) if hasattr(parent, 'get_children'): parent.children = parent.get_children for child in parent.children(recursive=True): child.kill() if including_parent: parent.kill() ############################################################################### # Fyrd Functions # ############################################################################### ############################################################################### # Functionality Test # ############################################################################### def queue_test(warn=True): """Check that this batch system can be used. Parameters ---------- warn : bool log a warning on fail Returns ------- batch_system_functional : bool """ # Check for a remote server_uri is running _logme.log('Checking for a remote queue server_uri (Pyro4)', 'debug') uri = get_uri() if uri is not None: _logme.log('Remote queue server is running at {}'.format(uri), 'debug') return True log_level = 'error' if warn else 'debug' try: if not server_running(): start_server() return server_running() except: _logme.log('Cannot get local queue sever address', log_level) return False ############################################################################### # Normalization Functions # ############################################################################### def normalize_job_id(job_id): """Convert the job id into job_id, array_id.""" return str(int(job_id)), None def normalize_state(state): """Convert state into standardized (slurm style) state.""" state = state.lower() if state == 'queued': state = 'pending' return state ############################################################################### # Job Submission # ############################################################################### def python(): """Return the python interpreter path on the server side. Returns ------- python : python interpreter path """ server = get_server() return server.python def gen_scripts(job_object, command, args, precmd, modstr): """Build the submission script objects. Parameters --------- job_object : fyrd.job.Job command : str Command to execute args : list List of additional arguments, not used in this script. precmd : str String from options_to_string() to add at the top of the file, should contain batch system directives modstr : str String to add after precmd, should contain module directives. Returns ------- fyrd.script_runners.Script The submission script None Would be the exec_script, not used here. """ scrpt = '{0}.{1}.{2}'.format(job_object.name, job_object.suffix, SUFFIX) job_object._mode = 'remote' sub_script = _scrpts.CMND_RUNNER_TRACK.format( precmd=precmd, usedir=job_object.runpath, name=job_object.name, command=command ) job_object._mode = 'local' return _Script(script=sub_script, file_name=scrpt, job=job_object), None def submit(script, dependencies=None, job=None, args=None, kwds=None): """Submit any script with dependencies. .. note:: this function can only use the following fyrd keywords: cores, name, outfile, errfile, runpath We get those in the following order: 1. Job object 2. args 3. kwds None of these keywords are required. If they do not exist, cores is set to 1, name is set to `file_name`, no runpath is used, and STDOUT/STDERR are not saved Parameters ---------- script : fyrd.Script Script to be submitted dependencies : list List of dependencies job : fyrd.job.Job, optional A job object for the calling job, used to get cores, outfile, errfile, runpath, and name if available args : list, optional A list of additional arguments, only parsed if list of tuple in the format `[(key, value)]`. Comes from output of `parse_strange_options()` kwds : dict or str, optional A dictionary of keyword arguments to parse with options_to_string, or a string of option:value,option,option:value,.... Used to get any of cores, outfile, errfile, runpath, or name Returns ------- job_id : str """ job._mode = 'remote' params = {} needed_params = ['cores', 'outfile', 'errfile', 'runpath', 'name'] if job: params['cores'] = job.cores params['outfile'] = job.outfile params['errfile'] = job.errfile params['runpath'] = job.runpath params['name'] = job.name if args and isinstance(args[0], (list, tuple)): for k, v in args: if k in needed_params and k not in params: params[k] = v if kwds: if not isinstance(kwds, dict): kwds = {k: v for k, v in [i.split(':') for i in kwds.split(',')]} _, extra_args = _options.options_to_string(kwds) for k, v in extra_args: if k in needed_params and k not in params: params[k] = v if 'cores' not in params: params['cores'] = 1 if 'name' not in params: params['name'] = _os.path.basename(script.file_name) for param in needed_params: if param not in params: params[param] = None # Submit the job server = get_server() job._mode = 'local' if not _os.path.isfile(script.file_name): raise QueueError('File {0} does not exist, cannot submit' .format(script.file_name)) job._mode = 'remote' command = 'bash {0}'.format(script.file_name) _logme.log("Submitting job '{}' with params: {}".format(command, str(params)), 'debug') jobno = server.submit( command, params['name'], threads=params['cores'], dependencies=dependencies, stdout=params['outfile'], stderr=params['errfile'], runpath=params['runpath'] ) job._mode = 'local' return str(jobno) ############################################################################### # Job Management # ############################################################################### def kill(job_ids): """Terminate all jobs in job_ids. Parameters ---------- job_ids : list or str A list of valid job ids or a single valid job id Returns ------- success : bool """ server = get_server() return server.kill(job_ids) ############################################################################### # Queue Parsing # ############################################################################### def queue_parser(user=None, partition=None): """Iterator for queue parsing. Simply ignores user and partition requests. Parameters ---------- user : str, NOT IMPLEMENTED User name to pass to qstat to filter queue with partition : str, NOT IMPLEMENTED Partition to filter the queue with Yields ------ job_id : str array_id : str or None name : str userid : str partition : str state :str nodelist : list numnodes : int cntpernode : int or None exit_code : int or Nonw """ server = get_server(start=True) user = _getpass.getuser() host = _socket.gethostname() for job in server.get(): # Get all jobs in the database job_id = str(job[0]) array_id = None name = job[1] userid = user partition = None state = normalize_state(job[3]) nodelist = [host] numnodes = 1 cntpernode = job[4] exit_code = job[5] yield (job_id, array_id, name, userid, partition, state, nodelist, numnodes, cntpernode, exit_code) def parse_strange_options(option_dict): """Parse all options that cannot be handled by the regular function. Because we do not parse the submission file, all keywords will be placed into the final return list. Parameters ---------- option_dict : dict All keyword arguments passed by the user that are not already defined in the Job object Returns ------- list An empty list dict An empty dictionary list A list of options that can be used by `submit()` Ends up in the `args` parameter of the submit function """ outlist = [] good_items = ['outfile', 'cores', 'errfile', 'runpath'] for opt, var in option_dict.items(): if opt in good_items: outlist.append((opt, var)) return [], {}, outlist ############################################################################### # User Interaction # ############################################################################### def command_line_parser(): """Parse command line options. Returns ------- parser """ parser = _argparse.ArgumentParser( description=__doc__, formatter_class=_argparse.RawDescriptionHelpFormatter ) parser.add_argument( 'mode', choices={'start', 'stop', 'status', 'restart'}, metavar='{start,stop,status,restart}', help='Server command' ) return parser def main(argv=None): """Parse command line options to run as a script.""" if not argv: argv = sys.argv[1:] parser = command_line_parser() args = parser.parse_args(argv) # Call the subparser function return daemon_manager(args.mode) if __name__ == '__main__' and '__file__' in globals(): sys.exit(main())
python
50,987
# Best Time to Buy and Sell Stock: https://leetcode.com/problems/best-time-to-buy-and-sell-stock/ # You are given an array prices where prices[i] is the price of a given stock on the ith day. # You want to maximize your profit by choosing a single day to buy one stock and choosing a different day in the future to sell that stock. # Return the maximum profit you can achieve from this transaction. If you cannot achieve any profit, return 0. # Initial thought here is to take the lowest price if you see a lower one else check if the dif between lowest and cur is greater than max # This was correct however I didn't write the brute force which is that You can do a double for loop checking each combo class Solution: def maxProfit(self, prices: List[int]) -> int: if len(prices) <= 1: return 0 profit, lowest = 0, prices[0] for i in range(len(prices)): if prices[i] <= lowest: lowest = prices[i] else: profit = max(profit, prices[i] - lowest) return profit # Score Card # Did I need hints? N # Did you finish within 30 min? Y # Was the solution optimal? Yes this is an o(n) time and o(1) space which is optimal over brute force o(n^2) # Were there any bugs? None :D # 5 5 5 5 = 5
python
1,295
from panel.orbital.orbit_plot import OrbitPlot from panel.orbital.orbital_points_plot import OrbitalPointsPlot from panel.orbital.trajectory_ellipse import TrajectoryEllipse from panel.telemetry.ellipse import EllipseData class OrbitalPointsEllipse(OrbitalPointsPlot): def update(self, telemetry): self.periapsis_plot.update_plot(telemetry) self.apoapsis_plot.update_plot(telemetry) self.ascending_plot.update_plot(telemetry) self.descending_plot.update_plot(telemetry) self.ascending_descending.update_plot(telemetry) self.vessel_plot.update_plot(telemetry) class OrbitEllipse(OrbitPlot): def __init__(self, axes): OrbitPlot.__init__(self, compute_class=EllipseData) self.trajectory = TrajectoryEllipse(axes) self.points = OrbitalPointsEllipse(axes)
python
838
""" implement the TimedeltaIndex """ from datetime import datetime import numpy as np from pandas._libs import NaT, Timedelta, index as libindex from pandas.util._decorators import Appender, Substitution from pandas.core.dtypes.common import ( _TD_DTYPE, is_float, is_integer, is_list_like, is_scalar, is_timedelta64_dtype, is_timedelta64_ns_dtype, pandas_dtype, ) from pandas.core.dtypes.missing import isna from pandas.core.accessor import delegate_names from pandas.core.arrays import datetimelike as dtl from pandas.core.arrays.timedeltas import TimedeltaArray, _is_convertible_to_td from pandas.core.base import _shared_docs import pandas.core.common as com from pandas.core.indexes.base import Index, _index_shared_docs, maybe_extract_name from pandas.core.indexes.datetimelike import ( DatetimeIndexOpsMixin, DatetimelikeDelegateMixin, DatetimeTimedeltaMixin, ) from pandas.core.indexes.extension import inherit_names from pandas.tseries.frequencies import to_offset class TimedeltaDelegateMixin(DatetimelikeDelegateMixin): # Most attrs are dispatched via datetimelike_{ops,methods} # Some are "raw" methods, the result is not re-boxed in an Index # We also have a few "extra" attrs, which may or may not be raw, # which we don't want to expose in the .dt accessor. _raw_properties = {"components", "_box_func"} _raw_methods = {"to_pytimedelta", "sum", "std", "median", "_format_native_types"} _delegated_properties = TimedeltaArray._datetimelike_ops + list(_raw_properties) _delegated_methods = ( TimedeltaArray._datetimelike_methods + list(_raw_methods) + ["_box_values", "__neg__", "__pos__", "__abs__"] ) @inherit_names( [ "_bool_ops", "_object_ops", "_field_ops", "_datetimelike_ops", "_datetimelike_methods", "_other_ops", ], TimedeltaArray, ) @delegate_names( TimedeltaArray, TimedeltaDelegateMixin._delegated_properties, typ="property" ) @delegate_names( TimedeltaArray, TimedeltaDelegateMixin._delegated_methods, typ="method", overwrite=True, ) class TimedeltaIndex( DatetimeTimedeltaMixin, dtl.TimelikeOps, TimedeltaDelegateMixin, ): """ Immutable ndarray of timedelta64 data, represented internally as int64, and which can be boxed to timedelta objects. Parameters ---------- data : array-like (1-dimensional), optional Optional timedelta-like data to construct index with. unit : unit of the arg (D,h,m,s,ms,us,ns) denote the unit, optional Which is an integer/float number. freq : str or pandas offset object, optional One of pandas date offset strings or corresponding objects. The string 'infer' can be passed in order to set the frequency of the index as the inferred frequency upon creation. copy : bool Make a copy of input ndarray. name : object Name to be stored in the index. Attributes ---------- days seconds microseconds nanoseconds components inferred_freq Methods ------- to_pytimedelta to_series round floor ceil to_frame mean See Also -------- Index : The base pandas Index type. Timedelta : Represents a duration between two dates or times. DatetimeIndex : Index of datetime64 data. PeriodIndex : Index of Period data. timedelta_range : Create a fixed-frequency TimedeltaIndex. Notes ----- To learn more about the frequency strings, please see `this link <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__. """ _typ = "timedeltaindex" _engine_type = libindex.TimedeltaEngine _comparables = ["name", "freq"] _attributes = ["name", "freq"] _is_numeric_dtype = True _infer_as_myclass = True # ------------------------------------------------------------------- # Constructors def __new__( cls, data=None, unit=None, freq=None, closed=None, dtype=_TD_DTYPE, copy=False, name=None, ): name = maybe_extract_name(name, data, cls) if is_scalar(data): raise TypeError( f"{cls.__name__}() must be called with a " f"collection of some kind, {repr(data)} was passed" ) if unit in {"Y", "y", "M"}: raise ValueError( "Units 'M' and 'Y' are no longer supported, as they do not " "represent unambiguous timedelta values durations." ) if isinstance(data, TimedeltaArray): if copy: data = data.copy() return cls._simple_new(data, name=name, freq=freq) if isinstance(data, TimedeltaIndex) and freq is None and name is None: if copy: return data.copy() else: return data._shallow_copy() # - Cases checked above all return/raise before reaching here - # tdarr = TimedeltaArray._from_sequence( data, freq=freq, unit=unit, dtype=dtype, copy=copy ) return cls._simple_new(tdarr._data, freq=tdarr.freq, name=name) @classmethod def _simple_new(cls, values, name=None, freq=None, dtype=_TD_DTYPE): # `dtype` is passed by _shallow_copy in corner cases, should always # be timedelta64[ns] if present if not isinstance(values, TimedeltaArray): values = TimedeltaArray._simple_new(values, dtype=dtype, freq=freq) else: if freq is None: freq = values.freq assert isinstance(values, TimedeltaArray), type(values) assert dtype == _TD_DTYPE, dtype assert values.dtype == "m8[ns]", values.dtype tdarr = TimedeltaArray._simple_new(values._data, freq=freq) result = object.__new__(cls) result._data = tdarr result._name = name # For groupby perf. See note in indexes/base about _index_data result._index_data = tdarr._data result._reset_identity() return result # ------------------------------------------------------------------- def __setstate__(self, state): """Necessary for making this object picklable""" if isinstance(state, dict): super().__setstate__(state) else: raise Exception("invalid pickle state") _unpickle_compat = __setstate__ # ------------------------------------------------------------------- # Rendering Methods @property def _formatter_func(self): from pandas.io.formats.format import _get_format_timedelta64 return _get_format_timedelta64(self, box=True) # ------------------------------------------------------------------- # Wrapping TimedeltaArray def __getitem__(self, key): result = self._data.__getitem__(key) if is_scalar(result): return result return type(self)(result, name=self.name) # ------------------------------------------------------------------- @Appender(_index_shared_docs["astype"]) def astype(self, dtype, copy=True): dtype = pandas_dtype(dtype) if is_timedelta64_dtype(dtype) and not is_timedelta64_ns_dtype(dtype): # Have to repeat the check for 'timedelta64' (not ns) dtype # so that we can return a numeric index, since pandas will return # a TimedeltaIndex when dtype='timedelta' result = self._data.astype(dtype, copy=copy) if self.hasnans: return Index(result, name=self.name) return Index(result.astype("i8"), name=self.name) return DatetimeIndexOpsMixin.astype(self, dtype, copy=copy) def _maybe_promote(self, other): if other.inferred_type == "timedelta": other = TimedeltaIndex(other) return self, other def get_value(self, series, key): """ Fast lookup of value from 1-dimensional ndarray. Only use this if you know what you're doing """ if _is_convertible_to_td(key): key = Timedelta(key) return self.get_value_maybe_box(series, key) try: value = Index.get_value(self, series, key) except KeyError: try: loc = self._get_string_slice(key) return series[loc] except (TypeError, ValueError, KeyError): pass try: return self.get_value_maybe_box(series, key) except (TypeError, ValueError, KeyError): raise KeyError(key) else: return com.maybe_box(self, value, series, key) def get_value_maybe_box(self, series, key: Timedelta): values = self._engine.get_value(com.values_from_object(series), key) return com.maybe_box(self, values, series, key) def get_loc(self, key, method=None, tolerance=None): """ Get integer location for requested label Returns ------- loc : int """ if is_list_like(key) or (isinstance(key, datetime) and key is not NaT): # GH#20464 datetime check here is to ensure we don't allow # datetime objects to be incorrectly treated as timedelta # objects; NaT is a special case because it plays a double role # as Not-A-Timedelta raise TypeError if isna(key): key = NaT if tolerance is not None: # try converting tolerance now, so errors don't get swallowed by # the try/except clauses below tolerance = self._convert_tolerance(tolerance, np.asarray(key)) if _is_convertible_to_td(key) or key is NaT: key = Timedelta(key) return Index.get_loc(self, key, method, tolerance) try: return Index.get_loc(self, key, method, tolerance) except (KeyError, ValueError, TypeError): try: return self._get_string_slice(key) except (TypeError, KeyError, ValueError): pass try: stamp = Timedelta(key) return Index.get_loc(self, stamp, method, tolerance) except (KeyError, ValueError): raise KeyError(key) def _maybe_cast_slice_bound(self, label, side, kind): """ If label is a string, cast it to timedelta according to resolution. Parameters ---------- label : object side : {'left', 'right'} kind : {'ix', 'loc', 'getitem'} Returns ------- label : object """ assert kind in ["ix", "loc", "getitem", None] if isinstance(label, str): parsed = Timedelta(label) lbound = parsed.round(parsed.resolution_string) if side == "left": return lbound else: return lbound + to_offset(parsed.resolution_string) - Timedelta(1, "ns") elif is_integer(label) or is_float(label): self._invalid_indexer("slice", label) return label def _get_string_slice(self, key): if is_integer(key) or is_float(key) or key is NaT: self._invalid_indexer("slice", key) loc = self._partial_td_slice(key) return loc def _partial_td_slice(self, key): # given a key, try to figure out a location for a partial slice if not isinstance(key, str): return key raise NotImplementedError @Substitution(klass="TimedeltaIndex") @Appender(_shared_docs["searchsorted"]) def searchsorted(self, value, side="left", sorter=None): if isinstance(value, (np.ndarray, Index)): value = np.array(value, dtype=_TD_DTYPE, copy=False) else: value = Timedelta(value).asm8.view(_TD_DTYPE) return self.values.searchsorted(value, side=side, sorter=sorter) def is_type_compatible(self, typ) -> bool: return typ == self.inferred_type or typ == "timedelta" @property def inferred_type(self) -> str: return "timedelta64" def insert(self, loc, item): """ Make new Index inserting new item at location Parameters ---------- loc : int item : object If not either a Python datetime or a numpy integer-like, returned Index dtype will be object rather than datetime. Returns ------- new_index : Index """ # try to convert if possible if _is_convertible_to_td(item): try: item = Timedelta(item) except ValueError: # e.g. str that can't be parsed to timedelta pass elif is_scalar(item) and isna(item): # GH 18295 item = self._na_value freq = None if isinstance(item, Timedelta) or (is_scalar(item) and isna(item)): # check freq can be preserved on edge cases if self.freq is not None: if (loc == 0 or loc == -len(self)) and item + self.freq == self[0]: freq = self.freq elif (loc == len(self)) and item - self.freq == self[-1]: freq = self.freq item = Timedelta(item).asm8.view(_TD_DTYPE) try: new_tds = np.concatenate( (self[:loc].asi8, [item.view(np.int64)], self[loc:].asi8) ) return self._shallow_copy(new_tds, freq=freq) except (AttributeError, TypeError): # fall back to object index if isinstance(item, str): return self.astype(object).insert(loc, item) raise TypeError("cannot insert TimedeltaIndex with incompatible label") TimedeltaIndex._add_comparison_ops() TimedeltaIndex._add_logical_methods_disabled() def timedelta_range( start=None, end=None, periods=None, freq=None, name=None, closed=None ) -> TimedeltaIndex: """ Return a fixed frequency TimedeltaIndex, with day as the default frequency. Parameters ---------- start : str or timedelta-like, default None Left bound for generating timedeltas. end : str or timedelta-like, default None Right bound for generating timedeltas. periods : int, default None Number of periods to generate. freq : str or DateOffset, default 'D' Frequency strings can have multiples, e.g. '5H'. name : str, default None Name of the resulting TimedeltaIndex. closed : str, default None Make the interval closed with respect to the given frequency to the 'left', 'right', or both sides (None). Returns ------- rng : TimedeltaIndex Notes ----- Of the four parameters ``start``, ``end``, ``periods``, and ``freq``, exactly three must be specified. If ``freq`` is omitted, the resulting ``TimedeltaIndex`` will have ``periods`` linearly spaced elements between ``start`` and ``end`` (closed on both sides). To learn more about the frequency strings, please see `this link <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__. Examples -------- >>> pd.timedelta_range(start='1 day', periods=4) TimedeltaIndex(['1 days', '2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq='D') The ``closed`` parameter specifies which endpoint is included. The default behavior is to include both endpoints. >>> pd.timedelta_range(start='1 day', periods=4, closed='right') TimedeltaIndex(['2 days', '3 days', '4 days'], dtype='timedelta64[ns]', freq='D') The ``freq`` parameter specifies the frequency of the TimedeltaIndex. Only fixed frequencies can be passed, non-fixed frequencies such as 'M' (month end) will raise. >>> pd.timedelta_range(start='1 day', end='2 days', freq='6H') TimedeltaIndex(['1 days 00:00:00', '1 days 06:00:00', '1 days 12:00:00', '1 days 18:00:00', '2 days 00:00:00'], dtype='timedelta64[ns]', freq='6H') Specify ``start``, ``end``, and ``periods``; the frequency is generated automatically (linearly spaced). >>> pd.timedelta_range(start='1 day', end='5 days', periods=4) TimedeltaIndex(['1 days 00:00:00', '2 days 08:00:00', '3 days 16:00:00', '5 days 00:00:00'], dtype='timedelta64[ns]', freq=None) """ if freq is None and com.any_none(periods, start, end): freq = "D" freq, freq_infer = dtl.maybe_infer_freq(freq) tdarr = TimedeltaArray._generate_range(start, end, periods, freq, closed=closed) return TimedeltaIndex._simple_new(tdarr._data, freq=tdarr.freq, name=name)
python
16,998
# Copyright (C) 2019 Quaternion Risk Manaement Ltd # All rights reserved. from OREAnalytics import * fileLogger = FileLogger("log.txt") Log.instance().registerLogger(fileLogger) mask = 7 Log.instance().setMask(mask) assert mask == Log.instance().mask() Log.instance().switchOn() ALOG("Alert Message") CLOG("Critical Message") ELOG("Error Message") WLOG("Warning Message") LOG("Notice Message") DLOG("Debug Message") TLOG("Data Message") bufferLogger = BufferLogger(ORE_NOTICE) Log.instance().registerLogger(bufferLogger) mask = 255 Log.instance().setMask(mask) msg_d = "This is a debug message." msg_w = "This is a warning message." msg_e = "This is a error message." DLOG(msg_d) WLOG(msg_w) ELOG(msg_e) #msg_d_buf = bufferLogger.next() filtered msg_w_buf = bufferLogger.next() msg_e_buf = bufferLogger.next() print("Printing log message ...") print(msg_w_buf) print(msg_e_buf) print("End of printing log message.") # FIFO assert msg_w in msg_w_buf assert msg_e in msg_e_buf
python
983
#!/usr/bin/env python import nxt.locator from nxt.sensor import * from nxt.motor import * from time import time, sleep from threading import Thread from pickle import dump, load from os import listdir, remove, system from os.path import isfile, join class HaventGottenToThatYetError(Exception): pass class Brick: def __init__(self, name=None): self.draw = Display() self.calibrate = Calibrator() self.dev = nxt.locator.find_one_brick(name=name) self.a = mjMotor(self.dev, 0) self.b = mjMotor(self.dev, 1) self.c = mjMotor(self.dev, 2) #self.sync = mjSync(self.b.dev, self.c.dev) def move(self, motors, power, degrees=None, rotations=None, seconds=None, steer=None, brake=True): """Move the robot. Use only one (or none at all) out of degrees, rotations, and seconds. You can set steer when using multiple motors. -100 is hard left, 0 is center, 100 is hard right.""" power /= 100.0 power *= 127 power = int(round(power)) motorObjs = [] for motor in motors: if motor.upper() == "A" or motor == 0: motorObj = self.a elif motor.upper() == "B" or motor == 1: motorObj = self.b else: # C motorObj = self.c motorObjs.append(motorObj) # Is power 0? If it is, we're stopping, and that's all. if power == 0: for motorObj in motorObjs: if brake: motorObj.brake() else: motorObj.coast() return # How many motors? if len(motors) == 2: # We're syncing. Is steer provided? if steer != None: if steer < 0: motorObjs.reverse() # Can't have negative steer else: # I guess we aren't steering. steer = 0 motors = SynchronizedMotors(motorObjs[0].dev, motorObjs[1].dev, abs(steer)) # Now, how much do we turn? if degrees != None: #print("Turning motor at power "+str(power)+" and degrees "+str(degrees)) motors.turn(power, degrees, brake) elif rotations != None: motors.turn(power, rotations*360, brake) elif seconds != None: ts = time() motors.run(power) while time() < ts + seconds: pass if brake: motors.brake() else: motors.idle() else: # unlimited motors.run(power) elif len(motors) == 1: # Just steal code from the motor block self.motor(motors[0], power, degrees, rotations, seconds, brake) elif len(motors) == 3: # def motor(self, port, power, degrees=None, rotations=None, seconds=None, brake=True):' self.thread(self.motor, "A", power, degrees, rotations, seconds, brake) self.thread(self.motor, "B", power, degrees, rotations, seconds, brake) self.motor("C", power, degrees, rotations, seconds, brake) def record(self, name, seconds=None): """Record movements. Physically move the robot with your hands to record.""" raise HaventGottenToThatYetError, "I ain't done writing this code yet." def play(self, name): """Play pre-recorded movements. First, record with the record() function.""" raise HaventGottenToThatYetError, "I ain't done writing this code yet." def playSound(self, name): """Play a sound file.""" name = "/home/pi/mindjackerSounds/"+name+".mp3" system("mpg123 "+name) def playNote(self, note, time, nxt=True, wait=True): """Play a note, e.g., 'a5', 'f#3', 'g#', 'c', etc. If wait is false, don't wait for completion.""" # Separate the note from the octave if len(note) == 1: noteStr = note.lower() octave = 5 elif len(note) == 3: noteStr = note[0:2].lower() octave = int(note[2]) elif len(note) == 2: if note[1] == "#": noteStr = note.lower() octave = 5 else: noteStr = note[0].lower() octave = int(note[1]) # I got this algorithm from www.musique.com/schem/freq.html notes = {"a":0, "a#":1, "b":2, "c":3, "c#":4, "d":5, "d#":6, "e":7, "f":8, "f#":9, "g":10, "g#":11} noteNum = notes[noteStr] octave -= 1 a = 2**octave b = 1.059463**noteNum z = round(275*a*b)/10 note = z self.dev.play_tone(note, time*1000) if wait: sleep(time) def touch(self, port): """Returns the state of the touch sensor.""" return Touch(self.dev, port-1).get_sample() def sound(self, port): """Returns the level of sound from 0 to 100.""" level = Sound(self.dev, port-1).get_sample() level /= 1023.0 level *= 100 level = int(round(level)) return level def light(self, port): """Returns the level of light from 0 to 100. UNTESTED!!!""" level = Light(self.dev, port-1).get_sample() level /= 1023.0 level *= 100 level = int(round(level)) return level def lamp(self, port, active): """Turn on or off the lamp on the light sensor Of selected port.""" Light(self.dev, port-1).set_illuminated(active) # This doesn't work and returns weird values (1 or 5) regardless of color # def color(self, port): # """Returns the color read by the color sensor.""" # colorType = Color20(self.dev, port-1).get_sample() # # if colorType == common.Type.COLORFULL: # # return "White" # # elif colorType == common.Type.COLORNONE: # # return "Black" # # elif colorType == common.Type.COLORRED: # # return "Red" # # elif colorType == common.Type.COLORGREEN: # # return "Green" # # elif colorType == common.Type.COLORBLUE: # # return "Blue" # return colorType def colorLamp(self, port, color): colorType = common.Type.COLORFULL # White if color.lower() == "red": colorType = common.Type.COLORRED elif color.lower() == "green": colorType = common.Type.COLORGREEN elif color.lower() == "blue": colorType = common.Type.COLORBLUE elif color.lower() == "black" or color.lower() == "off": colorType = common.Type.COLORNONE Color20(self.dev, port-1).set_light_color(colorType) def ultrasonic(self, port, convertToIn=True): """Returns the distance to an object in cm. If convertToIn is true, the value is converted to in.""" dist = Ultrasonic(self.dev, port-1).get_sample() if convertToIn: dist /= 2.54 dist = int(round(dist)) return dist ultra = ultrasonic def buttons(self): """Returns the current state of the NXT buttons In the form of a dict. Use buttons()["enter"] to get the current state of the enter button, etc.""" raise HaventGottenToThatYetError, "I ain't done writing this code yet." def encoder(self, port): """Returns the value of the encoder (rotation sensor/tachometer) On the motor of the specified port.""" # Which motor? if port.upper() == "A" or port == 0: myMotor = self.a elif port.upper() == "B" or port == 1: myMotor = self.b else: # C myMotor = self.c return myMotor.dev.get_tacho().rotation_count def thread(self, func, *args, **kwargs): """Create a new thread with the specified function and arguments.""" newThread = Thread(target=func, args=args, kwargs=kwargs) newThread.daemon = True newThread.start() def read(self, filename): """Read the file and return the contents. Uses pickle when necessary.""" pickled = False onlyfiles = [f for f in listdir("/home/pi/mindjackerFiles/") if isfile(join("/home/pi/mindjackerFiles/", f))] for f in onlyfiles: if filename + ".txt" == f: filename = "/home/pi/mindjackerFiles/"+filename+".txt" break if filename + ".pkl" == f: filename = "/home/pi/mindjackerFiles/"+filename+".pkl" pickled = True break else: raise IOError, "File does not exist" if pickled: with open(filename, "rb") as myFile: return load(myFile) with open(filename, "r") as myFile: return myFile.read() def write(self, filename, data): """Write to the file. Uses pickle when necessary.""" if data == "": # If there's no data, we're asked to remove. try: remove("/home/pi/mindjackerFiles/"+filename+".txt") except OSError: pass try: remove("/home/pi/mindjackerFiles/"+filename+".pkl") except OSError: pass return # What follows: Making sure we don't have myfile.txt and myfile.pkl at the same time. onlyfiles = [f for f in listdir("/home/pi/mindjackerFiles/") if isfile(join("/home/pi/mindjackerFiles/", f))] for f in onlyfiles: if filename + ".txt" == f: remove("/home/pi/mindjackerFiles/"+filename+".txt") if filename + ".pkl" == f: remove("/home/pi/mindjackerFiles/"+filename+".pkl") # Now should we use pickle? if type(data) in [int, str, float, bool, long, unicode]: self._writeText(filename, data) else: self._pickle(filename, data) def _writeText(self, filename, data): with open("/home/pi/mindjackerFiles/"+filename+".txt", "w") as myFile: myFile.write(str(data)) def _pickle(self, filename, data): with open("/home/pi/mindjackerFiles/"+filename+".pkl", "wb") as myFile: dump(data, myFile) def keepAlive(self): """Stop the NXT from falling asleep.""" raise HaventGottenToThatYetError, "I ain't done writing this code yet." def motor(self, port, power, degrees=None, rotations=None, seconds=None, brake=True): """Move one motor. Set only one (or none at all) of degrees, rotations, seconds.""" power /= 100.0 power *= 127 power = int(round(power)) # Which motor? if port.upper() == "A" or port == 0: myMotor = self.a elif port.upper() == "B" or port == 1: myMotor = self.b else: # C myMotor = self.c # If power is zero, we're being asked to stop the motor. if power == 0: if brake: myMotor.brake() else: myMotor.coast() return # What are we doing? For a duration, or unlimited? if degrees != None: myMotor.turn(power, degrees, brake) elif rotations != None: myMotor.turn(power, rotations*360, brake) elif seconds != None: ts = time() myMotor.run(power) while time() < ts + seconds: pass if brake: myMotor.brake() else: myMotor.coast() else: # No params provided, run unlimited. myMotor.run(power) def resetMotor(self, port=None): """Reset the motor(s) internal encoders.""" # Which motor? if port.upper() == "A" or port == 0: myMotor = self.a elif port.upper() == "B" or port == 1: myMotor = self.b else: # C myMotor = self.c myMotor.dev.reset_position(False) class Display: def __init__(self): pass def text(self, text, x, y): """Draw text on the screen.""" raise HaventGottenToThatYetError, "I ain't done writing this code yet." def line(self, x1, y1, x2, y2): """Draw a line on the screen.""" raise HaventGottenToThatYetError, "I ain't done writing this code yet." def circle(self, x, y, radius): """Draw a circle on the screen.""" raise HaventGottenToThatYetError, "I ain't done writing this code yet." def image(self, filename): """Draw an image on the screen.""" raise HaventGottenToThatYetError, "I ain't done writing this code yet." class Calibrator: def __init__(self): pass def sound(self, end): """Calibrate the sound sensor. end: False for minimum, True for maximum.""" raise HaventGottenToThatYetError, "I ain't done writing this code yet." def light(self): """Calibrate the light sensor. end: False for minimum, True for maximum.""" raise HaventGottenToThatYetError, "I ain't done writing this code yet." class mjMotor: def __init__(self, brick, port): self.dev = Motor(brick, port) def degrees(self): '''Get the current rotation''' return self.dev.get_tacho() def run(self, power): '''Run the motor indefinitely''' power /= 128.0 power *= 100 self.dev.run(int(round(power))) def brake(self): '''Stop the motor quickly''' self.dev.brake() def coast(self): '''Motor coasts to a stop''' self.dev.idle() def turn(self, power, degrees, brake=True): '''Turn a certain number of degrees''' power /= 128.0 power *= 100 self.dev.turn(int(round(power)), degrees, brake)
python
11,641
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Facilities for creating multiple test combinations. Here is an example of testing various optimizers in Eager and Graph mode: class AdditionExample(test.TestCase, parameterized.TestCase): @combinations.generate( combinations.combine(mode=["graph", "eager"], optimizer=[AdamOptimizer(), GradientDescentOptimizer()])) def testOptimizer(self, optimizer): ... f(optimizer)... This will run `testOptimizer` 4 times with the specified optimizers: 2 in Eager and 2 in Graph mode. The test will be provided with arguments that match the arguments of combine by name. It is necessary to request all arguments, except for `mode`, which is optional. `combine()` function is available for creating a cross product of various options. `times()` function exists for creating a product of N `combine()`-ed results. See below. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import OrderedDict import sys import types import unittest from absl.testing import parameterized import six from tensorflow.contrib.distribute.python import mirrored_strategy as mirrored_lib from tensorflow.contrib.distribute.python import one_device_strategy as one_device_lib from tensorflow.contrib.distribute.python import tpu_strategy as tpu_lib from tensorflow.contrib.optimizer_v2 import adam as adam_v2 from tensorflow.contrib.optimizer_v2 import gradient_descent as gradient_descent_v2 from tensorflow.python.eager import context from tensorflow.python.framework import ops from tensorflow.python.training import adam from tensorflow.python.training import distribute as distribute_lib from tensorflow.python.training import gradient_descent from tensorflow.python.util import tf_inspect GPU_TEST = "test_gpu" in sys.argv[0] TPU_TEST = "test_tpu" in sys.argv[0] def generate(combinations): """A decorator for generating test cases of a test method or a test class. Args: combinations: a list of dictionaries created using combine() and times(). Restrictions: -- the "mode" argument can be either "eager" or "graph". It's "graph" by default. -- arguments of the test method must match by name to get the corresponding value of the combination. Tests must accept all arguments except the "mode", "required_tpu" and "required_gpus". -- "distribution" argument is special and optional. It is meant for passing instances of DistributionStrategy. Each instance is to be passed as via `NamedDistribution`. If using "distribution", "required_gpus" and "required_tpu" should be specified via the NamedDistribution instance, rather than as separate arguments. -- "required_tpu" argument is special and optional. If not `None`, then the test will be skipped if TPUs aren't available. -- "required_gpus" argument is special and optional. If not `None`, then the test will be skipped if the specified number of GPUs aren't available. Returns: a decorator that will cause the test method or the test class to be run under the specified conditions. Raises: ValueError - if "mode" argument wasn't either "eager" or "graph" or if other arguments were not accepted by the test method. """ def decorator(test_method_or_class): """The decorator to be returned.""" # Generate good test names that can be used with --test_filter. named_combinations = [] for combination in combinations: # We use OrderedDicts in `combine()` and `times()` to ensure stable # order of keys in each dictionary. assert isinstance(combination, OrderedDict) name = "".join([ "_{}_{}".format( "".join(filter(str.isalnum, key)), "".join(filter(str.isalnum, str(value)))) for key, value in combination.items() ]) named_combinations.append( OrderedDict( list(combination.items()) + [("testcase_name", "_test{}".format(name))])) if isinstance(test_method_or_class, type): class_object = test_method_or_class class_object._test_method_ids = test_method_ids = {} for name, test_method in six.iteritems(class_object.__dict__.copy()): if (name.startswith(unittest.TestLoader.testMethodPrefix) and isinstance(test_method, types.FunctionType)): delattr(class_object, name) methods = {} parameterized._update_class_dict_for_param_test_case( class_object.__name__, methods, test_method_ids, name, parameterized._ParameterizedTestIter( _augment_with_special_arguments(test_method), named_combinations, parameterized._NAMED, name)) for method_name, method in six.iteritems(methods): setattr(class_object, method_name, method) return class_object else: test_method = _augment_with_special_arguments(test_method_or_class) return parameterized.named_parameters(*named_combinations)(test_method) return decorator def _augment_with_special_arguments(test_method): def decorated(self, **kwargs): """A wrapped test method that treats some arguments in a special way.""" mode = kwargs.pop("mode", "graph") distribution = kwargs.pop("distribution", None) required_tpu = kwargs.pop("required_tpu", False) required_gpus = kwargs.pop("required_gpus", None) if distribution: assert required_gpus is None, ( "Do not use `required_gpus` and `distribution` together.") assert required_tpu is False, ( "Do not use `required_tpu` and `distribution` together.") kwargs["distribution"] = distribution.strategy required_gpus = distribution.required_gpus required_tpu = distribution.required_tpu if required_tpu and not TPU_TEST: self.skipTest("Test requires a TPU, but it's not available.") if not required_tpu and TPU_TEST: self.skipTest("Test that doesn't require a TPU.") if not required_gpus: if GPU_TEST: self.skipTest("Test that doesn't require GPUs.") elif context.num_gpus() < required_gpus: self.skipTest( "{} GPUs are not available for this test. {} GPUs are available". format(required_gpus, context.num_gpus())) # At this point, `kwargs` doesn't have `required_gpus` or `required_tpu` # that the user might have specified. `kwargs` still has `mode`, which # the test is allowed to accept or ignore. requested_arguments = tf_inspect.getfullargspec(test_method).args missing_arguments = set(list(kwargs.keys()) + ["self"]).difference( set(requested_arguments + ["mode"])) if missing_arguments: raise ValueError("The test is missing arguments {} .".format( missing_arguments)) kwargs_to_pass = {} for arg in requested_arguments: if arg == "self": kwargs_to_pass[arg] = self else: kwargs_to_pass[arg] = kwargs[arg] if mode == "eager": with ops.Graph().as_default(), context.eager_mode(): test_method(**kwargs_to_pass) elif mode == "graph": with ops.Graph().as_default(), context.graph_mode(): test_method(**kwargs_to_pass) else: raise ValueError( "'mode' has to be either 'eager' or 'graph' and not {}".format( mode)) return decorated def combine(**kwargs): """Generate combinations based on its keyword arguments. Two sets of returned combinations can be concatenated using +. Their product can be computed using `times()`. Args: **kwargs: keyword arguments of form `option=[possibilities, ...]` or `option=the_only_possibility`. Returns: a list of dictionaries for each combination. Keys in the dictionaries are the keyword argument names. Each key has one value - one of the corresponding keyword argument values. """ if not kwargs: return [OrderedDict()] sort_by_key = lambda k: k[0][0] kwargs = OrderedDict(sorted(kwargs.items(), key=sort_by_key)) first = list(kwargs.items())[0] rest = dict(list(kwargs.items())[1:]) rest_combined = combine(**rest) key = first[0] values = first[1] if not isinstance(values, list): values = [values] return [ OrderedDict(sorted(list(combined.items()) + [(key, v)], key=sort_by_key)) for v in values for combined in rest_combined ] def times(*combined): """Generate a product of N sets of combinations. times(combine(a=[1,2]), combine(b=[3,4])) == combine(a=[1,2], b=[3,4]) Args: *combined: N lists of dictionaries that specify combinations. Returns: a list of dictionaries for each combination. Raises: ValueError: if some of the inputs have overlapping keys. """ assert combined if len(combined) == 1: return combined[0] first = combined[0] rest_combined = times(*combined[1:]) combined_results = [] for a in first: for b in rest_combined: if set(a.keys()).intersection(set(b.keys())): raise ValueError("Keys need to not overlap: {} vs {}".format( a.keys(), b.keys())) combined_results.append(OrderedDict(list(a.items()) + list(b.items()))) return combined_results class NamedObject(object): """A class that translates an object into a good test name.""" def __init__(self, name, obj): self._name = name self._obj = obj def __getattr__(self, name): return getattr(self._obj, name) def __call__(self, *args, **kwargs): return self._obj(*args, **kwargs) def __repr__(self): return self._name class NamedDistribution(object): """Translates DistributionStrategy and its data into a good name.""" def __init__(self, name, distribution_fn, required_gpus=None, required_tpu=False): self._distribution_fn = distribution_fn self._name = name self._required_gpus = required_gpus self._required_tpu = required_tpu def __repr__(self): return self._name @property def strategy(self): return self._distribution_fn() @property def required_gpus(self): return self._required_gpus @property def required_tpu(self): return self._required_tpu # pylint: disable=g-long-lambda default_strategy = NamedDistribution( "Default", lambda: distribute_lib._default_distribution_strategy, # pylint: disable=protected-access required_gpus=None) one_device_strategy = NamedDistribution( "OneDeviceCPU", lambda: one_device_lib.OneDeviceStrategy("/cpu:0"), required_gpus=None) tpu_strategy_single_iteration = NamedDistribution( "TPUSingleIteration", lambda: tpu_lib.TPUStrategy(iterations_per_step=1), required_tpu=True) tpu_strategy = NamedDistribution("TPU", tpu_lib.TPUStrategy, required_tpu=True) # Note that we disable prefetching for testing since prefetching makes # the input non-deterministic. mirrored_strategy_with_gpu_and_cpu = NamedDistribution( "MirroredCPUAndGPU", lambda: mirrored_lib.MirroredStrategy( ["/gpu:0", "/cpu:0"], prefetch_on_device=False), required_gpus=1) mirrored_strategy_with_two_gpus = NamedDistribution( "Mirrored2GPUs", lambda: mirrored_lib.MirroredStrategy( ["/gpu:0", "/gpu:1"], prefetch_on_device=False), required_gpus=2) adam_optimizer_v1_fn = NamedObject( "AdamV1", lambda: adam.AdamOptimizer(0.2, epsilon=1)) gradient_descent_optimizer_v1_fn = NamedObject( "GradientDescentV1", lambda: gradient_descent.GradientDescentOptimizer(0.2)) adam_optimizer_v2_fn = NamedObject( "AdamV2", lambda: adam_v2.AdamOptimizer(0.2, epsilon=1)) gradient_descent_optimizer_v2_fn = NamedObject( "GradientDescentV2", lambda: gradient_descent_v2.GradientDescentOptimizer(0.2)) graph_and_eager_modes = ["graph", "eager"] def distributions_and_v1_optimizers(): """A common set of combination with DistributionStrategies and Optimizers.""" return combine( distribution=[ one_device_strategy, mirrored_strategy_with_gpu_and_cpu, mirrored_strategy_with_two_gpus ], optimizer_fn=[adam_optimizer_v1_fn, gradient_descent_optimizer_v1_fn]) def distributions_and_v2_optimizers(): """DistributionStrategies and V2 Optimizers.""" return combine( distribution=[ one_device_strategy, mirrored_strategy_with_gpu_and_cpu, mirrored_strategy_with_two_gpus ], optimizer_fn=[adam_optimizer_v2_fn, gradient_descent_optimizer_v2_fn])
python
13,257
#!/usr/bin/env python3.7 import sys import socket from ast import literal_eval from gmpy2 import gcdext def read_data(file): return file.readline().decode().split(':')[-1].strip() def main(): IP = sys.argv[1] if len(sys.argv) > 1 else '0.0.0.0' PORT = 7702 with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock: sock.settimeout(30) sock.connect((IP, PORT)) file = sock.makefile('rwb') print(file.readline().strip().decode()) print(file.readline().strip().decode()) sender_n, sender_e = literal_eval(read_data(file)) receiver_n, receiver_e = literal_eval(read_data(file)) assert sender_n == receiver_n n = sender_n message1 = int(read_data(file)) message2 = int(read_data(file)) message3 = int(read_data(file)) g, x, y = gcdext(sender_e, receiver_e) if g > 1: return main() flag = int((pow(message1, x, n) * pow(message3, y, n)) % n) print(flag.to_bytes((n.bit_length() + 7) // 8, 'big').strip(b'\x00')) return if __name__ == '__main__': main()
python
1,120
#!/usr/bin/python """ lecture and example code for decision tree unit """ import sys sys.path.insert(0,'../../lib') from class_vis import prettyPicture, output_image from prep_terrain_data import makeTerrainData import matplotlib.pyplot as plt import numpy as np import pylab as pl from sklearn.metrics import accuracy_score features_train, labels_train, features_test, labels_test = makeTerrainData() def classify(features_train, labels_train): from sklearn.tree import DecisionTreeClassifier clf = DecisionTreeClassifier( criterion="gini", splitter="best", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features=None, # random_state=None, random_state=0, max_leaf_nodes=None, min_impurity_decrease=0., min_impurity_split=None, class_weight=None, presort='deprecated', ccp_alpha=0.0) clf.fit(features_train, labels_train, sample_weight=None, check_input=True, X_idx_sorted=None) return clf clf = classify(features_train, labels_train) # store your predictions in a list named pred # pred = clf.predict(features_test) # acc = accuracy_score(pred, labels_test) acc = clf.score(features_test, labels_test) def submitAccuracy(): return acc print(acc) #### grader code, do not modify below this line prettyPicture(clf, features_test, labels_test) output_image('test.png')
python
1,603
# Gemma IO demo - captouch import time import board import touchio touch0 = touchio.TouchIn(board.A0) touch1 = touchio.TouchIn(board.A1) touch2 = touchio.TouchIn(board.A2) while True: if touch0.value: print("A0 touched!") if touch1.value: print("A1 touched!") if touch2.value: print("A2 touched!") time.sleep(0.01)
python
359
#!/usr/bin/env python # # Example of one object under gravity with one contactor and a ground # using the Siconos proposed mechanics API # from siconos.mechanics.collision.tools import Contactor from siconos.io.mechanics_run import MechanicsHdf5Runner from siconos.mechanics.collision.bullet import SiconosBulletOptions import siconos.numerics as sn import siconos.kernel as sk # Creation of the hdf5 file for input/output with MechanicsHdf5Runner() as io: # Definition of a sphere io.add_primitive_shape('Disk', 'Disk', (2,), insideMargin=0.0, outsideMargin=0.0) # Definition of the ground shape io.add_primitive_shape('Ground', 'Box2d', (10, 1), insideMargin=0.0, outsideMargin=0.0) # Definition of a non smooth law. As no group ids are specified it # is between contactors of group id 0. io.add_Newton_impact_friction_nsl('contact', mu=0.1, e=0.5) # The sphere object made with an unique Contactor : the sphere shape. # As a mass is given, it is a dynamic system involved in contact # detection and in the simulation. With no group id specified the # Contactor belongs to group 0 io.add_object('disk', [Contactor('Disk')], translation=[0, 5.], velocity=[0, 0, 0.5], mass=1., inertia =2.0) # the ground object made with the ground shape. As the mass is # not given, it is a static object only involved in contact # detection. io.add_object('ground', [Contactor('Ground')], translation=[0, -.5]) # Run the simulation from the inputs previously defined and add # results to the hdf5 file. The visualisation of the output may be done # with the vview command. bullet_options = SiconosBulletOptions() bullet_options.worldScale = 1.0 bullet_options.contactBreakingThreshold = 0.04 bullet_options.dimension = 1 options = sk.solver_options_create(sn.SICONOS_FRICTION_2D_NSGS) options.iparam[sn.SICONOS_IPARAM_MAX_ITER] = 100000 options.dparam[sn.SICONOS_DPARAM_TOL] = 1e-8 with MechanicsHdf5Runner(mode='r+') as io: # By default earth gravity is applied and the units are those # of the International System of Units. io.run(verbose=True, with_timer=False, bullet_options=bullet_options, face_class=None, edge_class=None, t0=0, T=8, h=0.001, multipoints_iterations=True, theta=0.50001, Newton_max_iter=1, set_external_forces=None, solver_options=options, numerics_verbose=True, output_frequency=None)
python
2,672
#!/usr/bin/env python # PySCUBA/src/PySCUBA/Preprocessing.py # Author: Gregory Giecold for the GC Yuan Lab # Affiliation: Harvard University # Contact: [email protected]; [email protected] from __future__ import division from operator import and_ from os import getcwd, makedirs, path import re from struct import calcsize, unpack from sys import exit from warnings import warn import numpy as np from rpy2.rinterface import NULL, TRUE from rpy2.robjects import numpy2ri from rpy2.robjects.packages import importr from sklearn.manifold import TSNE from . import Tree_classes __all__ = ['Annotation', 'cytometry_preprocess', 'Cyto_data', 'FCS_handler', 'get_FCS_data', 'infer_pseudotime', 'PCR_preprocess', 'RNASeq_preprocess'] def infer_pseudotime(data, output_directory, tag = '', pcv_method = 'Rprincurve', anchor_gene = None, markers = None): assert pcv_method in {'Rprincurve'} # taking into account the possibility of adding # in future versions other methods # for principal curve analysis N_dim = 3 model = TSNE(n_components = N_dim) TSNE_data = model.fit_transform(data) if pcv_method == 'Rprincurve': with open(path.join(output_directory, "{0}_TSNE_d{1}.tsv".format(tag, N_dim)), 'w') as f: f.write('\t'.join(['T{0}'.format(k) for k in xrange(1, N_dim + 1)])) f.write('\n') np.savetxt(f, TSNE_data, fmt = '%.6f', delimiter = '\t') numpy2ri.activate() princurve = importr('princurve') procedure = princurve.principal_curve fitpc = procedure(TSNE_data, NULL, 0.001, TRUE, 200, 2, 'lowess') curve_projections_matrix = np.array(fitpc.rx('s')[0]) pseudotime_series = np.array(fitpc.rx('lambda')[0]) with open(path.join(output_directory, "{0}_TSNE_d{1}_pcv.tsv".format(tag, N_dim)), 'w') as f: np.savetxt(f, curve_projections_matrix, fmt = '%.6f', delimiter = '\t') with open(path.join(output_directory, "{0}_TSNE_d{1}_lambda.tsv".format(tag, N_dim)), 'w') as f: np.savetxt(f, pseudotime_series, fmt = '%.6f', delimiter = '\t') else: print("ERROR: PySCUBA: Preprocessing: infer_pseudotime:\n" "your choice of method for principal curve analysis is not supported " "by the present version of PySCUBA.") exit(1) if anchor_gene: assert isinstance(anchor_gene, str) assert markers is not None N_cells_anchor = 1000 gene_idx = np.where(markers == anchor_gene)[0] pseudotime_idx = np.argsort(pseudotime_series) anchor_gene_avg_beg = np.mean(data[pseudotime_idx[:N_cells_anchor], gene_idx]) anchor_gene_avg_end = np.mean(data[pseudotime_idx[N_cells_anchor:], gene_idx]) if anchor_gene_avg_end > anchor_gene_avg_beg: pseudotime_series = np.max(pseudotime_series) - pseudotime_series t_min = np.min(pseudotime_series) t_max = np.max(pseudotime_series) t_bins = 8 cell_stages = t_bins * (pseudotime_series - t_min + 0.0001) / (t_max - t_min + 0.0002) cell_stages = np.ceil(cell_stages).astype(int).astype('str') return cell_stages def parse_pairs(text): """Return (key, value) pairs from a string featuring particular delimiters. Modified from a corresponding function in the outdated 'fcm' Python package by Jacob Frelinger. """ delim = text[0] if delim == r'|': delim = '\|' elif delim == r'\a'[0]: delim = '\\\\' if delim != text[-1]: warn("WARNING: the text does not start and end with the same delimiter!") regex = re.compile('(?<=[^%s])%s(?!%s)' % (delim, delim, delim)) tmp = text[1:-1].replace('$', '') tmp = regex.split(tmp) return dict(zip([x.lower() for x in tmp[::2]], tmp[1::2])) class Annotation(object): """An annotation class instance stores meta-data from the recordings of a cytometry experiment. Modified from a corresponding class in the outdated 'fcm' Python package by Jacob Frelinger. """ def __init__(self, annotations = None): if annotations == None: annotations = {} self.__dict__['_mydict'] = annotations def __getattr__(self, name): if name in self._mydict.keys(): self.__dict__[name] = self._mydict[name] return self._mydict[name] else: try: return self._mydict.__getattribute__(name) except: raise AttributeError("'{0}' has no attribue '{1}'".format(str(self.__class__), name)) def __getstate__(self): return self._mydict def __setstate__(self, dict): self.__dict__['_mydict'] = dict for i in dict.keys(): self.__dict__[i] = dict[i] def __setattr__(self, name, value): Annotation.__getattribute__(self, '_mydict')[name] = value self.__dict__[name] = value def __setitem__(self, name, value): self._mydict[name] = value self.__dict__[name] = self._mydict[name] def __getitem__(self, name): return self._mydict[name] def __repr__(self): return 'Annotation(' + self._mydict.__repr__() + ')' def __getstate__(self): return self.__dict__ def __setstate(self, state): self.__dict__ = state def __getinitargs__(self): return (self._mydict,) def copy(self): return Annotation(self._mydict.copy()) class Cyto_data(object): """ A Cyto_data object stores the data from a cytometry experiment. Modified from a corresponding class in the outdated 'fcm' Python package by Jacob Frelinger. Members: -------- Cyto_data.data_points : numpy.array The data points. Cyto_data.channels : list Records which markers or scatters are in which columns. Cyto_data.scatters : list Keeps track of which indexes in Cyto_data.channels are scatters. """ def __init__(self, name, data_points, channels, scatters = None, notes = None): """ Parameters ---------- name: name of the *.fcs file, barring any extension data_points: an array of data points channels: list Records which markers/scatters are in which columns. scatters: list Which channels indexes denote scatters """ self.name = name self.data_points = data_points self.tree = Tree_classes.Tree(data_points, channels) self.scatters = scatters self.markers = [] if self.scatters is not None: for channel in range(len(channels)): if channel in self.scatters: pass elif self.tree.root.channels[channel] in self.scatters: pass else: self.markers.append(channel) if notes == None: notes = Annotation() self.notes = notes def __unicode__(self): return self.name def __repr__(self): return self.name def __getitem__(self, item): """Return the Cyto_data points. """ if isinstance(item, tuple): item = list(item) if isinstance(item[1], str): item[1] = self.name_to_index(item[1]) elif isinstance(item[1], tuple) or isinstance(item[1], list): item[1] = list(item[1]) for i, j in enumerate(item[1]): if isinstance(j, str): print('{0} is string {1}'.format(i, j)) item[1][i] = self.name_to_index(j) item = tuple(item) return self.tree.view()[item] @property def channels(self): return self.current_node.channels def __getattr__(self, name): if name in dir(self.current_node.view()): return self.current_node.view().__getattribute__(name) else: raise AttributeError("'{0}' has no attribue '{1}'".format(str(self.__class__), name)) def __getstate__(self): return self.__dict__ def __setstate__(self, dict): for i in dict.keys(): self.__dict__[i] = dict[i] def name_to_index(self, channels): """Return the channel indexes for the channels provided as arguments. """ if isinstance(channels, str): return self.channels.index(channels) idx = [] for i in channels: try: idx.append(self.channels.index(i)) except ValueError: try: for j in range(1, int(self.notes.text['par']) + 1): if i == self.notes.text['p%dn' % j]: idx.append(self.channels.index(self.notes.text['p%ds' % j])) except ValueError: raise ValueError('{0} is not in list'.format(i)) if idx: return idx else: raise ValueError('The field {0} was not found'.format(str(channels))) def get_channel_by_name(self, channels): """Return the data associated with specific channel names. """ return self.tree.view()[:, self.name_to_index(channels)] def get_markers(self): """Return the data associated with all the markers. """ return self.view()[:, self.markers] def view(self): """Return the current view of the data. """ return self.tree.view() def visit(self, name): """Switch the current view of the data. """ self.tree.visit(name) @property def current_node(self): """Return the current node. """ return self.tree.current def copy(self): """Return a copy of the Cyto_data object. """ tname = self.name tree_data_points = self.tree.root.data tnotes = self.notes.copy() tchannels = self.channels[:] tscchannels = self.scatters[:] tmp = Cyto_data(tname, tree_data_points, tchannels, tscchannels, tnotes) from copy import deepcopy tmp.tree = deepcopy(self.tree) return tmp def gate(self, g, chan=None): """Return a gated region of the cytometry data. """ return g.gate(self, chan) def subsample(self, s): """Return subsampled cytometry data. """ return s.subsample(self) def get_current_node(self): """Return the current node. """ return self.current_node def add_view(self, node): """Add a new node to the visualization tree. """ self.tree.add_child(node.name, node) return self def summary(self): """Provide a summary of current view. """ data_points = self.view() means = data_points.mean(0) stds = data_points.std(0) mins = data_points.min(0) maxs = data_points.max(0) medians = np.median(data_points, 0) dim = data_points.shape[1] summary = '' for i in range(dim): summary = summary + self.channels[i] + ":\n" summary = summary + " max: " + str(maxs[i]) + "\n" summary = summary + " mean: " + str(means[i]) + "\n" summary = summary + " median: " + str(medians[i]) + "\n" summary = summary + " min: " + str(mins[i]) + "\n" summary = summary + " std: " + str(stds[i]) + "\n" return summary def boundary_events(self): """Return a dictionary of the percentage of all events that are in the first and in the last channel for each channel. """ boundary_dict = {} for k, channel in enumerate(self.channels): col = self.view()[:, k] boundary_dict[channel] = \ sum((col == min(col)) | (col == max(col))) / len(col) return boundary_dict class NotSupportedFCSDataMode(Exception): """Exception raised for data modes in a *.fcs file that are not currently supported. Modified from a corresponding exception in the outdated 'fcm' Python package by Jacob Frelinger. """ def __init__(self, mode): self.mode = mode self.message = "Unfortunately, the FCS data stored as type {0} is not currently supported.".format(mode) self.args = (mode,) def integer_format(b): """Return the binary format of an integer. """ if b == 8: return 'B' elif b == 16: return 'H' elif b == 32: return 'I' else: print("Cannot handle integers of bit size {0}.".format(b)) return None def integer_bit_mask(b, ub): """Return the bit-mask of an integer and a bit-witdh. """ if b == 8: return (0xFF >> (b - ub)) elif b == 16: return (0xFFFF >> (b - ub)) elif b == 32: return (0xFFFFFFFF >> (b - ub)) else: print("Cannot handle integers of bit size {0}.".format(b)) return None def fluorescent_channel(name): """Check if a channel is a fluorescent channel. """ name = name.lower() if name.startswith('cs'): return False elif name.startswith('fs'): return False elif name.startswith('ss'): return False elif name.startswith('ae'): return False elif name.startswith('cv'): return False elif name.startswith('time'): return False else: return True class FCS_handler(object): """Hold object to read and parse *.fcs files. Modified from a corresponding class in the outdated 'fcm' Python package by Jacob Frelinger. """ def __init__(self, file_path): self.file_path = file_path self.current_offset = 0 def get_next_dataset(self, **kwargs): """Return the next cytometry dataset stored in a *.fcs file. """ with open(self.file_path, 'rb') as self._f: header = self.parse_header(self.current_offset) text = self.parse_text(self.current_offset, header['text_start'], header['text_stop']) try: analysis_beg = text['begin_analysis'] except KeyError: analysis_beg = header['analysis_start'] try: analysis_end = text['end_analysis'] except KeyError: analysis_end = header['analysis_end'] analysis = self.parse_analysis(self.current_offset, analysis_beg, analysis_end) try: data_beg = int(text['begin_data']) except KeyError: data_beg = header['data_start'] try: data_end = int(text['end_data']) except KeyError: data_end = header['data_end'] LMD = self.fix_LMD(self.current_offset, header['text_start'], header['text_stop']) data_end = data_end + LMD data = self.parse_data(self.current_offset, data_beg, data_end, text) channels = [] scchannels = [] scchannel_indexes = [] base_chan_name = [] for i in range(1, int(text['par']) + 1): base_chan_name.append(text['p%dn' % i]) try: if text['p%ds' % i] not in ['',' ']: name = text['p%ds' % i] else: name = text['p%dn' % i] except KeyError: name = text['p%dn' % i] channels.append(name) if not fluorescent_channel(name): scchannels.append(name) if name != 'Time': scchannel_indexes.append(i - 1) _, name = path.split(self.file_path) name, _ = path.splitext(name) cyto_object = Cyto_data(name, data, channels, scchannels, Annotation({'text': text, 'header': header, 'analysis': analysis,})) return cyto_object def read_bytes(self, offset, start, stop): """Read bytes from start to stop, included. """ self._f.seek(offset + start) return self._f.read(stop - start + 1) def parse_header(self, offset): """ Parse the cytometry data in a *.fcs file at the specified offset (accounting for the possibility of several data parts in the said file). """ header = {} header['version'] = float(self.read_bytes(offset, 3, 5)) header['text_start'] = int(self.read_bytes(offset, 10, 17)) header['text_stop'] = int(self.read_bytes(offset, 18, 25)) header['data_start'] = int(self.read_bytes(offset, 26, 33)) header['data_end'] = int(self.read_bytes(offset, 34, 41)) try: header['analysis_start'] = int(self.read_bytes(offset, 42, 49)) except ValueError: header['analysis_start'] = -1 try: header['analysis_end'] = int(self.read_bytes(offset, 50, 57)) except ValueError: header['analysis_end'] = -1 return header def parse_text(self, offset, start, stop): """Return the parsed text segment of a *.fcs file. """ text = self.read_bytes(offset, start, stop) return parse_pairs(text) def parse_analysis(self, offset, start, stop): """Return the parsed analysis part of the *.fcs file under consideration. """ if start == stop: return {} else: text = self.read_bytes(offset, start, stop) return parse_pairs(text) def fix_LMD(self, offset, start, stop): """Handle the LMD format (embedded FCS format) and the way it counts, which differs from other FCS formats. """ text = self.read_bytes(offset, start, stop) if text[0] == text[-1]: return 0 else: return -1 def parse_data(self, offset, start, stop, text): """Return an array holding the data part of *.fcs file at hand. """ dtype = text['datatype'] mode = text['mode'] tot = int(text['tot']) if mode == 'c' or mode == 'u': raise NotSupportedFCSDataMode(mode) if text['byteord'] == '1,2,3,4' or text['byteord'] == '1,2': order = '<' elif text['byteord'] == '4,3,2,1' or text['byteord'] == '2,1': order = '>' else: warn("WARNING: unsupported byte order {0}; using default @".format(text['byteord'])) order = '@' bit_width = [] data_range = [] for i in range(1, int(text['par']) + 1): bit_width.append(int(text['p%db' % i])) data_range.append(int(text['p%dr' % i])) if dtype.lower() == 'i': data = self.parse_int_data(offset, start, stop, bit_width, data_range, tot, order) elif dtype.lower() == 'f' or dtype.lower() == 'd': data = self.parse_float_data(offset, start, stop, dtype.lower(), tot, order) else: data = self.parse_ASCII_data(offset, start, stop, bit_width, dtype, tot, order) return data def parse_int_data(self, offset, start, stop, bit_width, data_range, tot, order): """Parse *.fcs file and return data as an integer list. """ if reduce(and_, [item in [8, 16, 32] for item in bit_width]): if len(set(bit_width)) == 1: num_items = (stop - start + 1) / calcsize(integer_format(bit_width[0])) tmp = unpack('%s%d%s' % (order, num_items, integer_format(bit_width[0])), self.read_bytes(offset, start, stop)) else: unused_bit_widths = map(int, map(np.log2, data_range)) tmp = [] current = start while current < stop: for i, current_width in enumerate(bit_width): bit_mask = integer_bit_mask(current_width, unused_bit_widths[i]) N_bytes = current_width / 8 bin_string = self.read_bytes(offset, current, current + N_bytes - 1) current += N_bytes val = bit_mask & unpack('%s%s' % (order, integer_format(current_width)), bin_string)[0] tmp.append(val) else: warn('WARNING: non-standard bit widths for the data part.') return None return np.array(tmp).reshape((tot, len(bit_width))) def parse_float_data(self, offset, start, stop, dtype, tot, order): """Parse a *.fcs file and return list of float data entries. """ N_items = (stop - start + 1) / calcsize(dtype) tmp = unpack('%s%d%s' % (order, N_items, dtype), self.read_bytes(offset, start, stop)) return np.array(tmp).reshape((tot, len(tmp) / tot)) def parse_ASCII_data(self, offset, start, stop, bit_width, dtype, tot, order): """Parse ASCII encoded data from a *.fcs file. """ N_items = (stop - start + 1) / calcsize(dtype) tmp = unpack('%s%d%s' % (order, N_items, dtype), self.read_bytes(offset, start, stop)) return np.array(tmp).reshape((tot, len(tmp) / tot)) def cytometry_preprocess(file_path, log_mode = False, pseudotime_mode = True, pcv_method = 'Rprincurve', anchor_gene = None, exclude_marker_names = None): data_tag, output_directory = create_output_directory(file_path) cyto_object = get_FCS_data(file_path) marker_idx = np.array(cyto_objects.markers, dtype = str) marker_names = np.array(cyto_objects.channels[marker_idx], dtype = str) data = cyto_object.data_points data = data[:, marker_idx] cell_IDs = np.array(['cell_{0}'.format(i) for i in xrange(1, data.shape[0] + 1)], dtype = str) if exclude_marker_names: indices = np.zeros(0, dtype = int) for name in exclude_marker_names: indices = np.append(indices, np.where(marker_names == name)[0]) data = np.delete(data, indices, axis = 1) marker_names = np.delete(marker_names, indices) cell_stages = infer_pseudotime(data, output_directory, data_tag, pcv_method, anchor_gene, marker_names) write_preprocessed_data(output_directory, cell_IDs, cell_stages, data, markers) return cell_IDs, data, marker_names, cell_stages.astype(float), data_tag, output_directory def PCR_preprocess(file_path, log_mode = False, pseudotime_mode = False, pcv_method = 'Rprincurve', anchor_gene = None, exclude_marker_names = None): low_gene_fraction_max = 0.8 data_tag, output_directory = create_output_directory(file_path) cell_IDs, cell_stages, data = get_PCR_or_RNASeq_data(file_path, pseudotime_mode) with open(file_path, 'r') as f: markers = np.loadtxt(f, dtype = str, delimiter = '\t', skiprows = 1 if pseudotime_mode else 2, usecols = [0]) markers.reshape(markers.size) if exclude_marker_names: indices = np.zeros(0, dtype = int) for name in exclude_marker_names: indices = np.append(indices, np.where(markers == name)[0]) data = np.delete(data, indices, axis = 1) markers = np.delete(markers, indices) if pseudotime_mode: cell_stages = infer_pseudotime(data, output_directory, data_tag, pcv_method, anchor_gene, markers) condition = np.mean(data == 0, axis = 0) < low_gene_fraction_max data = np.compress(condition, data, 1) markers = np.compress(condition, markers) write_preprocessed_data(output_directory, cell_IDs, cell_stages, data, markers) return cell_IDs, data, markers, cell_stages.astype(float), data_tag, output_directory def RNASeq_preprocess(file_path, log_mode = True, pseudotime_mode = False, pcv_method = 'Rprincurve', anchor_gene = None, exclude_marker_names = None): assert isinstance(log_mode, bool) assert isinstance(pseudotime_mode, bool) # Threshold value for genes of low expression levels low_gene_threshold = 1 # Maximum fraction of lowly-expressed cells allowed for each gene low_gene_fraction_max = 0.7 # Number of highly variable genes selected N_selected_genes = 1000 data_tag, output_directory = create_output_directory(file_path) cell_IDs, cell_stages, data = get_PCR_or_RNASeq_data(file_path, pseudotime_mode) with open(file_path, 'r') as f: markers = np.loadtxt(f, dtype = str, delimiter = '\t', skiprows = 1 if pseudotime_mode else 2, usecols = [0]) markers.reshape(markers.size) if exclude_marker_names: indices = np.zeros(0, dtype = int) for name in exclude_marker_names: indices = np.append(indices, np.where(markers == name)[0]) data = np.delete(data, indices, axis = 1) markers = np.delete(markers, indices) if pseudotime_mode: cell_stages = infer_pseudotime(data, output_directory, data_tag, pcv_method, anchor_gene, markers) condition = np.mean(data < low_gene_threshold, axis = 0) < low_gene_fraction_max data = np.compress(condition, data, 1) markers = np.compress(condition, markers) Fano_factors = np.var(data, axis = 0) / np.mean(data, axis = 0).astype(float) idx = np.argsort(Fano_factors)[::-1][:N_selected_genes] data = data[:, idx] markers = markers[idx] if log_mode: np.log2(data + 1, data) write_preprocessed_data(output_directory, cell_IDs, cell_stages, data, markers) return cell_IDs, data, markers, cell_stages.astype(float), data_tag, output_directory def create_output_directory(file_path): data_tag = path.basename(path.abspath(file_path)).split('.')[0] output_directory = path.join(getcwd(), 'SCUBA_analysis_of_{0}'.format(data_tag)) try: makedirs(output_directory) except OSError: if not path.isdir(output_directory): raise return data_tag, output_directory def get_FCS_data(file_path, **kwargs): """Return a data object from an *.fcs file""" cyto_object = FCS_handler(file_path) data = cyto_object.get_next_dataset(**kwargs) cyto_object._f.close() del cyto_object return data def get_PCR_or_RNASeq_data(file_path, pseudotime_mode = False): with open(file_path, 'r') as f: cell_IDs = f.readline().rstrip('\n').split('\t') cell_IDs = np.array(cell_IDs[1:], dtype = str) if pseudotime_mode: cell_stages = np.empty(0, dtype = float) else: cell_stages = f.readline().rstrip('\n').split('\t') cell_stages = np.array(cell_stages[1:], dtype = str) data = np.loadtxt(f, dtype = float, delimiter = '\t', usecols = xrange(1, len(cell_IDs) + 1)) data = data.T return cell_IDs, cell_stages, data def write_preprocessed_data(output_directory, cell_IDs, cell_stages, data, markers): processed_data_path = path.join(output_directory, 'processed_data.tsv') with open(processed_data_path, 'w') as f: f.write('\t'.join(cell_IDs)) f.write('\n') f.write('\t'.join(cell_stages)) f.write('\n') np.savetxt(f, data.T, fmt = '%.6f', delimiter = '\t') dataset = np.genfromtxt(processed_data_path, delimiter = '\t', dtype = str) dataset = np.insert(dataset, 0, np.append(['Cell ID', 'Stage'], markers), axis = 1) with open(processed_data_path, 'w') as f: np.savetxt(f, dataset, fmt = '%s', delimiter = '\t')
python
29,858
# -*- coding: utf-8 -*- from collections import namedtuple from owlready2 import get_ontology from harrastuspassi.models import HobbyCategory from django.contrib.contenttypes.models import ContentType from django.core.management.base import BaseCommand from django.conf import settings # there must be a better way app_label = settings.INSTALLED_APPS[0] Root = namedtuple('Root', ['label', 'model_name']) ROOT_CLASSES = { 'categories': Root(label='Harrastusmuoto', model_name='hobbycategory'), 'audiences': Root(label='Yleisö', model_name='hobbyaudience')} class Command(BaseCommand): help = 'Import category and audience keywords from .owl file.' def add_arguments(self, parser): parser.add_argument('--path', action='store', dest='path_to_owl_file', default='./ontology.owl', help='Provide a path to the .owl file.') parser.add_argument('--categories', action='store_const', dest='import_categories', default=False, const='categories', help='Import the hobby categories (harrastusmuodot)') parser.add_argument('--audiences', action='store_const', dest='import_audiences', default=False, const='audiences', help='Import the keywords that define the audience (koululaiset, lapset jne.).') def handle(self, *args, **options): ontology = get_ontology(options['path_to_owl_file']).load() self.process_option(options['import_categories'], ontology) self.process_option(options['import_audiences'], ontology) if not any([options['import_categories'], options['import_audiences']]): self.stderr.write('Specify --categories and/or --audiences to import onotologies.') def process_option(self, option: str, ontology): if not option: return root_class = ontology.search_one(label=ROOT_CLASSES[option].label) self.depth = 0 model = ContentType.objects.get(app_label=app_label, model=ROOT_CLASSES[option].model_name ).model_class() self.add_subclasses_as_categories(root_class, model) def add_subclasses_as_categories(self, parent_class, model, parent_hobby_category=None): for subclass in parent_class.subclasses(): [origin_id] = subclass.identifier or [''] if not origin_id: data_source = '' else: data_source = 'yso' labels = subclass.label name_fi, name_sv, name_en = '', '', '' for label in labels: label_lang = getattr(label, 'lang', 'fi') if label_lang == 'fi': name_fi = label elif label_lang == 'sv': name_sv = label elif label_lang == 'en': name_en = label hobby_category, created = model.objects.update_or_create( name_fi=name_fi, parent=parent_hobby_category, defaults={ 'name_sv': name_sv, 'name_en': name_en, 'data_source': data_source, 'origin_id': origin_id } ) indent = '--' * self.depth self.stdout.write(f'{indent}fi_{name_fi}, sv_{name_sv}, en_{name_en}') self.depth += 1 self.add_subclasses_as_categories(subclass, model, hobby_category) self.depth -= 1
python
3,240
from __future__ import print_function, absolute_import, division from astropy import units as u from numpy.testing import assert_allclose as assert_allclose_numpy, assert_array_equal def assert_allclose(q1, q2, **kwargs): """ Quantity-safe version of Numpy's assert_allclose Copyright (c) 2014, spectral-cube developers All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ if isinstance(q1, u.Quantity) and isinstance(q2, u.Quantity): assert_allclose_numpy(q1.to(q2.unit).value, q2.value, **kwargs) elif isinstance(q1, u.Quantity): assert_allclose_numpy(q1.value, q2, **kwargs) elif isinstance(q2, u.Quantity): assert_allclose_numpy(q1, q2.value, **kwargs) else: assert_allclose_numpy(q1, q2, **kwargs)
python
2,265
""" API that are reported to numba.cuda """ import contextlib import numpy as np from .cudadrv import devicearray, devices, driver from numba.core import config # NDarray device helper require_context = devices.require_context current_context = devices.get_context gpus = devices.gpus @require_context def from_cuda_array_interface(desc, owner=None, sync=True): """Create a DeviceNDArray from a cuda-array-interface description. The ``owner`` is the owner of the underlying memory. The resulting DeviceNDArray will acquire a reference from it. If ``sync`` is ``True``, then the imported stream (if present) will be synchronized. """ version = desc.get('version') # Mask introduced in version 1 if 1 <= version: mask = desc.get('mask') # Would ideally be better to detect if the mask is all valid if mask is not None: raise NotImplementedError('Masked arrays are not supported') shape = desc['shape'] strides = desc.get('strides') dtype = np.dtype(desc['typestr']) shape, strides, dtype = _prepare_shape_strides_dtype( shape, strides, dtype, order='C') size = driver.memory_size_from_info(shape, strides, dtype.itemsize) devptr = driver.get_devptr_for_active_ctx(desc['data'][0]) data = driver.MemoryPointer( current_context(), devptr, size=size, owner=owner) stream_ptr = desc.get('stream', None) if stream_ptr is not None: stream = external_stream(stream_ptr) if sync and config.CUDA_ARRAY_INTERFACE_SYNC: stream.synchronize() else: stream = 0 # No "Numba default stream", not the CUDA default stream da = devicearray.DeviceNDArray(shape=shape, strides=strides, dtype=dtype, gpu_data=data, stream=stream) return da def as_cuda_array(obj, sync=True): """Create a DeviceNDArray from any object that implements the :ref:`cuda array interface <cuda-array-interface>`. A view of the underlying GPU buffer is created. No copying of the data is done. The resulting DeviceNDArray will acquire a reference from `obj`. If ``sync`` is ``True``, then the imported stream (if present) will be synchronized. """ if not is_cuda_array(obj): raise TypeError("*obj* doesn't implement the cuda array interface.") else: return from_cuda_array_interface(obj.__cuda_array_interface__, owner=obj, sync=sync) def is_cuda_array(obj): """Test if the object has defined the `__cuda_array_interface__` attribute. Does not verify the validity of the interface. """ return hasattr(obj, '__cuda_array_interface__') @require_context def to_device(obj, stream=0, copy=True, to=None): """to_device(obj, stream=0, copy=True, to=None) Allocate and transfer a numpy ndarray or structured scalar to the device. To copy host->device a numpy array:: ary = np.arange(10) d_ary = cuda.to_device(ary) To enqueue the transfer to a stream:: stream = cuda.stream() d_ary = cuda.to_device(ary, stream=stream) The resulting ``d_ary`` is a ``DeviceNDArray``. To copy device->host:: hary = d_ary.copy_to_host() To copy device->host to an existing array:: ary = np.empty(shape=d_ary.shape, dtype=d_ary.dtype) d_ary.copy_to_host(ary) To enqueue the transfer to a stream:: hary = d_ary.copy_to_host(stream=stream) """ if to is None: to, new = devicearray.auto_device(obj, stream=stream, copy=copy) return to if copy: to.copy_to_device(obj, stream=stream) return to @require_context def device_array(shape, dtype=np.float_, strides=None, order='C', stream=0): """device_array(shape, dtype=np.float_, strides=None, order='C', stream=0) Allocate an empty device ndarray. Similar to :meth:`numpy.empty`. """ shape, strides, dtype = _prepare_shape_strides_dtype(shape, strides, dtype, order) return devicearray.DeviceNDArray(shape=shape, strides=strides, dtype=dtype, stream=stream) @require_context def managed_array(shape, dtype=np.float_, strides=None, order='C', stream=0, attach_global=True): """managed_array(shape, dtype=np.float_, strides=None, order='C', stream=0, attach_global=True) Allocate a np.ndarray with a buffer that is managed. Similar to np.empty(). Managed memory is supported on Linux, and is considered experimental on Windows. :param attach_global: A flag indicating whether to attach globally. Global attachment implies that the memory is accessible from any stream on any device. If ``False``, attachment is *host*, and memory is only accessible by devices with Compute Capability 6.0 and later. """ shape, strides, dtype = _prepare_shape_strides_dtype(shape, strides, dtype, order) bytesize = driver.memory_size_from_info(shape, strides, dtype.itemsize) buffer = current_context().memallocmanaged(bytesize, attach_global=attach_global) npary = np.ndarray(shape=shape, strides=strides, dtype=dtype, order=order, buffer=buffer) managedview = np.ndarray.view(npary, type=devicearray.ManagedNDArray) managedview.device_setup(buffer, stream=stream) return managedview @require_context def pinned_array(shape, dtype=np.float_, strides=None, order='C'): """pinned_array(shape, dtype=np.float_, strides=None, order='C') Allocate an :class:`ndarray <numpy.ndarray>` with a buffer that is pinned (pagelocked). Similar to :func:`np.empty() <numpy.empty>`. """ shape, strides, dtype = _prepare_shape_strides_dtype(shape, strides, dtype, order) bytesize = driver.memory_size_from_info(shape, strides, dtype.itemsize) buffer = current_context().memhostalloc(bytesize) return np.ndarray(shape=shape, strides=strides, dtype=dtype, order=order, buffer=buffer) @require_context def mapped_array(shape, dtype=np.float_, strides=None, order='C', stream=0, portable=False, wc=False): """mapped_array(shape, dtype=np.float_, strides=None, order='C', stream=0, portable=False, wc=False) Allocate a mapped ndarray with a buffer that is pinned and mapped on to the device. Similar to np.empty() :param portable: a boolean flag to allow the allocated device memory to be usable in multiple devices. :param wc: a boolean flag to enable writecombined allocation which is faster to write by the host and to read by the device, but slower to write by the host and slower to write by the device. """ shape, strides, dtype = _prepare_shape_strides_dtype(shape, strides, dtype, order) bytesize = driver.memory_size_from_info(shape, strides, dtype.itemsize) buffer = current_context().memhostalloc(bytesize, mapped=True) npary = np.ndarray(shape=shape, strides=strides, dtype=dtype, order=order, buffer=buffer) mappedview = np.ndarray.view(npary, type=devicearray.MappedNDArray) mappedview.device_setup(buffer, stream=stream) return mappedview @contextlib.contextmanager @require_context def open_ipc_array(handle, shape, dtype, strides=None, offset=0): """ A context manager that opens a IPC *handle* (*CUipcMemHandle*) that is represented as a sequence of bytes (e.g. *bytes*, tuple of int) and represent it as an array of the given *shape*, *strides* and *dtype*. The *strides* can be omitted. In that case, it is assumed to be a 1D C contiguous array. Yields a device array. The IPC handle is closed automatically when context manager exits. """ dtype = np.dtype(dtype) # compute size size = np.prod(shape) * dtype.itemsize # manually recreate the IPC mem handle handle = driver.drvapi.cu_ipc_mem_handle(*handle) # use *IpcHandle* to open the IPC memory ipchandle = driver.IpcHandle(None, handle, size, offset=offset) yield ipchandle.open_array(current_context(), shape=shape, strides=strides, dtype=dtype) ipchandle.close() def synchronize(): "Synchronize the current context." return current_context().synchronize() def _prepare_shape_strides_dtype(shape, strides, dtype, order): dtype = np.dtype(dtype) if isinstance(shape, int): shape = (shape,) if isinstance(strides, int): strides = (strides,) else: if shape == (): shape = (1,) strides = strides or _fill_stride_by_order(shape, dtype, order) return shape, strides, dtype def _fill_stride_by_order(shape, dtype, order): nd = len(shape) strides = [0] * nd if order == 'C': strides[-1] = dtype.itemsize for d in reversed(range(nd - 1)): strides[d] = strides[d + 1] * shape[d + 1] elif order == 'F': strides[0] = dtype.itemsize for d in range(1, nd): strides[d] = strides[d - 1] * shape[d - 1] else: raise ValueError('must be either C/F order') return tuple(strides) def _contiguous_strides_like_array(ary): """ Given an array, compute strides for a new contiguous array of the same shape. """ # Don't recompute strides if the default strides will be sufficient to # create a contiguous array. if ary.flags['C_CONTIGUOUS'] or ary.flags['F_CONTIGUOUS'] or ary.ndim <= 1: return None # Otherwise, we need to compute new strides using an algorithm adapted from # NumPy v1.17.4's PyArray_NewLikeArrayWithShape in # core/src/multiarray/ctors.c. We permute the strides in ascending order # then compute the stride for the dimensions with the same permutation. # Stride permutation. E.g. a stride array (4, -2, 12) becomes # [(1, -2), (0, 4), (2, 12)] strideperm = [ x for x in enumerate(ary.strides) ] strideperm.sort(key=lambda x: x[1]) # Compute new strides using permutation strides = [0] * len(ary.strides) stride = ary.dtype.itemsize for i_perm, _ in strideperm: strides[i_perm] = stride stride *= ary.shape[i_perm] return tuple(strides) def _order_like_array(ary): if ary.flags['F_CONTIGUOUS'] and not ary.flags['C_CONTIGUOUS']: return 'F' else: return 'C' def device_array_like(ary, stream=0): """ Call :func:`device_array() <numba.cuda.device_array>` with information from the array. """ strides = _contiguous_strides_like_array(ary) order = _order_like_array(ary) return device_array(shape=ary.shape, dtype=ary.dtype, strides=strides, order=order, stream=stream) def mapped_array_like(ary, stream=0, portable=False, wc=False): """ Call :func:`mapped_array() <numba.cuda.mapped_array>` with the information from the array. """ strides = _contiguous_strides_like_array(ary) order = _order_like_array(ary) return mapped_array(shape=ary.shape, dtype=ary.dtype, strides=strides, order=order, stream=stream, portable=portable, wc=wc) def pinned_array_like(ary): """ Call :func:`pinned_array() <numba.cuda.pinned_array>` with the information from the array. """ strides = _contiguous_strides_like_array(ary) order = _order_like_array(ary) return pinned_array(shape=ary.shape, dtype=ary.dtype, strides=strides, order=order) # Stream helper @require_context def stream(): """ Create a CUDA stream that represents a command queue for the device. """ return current_context().create_stream() @require_context def default_stream(): """ Get the default CUDA stream. CUDA semantics in general are that the default stream is either the legacy default stream or the per-thread default stream depending on which CUDA APIs are in use. In Numba, the APIs for the legacy default stream are always the ones in use, but an option to use APIs for the per-thread default stream may be provided in future. """ return current_context().get_default_stream() @require_context def legacy_default_stream(): """ Get the legacy default CUDA stream. """ return current_context().get_legacy_default_stream() @require_context def per_thread_default_stream(): """ Get the per-thread default CUDA stream. """ return current_context().get_per_thread_default_stream() @require_context def external_stream(ptr): """Create a Numba stream object for a stream allocated outside Numba. :param ptr: Pointer to the external stream to wrap in a Numba Stream :type ptr: int """ return current_context().create_external_stream(ptr) # Page lock @require_context @contextlib.contextmanager def pinned(*arylist): """A context manager for temporary pinning a sequence of host ndarrays. """ pmlist = [] for ary in arylist: pm = current_context().mempin(ary, driver.host_pointer(ary), driver.host_memory_size(ary), mapped=False) pmlist.append(pm) yield @require_context @contextlib.contextmanager def mapped(*arylist, **kws): """A context manager for temporarily mapping a sequence of host ndarrays. """ assert not kws or 'stream' in kws, "Only accept 'stream' as keyword." stream = kws.get('stream', 0) pmlist = [] devarylist = [] for ary in arylist: pm = current_context().mempin(ary, driver.host_pointer(ary), driver.host_memory_size(ary), mapped=True) pmlist.append(pm) devary = devicearray.from_array_like(ary, gpu_data=pm, stream=stream) devarylist.append(devary) try: if len(devarylist) == 1: yield devarylist[0] else: yield devarylist finally: # When exiting from `with cuda.mapped(*arrs) as mapped_arrs:`, the name # `mapped_arrs` stays in scope, blocking automatic unmapping based on # reference count. We therefore invoke the finalizer manually. for pm in pmlist: pm.free() def event(timing=True): """ Create a CUDA event. Timing data is only recorded by the event if it is created with ``timing=True``. """ evt = current_context().create_event(timing=timing) return evt event_elapsed_time = driver.event_elapsed_time # Device selection def select_device(device_id): """ Make the context associated with device *device_id* the current context. Returns a Device instance. Raises exception on error. """ context = devices.get_context(device_id) return context.device def get_current_device(): "Get current device associated with the current thread" return current_context().device def list_devices(): "Return a list of all detected devices" return devices.gpus def close(): """ Explicitly clears all contexts in the current thread, and destroys all contexts if the current thread is the main thread. """ devices.reset() def _auto_device(ary, stream=0, copy=True): return devicearray.auto_device(ary, stream=stream, copy=copy) def detect(): """ Detect supported CUDA hardware and print a summary of the detected hardware. Returns a boolean indicating whether any supported devices were detected. """ devlist = list_devices() print('Found %d CUDA devices' % len(devlist)) supported_count = 0 for dev in devlist: attrs = [] cc = dev.compute_capability attrs += [('compute capability', '%d.%d' % cc)] attrs += [('pci device id', dev.PCI_DEVICE_ID)] attrs += [('pci bus id', dev.PCI_BUS_ID)] if cc < (2, 0): support = '[NOT SUPPORTED: CC < 2.0]' else: support = '[SUPPORTED]' supported_count += 1 print('id %d %20s %40s' % (dev.id, dev.name, support)) for key, val in attrs: print('%40s: %s' % (key, val)) print('Summary:') print('\t%d/%d devices are supported' % (supported_count, len(devlist))) return supported_count > 0 @contextlib.contextmanager def defer_cleanup(): """ Temporarily disable memory deallocation. Use this to prevent resource deallocation breaking asynchronous execution. For example:: with defer_cleanup(): # all cleanup is deferred in here do_speed_critical_code() # cleanup can occur here Note: this context manager can be nested. """ with current_context().defer_cleanup(): yield profiling = require_context(driver.profiling) profile_start = require_context(driver.profile_start) profile_stop = require_context(driver.profile_stop)
python
17,424
from data_collection.management.commands import BaseXpressDemocracyClubCsvImporter class Command(BaseXpressDemocracyClubCsvImporter): council_id = "E09000028" addresses_name = ( "2020-02-17T14:30:02.399947/EC & Democracy Club Polling Place Look Up 2020.csv" ) stations_name = ( "2020-02-17T14:30:02.399947/EC & Democracy Club Polling Place Look Up 2020.csv" ) elections = ["2020-05-07"] csv_delimiter = "," def address_record_to_dict(self, record): rec = super().address_record_to_dict(record) uprn = record.property_urn.strip().lstrip("0") if record.addressline2 == "179 Forest Hill Road": return None if record.addressline1 == "Excluding Third Floor and Fourth Floor": return None if record.addressline6 in [ "SE16 2EZ", "SE21 7BG", "SE1 0AA", "SE1 0NS", "SE15 4TP", ]: return None if uprn in [ "10094086807", "200003480357", "10093341595", "10093341594", "10093341119", "10090283768", "10094086939", "10090747304", "10093340214", "10009806727", "200003492155", "10090748785", ]: return None if uprn == "200003487670": rec["postcode"] = "SE1 2BB" if uprn == "10091665680": rec["uprn"] = "" rec["postcode"] = "SE5 0EZ" if uprn == "10093340235": rec["postcode"] = "SE22 9EE" return rec
python
1,642
# -*- coding: utf-8 -*- # MIT License # # Copyright(c) 2019 Aalborg University # Joakim Bruslund Haurum, May 2019 # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files(the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and / or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions : # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import numpy as np import pandas as pd import csv import json import datetime import cv2 import argparse import os import RainGauges as RG try: to_unicode = unicode except NameError: to_unicode = str def saveJSON(filename, data): ''' Takes a dict of dicts and saves to a JSON file Input: filename: path to the output file data: Dict of dict containing the label data ''' with open(filename, 'w', encoding='utf8') as outfile: str_ = json.dumps(data, indent=4, sort_keys=True, separators=(',', ': '), ensure_ascii=False) outfile.write(to_unicode(str_)) def getGaugeValues(gaugeFilePath, startDateTime, lat, long, FPS, numFrames, hourOffset): ''' Retrieves the precipation data from the provided gauge file, based on the provided location data Input: gaugeFilepath: Path to the gauge file startDateTime: string of the format "DD-MM-YYYY HH:MM:SS" lat: latitude of the location of the video long: longitude of hte location of the video FPS: Frame rate of the video numFrames: Number of frames in the video hourOffset: Offset between the startDateTime and the rain gauge (subtracted from startDateTime) Output: gaugeTimeStamps: List of timestamp of the precipation values gaugeValues: Numpy array of precipation values frameOffset: Frames left of the first minute ''' # Load gauge gauges = RG.RainGauges(gaugeFilePath) # Find the nearest rain gauge and get the datetime stamps and rain measurements video_name = "Some Road" # Get start time startDateTime = datetime.datetime.strptime(startDateTime, "%d-%m-%Y %H:%M:%S") startSeconds = startDateTime.second startDateTime -= datetime.timedelta(seconds = startSeconds) startDateTime -= datetime.timedelta(hours = hourOffset) # Calculate how many frames left of the starting minute e.g. 16:00:45, has 15 seconds left # This corresponds to 450 frames (30 FPS), and we assume we are halfway through the second, so 435 frame offset # These initial 435 frames are assigned to the label of 16:00:00, while the 436th label is assigned to 16:00:01 FPM = FPS * 60 if startSeconds > 0: frameOffset = (60 - startSeconds) * FPS - int(FPS/2) else: frameOffset = 0 # Determine how many minutes the video spans if numFrames > frameOffset: minutesVideo = int(np.ceil((numFrames-frameOffset)/FPM)) else: minutesVideo = 0 # Get the end time of the video endDateTime = startDateTime + datetime.timedelta(minutes=minutesVideo) # Get the rain measurements from the closest rain gauge location = RG.Location(lat, long, video_name, 0) measurement = gauges.getNearestRainData(location, startDateTime, endDateTime) if measurement.perSecond: gaugeTimeStamps = list(measurement.perSecond.keys()) gaugeValues = np.asarray(list(measurement.perSecond.values())) return gaugeTimeStamps, gaugeValues, frameOffset def generateLabels(args): ''' Takes a csv file with information about the relevant videos. Based on this information the precipation labels are found from the nearest rain gauge in the provided rain gauge file The precipation labels are saved as a JSON file in a folder 'labels' in the work dir Input: args: - csvFilePath: Path to the video csv file - outputFile: Name of the output file - binary: Whether to binarize the rain gauge data or not - vid_label: Whether to use the label provided in the input csv file for the entire video - precipation: Whether to use precipation data for labels - hour_offset: How many hours to offset the rain gauge data by - verbose: Whether to print information ''' csv_file = args["csvFilePath"] df = pd.read_csv(csv_file, sep = ",") folder = "./labels" if not os.path.exists(folder): os.makedirs(folder) binary_label = args["binary"] vid_label = args["vid_label"] precipation_label = args["precipation"] hour_offset = args["hour_offset"] label_dict = {} verbose = args["verbose"] # Go through each video in the supplied csv file for index, row in df.iterrows(): FPS = row["FPS"] gaugeFilePath = row["GaugeFilePath"] videoFilePath = row["VideoFilePath"] latitude = row["Latitude"] longitude = row["Longitude"] startDateTime = row["StartTime"] supplied_label = row["FileLabel"] if np.isfinite(supplied_label): supplied_label = np.int(supplied_label) if verbose: print("Row {}\n\tGauge File Path: {}\n\tVideoFilePath: {}\n\tStart Datetime: {}\ \n\tLatitude: {}\n\tLongitude: {}\n\tFPS: {}\n\tFrame Label: {}\n".format(index, gaugeFilePath, videoFilePath, startDateTime, latitude, longitude, FPS, supplied_label)) filename = os.path.basename(videoFilePath) if not vid_label: ## Uses the supplied label for the ENTIRE video, and stored as a single number labels = supplied_label frameOffset = None numFrames = None timestamps = [] else: # Load video information, in order to retrieve corresponding precipation data # Labels are stored per minute in a list cap = cv2.VideoCapture(videoFilePath) if not cap.isOpened(): print ("Could not open {}".format(videoFilePath)) continue numFrames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) vidFPS = int(cap.get(cv2.CAP_PROP_FPS)) if verbose: print("Video {}:\n\tFrames: {}\n\tFPS: {}\n\n".format(videoFilePath, numFrames, vidFPS)) assert FPS == vidFPS, "The supplied FPS, {}, and video FPS, {}, differ".format(FPS,vidFPS) # Get the gauge values for the video timestamps, values, frameOffset = getGaugeValues(gaugeFilePath, startDateTime, latitude, longitude, FPS, numFrames, hour_offset) if binary_label: if precipation_label: ## Binarizes the rain gauge data and saves a value per minute labels = (values.astype(np.bool)).astype(int) else: ## Creates a list of the same length returned from the rain gauge data, but fills it with the supplied label labels = np.ones(len(values),dtype=np.int)*supplied_label else: ## Uses the direct rain gauge data as labels per minute labels = values # convert numpy array to a list labels = labels.tolist() # Save video label dict into dict label_dict[filename] = {"labels": labels, "frameOffset": frameOffset, "timestamps": [x.strftime("%Y-%m-%d %H:%M:%S") for x in timestamps], "frameCount": numFrames, "FPM": FPS * 60} if verbose: print() print(filename, numFrames, vidFPS) print(label_dict[filename]) # save dict to JSON saveJSON(os.path.join(folder,args["outputFile"]), label_dict) if __name__ == "__main__": ap = argparse.ArgumentParser( description = "Generates precipation labels for each video in the provided csv video, based on data from the neasrest rain gauge") ap.add_argument("-csvFilePath", "--csvFilePath", type=str, default="labelsCSV.csv", help="Path to the csv file containing information per video") ap.add_argument("-outputFile", "--outputFile", type=str, default = "labels.json", help="Filename for the output JSON file. Saved in the active dir in a subdir called 'labels'") ap.add_argument('--binary', action="store_true", help='Use binary labels? If not set, continous labels are generated') ap.add_argument('--precipation', action="store_true", help='Use precipation data from rain guage for labels') ap.add_argument('--vid_label', action="store_false", help='Use specific label per frame/minute?') ap.add_argument('--hour_offset', type=int, default=2, help='How many hours to offset the raing guage data') ap.add_argument('--verbose', action="store_true", help='Whether information should be printed') args = vars(ap.parse_args()) generateLabels(args)
python
10,676
# Author: Christian Brodbeck <[email protected]> from .._exceptions import DefinitionError from .._text import enumeration, plural from .._utils.parse import find_variables class Definition: DICT_ATTRS = None def as_dict(self): return {k: getattr(self, k) for k in self.DICT_ATTRS} def __eq__(self, other): if isinstance(other, dict): return self.as_dict() == other elif isinstance(other, Definition): return self.as_dict() == other.as_dict() else: return False def name_ok(key: str, allow_empty: bool) -> bool: if not key and not allow_empty: return False try: return all(c not in key for c in ' ') except TypeError: return False def check_names(keys, attribute, allow_empty: bool): invalid = [key for key in keys if not name_ok(key, allow_empty)] if invalid: raise DefinitionError(f"Invalid {plural('name', len(invalid))} for {attribute}: {enumeration(invalid)}") def compound(items): out = '' for item in items: if item == '*': if not out.endswith('*'): out += '*' elif item: if out and not out.endswith('*'): out += ' ' out += item return out def dict_change(old, new): "Readable representation of dict change" lines = [] keys = set(new) keys.update(old) for key in sorted(keys): if key not in new: lines.append("%r: %r -> key removed" % (key, old[key])) elif key not in old: lines.append("%r: new key -> %r" % (key, new[key])) elif new[key] != old[key]: lines.append("%r: %r -> %r" % (key, old[key], new[key])) return lines def log_dict_change(log, kind, name, old, new): log.warning(" %s %s changed:", kind, name) for line in dict_change(old, new): log.warning(" %s", line) def log_list_change(log, kind, name, old, new): log.warning(" %s %s changed:", kind, name) removed = tuple(v for v in old if v not in new) if removed: log.warning(" Members removed: %s", ', '.join(map(str, removed))) added = tuple(v for v in new if v not in old) if added: log.warning(" Members added: %s", ', '.join(map(str, added))) def find_epoch_vars(params): "Find variables used in a primary epoch definition" out = set() if params.get('sel'): out.update(find_variables(params['sel'])) if 'trigger_shift' in params and isinstance(params['trigger_shift'], str): out.add(params['trigger_shift']) if 'post_baseline_trigger_shift' in params: out.add(params['post_baseline_trigger_shift']) return out def find_epochs_vars(epochs): "Find variables used in all epochs" todo = list(epochs) out = {} while todo: for e in tuple(todo): p = epochs[e] if 'sel_epoch' in p: if p['sel_epoch'] in out: out[e] = find_epoch_vars(p) out[e].update(out[p['sel_epoch']]) todo.remove(e) elif 'sub_epochs' in p: if all(se in out for se in p['sub_epochs']): out[e] = find_epoch_vars(p) for se in p['sub_epochs']: out[e].update(out[se]) todo.remove(e) elif 'collect' in p: if all(se in out for se in p['collect']): out[e] = find_epoch_vars(p) for se in p['collect']: out[e].update(out[se]) todo.remove(e) else: out[e] = find_epoch_vars(p) todo.remove(e) return out def find_dependent_epochs(epoch, epochs): "Find all epochs whose definition depends on epoch" todo = set(epochs).difference(epoch) out = [epoch] while todo: last_len = len(todo) for e in tuple(todo): p = epochs[e] if 'sel_epoch' in p: if p['sel_epoch'] in out: out.append(e) todo.remove(e) elif 'sub_epochs' in p: if any(se in out for se in p['sub_epochs']): out.append(e) todo.remove(e) elif 'collect' in p: if any(se in out for se in p['collect']): out.append(e) todo.remove(e) else: todo.remove(e) if len(todo) == last_len: break return out[1:] def typed_arg(arg, type_): return None if arg is None else type_(arg)
python
4,698
from .categorical_categorical import binary_contingency from .continuous_categorical import ( binary_metrics, multi_dists, pr_curve, roc_auc_curve, two_dists, ) from .continuous_continuous import ( dense_plot, dense_regression, regression, scatter_grid, ) from .utils import as_si, colorize
python
327
"""Sample agent implementation""" import logging from rich import logging as rich_logging from ostorlab.agent import agent from ostorlab.agent import message as m logging.basicConfig( format='%(message)s', datefmt='[%X]', level='INFO', force=True, handlers=[rich_logging.RichHandler(rich_tracebacks=True)] ) logger = logging.getLogger(__name__) logger.setLevel('DEBUG') class HellWorldAgent(agent.Agent): """Hello world agent.""" def start(self) -> None: """TODO (author): add your description here.""" logger.info('running start') def process(self, message: m.Message) -> None: """TODO (author): add your description here. Args: message: Returns: """ # TODO (author): implement agent logic here. del message logger.info('processing message') self.emit('v3.healthcheck.ping', {'body': 'Hello World!'}) if __name__ == '__main__': logger.info('starting agent ...') HellWorldAgent.main()
python
1,028
# -*- coding: utf-8 -*- # File generated according to Generator/ClassesRef/Import/ImportVectorField.csv # WARNING! All changes made in this file will be lost! """Method code available at https://github.com/Eomys/pyleecan/tree/master/pyleecan/Methods/Import/ImportVectorField """ from os import linesep from sys import getsizeof from logging import getLogger from ._check import check_var, raise_ from ..Functions.get_logger import get_logger from ..Functions.save import save from ..Functions.copy import copy from ..Functions.load import load_init_dict from ..Functions.Load.import_class import import_class from ._frozen import FrozenClass # Import all class method # Try/catch to remove unnecessary dependencies in unused method try: from ..Methods.Import.ImportVectorField.get_data import get_data except ImportError as error: get_data = error from ._check import InitUnKnowClassError from .ImportData import ImportData class ImportVectorField(FrozenClass): """Abstract class for Data Import/Generation""" VERSION = 1 # cf Methods.Import.ImportVectorField.get_data if isinstance(get_data, ImportError): get_data = property( fget=lambda x: raise_( ImportError( "Can't use ImportVectorField method get_data: " + str(get_data) ) ) ) else: get_data = get_data # save and copy methods are available in all object save = save copy = copy # get_logger method is available in all object get_logger = get_logger def __init__( self, components=-1, name="", symbol="", init_dict=None, init_str=None ): """Constructor of the class. Can be use in three ways : - __init__ (arg1 = 1, arg3 = 5) every parameters have name and default values for pyleecan type, -1 will call the default constructor - __init__ (init_dict = d) d must be a dictionnary with property names as keys - __init__ (init_str = s) s must be a string s is the file path to load ndarray or list can be given for Vector and Matrix object or dict can be given for pyleecan Object""" if init_str is not None: # Load from a file init_dict = load_init_dict(init_str)[1] if init_dict is not None: # Initialisation by dict assert type(init_dict) is dict # Overwrite default value with init_dict content if "components" in list(init_dict.keys()): components = init_dict["components"] if "name" in list(init_dict.keys()): name = init_dict["name"] if "symbol" in list(init_dict.keys()): symbol = init_dict["symbol"] # Set the properties (value check and convertion are done in setter) self.parent = None self.components = components self.name = name self.symbol = symbol # The class is frozen, for now it's impossible to add new properties self._freeze() def __str__(self): """Convert this object in a readeable string (for print)""" ImportVectorField_str = "" if self.parent is None: ImportVectorField_str += "parent = None " + linesep else: ImportVectorField_str += ( "parent = " + str(type(self.parent)) + " object" + linesep ) if len(self.components) == 0: ImportVectorField_str += "components = dict()" + linesep for key, obj in self.components.items(): tmp = ( self.components[key].__str__().replace(linesep, linesep + "\t") + linesep ) ImportVectorField_str += ( "components[" + key + "] =" + tmp + linesep + linesep ) ImportVectorField_str += 'name = "' + str(self.name) + '"' + linesep ImportVectorField_str += 'symbol = "' + str(self.symbol) + '"' + linesep return ImportVectorField_str def __eq__(self, other): """Compare two objects (skip parent)""" if type(other) != type(self): return False if other.components != self.components: return False if other.name != self.name: return False if other.symbol != self.symbol: return False return True def compare(self, other, name="self"): """Compare two objects and return list of differences""" if type(other) != type(self): return ["type(" + name + ")"] diff_list = list() if (other.components is None and self.components is not None) or ( other.components is not None and self.components is None ): diff_list.append(name + ".components None mismatch") elif len(other.components) != len(self.components): diff_list.append("len(" + name + "components)") else: for key in self.components: diff_list.extend( self.components[key].compare( other.components[key], name=name + ".components" ) ) if other._name != self._name: diff_list.append(name + ".name") if other._symbol != self._symbol: diff_list.append(name + ".symbol") return diff_list def __sizeof__(self): """Return the size in memory of the object (including all subobject)""" S = 0 # Full size of the object if self.components is not None: for key, value in self.components.items(): S += getsizeof(value) + getsizeof(key) S += getsizeof(self.name) S += getsizeof(self.symbol) return S def as_dict(self): """Convert this object in a json seriable dict (can be use in __init__)""" ImportVectorField_dict = dict() if self.components is None: ImportVectorField_dict["components"] = None else: ImportVectorField_dict["components"] = dict() for key, obj in self.components.items(): if obj is not None: ImportVectorField_dict["components"][key] = obj.as_dict() else: ImportVectorField_dict["components"][key] = None ImportVectorField_dict["name"] = self.name ImportVectorField_dict["symbol"] = self.symbol # The class name is added to the dict for deserialisation purpose ImportVectorField_dict["__class__"] = "ImportVectorField" return ImportVectorField_dict def _set_None(self): """Set all the properties to None (except pyleecan object)""" self.components = None self.name = None self.symbol = None def _get_components(self): """getter of components""" if self._components is not None: for key, obj in self._components.items(): if obj is not None: obj.parent = self return self._components def _set_components(self, value): """setter of components""" if type(value) is dict: for key, obj in value.items(): if type(obj) is dict: class_obj = import_class( "pyleecan.Classes", obj.get("__class__"), "components" ) value[key] = class_obj(init_dict=obj) if type(value) is int and value == -1: value = dict() check_var("components", value, "{ImportData}") self._components = value components = property( fget=_get_components, fset=_set_components, doc=u"""Dict of components (e.g. {"radial": ImportData}) :Type: {ImportData} """, ) def _get_name(self): """getter of name""" return self._name def _set_name(self, value): """setter of name""" check_var("name", value, "str") self._name = value name = property( fget=_get_name, fset=_set_name, doc=u"""Name of the vector field :Type: str """, ) def _get_symbol(self): """getter of symbol""" return self._symbol def _set_symbol(self, value): """setter of symbol""" check_var("symbol", value, "str") self._symbol = value symbol = property( fget=_get_symbol, fset=_set_symbol, doc=u"""Symbol of the vector field :Type: str """, )
python
8,571
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Minimal runtime type checking library. This module should not be considered public API. """ # TODO(ericmc,shoyer): Delete this in favor of using pytype or mypy from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import functools import inspect import re # used for register_type_abbreviation and _type_repr below. _TYPE_ABBREVIATIONS = {} class Type(object): """Base class for type checker types. The custom types defined in this module are based on types in the standard library's typing module (in Python 3.5): https://docs.python.org/3/library/typing.html The only difference should be that we use actual instances of Type classes to represent custom types rather than the metaclass magic typing uses to create new class objects. In practice, all this should mean is that we use `List(int)` rather than `List[int]`. Custom types should implement __instancecheck__ and inherit from Type. Every argument in the constructor must be a type or Type instance, and these arguments must be stored as a tuple on the `_types` attribute. """ def __init__(self, *types): self._types = types def __repr__(self): args_repr = ", ".join(repr(t) for t in self._types) return "typecheck.%s(%s)" % (type(self).__name__, args_repr) class _SingleArgumentType(Type): """Use this subclass for parametric types that accept only one argument.""" def __init__(self, tpe): super(_SingleArgumentType, self).__init__(tpe) @property def _type(self): tpe, = self._types # pylint: disable=unbalanced-tuple-unpacking return tpe class _TwoArgumentType(Type): """Use this subclass for parametric types that accept two arguments.""" def __init__(self, first_type, second_type): super(_TwoArgumentType, self).__init__(first_type, second_type) class Union(Type): """A sum type. A correct type is any of the types provided. """ def __instancecheck__(self, instance): return isinstance(instance, self._types) class Optional(_SingleArgumentType): """An optional type. A correct type is either the provided type or NoneType. """ def __instancecheck__(self, instance): # types.NoneType does not exist in Python 3 return isinstance(instance, (self._type, type(None))) class List(_SingleArgumentType): """A typed list. A correct type is a list where each element has the single provided type. """ def __instancecheck__(self, instance): return (isinstance(instance, list) and all(isinstance(x, self._type) for x in instance)) class Sequence(_SingleArgumentType): """A typed sequence. A correct type is a sequence where each element has the single provided type. """ def __instancecheck__(self, instance): return (isinstance(instance, collections.Sequence) and all(isinstance(x, self._type) for x in instance)) class Collection(_SingleArgumentType): """A sized, iterable container. A correct type is an iterable and container with known size where each element has the single provided type. We use this in preference to Iterable because we check each instance of the iterable at runtime, and hence need to avoid iterables that could be exhausted. """ def __instancecheck__(self, instance): return (isinstance(instance, collections.Iterable) and isinstance(instance, collections.Sized) and isinstance(instance, collections.Container) and all(isinstance(x, self._type) for x in instance)) class Tuple(Type): """A typed tuple. A correct type is a tuple with the correct length where each element has the correct type. """ def __instancecheck__(self, instance): return (isinstance(instance, tuple) and len(instance) == len(self._types) and all(isinstance(x, t) for x, t in zip(instance, self._types))) class Mapping(_TwoArgumentType): """A typed mapping. A correct type has the correct parametric types for keys and values. """ def __instancecheck__(self, instance): key_type, value_type = self._types # pylint: disable=unbalanced-tuple-unpacking return (isinstance(instance, collections.Mapping) and all(isinstance(k, key_type) for k in instance.keys()) and all(isinstance(k, value_type) for k in instance.values())) class Dict(Mapping): """A typed dict. A correct type has the correct parametric types for keys and values. """ def __instancecheck__(self, instance): return (isinstance(instance, dict) and super(Dict, self).__instancecheck__(instance)) def _replace_forward_references(t, context): """Replace forward references in the given type.""" if isinstance(t, str): return context[t] elif isinstance(t, Type): return type(t)(*[_replace_forward_references(t, context) for t in t._types]) # pylint: disable=protected-access else: return t def register_type_abbreviation(name, alias): """Register an abbreviation for a type in typecheck tracebacks. This makes otherwise very long typecheck errors much more readable. Example: typecheck.register_type_abbreviation(tf.Dimension, 'tf.Dimension') Args: name: type or class to abbreviate. alias: string alias to substitute. """ _TYPE_ABBREVIATIONS[name] = alias def _type_repr(t): """A more succinct repr for typecheck tracebacks.""" string = repr(t) for type_, alias in _TYPE_ABBREVIATIONS.items(): string = string.replace(repr(type_), alias) string = re.sub(r"<(class|type) '([\w.]+)'>", r"\2", string) string = re.sub(r"typecheck\.(\w+)", r"\1", string) return string class Error(TypeError): """Exception for typecheck failures.""" def accepts(*types): """A decorator which checks the input types of a function. Based on: http://stackoverflow.com/questions/15299878/how-to-use-python-decorators-to-check-function-arguments The above draws from: https://www.python.org/dev/peps/pep-0318/ Args: *types: A list of Python types. Returns: A function to use as a decorator. """ def check_accepts(f): """Check the types.""" spec = inspect.getargspec(f) num_function_arguments = len(spec.args) if len(types) != num_function_arguments: raise Error( "Function %r has %d arguments but only %d types were provided in the " "annotation." % (f, num_function_arguments, len(types))) if spec.defaults: num_defaults = len(spec.defaults) for (name, a, t) in zip(spec.args[-num_defaults:], spec.defaults, types[-num_defaults:]): allowed_type = _replace_forward_references(t, f.__globals__) if not isinstance(a, allowed_type): raise Error("default argument value %r of type %r is not an instance " "of the allowed type %s for the %s argument to %r" % (a, type(a), _type_repr(allowed_type), name, f)) @functools.wraps(f) def new_f(*args, **kwds): """A helper function.""" for (a, t) in zip(args, types): allowed_type = _replace_forward_references(t, f.__globals__) if not isinstance(a, allowed_type): raise Error("%r of type %r is not an instance of the allowed type %s " "for %r" % (a, type(a), _type_repr(allowed_type), f)) return f(*args, **kwds) return new_f return check_accepts def returns(*types): """A decorator which checks the return types of a function. Based on: http://stackoverflow.com/questions/15299878/how-to-use-python-decorators-to-check-function-arguments The above draws from: https://www.python.org/dev/peps/pep-0318/ Args: *types: A list of Python types. A list of one element corresponds to a single return value. A list of several elements corresponds to several return values. Note that a function with no explicit return value has an implicit NoneType return and should be annotated correspondingly. Returns: A function to use as a decorator. """ def check_returns(f): """Check the types.""" if not types: raise TypeError("A return type annotation must contain at least one type") @functools.wraps(f) def new_f(*args, **kwds): """A helper function.""" return_value = f(*args, **kwds) if len(types) == 1: # The function has a single return value. allowed_type = _replace_forward_references(types[0], f.__globals__) if not isinstance(return_value, allowed_type): raise Error("%r of type %r is not an instance of the allowed type %s " "for %r" % (return_value, type(return_value), _type_repr(allowed_type), f)) else: if len(return_value) != len(types): raise Error( "Function %r has %d return values but only %d types were " "provided in the annotation." % (f, len(return_value), len(types))) for (r, t) in zip(return_value, types): allowed_type = _replace_forward_references(t, f.__globals__) if not isinstance(r, allowed_type): raise Error("%r of type %r is not an instance of allowed type %s " "for %r" % (r, type(r), _type_repr(allowed_type), f)) return return_value return new_f return check_returns
python
10,165
''' Problem 1: Write a program that accepts sequence of lines one by one in command line as input and prints the lines after making all characters in the sentence capitalized. Suppose the following input is supplied to the program: Hello world Practice makes perfect Then, the output should be: HELLO WORLD PRACTICE MAKES PERFECT ''' import re print("We are going to convert words entered by user to UpperCase") in_no_of_lines = input("Enter Number of Lines to Convert:") if not in_no_of_lines.isdigit(): print("Enter only number value for input line to begin!") else: no_of_lines=int(in_no_of_lines) text = "" line_num_initiate = 0 while line_num_initiate < no_of_lines: line = input() if not re.match(r'[A-Za-z ]+$', line): print("Only Alpha letters & Space are allowed.Rerun the Program to proceed Again!") break line_num_initiate += 1 text = text + "\n" + line.upper() if not text.strip() == "": print("Converted String Result:") print(text)
python
1,055
"""Contains show related classes.""" import tempfile import hashlib import os import re from collections import namedtuple from mpf.core.assets import Asset, AssetPool from mpf.core.config_validator import RuntimeToken from mpf.core.utility_functions import Util __api__ = ['Show', 'RunningShow', 'ShowPool'] ShowConfig = namedtuple("ShowConfig", ["name", "priority", "speed", "loops", "sync_ms", "manual_advance", "show_tokens", "events_when_played", "events_when_stopped", "events_when_looped", "events_when_paused", "events_when_resumed", "events_when_advanced", "events_when_stepped_back", "events_when_updated", "events_when_completed"]) class ShowPool(AssetPool): """A pool of shows.""" __slots__ = [] def __repr__(self): """Return str representation.""" return '<ShowPool: {}>'.format(self.name) @property def show(self): """Return the next show.""" # TODO: getters should not modify state #348 return self.asset # pylint: disable-msg=too-many-instance-attributes class Show(Asset): """A show which can be instantiated.""" attribute = 'shows' path_string = 'shows' config_section = 'shows' disk_asset_section = 'file_shows' extensions = tuple('yaml') class_priority = 100 pool_config_section = 'show_pools' asset_group_class = ShowPool __slots__ = ["_autoplay_settings", "tokens", "token_values", "token_keys", "name", "total_steps", "show_steps", "loaded", "mode"] # pylint: disable-msg=too-many-arguments def __init__(self, machine, name, file=None, config=None, data=None): """Initialise show.""" super().__init__(machine, name, file, config) self._autoplay_settings = dict() self._initialize_asset() self.tokens = set() self.token_values = dict() self.token_keys = dict() self.name = name self.total_steps = None self.show_steps = None if data: self._do_load_show(data=data) self.loaded = True def __lt__(self, other): """Compare two instances.""" return id(self) < id(other) def _initialize_asset(self): self.loaded = False self.show_steps = list() self.mode = None def do_load(self): """Load a show from disk.""" self._do_load_show(None) def _get_duration(self, data, step_num, total_step_time): total_steps_num = len(data) step = data[step_num] if 'duration' not in step: if step_num == total_steps_num - 1: # special case with an empty last step (but longer than 1 step) if 'time' in step and len(step) == 1 and step_num != 0: return False return 1 elif 'time' in data[step_num + 1]: next_step_time = data[step_num + 1]['time'] if str(next_step_time)[0] == "+": return Util.string_to_secs(next_step_time) else: if total_step_time < 0: # pragma: no cover self._show_validation_error("Absolute timing in step {} not possible because " "there was a duration of -1 before".format(step_num)) return Util.string_to_secs(next_step_time) - total_step_time else: return 1 else: if step_num < total_steps_num - 1 and 'time' in data[step_num + 1]: # pragma: no cover self._show_validation_error("Found invalid 'time' entry in step after {} which contains a duration. " "Remove either of them!".format(step_num)) return Util.string_to_secs(step['duration']) def _do_load_show(self, data): # do not use machine or the logger here because it will block self.show_steps = list() if not data and self.file: data = self.load_show_from_disk() # Pylint complains about the change from dict to list. This is intended and fine. if isinstance(data, dict): data = list(data) elif not isinstance(data, list): # pragma: no cover raise ValueError("Show {} does not appear to be a valid show " "config".format(self.file)) if not data: # pragma: no cover self._show_validation_error("Cannot load empty show") total_step_time = 0 # add empty first step if show does not start right away if 'time' in data[0] and data[0]['time'] != 0: self.show_steps.append({'duration': Util.string_to_secs(data[0]['time'])}) total_step_time = Util.string_to_secs(data[0]['time']) # Loop over all steps in the show file for step_num, step in enumerate(data): actions = dict() # Note: all times are stored/calculated in seconds. # Step time can be specified as either an absolute time elapsed # (from the beginning of the show) or a relative time (time elapsed # since the previous step). Time strings starting with a plus sign # (+) are treated as relative times. # Step times are all converted to relative times internally (time # since the previous step). # Make sure there is a time entry for each step in the show file. duration = self._get_duration(data, step_num, total_step_time) # special case: empty last step if duration is False: break elif duration == 0: # pragma: no cover self._show_validation_error("Step {} has 0 duration".format(step_num)) # Calculate the time since previous step actions['duration'] = duration if duration > 0 and total_step_time >= 0: total_step_time += duration else: total_step_time = -1 # Now process show step actions self._process_step_actions(step, actions) self.show_steps.append(actions) # Count how many total steps are in the show. We need this later # so we can know when we're at the end of a show self.total_steps = len(self.show_steps) if self.total_steps == 0: # pragma: no cover self._show_validation_error("Show is empty") self._get_tokens() def _show_validation_error(self, msg): # pragma: no cover if self.file: identifier = self.file else: identifier = self.name raise AssertionError("Show {}: {}".format(identifier, msg)) def _process_step_actions(self, step, actions): if not isinstance(step, dict): raise AssertionError("Steps in show {} need to be dicts.".format(self.name)) for key, value in step.items(): # key: the section of the show, like 'leds' # value: dic of express settings or dic of dics w full settings # check to see if we know how to process this kind of entry if key in self.machine.show_controller.show_players.keys(): actions[key] = self.machine.show_controller.show_players[key].validate_config_entry(value, self.name) elif key != 'duration' and key != 'time': # pragma: no cover self._show_validation_error('Invalid section "{}:" found in show {}'.format(key, self.name)) def _do_unload(self): self.show_steps = None def _get_tokens(self): self._walk_show(self.show_steps) def _walk_show(self, data, path=None, list_index=None): # walks a list of dicts, checking tokens if not path: path = list() if isinstance(data, dict): for k, v in data.items(): self._check_token(path, k, 'key') self._walk_show(v, path + [k]) elif isinstance(data, list): for i in data: self._check_token(path, i, 'key') if list_index is None: list_index = 0 else: list_index += 1 self._walk_show(i, path + [list_index], list_index) else: self._check_token(path, data, 'value') def get_show_steps(self, data='dummy_default!#$'): """Return a copy of the show steps.""" if data == 'dummy_default!#$': data = self.show_steps if isinstance(data, dict): new_dict = dict() for k, v in data.items(): new_dict[k] = self.get_show_steps(v) return new_dict elif isinstance(data, list): new_list = list() for i in data: new_list.append(self.get_show_steps(i)) return new_list return data def _check_token(self, path, data, token_type): if isinstance(data, RuntimeToken): self._add_token(data, data.token, path, token_type) return if not isinstance(data, str): return results = re.findall(r"\(([^)]+)\)", data) if results: for result in results: self._add_token(data, result, path, token_type) def _add_token(self, placeholder, token, path, token_type): if token not in self.tokens: self.tokens.add(token) if token_type == 'key': if token not in self.token_keys: self.token_keys[token] = list() self.token_keys[token].append(path + [placeholder]) elif token_type == 'value': if token not in self.token_values: self.token_values[token] = list() self.token_values[token].append(path) def play_with_config(self, show_config: ShowConfig, start_time=None, start_callback=None, stop_callback=None, start_step=None) -> "RunningShow": """Play this show with config.""" if self.loaded: show_steps = self.get_show_steps() else: show_steps = False if not start_time: start_time = self.machine.clock.get_time() running_show = RunningShow(machine=self.machine, show=self, show_steps=show_steps, start_time=start_time, start_step=int(start_step), callback=stop_callback, start_callback=start_callback, show_config=show_config) if not self.loaded: self.load(callback=running_show.show_loaded, priority=show_config.priority) return running_show # pylint: disable-msg=too-many-arguments # pylint: disable-msg=too-many-locals def play(self, priority=0, speed=1.0, start_step=1, callback=None, loops=-1, sync_ms=None, manual_advance=False, show_tokens=None, events_when_played=None, events_when_stopped=None, events_when_looped=None, events_when_paused=None, events_when_resumed=None, events_when_advanced=None, events_when_stepped_back=None, events_when_updated=None, events_when_completed=None, start_time=None, start_callback=None) -> "RunningShow": """Play a Show. There are many parameters you can use here which affect how the show is played. This includes things like the playback speed, priority, etc. These are all set when the show plays. (For example, you could have a Show file which lights a bunch of lights sequentially in a circle pattern, but you can have that circle "spin" as fast as you want depending on how you play the show.) Args: priority: Integer value of the relative priority of this show. If there's ever a situation where multiple shows want to control the same item, the one with the higher priority will win. ("Higher" means a bigger number, so a show with priority 2 will override a priority 1.) speed: Float of how fast your show runs. Your Show files specify step times in actual time values. When you play a show, you specify a playback rate factor that is applied to the time values in the show (divides the relative show times). The default value is 1.0 (uses the actual time values in specified in the show), but you might want to speed up (speed values > 1.0) or slow down (speed values < 1.0) the playback rate. If you want your show to play twice as fast (finish in half the time), you want all your time values to be half of the specified values in the show so you would use a speed value of 2.0. To make the show take twice as long to finish, you would a speed value of 0.5. start_step: Integer of which step in the show file the show should start in. Usually this is 1 (start at the beginning of the show) but it's nice to start part way through. Also used for restarting shows that you paused. A negative value will count backwards from the end (-1 is the last position, -2 is second to last, etc.). Note this is the "human readable" step, so the first step is 1, not 0. callback: A callback function that is invoked when the show is stopped. loops: Integer of how many times you want this show to repeat before stopping. A value of -1 means that it repeats indefinitely. If the show only has one step, loops will be set to 0, regardless of the actual number of loops sync_ms: Number of ms of the show sync cycle. A value of zero means this show will also start playing immediately. A value of None means the mpf:default_show_sync_ms will be used. manual_advance: Boolean that controls whether this show should be advanced manually (e.g. time values are ignored and the show doesn't move to the next step until it's told to.) Default is False. show_tokens: Replacement tokens for the show Returns: The RunningShow() instance if this show plays now, or False if the show is not loaded. (In this case the show will be loaded and will automatically play once its loaded.) """ if not show_tokens: show_tokens = dict() # todo if we want to enforce that show_tokens match the tokens in the # show exactly, uncomment below and remove the following if. # however we don't do this today because of the default 'off' show # that's used since it has lights and leds, so we'll have to think # about this. # if set(show_tokens.keys()) != self.tokens: # raise ValueError('Token mismatch while playing show "{}". Tokens ' # 'expected: {}. Tokens submitted: {}'.format( # self.name, self.tokens, set(show_tokens.keys()))) if not set(show_tokens.keys()).issubset(self.tokens): # pragma: no cover raise ValueError('Token mismatch while playing show "{}". Tokens ' 'expected: {}. Tokens submitted: {}'. format(self.name, self.tokens, set(show_tokens.keys()))) show_config = self.machine.show_controller.create_show_config( self.name, priority, speed, loops, sync_ms, manual_advance, show_tokens, events_when_played, events_when_stopped, events_when_looped, events_when_paused, events_when_resumed, events_when_advanced, events_when_stepped_back, events_when_updated, events_when_completed) return self.play_with_config(show_config, start_time, start_callback, callback, start_step) @staticmethod def _get_mpfcache_file_name(file_name): cache_dir = tempfile.gettempdir() path_hash = str(hashlib.md5(bytes(file_name, 'UTF-8')).hexdigest()) # nosec result = os.path.join(cache_dir, path_hash) return result + ".mpf_cache" def load_show_from_disk(self): """Load show from disk.""" return self.machine.config_processor.load_config_files_with_cache( [self.file], "show", load_from_cache=not self.machine.options['no_load_cache'], store_to_cache=self.machine.options['create_config_cache']) # This class is more or less a container # pylint: disable-msg=too-many-instance-attributes class RunningShow(object): """A running instance of a show.""" __slots__ = ["machine", "show", "show_steps", "show_config", "callback", "start_step", "start_callback", "_delay_handler", "next_step_index", "current_step_index", "next_step_time", "name", "loops", "id", "_players", "debug", "_stopped", "_show_loaded", "_total_steps", "context"] # pylint: disable-msg=too-many-arguments # pylint: disable-msg=too-many-locals def __init__(self, machine, show, show_steps, start_step, callback, start_time, start_callback, show_config): """Initialise an instance of a show.""" self.machine = machine self.show = show self.show_steps = show_steps self.show_config = show_config self.callback = callback self.start_step = start_step self.start_callback = start_callback self._delay_handler = None self.next_step_index = None self.current_step_index = None self.next_step_time = start_time self.name = show.name self.loops = self.show_config.loops self.id = self.machine.show_controller.get_next_show_id() self.context = "show_{}".format(self.id) self._players = set() # if show_tokens: # self.show_tokens = show_tokens # else: # self.show_tokens = dict() self.debug = False self._stopped = False self._total_steps = None if show_steps: self._show_loaded = True self._start_play() else: self._show_loaded = False def show_loaded(self, show): """Handle that a deferred show was loaded. Start playing the show as if it started earlier. """ del show self._show_loaded = True self.show_steps = self.show.get_show_steps() self._start_play() def _start_play(self): if self._stopped: return self._total_steps = len(self.show_steps) if self.start_step > 0: self.next_step_index = self.start_step - 1 elif self.start_step < 0: self.next_step_index = self.start_step % self._total_steps else: self.next_step_index = 0 if self.show_config.show_tokens and self.show.tokens: self._replace_token_values(**self.show_config.show_tokens) self._replace_token_keys(**self.show_config.show_tokens) # Figure out the show start time if self.show_config.sync_ms: # calculate next step based on synchronized start time self.next_step_time += (self.show_config.sync_ms / 1000.0) - (self.next_step_time % (self.show_config.sync_ms / 1000.0)) # but wait relative to real time delay_secs = self.next_step_time - self.machine.clock.get_time() self._delay_handler = self.machine.clock.schedule_once( self._start_now, delay_secs) else: # run now self._start_now() def _post_events(self, actions): for action in actions: events = getattr(self.show_config, "events_when_{}".format(action), None) if events: for event in events: self.machine.events.post(event) def __repr__(self): """Return str representation.""" return 'Running Show Instance: "{}" {} {}'.format(self.name, self.show_config.show_tokens, self.next_step_index) def _replace_token_values(self, **kwargs): for token, replacement in kwargs.items(): if token in self.show.token_values: for token_path in self.show.token_values[token]: target = self.show_steps for x in token_path[:-1]: target = target[x] if isinstance(target[token_path[-1]], RuntimeToken): target[token_path[-1]] = target[token_path[-1]].validator_function(replacement, None) elif target[token_path[-1]] == "(" + token + ")": target[token_path[-1]] = replacement else: target[token_path[-1]] = target[token_path[-1]].replace("(" + token + ")", replacement) def _replace_token_keys(self, **kwargs): keys_replaced = dict() # pylint: disable-msg=too-many-nested-blocks for token, replacement in kwargs.items(): if token in self.show.token_keys: key_name = '({})'.format(token) for token_path in self.show.token_keys[token]: target = self.show_steps token_str = "" for x in token_path[:-1]: if token_str in keys_replaced: x = keys_replaced[token_str + str(x) + "-"] token_str += str(x) + "-" target = target[x] use_string_replace = bool(token_path[-1] != "(" + token + ")") final_key = token_path[-1] if final_key in keys_replaced: final_key = keys_replaced[final_key] if use_string_replace: replaced_key = final_key.replace("(" + token + ")", replacement) else: replaced_key = replacement if final_key in target: target[replaced_key] = target.pop(final_key) else: raise KeyError("Could not find token {} ({}) in {}".format(final_key, key_name, target)) keys_replaced[token_str] = replaced_key @property def stopped(self): """Return if stopped.""" return self._stopped def stop(self): """Stop show.""" if self._stopped: return self._stopped = True # if the start callback has never been called then call it now if self.start_callback: self.start_callback() self.start_callback = None self._remove_delay_handler() # clear context in used players for player in self._players: self.machine.show_controller.show_players[player].show_stop_callback(self.context) self._players = set() if self.callback and callable(self.callback): self.callback() self._post_events(['stopped']) def _remove_delay_handler(self): if self._delay_handler: self.machine.clock.unschedule(self._delay_handler) self._delay_handler = None def pause(self): """Pause show.""" self._remove_delay_handler() self._post_events(['paused']) def resume(self): """Resume paused show.""" if not self._show_loaded: return self.next_step_time = self.machine.clock.get_time() self._run_next_step(post_events='resumed') def update(self, **kwargs): """Update show. Not implemented yet. """ # todo raise NotImplementedError("Show update is not implemented yet. It's " "coming though...") # don't forget this when we implement this feature # self._post_events(['updated']) def advance(self, steps=1, show_step=None): """Manually advance this show to the next step.""" self._remove_delay_handler() if steps != 1: self.next_step_index += steps - 1 elif show_step is not None: if not isinstance(show_step, int) or show_step < 0: raise AssertionError('Cannot advance {} to step "{}" as that is' 'not a valid step number.'.format(self, show_step)) self.next_step_index = show_step - 1 if self._show_loaded: self._run_next_step(post_events='advanced') def step_back(self, steps=1): """Manually step back this show to a previous step.""" self._remove_delay_handler() self.next_step_index -= steps + 1 if self._show_loaded: self._run_next_step(post_events='stepped_back') def _start_now(self) -> None: """Start playing the show.""" if self.start_callback: self.start_callback() self.start_callback = None self._run_next_step(post_events='played') def _run_next_step(self, post_events=None) -> None: """Run the next show step.""" events = [] if post_events: events.append(post_events) if self.next_step_index < 0: self.next_step_index %= self._total_steps # if we're at the end of the show if self.next_step_index >= self._total_steps: if self.loops > 0: self.loops -= 1 self.next_step_index = 0 events.append('looped') elif self.loops < 0: self.next_step_index = 0 events.append('looped') else: self.stop() events.append("completed") self._post_events(events) return self.current_step_index = self.next_step_index for item_type, item_dict in self.show_steps[self.current_step_index].items(): if item_type == 'duration': continue player = self.machine.show_controller.show_players.get(item_type, None) if not player: raise ValueError("Invalid entry in show: {}".format(item_type)) player.show_play_callback( settings=item_dict, context=self.context, calling_context=self.current_step_index, priority=self.show_config.priority, show_tokens=self.show_config.show_tokens, start_time=self.next_step_time) self._players.add(item_type) self._post_events(events) self.next_step_index += 1 time_to_next_step = self.show_steps[self.current_step_index]['duration'] / self.show_config.speed if not self.show_config.manual_advance and time_to_next_step > 0: self.next_step_time += time_to_next_step self._delay_handler = self.machine.clock.schedule_once(self._run_next_step, self.next_step_time - self.machine.clock.get_time())
python
27,796
# -*- coding: utf-8 -*- from openprocurement.auctions.core.constants import STATUS4ROLE from openprocurement.auctions.core.utils import ( save_auction, apply_patch, opresource, get_file, upload_file, update_file_content_type, json_view, context_unpack, APIResource, ) from openprocurement.auctions.core.validation import ( validate_file_update, validate_file_upload, validate_patch_document_data, ) @opresource(name='rubbleOther:Auction Complaint Documents', collection_path='/auctions/{auction_id}/complaints/{complaint_id}/documents', path='/auctions/{auction_id}/complaints/{complaint_id}/documents/{document_id}', auctionsprocurementMethodType="rubbleOther", description="Auction complaint documents") class AuctionComplaintDocumentResource(APIResource): @json_view(permission='view_auction') def collection_get(self): """Auction Complaint Documents List""" if self.request.params.get('all', ''): collection_data = [i.serialize("view") for i in self.context.documents] else: collection_data = sorted(dict([ (i.id, i.serialize("view")) for i in self.context.documents ]).values(), key=lambda i: i['dateModified']) return {'data': collection_data} @json_view(validators=(validate_file_upload,), permission='edit_complaint') def collection_post(self): """Auction Complaint Document Upload """ if self.request.validated['auction_status'] not in ['active.tendering', 'active.auction', 'active.qualification', 'active.awarded']: self.request.errors.add('body', 'data', 'Can\'t add document in current ({}) auction status'.format(self.request.validated['auction_status'])) self.request.errors.status = 403 return if self.context.status not in STATUS4ROLE.get(self.request.authenticated_role, []): self.request.errors.add('body', 'data', 'Can\'t add document in current ({}) complaint status'.format(self.context.status)) self.request.errors.status = 403 return document = upload_file(self.request) document.author = self.request.authenticated_role self.context.documents.append(document) if save_auction(self.request): self.LOGGER.info('Created auction complaint document {}'.format(document.id), extra=context_unpack(self.request, {'MESSAGE_ID': 'auction_complaint_document_create'}, {'document_id': document.id})) self.request.response.status = 201 document_route = self.request.matched_route.name.replace("collection_", "") self.request.response.headers['Location'] = self.request.current_route_url(_route_name=document_route, document_id=document.id, _query={}) return {'data': document.serialize("view")} @json_view(permission='view_auction') def get(self): """Auction Complaint Document Read""" if self.request.params.get('download'): return get_file(self.request) document = self.request.validated['document'] document_data = document.serialize("view") document_data['previousVersions'] = [ i.serialize("view") for i in self.request.validated['documents'] if i.url != document.url ] return {'data': document_data} @json_view(validators=(validate_file_update,), permission='edit_complaint') def put(self): """Auction Complaint Document Update""" if self.request.authenticated_role != self.context.author: self.request.errors.add('url', 'role', 'Can update document only author') self.request.errors.status = 403 return if self.request.validated['auction_status'] not in ['active.tendering', 'active.auction', 'active.qualification', 'active.awarded']: self.request.errors.add('body', 'data', 'Can\'t update document in current ({}) auction status'.format(self.request.validated['auction_status'])) self.request.errors.status = 403 return if self.request.validated['complaint'].status not in STATUS4ROLE.get(self.request.authenticated_role, []): self.request.errors.add('body', 'data', 'Can\'t update document in current ({}) complaint status'.format(self.request.validated['complaint'].status)) self.request.errors.status = 403 return document = upload_file(self.request) document.author = self.request.authenticated_role self.request.validated['complaint'].documents.append(document) if save_auction(self.request): self.LOGGER.info('Updated auction complaint document {}'.format(self.request.context.id), extra=context_unpack(self.request, {'MESSAGE_ID': 'auction_complaint_document_put'})) return {'data': document.serialize("view")} @json_view(content_type="application/json", validators=(validate_patch_document_data,), permission='edit_complaint') def patch(self): """Auction Complaint Document Update""" if self.request.authenticated_role != self.context.author: self.request.errors.add('url', 'role', 'Can update document only author') self.request.errors.status = 403 return if self.request.validated['auction_status'] not in ['active.tendering', 'active.auction', 'active.qualification', 'active.awarded']: self.request.errors.add('body', 'data', 'Can\'t update document in current ({}) auction status'.format(self.request.validated['auction_status'])) self.request.errors.status = 403 return if self.request.validated['complaint'].status not in STATUS4ROLE.get(self.request.authenticated_role, []): self.request.errors.add('body', 'data', 'Can\'t update document in current ({}) complaint status'.format(self.request.validated['complaint'].status)) self.request.errors.status = 403 return if apply_patch(self.request, src=self.request.context.serialize()): update_file_content_type(self.request) self.LOGGER.info('Updated auction complaint document {}'.format(self.request.context.id), extra=context_unpack(self.request, {'MESSAGE_ID': 'auction_complaint_document_patch'})) return {'data': self.request.context.serialize("view")}
python
6,538
# Generated by Django 3.0.2 on 2020-05-19 08:21 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import uuid class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Author', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('first_name', models.CharField(max_length=100)), ('last_name', models.CharField(max_length=100)), ('date_of_birth', models.DateField(blank=True, help_text='yyyy-mm-dd', null=True)), ('date_of_death', models.DateField(blank=True, help_text='yyyy-mm-dd', null=True, verbose_name='Died')), ], options={ 'ordering': ['last_name', 'first_name'], }, ), migrations.CreateModel( name='BlogPost', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('post', models.TextField(help_text='What is the body of your blog post.')), ('pub_date', models.DateField(auto_now_add=True)), ('pub_time', models.TimeField(auto_now_add=True)), ], options={ 'ordering': ['-pub_date', '-pub_time'], }, ), migrations.CreateModel( name='Book', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200)), ('summary', models.TextField(help_text='Enter a brief description of the book', max_length=1000)), ('isbn', models.CharField(help_text='13 Character <a href="https://www.isbn-international.org/content/what-isbn">ISBN number</a>', max_length=13, verbose_name='ISBN')), ('author', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='catalog.Author')), ], options={ 'ordering': ['title'], }, ), migrations.CreateModel( name='Genre', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(help_text='Enter a book genre (e.g. Science Fiction)', max_length=200)), ], ), migrations.CreateModel( name='Language', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(help_text='What language is this print in?', max_length=25)), ], ), migrations.CreateModel( name='BookInstance', fields=[ ('id', models.UUIDField(default=uuid.uuid4, help_text='Unique ID for this particular book across whole library', primary_key=True, serialize=False)), ('imprint', models.CharField(max_length=200)), ('borrowed_on', models.DateField(blank=True, null=True)), ('due_back', models.DateField(blank=True, null=True)), ('status', models.CharField(blank=True, choices=[('m', 'Maintenance'), ('o', 'On loan'), ('a', 'Available'), ('r', 'Reserved')], default='m', help_text='Book availability', max_length=1)), ('book', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='catalog.Book')), ('borrower', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ['due_back'], 'permissions': (('can_mark_returned', 'Set book as returned'),), }, ), migrations.AddField( model_name='book', name='genre', field=models.ManyToManyField(help_text='Select a genre for this book', to='catalog.Genre'), ), migrations.AddField( model_name='book', name='language', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='catalog.Language'), ), ]
python
4,601
# Copyright (c) 2020 Graphcore Ltd. All rights reserved. """ Tests covering various CNN training options using the ResNet model. """ import glob import json import os import portpicker import statistics import subprocess import sys import tempfile import tensorflow as tf import time import unittest import pytest from test_common import get_csv, parse_csv, run_train, cifar10_data_dir @pytest.mark.category1 class TestBasicFunctionality(unittest.TestCase): """ Test that the help option works""" def test_help(self): help_out = run_train(**{'--help': ''}) self.assertNotEqual(help_out.find("usage: train.py"), -1) @pytest.mark.category2 @pytest.mark.ipus(1) class TestMisc(unittest.TestCase): """Some miscellaneous options""" @classmethod def setUpClass(cls): out = run_train(**{'--data-dir': cifar10_data_dir, '--name-suffix': 'penguin', '--log-dir': 'logs/walrus', '--iterations': 10, '--batches-per-step': 10}) cls.logdir = None for line in out.split('\n'): if line.find('Saving to ') != -1: cls.logdir = line[11:] break cls.validation = get_csv(out, 'validation.csv') cls.training = get_csv(out, 'training.csv') def test_results(self): # test_logdir self.assertEqual(self.logdir[:12], 'logs/walrus/') # test_name_suffix self.assertNotEqual(self.logdir.find('penguin'), -1) @pytest.mark.category2 @pytest.mark.ipus(1) class TestCifar10Training(unittest.TestCase): """Testing some basic training parameters""" @classmethod def setUpClass(cls): out = run_train(**{'--data-dir': cifar10_data_dir, '--epochs': 10, '--warmup-epochs': 0, '--learning-rate-decay': '0.1', '--learning-rate-schedule': '0.5,0.75,0.875'}) cls.validation = get_csv(out, 'validation.csv') cls.training = get_csv(out, 'training.csv') def test_results(self): # test_final_validation_accuracy final_acc = self.validation['val_acc'][-1] self.assertGreater(final_acc, 80) self.assertLess(final_acc, 87) # test_final_training_accuracy final_acc = self.training['train_acc_avg'][-1] self.assertGreater(final_acc, 80) self.assertLess(final_acc, 87) # test_learning_rates self.assertEqual(self.training['lr'][0], 0.5) self.assertEqual(self.training['lr'][-1], 0.0005) # test_epochs_completed self.assertEqual(round(self.training['epoch'][-1]), 10) @pytest.mark.category2 @pytest.mark.ipus(1) class TestCifar10FullTraining(unittest.TestCase): """Fast training of Cifar-10 to good accuracy""" @classmethod def setUpClass(cls): out = run_train(**{'--data-dir': cifar10_data_dir, '--epochs': 50, '--batch-size': 48, '--warmup-epochs': 2, '--lr-schedule': 'cosine', '--label-smoothing': '0.05', '--base-learning-rate': -5, '--precision': '16.32'}) cls.validation = get_csv(out, 'validation.csv') cls.training = get_csv(out, 'training.csv') def test_results(self): # test_final_validation_accuracy final_acc = statistics.median(self.validation['val_acc'][-3:-1]) self.assertGreater(final_acc, 89.0) self.assertLess(final_acc, 91.0) # test_final_training_accuracy final_acc = self.training['train_acc_avg'][-1] self.assertGreater(final_acc, 96) self.assertLess(final_acc, 98) # test_final_loss self.assertLess(self.training['loss_batch'][-1], 0.45) self.assertGreater(self.training['loss_batch'][-1], 0.35) # test_epochs_completed self.assertEqual(round(self.training['epoch'][-1]), 50) @pytest.mark.category2 @pytest.mark.ipus(1) class TestResNet50SingleIPUTraining(unittest.TestCase): """ResNet-50 example on a single IPU. This is differs from the command line in the README: here we are testing with generated random data and only 10 iterations. """ @classmethod def setUpClass(cls): out = run_train(**{'--generated-data': '', '--dataset': 'ImageNet', '--model-size': 50, '--batch-size': 1, '--available-memory-proportion': 0.1, '--iterations': 10, '--batches-per-step': 10}) cls.validation = get_csv(out, 'validation.csv') cls.training = get_csv(out, 'training.csv') def test_iterations_completed(self): self.assertEqual(self.training['iteration'][-1], 10) @pytest.mark.category2 @pytest.mark.ipus(2) class TestResNet50Pipelining2IPUs(unittest.TestCase): """Pipelined ResNet-50 from the README but with generated random data and only 10 iterations. """ @classmethod def setUpClass(cls): out = run_train(**{'--iterations': 10, '--batches-per-step': 10, '--dataset': 'imagenet', '--generated-data': '', '--model-size': 50, '--shards': 2, '--pipeline': '', '--gradient-accumulation-count': 256, '--batch-size': 2, '--no-validation': '', '--enable-recomputation': '', '--available-memory-proportion': 0.1, '--pipeline-splits': 'b3/1/relu'}) cls.training = get_csv(out, 'training.csv') def test_iterations_completed(self): self.assertEqual(self.training['iteration'][-1], 10) self.assertGreater(self.training['loss_batch'][-1], 0) @pytest.mark.category2 @pytest.mark.ipus(4) class TestResNet50Pipelining2IPUs2Replicas(unittest.TestCase): """Pipelined and replicated ResNet-50 from the README but with generated random data and only 10 iterations. """ @classmethod def setUpClass(cls): out = run_train(**{'--iterations': 10, '--batches-per-step': 10, '--dataset': 'imagenet', '--generated-data': '', '--model-size': 50, '--shards': 2, '--replicas': 2, '--pipeline': '', '--gradient-accumulation-count': 128, '--pipeline-schedule': 'Grouped', '--batch-size': 2, '--no-validation': '', '--enable-recomputation': '', '--available-memory-proportion': 0.1, '--pipeline-splits': 'b3/0/relu'}) cls.training = get_csv(out, 'training.csv') def test_iterations_completed(self): self.assertEqual(self.training['iteration'][-1], 10) self.assertGreater(self.training['loss_batch'][-1], 0) @pytest.mark.category2 @pytest.mark.ipus(2) class TestReplicatedTraining(unittest.TestCase): """Using replicas for data parallelism""" @classmethod def setUpClass(cls): out = run_train(**{'--data-dir': cifar10_data_dir, '--model': 'resnet', '--lr-schedule': 'stepped', '--learning-rate-decay': 0.5, '--learning-rate-schedule': '0.5,0.9', '--epochs': 20, '--replicas': 2}) cls.validation = get_csv(out, 'validation.csv') cls.training = get_csv(out, 'training.csv') def test_results(self): # test_final_training_accuracy final_acc = self.training['train_acc_avg'][-1] self.assertGreater(final_acc, 85) self.assertLess(final_acc, 95) # test_epochs_completed self.assertEqual(round(self.training['epoch'][-1]), 20) @pytest.mark.category1 @pytest.mark.ipus(1) class TestLotsOfOptions(unittest.TestCase): """Testing lots of other options to check they are still available""" @classmethod def setUpClass(cls): out = run_train(**{'--dataset': 'cifar-10', '--epochs': 10, '--model-size': 14, '--batch-norm': '', '--pipeline-num-parallel': 8, '--generated-data': '', '--batch-size': 16, '--base-learning-rate': -4, '--precision': '32.32', '--seed': 1234, '--warmup-epochs': 0, '--no-stochastic-rounding': '', '--batches-per-step': 100 }) cls.validation = get_csv(out, 'validation.csv') cls.training = get_csv(out, 'training.csv') # We're mostly just testing that training still runs with all the above options. def test_results(self): # test_learning_rate self.assertEqual(self.training['lr'][0], 1.0) # test_epoch self.assertEqual(int(self.validation['epoch'][-1] + 0.5), 10) @pytest.mark.category1 @pytest.mark.ipus(16) class TestPopdist(unittest.TestCase): """Testing training with popdist launched using poprun.""" def test_resnet8(self): NUM_TOTAL_REPLICAS = 4 NUM_INSTANCES = 2 NUM_LOCAL_REPLICAS = NUM_TOTAL_REPLICAS // NUM_INSTANCES with tempfile.TemporaryDirectory() as logdir: # The buildbot runs as root, so let's allow that. cmd = [ 'poprun', '--mpi-global-args=--tag-output --allow-run-as-root', '--num-replicas=' + str(NUM_TOTAL_REPLICAS), '--num-instances=' + str(NUM_INSTANCES), '--vipu-server-timeout=600', sys.executable, 'train.py', '--dataset=cifar-10', '--generated-data', '--model-size=8', '--batch-size=1', '--batches-per-step=10', '--gradient-accumulation-count=10', '--no-validation', '--no-stochastic-rounding', '--iterations=100', '--warmup-epochs=0', '--log-dir', logdir, '--name-suffix', 'popdist_instance', '--ckpt-all-instances', "true", '--log-all-instances', "true", '--on-demand' ] # Add some debug logging. extra_env = { 'POPRUN_LOG_LEVEL': 'TRACE', 'TF_CPP_VMODULE': 'poplar_compiler=1,poplar_executor=1', } cwd = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) env = os.environ.copy() env.update(extra_env) subprocess.check_call(cmd, cwd=cwd, env=env) instance_logdirs = glob.glob(f"{logdir}/*_popdist_instance_*") self.assertEqual(len(instance_logdirs), NUM_INSTANCES) training_logs = [] for instance_logdir in instance_logdirs: # Check that each instance got the correct number of replicas from popdist. with open(os.path.join(instance_logdir, 'arguments.json'), 'r') as f: argument_log = json.load(f) self.assertEqual(argument_log['replicas'], NUM_LOCAL_REPLICAS) # Check that the final accuracy is decent. training_log = parse_csv(os.path.join(instance_logdir, 'training.csv')) self.assertGreater(training_log['train_acc_avg'][-1], 95) training_logs.append(training_log) # The final training accuracy should be the same on all instances. for i in range(1, NUM_INSTANCES): self.assertEqual( training_logs[0]['train_acc_avg'][-1], training_logs[i]['train_acc_avg'][-1]) # The final training loss should be the same on all instances. for i in range(1, NUM_INSTANCES): self.assertEqual( training_logs[0]['loss_avg'][-1], training_logs[i]['loss_avg'][-1]) # The final weights should be the same on all instances. var_names_and_shapes = tf.train.list_variables(instance_logdirs[0]) for var_name, _ in var_names_and_shapes: value_instance_0 = tf.train.load_variable(instance_logdirs[0], var_name) for i in range(1, NUM_INSTANCES): value_instance_i = tf.train.load_variable(instance_logdirs[i], var_name) self.assertListEqual(value_instance_0.tolist(), value_instance_i.tolist()) @pytest.mark.category3 @pytest.mark.ipus(16) class TestDistributedTraining(unittest.TestCase): """Testing distributed training with multiple processes on a single machine with 16 IPUs.""" def test_resnet_50_from_readme(self): NUM_WORKERS = 2 WORKER_TIMEOUT_SECONDS = 60 * 60 with tempfile.TemporaryDirectory() as logdir: cmd = [ 'python3', 'train.py', '--dataset=imagenet', '--generated-data', '--model-size=50', '--batch-size=4', '--batches-per-step=1', '--shards=4', '--pipeline', '--gradient-accumulation-count=64', '--pipeline-splits', 'b1/2/relu', 'b2/3/relu', 'b3/5/relu', '--enable-recomputation', '--replicas=2', # Instead of 4 to make two processes fit on one machine. '--distributed', '--no-stochastic-rounding', '--no-validation', '--iterations=100', '--learning-rate-schedule=1', '--base-learning-rate=-14', '--log-dir', logdir, '--ckpt-all-instances', "true", '--log-all-instances', "true", '--on-demand' ] extra_env = { 'POPLAR_ENGINE_OPTIONS': '{"opt.maxCopyMergeSize": 8388608}', } cwd = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) worker_ports = self._pick_unique_unused_ports(NUM_WORKERS) cluster_spec = { 'worker': ['localhost:%s' % port for port in worker_ports] } processes = self._start_processes_with_tf_config(cmd, cwd, extra_env, cluster_spec) self._wait_for_processes(processes, WORKER_TIMEOUT_SECONDS) worker_log_dirs = self._find_worker_log_dirs(NUM_WORKERS, logdir) training_logs = [parse_csv(os.path.join(d, "training.csv")) for d in worker_log_dirs] # The final training accuracy should be the same on all workers. for i in range(1, NUM_WORKERS): self.assertEqual( training_logs[0]['train_acc_avg'][-1], training_logs[i]['train_acc_avg'][-1]) # The final training loss should be the same on all workers. for i in range(1, NUM_WORKERS): self.assertEqual( training_logs[0]['loss_avg'][-1], training_logs[i]['loss_avg'][-1]) # The final weights should be the same on all workers. var_names_and_shapes = tf.train.list_variables(worker_log_dirs[0]) for var_name, _ in var_names_and_shapes: value_worker_0 = tf.train.load_variable(worker_log_dirs[0], var_name) for i in range(1, NUM_WORKERS): value_worker_i = tf.train.load_variable(worker_log_dirs[i], var_name) self.assertListEqual(value_worker_0.tolist(), value_worker_i.tolist()) @staticmethod def _start_processes_with_tf_config(cmd, cwd, extra_env, cluster_spec): processes = [] for i in range(len(cluster_spec['worker'])): env = os.environ.copy() env.update(extra_env) env["TF_CONFIG"] = json.dumps({ "cluster": cluster_spec, "task": { "type": "worker", "index": i } }) p = subprocess.Popen(cmd + ["--name-suffix", f"worker{i}"], cwd=cwd, env=env) processes.append(p) return processes @staticmethod def _pick_unique_unused_ports(num_ports): ports = set() while len(ports) < num_ports: ports.add(portpicker.pick_unused_port()) return list(ports) @staticmethod def _wait_for_processes(processes, timeout): start_time = time.monotonic() remaining = processes[:] try: while remaining: p = remaining[0] elapsed = time.monotonic() - start_time returncode = p.wait(timeout - elapsed) # Only pop after a successful wait to allow for clean up. remaining.pop(0) if returncode != 0: raise subprocess.CalledProcessError(returncode, cmd=" ".join(p.args)) finally: # Try to clean up by killing any processes still alive. for p in remaining: p.kill() @staticmethod def _find_worker_log_dirs(num_workers, logdir): worker_log_dirs = [] for i in range(num_workers): logdirs = glob.glob(f"{logdir}/*_worker{i}_*") if len(logdirs) != 1: raise RuntimeError(f"Expected 1 worker dir, found {len(logdirs)}: {logdirs}") worker_log_dirs.append(logdirs[0]) return worker_log_dirs @pytest.mark.category1 @pytest.mark.ipus(1) class TestConfig(unittest.TestCase): """Testing lots of other options to check they are still available""" @classmethod def setUpClass(cls): out = run_train(**{'--config': 'mk2_resnet8_test', '--data-dir': cifar10_data_dir, }) cls.training = get_csv(out, 'training.csv') def test_results(self): # test the cmd line arg overrode config arg self.assertEqual(int(self.training['epoch'][-1]), 10) @pytest.mark.category2 @pytest.mark.ipus(2) @pytest.mark.ipu_version("ipu2") class TestResNet50RecomputeDbnTraining(unittest.TestCase): """ResNet-50 example on two IPUs with distributed batch norm and recompute. """ @classmethod def setUpClass(cls): out = run_train(**{'--generated-data': '', '--dataset': 'ImageNet', '--model-size': 50, '--batch-size': 8, '--available-memory-proportion': 0.1, '--iterations': 10, '--BN-span': 2, '--internal-exchange-optimisation-target': 'memory', '--pipeline': '', '--gradient-accumulation-count': 2, '--pipeline-schedule': 'Sequential', '--enable-recomputation': '', '--pipeline-splits': 'b1/0/relu', '--eight-bit': '', '--replicas': 2, '--enable-half-partials': '', '--disable-variable-offloading': '', '--batch-norm': '', '--normalise-input': '' }) cls.validation = get_csv(out, 'validation.csv') cls.training = get_csv(out, 'training.csv') def test_iterations_completed(self): self.assertEqual(self.training['iteration'][-1], 500)
python
20,493
import secrets import string import traceback from ceph.ceph import CommandFailed from tests.cephfs.cephfs_utilsV1 import FsUtils from utility.log import Log log = Log(__name__) def run(ceph_cluster, **kw): """ CEPH-83574027 - Ensure creation of Subvolgroups, subvolumes works on NFS exports and run IO from nfs clients Pre-requisites: 1. Create cephfs volume creats fs volume create <vol_name> 2. Create nfs cluster ceph nfs cluster create <nfs_name> <nfs_server> Test operation: 1. Create cephfs nfs export ceph nfs export create cephfs <fs_name> <nfs_name> <nfs_export_name> path=<export_path> 2. Crete 2 cephfs subvolume group 3. Create cephfs subvolume in cephfs subvolume group 4. Create cephfs subvolume in deafault cephfs subvolume group 5. Mount nfs mount with cephfs export "mount -t nfs -o port=2049 <nfs_server>:<nfs_export> <nfs_mounting_dir> 7. Verify subvolume groups & subvolumes are created 6. Run IOs on both cephfs subvolumegroups & subvolumes Clean-up: 1. Remove all the data in Cephfs file system 2. Remove all the cephfs mounts 3. Delete cephfs nfs export """ try: tc = "CEPH-83574027" log.info(f"Running cephfs {tc} test case") config = kw["config"] build = config.get("build", config.get("rhbuild")) fs_util = FsUtils(ceph_cluster) clients = ceph_cluster.get_ceph_objects("client") client1 = clients[0] fs_util.prepare_clients(clients, build) fs_util.auth_list(clients) mon_node_ip = fs_util.get_mon_node_ips() mon_node_ip = ",".join(mon_node_ip) rhbuild = config.get("rhbuild") nfs_servers = ceph_cluster.get_ceph_objects("nfs") nfs_server = nfs_servers[0].node.hostname nfs_name = "cephfs-nfs" nfs_export_name = "/export_" + "".join( secrets.choice(string.digits) for i in range(3) ) export_path = "/" fs_name = "cephfs" nfs_mounting_dir = "/mnt/nfs_" + "".join( secrets.choice(string.ascii_uppercase + string.digits) for i in range(5) ) if "5.0" in rhbuild: client1.exec_command( sudo=True, cmd=f"ceph nfs export create cephfs {fs_name} {nfs_name} " f"{nfs_export_name} path={export_path}", ) else: client1.exec_command( sudo=True, cmd=f"ceph nfs export create cephfs {nfs_name} " f"{nfs_export_name} {fs_name} path={export_path}", ) subvolumegroup_list = [ { "vol_name": fs_name, "group_name": "subvolgroup_1", }, { "vol_name": fs_name, "group_name": "subvolgroup_2", }, ] for subvolumegroup in subvolumegroup_list: fs_util.create_subvolumegroup(clients[0], **subvolumegroup) subvolume_list = [ { "vol_name": fs_name, "subvol_name": "subvol_1", "group_name": "subvolgroup_1", "size": "5368706371", }, { "vol_name": fs_name, "subvol_name": "subvol_2", "size": "5368706371", }, ] for subvolume in subvolume_list: fs_util.create_subvolume(clients[0], **subvolume) commands = [ f"mkdir -p {nfs_mounting_dir}", f"mount -t nfs -o port=2049 {nfs_server}:{nfs_export_name} {nfs_mounting_dir}", ] for command in commands: client1.exec_command(sudo=True, cmd=command) out, rc = client1.exec_command(sudo=True, cmd=f"ls {nfs_mounting_dir}/volumes/") if "subvolgroup_1" not in out: raise CommandFailed("Subvolume group 1 creation failed") if "subvolgroup_2" not in out: raise CommandFailed("Subvolume group 2 creation failed") out, rc = client1.exec_command( sudo=True, cmd=f"ls {nfs_mounting_dir}/volumes/subvolgroup_1" ) if "subvol_1" not in out: raise CommandFailed("Subvolume creation in subvolume group failed") out, rc = client1.exec_command( sudo=True, cmd=f"ls {nfs_mounting_dir}/volumes/_nogroup" ) if "subvol_2" not in out: raise CommandFailed("Subvolume creation in default subvolume group failed") commands = [ f"python3 /home/cephuser/smallfile/smallfile_cli.py --operation create --threads 10 --file-size 4 --files" f" 1000 --files-per-dir 10 --dirs-per-dir 2 --top {nfs_mounting_dir}/volumes/subvolgroup_1/subvol_1", f"python3 /home/cephuser/smallfile/smallfile_cli.py --operation read --threads 10 --file-size 4 --files" f" 1000 --files-per-dir 10 --dirs-per-dir 2 --top {nfs_mounting_dir}/volumes/subvolgroup_1/subvol_1", f"python3 /home/cephuser/smallfile/smallfile_cli.py --operation create --threads 10 --file-size 8 " f"--files 2000 --files-per-dir 5 --dirs-per-dir 5 --top {nfs_mounting_dir}/volumes/_nogroup/subvol_2/", f"python3 /home/cephuser/smallfile/smallfile_cli.py --operation read --threads 10 --file-size 8 " f"--files 2000 --files-per-dir 5 --dirs-per-dir 5 --top {nfs_mounting_dir}/volumes/_nogroup/subvol_2/", f"python3 /home/cephuser/smallfile/smallfile_cli.py --operation create --threads 5 --file-size 16 " f"--files 4000 --files-per-dir 20 --dirs-per-dir 4 --top {nfs_mounting_dir}/volumes/subvolgroup_2", f"python3 /home/cephuser/smallfile/smallfile_cli.py --operation read --threads 5 --file-size 16 " f"--files 4000 --files-per-dir 20 --dirs-per-dir 4 --top {nfs_mounting_dir}/volumes/subvolgroup_2", ] for command in commands: client1.exec_command(sudo=True, cmd=command, long_running=True) log.info("Test completed successfully") return 0 except Exception as e: log.info(e) log.info(traceback.format_exc()) return 1 finally: log.info("Cleaning up") client1.exec_command(sudo=True, cmd=f"rm -rf {nfs_mounting_dir}/*") client1.exec_command(sudo=True, cmd=f"umount {nfs_mounting_dir}") client1.exec_command( sudo=True, cmd=f"ceph nfs export delete {nfs_name} {nfs_export_name}", check_ec=False, )
python
6,570
import sys from lmsbreaker import Breaker #данные пользователя username = "username" password = "password" #номер юнита, который хотим решить unit_num = 0 #минимальный и максимальный процент выполнения каждого задания percent_min = 90 percent_max = 100 breaker = Breaker() try: breaker.login(username, password) units = breaker.get_units() breaker.attempt(units, units[unit_num], percent_min, percent_max) print("Юнит успешно выполнен.") except: print("Произошла ошибка! Юнит не был решен. Попробуйте еще раз.") print(sys.exc_info()) finally: #всегда закрываем сессию breaker.logout()
python
648
import typing from commands2 import CommandBase from subsystems.drivesubsystem import DriveSubsystem class FieldRelativeDrive(CommandBase): def __init__( self, drive: DriveSubsystem, forward: typing.Callable[[], float], sideways: typing.Callable[[], float], rotation: typing.Callable[[], float], ) -> None: CommandBase.__init__(self) self.setName(__class__.__name__) self.drive = drive self.forward = forward self.sideways = sideways self.rotation = rotation self.addRequirements([self.drive]) self.setName(__class__.__name__) def execute(self) -> None: self.drive.arcadeDriveWithFactors( self.forward(), self.sideways(), self.rotation(), DriveSubsystem.CoordinateMode.FieldRelative, )
python
871
#!/usr/bin/env python3 class Body: def __init__(self): self.bodyParts = [] self.bodyType = None return def __str__(self): return self.getAllBodyParts() def __len__(self): return len(self.bodyParts) def getAllBodyParts(self): theBody = "" for part in bodyParts: theBody += part return theBody def addBodyPart(self,bodyPart,bodyPartType): if( "" == bodyPartType ): # do something elif( "" == bodyPartType ): # do something elif( "" == bodyPartType ): # do something else: # do default something return class BodyPart: def __init__(self): return def __str__(self): return self.something() def __len__(self): return len(self.sometin) def somethingElse(self): return class Header: def __init__(self): self.headers = [] self.headerType = None def __str__(self): return self.getFullHeader() def __len__(self): return len(headers) def appendHeaderLine(self, line): self.headers.append(line) self.headers[len(self.headers)-1] = self.headers[len(self.headers)-1].rstrip("\r\n") def getFullHeader(self): strHeader = "" #strHeader += "DEBUG-Header-Type:" #strHeader += "None" if None == self.headerType else self.headerType #strHeader += "///" for line in self.headers: strHeader += line strHeader += "\n" return strHeader # Received: from # the name the sending computer gave for itself (the name associated with that computer's IP address [its IP address]) # by # the receiving computer's name (the software that computer uses) (usually Sendmail, qmail or Postfix) # with protocol (usually SMTP, ESMTP or ESMTPS) # id id assigned by local computer for logging; # timestamp (usually given in the computer's localtime; see below for how you can convert these all to your time) class ReceivedHeader(Header): def __init__(self): super().__init__() self.headerType = "RECEIVED" self.receivedFromSelfIdent = None self.receivedFromFQDN = None self.receivedFromIP = None self.receivedByFQDN = None self.receivedByIP = None self.receivedBySoftware = None self.receivedByProtocol = None self.receivedByID = None self.receivedTimestampStr = None self.receivedTimestampUTC = None self.EnvelopeFrom = None self.EnvelopeTo = None self.misc = None def parse(self): self.receivedFromSelfIdent = None self.receivedFromFQDN = None self.receivedFromIP = None self.receivedByFQDN = None self.receivedByIP = None self.receivedBySoftware = None self.receivedByProtocol = None self.receivedByID = None self.receivedTimestampStr = None self.receivedTimestampUTC = None self.EnvelopeFrom = None self.EnvelopeTo = None self.misc = None # From: tokens [822] class FromHeader(Header): def __init__(self): super().__init__() self.headerType = "FROM" self.addressList = None def parse(self): self.addressList = None # To: tokens [822] class ToHeader(Header): def __init__(self): super().__init__() self.headerType = "TO" self.addressList = None def parse(self): self.addressList = None # Cc: tokens [822] class CCHeader(Header): def __init__(self): super().__init__() self.headerType = "CC" self.addressList = None def parse(self): self.addressList = None # Bcc: user tokens [822] class BCCHeader(Header): def __init__(self): super().__init__() self.headerType = "BCC" self.addressList = None def parse(self): self.addressList = None # Sender: tokens [822] class SenderHeader(Header): def __init__(self): super().__init__() self.headerType = "SENDER" self.addressList = None def parse(self): self.addressList = None # Reply-To: tokens [822] class ReplyToHeader(Header): def __init__(self): super().__init__() self.headerType = "REPLYTO" self.addressList = None def parse(self): self.addressList = None # Date: tokens [822] class DateHeader(Header): def __init__(self): super().__init__() self.headerType = "DATE" def parse(self): self.dateStr = None # Subject: [822] class SubjectHeader(Header): def __init__(self): super().__init__() self.headerType = "SUBJECT" def parse(self): self.subjectStr = None # Message-ID: tokens [822] class MessageIDHeader(Header): def __init__(self): super().__init__() self.headerType = "MESSAGEID" def parse(self): self.messageIDStr = None # Content-Type: # Base Types: # Content-Type: application # Content-Type: audio # Content-Type: chemical # Content-Type: image # Content-Type: message # Content-Type: model # Content-Type: multipart # Content-Type: text # Content-Type: video # Content-Type: x-conference # Examples: # Content-Type: application/andrew-inset # Content-Type: application/applixware # Content-Type: application/atomcat+xml # Content-Type: application/atomsvc+xml # Content-Type: application/atom+xml # Content-Type: application/cals-1840 # Content-Type: application/ccxml+xml, # Content-Type: application/cdmi-capability # Content-Type: application/cdmi-container # Content-Type: application/cdmi-domain # Content-Type: application/cdmi-object # Content-Type: application/cdmi-queue # Content-Type: application/cu-seeme # Content-Type: application/davmount+xml # Content-Type: application/dssc+der # Content-Type: application/dssc+xml # Content-Type: application/ecmascript # Content-Type: application/emma+xml # Content-Type: application/epub+zip # Content-Type: application/exi # Content-Type: application/font-tdpfr # Content-Type: application/hyperstudio # Content-Type: application/ipfix # Content-Type: application/java-archive # Content-Type: application/javascript # Content-Type: application/java-serialized-object # Content-Type: application/java-vm # Content-Type: application/json # Content-Type: application/mac-binhex40 # Content-Type: application/mac-compactpro # Content-Type: application/mads+xml # Content-Type: application/marc # Content-Type: application/marcxml+xml # Content-Type: application/mathematica # Content-Type: application/mathml+xml # Content-Type: application/mbox # Content-Type: application/mediaservercontrol+xml # Content-Type: application/metalink4+xml # Content-Type: application/mets+xml # Content-Type: application/mods+xml # Content-Type: application/mp21 # Content-Type: application/mp4 # Content-Type: application/msword # Content-Type: application/mxf # Content-Type: application/news-message-id # Content-Type: application/news-transmission # Content-Type: application/octet-stream # Content-Type: application/octet-stream; # Content-Type: application/octet-stream; name="Resume.pdf" # Content-Type: application/oda # Content-Type: application/oebps-package+xml # Content-Type: application/ogg # Content-Type: application/onenote # Content-Type: application/patch-ops-error+xml # Content-Type: application/pdf # Content-Type: application/pdf; name=RSAC17InvoiceReceipt.pdf # Content-Type: application/pgp-encrypted # Content-Type: application/pgp-keys # Content-Type: application/pgp-signature # Content-Type: application/pics-rules # Content-Type: application/pkcs10 # Content-Type: application/pkcs7-mime # Content-Type: application/pkcs7-MIME # Content-Type: application/pkcs7-signature # Content-Type: application/pkcs8 # Content-Type: application/pkix-attr-cert # Content-Type: application/pkix-cert # Content-Type: application/pkixcmp # Content-Type: application/pkix-crl # Content-Type: application/pkix-pkipath # Content-Type: application/pls+xml # Content-Type: application/postscript # Content-Type: application/prs.cww # Content-Type: application/pskc+xml # Content-Type: application/rdf+xml # Content-Type: application/reginfo+xml # Content-Type: application/relax-ng-compact-syntax # Content-Type: application/remote-printing # Content-Type: application/resource-lists-diff+xml # Content-Type: application/resource-lists+xml # Content-Type: application/rls-services+xml # Content-Type: application/rsd+xml # Content-Type: application/rss+xml # Content-Type: application/rtf # Content-Type: application/sbml+xml # Content-Type: application/scvp-cv-request # Content-Type: application/scvp-cv-response # Content-Type: application/scvp-vp-request # Content-Type: application/scvp-vp-response # Content-Type: application/sdp # Content-Type: application/set-payment-initiation # Content-Type: application/set-registration-initiation # Content-Type: application/sgml # Content-Type: application/shf+xml # Content-Type: application/smil+xml # Content-Type: application/sparql-query # Content-Type: application/sparql-results+xml # Content-Type: application/srgs # Content-Type: application/srgs+xml # Content-Type: application/sru+xml # Content-Type: application/ssml+xml # Content-Type: application/tei+xml # Content-Type: application/thraud+xml # Content-Type: application/timestamped-data # Content-Type: application/vnd.3gpp2.tcap # Content-Type: application/vnd.3gpp.pic-bw-large # Content-Type: application/vnd.3gpp.pic-bw-small # Content-Type: application/vnd.3gpp.pic-bw-var # Content-Type: application/vnd.3m.post-it-notes # Content-Type: application/vnd.accpac.simply.aso # Content-Type: application/vnd.accpac.simply.imp # Content-Type: application/vnd.acucobol # Content-Type: application/vnd.acucorp # Content-Type: application/vnd.adobe.air-application-installer-package+zip # Content-Type: application/vnd.adobe.fxp # Content-Type: application/vnd.adobe.xdp+xml # Content-Type: application/vnd.adobe.xfdf # Content-Type: application/vnd.ahead.space # Content-Type: application/vnd.airzip.filesecure.azf # Content-Type: application/vnd.airzip.filesecure.azs # Content-Type: application/vnd.amazon.ebook # Content-Type: application/vnd.americandynamics.acc # Content-Type: application/vnd.amiga.ami # Content-Type: application/vnd.android.package-archive # Content-Type: application/vnd.anser-web-certificate-issue-initiation # Content-Type: application/vnd.anser-web-funds-transfer-initiation # Content-Type: application/vnd.antix.game-component # Content-Type: application/vnd.apple.installer+xml # Content-Type: application/vnd.apple.mpegurl # Content-Type: application/vnd.aristanetworks.swi # Content-Type: application/vnd.audiograph # Content-Type: application/vnd.blueice.multipass # Content-Type: application/vnd.bmi # Content-Type: application/vnd.businessobjects # Content-Type: application/vnd.chemdraw+xml # Content-Type: application/vnd.chipnuts.karaoke-mmd # Content-Type: application/vnd.cinderella # Content-Type: application/vnd.claymore # Content-Type: application/vnd.cloanto.rp9 # Content-Type: application/vnd.clonk.c4group # Content-Type: application/vnd.cluetrust.cartomobile-config # Content-Type: application/vnd.cluetrust.cartomobile-config-pkg # Content-Type: application/vnd.commonspace # Content-Type: application/vnd.contact.cmsg # Content-Type: application/vnd.cosmocaller # Content-Type: application/vnd.crick.clicker # Content-Type: application/vnd.crick.clicker.keyboard # Content-Type: application/vnd.crick.clicker.palette # Content-Type: application/vnd.crick.clicker.template # Content-Type: application/vnd.crick.clicker.wordbank # Content-Type: application/vnd.criticaltools.wbs+xml # Content-Type: application/vnd.ctc-posml # Content-Type: application/vnd.cups-ppd # Content-Type: application/vnd.curl.car # Content-Type: application/vnd.curl.pcurl # Content-Type: application/vnd.data-vision.rdz # Content-Type: application/vnd.denovo.fcselayout-link # Content-Type: application/vnd.dna # Content-Type: application/vnd.dolby.mlp # Content-Type: application/vnd.dpgraph # Content-Type: application/vnd.dreamfactory # Content-Type: application/vnd.dvb.ait # Content-Type: application/vnd.dvb.service # Content-Type: application/vnd.dynageo # Content-Type: application/vnd.ecowin.chart # Content-Type: application/vnd.enliven # Content-Type: application/vnd.epson.esf # Content-Type: application/vnd.epson.msf # Content-Type: application/vnd.epson.quickanime # Content-Type: application/vnd.epson.salt # Content-Type: application/vnd.epson.ssf # Content-Type: application/vnd.eszigno3+xml # Content-Type: application/vnd.ezpix-album # Content-Type: application/vnd.ezpix-package # Content-Type: application/vnd.fdf # Content-Type: application/vnd.fdsn.seed # Content-Type: application/vnd.flographit # Content-Type: application/vnd.fluxtime.clip # Content-Type: application/vnd.framemaker # Content-Type: application/vnd.frogans.fnc # Content-Type: application/vnd.frogans.ltf # Content-Type: application/vnd.fsc.weblaunch # Content-Type: application/vnd.fujitsu.oasys # Content-Type: application/vnd.fujitsu.oasys2 # Content-Type: application/vnd.fujitsu.oasys3 # Content-Type: application/vnd.fujitsu.oasysgp # Content-Type: application/vnd.fujitsu.oasysprs # Content-Type: application/vnd.fujixerox.ddd # Content-Type: application/vnd.fujixerox.docuworks # Content-Type: application/vnd.fujixerox.docuworks.binder # Content-Type: application/vnd.fuzzysheet # Content-Type: application/vnd.genomatix.tuxedo # Content-Type: application/vnd.geogebra.file # Content-Type: application/vnd.geogebra.tool # Content-Type: application/vnd.geometry-explorer # Content-Type: application/vnd.geonext # Content-Type: application/vnd.geoplan # Content-Type: application/vnd.geospace # Content-Type: application/vnd.gmx # Content-Type: application/vnd.google-earth.kml+xml # Content-Type: application/vnd.google-earth.kmz # Content-Type: application/vnd.grafeq # Content-Type: application/vnd.groove-account # Content-Type: application/vnd.groove-help # Content-Type: application/vnd.groove-identity-message # Content-Type: application/vnd.groove-injector # Content-Type: application/vnd.groove-tool-message # Content-Type: application/vnd.groove-tool-template # Content-Type: application/vnd.groove-vcard # Content-Type: application/vnd.hal+xml # Content-Type: application/vnd.handheld-entertainment+xml # Content-Type: application/vnd.hbci # Content-Type: application/vnd.hhe.lesson-player # Content-Type: application/vnd.hp-hpgl # Content-Type: application/vnd.hp-hpid # Content-Type: application/vnd.hp-hps # Content-Type: application/vnd.hp-jlyt # Content-Type: application/vnd.hp-pcl # Content-Type: application/vnd.hp-pclxl # Content-Type: application/vnd.hydrostatix.sof-data # Content-Type: application/vnd.hzn-3d-crossword # Content-Type: application/vnd.ibm.minipay # Content-Type: application/vnd.ibm.modcap # Content-Type: application/vnd.ibm.rights-management # Content-Type: application/vnd.ibm.secure-container # Content-Type: application/vnd.iccprofile # Content-Type: application/vnd.igloader # Content-Type: application/vnd.immervision-ivp # Content-Type: application/vnd.immervision-ivu # Content-Type: application/vnd.insors.igm # Content-Type: application/vnd.intercon.formnet # Content-Type: application/vnd.intergeo # Content-Type: application/vnd.intu.qbo # Content-Type: application/vnd.intu.qfx # Content-Type: application/vnd.ipunplugged.rcprofile # Content-Type: application/vnd.irepository.package+xml # Content-Type: application/vnd.isac.fcs # Content-Type: application/vnd.is-xpr # Content-Type: application/vnd.jam # Content-Type: application/vnd.jcp.javame.midlet-rms # Content-Type: application/vnd.jisp # Content-Type: application/vnd.joost.joda-archive # Content-Type: application/vnd.kahootz # Content-Type: application/vnd.kde.karbon # Content-Type: application/vnd.kde.kchart # Content-Type: application/vnd.kde.kformula # Content-Type: application/vnd.kde.kivio # Content-Type: application/vnd.kde.kontour # Content-Type: application/vnd.kde.kpresenter # Content-Type: application/vnd.kde.kspread # Content-Type: application/vnd.kde.kword # Content-Type: application/vnd.kenameaapp # Content-Type: application/vnd.kidspiration # Content-Type: application/vnd.kinar # Content-Type: application/vnd.koan # Content-Type: application/vnd.kodak-descriptor # Content-Type: application/vnd.las.las+xml # Content-Type: application/vnd.llamagraphics.life-balance.desktop # Content-Type: application/vnd.llamagraphics.life-balance.exchange+xml # Content-Type: application/vnd.lotus-1-2-3 # Content-Type: application/vnd.lotus-approach # Content-Type: application/vnd.lotus-freelance # Content-Type: application/vnd.lotus-notes # Content-Type: application/vnd.lotus-organizer # Content-Type: application/vnd.lotus-screencam # Content-Type: application/vnd.lotus-wordpro # Content-Type: application/vnd.macports.portpkg # Content-Type: application/vnd.mcd # Content-Type: application/vnd.medcalcdata # Content-Type: application/vnd.mediastation.cdkey # Content-Type: application/vnd.mfer # Content-Type: application/vnd.mfmp # Content-Type: application/vnd.micrografx.flo # Content-Type: application/vnd.micrografx.igx # Content-Type: application/vnd.mif # Content-Type: application/vnd.mobius.daf # Content-Type: application/vnd.mobius.dis # Content-Type: application/vnd.mobius.mbk # Content-Type: application/vnd.mobius.mqy # Content-Type: application/vnd.mobius.msl # Content-Type: application/vnd.mobius.plc # Content-Type: application/vnd.mobius.txf # Content-Type: application/vnd.mophun.application # Content-Type: application/vnd.mophun.certificate # Content-Type: application/vnd.mozilla.xul+xml # Content-Type: application/vnd.ms-artgalry # Content-Type: application/vnd.ms-cab-compressed # Content-Type: application/vnd.mseq # Content-Type: application/vnd.ms-excel # Content-Type: application/vnd.ms-excel.addin.macroenabled.12 # Content-Type: application/vnd.ms-excel.sheet.binary.macroenabled.12 # Content-Type: application/vnd.ms-excel.sheet.macroenabled.12 # Content-Type: application/vnd.ms-excel.template.macroenabled.12 # Content-Type: application/vnd.ms-fontobject # Content-Type: application/vnd.ms-htmlhelp # Content-Type: application/vnd.ms-ims # Content-Type: application/vnd.ms-lrm # Content-Type: application/vnd.ms-officetheme # Content-Type: application/vnd.ms-pki.seccat # Content-Type: application/vnd.ms-pki.stl # Content-Type: application/vnd.ms-powerpoint # Content-Type: application/vnd.ms-powerpoint.addin.macroenabled.12 # Content-Type: application/vnd.ms-powerpoint.presentation.macroenabled.12 # Content-Type: application/vnd.ms-powerpoint.slide.macroenabled.12 # Content-Type: application/vnd.ms-powerpoint.slideshow.macroenabled.12 # Content-Type: application/vnd.ms-powerpoint.template.macroenabled.12 # Content-Type: application/vnd.ms-project # Content-Type: application/vnd.ms-word.document.macroenabled.12 # Content-Type: application/vnd.ms-word.template.macroenabled.12 # Content-Type: application/vnd.ms-works # Content-Type: application/vnd.ms-wpl # Content-Type: application/vnd.ms-xpsdocument # Content-Type: application/vnd.musician # Content-Type: application/vnd.muvee.style # Content-Type: application/vnd.neurolanguage.nlu # Content-Type: application/vnd.noblenet-directory # Content-Type: application/vnd.noblenet-sealer # Content-Type: application/vnd.noblenet-web # Content-Type: application/vnd.nokia.n-gage.data # Content-Type: application/vnd.nokia.n-gage.symbian.install # Content-Type: application/vnd.nokia.radio-preset # Content-Type: application/vnd.nokia.radio-presets # Content-Type: application/vnd.novadigm.edm # Content-Type: application/vnd.novadigm.edx # Content-Type: application/vnd.novadigm.ext # Content-Type: application/vnd.oasis.opendocument.chart # Content-Type: application/vnd.oasis.opendocument.chart-template # Content-Type: application/vnd.oasis.opendocument.database # Content-Type: application/vnd.oasis.opendocument.formula # Content-Type: application/vnd.oasis.opendocument.formula-template # Content-Type: application/vnd.oasis.opendocument.graphics # Content-Type: application/vnd.oasis.opendocument.graphics-template # Content-Type: application/vnd.oasis.opendocument.image # Content-Type: application/vnd.oasis.opendocument.image-template # Content-Type: application/vnd.oasis.opendocument.presentation # Content-Type: application/vnd.oasis.opendocument.presentation-template # Content-Type: application/vnd.oasis.opendocument.spreadsheet # Content-Type: application/vnd.oasis.opendocument.spreadsheet-template # Content-Type: application/vnd.oasis.opendocument.text # Content-Type: application/vnd.oasis.opendocument.text-master # Content-Type: application/vnd.oasis.opendocument.text-template # Content-Type: application/vnd.oasis.opendocument.text-web # Content-Type: application/vnd.olpc-sugar # Content-Type: application/vnd.oma.dd2+xml # Content-Type: application/vnd.openofficeorg.extension # Content-Type: application/vnd.openxmlformats-officedocument.presentationml.presentation # Content-Type: application/vnd.openxmlformats-officedocument.presentationml.slide # Content-Type: application/vnd.openxmlformats-officedocument.presentationml.slideshow # Content-Type: application/vnd.openxmlformats-officedocument.presentationml.template # Content-Type: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet # Content-Type: application/vnd.openxmlformats-officedocument.spreadsheetml.template # Content-Type: application/vnd.openxmlformats-officedocument.wordprocessingml.document # Content-Type: application/vnd.openxmlformats-officedocument.wordprocessingml.template # Content-Type: application/vnd.osgeo.mapguide.package # Content-Type: application/vnd.osgi.dp # Content-Type: application/vnd.palm # Content-Type: application/vnd.pawaafile # Content-Type: application/vnd.pg.format # Content-Type: application/vnd.pg.osasli # Content-Type: application/vnd.picsel # Content-Type: application/vnd.pmi.widget # Content-Type: application/vnd.pocketlearn # Content-Type: application/vnd.powerbuilder6 # Content-Type: application/vnd.previewsystems.box # Content-Type: application/vnd.proteus.magazine # Content-Type: application/vnd.publishare-delta-tree # Content-Type: application/vnd.pvi.ptid1 # Content-Type: application/vnd.quark.quarkxpress # Content-Type: application/vnd.realvnc.bed # Content-Type: application/vnd.recordare.musicxml # Content-Type: application/vnd.recordare.musicxml+xml # Content-Type: application/vnd.rig.cryptonote # Content-Type: application/vnd.rim.cod # Content-Type: application/vnd.rn-realmedia # Content-Type: application/vnd.route66.link66+xml # Content-Type: application/vnd.sailingtracker.track # Content-Type: application/vnd.seemail # Content-Type: application/vnd.sema # Content-Type: application/vnd.semd # Content-Type: application/vnd.semf # Content-Type: application/vnd.shana.informed.formdata # Content-Type: application/vnd.shana.informed.formtemplate # Content-Type: application/vnd.shana.informed.interchange # Content-Type: application/vnd.shana.informed.package # Content-Type: application/vnd.simtech-mindmapper # Content-Type: application/vnd.smaf # Content-Type: application/vnd.smart.teacher # Content-Type: application/vnd.solent.sdkm+xml # Content-Type: application/vnd.spotfire.dxp # Content-Type: application/vnd.spotfire.sfs # Content-Type: application/vnd.stardivision.calc # Content-Type: application/vnd.stardivision.draw # Content-Type: application/vnd.stardivision.impress # Content-Type: application/vnd.stardivision.math # Content-Type: application/vnd.stardivision.writer # Content-Type: application/vnd.stardivision.writer-global # Content-Type: application/vnd.stepmania.stepchart # Content-Type: application/vnd.sun.xml.calc # Content-Type: application/vnd.sun.xml.calc.template # Content-Type: application/vnd.sun.xml.draw # Content-Type: application/vnd.sun.xml.draw.template # Content-Type: application/vnd.sun.xml.impress # Content-Type: application/vnd.sun.xml.impress.template # Content-Type: application/vnd.sun.xml.math # Content-Type: application/vnd.sun.xml.writer # Content-Type: application/vnd.sun.xml.writer.global # Content-Type: application/vnd.sun.xml.writer.template # Content-Type: application/vnd.sus-calendar # Content-Type: application/vnd.svd # Content-Type: application/vnd.symbian.install # Content-Type: application/vnd.syncml.dm+wbxml # Content-Type: application/vnd.syncml.dm+xml # Content-Type: application/vnd.syncml+xml # Content-Type: application/vnd.tao.intent-module-archive # Content-Type: application/vnd.tmobile-livetv # Content-Type: application/vnd.trid.tpt # Content-Type: application/vnd.triscape.mxs # Content-Type: application/vnd.trueapp # Content-Type: application/vnd.ufdl # Content-Type: application/vnd.uiq.theme # Content-Type: application/vnd.umajin # Content-Type: application/vnd.unity # Content-Type: application/vnd.uoml+xml # Content-Type: application/vnd.vcx # Content-Type: application/vnd.visio # Content-Type: application/vnd.visio2013 # Content-Type: application/vnd.visionary # Content-Type: application/vnd.vsf # Content-Type: application/vnd.wap.wbxml # Content-Type: application/vnd.wap.wmlc # Content-Type: application/vnd.wap.wmlscriptc # Content-Type: application/vnd.webturbo # Content-Type: application/vnd.wolfram.player # Content-Type: application/vnd.wordperfect # Content-Type: application/vnd.wqd # Content-Type: application/vnd.wt.stf # Content-Type: application/vnd.xara # Content-Type: application/vnd.xfdl # Content-Type: application/vnd.yamaha.hv-dic # Content-Type: application/vnd.yamaha.hv-script # Content-Type: application/vnd.yamaha.hv-voice # Content-Type: application/vnd.yamaha.openscoreformat # Content-Type: application/vnd.yamaha.openscoreformat.osfpvg+xml # Content-Type: application/vnd.yamaha.smaf-audio # Content-Type: application/vnd.yamaha.smaf-phrase # Content-Type: application/vnd.yellowriver-custom-menu # Content-Type: application/vnd.zul # Content-Type: application/vnd.zzazz.deck+xml # Content-Type: application/voicexml+xml # Content-Type: application/widget # Content-Type: application/winhlp # Content-Type: application/wsdl+xml # Content-Type: application/wspolicy+xml # Content-Type: application/x400-bp # Content-Type: application/x-7z-compressed # Content-Type: application/x-abiword # Content-Type: application/x-ace-compressed # Content-Type: application/x-apple-diskimage # Content-Type: application/x-authorware-bin # Content-Type: application/x-authorware-map # Content-Type: application/x-authorware-seg # Content-Type: application/x-bcpio # Content-Type: application/x-bittorrent # Content-Type: application/x-bzip # Content-Type: application/x-bzip2 # Content-Type: application/xcap-diff+xml # Content-Type: application/x-cdlink # Content-Type: application/x-chat # Content-Type: application/x-chess-pgn # Content-Type: application/x-cpio # Content-Type: application/x-csh # Content-Type: application/x-debian-package # Content-Type: application/x-director # Content-Type: application/x-doom # Content-Type: application/x-dtbncx+xml # Content-Type: application/x-dtbook+xml # Content-Type: application/x-dtbresource+xml # Content-Type: application/x-dvi # Content-Type: application/xenc+xml # Content-Type: application/x-font-bdf # Content-Type: application/x-font-ghostscript # Content-Type: application/x-font-linux-psf # Content-Type: application/x-font-otf # Content-Type: application/x-font-pcf # Content-Type: application/x-font-snf # Content-Type: application/x-font-ttf # Content-Type: application/x-font-type1 # Content-Type: application/x-font-woff # Content-Type: application/x-futuresplash # Content-Type: application/x-gnumeric # Content-Type: application/x-gtar # Content-Type: application/x-hdf # Content-Type: application/xhtml+xml # Content-Type: application/x-java-jnlp-file # Content-Type: application/x-latex # Content-Type: application/xml # Content-Type: application/xml-dtd # Content-Type: application/x-mobipocket-ebook # Content-Type: application/x-msaccess # Content-Type: application/x-ms-application # Content-Type: application/x-msbinder # Content-Type: application/x-mscardfile # Content-Type: application/x-msclip # Content-Type: application/x-msdownload # Content-Type: application/x-msmediaview # Content-Type: application/x-msmetafile # Content-Type: application/x-msmoney # Content-Type: application/x-mspublisher # Content-Type: application/x-msschedule # Content-Type: application/x-msterminal # Content-Type: application/x-ms-wmd # Content-Type: application/x-ms-wmz # Content-Type: application/x-mswrite # Content-Type: application/x-ms-xbap # Content-Type: application/x-netcdf # Content-Type: application/xop+xml # Content-Type: application/x-pkcs12 # Content-Type: application/x-pkcs7-certificates # Content-Type: application/x-pkcs7-certreqresp # Content-Type: application/x-rar-compressed # Content-Type: application/x-sh # Content-Type: application/x-shar # Content-Type: application/x-shockwave-flash # Content-Type: application/x-silverlight-app # Content-Type: application/xslt+xml # Content-Type: application/xspf+xml # Content-Type: application/x-stuffit # Content-Type: application/x-stuffitx # Content-Type: application/x-sv4cpio # Content-Type: application/x-sv4crc # Content-Type: application/x-tar # Content-Type: application/x-tcl # Content-Type: application/x-tex # Content-Type: application/x-texinfo # Content-Type: application/x-tex-tfm # Content-Type: application/x-ustar # Content-Type: application/xv+xml # Content-Type: application/x-wais-source # Content-Type: application/x-x509-ca-cert # Content-Type: application/x-xfig # Content-Type: application/x-xpinstall # Content-Type: application/yang # Content-Type: application/yin+xml # Content-Type: application/zip # Content-Type: audio/32kadpcm # Content-Type: audio/adpcm # Content-Type: audio/basic # Content-Type: audio/midi # Content-Type: audio/mp4 # Content-Type: audio/mpeg # Content-Type: audio/ogg # Content-Type: audio/vnd.dece.audio # Content-Type: audio/vnd.digital-winds # Content-Type: audio/vnd.dra # Content-Type: audio/vnd.dts # Content-Type: audio/vnd.dts.hd # Content-Type: audio/vnd.lucent.voice # Content-Type: audio/vnd.ms-playready.media.pya # Content-Type: audio/vnd.nuera.ecelp4800 # Content-Type: audio/vnd.nuera.ecelp7470 # Content-Type: audio/vnd.nuera.ecelp9600 # Content-Type: audio/vnd.rip # Content-Type: audio/webm # Content-Type: audio/x-aac # Content-Type: audio/x-aiff # Content-Type: audio/x-mpegurl # Content-Type: audio/x-ms-wax # Content-Type: audio/x-ms-wma # Content-Type: audio/x-pn-realaudio # Content-Type: audio/x-pn-realaudio-plugin # Content-Type: audio/x-wav # Content-Type: chemical/x-cdx # Content-Type: chemical/x-cif # Content-Type: chemical/x-cmdf # Content-Type: chemical/x-cml # Content-Type: chemical/x-csml # Content-Type: chemical/x-xyz # Content-Type: image/bmp # Content-Type: image/cgm # Content-Type: image/g3fax # Content-Type: image/gif # Content-Type: image/ief # Content-Type: image/jpeg # Content-Type: image/jpeg; name="image001.jpg" # Content-Type: image/jpeg; name="TemptationShortcut.jpg" # Content-Type: image/ktx # Content-Type: image/pjpeg # Content-Type: image/png # Content-Type: image/prs.btif # Content-Type: image/svg+xml # Content-Type: image/tiff # Content-Type: image/vnd.adobe.photoshop # Content-Type: image/vnd.dece.graphic # Content-Type: image/vnd.djvu # Content-Type: image/vnd.dvb.subtitle # Content-Type: image/vnd.dwg # Content-Type: image/vnd.dxf # Content-Type: image/vnd.fastbidsheet # Content-Type: image/vnd.fpx # Content-Type: image/vnd.fst # Content-Type: image/vnd.fujixerox.edmics-mmr # Content-Type: image/vnd.fujixerox.edmics-rlc # Content-Type: image/vnd.ms-modi # Content-Type: image/vnd.net-fpx # Content-Type: image/vnd.wap.wbmp # Content-Type: image/vnd.xiff # Content-Type: image/webp # Content-Type: image/x-citrix-jpeg # Content-Type: image/x-citrix-png # Content-Type: image/x-cmu-raster # Content-Type: image/x-cmx # Content-Type: image/x-freehand # Content-Type: image/x-icon # Content-Type: image/x-pcx # Content-Type: image/x-pict # Content-Type: image/x-png # Content-Type: image/x-portable-anymap # Content-Type: image/x-portable-bitmap # Content-Type: image/x-portable-graymap # Content-Type: image/x-portable-pixmap # Content-Type: image/x-rgb # Content-Type: image/x-xbitmap # Content-Type: image/x-xpixmap # Content-Type: image/x-xwindowdump # Content-Type: message/delivery-status # Content-Type: message/disposition-notification-to # Content-Type: message/external-body # Content-Type: message/http # Content-Type: message/partial # Content-Type: message/rfc822 # Content-Type: model/iges # Content-Type: model/mesh # Content-Type: model/vnd.collada+xml # Content-Type: model/vnd.dwf # Content-Type: model/vnd.gdl # Content-Type: model/vnd.gtw # Content-Type: model/vnd.mts # Content-Type: model/vnd.vtu # Content-Type: model/vrml # Content-Type: multipart/alternative; # Content-Type: multipart/alternative; boundary=001a113a2dc6dd3487053f79bc24 # Content-Type: multipart/alternative; boundary="001a11456c8817dd1d055d352f8c" # Content-Type: multipart/alternative; boundary="_----056dTAi7CnMb4YC6zcuzcw===_CB/19-64684-8C2612A5" # Content-Type: multipart/alternative; boundary="089e082b9ca8b3811005607e8c7d" # Content-Type: multipart/alternative; boundary=12781cc67c6d4bdc5c62fe572df6f07067ed31bca7176f259611800bc7ed # Content-Type: multipart/alternative; boundary="===============2300963478671213537==" # Content-Type: multipart/alternative; boundary="6kpfp7cF1q82tUL7as8jVsg6vSxX=_GkhV" # Content-Type: multipart/alternative; boundary="cdf82e78-582d-4a55-9037-dacf81ae37d3" # Content-Type: multipart/alternative; boundary="de3m6f=_VUkD4F9LsJ1SCYvVv7MXYQfySv" # Content-Type: multipart/alternative; boundary="__slack_222209002__" # Content-Type: multipart/byteranges; boundary="94eb2c0e6238d7dc6f05607ea548" # Content-Type: multipart/digest; boundary="089e082b9ca8b3811005607e8c7d" # Content-Type: multipart/encrypted; boundary="94eb2c0e6238d7dc6f05607ea548" # Content-Type: multipart/form-data; boundary="94eb2c0e6238d7dc6f05607ea548" # Content-Type: multipart/mixed; # Content-Type: multipart/mixed; boundary=001a113ed43687e70b053d097387 # Content-Type: multipart/mixed; boundary="94eb2c0e6238d7dc6f05607ea548" # Content-Type: multipart/mixed-replace; boundary="94eb2c0e6238d7dc6f05607ea548" # Content-Type: multipart/parallel # Content-Type: multipart/related; # Content-Type: multipart/related; boundary="94eb2c0e6238d7dc6f05607ea548" # Content-Type: multipart/report; boundary="94eb2c0e6238d7dc6f05607ea548" # Content-Type: multipart/signed; boundary="94eb2c0e6238d7dc6f05607ea548" # Content-Type: text/calendar # Content-Type: text/css # Content-Type: text/csv # Content-Type: text/enriched # Content-Type: text/html # Content-Type: text/html; # Content-Type: text/html; charset="us-ascii" # Content-Type: text/html; charset="utf-8" # Content-Type: text/html; charset=utf-8 # Content-Type: text/html; charset = "utf-8" # Content-Type: text/html; charset="UTF-8" # Content-Type: text/html; charset=UTF-8 # Content-Type: text/n3 # Content-Type: text/plain # Content-Type: text/plain; # Content-Type: text/plain-bas # Content-Type: text/plain; charset="us-ascii" # Content-Type: text/plain; charset="us-ascii"; # Content-Type: text/plain; charset="US-ASCII"; name="test_text_file.txt" # Content-Type: text/plain; charset="utf-8" # Content-Type: text/plain; charset=utf-8 # Content-Type: text/plain; charset = "utf-8" # Content-Type: text/plain; charset="UTF-8" # Content-Type: text/plain; charset=UTF-8 # Content-Type: text/plain; charset=utf-8; format=flowed # Content-Type: text/plain; charset=windows-1252; format=flowed # Content-Type: text/prs.lines.tag # Content-Type: text/rfc822-headers # Content-Type: text/richtext # Content-Type: text/sgml # Content-Type: text/tab-separated-values # Content-Type: text/troff # Content-Type: text/turtle # Content-Type: text/uri-list # Content-Type: text/vnd.curl # Content-Type: text/vnd.curl.dcurl # Content-Type: text/vnd.curl.mcurl # Content-Type: text/vnd.curl.scurl # Content-Type: text/vnd.fly # Content-Type: text/vnd.fmi.flexstor # Content-Type: text/vnd.graphviz # Content-Type: text/vnd.in3d.3dml # Content-Type: text/vnd.in3d.spot # Content-Type: text/vnd.sun.j2me.app-descriptor # Content-Type: text/vnd.wap.wml # Content-Type: text/vnd.wap.wmlscript # Content-Type: text/x-asm # Content-Type: text/x-c # Content-Type: text/x-fortran # Content-Type: text/x-java-source,java # Content-Type: text/x-markdown; charset="US-ASCII"; name="README.md" # Content-Type: text/x-pascal # Content-Type: text/x-setext # Content-Type: text/x-uuencode # Content-Type: text/x-vcalendar # Content-Type: text/x-vcard # Content-Type: text/yaml # Content-Type: video/3gpp # Content-Type: video/3gpp2 # Content-Type: video/h261 # Content-Type: video/h263 # Content-Type: video/h264 # Content-Type: video/jpeg # Content-Type: video/jpm # Content-Type: video/mj2 # Content-Type: video/mp4 # Content-Type: video/mpeg # Content-Type: video/ogg # Content-Type: video/quicktime # Content-Type: video/vnd.dece.hd # Content-Type: video/vnd.dece.mobile # Content-Type: video/vnd.dece.pd # Content-Type: video/vnd.dece.sd # Content-Type: video/vnd.dece.video # Content-Type: video/vnd.fvt # Content-Type: video/vnd.mpegurl # Content-Type: video/vnd.ms-playready.media.pyv # Content-Type: video/vnd.uvvu.mp4 # Content-Type: video/vnd.vivo # Content-Type: video/webm # Content-Type: video/x-f4v # Content-Type: video/x-fli # Content-Type: video/x-flv # Content-Type: video/x-m4v # Content-Type: video/x-ms-asf # Content-Type: video/x-msvideo # Content-Type: video/x-ms-wm # Content-Type: video/x-ms-wmv # Content-Type: video/x-ms-wmx # Content-Type: video/x-ms-wvx # Content-Type: video/x-sgi-movie # Content-Type: x-conference/x-cooltalk class ContentTypeHeader(Header): def __init__(self): super().__init__() self.headerType = "CONTENTTYPE" # Content-Type := type "/" subtype *[";" parameter] # type := "application" / "audio" # / "image" / "message" # / "multipart" / "text" # / "video" / x-token # x-token := <The two characters "X-" followed, with no # intervening white space, by any token> # subtype := token # parameter := attribute "=" value # attribute := token # value := token / quoted-string # token := 1*<any CHAR except SPACE, CTLs, or tspecials> # tspecials := "(" / ")" / "<" / ">" / "@" ; Must be in # / "," / ";" / ":" / "\" / <"> ; quoted-string, # / "/" / "[" / "]" / "?" / "." ; to use within # / "=" ; parameter values def parse(self): print( "DEBUG: In Content-Type header parse:" ) self.contentTypeStr = None self.contentSubTypeStr = None self.headerOnOneLine = "" for line in self.headers: self.headerOnOneLine += line.strip() self.headerOnOneLine = self.headerOnOneLine[len("Content-Type:"):] for element in [x.strip() for x in self.headerOnOneLine.split(";")]: if( element.startswith( "application" ) ): self.parseApplicationType() break elif( element.startswith( "audio" ) ): self.parseAudioType() break elif( element.startswith( "chemical" ) ): self.parseChemicalType() break elif( element.startswith( "image" ) ): self.parseImageType() break elif( element.startswith( "message" ) ): self.parseMessageType() break elif( element.startswith( "model" ) ): self.parseModelType() break elif( element.startswith( "multipart" ) ): self.parseMultipartType() break elif( element.startswith( "text" ) ): self.parseTextType() break elif( element.startswith( "video" ) ): self.parseVideoType() break elif( element.startswith( "x-conference" ) ): self.parseXConferenceType() break def parseApplicationType(self): print( "DEBUG: In Content-Type header parse:" ) self.contentTypeStr = "application" for element in [x.strip() for x in self.headerOnOneLine.split(";")]: print( "DEBUG:" ) def parseAudioType(self): print( "DEBUG: In Content-Type header parse:" ) self.contentTypeStr = "audio" for element in [x.strip() for x in self.headerOnOneLine.split(";")]: print( "DEBUG:" ) def parseChemicalType(self): print( "DEBUG: In Content-Type header parse:" ) self.contentTypeStr = "chemical" for element in [x.strip() for x in self.headerOnOneLine.split(";")]: print( "DEBUG:" ) def parseImageType(self): print( "DEBUG: In Content-Type header parse:" ) self.contentTypeStr = "image" for element in [x.strip() for x in self.headerOnOneLine.split(";")]: print( "DEBUG:" ) def parseMessageType(self): print( "DEBUG: In Content-Type header parse:" ) self.contentTypeStr = "message" for element in [x.strip() for x in self.headerOnOneLine.split(";")]: print( "DEBUG:" ) def parseModelType(self): print( "DEBUG: In Content-Type header parse:" ) self.contentTypeStr = "model" for element in [x.strip() for x in self.headerOnOneLine.split(";")]: print( "DEBUG:" ) def parseMultipartType(self): print( "DEBUG: In Content-Type header parseMultipartType:" ) self.contentTypeStr = "multipart" for element in [x.strip() for x in self.headerOnOneLine.split(";")]: print( "DEBUG: In Content-Type header parseMultipartType: element:",element ) if( element.startswith( self.contentTypeStr ) ): t1, t2 = [x.strip() for x in element.split("/")] self.contentSubTypeStr = t2 print( "DEBUG: In Content-Type header parseMultipartType: element: multipart:",t2 ) elif( element.startswith( "boundary" ) ): t1, t2 = [x.strip() for x in element.split("=")] self.multipartBoundaryStr = t2 print( "DEBUG: In Content-Type header parseMultipartType: element: boundary:",t2 ) def parseTextType(self): print( "DEBUG: In Content-Type header parse:" ) self.contentTypeStr = "text" for element in [x.strip() for x in self.headerOnOneLine.split(";")]: print( "DEBUG:" ) def parseVideoType(self): print( "DEBUG: In Content-Type header parse:" ) self.contentTypeStr = "video" for element in [x.strip() for x in self.headerOnOneLine.split(";")]: print( "DEBUG:" ) def parseXConferenceType(self): print( "DEBUG: In Content-Type header parse:" ) self.contentTypeStr = "x-conference" for element in [x.strip() for x in self.headerOnOneLine.split(";")]: print( "DEBUG:" ) # Content-Transfer-Encoding: # Content-Transfer-Encoding: quoted-printable class ContentTransferEncodingHeader(Header): def __init__(self): super().__init__() self.headerType = "CONTENTTRANSFERENCODING" def parse(self): self.ContentTransferEncodingStr = None # Delivered-To: class DeliveredToHeader(Header): def __init__(self): super().__init__() self.headerType = "DELIVEREDTO" def parse(self): self.deliveredToStr = None # MIME-Version: class MimeVersionHeader(Header): def __init__(self): super().__init__() self.headerType = "MIMEVERSION" def parse(self): self.mimeVersionStr = None # Acknowledge-To: # Also-Control: # Alternate-Recipient: # Apparently-To: # Approved: # Article-Names: # Article-Updates: # Auto-Forwarded: # Autoforwarded: [1327] # Auto-Submitted: # Comments: [822] # Confirm-Delivery: # Confirm-Reading: # Content-Base: # Content-Conversion: # Content-Description: # Content-Disposition: # Content-ID: # Content-Identifier: [1327] # Content-Language: # Content-Length: mailbox # Content-Location: # Content-MD5: # Content-Return: # Content-SGML-Entity: # Control: # Conversion: [1327] # Conversion-With-Loss: [1327] # Deferred-Delivery: [1327] # Delivered-By-The-Graces-Of: # Delivery-Date: [1327] # Discarded-X400-IPMS-Extensions: [1327] # Discarded-X400-MTS-Extensions: [1327] # Disclose-Recipients: # Disposition-Notification-To: # Distribution: # DL-Expansion-History: [1327] # Encoding: # Encrypted: [822] # Envelope-Recipient: # Envelope-Sender: # Errors-To: # Expires: # Expiry-Date: [1327] # Fax: # Fcc: user # Followup-To: # For-Comment: # For-Handling: # Generate-Delivery-Report: # Importance: [1327] # In-Reply-To: tokens [822] # Incomplete-Copy: [1327] # Keywords: [822] # Language: [1327] # Latest-Delivery-Time: [1327] # Lines: # List-Archive: # List-Help: # List-ID: # List-Owner: # List-Subscribe: # List-Unsubscribe: # Mail-Followup-To: tokens # Mail-Reply-To: tokens # Mail-System-Version: # Mailer: # Mailing-List: # Message-Type: [1327] # Newsgroups: # Notice-Requested-Upon-Delivery-To: tokens [spec] # Obsoletes: [1327] # Organization: # Original-Encoded-Information-Types: [1327] # Originating-Client: # Originator-Info: # Originator-Return-Address: [1327] # Path: # Phone: # Precedence: # Prevent-Nondelivery-Report: # Priority: [1327] # Received: tokens [822] # References: tokens [822] # Reply-By: [1327] # Requested-Delivery-Method: [1327] # Return-Path: tokens [822] # Return-Receipt-To: [info] # See-Also: # Sensitivity: [1327] # Status: mailbox # Summary: # Supersedes: # Telefax: # Versions: # X-Confirm-Reading-To: # X-Mailer: # X-MS-Embedded-Report: # X-Newsreader: # X-PMRQC: # X-Priority: # X-Sender: # X-Status: mailbox # X-X-Sender: # X400-Content-Return: # X400-Content-Type: [1327] # X400-MTS-Identifier: [1327] # X400-Originator: [1327] # X400-Received: [1327] # X400-Recipients: [1327] # Xref: def main(): #emailHeadersLines = [] emailHeadersObjects = [] emailBodyLines = [] emailFilepath = "test_email_003a.eml" file_object = open(emailFilepath, "r") readingHeaders = True readingBody = False for line in file_object: # print( "DEBUG:", line ) line = line.strip('\r\n') if( 0 == len(line) ): readingHeaders = False if( True == readingHeaders ): print( "Line Length:", len(line) ) if( line.startswith( "Received:", 0, len("Received:") ) ): newHeaderObj = ReceivedHeader() newHeaderObj.appendHeaderLine(line) emailHeadersObjects.append(newHeaderObj) elif( line.startswith( "From:", 0, len("From:") ) ): newHeaderObj = FromHeader() newHeaderObj.appendHeaderLine(line) emailHeadersObjects.append(newHeaderObj) elif( line.startswith( "To:", 0, len("To:") ) ): newHeaderObj = ToHeader() newHeaderObj.appendHeaderLine(line) emailHeadersObjects.append(newHeaderObj) elif( line.startswith( "Cc:", 0, len("Cc:") ) ): newHeaderObj = CCHeader() newHeaderObj.appendHeaderLine(line) emailHeadersObjects.append(newHeaderObj) elif( line.startswith( "Bcc:", 0, len("Bcc:") ) ): newHeaderObj = BCCHeader() newHeaderObj.appendHeaderLine(line) emailHeadersObjects.append(newHeaderObj) elif( line.startswith( "Sender:", 0, len("Sender:") ) ): newHeaderObj = SenderHeader() newHeaderObj.appendHeaderLine(line) emailHeadersObjects.append(newHeaderObj) elif( line.startswith( "Reply-To:", 0, len("Reply-To:") ) ): newHeaderObj = ReplyToHeader() newHeaderObj.appendHeaderLine(line) emailHeadersObjects.append(newHeaderObj) elif( line.startswith( "Date:", 0, len("Date:") ) ): newHeaderObj = DateHeader() newHeaderObj.appendHeaderLine(line) emailHeadersObjects.append(newHeaderObj) elif( line.startswith( "Subject:", 0, len("Subject:") ) ): newHeaderObj = SubjectHeader() newHeaderObj.appendHeaderLine(line) emailHeadersObjects.append(newHeaderObj) elif( line.startswith( "Message-ID:", 0, len("Message-ID:") ) ): newHeaderObj = MessageIDHeader() newHeaderObj.appendHeaderLine(line) emailHeadersObjects.append(newHeaderObj) elif( line.startswith( "Content-Type:", 0, len("Content-Type:") ) ): print( "DEBUG: Found a Content-Type header:", line ) newHeaderObj = ContentTypeHeader() newHeaderObj.appendHeaderLine(line) emailHeadersObjects.append(newHeaderObj) elif( line.startswith( "Content-Transfer-Encoding:", 0, len("Content-Transfer-Encoding:") ) ): newHeaderObj = ContentTransferEncodingHeader() newHeaderObj.appendHeaderLine(line) emailHeadersObjects.append(newHeaderObj) elif( line.startswith( "Delivered-To:", 0, len("Delivered-To:") ) ): newHeaderObj = DeliveredToHeader() newHeaderObj.appendHeaderLine(line) emailHeadersObjects.append(newHeaderObj) elif( line.startswith( "MIME-Version:", 0, len("MIME-Version:") ) ): newHeaderObj = MimeVersionHeader() newHeaderObj.appendHeaderLine(line) emailHeadersObjects.append(newHeaderObj) elif( line.startswith( " ", 0, len(" ") ) or line.startswith( " ", 0, len(" ") ) ): emailHeadersObjects[len(emailHeadersObjects)-1].appendHeaderLine(line) else: newHeaderObj = Header() newHeaderObj.appendHeaderLine(line) emailHeadersObjects.append(newHeaderObj) elif( readingBody == True ): emailBodyLines.append(line) else: readingBody = True for hdrObj in emailHeadersObjects: hdrObj.parse() # print( "Emails Header Lines:", emailHeadersLines) # print( "Emails Body Lines:", emailBodyLines) print( "Emails Header Objects:", emailHeadersObjects) for hdrObj in emailHeadersObjects: print( " Header Object:", hdrObj ) return main()
python
52,651
#!/usr/bin/env python3 # Copyright (c) 2017-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Class for fuducoind node under test""" import contextlib import decimal import errno from enum import Enum import http.client import json import logging import os import re import subprocess import tempfile import time import urllib.parse import collections import shlex import sys from .authproxy import JSONRPCException from .util import ( append_config, delete_cookie_file, get_rpc_proxy, rpc_url, wait_until, p2p_port, ) # For Python 3.4 compatibility JSONDecodeError = getattr(json, "JSONDecodeError", ValueError) BITCOIND_PROC_WAIT_TIMEOUT = 60 class FailedToStartError(Exception): """Raised when a node fails to start correctly.""" class ErrorMatch(Enum): FULL_TEXT = 1 FULL_REGEX = 2 PARTIAL_REGEX = 3 class TestNode(): """A class for representing a fuducoind node under test. This class contains: - state about the node (whether it's running, etc) - a Python subprocess.Popen object representing the running process - an RPC connection to the node - one or more P2P connections to the node To make things easier for the test writer, any unrecognised messages will be dispatched to the RPC connection.""" def __init__(self, i, datadir, *, rpchost, timewait, bitcoind, bitcoin_cli, coverage_dir, cwd, extra_conf=None, extra_args=None, use_cli=False, start_perf=False): """ Kwargs: start_perf (bool): If True, begin profiling the node with `perf` as soon as the node starts. """ self.index = i self.datadir = datadir self.stdout_dir = os.path.join(self.datadir, "stdout") self.stderr_dir = os.path.join(self.datadir, "stderr") self.rpchost = rpchost self.rpc_timeout = timewait self.binary = bitcoind self.coverage_dir = coverage_dir self.cwd = cwd if extra_conf is not None: append_config(datadir, extra_conf) # Most callers will just need to add extra args to the standard list below. # For those callers that need more flexibility, they can just set the args property directly. # Note that common args are set in the config file (see initialize_datadir) self.extra_args = extra_args self.args = [ self.binary, "-datadir=" + self.datadir, "-logtimemicros", "-debug", "-debugexclude=libevent", "-debugexclude=leveldb", "-uacomment=testnode%d" % i, ] self.cli = TestNodeCLI(bitcoin_cli, self.datadir) self.use_cli = use_cli self.start_perf = start_perf self.running = False self.process = None self.rpc_connected = False self.rpc = None self.url = None self.log = logging.getLogger('TestFramework.node%d' % i) self.cleanup_on_exit = True # Whether to kill the node when this object goes away # Cache perf subprocesses here by their data output filename. self.perf_subprocesses = {} self.p2ps = [] def get_deterministic_priv_key(self): """Return a deterministic priv key in base58, that only depends on the node's index""" AddressKeyPair = collections.namedtuple('AddressKeyPair', ['address', 'key']) PRIV_KEYS = [ # address , privkey AddressKeyPair('mjTkW3DjgyZck4KbiRusZsqTgaYTxdSz6z', 'cVpF924EspNh8KjYsfhgY96mmxvT6DgdWiTYMtMjuM74hJaU5psW'), AddressKeyPair('msX6jQXvxiNhx3Q62PKeLPrhrqZQdSimTg', 'cUxsWyKyZ9MAQTaAhUQWJmBbSvHMwSmuv59KgxQV7oZQU3PXN3KE'), AddressKeyPair('mnonCMyH9TmAsSj3M59DsbH8H63U3RKoFP', 'cTrh7dkEAeJd6b3MRX9bZK8eRmNqVCMH3LSUkE3dSFDyzjU38QxK'), AddressKeyPair('mqJupas8Dt2uestQDvV2NH3RU8uZh2dqQR', 'cVuKKa7gbehEQvVq717hYcbE9Dqmq7KEBKqWgWrYBa2CKKrhtRim'), AddressKeyPair('msYac7Rvd5ywm6pEmkjyxhbCDKqWsVeYws', 'cQDCBuKcjanpXDpCqacNSjYfxeQj8G6CAtH1Dsk3cXyqLNC4RPuh'), AddressKeyPair('n2rnuUnwLgXqf9kk2kjvVm8R5BZK1yxQBi', 'cQakmfPSLSqKHyMFGwAqKHgWUiofJCagVGhiB4KCainaeCSxeyYq'), AddressKeyPair('myzuPxRwsf3vvGzEuzPfK9Nf2RfwauwYe6', 'cQMpDLJwA8DBe9NcQbdoSb1BhmFxVjWD5gRyrLZCtpuF9Zi3a9RK'), AddressKeyPair('mumwTaMtbxEPUswmLBBN3vM9oGRtGBrys8', 'cSXmRKXVcoouhNNVpcNKFfxsTsToY5pvB9DVsFksF1ENunTzRKsy'), AddressKeyPair('mpV7aGShMkJCZgbW7F6iZgrvuPHjZjH9qg', 'cSoXt6tm3pqy43UMabY6eUTmR3eSUYFtB2iNQDGgb3VUnRsQys2k'), ] return PRIV_KEYS[self.index] def get_mem_rss_kilobytes(self): """Get the memory usage (RSS) per `ps`. Returns None if `ps` is unavailable. """ assert self.running try: return int(subprocess.check_output( ["ps", "h", "-o", "rss", "{}".format(self.process.pid)], stderr=subprocess.DEVNULL).split()[-1]) # Avoid failing on platforms where ps isn't installed. # # We could later use something like `psutils` to work across platforms. except (FileNotFoundError, subprocess.SubprocessError): self.log.exception("Unable to get memory usage") return None def _node_msg(self, msg: str) -> str: """Return a modified msg that identifies this node by its index as a debugging aid.""" return "[node %d] %s" % (self.index, msg) def _raise_assertion_error(self, msg: str): """Raise an AssertionError with msg modified to identify this node.""" raise AssertionError(self._node_msg(msg)) def __del__(self): # Ensure that we don't leave any bitcoind processes lying around after # the test ends if self.process and self.cleanup_on_exit: # Should only happen on test failure # Avoid using logger, as that may have already been shutdown when # this destructor is called. print(self._node_msg("Cleaning up leftover process")) self.process.kill() def __getattr__(self, name): """Dispatches any unrecognised messages to the RPC connection or a CLI instance.""" if self.use_cli: return getattr(self.cli, name) else: assert self.rpc_connected and self.rpc is not None, self._node_msg("Error: no RPC connection") return getattr(self.rpc, name) def start(self, extra_args=None, *, cwd=None, stdout=None, stderr=None, **kwargs): """Start the node.""" if extra_args is None: extra_args = self.extra_args # Add a new stdout and stderr file each time bitcoind is started if stderr is None: stderr = tempfile.NamedTemporaryFile(dir=self.stderr_dir, delete=False) if stdout is None: stdout = tempfile.NamedTemporaryFile(dir=self.stdout_dir, delete=False) self.stderr = stderr self.stdout = stdout if cwd is None: cwd = self.cwd # Delete any existing cookie file -- if such a file exists (eg due to # unclean shutdown), it will get overwritten anyway by bitcoind, and # potentially interfere with our attempt to authenticate delete_cookie_file(self.datadir) # add environment variable LIBC_FATAL_STDERR_=1 so that libc errors are written to stderr and not the terminal subp_env = dict(os.environ, LIBC_FATAL_STDERR_="1") self.process = subprocess.Popen(self.args + extra_args, env=subp_env, stdout=stdout, stderr=stderr, cwd=cwd, **kwargs) self.running = True self.log.debug("fuducoind started, waiting for RPC to come up") if self.start_perf: self._start_perf() def wait_for_rpc_connection(self): """Sets up an RPC connection to the fuducoind process. Returns False if unable to connect.""" # Poll at a rate of four times per second poll_per_s = 4 for _ in range(poll_per_s * self.rpc_timeout): if self.process.poll() is not None: raise FailedToStartError(self._node_msg( 'fuducoind exited with status {} during initialization'.format(self.process.returncode))) try: rpc = get_rpc_proxy(rpc_url(self.datadir, self.index, self.rpchost), self.index, timeout=self.rpc_timeout, coveragedir=self.coverage_dir) rpc.getblockcount() # If the call to getblockcount() succeeds then the RPC connection is up self.log.debug("RPC successfully started") if self.use_cli: return self.rpc = rpc self.rpc_connected = True self.url = self.rpc.url return except IOError as e: if e.errno != errno.ECONNREFUSED: # Port not yet open? raise # unknown IO error except JSONRPCException as e: # Initialization phase # -28 RPC in warmup # -342 Service unavailable, RPC server started but is shutting down due to error if e.error['code'] != -28 and e.error['code'] != -342: raise # unknown JSON RPC exception except ValueError as e: # cookie file not found and no rpcuser or rpcassword. bitcoind still starting if "No RPC credentials" not in str(e): raise time.sleep(1.0 / poll_per_s) self._raise_assertion_error("Unable to connect to fuducoind") def generate(self, nblocks, maxtries=1000000): self.log.debug("TestNode.generate() dispatches `generate` call to `generatetoaddress`") return self.generatetoaddress(nblocks=nblocks, address=self.get_deterministic_priv_key().address, maxtries=maxtries) def get_wallet_rpc(self, wallet_name): if self.use_cli: return self.cli("-rpcwallet={}".format(wallet_name)) else: assert self.rpc_connected and self.rpc, self._node_msg("RPC not connected") wallet_path = "wallet/{}".format(urllib.parse.quote(wallet_name)) return self.rpc / wallet_path def stop_node(self, expected_stderr='', wait=0): """Stop the node.""" if not self.running: return self.log.debug("Stopping node") try: self.stop(wait=wait) except http.client.CannotSendRequest: self.log.exception("Unable to stop node.") # If there are any running perf processes, stop them. for profile_name in tuple(self.perf_subprocesses.keys()): self._stop_perf(profile_name) # Check that stderr is as expected self.stderr.seek(0) stderr = self.stderr.read().decode('utf-8').strip() if stderr != expected_stderr: raise AssertionError("Unexpected stderr {} != {}".format(stderr, expected_stderr)) self.stdout.close() self.stderr.close() del self.p2ps[:] def is_node_stopped(self): """Checks whether the node has stopped. Returns True if the node has stopped. False otherwise. This method is responsible for freeing resources (self.process).""" if not self.running: return True return_code = self.process.poll() if return_code is None: return False # process has stopped. Assert that it didn't return an error code. assert return_code == 0, self._node_msg( "Node returned non-zero exit code (%d) when stopping" % return_code) self.running = False self.process = None self.rpc_connected = False self.rpc = None self.log.debug("Node stopped") return True def wait_until_stopped(self, timeout=BITCOIND_PROC_WAIT_TIMEOUT): wait_until(self.is_node_stopped, timeout=timeout) @contextlib.contextmanager def assert_debug_log(self, expected_msgs): debug_log = os.path.join(self.datadir, 'regtest', 'debug.log') with open(debug_log, encoding='utf-8') as dl: dl.seek(0, 2) prev_size = dl.tell() try: yield finally: with open(debug_log, encoding='utf-8') as dl: dl.seek(prev_size) log = dl.read() print_log = " - " + "\n - ".join(log.splitlines()) for expected_msg in expected_msgs: if re.search(re.escape(expected_msg), log, flags=re.MULTILINE) is None: self._raise_assertion_error('Expected message "{}" does not partially match log:\n\n{}\n\n'.format(expected_msg, print_log)) @contextlib.contextmanager def assert_memory_usage_stable(self, *, increase_allowed=0.03): """Context manager that allows the user to assert that a node's memory usage (RSS) hasn't increased beyond some threshold percentage. Args: increase_allowed (float): the fractional increase in memory allowed until failure; e.g. `0.12` for up to 12% increase allowed. """ before_memory_usage = self.get_mem_rss_kilobytes() yield after_memory_usage = self.get_mem_rss_kilobytes() if not (before_memory_usage and after_memory_usage): self.log.warning("Unable to detect memory usage (RSS) - skipping memory check.") return perc_increase_memory_usage = (after_memory_usage / before_memory_usage) - 1 if perc_increase_memory_usage > increase_allowed: self._raise_assertion_error( "Memory usage increased over threshold of {:.3f}% from {} to {} ({:.3f}%)".format( increase_allowed * 100, before_memory_usage, after_memory_usage, perc_increase_memory_usage * 100)) @contextlib.contextmanager def profile_with_perf(self, profile_name): """ Context manager that allows easy profiling of node activity using `perf`. See `test/functional/README.md` for details on perf usage. Args: profile_name (str): This string will be appended to the profile data filename generated by perf. """ subp = self._start_perf(profile_name) yield if subp: self._stop_perf(profile_name) def _start_perf(self, profile_name=None): """Start a perf process to profile this node. Returns the subprocess running perf.""" subp = None def test_success(cmd): return subprocess.call( # shell=True required for pipe use below cmd, shell=True, stderr=subprocess.DEVNULL, stdout=subprocess.DEVNULL) == 0 if not sys.platform.startswith('linux'): self.log.warning("Can't profile with perf; only availabe on Linux platforms") return None if not test_success('which perf'): self.log.warning("Can't profile with perf; must install perf-tools") return None if not test_success('readelf -S {} | grep .debug_str'.format(shlex.quote(self.binary))): self.log.warning( "perf output won't be very useful without debug symbols compiled into fuducoind") output_path = tempfile.NamedTemporaryFile( dir=self.datadir, prefix="{}.perf.data.".format(profile_name or 'test'), delete=False, ).name cmd = [ 'perf', 'record', '-g', # Record the callgraph. '--call-graph', 'dwarf', # Compatibility for gcc's --fomit-frame-pointer. '-F', '101', # Sampling frequency in Hz. '-p', str(self.process.pid), '-o', output_path, ] subp = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) self.perf_subprocesses[profile_name] = subp return subp def _stop_perf(self, profile_name): """Stop (and pop) a perf subprocess.""" subp = self.perf_subprocesses.pop(profile_name) output_path = subp.args[subp.args.index('-o') + 1] subp.terminate() subp.wait(timeout=10) stderr = subp.stderr.read().decode() if 'Consider tweaking /proc/sys/kernel/perf_event_paranoid' in stderr: self.log.warning( "perf couldn't collect data! Try " "'sudo sysctl -w kernel.perf_event_paranoid=-1'") else: report_cmd = "perf report -i {}".format(output_path) self.log.info("See perf output by running '{}'".format(report_cmd)) def assert_start_raises_init_error(self, extra_args=None, expected_msg=None, match=ErrorMatch.FULL_TEXT, *args, **kwargs): """Attempt to start the node and expect it to raise an error. extra_args: extra arguments to pass through to fuducoind expected_msg: regex that stderr should match when fuducoind fails Will throw if fuducoind starts without an error. Will throw if an expected_msg is provided and it does not match fuducoind's stdout.""" with tempfile.NamedTemporaryFile(dir=self.stderr_dir, delete=False) as log_stderr, \ tempfile.NamedTemporaryFile(dir=self.stdout_dir, delete=False) as log_stdout: try: self.start(extra_args, stdout=log_stdout, stderr=log_stderr, *args, **kwargs) self.wait_for_rpc_connection() self.stop_node() self.wait_until_stopped() except FailedToStartError as e: self.log.debug('fuducoind failed to start: %s', e) self.running = False self.process = None # Check stderr for expected message if expected_msg is not None: log_stderr.seek(0) stderr = log_stderr.read().decode('utf-8').strip() if match == ErrorMatch.PARTIAL_REGEX: if re.search(expected_msg, stderr, flags=re.MULTILINE) is None: self._raise_assertion_error( 'Expected message "{}" does not partially match stderr:\n"{}"'.format(expected_msg, stderr)) elif match == ErrorMatch.FULL_REGEX: if re.fullmatch(expected_msg, stderr) is None: self._raise_assertion_error( 'Expected message "{}" does not fully match stderr:\n"{}"'.format(expected_msg, stderr)) elif match == ErrorMatch.FULL_TEXT: if expected_msg != stderr: self._raise_assertion_error( 'Expected message "{}" does not fully match stderr:\n"{}"'.format(expected_msg, stderr)) else: if expected_msg is None: assert_msg = "fuducoind should have exited with an error" else: assert_msg = "fuducoind should have exited with expected error " + expected_msg self._raise_assertion_error(assert_msg) def add_p2p_connection(self, p2p_conn, *, wait_for_verack=True, **kwargs): """Add a p2p connection to the node. This method adds the p2p connection to the self.p2ps list and also returns the connection to the caller.""" if 'dstport' not in kwargs: kwargs['dstport'] = p2p_port(self.index) if 'dstaddr' not in kwargs: kwargs['dstaddr'] = '127.0.0.1' p2p_conn.peer_connect(**kwargs)() self.p2ps.append(p2p_conn) if wait_for_verack: p2p_conn.wait_for_verack() return p2p_conn @property def p2p(self): """Return the first p2p connection Convenience property - most tests only use a single p2p connection to each node, so this saves having to write node.p2ps[0] many times.""" assert self.p2ps, self._node_msg("No p2p connection") return self.p2ps[0] def disconnect_p2ps(self): """Close all p2p connections to the node.""" for p in self.p2ps: p.peer_disconnect() del self.p2ps[:] class TestNodeCLIAttr: def __init__(self, cli, command): self.cli = cli self.command = command def __call__(self, *args, **kwargs): return self.cli.send_cli(self.command, *args, **kwargs) def get_request(self, *args, **kwargs): return lambda: self(*args, **kwargs) def arg_to_cli(arg): if isinstance(arg, bool): return str(arg).lower() elif isinstance(arg, dict) or isinstance(arg, list): return json.dumps(arg) else: return str(arg) class TestNodeCLI(): """Interface to fuducoin-cli for an individual node""" def __init__(self, binary, datadir): self.options = [] self.binary = binary self.datadir = datadir self.input = None self.log = logging.getLogger('TestFramework.bitcoincli') def __call__(self, *options, input=None): # TestNodeCLI is callable with bitcoin-cli command-line options cli = TestNodeCLI(self.binary, self.datadir) cli.options = [str(o) for o in options] cli.input = input return cli def __getattr__(self, command): return TestNodeCLIAttr(self, command) def batch(self, requests): results = [] for request in requests: try: results.append(dict(result=request())) except JSONRPCException as e: results.append(dict(error=e)) return results def send_cli(self, command=None, *args, **kwargs): """Run fuducoin-cli command. Deserializes returned string as python object.""" pos_args = [arg_to_cli(arg) for arg in args] named_args = [str(key) + "=" + arg_to_cli(value) for (key, value) in kwargs.items()] assert not (pos_args and named_args), "Cannot use positional arguments and named arguments in the same fuducoin-cli call" p_args = [self.binary, "-datadir=" + self.datadir] + self.options if named_args: p_args += ["-named"] if command is not None: p_args += [command] p_args += pos_args + named_args self.log.debug("Running fuducoin-cli command: %s" % command) process = subprocess.Popen(p_args, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) cli_stdout, cli_stderr = process.communicate(input=self.input) returncode = process.poll() if returncode: match = re.match(r'error code: ([-0-9]+)\nerror message:\n(.*)', cli_stderr) if match: code, message = match.groups() raise JSONRPCException(dict(code=int(code), message=message)) # Ignore cli_stdout, raise with cli_stderr raise subprocess.CalledProcessError(returncode, self.binary, output=cli_stderr) try: return json.loads(cli_stdout, parse_float=decimal.Decimal) except JSONDecodeError: return cli_stdout.rstrip("\n")
python
23,410
import os from os.path import join, isdir, expanduser, isfile import pathlib import sys import json import csv import yaml import traceback import time import requests from multiprocessing import Pool, cpu_count from functools import partial import zipfile import shutil from pathlib import Path from http import HTTPStatus from dependency_analyzer_const import DependencyAnalyzerConstants from dependency_analyzer_utils import DependencyAnalyzerUtils from build_outcome_type import BuildOutcomeType from bugswarm.analyzer.analyzer import Analyzer from solver_utils import SolverUtils from final_outcome import FinalOutcome import import_scanner_utils """ Implementation of IterativeDependencySolver for BugSwarm """ def main(args): overall_start_time = time.time() input_files_path = args[2] orig_log_path = args[4] source_code_path = args[6] intermediate_path = args[8] artifact_dict = DependencyAnalyzerUtils.get_artifact_dict(input_files_path) fix_file_contents = get_dependency_analyzer_results(input_files_path) with Pool(cpu_count()) as pool: results = pool.map(partial(process_each_artifact_dependency_solve, artifact_dict=artifact_dict, intermediate_path=intermediate_path, source_code_path=source_code_path, orig_log_path=orig_log_path), fix_file_contents) results = [line[0] for line in results] DependencyAnalyzerUtils.write_to_csv(results, DependencyAnalyzerConstants.BUGSWARM_CSV_SOLVER_RESULTS_HEADERS, 'iterative_solve_results.csv') partial_fix = 0 complete_fix = 0 for row in results: if row[2] in [FinalOutcome.SUCCESS_FIXED_BUILD, FinalOutcome.SUCCESS_RESTORED_TO_ORIGINAL_STATUS, FinalOutcome.SUCCESS_RESTORED_TO_ORIGINAL_ERROR] and len(row[1]): complete_fix += 1 elif row[2] in [FinalOutcome.PARTIAL_EXHAUSTED_ALL_OPTIONS, FinalOutcome.SUCCESS_NO_LONGER_DEPENDENCY_ERROR, FinalOutcome.PARTIAL_NO_POSSIBLE_CANDIDATES] and len(row[1]): partial_fix += 1 overall_end_time = time.time() print('==========**** IterativeDependencySolver FINAL OUTPUT ****==========') if len(results) == 0: print('No artifacts to solve for') else: print('Number of builds identified: {}'.format(len(results))) print('Complete Fixes: {}({})'.format(complete_fix, complete_fix*100/len(results))) print('Partial Fixes: {}({})'.format(partial_fix, partial_fix*100/len(results))) print('No Fixes: {}({})'.format(len(results) - (complete_fix + partial_fix), (len(results) - (complete_fix + partial_fix))*100/len(results))) print('Total Runtime: {} minutes'.format((overall_end_time - overall_start_time)/60)) print('==========**** END OF OUTPUT ****==========') def create_artifact_dir(artifact, f_or_p, intermediate_path): """ Create directories for storing intermediate results of while solving a build """ dir_path = '{}/{}/{}'.format(intermediate_path, artifact, f_or_p) if isdir(dir_path): return if not isdir(join(intermediate_path, artifact)): _, stdout, stderr, ok = DependencyAnalyzerUtils._run_command(DependencyAnalyzerConstants.SUDO_MKDIR.format(join(intermediate_path, artifact))) if not isdir(join(intermediate_path, artifact, f_or_p)): _, stdout, stderr, ok = DependencyAnalyzerUtils._run_command(DependencyAnalyzerConstants.SUDO_MKDIR.format(join(intermediate_path, artifact, f_or_p))) _, stdout, stderr, ok = DependencyAnalyzerUtils._run_command(DependencyAnalyzerConstants.CHANGE_PERMISSION_CMD.format(join(intermediate_path, artifact, f_or_p))) def create_run_dir(iter_count, dir_path): """ Create a directory for storing intermediate results of a run while solving a build """ _, stdout, stderr, ok = DependencyAnalyzerUtils._run_command(DependencyAnalyzerConstants.SUDO_MKDIR.format(join(dir_path, DependencyAnalyzerConstants.ITER_RUN_DIR_NAME.format(iter_count)))) _, stdout, stderr, ok = DependencyAnalyzerUtils._run_command(DependencyAnalyzerConstants.CHANGE_PERMISSION_CMD.format(join(dir_path, DependencyAnalyzerConstants.ITER_RUN_DIR_NAME.format(iter_count)))) def append_output_log(log_path, content): with open(join(log_path, DependencyAnalyzerConstants.OUTPUT_LOG), DependencyAnalyzerConstants.FILE_ACCESS_MODE) as f: for i in content: f.write(i + DependencyAnalyzerConstants.CHAR_NEW_LINE) f.write(DependencyAnalyzerConstants.CHAR_NEW_LINE) def process_each_artifact_dependency_solve(fix_file_row, artifact_dict, intermediate_path, source_code_path, orig_log_path): """ Process each artifact by generating and applying patches """ final_output = [] start_time = time.time() accepted_patch_str = DependencyAnalyzerConstants.CHAR_EMPTY log_output_content = [] log_file_name = fix_file_row[0].strip() analyzer_result = None artifact, f_or_p = extract_from_file_name(log_file_name, artifact_dict) final_iter_count = 0 try: solve_result = None analyzer_result = None cleanup() output_path = join(intermediate_path, artifact[DependencyAnalyzerConstants.IMAGE_TAG_KEY], f_or_p) create_artifact_dir(artifact[DependencyAnalyzerConstants.IMAGE_TAG_KEY], f_or_p, intermediate_path) commit_date = artifact[DependencyAnalyzerConstants.JOB_KEY.format(f_or_p)][DependencyAnalyzerConstants.COMMITTED_AT_KEY] print('Processing....{}_{}'.format(artifact[DependencyAnalyzerConstants.IMAGE_TAG_KEY], f_or_p)) # Step1: Get source code from GitHub cloned_repo_dir, log_output_content = clone_repo(artifact, f_or_p, log_output_content, source_code_path) if not cloned_repo_dir: solve_result = FinalOutcome.FAILED_SOURCE_CODE_CLONE cleanup(None, output_path, log_output_content) final_output.append([log_file_name, DependencyAnalyzerConstants.CHAR_EMPTY, solve_result, analyzer_result, (time.time() - start_time), final_iter_count]) return final_output possible_candidates = json.loads(fix_file_row[2]) # Step 2: Modify .travis.yml modified_travis_yml, log_output_content = modify_travis_yml(f_or_p, cloned_repo_dir, artifact[DependencyAnalyzerConstants.REPO_KEY], log_output_content) if not modified_travis_yml: cleanup(None, output_path, log_output_content, cloned_repo_dir) solve_result = FinalOutcome.FAILED_UNABLE_TO_MODIFY_TRAVIS_YML final_output.append([log_file_name, DependencyAnalyzerConstants.CHAR_EMPTY, solve_result, analyzer_result, (time.time() - start_time), final_iter_count]) return final_output # Step3: Generate test.sh script with travis-build generated_build_sh, log_output_content = generate_and_prepare_build_script(f_or_p, cloned_repo_dir, artifact[DependencyAnalyzerConstants.REPO_KEY], log_output_content) if not generated_build_sh: log_output_content.append(FinalOutcome.FAILED_TO_PREPARE_BUILD_SCRIPT) solve_result = FinalOutcome.FAILED_TO_PREPARE_BUILD_SCRIPT cleanup(None, output_path, log_output_content, cloned_repo_dir) final_output.append([log_file_name, DependencyAnalyzerConstants.CHAR_EMPTY, solve_result, analyzer_result, (time.time() - start_time), final_iter_count]) return final_output # Step4: Pinning correct versions for possible candidates dep_files = fix_file_row[3].strip() patches, log_output_content = SolverUtils.generate_patch_combos(possible_candidates, commit_date, artifact[DependencyAnalyzerConstants.REPO_KEY], log_output_content, cloned_repo_dir, dep_files) # Step5: Copy files to container to make changes except patch_requirements.txt curr_errors = fix_file_row[1].split(DependencyAnalyzerConstants.ERROR_LINE_DELIMITER) run_solver = True curr_patch_str = DependencyAnalyzerConstants.CHAR_EMPTY accepted_patch_str = DependencyAnalyzerConstants.CHAR_EMPTY iter_count = -1 # Step6: Run iterative solver while(run_solver): iter_count += 1 final_iter_count += 1 output_log_path = join(intermediate_path, artifact[DependencyAnalyzerConstants.IMAGE_TAG_KEY], f_or_p, DependencyAnalyzerConstants.ITER_RUN_DIR_NAME.format(iter_count)) create_run_dir(iter_count, join(intermediate_path, artifact[DependencyAnalyzerConstants.IMAGE_TAG_KEY], f_or_p,)) found_new_patch = False curr_patch_str = accepted_patch_str print(join(output_log_path, DependencyAnalyzerConstants.PATCH_COMBO_FILE_NAME)) print("New attempt " + str(iter_count)) print("<accepted_patch_str>") print(accepted_patch_str) print("</accepted_patch_str>") # write available patch combinations to intermediate directory for record keeping with open(join(intermediate_path, artifact[DependencyAnalyzerConstants.IMAGE_TAG_KEY], f_or_p, DependencyAnalyzerConstants.ITER_RUN_DIR_NAME.format(iter_count), DependencyAnalyzerConstants.PATCH_COMBO_FILE_NAME), DependencyAnalyzerConstants.FILE_WRITE_PLUS_MODE) as f: f.write(json.dumps(patches)) accepted_patch_list = accepted_patch_str.split(DependencyAnalyzerConstants.CHAR_NEW_LINE) need_classical = True if iter_count == 0: import_scanner_command = "java -jar /home/pydfix/PythonDependencyFix/import-scanner/build/libs/import-scanner-1.0-SNAPSHOT-all.jar " + cloned_repo_dir + " " + output_log_path print(import_scanner_command) process, stdout, stderr, ok = import_scanner_utils._run_command(import_scanner_command) if ok: need_classical = False curr_patch_str = open(join(output_log_path, "scanned_dependencies_requirements_without_version.txt")).read() if need_classical: # Step6a: Get patch for patch in patches: most_probable_patch = patches[0] if [p for p in accepted_patch_list if p.strip(DependencyAnalyzerConstants.CHAR_NEW_LINE).startswith(patch[DependencyAnalyzerConstants.NAME_KEY] + DependencyAnalyzerConstants.STR_EQUALS)]: if not most_probable_patch[DependencyAnalyzerConstants.APPLIED_KEY] and patch[DependencyAnalyzerConstants.NAME_KEY] == most_probable_patch[DependencyAnalyzerConstants.NAME_KEY] and accepted_patch_list[-1].strip(DependencyAnalyzerConstants.CHAR_NEW_LINE).startswith(patch[DependencyAnalyzerConstants.NAME_KEY] + DependencyAnalyzerConstants.STR_EQUALS) and accepted_patch_list[-1].strip(DependencyAnalyzerConstants.CHAR_NEW_LINE).split(DependencyAnalyzerConstants.STR_EQUALS)[-1] != patch[DependencyAnalyzerConstants.VERSION_KEY]: del accepted_patch_list[-1] accepted_patch_str = DependencyAnalyzerConstants.CHAR_NEW_LINE.join(accepted_patch_list) else: continue if patch[DependencyAnalyzerConstants.INCLUDED_KEY] or patch[DependencyAnalyzerConstants.APPLIED_KEY]: continue if len(patch[DependencyAnalyzerConstants.NAME_KEY]) == 0: curr_patch_str = accepted_patch_str + patch[DependencyAnalyzerConstants.NAME_KEY] + DependencyAnalyzerConstants.CHAR_NEW_LINE else: curr_patch_str = accepted_patch_str + patch[DependencyAnalyzerConstants.NAME_KEY] + DependencyAnalyzerConstants.STR_EQUALS + patch[DependencyAnalyzerConstants.VERSION_KEY] + DependencyAnalyzerConstants.CHAR_NEW_LINE patch[DependencyAnalyzerConstants.APPLIED_KEY] = True found_new_patch = True break # If no unapplied patches are found if not found_new_patch: use_iter_count = iter_count if iter_count > 0: use_iter_count = iter_count - 1 # Check if problem has been solved if check_if_restored_to_original_error(intermediate_path, artifact[DependencyAnalyzerConstants.IMAGE_TAG_KEY], artifact[DependencyAnalyzerConstants.JOB_KEY.format(f_or_p)][DependencyAnalyzerConstants.JOB_ID_KEY], use_iter_count, f_or_p, orig_log_path): # The current log matches the original log log_output_content.append(FinalOutcome.SUCCESS_RESTORED_TO_ORIGINAL_STATUS) solve_result = FinalOutcome.SUCCESS_RESTORED_TO_ORIGINAL_STATUS analyzer_result = True else: # The current log does not match the original log analyzer_result = False log_output_content.append(FinalOutcome.PARTIAL_EXHAUSTED_ALL_OPTIONS) solve_result = FinalOutcome.PARTIAL_EXHAUSTED_ALL_OPTIONS cleanup(DependencyAnalyzerConstants.ARTIFACT_DIR.format(artifact[DependencyAnalyzerConstants.IMAGE_TAG_KEY], f_or_p), output_log_path, log_output_content, cloned_repo_dir) break # write current patch to intermediate directory for record keeping with open(join(intermediate_path, artifact[DependencyAnalyzerConstants.IMAGE_TAG_KEY], f_or_p, DependencyAnalyzerConstants.ITER_RUN_DIR_NAME.format(iter_count), DependencyAnalyzerConstants.PATCH_DEPENDENCY_FILE_NAME), DependencyAnalyzerConstants.FILE_WRITE_PLUS_MODE) as f: f.write(curr_patch_str) # write current patch to cloned directory for new build with open(join(cloned_repo_dir, DependencyAnalyzerConstants.PATCH_DEPENDENCY_FILE_NAME), DependencyAnalyzerConstants.FILE_WRITE_MODE) as f: f.write(curr_patch_str) # Step6b: Apply patch, check outcome SolverUtils.remove_docker_container(DependencyAnalyzerConstants.ARTIFACT_DIR.format(artifact[DependencyAnalyzerConstants.IMAGE_TAG_KEY], f_or_p)) container_id, log_output_content = copy_files_to_container(artifact[DependencyAnalyzerConstants.IMAGE_TAG_KEY], cloned_repo_dir, f_or_p, log_output_content, artifact[DependencyAnalyzerConstants.REPO_KEY]) # If failed to run Docker container if not container_id: log_output_content.append(FinalOutcome.FAILED_TO_RUN_DOCKER) cleanup(DependencyAnalyzerConstants.ARTIFACT_DIR.format(artifact[DependencyAnalyzerConstants.IMAGE_TAG_KEY], f_or_p), output_log_path, log_output_content, cloned_repo_dir) solve_result = FinalOutcome.FAILED_TO_RUN_DOCKER break build_outcome, log_output_content = execute_patch_changes(container_id, f_or_p, artifact, curr_errors, log_output_content) # If failed to run build if not build_outcome: cleanup(DependencyAnalyzerConstants.ARTIFACT_DIR.format(artifact[DependencyAnalyzerConstants.IMAGE_TAG_KEY], f_or_p), output_log_path, log_output_content, cloned_repo_dir) solve_result = FinalOutcome.FAILED_NO_BUILD_OUTCOME log_output_content.append(FinalOutcome.FAILED_NO_BUILD_OUTCOME) break # Copying build logs for LogErrorAnalyzer _, stdout, stderr, ok = DependencyAnalyzerUtils._run_command( DependencyAnalyzerConstants.COPY_BUGSWARM_SANDBOX_LOG.format(artifact[DependencyAnalyzerConstants.IMAGE_TAG_KEY], f_or_p, join(intermediate_path, artifact[DependencyAnalyzerConstants.IMAGE_TAG_KEY], f_or_p, DependencyAnalyzerConstants.ITER_RUN_DIR_NAME.format(iter_count)))) # If build is successful if build_outcome == BuildOutcomeType.BUILD_SUCCESSFUL: log_output_content.append(FinalOutcome.SUCCESS_FIXED_BUILD) accepted_patch_str = curr_patch_str cleanup(DependencyAnalyzerConstants.ARTIFACT_DIR.format(artifact[DependencyAnalyzerConstants.IMAGE_TAG_KEY], f_or_p), output_log_path, log_output_content, cloned_repo_dir) solve_result = FinalOutcome.SUCCESS_FIXED_BUILD use_iter_count = iter_count if iter_count > 0: use_iter_count = iter_count - 1 if check_if_restored_to_original_error(intermediate_path, artifact[DependencyAnalyzerConstants.IMAGE_TAG_KEY], artifact[DependencyAnalyzerConstants.JOB_KEY.format(f_or_p)][DependencyAnalyzerConstants.JOB_ID_KEY], use_iter_count, f_or_p, orig_log_path): analyzer_result = True else: analyzer_result = False break else: new_errors, candidates_found, new_dep_files, log_output_content = run_log_analyzer(artifact, f_or_p, fix_file_row[0], intermediate_path, iter_count, log_output_content) if not candidates_found: if check_if_restored_to_original_error(intermediate_path, artifact[DependencyAnalyzerConstants.IMAGE_TAG_KEY], artifact[DependencyAnalyzerConstants.JOB_KEY.format(f_or_p)][DependencyAnalyzerConstants.JOB_ID_KEY], iter_count, f_or_p, orig_log_path): log_output_content.append(FinalOutcome.SUCCESS_RESTORED_TO_ORIGINAL_ERROR) solve_result = FinalOutcome.SUCCESS_RESTORED_TO_ORIGINAL_ERROR analyzer_result = True else: analyzer_result = False if not new_errors: log_output_content.append(FinalOutcome.SUCCESS_NO_LONGER_DEPENDENCY_ERROR) solve_result = FinalOutcome.SUCCESS_NO_LONGER_DEPENDENCY_ERROR else: log_output_content.append(FinalOutcome.PARTIAL_EXHAUSTED_ALL_OPTIONS) solve_result = FinalOutcome.PARTIAL_EXHAUSTED_ALL_OPTIONS accepted_patch_str = curr_patch_str cleanup(DependencyAnalyzerConstants.ARTIFACT_DIR.format(artifact[DependencyAnalyzerConstants.IMAGE_TAG_KEY], f_or_p), output_log_path, log_output_content, cloned_repo_dir) break new_candidates_found = False last_added_patch_caused_error = False most_probable_candidate = candidates_found[0] last_added_patch = curr_patch_str.strip(DependencyAnalyzerConstants.CHAR_NEW_LINE).split(DependencyAnalyzerConstants.CHAR_NEW_LINE)[-1] if len(new_errors): # Check if last added patch caused error if not last_added_patch_caused_error and last_added_patch.startswith(most_probable_candidate[DependencyAnalyzerConstants.CANDIDATE_NAME_KEY] + DependencyAnalyzerConstants.STR_EQUALS): last_added_patch_caused_error = True # check if any new candidates have been found for candidate in candidates_found: is_new_candidate = True for prev_candidate in possible_candidates: if prev_candidate[DependencyAnalyzerConstants.CANDIDATE_NAME_KEY] == candidate[DependencyAnalyzerConstants.CANDIDATE_NAME_KEY] and prev_candidate[DependencyAnalyzerConstants.CANDIDATE_VERSION_CONSTRAINT_KEY] == candidate[DependencyAnalyzerConstants.CANDIDATE_VERSION_CONSTRAINT_KEY]: is_new_candidate = False break if is_new_candidate: new_candidates_found = True break if build_outcome == BuildOutcomeType.NEW_ERROR and last_added_patch_caused_error: # include new candidates if found else discard current candidate if new_candidates_found: curr_errors = new_errors.split(DependencyAnalyzerConstants.ERROR_LINE_DELIMITER) patches, log_output_content = SolverUtils.generate_patch_combos(candidates_found[1:], commit_date, artifact[DependencyAnalyzerConstants.REPO_KEY], log_output_content, cloned_repo_dir, new_dep_files) log_output_content.append('Last added patch caused new error...discarding') elif build_outcome == BuildOutcomeType.NEW_ERROR or \ (build_outcome == BuildOutcomeType.SAME_ERROR and new_candidates_found): # Discard all current candidates log_output_content.append('Build error changed or new candidates found') accepted_patch_str = curr_patch_str curr_errors = new_errors.split(DependencyAnalyzerConstants.ERROR_LINE_DELIMITER) patches, log_output_content = SolverUtils.generate_patch_combos(candidates_found, commit_date, artifact[DependencyAnalyzerConstants.REPO_KEY], log_output_content, cloned_repo_dir, new_dep_files) possible_candidates = candidates_found else: log_output_content.append('Reject current incremental patch as it did not change error') except Exception as e: traceback.print_exc() print(log_output_content) log_output_content = [] solve_result = FinalOutcome.FAILED_ERROR.format(e) end_time = time.time() final_output.append([log_file_name, accepted_patch_str.replace(DependencyAnalyzerConstants.CHAR_NEW_LINE, DependencyAnalyzerConstants.CHAR_SPACE), solve_result, analyzer_result, (end_time - start_time), final_iter_count]) log_output_content.append(accepted_patch_str) append_output_log(join(intermediate_path, artifact[DependencyAnalyzerConstants.IMAGE_TAG_KEY], f_or_p), log_output_content) return final_output def check_if_restored_to_original_error(intermediate_path, img_tag, job_id, iter_count, f_or_p, orig_log_path): """ Compare current build to original build """ log_path = join(intermediate_path, img_tag, f_or_p, DependencyAnalyzerConstants.ITER_RUN_DIR_NAME.format(iter_count)) repro_log_path = join(log_path, DependencyAnalyzerConstants.LOG_FILE_NM_PATTERN.format(img_tag, f_or_p)) orig_log_name = '{}.{}.orig.log'.format(img_tag, f_or_p) if not isfile(join(orig_log_path, orig_log_name)): return False if not isfile(repro_log_path): return False analyzer = Analyzer() try: success, attr_list = analyzer.compare_single_log(repro_log_path, join(orig_log_path,orig_log_name), job_id) if not success: for attr in attr_list: if attr[DependencyAnalyzerConstants.ATTR_KEY] in [DependencyAnalyzerConstants.LOG_STATUS_KEY, DependencyAnalyzerConstants.LOG_TESTS_RUN_KEY, DependencyAnalyzerConstants.LOG_TESTS_FAILED_KEY]: return False except Exception as e: print(e) return False return True def clone_repo(artifact, f_or_p, log_output_content, source_code_path): """ Get Source code """ # return join(source_code_path, # artifact[DependencyAnalyzerConstants.IMAGE_TAG_KEY] + # DependencyAnalyzerConstants.CHAR_UNDERSCORE + f_or_p), log_output_content clone_location = join(source_code_path, '{}_{}'.format(artifact[DependencyAnalyzerConstants.IMAGE_TAG_KEY], f_or_p)) if isdir(clone_location): _, stdout, stderr, ok = DependencyAnalyzerUtils._run_command(DependencyAnalyzerConstants.SUDO_RM_RF_CMD.format(clone_location)) diff_url = artifact[DependencyAnalyzerConstants.DIFF_URL_KEY] response = requests.get(diff_url, auth=( DependencyAnalyzerConstants.GITHUB_USER_NAME, DependencyAnalyzerConstants.GITHUB_AUTH_TOKEN)) if response.status_code != HTTPStatus.OK: log_output_content.append('Diff not found') return None, log_output_content if f_or_p == DependencyAnalyzerConstants.STR_FAILED: commit = diff_url.split(DependencyAnalyzerConstants.STR_TWO_DOTS)[0].split(DependencyAnalyzerConstants.CHAR_SLASH)[-1] else: commit = diff_url.split(DependencyAnalyzerConstants.STR_TWO_DOTS)[-1] zip_download_url = DependencyAnalyzerConstants.GITHUB_ARCHIVE_API_URL.format(artifact[DependencyAnalyzerConstants.REPO_KEY], commit) response = requests.get(zip_download_url, stream=True, auth=( DependencyAnalyzerConstants.GITHUB_USER_NAME, DependencyAnalyzerConstants.GITHUB_AUTH_TOKEN)) if response.status_code != HTTPStatus.OK: log_output_content.append('Failed to get source code for failed commit from git archive') return None, log_output_content resp_zip = '{}_{}.zip'.format(artifact[DependencyAnalyzerConstants.IMAGE_TAG_KEY], f_or_p) log_output_content.append('Successful to get source code for failed commit') handle = open(resp_zip, "wb") for chunk in response.iter_content(chunk_size=512): if chunk: # filter out keep-alive new chunks handle.write(chunk) handle.close() with zipfile.ZipFile(resp_zip, DependencyAnalyzerConstants.FILE_READ_MODE) as f: inner_dir = list({item.split(DependencyAnalyzerConstants.CHAR_SLASH)[0] for item in f.namelist()})[0] with zipfile.ZipFile(join(os.getcwd(), resp_zip), DependencyAnalyzerConstants.FILE_READ_MODE) as zip_ref: zip_ref.extractall(clone_location) for each_file in Path(join(clone_location, inner_dir)).glob('*.*'): trg_path = each_file.parent.parent each_file.rename(trg_path.joinpath(each_file.name)) shutil.rmtree(join(clone_location, inner_dir)) if os.path.exists(join(os.getcwd(), resp_zip)): _, stdout, stderr, ok = DependencyAnalyzerUtils._run_command(DependencyAnalyzerConstants.SUDO_RM_CMD.format(join(os.getcwd(), resp_zip))) return clone_location, log_output_content def execute_patch_changes(container_id, f_or_p, artifact, curr_errors, log_output_content): """ Copy patch_requirements.txt to Docker container and re-run build job """ execute_script_in_container(container_id, f_or_p, artifact[DependencyAnalyzerConstants.REPO_KEY], DependencyAnalyzerConstants.GENERATED_BUILD_SCRIPT_NAME, log_output_content, artifact[DependencyAnalyzerConstants.IMAGE_TAG_KEY]) return check_build_result(f_or_p, curr_errors, log_output_content, artifact[DependencyAnalyzerConstants.IMAGE_TAG_KEY]) def run_log_analyzer(artifact, f_or_p, log_file_nm, intermediate_path, iter_count, log_output_content): """ Run log analyzer to check if a dependency issue still exists, if it does what are the errors and what are the possible candidates """ if not isdir(join(expanduser(DependencyAnalyzerConstants.CHAR_TILDE), DependencyAnalyzerConstants.INTERMEDIATE_LOG_DIR)): mkdir_log_path_cmd = DependencyAnalyzerConstants.CREATE_DIR_CMD.format(expanduser(DependencyAnalyzerConstants.CHAR_TILDE), DependencyAnalyzerConstants.INTERMEDIATE_LOG_DIR) _, stdout, stderr, ok = DependencyAnalyzerUtils._run_command(mkdir_log_path_cmd) if not ok: log_output_content.append(stderr) log_output_content.append('Failed to create intermediate log folder') print('Failed to create intermediate log folder') return None, None, None, log_output_content change_per_cmd = DependencyAnalyzerConstants.CHANGE_PERMISSION_CMD.format(join(expanduser(DependencyAnalyzerConstants.CHAR_TILDE), DependencyAnalyzerConstants.INTERMEDIATE_LOG_DIR)) _, stdout, stderr, ok = DependencyAnalyzerUtils._run_command(change_per_cmd) if not ok: log_output_content.append(stderr) log_output_content.append('Failed to change permission') print('Failed to change permission') return None, None, None, log_output_content cp_log_cmd = DependencyAnalyzerConstants.COPY_FILE_CMD.format(join(expanduser(DependencyAnalyzerConstants.CHAR_TILDE), DependencyAnalyzerConstants.BUGSWARM_CLIENT_SANDBOX, DependencyAnalyzerConstants.LOG_FILE_NM_PATTERN.format(artifact[DependencyAnalyzerConstants.IMAGE_TAG_KEY], f_or_p)), join(expanduser(DependencyAnalyzerConstants.CHAR_TILDE), DependencyAnalyzerConstants.INTERMEDIATE_LOG_DIR, log_file_nm)) _, stdout, stderr, ok = DependencyAnalyzerUtils._run_command(cp_log_cmd) if not ok: print(stderr) log_output_content.append(stderr) log_output_content.append('Failed to copy new log') print('Failed to copy new log') return None, None, None, log_output_content cp_art_cmd = DependencyAnalyzerConstants.COPY_FILE_CMD.format(DependencyAnalyzerConstants.ARTIFACTS_JSON_FILE_NAME, join(expanduser(DependencyAnalyzerConstants.CHAR_TILDE), DependencyAnalyzerConstants.INTERMEDIATE_LOG_DIR)) _, stdout, stderr, ok = DependencyAnalyzerUtils._run_command(cp_art_cmd) if not ok: log_output_content.append(stderr) log_output_content.append('Failed to copy artifacts.json') print('Failed to copy artifacts.json') return None, None, None, log_output_content log_analyzer_cmd = DependencyAnalyzerConstants.BUGSWARM_RUN_LOG_ANALYZER\ .format(join(expanduser(DependencyAnalyzerConstants.CHAR_TILDE), DependencyAnalyzerConstants.INTERMEDIATE_LOG_DIR), log_file_nm) _, stdout, stderr, ok = DependencyAnalyzerUtils._run_command(log_analyzer_cmd) log_output_content.append(stdout) if not ok: log_output_content.append(stderr) log_output_content.append('Failed to run log analyzer') print('Failed to run log analyzer') return None, None, None, log_output_content _, stdout, stderr, ok = DependencyAnalyzerUtils._run_command('cp {} {}'.format('artifacts_dependency_broken_' + log_file_nm.split()[0] + '.csv', join(intermediate_path, artifact[DependencyAnalyzerConstants.IMAGE_TAG_KEY], f_or_p, DependencyAnalyzerConstants.ITER_RUN_DIR_NAME.format(iter_count)))) errors = None candidates = None files = None found_row = False with open('artifacts_dependency_broken_' + log_file_nm.split()[0] + '.csv', DependencyAnalyzerConstants.FILE_READ_MODE) as f: reader = csv.reader(f) next(reader, None) for row in reader: found_row = True errors = row[1] candidates = json.loads(row[2]) files = row[3] break _, stdout, stderr, ok = DependencyAnalyzerUtils._run_command(DependencyAnalyzerConstants.SUDO_RM_CMD.format('artifacts_dependency_broken_' + log_file_nm.split()[0] + '.csv')) if found_row: return errors, candidates, files, log_output_content return None, None, None, log_output_content def check_build_result(f_or_p, error_list, log_output_content, img_tag): """ Check outcome of build from log file received from Docker container """ log_contents = [] with open(join(expanduser(DependencyAnalyzerConstants.CHAR_TILDE), DependencyAnalyzerConstants.BUGSWARM_CLIENT_SANDBOX, DependencyAnalyzerConstants.LOG_FILE_NM_PATTERN.format(img_tag, f_or_p)), DependencyAnalyzerConstants.FILE_READ_MODE) as f: log_contents = f.read().splitlines() for row_id in range(len(log_contents) - 1, 0, -1): if DependencyAnalyzerConstants.BUILD_SUCCESS_LOG in log_contents[row_id]: return BuildOutcomeType.BUILD_SUCCESSFUL, log_output_content else: for error in error_list: if len(error.strip()) and error in log_contents[row_id]: return BuildOutcomeType.SAME_ERROR, log_output_content return BuildOutcomeType.NEW_ERROR, log_output_content def execute_script_in_container(container_id, f_or_p, repo_dir_name, build_script_name, log_output_content, img_tag): """ Execute script in container which will start travis job in Docker and copy the log back to host """ docker_exec_cmd = DependencyAnalyzerConstants.DOCKER_EXEC_SCRIPT_CMD.format(container_id, f_or_p, repo_dir_name, build_script_name) _, stdout, stderr, ok = DependencyAnalyzerUtils._run_command(docker_exec_cmd) if not ok: log_output_content.append('Failed to execute script insideDocker container') return False, log_output_content log_output_content.append('Successfully executed script in container') # copying log from container docker_log_cp_cmd = DependencyAnalyzerConstants.DOCKER_LOG_CP_CMD.format(container_id, f_or_p, join(expanduser(DependencyAnalyzerConstants.CHAR_TILDE), DependencyAnalyzerConstants.BUGSWARM_CLIENT_SANDBOX, DependencyAnalyzerConstants.LOG_FILE_NM_PATTERN.format(img_tag, f_or_p))) _, stdout, stderr, ok = DependencyAnalyzerUtils._run_command(docker_log_cp_cmd) if not ok: log_output_content.append('Failed to copy log from Docker container') return False, log_output_content log_output_content.append('Successfully copied log from container') return True, log_output_content def copy_files_to_container(img_tag, cloned_repo_dir, f_or_p, log_output_content, repo_name): """ Copy build script, source code and python script to run travis build to container """ container_name = DependencyAnalyzerConstants.ARTIFACT_DIR.format(img_tag, f_or_p) docker_container_cmd = DependencyAnalyzerConstants.DOCKER_RUN_IMAGE_CMD.format(container_name, img_tag) _, stdout, stderr, ok = DependencyAnalyzerUtils._run_command(docker_container_cmd) if not ok: log_output_content.append(stderr) log_output_content.append('Failed to run Docker container') return None, log_output_content get_container_id_cmd = DependencyAnalyzerConstants.DOCKER_GET_CONTAINER_ID_CMD + container_name + '"' _, container_id, stderr, _ = DependencyAnalyzerUtils._run_command(get_container_id_cmd) copy_file_cmd = DependencyAnalyzerConstants.DOCKER_COPY_SCRIPT_CMD.format(container_id) _, stdout, stderr, ok = DependencyAnalyzerUtils._run_command(copy_file_cmd) if not ok: log_output_content.append('Failed to copy file to Docker container') return None, log_output_content log_output_content.append('Successfully copied script to container') build_script_path = join(cloned_repo_dir, DependencyAnalyzerConstants.GENERATED_BUILD_SCRIPT_NAME) repo_dir_path = pathlib.Path(cloned_repo_dir).parent cp_build_script_cmd = DependencyAnalyzerConstants.DOCKER_COPY_BUILD_SCRIPT_CMD\ .format(build_script_path, container_id, f_or_p) cp_repo_dir_cmd = DependencyAnalyzerConstants.DOCKER_COPY_SOURCE_CODE_CMD.format(cloned_repo_dir, container_id, f_or_p, repo_name) _, stdout, stderr, ok = DependencyAnalyzerUtils._run_command(cp_build_script_cmd) if not ok: DependencyAnalyzerUtils.print_error_msg(stderr, 'Unable to copy build script', cp_build_script_cmd) return None, log_output_content _, stdout, stderr, ok = DependencyAnalyzerUtils._run_command(cp_repo_dir_cmd) if not ok: DependencyAnalyzerUtils.print_error_msg(stderr, 'Unable to copy source code', cp_repo_dir_cmd) return None, log_output_content return container_id, log_output_content def modify_travis_yml(f_or_p, cloned_repo_dir, repo, log_output_content): """ Modify .travis.yml to install patch dependencies before project dependencies """ with open(join(cloned_repo_dir, DependencyAnalyzerConstants.TRAVIS_YAML_FILE_NAME), DependencyAnalyzerConstants.FILE_READ_MODE) as f: yaml_content_dict = yaml.load(f, Loader=yaml.FullLoader) yaml_content_dict = remove_upgrade_option(yaml_content_dict) pip_install_found, modified_dict = modify_install_step(yaml_content_dict, DependencyAnalyzerConstants.TRAVIS_BEFORE_INSTALL, f_or_p, repo) if not pip_install_found: pip_install_found, modified_dict = modify_install_step(yaml_content_dict, DependencyAnalyzerConstants.TRAVIS_INSTALL, f_or_p, repo) if not pip_install_found: log_output_content.append('Unable to find pip install step...trying to find the install stage') install_found, modified_dict = modify_install_step(yaml_content_dict, DependencyAnalyzerConstants.TRAVIS_INSTALL, f_or_p, repo, False) if not install_found: added_install, modified_dict = add_install_step(yaml_content_dict, f_or_p, repo) if not added_install: log_output_content.append('Unable to add install step...trying to find the install stage') return False, log_output_content with open(join(cloned_repo_dir, DependencyAnalyzerConstants.TRAVIS_YAML_FILE_NAME), DependencyAnalyzerConstants.FILE_WRITE_MODE) as f: yaml.dump(modified_dict, f) log_output_content.append('Successfully added install step for patch_requirements') return True, log_output_content def add_install_step(yaml_content_dict, f_or_p, repo): modified_dict = {} inserted_install_step = False for key in yaml_content_dict: if not inserted_install_step and key == DependencyAnalyzerConstants.TRAVIS_BEFORE_INSTALL: modified_dict[key] = yaml_content_dict[key] modified_dict[DependencyAnalyzerConstants.TRAVIS_INSTALL] = [DependencyAnalyzerConstants.PIP_INSTALL_PATCH.format(f_or_p, repo)] elif not inserted_install_step and key == DependencyAnalyzerConstants.TRAVIS_SCRIPT: modified_dict[DependencyAnalyzerConstants.TRAVIS_INSTALL] = [DependencyAnalyzerConstants.PIP_INSTALL_PATCH.format(f_or_p, repo)] modified_dict[key] = yaml_content_dict[key] else: modified_dict[key] = yaml_content_dict[key] return inserted_install_step, modified_dict def remove_upgrade_option(content): if isinstance(content, str): content = content.replace(DependencyAnalyzerConstants.PIP_INSTALL_UPGRADE_FLAG, DependencyAnalyzerConstants.PIP_INSTALL).replace(DependencyAnalyzerConstants.PIP_INSTALL_U_FLAG, DependencyAnalyzerConstants.PIP_INSTALL) return content.replace(DependencyAnalyzerConstants.PIP3_INSTALL_UPGRADE_FLAG, DependencyAnalyzerConstants.PIP3_INSTALL).replace(DependencyAnalyzerConstants.PIP3_INSTALL_U_FLAG, DependencyAnalyzerConstants.PIP3_INSTALL) if isinstance(content, list): new_list = [] for c in content: new_list.append(remove_upgrade_option(c)) return new_list if isinstance(content, dict): new_dict = {} for key in content: new_dict[key] = remove_upgrade_option(content[key]) return new_dict return content def modify_install_step(yaml_content_dict, stage_key, f_or_p, repo, add_before_pip=True): if stage_key in yaml_content_dict: stage_content = yaml_content_dict[stage_key] pip_install_found = False if not add_before_pip: pip_install_found = True stage_content = [DependencyAnalyzerConstants.PIP_INSTALL_PATCH.format(f_or_p, repo), stage_content] else: if DependencyAnalyzerConstants.PATCH_DEPENDENCY_FILE_NAME in stage_content: return True, yaml_content_dict if type(stage_content) and \ (DependencyAnalyzerConstants.PIP_INSTALL in stage_content or DependencyAnalyzerConstants.SETUP_PY in stage_content): pip_install_found = True stage_content = [DependencyAnalyzerConstants.PIP_INSTALL_PATCH.format(f_or_p, repo), stage_content] elif type(stage_content) and DependencyAnalyzerConstants.PIP3_INSTALL in stage_content: pip_install_found = True stage_content = [DependencyAnalyzerConstants.PIP3_INSTALL_PATCH.format(f_or_p, repo), stage_content] else: #list for i in range(0, len(stage_content)): if DependencyAnalyzerConstants.PIP_INSTALL in stage_content[i]\ or DependencyAnalyzerConstants.SETUP_PY in stage_content[i]: pip_install_found = True stage_content.insert(i, DependencyAnalyzerConstants.PIP_INSTALL_PATCH.format(f_or_p, repo)) break elif DependencyAnalyzerConstants.PIP3_INSTALL in stage_content[i]: pip_install_found = True stage_content.insert(i, DependencyAnalyzerConstants.PIP3_INSTALL_PATCH.format(f_or_p, repo)) break if pip_install_found: yaml_content_dict[stage_key] = stage_content return True, yaml_content_dict else: return False, yaml_content_dict for key in yaml_content_dict: if isinstance(yaml_content_dict[key], dict): is_modified, modified_dict = modify_install_step(yaml_content_dict[key], stage_key, f_or_p, repo) if is_modified: yaml_content_dict[key] = modified_dict return True, yaml_content_dict elif isinstance(yaml_content_dict[key], list): for i in range(0, len(yaml_content_dict[key])): ele = yaml_content_dict[key][i] if isinstance(ele, dict): is_modified, modified_dict = modify_install_step(ele, stage_key, f_or_p, repo) if is_modified: yaml_content_dict[key][i] = modified_dict return True, yaml_content_dict return False, yaml_content_dict def generate_and_prepare_build_script(f_or_p, cloned_repo_dir, repo, log_output_content): """ Generate new build script using travis-build to reflect changes made to .travis.yml Modify build script to prevent git code checkout during build """ travis_command = DependencyAnalyzerConstants.TRAVIS_COMPILE_BUILD_SCRIPT.format(join(expanduser(DependencyAnalyzerConstants.CHAR_TILDE), DependencyAnalyzerConstants.TRAVIS_BUILD_LOCATION)) cd_command = DependencyAnalyzerConstants.CHANGE_DIR_CMD.format(cloned_repo_dir) _, stdout, stderr, ok = DependencyAnalyzerUtils._run_command(f'{cd_command}; {travis_command}') if not ok: log_output_content.append(stderr) log_output_content.append('Unable to generate travis build script') return False, log_output_content # prevent git checkout build_script_path = join(cloned_repo_dir, DependencyAnalyzerConstants.GENERATED_BUILD_SCRIPT_NAME) lines = [] with open(build_script_path) as f: skip = False for line in f: if DependencyAnalyzerConstants.TRAVIS_START_GIT_CHECKOUT_CMD in line: skip = True elif DependencyAnalyzerConstants.TRAVIS_END_GIT_CHECKOUT_CMD in line: skip = False lines.append(DependencyAnalyzerConstants.TRAVIS_PREVENT_GIT_CHECKOUT_CMD.format(f_or_p, repo)) else: if not skip: lines.append(line) # Overwrite the original build script with the modified build script. with open(build_script_path, DependencyAnalyzerConstants.FILE_WRITE_MODE) as f2: for l in lines: f2.write(l) log_output_content.append('Successfully generated new build script') return True, log_output_content def extract_from_file_name(log_file_name, artifact_dict): """ Extract info from BugCatcher log file name """ image_tag = log_file_name.split(DependencyAnalyzerConstants.CHAR_STOP)[0] artifact = artifact_dict[image_tag] f_or_p = log_file_name.split(DependencyAnalyzerConstants.CHAR_STOP)[1] return artifact, f_or_p def get_dependency_analyzer_results(input_files_path): """ Read results from csv output of Step 1 """ content = [] with open(join(input_files_path, DependencyAnalyzerConstants.LOG_DEP_ANALYZER_FILENM), DependencyAnalyzerConstants.FILE_READ_MODE) as f: reader = csv.reader(f) next(reader, None) for row in reader: content.append(row) return content def cleanup(container_name=None, output_log_path=None, log_output_content=None, repo_dir=None): if output_log_path: append_output_log(output_log_path, log_output_content) log_output_content = [] if container_name: SolverUtils.remove_docker_container(container_name) remove_intermediate_logs() #if repo_dir: # _, stdout, stderr, ok = DependencyAnalyzerUtils._run_command(DependencyAnalyzerConstants.REMOVE_DIR_CMD.format(repo_dir, DependencyAnalyzerConstants.CHAR_EMPTY)) def remove_intermediate_logs(): _, stdout, stderr, ok = DependencyAnalyzerUtils._run_command(DependencyAnalyzerConstants.REMOVE_DIR_CMD.format(expanduser(DependencyAnalyzerConstants.STR_NOT_EQUALS_TILDE), DependencyAnalyzerConstants.INTERMEDIATE_LOG_DIR)) if __name__ == '__main__': # python3 bugswarm_automate_iterative_dependency_solver.py # -path <path to artifacts_dependency_broken.csv + artifacts.json> # -sourcecode <path to downloaded source code archives> # -intermediates <path to intermediate folder> main(sys.argv)
python
47,007
# Contains the code to test our about page. # Imports -------------------------------------------------------------------------------- from tests.functional_test_framework import LiveServerTestCase # Tests ---------------------------------------------------------------------------------- class TestAboutPage(LiveServerTestCase): pass
python
344
from sklearn.metrics import ConfusionMatrixDisplay from bender.evaluator.interface import Evaluator from bender.exporter.exporter import Exporter from bender.split_strategy.split_strategy import TrainingDataSet from bender.trained_model.interface import TrainedClassificationModel, TrainedEstimatorModel, TrainedModel class ConfusionMatrix(Evaluator): exporter: Exporter def __init__(self, exporter: Exporter) -> None: self.exporter = exporter async def evaluate(self, model: TrainedModel, data_set: TrainingDataSet) -> None: if isinstance(model, TrainedEstimatorModel): display = ConfusionMatrixDisplay.from_estimator( model.estimator(), data_set.x_validate, data_set.y_validate.astype(float) ) elif isinstance(model, TrainedClassificationModel): predictions = model.predict(data_set.x_validate) display = ConfusionMatrixDisplay.from_predictions(data_set.y_validate, predictions) else: return _ = display.ax_.set_title('Confusion Matrix') await self.exporter.store_figure(display.figure_)
python
1,133
""" Double beta decay utility converter Provides a useful tool for converting between different double beta dacay parameters. """ import numpy from echidna.calc import constants as const import echidna.test.physics_tests as physics_tests class DBIsotope(object): """ Class which calculates expected counts for a DBD isotope over a given experiment livetime. Args: name (string): Name of the isotope. atm_weight_iso (float): Atomic weight of isotope in g/mol. atm_weight_nat (float): Atomic weight of natural element in g/mol. abundance (float): Natural abundance of isotope with 0 to 1 equivalent to 0% to 100%. phase_space (float): Phase space of the isotope. matrix_element (float): Matrix element of the isotope. loading (float, optional): Loading of isotope with 0 to 1 equivalent to 0% to 100%. Default is stored in :class:`echidna.calc.constants` scint_density (float, optional): Density of liquid scintillator in kg/mm^3. Default is stored in :class:`echidna.calc.constants` outer_radius (float, optional): Radius of outer container containing fiducial volume, e.g. AV, in mm. Default is stored in :class:`echidna.calc.constants` Attributes: _name (string): Name of the isotope. _atm_weight_iso (float): Atomic weight of isotope in g/mol. _atm_weight_nat (float): Atomic weight of natural element in g/mol. _abundance (float): Natural abundance of isotope with 0 to 1 equivalent to 0% to 100%. _phase_space (float): Phase space of the isotope. _matrix_element (float): Matrix element of the isotope. _loading (float): Loading of isotope with 0 to 1 equivalent to 0% to 100%. Default is stored in :class:`echidna.calc.constants` _scint_density (float): Density of liquid scintillator in kg/mm^3. Default is stored in :class:`echidna.calc.constants` _outer_radius (float): Radius of outer container containing fiducial volume, e.g. AV, in mm. Default is stored in :class:`echidna.calc.constants` Raises: ValueError: If abundance is < 0. or > 1. ValueError: If :obj:`outer_radius` is negative or zero. """ def __init__(self, name, atm_weight_iso, atm_weight_nat, abundance, phase_space, matrix_element, loading=None, outer_radius=None, scint_density=None): if abundance < 0. or abundance > 1.: raise ValueError("Abundance ranges from 0 to 1") self._name = name self._atm_weight_iso = atm_weight_iso self._atm_weight_nat = atm_weight_nat self._abundance = abundance self._phase_space = phase_space self._matrix_element = matrix_element if loading: if loading < 0. or loading > 1.: raise ValueError("Loading ranges from 0 to 1") self._loading = loading else: # Default SNO+ Loading self._loading = const._loading if outer_radius: if outer_radius <= 0.: raise ValueError("Outer radius must be positive and non-zero") self._outer_radius = outer_radius else: self._outer_radius = const._av_radius if scint_density: self._scint_density = scint_density else: self._scint_density = const._scint_density def get_n_atoms(self, loading=None, scint_density=None, target_mass=None, scint_mass=None, outer_radius=None): """ Calculates the number of atoms of the double-beta isotope. Set up to follow the full (SNO+-specific) calculation as per SNO+-doc-1728v2 but can look at other scenarios/detectors by overriding the default args. .. warning:: All args default to SNO+ specific values! Args: loading (float, optional): Loading of isotope with 0 to 1 equivalent to 0% to 100%. Default is stored as a class variable. scint_density (float, optional): Density of liquid scintillator in kg/mm^3. Default is stored as a class variable. target_mass (float, optional): Target mass in kg. Calculates a value by default. scint_mass (float, optional): Mass of scintillator in kg. Calculates a value by default. outer_radius (float, optional): Radius of outer container containing fiducial volume, e.g. AV, in mm. Default is stored as a class variable. Raises: ValueError: If :obj:`loading` is not between zero and 1. ValueError: If :obj:`outer_radius` is negative or zero. Returns: float: Number of atoms. """ # Set defaults if outer_radius is None: # use class variable outer_radius = self._outer_radius if outer_radius <= 0.: raise ValueError("Outer radius must be positive and non-zero") if loading is None: # use class variable loading = self._loading if loading < 0. or loading > 1.: raise ValueError("Loading ranges from 0 to 1") if scint_density is None: # use class variable scint_density = self._scint_density if target_mass is None: # Calculate target mass if scint_mass is None: # Calculate scint_mass # Mass of scintillator volume = (4./3.) * numpy.pi * outer_radius**3 # mm^3 scint_mass = scint_density * volume # Mass fraction mass_iso = self._atm_weight_iso*const._atomic_mass_unit # kg/atom mass_nat = self._atm_weight_nat*const._atomic_mass_unit # kg/atom mass_fraction = self._abundance*mass_iso/mass_nat target_mass = mass_fraction * loading * scint_mass n_atoms = (target_mass*const._n_avagadro) /\ (self._atm_weight_iso*1.e-3) return n_atoms def half_life_to_activity(self, half_life, n_atoms=None): """ Calculates the activity for an isotope with a given half-life and number of atoms. Args: half_life (float): Half-life of an isotope in years. n_atoms (float, optional): Number of atoms of an isotope. Returns: float: Activity in decays per year. """ if n_atoms is None: # Calculate n_atoms from class variables n_atoms = self.get_n_atoms() return (numpy.log(2)/half_life)*n_atoms def activity_to_half_life(self, activity, n_atoms=None): """ Calculates the half-life of an isotope with a given activity and number of atoms. Args: activity (float): Activity of the isotope in :math:`years^{-1}`. n_atoms (float, optional): Number of atoms of an isotope. Returns: float: Half-life in years. """ if n_atoms is None: # Calculate n_atoms from class variables n_atoms = self.get_n_atoms() return numpy.log(2)*n_atoms/activity def eff_mass_to_half_life(self, eff_mass): """ Converts from effective majorana mass to :math:`0\\nu2\\beta` half-life. Args: eff_mass (float): Effective majorana mass, in eV. Raises: ValueError: If effective mass is not positive and non-zero. Returns: float: :math:`0\\nu2\\beta` half-life, in years. """ if eff_mass <= 0.: raise ValueError("Effective mass should be positive and non-zero") sq_mass_ratio = eff_mass**2/const._electron_mass**2 return 1/(self._phase_space*self._matrix_element**2*sq_mass_ratio) def half_life_to_eff_mass(self, half_life): """ Converts from :math:`0\\nu2\\beta` half-life to effective majorana mass. Args: half_life (float): :math:`0\\nu2\\beta` half-life, in years. Returns: float: Effective majorana mass, in eV. """ return numpy.sqrt(const._electron_mass ** 2 / (self._phase_space * self._matrix_element ** 2 * half_life)) def activity_to_counts(self, activity, livetime=5.): """ Converts activity to number of counts, assuming constant activity. Args: activity (float): Initial activity of the isotope in :math:`years^{-1}`. livetime (float, optional): Amount of years of data taking. Default is 5 years. Raises: ValueError: If :obj:`livetime` is not positive and non-zero. Returns: float: Number of counts. """ if livetime <= 0.: raise ValueError("Livetime should be positive and non zero") return activity*livetime def counts_to_activity(self, counts, livetime=5.): """ Converts counts to activity, assuming constant activity. Args: counts (float): Number of counts. livetime (float, optional): Amount of years of data taking. Default is 5 years. Raises: ValueError: If :obj:`livetime` is not positive and non-zero. Returns: float: Activity of the isotope in :math:`years^{-1}`. """ if livetime <= 0.: raise ValueError("Livetime should be positive and non zero") return counts/livetime def counts_to_eff_mass(self, counts, n_atoms=None, livetime=5.): """ Converts from signal counts to effective majorana mass. Args: counts (float): Number of signal counts within the livetime specified. n_atoms (float, optional): Number of isotope atoms/nuclei that could potentially decay to produce signal. livetime (float, optional): Amount of years of data taking. Default is 5 years. Raises: ValueError: If :obj:`livetime` is not positive and non-zero. Returns: float: Effective majorana mass in eV. """ if n_atoms is None: # Calculate n_atoms from class variables n_atoms = self.get_n_atoms() if livetime <= 0.: raise ValueError("Livetime should be positive and non zero") half_life = self.counts_to_half_life(counts, n_atoms, livetime) return self.half_life_to_eff_mass(half_life) def eff_mass_to_counts(self, eff_mass, n_atoms=None, livetime=5.): """ Converts from effective majorana mass to signal counts. Args: eff_mass (float): Effective majorana mass in eV. n_atoms (float, optional): Number of isotope atoms/nuclei that could potentially decay to produce signal. livetime (float, optional): Amount of years of data taking. Default is 5 years. Raises: ValueError: If effective mass is not positive and non-zero. ValueError: If arg:`livetime` is not positive and non-zero. Returns: float: Expected number of signal counts within the livetime specified. """ if eff_mass <= 0.: raise ValueError("Effective mass should be positive and non-zero") if n_atoms is None: # Calculate n_atoms from class variables n_atoms = self.get_n_atoms() if livetime <= 0.: raise ValueError("Livetime should be positive and non zero") half_life = self.eff_mass_to_half_life(eff_mass) return self.half_life_to_counts(half_life, n_atoms, livetime) def half_life_to_counts(self, half_life, n_atoms=None, livetime=5.): """ Converts from isotope's half-life to signal counts. Args: half_life (float): Isotope's :math:`0\\nu2\\beta` half-life in years. n_atoms (float, optional): Number of isotope atoms/nuclei that could potentially decay to produce signal. livetime (float, optional): Amount of years of data taking. Default is 5 years. Raises: ValueError: If :obj:`livetime` is not positive and non-zero. Returns: float: Expected number of counts. """ if n_atoms is None: # Calculate n_atoms from class variables n_atoms = self.get_n_atoms() if livetime <= 0.: raise ValueError("Livetime should be positive and non zero") activity = self.half_life_to_activity(half_life, n_atoms) return self.activity_to_counts(activity, livetime) def counts_to_half_life(self, counts, n_atoms=None, livetime=5.): """ Converts from signal count to isotope's half-life. Args: count (float): Number of signal counts within the livetime specified. n_atoms (float, optional): Number of isotope atoms/nuclei that could potentially decay to produce signal. livetime (float, optional): Amount of years of data taking. Default is 5 years. Raises: ValueError: If :obj:`livetime` is not positive and non-zero. Returns: float: Isotope's :math:`0\\nu2\\beta` half-life in years. """ if n_atoms is None: # Calculate n_atoms from class variables n_atoms = self.get_n_atoms() if livetime <= 0.: raise ValueError("Livetime should be positive and non zero") activity = self.counts_to_activity(counts, livetime) return self.activity_to_half_life(activity, n_atoms) def test(args): """ Test function to show agreement with Andy's numbers. Args: args (dict): Command line arguments from :mod:`argparse` """ # Load signal signal = store.load(args.signal) # Cut to 3.5m FV and 5 year livetime signal.shrink(0.0, 10.0, 0.0, 3500.0, 0.0, 5.0) # Shrink to ROI signal.shrink_to_roi(2.46, 2.68, 0) # ROI used by Andy print "============" print "decay module" print "------------" # Check results of each function # Create instance of DBIsotope for Te130 Te130_atm_weight = 129.906229 # SNO+-doc-1728v2 TeNat_atm_weight = 127.6 # SNO+-doc-1728v2 Te130_abundance = 0.3408 # SNO+-doc-1728v2 phase_space = 3.69e-14 # PRC 85, 034316 (2012) matrix_element = 4.03 # IBM-2 PRC 87, 014315 (2013) te130_converter = DBIsotope("Te130", Te130_atm_weight, TeNat_atm_weight, Te130_abundance, phase_space, matrix_element) # Check get_n_atoms for 0.3% loading, no FV cut expected = 3.7573e27 # SNO+-doc-1728v2 result, message = physics_tests.test_function_float( te130_converter.get_n_atoms, expected) print message, "(no FV cut)" # Check get_n_atoms with SNO+ defaults # calculated - A Back 2015-02-25, based on SNO+-doc-1728v2 expected = 7.4694e26 result, message = physics_tests.test_function_float( te130_converter.get_n_atoms, expected) print message # Create a DBIsotope instance for KLZ # Molar Mass Calculator, http://www.webqc.org/mmcalc.php, 2015-05-07 Xe136_atm_weight = 135.907219 # Molar Mass Calculator, http://www.webqc.org/mmcalc.php, 2015-06-03 Xe134_atm_weight = 133.90539450 # We want the atomic weight of the enriched Xenon XeEn_atm_weight = 0.9093*Xe136_atm_weight + 0.0889*Xe134_atm_weight Xe136_abundance = 0.9093 # PRC 86, 021601 (2012) phase_space = 1433.0e-17 # PRC 85, 034316 (2012) matrix_element = 3.33 # IBM-2 PRC 87, 014315 (2013) loading = 0.0244 # 2.44%, PRC 86, 021601 (2012) scint_density = 756.28e-9 # kg/mm^3 calculated A Back 2015-07-22 outer_radius = 1540. # mm, PRC 86, 021601 (2012) xe136_converter = DBIsotope("Xe136", Xe136_atm_weight, XeEn_atm_weight, Xe136_abundance, phase_space, matrix_element, loading, outer_radius, scint_density) expected = 5.3985e+26 # Calculated - A Back 2015-06-30 result, message = physics_tests.test_function_float( xe136_converter.get_n_atoms, expected, loading=loading, scint_density=scint_density, outer_radius=outer_radius) print message, "(KamLAND-Zen)" # Check half_life_to_activity expected = 50.4 # /y, SNO+-doc-2593v8 half_life = 5.17e25 # y, SNO+-doc-2593v8 (3 sigma FC limit @ 5 y livetime) result, message = physics_tests.test_function_float( te130_converter.half_life_to_activity, expected, half_life=half_life, n_atoms=te130_converter.get_n_atoms()) print message, "(no FV cut)" # Check activity_to_half_life expected = 5.17e25 # y, SNO+-doc-2593v8 activity = 50.4 # /y, SNO+-doc-2593v8 result, message = physics_tests.test_function_float( te130_converter.activity_to_half_life, expected, activity=activity, n_atoms=te130_converter.get_n_atoms()) print message, "(no FV cut)" # Check eff_mass_to_half_life expected = 4.37e25 # y, SNO+-doc-2593v8 (90% CL @ 1 y livetime) eff_mass = 0.0999 # eV, SNO+-doc-2593v8 result, message = physics_tests.test_function_float( te130_converter.eff_mass_to_half_life, expected, eff_mass=eff_mass) print message # Check half_life_to_eff_mass expected = 0.0999 # eV, SNO+-doc-2593v8 half_life = 4.37e25 # y, SNO+-doc-2593v8 result, message = physics_tests.test_function_float( te130_converter.half_life_to_eff_mass, expected, half_life=half_life) print message # Check activity_to_counts livetime = 5.0 # ROI counts, SNO+-doc-2593v8 (3 sigma FC limit @ 5 y livetime) expected = 31.2 # /y SNO+-doc-2593v8 - adjusted to FV activity = 50.4 result, message = physics_tests.test_function_float( te130_converter.activity_to_counts, expected, activity=activity, livetime=livetime) print message # Check counts_to_activity # /y SNO+-doc-2593v8 - adjusted to FV expected = 50.4 counts = 31.2 # ROI counts, SNO+-doc-2593v8 result, message = physics_tests.test_function_float( te130_converter.counts_to_activity, expected, counts=counts, livetime=livetime) print message # Check counts_to_eff_mass # eV, SNO+-doc-2593v8 (3 sigma @ 5 y livetime) expected = te130_converter.half_life_to_eff_mass(5.17e25) counts = 31.2 # ROI counts, SNO+-doc-2593v8 (3 sigma CL @ 5 y livetime) result, message = physics_tests.test_function_float( te130_converter.counts_to_eff_mass, expected, counts=counts) print message # Check eff_mass_to_counts expected = 31.2 # ROI counts, SNO+-doc-2593v8 (3 sigma CL @ 5 y livetime) # eV, SNO+-doc-2593v8 (3 sigma @ 5 y livetime) eff_mass = te130_converter.half_life_to_eff_mass(5.17e25) result, message = physics_tests.test_function_float( te130_converter.eff_mass_to_counts, expected, eff_mass=eff_mass) print message # Check half_life_to_counts expected = 31.2 # ROI counts, SNO+-doc-2593v8 half_life = 5.17e25 # y, SNO+-doc-2593v8 (3 sigma @ 5 y livetime) result, message = physics_tests.test_function_float( te130_converter.half_life_to_counts, expected, half_life=half_life) print message # Check counts_to_half_life expected = 5.17e25 # y, SNO+-doc-2593v8 counts = 31.2 # ROI counts, SNO+-doc-2593v8 result, message = physics_tests.test_function_float( te130_converter.counts_to_half_life, expected, counts=counts) print message print "============" # Matrix elements - dictionary with Spectra name as key and matrix element as # value. matrix_elements = { # REF: F. Simkovic et al. Phys. Rev. C. 79, 055501 1-10 (2009) # Averaged over min and max values from columns 2, 4 & 6 in Table III "Xe136_0n2b_n1": 2.205, "Xe136_0n2b_n2": None, # REF: M. Hirsh et al. Phys. Lett. B. 372, 8-14 (1996) - Table 2 # Assuming two Majorons emitted i.e. only type IE or IID modes "Xe136_0n2b_n3": 1.e-3, # REF: M. Hirsh et al. Phys. Lett. B. 372, 8-14 (1996) - Table 2 "Xe136_0n2b_n7": 1.e-3 } # Phase space factors - dictionary with Spectra name as key and phase space # factor as value. phase_spaces = { # REF: Suhonen, J. & Civitarese, O. Physics Reports, Elsevier BV, 300 # 123-214 (1998) # Table 6 "Xe136_0n2b_n1": 6.02e-16, "Xe136_0n2b_n2": None, # Assuming two Majorons emitted i.e. only type IE or IID modes # REF: M. Hirsh et al. Phys. Lett. B. 372, 8-14 (1996) - Table 3 "Xe136_0n2b_n3": 1.06e-17, # REF: M. Hirsh et al. Phys. Lett. B. 372, 8-14 (1996) - Table 3 "Xe136_0n2b_n7": 4.54e-17 } if __name__ == "__main__": import argparse from echidna.scripts.zero_nu_limit import ReadableDir import echidna.output.store as store parser = argparse.ArgumentParser(description="Example DBIsotpe calculator " "script and validation.") parser.add_argument("-s", "--signal", action=ReadableDir, help="Supply path for signal hdf5 file") args = parser.parse_args() test(args)
python
21,291
from collections import deque import hashlib import logging import os import shutil import stat import tempfile from io import open from definitions import Opcode, ParcelType, DiffAction from errors import Error, CodedError from tools import process_stat from protocol import send_response_header, send_parcel, send_empty_parcel, send_error def handle_expand_path(args): path = os.path.expanduser(args['path']) if not os.path.exists(path): send_error(Error.ENOENT, 'Path not found') elif not os.path.isdir(path): send_error(Error.ENOTDIR, 'Not a directory') else: send_response_header({'path': path}) def handle_ls(args): base = os.path.expanduser(args['path']) selfStat = os.stat(base) result = { 'stat': process_stat(selfStat) } if not stat.S_ISDIR(selfStat[stat.ST_MODE]): send_response_header(result) return dirs = {} dirLimit = 25 entryLimit = 2000 explore = deque(['.']) while len(explore) > 0 and dirLimit > 0 and entryLimit > 0: dirLimit -= 1 relPath = explore.popleft() absPath = base if relPath == '.' else os.path.join(base, relPath) try: children = {} for childName in os.listdir(absPath): entryLimit -= 1 if entryLimit < 0 and len(dirs) > 0: children = None break child_path = os.path.join(absPath, childName) try: childStat = os.stat(child_path) children[childName] = process_stat(childStat) isDir = stat.S_ISDIR(childStat[stat.ST_MODE]) if isDir and len(explore) < dirLimit: explore.append(os.path.join(relPath, childName)) except OSError as err: logging.warning('Skipping ' + child_path + ': ' + str(err)) if children is not None: dirs[relPath] = children except OSError as err: logging.warning('Error: ' + str(err)) if len(dirs) == 0: raise err # Only raise read errors on the first item. result['dirs'] = dirs send_response_header(result) def handle_get_server_info(args): settingsPath = os.path.expanduser('~/.pony-ssh/') if not os.path.exists(settingsPath): os.makedirs(settingsPath) # Load or generate a cache key. cacheKey = None cacheKeyIsNew = False cacheKeyFile = settingsPath + 'cache.key' if os.path.exists(cacheKeyFile): with open(cacheKeyFile, 'r') as keyFileHandle: cacheKey = keyFileHandle.read(64) if cacheKey == None or len(cacheKey) < 64: cacheKeyIsNew = True cacheKey = os.urandom(32).encode('hex') with open(cacheKeyFile, 'wb') as keyFileHandle: keyFileHandle.write(cacheKey) send_response_header({ 'home': os.path.expanduser('~'), 'cacheKey': cacheKey, 'newCacheKey': cacheKeyIsNew }) def handle_file_read(args): path = os.path.expanduser(args['path']) # Open the file before sending a response header fh = open(path, 'rb') # If a hash has been supplied, check if it matches. IF so, shortcut download. if 'cachedHash' in args: hash = hashlib.md5(fh.read()).hexdigest() if hash == args['cachedHash']: send_response_header({'hashMatch': True}) return fh.seek(0, 0) length = os.path.getsize(path) send_response_header({'length': length}) if length == 0: return chunkSize = 200 * 1024 while True: chunk = fh.read(chunkSize) if not chunk: break send_parcel(ParcelType.BODY, chunk) fh.close() send_parcel(ParcelType.ENDOFBODY, b'') def handle_file_write_diff(args): path = os.path.expanduser(args['path']) if not os.path.exists(path): raise OSError(Error.ENOENT, 'File not found') with open(path, 'r', encoding='latin-1') as fh: original_data = bytearray(fh.read(), 'latin-1') original_hash = hashlib.md5(original_data).hexdigest() if original_hash != args['hashBefore']: raise CodedError(Error.EIO, 'File hash does not match client cached value: ' + args['hashBefore'] + ' vs ' + original_hash) # Apply diff; comes in as a flat array containing pairs; action, action data. updated_data = bytearray() read_cursor = 0 diff = args['diff'] for i in range(0, len(diff), 2): action = diff[i] action_data = diff[i + 1] if action == DiffAction.INSERTED: updated_data.extend(bytearray(action_data, 'latin-1')) # Action data contains new data inserted elif action == DiffAction.REMOVED: read_cursor += action_data # Action data contains number of bytes to remove else: # Action data contains number of bytes to copy from original updated_data.extend(original_data[read_cursor:read_cursor+action_data]) read_cursor += action_data updated_hash = hashlib.md5(updated_data).hexdigest() if updated_hash != args['hashAfter']: raise CodedError(Error.EINVAL, 'File hash after changes applied does not match expected') with open(path, 'wb') as fh: fh.write(updated_data) send_response_header({}) def handle_file_write(args): path = os.path.expanduser(args['path']) alreadyExists = os.path.exists(path) if alreadyExists and not args['overwrite']: raise OSError(Error.EEXIST, 'File already exists') elif not alreadyExists and not args['create']: raise OSError(Error.ENOENT, 'File not found') fh = open(path, 'wb') fh.write(args['data']) fh.close() send_response_header({}) def handle_mkdir(args): path = os.path.expanduser(args['path']) os.mkdir(path) send_response_header({}) def handle_delete(args): path = os.path.expanduser(args['path']) if os.path.isdir(path) and not os.path.islink(path): shutil.rmtree(path) else: os.remove(path) send_response_header({}) def handle_rename(args): fromPath = os.path.expanduser(args['from']) toPath = os.path.expanduser(args['to']) if os.path.exists(toPath): if args['overwrite']: os.unlink(toPath) else: raise OSError(Error.EEXIST, 'File already exists') os.rename(fromPath, toPath) send_response_header({}) message_handlers = { Opcode.LS: handle_ls, Opcode.GET_SERVER_INFO: handle_get_server_info, Opcode.FILE_READ: handle_file_read, Opcode.FILE_WRITE: handle_file_write, Opcode.MKDIR: handle_mkdir, Opcode.DELETE: handle_delete, Opcode.RENAME: handle_rename, Opcode.EXPAND_PATH: handle_expand_path, Opcode.FILE_WRITE_DIFF: handle_file_write_diff, }
python
6,929
#Script:Temperatura ''' Programa que permita recibir por consola el valor de la temperatura en grados centígrados, debe convertir este valor a grados Kelvin, y finalmente, visualizar el resultado por pantalla. Considere la siguiente fórmula: °K = °C + 273.15. ''' #INPUTS print("Programa para convertir grados Centigrados °C a Kelvin °K") print("Digite el valor en grados °C") gradosC=float(input()) #PROCESS conversor=gradosC+273,15 #OUTPUTS print (gradosC, "°C equivale a",conversor,"°K")
python
491
# -*- coding: utf-8 -*- # These classes are a simplified version of Disease and Diseases classes # originally developed by Orion Buske in patient-similarity (https://github.com/buske/patient-similarity) import logging import re from collections import defaultdict from patientMatcher.resources import path_to_phenotype_annotations LOG = logging.getLogger(__name__) db_re = re.compile(r"([A-Z]+:\d+)") FREQUENCY_TERMS = { "HP:0040280": 1.0, # Obligate "HP:0040281": (0.99 + 0.80) / 2.0, # Very frequent "HP:0040282": (0.79 + 0.30) / 2.0, # Frequent "HP:0040283": (0.05 + 0.29) / 2.0, # Occasional "HP:0040284": (0.01 + 0.04) / 2.0, # Very rare "HP:0040285": 0.0, # Excluded } FREQUENCIES = { "very rare": 0.01, "rare": 0.05, "occasional": 0.075, "frequent": 0.33, "typical": 0.5, "variable": 0.5, "common": 0.75, "hallmark": 0.9, "obligate": 1.0, } class Disease: """An object representing a single disease""" def __init__(self, db, db_id, phenotypes): self.db = db self.id = db_id self.phenotype_freqs = phenotypes def __str__(self): return f"{self.db}:{self.id}" class Diseases: """Create an object containing all diseases from the phenotype_annotations.tav.txt file Resources included in this file: DECIPHER, OMIM, ORPHANET """ def init_app(self, app): """Initialize the diseases object when the app is launched""" self.databases = ["DECIPHER", "OMIM", "ORPHA"] self.diseases = {} self._parse_diseases() LOG.info(f"Parsed {len(self.diseases.keys())} disease/phenotypes from resource file") def _parse_disease_frequency(self, field): """Parse disease frequency (col 8 in phenotype anno file)""" if not field: return None if field.upper() in FREQUENCY_TERMS: return FREQUENCY_TERMS[field] field = field.lower() if field in FREQUENCIES: return FREQUENCIES[field] if field.endswith("%"): field = field.replace("%", "") if "-" in field: # Average any frequency ranges low, high = field.split("-") freq = (float(low) + float(high)) / 2 / 100 else: freq = float(field) / 100 else: try: num, denom = fraction_frequency_re.split(field) except Exception as ex: LOG.warning(f"Error parsing frequency: {field} -> {ex}") freq = default else: freq = float(num) / float(denom) return freq def _parse_diseases(self): """Parse diseases file, that is available under patientMatcher/resources""" disease_phenotypes = defaultdict(dict) with open(path_to_phenotype_annotations, encoding="utf-8") as disease_file: for line in disease_file: diseases = [] line = line.strip() items = line.split("\t") db = items[0] if db not in self.databases: continue diseases.append((items[0].strip(), items[1].strip())) # diseases: [(OMIM, 102400)] # Add alternative terms to list of diseases alt_diseases = db_re.findall(items[5].strip()) # example: ['OMIM:147791'] for alt_disease in alt_diseases: alt_db = alt_disease.split(":")[0].strip() alt_db_id = int(alt_disease.split(":")[1].strip()) if alt_db in ["MIM", "IM"]: alt_db = "OMIM" if alt_db not in self.databases: continue diseases.append((alt_db, alt_db_id)) # Add HPO terms and frequencies to disease terms hpo_term = items[4].strip() freq = self._parse_disease_frequency(items[8]) for disease in diseases: phenotypes = disease_phenotypes[disease] # Collect max annotated frequency if freq is not None and hpo_term in phenotypes: old_freq = phenotypes[hpo_term] if old_freq is None or old_freq < freq: phenotypes[hpo_term] = freq if old_freq != freq: pass else: phenotypes[hpo_term] = freq # phenotypes[hpo_term] = None # Do not populate disease frequencies for (db, db_id), phenotypes in disease_phenotypes.items(): disease = Disease(db, db_id, phenotypes) self.diseases[(db, db_id)] = disease
python
4,813
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'GeographicReport' db.create_table('geographic_report_geographicreport', ( ('max_scale', self.gf('django.db.models.fields.IntegerField')()), ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('name', self.gf('django.db.models.fields.CharField')(max_length=50)), )) db.send_create_signal('geographic_report', ['GeographicReport']) # Adding model 'Annotation' db.create_table('geographic_report_annotation', ( ('min', self.gf('django.db.models.fields.FloatField')(blank=True)), ('color', self.gf('django.db.models.fields.CharField')(default='000000', max_length=6)), ('max', self.gf('django.db.models.fields.FloatField')()), ('label', self.gf('django.db.models.fields.CharField')(max_length=30)), ('report', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['geographic_report.GeographicReport'])), ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), )) db.send_create_signal('geographic_report', ['Annotation']) def backwards(self, orm): # Deleting model 'GeographicReport' db.delete_table('geographic_report_geographicreport') # Deleting model 'Annotation' db.delete_table('geographic_report_annotation') models = { 'geographic_report.annotation': { 'Meta': {'object_name': 'Annotation'}, 'color': ('django.db.models.fields.CharField', [], {'default': "'000000'", 'max_length': '6'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '30'}), 'max': ('django.db.models.fields.FloatField', [], {}), 'min': ('django.db.models.fields.FloatField', [], {'blank': 'True'}), 'report': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['geographic_report.GeographicReport']"}) }, 'geographic_report.geographicreport': { 'Meta': {'object_name': 'GeographicReport'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'max_scale': ('django.db.models.fields.IntegerField', [], {}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) } } complete_apps = ['geographic_report']
python
2,701
""" ArchiveBox config definitons (including defaults and dynamic config options). Config Usage Example: archivebox config --set MEDIA_TIMEOUT=600 env MEDIA_TIMEOUT=600 USE_COLOR=False ... archivebox [subcommand] ... Config Precedence Order: 1. cli args (--update-all / --index-only / etc.) 2. shell environment vars (env USE_COLOR=False archivebox add '...') 3. config file (echo "SAVE_FAVICON=False" >> ArchiveBox.conf) 4. defaults (defined below in Python) Documentation: https://github.com/ArchiveBox/ArchiveBox/wiki/Configuration """ __package__ = 'archivebox' import os import io import re import sys import json import getpass import platform import shutil import sqlite3 import django from hashlib import md5 from pathlib import Path from datetime import datetime, timezone from typing import Optional, Type, Tuple, Dict, Union, List from subprocess import run, PIPE, DEVNULL from configparser import ConfigParser from collections import defaultdict from .config_stubs import ( SimpleConfigValueDict, ConfigValue, ConfigDict, ConfigDefaultValue, ConfigDefaultDict, ) ############################### Config Schema ################################## CONFIG_SCHEMA: Dict[str, ConfigDefaultDict] = { 'SHELL_CONFIG': { 'IS_TTY': {'type': bool, 'default': lambda _: sys.stdout.isatty()}, 'USE_COLOR': {'type': bool, 'default': lambda c: c['IS_TTY']}, 'SHOW_PROGRESS': {'type': bool, 'default': lambda c: (c['IS_TTY'] and platform.system() != 'Darwin')}, # progress bars are buggy on mac, disable for now 'IN_DOCKER': {'type': bool, 'default': False}, # TODO: 'SHOW_HINTS': {'type: bool, 'default': True}, }, 'GENERAL_CONFIG': { 'OUTPUT_DIR': {'type': str, 'default': None}, 'CONFIG_FILE': {'type': str, 'default': None}, 'ONLY_NEW': {'type': bool, 'default': True}, 'TIMEOUT': {'type': int, 'default': 60}, 'MEDIA_TIMEOUT': {'type': int, 'default': 3600}, 'OUTPUT_PERMISSIONS': {'type': str, 'default': '755'}, 'RESTRICT_FILE_NAMES': {'type': str, 'default': 'windows'}, 'URL_BLACKLIST': {'type': str, 'default': r'\.(css|js|otf|ttf|woff|woff2|gstatic\.com|googleapis\.com/css)(\?.*)?$'}, # to avoid downloading code assets as their own pages }, 'SERVER_CONFIG': { 'SECRET_KEY': {'type': str, 'default': None}, 'BIND_ADDR': {'type': str, 'default': lambda c: ['127.0.0.1:8000', '0.0.0.0:8000'][c['IN_DOCKER']]}, 'ALLOWED_HOSTS': {'type': str, 'default': '*'}, 'DEBUG': {'type': bool, 'default': False}, 'PUBLIC_INDEX': {'type': bool, 'default': True}, 'PUBLIC_SNAPSHOTS': {'type': bool, 'default': True}, 'PUBLIC_ADD_VIEW': {'type': bool, 'default': False}, 'FOOTER_INFO': {'type': str, 'default': 'Content is hosted for personal archiving purposes only. Contact server owner for any takedown requests.'}, 'SNAPSHOTS_PER_PAGE': {'type': int, 'default': 40}, 'CUSTOM_TEMPLATES_DIR': {'type': str, 'default': None}, 'TIME_ZONE': {'type': str, 'default': 'UTC'}, }, 'ARCHIVE_METHOD_TOGGLES': { 'SAVE_TITLE': {'type': bool, 'default': True, 'aliases': ('FETCH_TITLE',)}, 'SAVE_FAVICON': {'type': bool, 'default': True, 'aliases': ('FETCH_FAVICON',)}, 'SAVE_WGET': {'type': bool, 'default': True, 'aliases': ('FETCH_WGET',)}, 'SAVE_WGET_REQUISITES': {'type': bool, 'default': True, 'aliases': ('FETCH_WGET_REQUISITES',)}, 'SAVE_SINGLEFILE': {'type': bool, 'default': True, 'aliases': ('FETCH_SINGLEFILE',)}, 'SAVE_READABILITY': {'type': bool, 'default': True, 'aliases': ('FETCH_READABILITY',)}, 'SAVE_MERCURY': {'type': bool, 'default': True, 'aliases': ('FETCH_MERCURY',)}, 'SAVE_PDF': {'type': bool, 'default': True, 'aliases': ('FETCH_PDF',)}, 'SAVE_SCREENSHOT': {'type': bool, 'default': True, 'aliases': ('FETCH_SCREENSHOT',)}, 'SAVE_DOM': {'type': bool, 'default': True, 'aliases': ('FETCH_DOM',)}, 'SAVE_HEADERS': {'type': bool, 'default': True, 'aliases': ('FETCH_HEADERS',)}, 'SAVE_WARC': {'type': bool, 'default': True, 'aliases': ('FETCH_WARC',)}, 'SAVE_GIT': {'type': bool, 'default': True, 'aliases': ('FETCH_GIT',)}, 'SAVE_MEDIA': {'type': bool, 'default': True, 'aliases': ('FETCH_MEDIA',)}, 'SAVE_ARCHIVE_DOT_ORG': {'type': bool, 'default': True, 'aliases': ('SUBMIT_ARCHIVE_DOT_ORG',)}, }, 'ARCHIVE_METHOD_OPTIONS': { 'RESOLUTION': {'type': str, 'default': '1440,2000', 'aliases': ('SCREENSHOT_RESOLUTION',)}, 'GIT_DOMAINS': {'type': str, 'default': 'github.com,bitbucket.org,gitlab.com,gist.github.com'}, 'CHECK_SSL_VALIDITY': {'type': bool, 'default': True}, 'MEDIA_MAX_SIZE': {'type': str, 'default': '750m'}, 'CURL_USER_AGENT': {'type': str, 'default': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.61 Safari/537.36 ArchiveBox/{VERSION} (+https://github.com/ArchiveBox/ArchiveBox/) curl/{CURL_VERSION}'}, 'WGET_USER_AGENT': {'type': str, 'default': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.61 Safari/537.36 ArchiveBox/{VERSION} (+https://github.com/ArchiveBox/ArchiveBox/) wget/{WGET_VERSION}'}, 'CHROME_USER_AGENT': {'type': str, 'default': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.61 Safari/537.36 ArchiveBox/{VERSION} (+https://github.com/ArchiveBox/ArchiveBox/)'}, 'COOKIES_FILE': {'type': str, 'default': None}, 'CHROME_USER_DATA_DIR': {'type': str, 'default': None}, 'CHROME_HEADLESS': {'type': bool, 'default': True}, 'CHROME_SANDBOX': {'type': bool, 'default': lambda c: not c['IN_DOCKER']}, 'YOUTUBEDL_ARGS': {'type': list, 'default': lambda c: [ '--write-description', '--write-info-json', '--write-annotations', '--write-thumbnail', '--no-call-home', '--write-sub', '--all-subs', '--write-auto-sub', '--convert-subs=srt', '--yes-playlist', '--continue', '--ignore-errors', '--geo-bypass', '--add-metadata', '--max-filesize={}'.format(c['MEDIA_MAX_SIZE']), ]}, 'WGET_ARGS': {'type': list, 'default': ['--no-verbose', '--adjust-extension', '--convert-links', '--force-directories', '--backup-converted', '--span-hosts', '--no-parent', '-e', 'robots=off', ]}, 'CURL_ARGS': {'type': list, 'default': ['--silent', '--location', '--compressed' ]}, 'GIT_ARGS': {'type': list, 'default': ['--recursive']}, }, 'SEARCH_BACKEND_CONFIG' : { 'USE_INDEXING_BACKEND': {'type': bool, 'default': True}, 'USE_SEARCHING_BACKEND': {'type': bool, 'default': True}, 'SEARCH_BACKEND_ENGINE': {'type': str, 'default': 'ripgrep'}, 'SEARCH_BACKEND_HOST_NAME': {'type': str, 'default': 'localhost'}, 'SEARCH_BACKEND_PORT': {'type': int, 'default': 1491}, 'SEARCH_BACKEND_PASSWORD': {'type': str, 'default': 'SecretPassword'}, # SONIC 'SONIC_COLLECTION': {'type': str, 'default': 'archivebox'}, 'SONIC_BUCKET': {'type': str, 'default': 'snapshots'}, 'SEARCH_BACKEND_TIMEOUT': {'type': int, 'default': 90}, }, 'DEPENDENCY_CONFIG': { 'USE_CURL': {'type': bool, 'default': True}, 'USE_WGET': {'type': bool, 'default': True}, 'USE_SINGLEFILE': {'type': bool, 'default': True}, 'USE_READABILITY': {'type': bool, 'default': True}, 'USE_MERCURY': {'type': bool, 'default': True}, 'USE_GIT': {'type': bool, 'default': True}, 'USE_CHROME': {'type': bool, 'default': True}, 'USE_NODE': {'type': bool, 'default': True}, 'USE_YOUTUBEDL': {'type': bool, 'default': True}, 'USE_RIPGREP': {'type': bool, 'default': True}, 'CURL_BINARY': {'type': str, 'default': 'curl'}, 'GIT_BINARY': {'type': str, 'default': 'git'}, 'WGET_BINARY': {'type': str, 'default': 'wget'}, 'SINGLEFILE_BINARY': {'type': str, 'default': lambda c: bin_path('single-file')}, 'READABILITY_BINARY': {'type': str, 'default': lambda c: bin_path('readability-extractor')}, 'MERCURY_BINARY': {'type': str, 'default': lambda c: bin_path('mercury-parser')}, 'YOUTUBEDL_BINARY': {'type': str, 'default': 'youtube-dl'}, 'NODE_BINARY': {'type': str, 'default': 'node'}, 'RIPGREP_BINARY': {'type': str, 'default': 'rg'}, 'CHROME_BINARY': {'type': str, 'default': None}, 'POCKET_CONSUMER_KEY': {'type': str, 'default': None}, 'POCKET_ACCESS_TOKENS': {'type': dict, 'default': {}}, }, } ########################## Backwards-Compatibility ############################# # for backwards compatibility with old config files, check old/deprecated names for each key CONFIG_ALIASES = { alias: key for section in CONFIG_SCHEMA.values() for key, default in section.items() for alias in default.get('aliases', ()) } USER_CONFIG = {key for section in CONFIG_SCHEMA.values() for key in section.keys()} def get_real_name(key: str) -> str: """get the current canonical name for a given deprecated config key""" return CONFIG_ALIASES.get(key.upper().strip(), key.upper().strip()) ################################ Constants ##################################### PACKAGE_DIR_NAME = 'archivebox' TEMPLATES_DIR_NAME = 'templates' ARCHIVE_DIR_NAME = 'archive' SOURCES_DIR_NAME = 'sources' LOGS_DIR_NAME = 'logs' SQL_INDEX_FILENAME = 'index.sqlite3' JSON_INDEX_FILENAME = 'index.json' HTML_INDEX_FILENAME = 'index.html' ROBOTS_TXT_FILENAME = 'robots.txt' FAVICON_FILENAME = 'favicon.ico' CONFIG_FILENAME = 'ArchiveBox.conf' DEFAULT_CLI_COLORS = { 'reset': '\033[00;00m', 'lightblue': '\033[01;30m', 'lightyellow': '\033[01;33m', 'lightred': '\033[01;35m', 'red': '\033[01;31m', 'green': '\033[01;32m', 'blue': '\033[01;34m', 'white': '\033[01;37m', 'black': '\033[01;30m', } ANSI = {k: '' for k in DEFAULT_CLI_COLORS.keys()} COLOR_DICT = defaultdict(lambda: [(0, 0, 0), (0, 0, 0)], { '00': [(0, 0, 0), (0, 0, 0)], '30': [(0, 0, 0), (0, 0, 0)], '31': [(255, 0, 0), (128, 0, 0)], '32': [(0, 200, 0), (0, 128, 0)], '33': [(255, 255, 0), (128, 128, 0)], '34': [(0, 0, 255), (0, 0, 128)], '35': [(255, 0, 255), (128, 0, 128)], '36': [(0, 255, 255), (0, 128, 128)], '37': [(255, 255, 255), (255, 255, 255)], }) STATICFILE_EXTENSIONS = { # 99.999% of the time, URLs ending in these extensions are static files # that can be downloaded as-is, not html pages that need to be rendered 'gif', 'jpeg', 'jpg', 'png', 'tif', 'tiff', 'wbmp', 'ico', 'jng', 'bmp', 'svg', 'svgz', 'webp', 'ps', 'eps', 'ai', 'mp3', 'mp4', 'm4a', 'mpeg', 'mpg', 'mkv', 'mov', 'webm', 'm4v', 'flv', 'wmv', 'avi', 'ogg', 'ts', 'm3u8', 'pdf', 'txt', 'rtf', 'rtfd', 'doc', 'docx', 'ppt', 'pptx', 'xls', 'xlsx', 'atom', 'rss', 'css', 'js', 'json', 'dmg', 'iso', 'img', 'rar', 'war', 'hqx', 'zip', 'gz', 'bz2', '7z', # Less common extensions to consider adding later # jar, swf, bin, com, exe, dll, deb # ear, hqx, eot, wmlc, kml, kmz, cco, jardiff, jnlp, run, msi, msp, msm, # pl pm, prc pdb, rar, rpm, sea, sit, tcl tk, der, pem, crt, xpi, xspf, # ra, mng, asx, asf, 3gpp, 3gp, mid, midi, kar, jad, wml, htc, mml # These are always treated as pages, not as static files, never add them: # html, htm, shtml, xhtml, xml, aspx, php, cgi } # When initializing archivebox in a new directory, we check to make sure the dir is # actually empty so that we dont clobber someone's home directory or desktop by accident. # These files are exceptions to the is_empty check when we're trying to init a new dir, # as they could be from a previous archivebox version, system artifacts, dependencies, etc. ALLOWED_IN_OUTPUT_DIR = { '.gitignore', 'lost+found', '.DS_Store', '.venv', 'venv', 'virtualenv', '.virtualenv', 'node_modules', 'package.json', 'package-lock.json', 'yarn.lock', 'static', 'sonic', ARCHIVE_DIR_NAME, SOURCES_DIR_NAME, LOGS_DIR_NAME, SQL_INDEX_FILENAME, f'{SQL_INDEX_FILENAME}-wal', f'{SQL_INDEX_FILENAME}-shm', JSON_INDEX_FILENAME, HTML_INDEX_FILENAME, ROBOTS_TXT_FILENAME, FAVICON_FILENAME, CONFIG_FILENAME, f'{CONFIG_FILENAME}.bak', 'static_index.json', } ############################## Derived Config ################################## DYNAMIC_CONFIG_SCHEMA: ConfigDefaultDict = { 'TERM_WIDTH': {'default': lambda c: lambda: shutil.get_terminal_size((100, 10)).columns}, 'USER': {'default': lambda c: getpass.getuser() or os.getlogin()}, 'ANSI': {'default': lambda c: DEFAULT_CLI_COLORS if c['USE_COLOR'] else {k: '' for k in DEFAULT_CLI_COLORS.keys()}}, 'PACKAGE_DIR': {'default': lambda c: Path(__file__).resolve().parent}, 'TEMPLATES_DIR': {'default': lambda c: c['PACKAGE_DIR'] / TEMPLATES_DIR_NAME}, 'CUSTOM_TEMPLATES_DIR': {'default': lambda c: c['CUSTOM_TEMPLATES_DIR'] and Path(c['CUSTOM_TEMPLATES_DIR'])}, 'OUTPUT_DIR': {'default': lambda c: Path(c['OUTPUT_DIR']).resolve() if c['OUTPUT_DIR'] else Path(os.curdir).resolve()}, 'ARCHIVE_DIR': {'default': lambda c: c['OUTPUT_DIR'] / ARCHIVE_DIR_NAME}, 'SOURCES_DIR': {'default': lambda c: c['OUTPUT_DIR'] / SOURCES_DIR_NAME}, 'LOGS_DIR': {'default': lambda c: c['OUTPUT_DIR'] / LOGS_DIR_NAME}, 'CONFIG_FILE': {'default': lambda c: Path(c['CONFIG_FILE']).resolve() if c['CONFIG_FILE'] else c['OUTPUT_DIR'] / CONFIG_FILENAME}, 'COOKIES_FILE': {'default': lambda c: c['COOKIES_FILE'] and Path(c['COOKIES_FILE']).resolve()}, 'CHROME_USER_DATA_DIR': {'default': lambda c: find_chrome_data_dir() if c['CHROME_USER_DATA_DIR'] is None else (Path(c['CHROME_USER_DATA_DIR']).resolve() if c['CHROME_USER_DATA_DIR'] else None)}, # None means unset, so we autodetect it with find_chrome_Data_dir(), but emptystring '' means user manually set it to '', and we should store it as None 'URL_BLACKLIST_PTN': {'default': lambda c: c['URL_BLACKLIST'] and re.compile(c['URL_BLACKLIST'] or '', re.IGNORECASE | re.UNICODE | re.MULTILINE)}, 'ARCHIVEBOX_BINARY': {'default': lambda c: sys.argv[0] or bin_path('archivebox')}, 'VERSION': {'default': lambda c: json.loads((Path(c['PACKAGE_DIR']) / 'package.json').read_text(encoding='utf-8').strip())['version']}, 'PYTHON_BINARY': {'default': lambda c: sys.executable}, 'PYTHON_ENCODING': {'default': lambda c: sys.stdout.encoding.upper()}, 'PYTHON_VERSION': {'default': lambda c: '{}.{}.{}'.format(*sys.version_info[:3])}, 'DJANGO_BINARY': {'default': lambda c: django.__file__.replace('__init__.py', 'bin/django-admin.py')}, 'DJANGO_VERSION': {'default': lambda c: '{}.{}.{} {} ({})'.format(*django.VERSION)}, 'USE_CURL': {'default': lambda c: c['USE_CURL'] and (c['SAVE_FAVICON'] or c['SAVE_TITLE'] or c['SAVE_ARCHIVE_DOT_ORG'])}, 'CURL_VERSION': {'default': lambda c: bin_version(c['CURL_BINARY']) if c['USE_CURL'] else None}, 'CURL_USER_AGENT': {'default': lambda c: c['CURL_USER_AGENT'].format(**c)}, 'CURL_ARGS': {'default': lambda c: c['CURL_ARGS'] or []}, 'SAVE_FAVICON': {'default': lambda c: c['USE_CURL'] and c['SAVE_FAVICON']}, 'SAVE_ARCHIVE_DOT_ORG': {'default': lambda c: c['USE_CURL'] and c['SAVE_ARCHIVE_DOT_ORG']}, 'USE_WGET': {'default': lambda c: c['USE_WGET'] and (c['SAVE_WGET'] or c['SAVE_WARC'])}, 'WGET_VERSION': {'default': lambda c: bin_version(c['WGET_BINARY']) if c['USE_WGET'] else None}, 'WGET_AUTO_COMPRESSION': {'default': lambda c: wget_supports_compression(c) if c['USE_WGET'] else False}, 'WGET_USER_AGENT': {'default': lambda c: c['WGET_USER_AGENT'].format(**c)}, 'SAVE_WGET': {'default': lambda c: c['USE_WGET'] and c['SAVE_WGET']}, 'SAVE_WARC': {'default': lambda c: c['USE_WGET'] and c['SAVE_WARC']}, 'WGET_ARGS': {'default': lambda c: c['WGET_ARGS'] or []}, 'RIPGREP_VERSION': {'default': lambda c: bin_version(c['RIPGREP_BINARY']) if c['USE_RIPGREP'] else None}, 'USE_SINGLEFILE': {'default': lambda c: c['USE_SINGLEFILE'] and c['SAVE_SINGLEFILE']}, 'SINGLEFILE_VERSION': {'default': lambda c: bin_version(c['SINGLEFILE_BINARY']) if c['USE_SINGLEFILE'] else None}, 'USE_READABILITY': {'default': lambda c: c['USE_READABILITY'] and c['SAVE_READABILITY']}, 'READABILITY_VERSION': {'default': lambda c: bin_version(c['READABILITY_BINARY']) if c['USE_READABILITY'] else None}, 'USE_MERCURY': {'default': lambda c: c['USE_MERCURY'] and c['SAVE_MERCURY']}, 'MERCURY_VERSION': {'default': lambda c: '1.0.0' if shutil.which(str(bin_path(c['MERCURY_BINARY']))) else None}, # mercury is unversioned 'USE_GIT': {'default': lambda c: c['USE_GIT'] and c['SAVE_GIT']}, 'GIT_VERSION': {'default': lambda c: bin_version(c['GIT_BINARY']) if c['USE_GIT'] else None}, 'SAVE_GIT': {'default': lambda c: c['USE_GIT'] and c['SAVE_GIT']}, 'USE_YOUTUBEDL': {'default': lambda c: c['USE_YOUTUBEDL'] and c['SAVE_MEDIA']}, 'YOUTUBEDL_VERSION': {'default': lambda c: bin_version(c['YOUTUBEDL_BINARY']) if c['USE_YOUTUBEDL'] else None}, 'SAVE_MEDIA': {'default': lambda c: c['USE_YOUTUBEDL'] and c['SAVE_MEDIA']}, 'YOUTUBEDL_ARGS': {'default': lambda c: c['YOUTUBEDL_ARGS'] or []}, 'CHROME_BINARY': {'default': lambda c: c['CHROME_BINARY'] or find_chrome_binary()}, 'USE_CHROME': {'default': lambda c: c['USE_CHROME'] and c['CHROME_BINARY'] and (c['SAVE_PDF'] or c['SAVE_SCREENSHOT'] or c['SAVE_DOM'] or c['SAVE_SINGLEFILE'])}, 'CHROME_VERSION': {'default': lambda c: bin_version(c['CHROME_BINARY']) if c['USE_CHROME'] else None}, 'SAVE_PDF': {'default': lambda c: c['USE_CHROME'] and c['SAVE_PDF']}, 'SAVE_SCREENSHOT': {'default': lambda c: c['USE_CHROME'] and c['SAVE_SCREENSHOT']}, 'SAVE_DOM': {'default': lambda c: c['USE_CHROME'] and c['SAVE_DOM']}, 'SAVE_SINGLEFILE': {'default': lambda c: c['USE_CHROME'] and c['SAVE_SINGLEFILE'] and c['USE_NODE']}, 'SAVE_READABILITY': {'default': lambda c: c['USE_READABILITY'] and c['USE_NODE']}, 'SAVE_MERCURY': {'default': lambda c: c['USE_MERCURY'] and c['USE_NODE']}, 'USE_NODE': {'default': lambda c: c['USE_NODE'] and (c['SAVE_READABILITY'] or c['SAVE_SINGLEFILE'] or c['SAVE_MERCURY'])}, 'NODE_VERSION': {'default': lambda c: bin_version(c['NODE_BINARY']) if c['USE_NODE'] else None}, 'DEPENDENCIES': {'default': lambda c: get_dependency_info(c)}, 'CODE_LOCATIONS': {'default': lambda c: get_code_locations(c)}, 'EXTERNAL_LOCATIONS': {'default': lambda c: get_external_locations(c)}, 'DATA_LOCATIONS': {'default': lambda c: get_data_locations(c)}, 'CHROME_OPTIONS': {'default': lambda c: get_chrome_info(c)}, } ################################### Helpers #################################### def load_config_val(key: str, default: ConfigDefaultValue=None, type: Optional[Type]=None, aliases: Optional[Tuple[str, ...]]=None, config: Optional[ConfigDict]=None, env_vars: Optional[os._Environ]=None, config_file_vars: Optional[Dict[str, str]]=None) -> ConfigValue: """parse bool, int, and str key=value pairs from env""" config_keys_to_check = (key, *(aliases or ())) for key in config_keys_to_check: if env_vars: val = env_vars.get(key) if val: break if config_file_vars: val = config_file_vars.get(key) if val: break if type is None or val is None: if callable(default): assert isinstance(config, dict) return default(config) return default elif type is bool: if val.lower() in ('true', 'yes', '1'): return True elif val.lower() in ('false', 'no', '0'): return False else: raise ValueError(f'Invalid configuration option {key}={val} (expected a boolean: True/False)') elif type is str: if val.lower() in ('true', 'false', 'yes', 'no', '1', '0'): raise ValueError(f'Invalid configuration option {key}={val} (expected a string)') return val.strip() elif type is int: if not val.isdigit(): raise ValueError(f'Invalid configuration option {key}={val} (expected an integer)') return int(val) elif type is list or type is dict: return json.loads(val) raise Exception('Config values can only be str, bool, int or json') def load_config_file(out_dir: str=None) -> Optional[Dict[str, str]]: """load the ini-formatted config file from OUTPUT_DIR/Archivebox.conf""" out_dir = out_dir or Path(os.getenv('OUTPUT_DIR', '.')).resolve() config_path = Path(out_dir) / CONFIG_FILENAME if config_path.exists(): config_file = ConfigParser() config_file.optionxform = str config_file.read(config_path) # flatten into one namespace config_file_vars = { key.upper(): val for section, options in config_file.items() for key, val in options.items() } # print('[i] Loaded config file', os.path.abspath(config_path)) # print(config_file_vars) return config_file_vars return None def write_config_file(config: Dict[str, str], out_dir: str=None) -> ConfigDict: """load the ini-formatted config file from OUTPUT_DIR/Archivebox.conf""" from .system import atomic_write CONFIG_HEADER = ( """# This is the config file for your ArchiveBox collection. # # You can add options here manually in INI format, or automatically by running: # archivebox config --set KEY=VALUE # # If you modify this file manually, make sure to update your archive after by running: # archivebox init # # A list of all possible config with documentation and examples can be found here: # https://github.com/ArchiveBox/ArchiveBox/wiki/Configuration """) out_dir = out_dir or Path(os.getenv('OUTPUT_DIR', '.')).resolve() config_path = Path(out_dir) / CONFIG_FILENAME if not config_path.exists(): atomic_write(config_path, CONFIG_HEADER) config_file = ConfigParser() config_file.optionxform = str config_file.read(config_path) with open(config_path, 'r', encoding='utf-8') as old: atomic_write(f'{config_path}.bak', old.read()) find_section = lambda key: [name for name, opts in CONFIG_SCHEMA.items() if key in opts][0] # Set up sections in empty config file for key, val in config.items(): section = find_section(key) if section in config_file: existing_config = dict(config_file[section]) else: existing_config = {} config_file[section] = {**existing_config, key: val} # always make sure there's a SECRET_KEY defined for Django existing_secret_key = None if 'SERVER_CONFIG' in config_file and 'SECRET_KEY' in config_file['SERVER_CONFIG']: existing_secret_key = config_file['SERVER_CONFIG']['SECRET_KEY'] if (not existing_secret_key) or ('not a valid secret' in existing_secret_key): from django.utils.crypto import get_random_string chars = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_' random_secret_key = get_random_string(50, chars) if 'SERVER_CONFIG' in config_file: config_file['SERVER_CONFIG']['SECRET_KEY'] = random_secret_key else: config_file['SERVER_CONFIG'] = {'SECRET_KEY': random_secret_key} with open(config_path, 'w+', encoding='utf-8') as new: config_file.write(new) try: # validate the config by attempting to re-parse it CONFIG = load_all_config() except BaseException: # lgtm [py/catch-base-exception] # something went horribly wrong, rever to the previous version with open(f'{config_path}.bak', 'r', encoding='utf-8') as old: atomic_write(config_path, old.read()) raise if Path(f'{config_path}.bak').exists(): os.remove(f'{config_path}.bak') return { key.upper(): CONFIG.get(key.upper()) for key in config.keys() } def load_config(defaults: ConfigDefaultDict, config: Optional[ConfigDict]=None, out_dir: Optional[str]=None, env_vars: Optional[os._Environ]=None, config_file_vars: Optional[Dict[str, str]]=None) -> ConfigDict: env_vars = env_vars or os.environ config_file_vars = config_file_vars or load_config_file(out_dir=out_dir) extended_config: ConfigDict = config.copy() if config else {} for key, default in defaults.items(): try: extended_config[key] = load_config_val( key, default=default['default'], type=default.get('type'), aliases=default.get('aliases'), config=extended_config, env_vars=env_vars, config_file_vars=config_file_vars, ) except KeyboardInterrupt: raise SystemExit(0) except Exception as e: stderr() stderr(f'[X] Error while loading configuration value: {key}', color='red', config=extended_config) stderr(' {}: {}'.format(e.__class__.__name__, e)) stderr() stderr(' Check your config for mistakes and try again (your archive data is unaffected).') stderr() stderr(' For config documentation and examples see:') stderr(' https://github.com/ArchiveBox/ArchiveBox/wiki/Configuration') stderr() # raise raise SystemExit(2) return extended_config # def write_config(config: ConfigDict): # with open(os.path.join(config['OUTPUT_DIR'], CONFIG_FILENAME), 'w+') as f: # Logging Helpers def stdout(*args, color: Optional[str]=None, prefix: str='', config: Optional[ConfigDict]=None) -> None: ansi = DEFAULT_CLI_COLORS if (config or {}).get('USE_COLOR') else ANSI if color: strs = [ansi[color], ' '.join(str(a) for a in args), ansi['reset'], '\n'] else: strs = [' '.join(str(a) for a in args), '\n'] sys.stdout.write(prefix + ''.join(strs)) def stderr(*args, color: Optional[str]=None, prefix: str='', config: Optional[ConfigDict]=None) -> None: ansi = DEFAULT_CLI_COLORS if (config or {}).get('USE_COLOR') else ANSI if color: strs = [ansi[color], ' '.join(str(a) for a in args), ansi['reset'], '\n'] else: strs = [' '.join(str(a) for a in args), '\n'] sys.stderr.write(prefix + ''.join(strs)) def hint(text: Union[Tuple[str, ...], List[str], str], prefix=' ', config: Optional[ConfigDict]=None) -> None: ansi = DEFAULT_CLI_COLORS if (config or {}).get('USE_COLOR') else ANSI if isinstance(text, str): stderr('{}{lightred}Hint:{reset} {}'.format(prefix, text, **ansi)) else: stderr('{}{lightred}Hint:{reset} {}'.format(prefix, text[0], **ansi)) for line in text[1:]: stderr('{} {}'.format(prefix, line)) # Dependency Metadata Helpers def bin_version(binary: Optional[str]) -> Optional[str]: """check the presence and return valid version line of a specified binary""" abspath = bin_path(binary) if not binary or not abspath: return None try: version_str = run([abspath, "--version"], stdout=PIPE).stdout.strip().decode() # take first 3 columns of first line of version info return ' '.join(version_str.split('\n')[0].strip().split()[:3]) except OSError: pass # stderr(f'[X] Unable to find working version of dependency: {binary}', color='red') # stderr(' Make sure it\'s installed, then confirm it\'s working by running:') # stderr(f' {binary} --version') # stderr() # stderr(' If you don\'t want to install it, you can disable it via config. See here for more info:') # stderr(' https://github.com/ArchiveBox/ArchiveBox/wiki/Install') return None def bin_path(binary: Optional[str]) -> Optional[str]: if binary is None: return None node_modules_bin = Path('.') / 'node_modules' / '.bin' / binary if node_modules_bin.exists(): return str(node_modules_bin.resolve()) return shutil.which(str(Path(binary).expanduser())) or shutil.which(str(binary)) or binary def bin_hash(binary: Optional[str]) -> Optional[str]: if binary is None: return None abs_path = bin_path(binary) if abs_path is None or not Path(abs_path).exists(): return None file_hash = md5() with io.open(abs_path, mode='rb') as f: for chunk in iter(lambda: f.read(io.DEFAULT_BUFFER_SIZE), b''): file_hash.update(chunk) return f'md5:{file_hash.hexdigest()}' def find_chrome_binary() -> Optional[str]: """find any installed chrome binaries in the default locations""" # Precedence: Chromium, Chrome, Beta, Canary, Unstable, Dev # make sure data dir finding precedence order always matches binary finding order default_executable_paths = ( 'chromium-browser', 'chromium', '/Applications/Chromium.app/Contents/MacOS/Chromium', 'chrome', 'google-chrome', '/Applications/Google Chrome.app/Contents/MacOS/Google Chrome', 'google-chrome-stable', 'google-chrome-beta', 'google-chrome-canary', '/Applications/Google Chrome Canary.app/Contents/MacOS/Google Chrome Canary', 'google-chrome-unstable', 'google-chrome-dev', ) for name in default_executable_paths: full_path_exists = shutil.which(name) if full_path_exists: return name return None def find_chrome_data_dir() -> Optional[str]: """find any installed chrome user data directories in the default locations""" # Precedence: Chromium, Chrome, Beta, Canary, Unstable, Dev # make sure data dir finding precedence order always matches binary finding order default_profile_paths = ( '~/.config/chromium', '~/Library/Application Support/Chromium', '~/AppData/Local/Chromium/User Data', '~/.config/chrome', '~/.config/google-chrome', '~/Library/Application Support/Google/Chrome', '~/AppData/Local/Google/Chrome/User Data', '~/.config/google-chrome-stable', '~/.config/google-chrome-beta', '~/Library/Application Support/Google/Chrome Canary', '~/AppData/Local/Google/Chrome SxS/User Data', '~/.config/google-chrome-unstable', '~/.config/google-chrome-dev', ) for path in default_profile_paths: full_path = Path(path).resolve() if full_path.exists(): return full_path return None def wget_supports_compression(config): try: cmd = [ config['WGET_BINARY'], "--compression=auto", "--help", ] return not run(cmd, stdout=DEVNULL, stderr=DEVNULL).returncode except (FileNotFoundError, OSError): return False def get_code_locations(config: ConfigDict) -> SimpleConfigValueDict: return { 'PACKAGE_DIR': { 'path': (config['PACKAGE_DIR']).resolve(), 'enabled': True, 'is_valid': (config['PACKAGE_DIR'] / '__main__.py').exists(), }, 'TEMPLATES_DIR': { 'path': (config['TEMPLATES_DIR']).resolve(), 'enabled': True, 'is_valid': (config['TEMPLATES_DIR'] / 'static').exists(), }, 'CUSTOM_TEMPLATES_DIR': { 'path': config['CUSTOM_TEMPLATES_DIR'] and Path(config['CUSTOM_TEMPLATES_DIR']).resolve(), 'enabled': bool(config['CUSTOM_TEMPLATES_DIR']), 'is_valid': config['CUSTOM_TEMPLATES_DIR'] and Path(config['CUSTOM_TEMPLATES_DIR']).exists(), }, # 'NODE_MODULES_DIR': { # 'path': , # 'enabled': , # 'is_valid': (...).exists(), # }, } def get_external_locations(config: ConfigDict) -> ConfigValue: abspath = lambda path: None if path is None else Path(path).resolve() return { 'CHROME_USER_DATA_DIR': { 'path': abspath(config['CHROME_USER_DATA_DIR']), 'enabled': config['USE_CHROME'] and config['CHROME_USER_DATA_DIR'], 'is_valid': False if config['CHROME_USER_DATA_DIR'] is None else (Path(config['CHROME_USER_DATA_DIR']) / 'Default').exists(), }, 'COOKIES_FILE': { 'path': abspath(config['COOKIES_FILE']), 'enabled': config['USE_WGET'] and config['COOKIES_FILE'], 'is_valid': False if config['COOKIES_FILE'] is None else Path(config['COOKIES_FILE']).exists(), }, } def get_data_locations(config: ConfigDict) -> ConfigValue: return { 'OUTPUT_DIR': { 'path': config['OUTPUT_DIR'].resolve(), 'enabled': True, 'is_valid': (config['OUTPUT_DIR'] / SQL_INDEX_FILENAME).exists(), }, 'SOURCES_DIR': { 'path': config['SOURCES_DIR'].resolve(), 'enabled': True, 'is_valid': config['SOURCES_DIR'].exists(), }, 'LOGS_DIR': { 'path': config['LOGS_DIR'].resolve(), 'enabled': True, 'is_valid': config['LOGS_DIR'].exists(), }, 'ARCHIVE_DIR': { 'path': config['ARCHIVE_DIR'].resolve(), 'enabled': True, 'is_valid': config['ARCHIVE_DIR'].exists(), }, 'CONFIG_FILE': { 'path': config['CONFIG_FILE'].resolve(), 'enabled': True, 'is_valid': config['CONFIG_FILE'].exists(), }, 'SQL_INDEX': { 'path': (config['OUTPUT_DIR'] / SQL_INDEX_FILENAME).resolve(), 'enabled': True, 'is_valid': (config['OUTPUT_DIR'] / SQL_INDEX_FILENAME).exists(), }, } def get_dependency_info(config: ConfigDict) -> ConfigValue: return { 'ARCHIVEBOX_BINARY': { 'path': bin_path(config['ARCHIVEBOX_BINARY']), 'version': config['VERSION'], 'hash': bin_hash(config['ARCHIVEBOX_BINARY']), 'enabled': True, 'is_valid': True, }, 'PYTHON_BINARY': { 'path': bin_path(config['PYTHON_BINARY']), 'version': config['PYTHON_VERSION'], 'hash': bin_hash(config['PYTHON_BINARY']), 'enabled': True, 'is_valid': bool(config['PYTHON_VERSION']), }, 'DJANGO_BINARY': { 'path': bin_path(config['DJANGO_BINARY']), 'version': config['DJANGO_VERSION'], 'hash': bin_hash(config['DJANGO_BINARY']), 'enabled': True, 'is_valid': bool(config['DJANGO_VERSION']), }, 'CURL_BINARY': { 'path': bin_path(config['CURL_BINARY']), 'version': config['CURL_VERSION'], 'hash': bin_hash(config['CURL_BINARY']), 'enabled': config['USE_CURL'], 'is_valid': bool(config['CURL_VERSION']), }, 'WGET_BINARY': { 'path': bin_path(config['WGET_BINARY']), 'version': config['WGET_VERSION'], 'hash': bin_hash(config['WGET_BINARY']), 'enabled': config['USE_WGET'], 'is_valid': bool(config['WGET_VERSION']), }, 'NODE_BINARY': { 'path': bin_path(config['NODE_BINARY']), 'version': config['NODE_VERSION'], 'hash': bin_hash(config['NODE_BINARY']), 'enabled': config['USE_NODE'], 'is_valid': bool(config['NODE_VERSION']), }, 'SINGLEFILE_BINARY': { 'path': bin_path(config['SINGLEFILE_BINARY']), 'version': config['SINGLEFILE_VERSION'], 'hash': bin_hash(config['SINGLEFILE_BINARY']), 'enabled': config['USE_SINGLEFILE'], 'is_valid': bool(config['SINGLEFILE_VERSION']), }, 'READABILITY_BINARY': { 'path': bin_path(config['READABILITY_BINARY']), 'version': config['READABILITY_VERSION'], 'hash': bin_hash(config['READABILITY_BINARY']), 'enabled': config['USE_READABILITY'], 'is_valid': bool(config['READABILITY_VERSION']), }, 'MERCURY_BINARY': { 'path': bin_path(config['MERCURY_BINARY']), 'version': config['MERCURY_VERSION'], 'hash': bin_hash(config['MERCURY_BINARY']), 'enabled': config['USE_MERCURY'], 'is_valid': bool(config['MERCURY_VERSION']), }, 'GIT_BINARY': { 'path': bin_path(config['GIT_BINARY']), 'version': config['GIT_VERSION'], 'hash': bin_hash(config['GIT_BINARY']), 'enabled': config['USE_GIT'], 'is_valid': bool(config['GIT_VERSION']), }, 'YOUTUBEDL_BINARY': { 'path': bin_path(config['YOUTUBEDL_BINARY']), 'version': config['YOUTUBEDL_VERSION'], 'hash': bin_hash(config['YOUTUBEDL_BINARY']), 'enabled': config['USE_YOUTUBEDL'], 'is_valid': bool(config['YOUTUBEDL_VERSION']), }, 'CHROME_BINARY': { 'path': bin_path(config['CHROME_BINARY']), 'version': config['CHROME_VERSION'], 'hash': bin_hash(config['CHROME_BINARY']), 'enabled': config['USE_CHROME'], 'is_valid': bool(config['CHROME_VERSION']), }, 'RIPGREP_BINARY': { 'path': bin_path(config['RIPGREP_BINARY']), 'version': config['RIPGREP_VERSION'], 'hash': bin_hash(config['RIPGREP_BINARY']), 'enabled': config['USE_RIPGREP'], 'is_valid': bool(config['RIPGREP_VERSION']), }, # TODO: add an entry for the sonic search backend? # 'SONIC_BINARY': { # 'path': bin_path(config['SONIC_BINARY']), # 'version': config['SONIC_VERSION'], # 'hash': bin_hash(config['SONIC_BINARY']), # 'enabled': config['USE_SONIC'], # 'is_valid': bool(config['SONIC_VERSION']), # }, } def get_chrome_info(config: ConfigDict) -> ConfigValue: return { 'TIMEOUT': config['TIMEOUT'], 'RESOLUTION': config['RESOLUTION'], 'CHECK_SSL_VALIDITY': config['CHECK_SSL_VALIDITY'], 'CHROME_BINARY': config['CHROME_BINARY'], 'CHROME_HEADLESS': config['CHROME_HEADLESS'], 'CHROME_SANDBOX': config['CHROME_SANDBOX'], 'CHROME_USER_AGENT': config['CHROME_USER_AGENT'], 'CHROME_USER_DATA_DIR': config['CHROME_USER_DATA_DIR'], } # ****************************************************************************** # ****************************************************************************** # ******************************** Load Config ********************************* # ******* (compile the defaults, configs, and metadata all into CONFIG) ******** # ****************************************************************************** # ****************************************************************************** def load_all_config(): CONFIG: ConfigDict = {} for section_name, section_config in CONFIG_SCHEMA.items(): CONFIG = load_config(section_config, CONFIG) return load_config(DYNAMIC_CONFIG_SCHEMA, CONFIG) # add all final config values in CONFIG to globals in this file CONFIG = load_all_config() globals().update(CONFIG) # this lets us do: from .config import DEBUG, MEDIA_TIMEOUT, ... # ****************************************************************************** # ****************************************************************************** # ****************************************************************************** # ****************************************************************************** # ****************************************************************************** ########################### System Environment Setup ########################### # Set timezone to UTC and umask to OUTPUT_PERMISSIONS os.environ["TZ"] = 'UTC' os.umask(0o777 - int(OUTPUT_PERMISSIONS, base=8)) # noqa: F821 # add ./node_modules/.bin to $PATH so we can use node scripts in extractors NODE_BIN_PATH = str((Path(CONFIG["OUTPUT_DIR"]).absolute() / 'node_modules' / '.bin')) sys.path.append(NODE_BIN_PATH) # disable stderr "you really shouldnt disable ssl" warnings with library config if not CONFIG['CHECK_SSL_VALIDITY']: import urllib3 import requests requests.packages.urllib3.disable_warnings(requests.packages.urllib3.exceptions.InsecureRequestWarning) urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) ########################### Config Validity Checkers ########################### def check_system_config(config: ConfigDict=CONFIG) -> None: ### Check system environment if config['USER'] == 'root': stderr('[!] ArchiveBox should never be run as root!', color='red') stderr(' For more information, see the security overview documentation:') stderr(' https://github.com/ArchiveBox/ArchiveBox/wiki/Security-Overview#do-not-run-as-root') raise SystemExit(2) ### Check Python environment if sys.version_info[:3] < (3, 6, 0): stderr(f'[X] Python version is not new enough: {config["PYTHON_VERSION"]} (>3.6 is required)', color='red') stderr(' See https://github.com/ArchiveBox/ArchiveBox/wiki/Troubleshooting#python for help upgrading your Python installation.') raise SystemExit(2) if config['PYTHON_ENCODING'] not in ('UTF-8', 'UTF8'): stderr(f'[X] Your system is running python3 scripts with a bad locale setting: {config["PYTHON_ENCODING"]} (it should be UTF-8).', color='red') stderr(' To fix it, add the line "export PYTHONIOENCODING=UTF-8" to your ~/.bashrc file (without quotes)') stderr(' Or if you\'re using ubuntu/debian, run "dpkg-reconfigure locales"') stderr('') stderr(' Confirm that it\'s fixed by opening a new shell and running:') stderr(' python3 -c "import sys; print(sys.stdout.encoding)" # should output UTF-8') raise SystemExit(2) # stderr('[i] Using Chrome binary: {}'.format(shutil.which(CHROME_BINARY) or CHROME_BINARY)) # stderr('[i] Using Chrome data dir: {}'.format(os.path.abspath(CHROME_USER_DATA_DIR))) if config['CHROME_USER_DATA_DIR'] is not None: if not (Path(config['CHROME_USER_DATA_DIR']) / 'Default').exists(): stderr('[X] Could not find profile "Default" in CHROME_USER_DATA_DIR.', color='red') stderr(f' {config["CHROME_USER_DATA_DIR"]}') stderr(' Make sure you set it to a Chrome user data directory containing a Default profile folder.') stderr(' For more info see:') stderr(' https://github.com/ArchiveBox/ArchiveBox/wiki/Configuration#CHROME_USER_DATA_DIR') if '/Default' in str(config['CHROME_USER_DATA_DIR']): stderr() stderr(' Try removing /Default from the end e.g.:') stderr(' CHROME_USER_DATA_DIR="{}"'.format(config['CHROME_USER_DATA_DIR'].split('/Default')[0])) raise SystemExit(2) def check_dependencies(config: ConfigDict=CONFIG, show_help: bool=True) -> None: invalid_dependencies = [ (name, info) for name, info in config['DEPENDENCIES'].items() if info['enabled'] and not info['is_valid'] ] if invalid_dependencies and show_help: stderr(f'[!] Warning: Missing {len(invalid_dependencies)} recommended dependencies', color='lightyellow') for dependency, info in invalid_dependencies: stderr( ' ! {}: {} ({})'.format( dependency, info['path'] or 'unable to find binary', info['version'] or 'unable to detect version', ) ) if dependency in ('YOUTUBEDL_BINARY', 'CHROME_BINARY', 'SINGLEFILE_BINARY', 'READABILITY_BINARY', 'MERCURY_BINARY'): hint(('To install all packages automatically run: archivebox setup', f'or to disable it and silence this warning: archivebox config --set SAVE_{dependency.rsplit("_", 1)[0]}=False', ''), prefix=' ') stderr('') if config['TIMEOUT'] < 5: stderr(f'[!] Warning: TIMEOUT is set too low! (currently set to TIMEOUT={config["TIMEOUT"]} seconds)', color='red') stderr(' You must allow *at least* 5 seconds for indexing and archive methods to run succesfully.') stderr(' (Setting it to somewhere between 30 and 3000 seconds is recommended)') stderr() stderr(' If you want to make ArchiveBox run faster, disable specific archive methods instead:') stderr(' https://github.com/ArchiveBox/ArchiveBox/wiki/Configuration#archive-method-toggles') stderr() elif config['USE_CHROME'] and config['TIMEOUT'] < 15: stderr(f'[!] Warning: TIMEOUT is set too low! (currently set to TIMEOUT={config["TIMEOUT"]} seconds)', color='red') stderr(' Chrome will fail to archive all sites if set to less than ~15 seconds.') stderr(' (Setting it to somewhere between 30 and 300 seconds is recommended)') stderr() stderr(' If you want to make ArchiveBox run faster, disable specific archive methods instead:') stderr(' https://github.com/ArchiveBox/ArchiveBox/wiki/Configuration#archive-method-toggles') stderr() if config['USE_YOUTUBEDL'] and config['MEDIA_TIMEOUT'] < 20: stderr(f'[!] Warning: MEDIA_TIMEOUT is set too low! (currently set to MEDIA_TIMEOUT={config["MEDIA_TIMEOUT"]} seconds)', color='red') stderr(' Youtube-dl will fail to archive all media if set to less than ~20 seconds.') stderr(' (Setting it somewhere over 60 seconds is recommended)') stderr() stderr(' If you want to disable media archiving entirely, set SAVE_MEDIA=False instead:') stderr(' https://github.com/ArchiveBox/ArchiveBox/wiki/Configuration#save_media') stderr() def check_data_folder(out_dir: Union[str, Path, None]=None, config: ConfigDict=CONFIG) -> None: output_dir = out_dir or config['OUTPUT_DIR'] assert isinstance(output_dir, (str, Path)) archive_dir_exists = (Path(output_dir) / ARCHIVE_DIR_NAME).exists() if not archive_dir_exists: stderr('[X] No archivebox index found in the current directory.', color='red') stderr(f' {output_dir}', color='lightyellow') stderr() stderr(' {lightred}Hint{reset}: Are you running archivebox in the right folder?'.format(**config['ANSI'])) stderr(' cd path/to/your/archive/folder') stderr(' archivebox [command]') stderr() stderr(' {lightred}Hint{reset}: To create a new archive collection or import existing data in this folder, run:'.format(**config['ANSI'])) stderr(' archivebox init') raise SystemExit(2) def check_migrations(out_dir: Union[str, Path, None]=None, config: ConfigDict=CONFIG): output_dir = out_dir or config['OUTPUT_DIR'] from .index.sql import list_migrations pending_migrations = [name for status, name in list_migrations() if not status] if pending_migrations: stderr('[X] This collection was created with an older version of ArchiveBox and must be upgraded first.', color='lightyellow') stderr(f' {output_dir}') stderr() stderr(f' To upgrade it to the latest version and apply the {len(pending_migrations)} pending migrations, run:') stderr(' archivebox init') raise SystemExit(3) (Path(output_dir) / SOURCES_DIR_NAME).mkdir(exist_ok=True) (Path(output_dir) / LOGS_DIR_NAME).mkdir(exist_ok=True) def setup_django(out_dir: Path=None, check_db=False, config: ConfigDict=CONFIG, in_memory_db=False) -> None: check_system_config() output_dir = out_dir or Path(config['OUTPUT_DIR']) assert isinstance(output_dir, Path) and isinstance(config['PACKAGE_DIR'], Path) try: from django.core.management import call_command sys.path.append(str(config['PACKAGE_DIR'])) os.environ.setdefault('OUTPUT_DIR', str(output_dir)) assert (config['PACKAGE_DIR'] / 'core' / 'settings.py').exists(), 'settings.py was not found at archivebox/core/settings.py' os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'core.settings') # Check to make sure JSON extension is available in our Sqlite3 instance try: cursor = sqlite3.connect(':memory:').cursor() cursor.execute('SELECT JSON(\'{"a": "b"}\')') except sqlite3.OperationalError as exc: stderr(f'[X] Your SQLite3 version is missing the required JSON1 extension: {exc}', color='red') hint([ 'Upgrade your Python version or install the extension manually:', 'https://code.djangoproject.com/wiki/JSON1Extension' ]) if in_memory_db: # some commands (e.g. oneshot) dont store a long-lived sqlite3 db file on disk. # in those cases we create a temporary in-memory db and run the migrations # immediately to get a usable in-memory-database at startup os.environ.setdefault("ARCHIVEBOX_DATABASE_NAME", ":memory:") django.setup() call_command("migrate", interactive=False, verbosity=0) else: # Otherwise use default sqlite3 file-based database and initialize django # without running migrations automatically (user runs them manually by calling init) django.setup() from django.conf import settings # log startup message to the error log with open(settings.ERROR_LOG, "a+", encoding='utf-8') as f: command = ' '.join(sys.argv) ts = datetime.now(timezone.utc).strftime('%Y-%m-%d__%H:%M:%S') f.write(f"\n> {command}; ts={ts} version={config['VERSION']} docker={config['IN_DOCKER']} is_tty={config['IS_TTY']}\n") if check_db: # Enable WAL mode in sqlite3 from django.db import connection with connection.cursor() as cursor: current_mode = cursor.execute("PRAGMA journal_mode") if current_mode != 'wal': cursor.execute("PRAGMA journal_mode=wal;") # Create cache table in DB if needed try: from django.core.cache import cache cache.get('test', None) except django.db.utils.OperationalError: call_command("createcachetable", verbosity=0) # if archivebox gets imported multiple times, we have to close # the sqlite3 whenever we init from scratch to avoid multiple threads # sharing the same connection by accident from django.db import connections for conn in connections.all(): conn.close_if_unusable_or_obsolete() sql_index_path = Path(output_dir) / SQL_INDEX_FILENAME assert sql_index_path.exists(), ( f'No database file {SQL_INDEX_FILENAME} found in: {config["OUTPUT_DIR"]} (Are you in an ArchiveBox collection directory?)') except KeyboardInterrupt: raise SystemExit(2)
python
55,688
# -*- coding: utf-8 -*- """Example of use So we have a theory that is already implemented. The implementation of theory can be found in the dedicated file. The data can be found there also. """
python
197
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Context of auto parallel""" import threading import mindspore.context as context from mindspore.parallel._dp_allreduce_fusion import _set_fusion_strategy_by_idx, _set_fusion_strategy_by_size from mindspore.parallel._ps_context import _is_role_pserver from mindspore._c_expression import AutoParallelContext from mindspore._checkparam import args_type_check _MAX_GROUP_NAME_LEN = 127 _DEFAULT_HCCL_FUSION_GROUP_NAME = "hccl_world_groupsum1" _DEFAULT_NCCL_FUSION_GROUP_NAME = "nccl_world_groupsum1" class _AutoParallelContext: """ _AutoParallelContext is the environment in which operations are executed Note: Create a context through instantiating Context object is not recommended. Should use auto_parallel_context() to get the context since Context is singleton. """ _instance = None _instance_lock = threading.Lock() def __init__(self): self._context_handle = AutoParallelContext.get_instance() def __new__(cls): if cls._instance is None: cls._instance_lock.acquire() cls._instance = object.__new__(cls) cls._instance_lock.release() return cls._instance def check_context_handle(self): """ Check context handle. Raises: ValueError: If the context handle is none. """ if self._context_handle is None: raise ValueError("Context handle is none in context!!!") def set_device_num(self, device_num): """ Set device num for auto parallel. Args: device_num (int): The device number. Raises: ValueError: If the device num is not in [1, 4096]. """ self.check_context_handle() if device_num < 1 or device_num > 4096: raise ValueError("Device num must be in [1, 4096], but got {}".format(device_num)) self._context_handle.set_device_num(device_num) def get_device_num(self): """Get device num.""" self.check_context_handle() return self._context_handle.get_device_num() def set_global_rank(self, global_rank): """ Set global rank for auto parallel. Args: global_rank (int): The rank id of current rank. Raises: ValueError: If the global rank is not in [1, 4096]. """ self.check_context_handle() if global_rank < 0 or global_rank > 4095: raise ValueError("Global rank must be in [0, 4095], but got {}".format(global_rank)) self._context_handle.set_global_rank(global_rank) def get_global_rank(self): """Get current rank id.""" self.check_context_handle() return self._context_handle.get_global_rank() def set_pipeline_stages(self, stages): """Set the stages of the pipeline""" self.check_context_handle() self._context_handle.set_pipeline_stage_split_num(stages) def get_pipeline_stages(self): """Get the stages of the pipeline""" self.check_context_handle() return self._context_handle.get_pipeline_stage_split_num() def set_gradients_mean(self, gradients_mean): """ Set gradients_mean flag. Note: If gradients_mean is true, it will insert a div operator after parameter gradients allreduce. Args: gradients_mean (bool): The gradients_mean flag. """ self.check_context_handle() self._context_handle.set_gradients_mean(gradients_mean) def get_gradients_mean(self): """Get gradients_mean flag.""" self.check_context_handle() return self._context_handle.get_gradients_mean() def set_gradient_fp32_sync(self, gradient_fp32_sync): """ Set gradient_fp32_sync. Note: If gradient_fp32_sync is true, it will convert tensor type from fp16 to fp32 before parameter gradients allreduce. Args: gradient_fp32_sync (bool): The gradient_fp32_sync flag. """ self.check_context_handle() self._context_handle.set_gradient_fp32_sync(gradient_fp32_sync) def get_gradient_fp32_sync(self): """Get gradient_fp32_sync flag.""" self.check_context_handle() return self._context_handle.get_gradient_fp32_sync() def set_loss_repeated_mean(self, loss_repeated_mean): """ Set loss_repeated_mean flag. Note: If loss_repeated_mean is true, Distributed automatic differentiation will perform a mean operator in backward in the case of repeated calculations. Args: loss_repeated_mean (bool): The loss_repeated_mean flag. """ self.check_context_handle() self._context_handle.set_loss_repeated_mean(loss_repeated_mean) def get_loss_repeated_mean(self): """Get loss_repeated_mean flag.""" self.check_context_handle() return self._context_handle.get_loss_repeated_mean() def set_parallel_mode(self, parallel_mode): """ Set parallel mode for auto parallel. Args: parallel_mode (str): The parallel mode of auto parallel. Raises: ValueError: If parallel mode is not supported. """ self.check_context_handle() ret = self._context_handle.set_parallel_mode(parallel_mode) if ret is False: raise ValueError("Parallel mode does not support {}".format(parallel_mode)) def get_parallel_mode(self): """Get parallel mode.""" self.check_context_handle() if _is_role_pserver(): return context.ParallelMode.STAND_ALONE return self._context_handle.get_parallel_mode() def set_strategy_search_mode(self, auto_parallel_search_mode): """ Set search mode of strategy. Args: auto_parallel_search_mode (str): The search mode of strategy. """ self.check_context_handle() ret = self._context_handle.set_strategy_search_mode(auto_parallel_search_mode) if ret is False: raise ValueError("Strategy search mode does not support {}".format(auto_parallel_search_mode)) def get_strategy_search_mode(self): """Get search mode of strategy.""" self.check_context_handle() return self._context_handle.get_strategy_search_mode() def set_parameter_broadcast(self, parameter_broadcast): """ Set parameter broadcast. Args: parameter_broadcast (bool): Parameter broadcast or not. """ self.check_context_handle() self._context_handle.set_parameter_broadcast(parameter_broadcast) def get_parameter_broadcast(self): """Get parameter broadcast flag.""" self.check_context_handle() return self._context_handle.get_parameter_broadcast() def set_strategy_ckpt_load_file(self, strategy_ckpt_load_file): """ Set strategy checkpoint load path. Args: strategy_ckpt_load_file (bool): Path to load parallel strategy checkpoint. """ self.check_context_handle() self._context_handle.set_strategy_ckpt_load_file(strategy_ckpt_load_file) def get_strategy_ckpt_load_file(self): """Get strategy checkpoint load path.""" self.check_context_handle() return self._context_handle.get_strategy_ckpt_load_file() def set_full_batch(self, full_batch): """ Set whether load full batch on each device. Args: full_batch (bool): True if load full batch on each device. """ self.check_context_handle() self._context_handle.set_full_batch(full_batch) def get_full_batch(self): """Get whether load full batch on each device.""" self.check_context_handle() if _is_role_pserver(): return False return self._context_handle.get_full_batch() def set_grad_accumulation_step(self, grad_accumulation_step): """ Set grad accumulation step. Args: grad_accumulation_step (int): The grad accumulation step. """ self.check_context_handle() self._context_handle.set_grad_accumulation_step(grad_accumulation_step) def get_grad_accumulation_step(self): """Get grad accumulation step.""" self.check_context_handle() return self._context_handle.get_grad_accumulation_step() def set_strategy_ckpt_save_file(self, strategy_ckpt_save_file): """ Set strategy checkpoint save path. Args: strategy_ckpt_save_file (bool): Path to save parallel strategy checkpoint. """ self.check_context_handle() import os dir_path = os.path.dirname(strategy_ckpt_save_file) if dir_path and not os.path.exists(dir_path): os.makedirs(dir_path) self._context_handle.set_strategy_ckpt_save_file(strategy_ckpt_save_file) def get_strategy_ckpt_save_file(self): """Get strategy checkpoint save path.""" self.check_context_handle() return self._context_handle.get_strategy_ckpt_save_file() def set_group_ckpt_save_file(self, group_ckpt_save_file): """Set group checkpoint save path.""" self.check_context_handle() import os dir_path = os.path.dirname(group_ckpt_save_file) if dir_path and not os.path.exists(dir_path): os.makedirs(dir_path) self._context_handle.set_group_ckpt_save_file(group_ckpt_save_file) def get_parameter_broadcast_is_set(self): """Get parameter broadcast is set or not.""" self.check_context_handle() return self._context_handle.get_parameter_broadcast_is_set() def set_all_reduce_fusion_split_indices(self, indices, group=""): """ Set allreduce fusion strategy by parameters indices. Args: indices (list): Indices list. group (str): The communication group of hccl/nccl. Raises: TypeError: If type of indices item is not int. TypeError: If group is not a python str. """ self.check_context_handle() if not indices: raise ValueError('indices can not be empty') if isinstance(indices, (list)): for index in indices: if not isinstance(index, int): raise TypeError('indices has invalid value') else: raise TypeError('indices must be a python list') if len(set(indices)) != len(indices): raise ValueError('indices has duplicate elements') if sorted(indices) != indices: raise ValueError('elements in indices must be sorted in ascending order') if isinstance(group, (str)): group_len = len(group) if group_len > _MAX_GROUP_NAME_LEN: raise ValueError('Group name len is out of range {_MAX_GROUP_NAME_LEN}') else: raise TypeError('Group must be a python str') if group == "": if context.get_context("device_target") == "Ascend": group = _DEFAULT_HCCL_FUSION_GROUP_NAME else: group = _DEFAULT_NCCL_FUSION_GROUP_NAME self._context_handle.set_all_reduce_fusion_split_indices(indices, group) if context.get_context("device_target") == "Ascend" and context.get_context("enable_ge"): _set_fusion_strategy_by_idx(indices) def get_all_reduce_fusion_split_indices(self, group=""): """ Get allreduce fusion split indices. Args: group (str): The communication group of hccl/nccl. Returns: Return split sizes list according to the group. Raises: TypeError: If group is not a python str. """ self.check_context_handle() if isinstance(group, (str)): group_len = len(group) if group_len > _MAX_GROUP_NAME_LEN: raise ValueError('Group name len is out of range {_MAX_GROUP_NAME_LEN}') else: raise TypeError('Group must be a python str') if group == "": if context.get_context("device_target") == "Ascend": group = _DEFAULT_HCCL_FUSION_GROUP_NAME else: group = _DEFAULT_NCCL_FUSION_GROUP_NAME return self._context_handle.get_all_reduce_fusion_split_indices(group) def set_all_reduce_fusion_split_sizes(self, sizes, group=""): """ Set allreduce fusion strategy by parameters data sizes. Args: sizes (list): Sizes list. group (str): The communication group of hccl/nccl. Raises: TypeError: If type of sizes item is not int. TypeError: If group is not a python str. """ self.check_context_handle() if isinstance(sizes, (list)): for size in sizes: if not isinstance(size, int): raise TypeError('sizes has invalid value') else: raise TypeError('sizes must be a python list') if isinstance(group, (str)): group_len = len(group) if group_len > _MAX_GROUP_NAME_LEN: raise ValueError('Group name len is out of range {_MAX_GROUP_NAME_LEN}') else: raise TypeError('Group must be a python str') if group == "": if context.get_context("device_target") == "Ascend": group = _DEFAULT_HCCL_FUSION_GROUP_NAME else: group = _DEFAULT_NCCL_FUSION_GROUP_NAME self._context_handle.set_all_reduce_fusion_split_sizes(sizes, group) if context.get_context("device_target") == "Ascend": _set_fusion_strategy_by_size(sizes) def get_all_reduce_fusion_split_sizes(self, group=""): """ Get allreduce fusion split sizes. Args: group (str): The communication group of hccl/nccl. Returns: Return split sizes list according to the group. Raises: TypeError: If group is not a python str. """ self.check_context_handle() if isinstance(group, (str)): group_len = len(group) if group_len > _MAX_GROUP_NAME_LEN: raise ValueError('Group name len is out of range {_MAX_GROUP_NAME_LEN}') else: raise TypeError('Group must be a python str') if group == "": if context.get_context("device_target") == "Ascend": group = _DEFAULT_HCCL_FUSION_GROUP_NAME else: group = _DEFAULT_NCCL_FUSION_GROUP_NAME return self._context_handle.get_all_reduce_fusion_split_sizes(group) def set_enable_all_reduce_fusion(self, enable_all_reduce_fusion): """ Set enable/disable all reduce fusion. Args: enable_all_reduce_fusion (bool): Enable/disable all reduce fusion. """ self.check_context_handle() if not isinstance(enable_all_reduce_fusion, bool): raise TypeError('enable_all_reduce_fusion is invalid type') self._context_handle.set_enable_all_reduce_fusion(enable_all_reduce_fusion) def get_enable_all_reduce_fusion(self): """Get all reduce fusion flag.""" self.check_context_handle() return self._context_handle.get_enable_all_reduce_fusion() def get_device_num_is_set(self): """Get device number is set or not.""" self.check_context_handle() return self._context_handle.get_device_num_is_set() def get_global_rank_is_set(self): """Get global rank is set or not.""" self.check_context_handle() return self._context_handle.get_global_rank_is_set() def set_enable_parallel_optimizer(self, enable_parallel_optimizer): """ Set enable/disable parallel optimizer. Args: set_enable_parallel_optimizer (bool): Enable/disable parallel optimizer. """ self.check_context_handle() if not isinstance(enable_parallel_optimizer, bool): raise TypeError('enable_parallel_optimizer is invalid type') self._context_handle.set_enable_parallel_optimizer(enable_parallel_optimizer) def get_enable_parallel_optimizer(self): """Get parallel optimizer flag.""" self.check_context_handle() return self._context_handle.get_enable_parallel_optimizer() def set_communi_parallel_mode(self, communi_parallel_mode): """ Set communication parallel mode. Args: communi_parallel_mode (str): The communication parallel mode. Raises: ValueError: If parallel mode is not supported. """ self.check_context_handle() ret = self._context_handle.set_communi_parallel_mode(communi_parallel_mode) if ret is False: raise ValueError("Communication parallel mode does not support {}".format(communi_parallel_mode)) def get_communi_parallel_mode(self): """Get communication parallel mode.""" self.check_context_handle() return self._context_handle.get_communi_parallel_mode() def reset(self): """Reset all settings.""" self.check_context_handle() self._context_handle.reset() _auto_parallel_context = None def auto_parallel_context(): """ Get the global _auto_parallel_context, if it is not created, create a new one. Returns: _AutoParallelContext, the global auto parallel context. """ global _auto_parallel_context if _auto_parallel_context is None: _auto_parallel_context = _AutoParallelContext() return _auto_parallel_context _set_auto_parallel_context_func_map = { "device_num": auto_parallel_context().set_device_num, "global_rank": auto_parallel_context().set_global_rank, "gradients_mean": auto_parallel_context().set_gradients_mean, "gradient_fp32_sync": auto_parallel_context().set_gradient_fp32_sync, "loss_repeated_mean": auto_parallel_context().set_loss_repeated_mean, "pipeline_stages": auto_parallel_context().set_pipeline_stages, "parallel_mode": auto_parallel_context().set_parallel_mode, "auto_parallel_search_mode": auto_parallel_context().set_strategy_search_mode, "parameter_broadcast": auto_parallel_context().set_parameter_broadcast, "strategy_ckpt_load_file": auto_parallel_context().set_strategy_ckpt_load_file, "strategy_ckpt_save_file": auto_parallel_context().set_strategy_ckpt_save_file, "group_ckpt_save_file": auto_parallel_context().set_group_ckpt_save_file, "full_batch": auto_parallel_context().set_full_batch, "enable_parallel_optimizer": auto_parallel_context().set_enable_parallel_optimizer, "grad_accumulation_step": auto_parallel_context().set_grad_accumulation_step, "all_reduce_fusion_config": auto_parallel_context().set_all_reduce_fusion_split_indices, "communi_parallel_mode": auto_parallel_context().set_communi_parallel_mode} _get_auto_parallel_context_func_map = { "device_num": auto_parallel_context().get_device_num, "global_rank": auto_parallel_context().get_global_rank, "gradients_mean": auto_parallel_context().get_gradients_mean, "gradient_fp32_sync": auto_parallel_context().get_gradient_fp32_sync, "loss_repeated_mean": auto_parallel_context().get_loss_repeated_mean, "pipeline_stages": auto_parallel_context().get_pipeline_stages, "parallel_mode": auto_parallel_context().get_parallel_mode, "auto_parallel_search_mode": auto_parallel_context().get_strategy_search_mode, "parameter_broadcast": auto_parallel_context().get_parameter_broadcast, "strategy_ckpt_load_file": auto_parallel_context().get_strategy_ckpt_load_file, "strategy_ckpt_save_file": auto_parallel_context().get_strategy_ckpt_save_file, "full_batch": auto_parallel_context().get_full_batch, "enable_parallel_optimizer": auto_parallel_context().get_enable_parallel_optimizer, "grad_accumulation_step": auto_parallel_context().get_grad_accumulation_step, "all_reduce_fusion_config": auto_parallel_context().get_all_reduce_fusion_split_indices, "communi_parallel_mode": auto_parallel_context().get_communi_parallel_mode} @args_type_check(device_num=int, global_rank=int, gradients_mean=bool, gradient_fp32_sync=bool, loss_repeated_mean=bool, parallel_mode=str, auto_parallel_search_mode=str, parameter_broadcast=bool, strategy_ckpt_load_file=str, strategy_ckpt_save_file=str, full_batch=bool, enable_parallel_optimizer=bool, grad_accumulation_step=int, all_reduce_fusion_config=list, group_ckpt_save_file=str, communi_parallel_mode=str) def _set_auto_parallel_context(**kwargs): """ Set auto parallel context. Note: Attribute name is required for setting attributes. Args: device_num (int): Available device number, the value must be in [1, 4096]. Default: 1. global_rank (int): Global rank id, the value must be in [0, 4095]. Default: 0. gradients_mean (bool): Whether to perform mean operator after all-reduce of mirror. Default: False. loss_repeated_mean (bool): Whether to perform mean operator in backward in the case of repeated calculations. Default: True. gradient_fp32_sync (bool): Gradients allreduce by fp32 even though gradients is fp16 if this flag is True. Default: True. parallel_mode (str): There are five kinds of parallel modes, "stand_alone", "data_parallel", "hybrid_parallel", "semi_auto_parallel" and "auto_parallel". Default: "stand_alone". - stand_alone: Only one processor working. - data_parallel: Distributing the data across different processors. - hybrid_parallel: Achieving data parallelism and model parallelism manually. - semi_auto_parallel: Achieving data parallelism and model parallelism by setting parallel strategies. - auto_parallel: Achieving parallelism automatically. auto_parallel_search_mode (str): There are two kinds of search modes, "recursive_programming" and "dynamic_programming". Default: "dynamic_programming". - recursive_programming: Recursive programming search mode. - dynamic_programming: Dynamic programming search mode. parameter_broadcast (bool): Indicating whether to broadcast parameters before training. "stand_alone", "semi_auto_parallel" and "auto_parallel" do not support parameter broadcast. Default: False. strategy_ckpt_load_file (str): The path to load parallel strategy checkpoint. Default: '' strategy_ckpt_save_file (str): The path to save parallel strategy checkpoint. Default: '' group_ckpt_save_file (str): The path to save parallel group checkpoint. Default: '' full_batch (bool): Whether to load the whole batch on each device. Default: False. enable_parallel_optimizer (bool): Enable using optimizer segmentation or not. Default: False. all_reduce_fusion_config (list): Set allreduce fusion strategy by parameters indices. pipeline_stages (int): Set the stage information for pipeline parallel. This indicates how the devices are distributed alone the pipeline. The total devices will be divided into 'pipeline_stags' stages. This currently could only be used when parall mode semi_auto_parallel is enabled. Default: 0 communi_parallel_mode (str): There are tree kinds of communication parallel modes, "all_group_parallel", "same_server_group_parallel" and "no_group_parallel". Default: "all_group_parallel". - all_group_parallel: All communication groups are in parallel. - same_server_group_parallel: Only the communication groups within the same server are parallel. - no_group_parallel: All communication groups are not parallel. Raises: ValueError: If input key is not attribute in auto parallel context. """ for key, value in kwargs.items(): if key not in _set_auto_parallel_context_func_map: raise ValueError("Set context keyword %s is not recognized!" % key) set_func = _set_auto_parallel_context_func_map[key] set_func(value) def _get_auto_parallel_context(attr_key): """ Get auto parallel context attribute value according to the key. Args: attr_key (str): The key of the attribute. Returns: Return attribute value according to the key. Raises: ValueError: If input key is not attribute in auto parallel context. """ if attr_key not in _get_auto_parallel_context_func_map: raise ValueError("Get context keyword %s is not recognized!" % attr_key) get_func = _get_auto_parallel_context_func_map[attr_key] return get_func() def _reset_auto_parallel_context(): """ Reset auto parallel context attributes to the default values: - device_num: 1. - global_rank: 0. - gradients_mean: False. - gradient_fp32_sync: True. - parallel_mode: "stand_alone". - parameter_broadcast: False. - strategy_ckpt_load_file: "" - strategy_ckpt_save_file: "" - enable_parallel_optimizer: False - auto_parallel_search_mode: dynamic_programming - pipeline_stages: 0 """ auto_parallel_context().reset()
python
26,537
#!/usr/bin/env python """""""""Tests for `ldsnotes` package.""""""""" import pytest import os from ldsnotes import Notes, Bookmark, Journal, Highlight, Reference @pytest.fixture(scope="session") def notes(): return Notes(os.environ['USERNAME'], os.environ['PASSWORD']) def test_login(notes): pass """"""""" TEST CONSTRUCTOR FOR ALL TYPE OF ANNOTATIONS """"""""" def test_bookmark(notes): n = notes.search(annot_type="bookmark", start=1, stop=3) assert len(n) == 2 assert isinstance(n[0], Bookmark) def test_journal(notes): n = notes.search(annot_type="journal", start=1, stop=3) assert len(n) == 2 assert isinstance(n[0], Journal) def test_highlight(notes): n = notes.search(annot_type="highlight", start=1, stop=3) assert len(n) == 2 assert isinstance(n[0], Highlight) def test_reference(notes): n = notes.search(annot_type="reference", start=1, stop=3) assert len(n) == 2 assert isinstance(n[0], Reference) """"""""" TEST SEARCH FUNCTION """"""""" def test_tag(notes): n = notes.search(tag="Faith", start=1, stop=3) for i in n: assert "Faith" in i.tags def test_folder(notes): n = notes.search(folder="Journal", annot_type="highlight", start=1, stop=3) j_id = [i.id for i in notes.folders if i.name == "Journal"][0] for i in n: assert j_id in i.folders_id """"""""" TEST INDEXING """"""""" def test_index(notes): assert not isinstance(notes[1], list) assert len(notes[:10]) == 10 assert len(notes[1:11]) == 10
python
1,581
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for `ethiopian_date_converter` package.""" import unittest from ethiopian_date_converter import converter class TestEthiopian_date_converter(unittest.TestCase): """Tests for `ethiopian_date_converter` package.""" def test_ethiopic_to_gregorian(self): pairs = [ [('5492-05-07', 'AA'), '0000-01-01'], [('5493-05-08', 'AA'), '0001-01-01'], [('5499-13-06', 'AA'), '0007-08-27'], [('5500-01-01', 'AA'), '0007-08-28'], [('5500-01-02', 'AA'), '0007-08-29'], [('5500-13-05', 'AA'), '0008-08-26'], [('1855-02-20', ), '1862-10-29'], [('1857-10-29', ), '1865-07-05'], [('1858-05-22', ), '1866-01-29'], [('1858-08-10', ), '1866-04-17'], [('1859-04-28', ), '1867-01-05'], [('1860-05-05', ), '1868-01-13'], [('0001-01-01', ), '0008-08-27'], [('0002-01-01', ), '0009-08-27'], [('0003-01-01', ), '0010-08-27'], [('0004-01-01', ), '0011-08-28'], [('0001-13-05', ), '0009-08-26'], [('0002-13-05', ), '0010-08-26'], [('0003-13-05', ), '0011-08-26'], [('0003-13-06', ), '0011-08-27'], [('0004-13-05', ), '0012-08-26'], [('1575-02-06', ), '1582-10-13'], [('1575-02-07', ), '1582-10-14'], [('1575-02-08', ), '1582-10-15'], [('1575-02-09', ), '1582-10-16'], [('1892-04-23', ), '1900-01-01'], [('1997-04-23', ), '2005-01-01'], [('2000-13-05', ), '2008-09-10'], [('1893-04-22', ), '1900-12-31'], [('1985-04-22', ), '1992-12-31'], [('1989-04-22', ), '1996-12-31'], [('1993-04-22', ), '2000-12-31'], [('1997-04-22', ), '2004-12-31'], [('2001-04-22', ), '2008-12-31'], [('2993-04-14', ), '3000-12-31'], [('3993-04-07', ), '4000-12-31'], [('5993-03-22', ), '6000-12-31']] for ethiopic, gregorian in pairs: assert converter(*ethiopic, to='gregorian') == gregorian, gregorian def test_gregorian_to_ethiopic(self): pairs = [[('1862-10-29', ), '1855-02-20'], [('1865-07-05', ), '1857-10-29'], [('1866-01-29', ), '1858-05-22'], [('1866-04-17', ), '1858-08-10'], [('1867-01-05', ), '1859-04-28'], [('1868-01-13', ), '1860-05-05'], [('0001-01-01', ), '5493-05-08'], [('0007-08-27', ), '5499-13-06'], [('0007-08-28', ), '5500-01-01'], [('0007-08-29', ), '5500-01-02'], [('0008-08-27', ), '0001-01-01'], [('0009-08-27', ), '0002-01-01'], [('0010-08-27', ), '0003-01-01'], [('0011-08-28', ), '0004-01-01'], [('0008-08-26', ), '5500-13-05'], [('0009-08-26', ), '0001-13-05'], [('0010-08-26', ), '0002-13-05'], [('0011-08-26', ), '0003-13-05'], [('0011-08-27', ), '0003-13-06'], [('0012-08-26', ), '0004-13-05'], [('1582-10-13', ), '1575-02-06'], [('1582-10-14', ), '1575-02-07'], [('1582-10-15', ), '1575-02-08'], [('1582-10-16', ), '1575-02-09'], [('1900-01-01', ), '1892-04-23'], [('2005-01-01', ), '1997-04-23'], [('2008-09-10', ), '2000-13-05'], [('1900-12-31', ), '1893-04-22'], [('1992-12-31', ), '1985-04-22'], [('1996-12-31', ), '1989-04-22'], [('2000-12-31', ), '1993-04-22'], [('2004-12-31', ), '1997-04-22'], [('2008-12-31', ), '2001-04-22'], [('3000-12-31', ), '2993-04-14'], [('4000-12-31', ), '3993-04-07'], [('6000-12-31', ), '5993-03-22']] for gregorian, ethiopic in pairs: assert converter(*gregorian, to='ethiopian') == ethiopic, ethiopic if __name__ == '__main__': unittest.main()
python
4,237
""" Unit test for `start-api` CLI """ from unittest import TestCase from mock import patch, Mock from parameterized import parameterized from samcli.commands.local.start_api.cli import do_cli as start_api_cli from samcli.commands.local.lib.exceptions import NoApisDefined, InvalidLayerReference from samcli.commands.exceptions import UserException from samcli.commands.validate.lib.exceptions import InvalidSamDocumentException from samcli.commands.local.lib.exceptions import OverridesNotWellDefinedError from samcli.local.docker.lambda_container import DebuggingNotSupported class TestCli(TestCase): def setUp(self): self.template = "template" self.env_vars = "env-vars" self.debug_port = 123 self.debug_args = "args" self.debugger_path = "/test/path" self.docker_volume_basedir = "basedir" self.docker_network = "network" self.log_file = "logfile" self.skip_pull_image = True self.parameter_overrides = {} self.container_name = "container-name" self.layer_cache_basedir = "/some/layers/path" self.force_image_build = True self.region_name = "region" self.ctx_mock = Mock() self.ctx_mock.region = self.region_name self.host = "host" self.port = 123 self.static_dir = "staticdir" @patch("samcli.commands.local.start_api.cli.InvokeContext") @patch("samcli.commands.local.start_api.cli.LocalApiService") def test_cli_must_setup_context_and_start_service(self, local_api_service_mock, invoke_context_mock): # Mock the __enter__ method to return a object inside a context manager context_mock = Mock() invoke_context_mock.return_value.__enter__.return_value = context_mock service_mock = Mock() local_api_service_mock.return_value = service_mock self.call_cli() invoke_context_mock.assert_called_with(template_file=self.template, function_identifier=None, env_vars_file=self.env_vars, docker_volume_basedir=self.docker_volume_basedir, docker_network=self.docker_network, log_file=self.log_file, skip_pull_image=self.skip_pull_image, debug_port=self.debug_port, debug_args=self.debug_args, debugger_path=self.debugger_path, parameter_overrides=self.parameter_overrides, container_name=self.container_name, layer_cache_basedir=self.layer_cache_basedir, force_image_build=self.force_image_build, aws_region=self.region_name) local_api_service_mock.assert_called_with(lambda_invoke_context=context_mock, port=self.port, host=self.host, static_dir=self.static_dir) service_mock.start.assert_called_with() @patch("samcli.commands.local.start_api.cli.InvokeContext") @patch("samcli.commands.local.start_api.cli.LocalApiService") def test_must_raise_if_no_api_defined(self, local_api_service_mock, invoke_context_mock): # Mock the __enter__ method to return a object inside a context manager context_mock = Mock() invoke_context_mock.return_value.__enter__.return_value = context_mock service_mock = Mock() local_api_service_mock.return_value = service_mock service_mock.start.side_effect = NoApisDefined("no apis") with self.assertRaises(UserException) as context: self.call_cli() msg = str(context.exception) expected = "Template does not have any APIs connected to Lambda functions" self.assertEquals(msg, expected) @parameterized.expand([(InvalidSamDocumentException("bad template"), "bad template"), (InvalidLayerReference(), "Layer References need to be of type " "'AWS::Serverless::LayerVersion' or 'AWS::Lambda::LayerVersion'"), (DebuggingNotSupported("Debugging not supported"), "Debugging not supported") ]) @patch("samcli.commands.local.start_api.cli.InvokeContext") def test_must_raise_user_exception_on_invalid_sam_template(self, exeception_to_raise, execption_message, invoke_context_mock): invoke_context_mock.side_effect = exeception_to_raise with self.assertRaises(UserException) as context: self.call_cli() msg = str(context.exception) expected = execption_message self.assertEquals(msg, expected) @patch("samcli.commands.local.start_api.cli.InvokeContext") def test_must_raise_user_exception_on_invalid_env_vars(self, invoke_context_mock): invoke_context_mock.side_effect = OverridesNotWellDefinedError("bad env vars") with self.assertRaises(UserException) as context: self.call_cli() msg = str(context.exception) expected = "bad env vars" self.assertEquals(msg, expected) def call_cli(self): start_api_cli(ctx=self.ctx_mock, host=self.host, port=self.port, static_dir=self.static_dir, template=self.template, env_vars=self.env_vars, debug_port=self.debug_port, debug_args=self.debug_args, debugger_path=self.debugger_path, docker_volume_basedir=self.docker_volume_basedir, docker_network=self.docker_network, log_file=self.log_file, skip_pull_image=self.skip_pull_image, parameter_overrides=self.parameter_overrides, container_name=self.container_name, layer_cache_basedir=self.layer_cache_basedir, force_image_build=self.force_image_build)
python
6,794
from polar.exceptions import OsoError class AuthorizationError(OsoError): pass class NotFoundError(AuthorizationError): """ Thrown by the ``authorize`` method of an ``Oso`` instance. This error indicates that the actor is not only not allowed to perform the given action but also is not allowed to ``"read"`` the given resource. Most of the time, your app should handle this error by returning a 404 HTTP error to the client. To control which action is used for the distinction between ``NotFoundError`` and ``ForbiddenError``, you can customize the ``read_action`` on your ``Oso`` instance. """ def __init__(self): super().__init__( "Oso NotFoundError -- The current user does not have permission to read " "the given resource. You should handle this error by returning a 404 " "error to the client." ) class ForbiddenError(AuthorizationError): """ Thrown by the ``authorize``, ``authorize_field``, and ``authorize_request`` methods when the action is not allowed. Most of the time, your app should handle this error by returning a 403 HTTP error to the client. """ def __init__(self): super().__init__( "Oso ForbiddenError -- The requested action was not allowed for the " "given resource. You should handle this error by returning a 403 error " "to the client." )
python
1,458
"""MIT License Copyright (c) 2019-2021 PythonistaGuild Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import datetime import logging from typing import Any, Dict, Union, Optional import discord from discord.channel import VoiceChannel from . import abc from .pool import Node, NodePool from .queue import WaitQueue from .tracks import PartialTrack from .utils import MISSING __all__ = ("Player",) logger: logging.Logger = logging.getLogger(__name__) VoiceChannel = Union[ discord.VoiceChannel, discord.StageChannel ] # todo: VocalGuildChannel? class Player(discord.VoiceProtocol): """WaveLink Player object. This class subclasses :class:`discord.VoiceProtocol` and such should be treated as one with additions. Examples -------- .. code:: @commands.command() async def connect(self, channel: discord.VoiceChannel): voice_client = await channel.connect(cls=wavelink.Player) .. warning:: This class should not be created manually but can be subclassed to add additional functionality. You should instead use :meth:`discord.VoiceChannel.connect()` and pass the player object to the cls kwarg. """ def __call__(self, client: discord.Client, channel: VoiceChannel): self.client: discord.Client = client self.channel: VoiceChannel = channel return self def __init__( self, client: discord.Client = MISSING, channel: VoiceChannel = MISSING, *, node: Node = MISSING, ): self.client: discord.Client = client self.channel: VoiceChannel = channel if node is MISSING: node = NodePool.get_node() self.node: Node = node self.node._players.append(self) self._voice_state: Dict[str, Any] = {} self.last_update: datetime.datetime = MISSING self.last_position: float = MISSING self.volume: float = 100 self._paused: bool = False self._source: Optional[abc.Playable] = None # self._equalizer = Equalizer.flat() self.queue = WaitQueue() @property def guild(self) -> discord.Guild: """The :class:`discord.Guild` this :class:`Player` is in.""" return self.channel.guild @property def user(self) -> discord.ClientUser: """The :class:`discord.ClientUser` of the :class:`discord.Client`""" return self.client.user # type: ignore @property def source(self) -> Optional[abc.Playable]: """The currently playing audio source.""" return self._source track = source @property def position(self) -> float: """The current seek position of the playing source in seconds. If nothing is playing this defaults to ``0``.""" if not self.is_playing(): return 0 if self.is_paused(): return min(self.last_position, self.source.duration) # type: ignore delta = ( datetime.datetime.now(datetime.timezone.utc) - self.last_update ).total_seconds() position = round(self.last_position + delta, 1) return min(position, self.source.duration) # type: ignore async def update_state(self, state: Dict[str, Any]) -> None: state = state["state"] self.last_update = datetime.datetime.fromtimestamp( state.get("time", 0) / 1000, datetime.timezone.utc ) self.last_position = round(state.get("position", 0) / 1000, 1) async def on_voice_server_update(self, data: Dict[str, Any]) -> None: self._voice_state.update({"event": data}) await self._dispatch_voice_update(self._voice_state) async def on_voice_state_update(self, data: Dict[str, Any]) -> None: self._voice_state.update({"sessionId": data["session_id"]}) channel_id = data["channel_id"] if not channel_id: # We're disconnecting self._voice_state.clear() return self.channel = self.guild.get_channel(int(channel_id)) # type: ignore await self._dispatch_voice_update({**self._voice_state, "event": data}) async def _dispatch_voice_update(self, voice_state: Dict[str, Any]) -> None: logger.debug(f"Dispatching voice update:: {self.channel.id}") if {"sessionId", "event"} == self._voice_state.keys(): await self.node._websocket.send( op="voiceUpdate", guildId=str(self.guild.id), **voice_state ) async def connect(self, *, timeout: float, reconnect: bool) -> None: await self.guild.change_voice_state(channel=self.channel) self._connected = True logger.info(f"Connected to voice channel:: {self.channel.id}") async def disconnect(self, *, force: bool) -> None: try: logger.info(f"Disconnected from voice channel:: {self.channel.id}") await self.guild.change_voice_state(channel=None) self._connected = False finally: self.node.players.remove(self) self.cleanup() async def move_to(self, channel: discord.VoiceChannel) -> None: """|coro| Moves the player to a different voice channel. Parameters ----------- channel: :class:`discord.VoiceChannel` The channel to move to. Must be a voice channel. """ await self.guild.change_voice_state(channel=channel) logger.info(f"Moving to voice channel:: {channel.id}") async def play( self, source: abc.Playable, replace: bool = True, start: int = 0, end: int = 0 ): """|coro| Play a WaveLink Track. Parameters ---------- source: :class:`abc.Playable` The :class:`abc.Playable` to initiate playing. replace: bool Whether or not the current track, if there is one, should be replaced or not. Defaults to ``True``. start: int The position to start the player from in milliseconds. Defaults to ``0``. end: int The position to end the track on in milliseconds. By default this always allows the current song to finish playing. Returns ------- :class:`wavelink.abc.Playable` The track that is now playing. """ if replace or not self.is_playing(): await self.update_state({"state": {}}) self._paused = False else: return if isinstance(source, PartialTrack): source = await source._search() self._source = source payload = { "op": "play", "guildId": str(self.guild.id), "track": source.id, "noReplace": not replace, "startTime": str(start), } if end > 0: payload["endTime"] = str(end) await self.node._websocket.send(**payload) logger.debug(f"Started playing track:: {str(source)} ({self.channel.id})") return source def is_connected(self) -> bool: """Indicates whether the player is connected to voice.""" return self._connected def is_playing(self) -> bool: """Indicates wether a track is currently being played.""" return self.is_connected() and self._source is not None def is_paused(self) -> bool: """Indicates wether the currently playing track is paused.""" return self._paused async def stop(self) -> None: """|coro| Stop the Player's currently playing song. """ await self.node._websocket.send(op="stop", guildId=str(self.guild.id)) logger.debug(f"Current track stopped:: {str(self.source)} ({self.channel.id})") self._source = None async def set_pause(self, pause: bool) -> None: """|coro| Set the players paused state. Parameters ---------- pause: bool A bool indicating if the player's paused state should be set to True or False. """ await self.node._websocket.send( op="pause", guildId=str(self.guild.id), pause=pause ) self._paused = pause logger.info(f"Set pause:: {self._paused} ({self.channel.id})") async def pause(self) -> None: """|coro| Pauses the player if it was playing. """ await self.set_pause(True) async def resume(self) -> None: """|coro| Resumes the player if it was paused. """ await self.set_pause(False) async def set_volume(self, volume: int) -> None: """|coro| Set the player's volume, between 0 and 1000. Parameters ---------- volume: int The volume to set the player to. """ self.volume = max(min(volume, 1000), 0) await self.node._websocket.send( op="volume", guildId=str(self.guild.id), volume=self.volume ) logger.debug(f"Set volume:: {self.volume} ({self.channel.id})") async def seek(self, position: int = 0) -> None: """|coro| Seek to the given position in the song. Parameters ---------- position: int The position as an int in milliseconds to seek to. Could be None to seek to beginning. """ await self.node._websocket.send( op="seek", guildId=str(self.guild.id), position=position )
python
10,441
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os import sys import warnings import mxnet as mx import pytest from mxnet import gluon import gluonnlp as nlp from gluonnlp.base import get_home_dir def eprint(*args, **kwargs): print(*args, file=sys.stderr, **kwargs) # disabled since it takes a long time to download the model @pytest.mark.serial def _test_pretrained_big_text_models(): text_models = ['big_rnn_lm_2048_512'] pretrained_to_test = {'big_rnn_lm_2048_512': 'gbw'} for model_name in text_models: eprint('testing forward for %s' % model_name) pretrained_dataset = pretrained_to_test.get(model_name) model, _ = nlp.model.get_model(model_name, dataset_name=pretrained_dataset, pretrained=True) print(model) batch_size = 10 hidden = model.begin_state(batch_size=batch_size, func=mx.nd.zeros) output, state = model(mx.nd.arange(330).reshape((33, 10)), hidden) output.wait_to_read() @pytest.mark.serial @pytest.mark.remote_required def test_big_text_models(wikitext2_val_and_counter): # use a small vocabulary for testing val, val_freq = wikitext2_val_and_counter vocab = nlp.Vocab(val_freq) text_models = ['big_rnn_lm_2048_512'] for model_name in text_models: eprint('testing forward for %s' % model_name) model, _ = nlp.model.get_model(model_name, vocab=vocab) print(model) model.collect_params().initialize() batch_size = 10 hidden = model.begin_state(batch_size=batch_size, func=mx.nd.zeros) output, state = model(mx.nd.arange(330).reshape((33, 10)), hidden) output.wait_to_read() @pytest.mark.serial @pytest.mark.remote_required @pytest.mark.parametrize('dropout_rate', [0.1, 0.0]) @pytest.mark.parametrize('model_dataset', [('transformer_en_de_512', 'WMT2014')]) def test_transformer_models(dropout_rate, model_dataset): model_name, pretrained_dataset = model_dataset src = mx.nd.ones((2, 10)) tgt = mx.nd.ones((2, 8)) valid_len = mx.nd.ones((2,)) eprint('testing forward for %s, dropout rate %f' % (model_name, dropout_rate)) with warnings.catch_warnings(): # TODO https://github.com/dmlc/gluon-nlp/issues/978 warnings.simplefilter("ignore") model, _, _ = nlp.model.get_model(model_name, dataset_name=pretrained_dataset, pretrained=pretrained_dataset is not None, dropout=dropout_rate) print(model) if not pretrained_dataset: model.initialize() output, state = model(src, tgt, src_valid_length=valid_len, tgt_valid_length=valid_len) output.wait_to_read() del model mx.nd.waitall() @pytest.mark.serial @pytest.mark.remote_required @pytest.mark.parametrize('wo_valid_len', [False, True]) def test_pretrained_roberta_models(wo_valid_len): models = ['roberta_12_768_12', 'roberta_24_1024_16'] pretrained_datasets = ['openwebtext_ccnews_stories_books_cased'] vocab_size = {'openwebtext_ccnews_stories_books_cased': 50265} special_tokens = ['<unk>', '<pad>', '<s>', '</s>', '<mask>'] ones = mx.nd.ones((2, 10)) valid_length = mx.nd.ones((2,)) positions = mx.nd.zeros((2, 3)) for model_name in models: for dataset in pretrained_datasets: eprint('testing forward for %s on %s' % (model_name, dataset)) model, vocab = nlp.model.get_model(model_name, dataset_name=dataset, pretrained=True) assert len(vocab) == vocab_size[dataset] for token in special_tokens: assert token in vocab, "Token %s not found in the vocab" % token assert vocab['RandomWordByHaibin'] == vocab[vocab.unknown_token] assert vocab.padding_token == '<pad>' assert vocab.unknown_token == '<unk>' assert vocab.bos_token == '<s>' assert vocab.eos_token == '</s>' model.hybridize() if wo_valid_len: output = model(ones, masked_positions=positions) else: output = model(ones, valid_length, positions) output[0].wait_to_read() del model mx.nd.waitall() @pytest.mark.serial @pytest.mark.remote_required @pytest.mark.parametrize('wo_valid_len', [False, True]) def test_pretrained_distilbert_models(wo_valid_len): models = ['distilbert_6_768_12'] pretrained_datasets = ['distilbert_book_corpus_wiki_en_uncased'] vocab_size = {'distilbert_book_corpus_wiki_en_uncased': 30522} special_tokens = ['[UNK]', '[PAD]', '[SEP]', '[CLS]', '[MASK]'] ones = mx.nd.ones((2, 10)) valid_length = mx.nd.ones((2,)) for model_name in models: for dataset in pretrained_datasets: eprint('testing forward for %s on %s' % (model_name, dataset)) model, vocab = nlp.model.get_model(model_name, dataset_name=dataset, pretrained=True, root='tests/data/model/') assert len(vocab) == vocab_size[dataset] for token in special_tokens: assert token in vocab, "Token %s not found in the vocab" % token assert vocab['RandomWordByHaibin'] == vocab[vocab.unknown_token] assert vocab.padding_token == '[PAD]' assert vocab.unknown_token == '[UNK]' model.hybridize() if wo_valid_len: output = model(ones) else: output = model(ones, valid_length) output[0].wait_to_read() del model mx.nd.waitall() @pytest.mark.serial @pytest.mark.remote_required @pytest.mark.parametrize('disable_missing_parameters', [False, True]) def test_pretrained_bert_models(disable_missing_parameters): models = ['bert_12_768_12', 'bert_24_1024_16'] pretrained = { 'bert_12_768_12': [ 'book_corpus_wiki_en_cased', 'book_corpus_wiki_en_uncased', 'wiki_multilingual_uncased', 'openwebtext_book_corpus_wiki_en_uncased', 'wiki_multilingual_cased', 'wiki_cn_cased', 'scibert_scivocab_uncased', 'scibert_scivocab_cased', 'scibert_basevocab_uncased', 'scibert_basevocab_cased', 'biobert_v1.0_pmc_cased', 'biobert_v1.0_pubmed_cased', 'biobert_v1.0_pubmed_pmc_cased', 'biobert_v1.1_pubmed_cased', 'clinicalbert_uncased', 'kobert_news_wiki_ko_cased' ], 'bert_24_1024_16': ['book_corpus_wiki_en_uncased', 'book_corpus_wiki_en_cased'] } vocab_size = {'book_corpus_wiki_en_cased': 28996, 'book_corpus_wiki_en_uncased': 30522, 'openwebtext_book_corpus_wiki_en_uncased': 30522, 'wiki_multilingual_cased': 119547, 'wiki_cn_cased': 21128, 'wiki_multilingual_uncased': 105879, 'scibert_scivocab_uncased': 31090, 'scibert_scivocab_cased': 31116, 'scibert_basevocab_uncased': 30522, 'scibert_basevocab_cased': 28996, 'biobert_v1.0_pubmed_cased': 28996, 'biobert_v1.0_pmc_cased': 28996, 'biobert_v1.0_pubmed_pmc_cased': 28996, 'biobert_v1.1_pubmed_cased': 28996, 'clinicalbert_uncased': 30522, 'kobert_news_wiki_ko_cased': 8002} special_tokens = ['[UNK]', '[PAD]', '[SEP]', '[CLS]', '[MASK]'] ones = mx.nd.ones((2, 10)) valid_length = mx.nd.ones((2,)) positions = mx.nd.zeros((2, 3)) for model_name in models: pretrained_datasets = pretrained.get(model_name) for dataset in pretrained_datasets: has_missing_params = any(n in dataset for n in ('biobert', 'clinicalbert')) if not has_missing_params and disable_missing_parameters: # No parameters to disable for models pretrained on this dataset continue eprint('testing forward for %s on %s' % (model_name, dataset)) if not has_missing_params: model, vocab = nlp.model.get_model(model_name, dataset_name=dataset, pretrained=True) else: with pytest.raises(AssertionError): model, vocab = nlp.model.get_model(model_name, dataset_name=dataset, pretrained=True) if not disable_missing_parameters: model, vocab = nlp.model.get_model(model_name, dataset_name=dataset, pretrained=True, pretrained_allow_missing=True) elif 'biobert' in dataset: # Biobert specific test case model, vocab = nlp.model.get_model(model_name, dataset_name=dataset, pretrained=True, pretrained_allow_missing=True, use_decoder=False, use_classifier=False) elif 'clinicalbert' in dataset: # Clinicalbert specific test case model, vocab = nlp.model.get_model(model_name, dataset_name=dataset, pretrained=True, pretrained_allow_missing=True, use_decoder=False) else: assert False, "Testcase needs to be adapted." assert len(vocab) == vocab_size[dataset] for token in special_tokens: assert token in vocab, "Token %s not found in the vocab" % token assert vocab['RandomWordByHaibin'] == vocab[vocab.unknown_token] assert vocab.padding_token == '[PAD]' assert vocab.unknown_token == '[UNK]' assert vocab.bos_token is None assert vocab.eos_token is None if has_missing_params and not disable_missing_parameters: with pytest.raises(RuntimeError): output = model(ones, ones, valid_length, positions) output[0].wait_to_read() else: output = model(ones, ones, valid_length, positions) output[0].wait_to_read() del model mx.nd.waitall() @pytest.mark.serial @pytest.mark.remote_required @pytest.mark.parametrize('hparam_allow_override', [False, True]) def test_pretrained_bert_models_override(hparam_allow_override): models = ['bert_12_768_12', 'bert_24_1024_16', 'roberta_12_768_12', 'roberta_24_1024_16'] pretrained = { 'bert_12_768_12': ['book_corpus_wiki_en_uncased', 'book_corpus_wiki_en_cased'], 'bert_24_1024_16': ['book_corpus_wiki_en_uncased', 'book_corpus_wiki_en_cased'], 'roberta_12_768_12': ['openwebtext_ccnews_stories_books_cased'], 'roberta_24_1024_16': ['openwebtext_ccnews_stories_books_cased'] } ones = mx.nd.ones((2, 10)) valid_length = mx.nd.ones((2,)) positions = mx.nd.zeros((2, 3)) for model_name in models: pretrained_datasets = pretrained.get(model_name) for dataset in pretrained_datasets: eprint('testing forward for %s on %s' % (model_name, dataset)) if hparam_allow_override: model, vocab = nlp.model.get_model(model_name, dataset_name=dataset, pretrained=True, root='tests/data/model/', hparam_allow_override=hparam_allow_override, ignore_extra=True, num_layers=6) else: with pytest.raises(AssertionError): model, vocab = nlp.model.get_model(model_name, dataset_name=dataset, pretrained=True, root='tests/data/model/', num_layers=6) continue if 'roberta' in model_name: output = model(ones, valid_length, positions) else: output = model(ones, ones, valid_length, positions) output[0].wait_to_read() del model mx.nd.waitall() @pytest.mark.serial @pytest.mark.remote_required @pytest.mark.parametrize('wo_valid_len', [False, True]) def test_bert_models(wo_valid_len): models = ['bert_12_768_12', 'bert_24_1024_16'] layers = [12, 24] attention_heads = [12, 16] units = [768, 1024] dataset = 'book_corpus_wiki_en_uncased' vocab_size = 30522 batch_size = 2 seq_len = 3 num_masks = 2 ones = mx.nd.ones((batch_size, seq_len)) valid_length = mx.nd.ones((batch_size, )) positions = mx.nd.ones((batch_size, num_masks)) kwargs = [{'use_pooler': False, 'use_decoder': False, 'use_classifier': False}, {'use_pooler': True, 'use_decoder': False, 'use_classifier': False}, {'use_pooler': True, 'use_decoder': True, 'use_classifier': False}, {'use_pooler': True, 'use_decoder': True, 'use_classifier': True}, {'use_pooler': False, 'use_decoder': False, 'use_classifier': False, 'output_attention': True}, {'use_pooler': False, 'use_decoder': False, 'use_classifier': False, 'output_attention': True, 'output_all_encodings': True}, {'use_pooler': True, 'use_decoder': True, 'use_classifier': True, 'output_attention': True, 'output_all_encodings': True}] def infer_shape(shapes, unit): inferred_shapes = [] for shape in shapes: inferred_shape = list(shape) if inferred_shape[-1] == -1: inferred_shape[-1] = unit inferred_shapes.append(tuple(inferred_shape)) return inferred_shapes def get_shapes(output): if not isinstance(output, (list, tuple)): return [output.shape] shapes = [] for out in output: collect_shapes(out, shapes) return shapes def collect_shapes(item, shapes): if not isinstance(item, (list, tuple)): shapes.append(item.shape) return for child in item: collect_shapes(child, shapes) for model_name, layer, unit, head in zip(models, layers, units, attention_heads): eprint('testing forward for %s' % model_name) expected_shapes = [ [(batch_size, seq_len, -1)], [(batch_size, seq_len, -1), (batch_size, -1)], [(batch_size, seq_len, -1), (batch_size, -1), (batch_size, num_masks, vocab_size)], [(batch_size, seq_len, -1), (batch_size, -1), (batch_size, 2), (batch_size, num_masks, vocab_size)], [(batch_size, seq_len, -1)] + [(batch_size, head, seq_len, seq_len)] * layer, [(batch_size, seq_len, -1)] * layer + [(batch_size, head, seq_len, seq_len)] * layer, [(batch_size, seq_len, -1)] * layer + [(batch_size, head, seq_len, seq_len)] * layer + [(batch_size, -1)] + [(batch_size, 2)] + [(batch_size, num_masks, vocab_size)], ] for kwarg, expected_shape in zip(kwargs, expected_shapes): eprint('testing forward for %s' % str(kwarg)) expected_shape = infer_shape(expected_shape, unit) model, _ = nlp.model.get_model(model_name, dataset_name=dataset, pretrained=False, **kwarg) model.initialize() model.hybridize() if kwarg['use_decoder']: # position tensor is required for decoding if wo_valid_len: output = model(ones, ones, masked_positions=positions) else: output = model(ones, ones, valid_length, positions) else: if wo_valid_len: output = model(ones, ones) else: output = model(ones, ones, valid_length) out_shapes = get_shapes(output) assert out_shapes == expected_shape, (out_shapes, expected_shape) sync_instance = output[0] if not isinstance(output[0], list) else output[0][0] sync_instance.wait_to_read() del model mx.nd.waitall() @pytest.mark.serial @pytest.mark.remote_required def test_language_models(): text_models = ['standard_lstm_lm_200', 'standard_lstm_lm_650', 'standard_lstm_lm_1500', 'awd_lstm_lm_1150', 'awd_lstm_lm_600'] pretrained_to_test = {'standard_lstm_lm_1500': 'wikitext-2', 'standard_lstm_lm_650': 'wikitext-2', 'standard_lstm_lm_200': 'wikitext-2', 'awd_lstm_lm_1150': 'wikitext-2', 'awd_lstm_lm_600': 'wikitext-2'} for model_name in text_models: eprint('testing forward for %s' % model_name) pretrained_dataset = pretrained_to_test.get(model_name) model, _ = nlp.model.get_model(model_name, dataset_name=pretrained_dataset, pretrained=pretrained_dataset is not None) print(model) if not pretrained_dataset: model.collect_params().initialize() output, state = model(mx.nd.arange(330).reshape(33, 10)) output.wait_to_read() del model mx.nd.waitall() @pytest.mark.serial @pytest.mark.remote_required def test_cache_models(): cache_language_models = ['awd_lstm_lm_1150', 'awd_lstm_lm_600', 'standard_lstm_lm_200', 'standard_lstm_lm_650', 'standard_lstm_lm_1500'] datasets = ['wikitext-2'] for name in cache_language_models: for dataset_name in datasets: cache_cell = nlp.model.train.get_cache_model(name, dataset_name, window=1, theta=0.6, lambdas=0.2) outs, word_history, cache_history, hidden = cache_cell(mx.nd.arange( 10).reshape(10, 1), mx.nd.arange(10).reshape(10, 1), None, None) print(cache_cell) print("outs:") print(outs) print("word_history:") print(word_history) print("cache_history:") print(cache_history) @pytest.mark.serial @pytest.mark.remote_required def test_get_cache_model_noncache_models(): language_models_params = { 'awd_lstm_lm_1150': 'awd_lstm_lm_1150_wikitext-2-f9562ed0.params', 'awd_lstm_lm_600': 'awd_lstm_lm_600_wikitext-2-e952becc.params', 'standard_lstm_lm_200': 'standard_lstm_lm_200_wikitext-2-b233c700.params', 'standard_lstm_lm_650': 'standard_lstm_lm_650_wikitext-2-631f3904.params', 'standard_lstm_lm_1500': 'standard_lstm_lm_1500_wikitext-2-a4163513.params'} datasets = ['wikitext-2'] for name in language_models_params.keys(): for dataset_name in datasets: _, vocab = nlp.model.get_model(name=name, dataset_name=dataset_name, pretrained=True) ntokens = len(vocab) cache_cell_0 = nlp.model.train.get_cache_model(name, dataset_name, window=1, theta=0.6, lambdas=0.2) print(cache_cell_0) model, _ = nlp.model.get_model(name=name, dataset_name=dataset_name, pretrained=True) cache_cell_1 = nlp.model.train.CacheCell( model, ntokens, window=1, theta=0.6, lambdas=0.2) cache_cell_1.load_parameters( os.path.join(get_home_dir(), 'models', language_models_params.get(name))) print(cache_cell_1) outs0, word_history0, cache_history0, hidden0 = cache_cell_0( mx.nd.arange(10).reshape(10, 1), mx.nd.arange(10).reshape(10, 1), None, None) outs1, word_history1, cache_history1, hidden1 = cache_cell_1( mx.nd.arange(10).reshape(10, 1), mx.nd.arange(10).reshape(10, 1), None, None) assert outs0.shape == outs1.shape, outs0.shape assert len(word_history0) == len(word_history1), len(word_history0) assert len(cache_history0) == len(cache_history1), len(cache_history0) assert len(hidden0) == len(hidden1), len(hidden0) @pytest.mark.serial @pytest.mark.remote_required def test_save_load_cache_models(): cache_language_models = ['awd_lstm_lm_1150', 'awd_lstm_lm_600', 'standard_lstm_lm_200', 'standard_lstm_lm_650', 'standard_lstm_lm_1500'] datasets = ['wikitext-2'] for name in cache_language_models: for dataset_name in datasets: cache_cell = nlp.model.train.get_cache_model(name, dataset_name, window=1, theta=0.6, lambdas=0.2) print(cache_cell) cache_cell.save_parameters( os.path.join(get_home_dir(), 'models', name + '-' + dataset_name + '.params')) cache_cell.load_parameters( os.path.join(get_home_dir(), 'models', name + '-' + dataset_name + '.params')) @pytest.mark.serial def test_save_load_big_rnn_models(tmp_path): ctx = mx.cpu() seq_len = 1 batch_size = 1 num_sampled = 6 # network eval_model = nlp.model.language_model.BigRNN(10, 2, 3, 4, 5, 0.1, prefix='bigrnn') model = nlp.model.language_model.train.BigRNN(10, 2, 3, 4, 5, num_sampled, 0.1, prefix='bigrnn') loss = mx.gluon.loss.SoftmaxCrossEntropyLoss() # verify param names model_params = sorted(model.collect_params().keys()) eval_model_params = sorted(eval_model.collect_params().keys()) for p0, p1 in zip(model_params, eval_model_params): assert p0 == p1, (p0, p1) model.initialize(mx.init.Xavier(), ctx=ctx) trainer = mx.gluon.Trainer(model.collect_params(), 'sgd') # prepare data, label and samples x = mx.nd.ones((seq_len, batch_size)) y = mx.nd.ones((seq_len, batch_size)) sampled_cls = mx.nd.ones((num_sampled,)) sampled_cls_cnt = mx.nd.ones((num_sampled,)) true_cls_cnt = mx.nd.ones((seq_len, batch_size)) samples = (sampled_cls, sampled_cls_cnt, true_cls_cnt) hidden = model.begin_state(batch_size=batch_size, func=mx.nd.zeros, ctx=ctx) # test forward with mx.autograd.record(): pred, hidden, new_y = model(x, y, hidden, samples) assert pred.shape == (seq_len, batch_size, 1 + num_sampled) assert new_y.shape == (seq_len, batch_size) pred = pred.reshape((-3, -1)) new_y = new_y.reshape((-1,)) l = loss(pred, new_y) l.backward() mx.nd.waitall() path = os.path.join(str(tmp_path), 'test_save_load_big_rnn_models.params') model.save_parameters(path) eval_model.load_parameters(path) def test_big_rnn_model_share_params(): ctx = mx.cpu() seq_len = 2 batch_size = 1 num_sampled = 6 vocab_size = 10 shape = (seq_len, batch_size) model = nlp.model.language_model.train.BigRNN(vocab_size, 2, 3, 4, 5, num_sampled, 0.1, prefix='bigrnn', sparse_weight=False, sparse_grad=False) loss = mx.gluon.loss.SoftmaxCrossEntropyLoss() model.hybridize() model.initialize(mx.init.Xavier(), ctx=ctx) trainer = mx.gluon.Trainer(model.collect_params(), 'sgd') batch_size = 1 x = mx.nd.ones(shape) y = mx.nd.ones(shape) sampled_cls = mx.nd.ones((num_sampled,)) sampled_cls_cnt = mx.nd.ones((num_sampled,)) true_cls_cnt = mx.nd.ones(shape) samples = (sampled_cls, sampled_cls_cnt, true_cls_cnt) hidden = model.begin_state(batch_size=batch_size, func=mx.nd.zeros, ctx=ctx) with mx.autograd.record(): pred, hidden, new_y = model(x, y, hidden, samples) assert pred.shape == (seq_len, batch_size, 1 + num_sampled) assert new_y.shape == (seq_len, batch_size) pred = pred.reshape((-3, -1)) new_y = new_y.reshape((-1,)) l = loss(pred, new_y) l.backward() assert model.decoder.weight._grad_stype == 'default' mx.nd.waitall() eval_model = nlp.model.language_model.BigRNN(vocab_size, 2, 3, 4, 5, 0.1, prefix='bigrnn', params=model.collect_params()) eval_model.hybridize() pred, hidden = eval_model(x, hidden) assert pred.shape == (seq_len, batch_size, vocab_size) mx.nd.waitall() def test_weight_drop(): class RefBiLSTM(gluon.Block): def __init__(self, size, **kwargs): super(RefBiLSTM, self).__init__(**kwargs) with self.name_scope(): self._lstm_fwd = gluon.rnn.LSTM(size, bidirectional=False, prefix='l0') self._lstm_bwd = gluon.rnn.LSTM(size, bidirectional=False, prefix='r0') def forward(self, inpt): fwd = self._lstm_fwd(inpt) bwd_inpt = mx.nd.flip(inpt, 0) bwd = self._lstm_bwd(bwd_inpt) bwd = mx.nd.flip(bwd, 0) return mx.nd.concat(fwd, bwd, dim=2) net1 = RefBiLSTM(10) shared_net1 = RefBiLSTM(10, params=net1.collect_params()) net2 = gluon.rnn.LSTM(10) shared_net2 = gluon.rnn.LSTM(10, params=net2.collect_params()) net3 = gluon.nn.HybridSequential() net3.add(gluon.rnn.LSTM(10)) shared_net3 = gluon.nn.HybridSequential(params=net3.collect_params()) shared_net3.add(gluon.rnn.LSTM(10, params=net3[0].collect_params())) x = mx.random.uniform(shape=(3, 4, 5)) nets = [(net1, shared_net1), (net2, shared_net2), (net3, shared_net3)] for net, shared_net in nets: net.initialize('uniform') mx.test_utils.assert_almost_equal(net(x).asnumpy(), shared_net(x).asnumpy()) with mx.autograd.train_mode(): mx.test_utils.assert_almost_equal(net(x).asnumpy(), shared_net(x).asnumpy()) grads = {} with mx.autograd.record(): y = net(x) y.backward() for name, param in net.collect_params().items(): grads[name] = param.grad().copy() with mx.autograd.record(): y = shared_net(x) y.backward() for name, param in shared_net.collect_params().items(): mx.test_utils.assert_almost_equal(grads[name].asnumpy(), param.grad().asnumpy()) drop_rate = 0.5 nlp.model.utils.apply_weight_drop(net, '.*h2h_weight', drop_rate) with mx.autograd.predict_mode(): mx.test_utils.assert_almost_equal(net(x).asnumpy(), shared_net(x).asnumpy()) with mx.autograd.train_mode(): assert not mx.test_utils.almost_equal(net(x).asnumpy(), shared_net(x).asnumpy()) grads = {} with mx.autograd.record(): y = net(x) y.backward() for name, param in net.collect_params().items(): grads[name] = param.grad().copy() with mx.autograd.record(): y = shared_net(x) y.backward() for name, param in shared_net.collect_params().items(): assert not mx.test_utils.almost_equal(grads[name].asnumpy(), param.grad().asnumpy()) def test_gelu(): x = mx.random.uniform(shape=(3, 4, 5)) net = nlp.model.GELU() y = net(x) assert y.shape == x.shape y.wait_to_read() def test_transformer_encoder(): batch_size = 2 seq_length = 5 units = 768 inputs = mx.random.uniform(shape=(batch_size, seq_length, units)) mask = mx.nd.ones([batch_size, seq_length, seq_length]) cell = nlp.model.TransformerEncoderCell(units=768, hidden_size=3072, num_heads=12, attention_cell='multi_head', dropout=0.0, use_residual=True, scaled=True, output_attention=False, prefix='transformer_cell') cell.collect_params().initialize() cell.hybridize() outputs, attention_weights = cell(inputs, mask) outputs.wait_to_read() mx.nd.waitall() assert outputs.shape == (batch_size, seq_length, units)
python
29,849
#!/usr/bin/env python3 from pprint import pprint import click from mitmproxy.io import tnetstring def read_tnetstring(input): # tnetstring throw a ValueError on EOF, which is hard to catch # because they raise ValueErrors for a couple of other reasons. # Check for EOF to avoid this. if not input.read(1): return None else: input.seek(-1, 1) return tnetstring.load(input) @click.command() @click.argument("input", type=click.File("rb")) def inspect(input): """ pretty-print a dumpfile """ while True: data = read_tnetstring(input) if not data: break pprint(data) if __name__ == "__main__": inspect()
python
704
from __future__ import print_function from PIL import Image import numpy as np import os import torchvision import math def tensor2im(img, imtype=np.uint8, unnormalize=True, idx=0, nrows=None): # select a sample or create grid if img is a batch if len(img.shape) == 4: nrows = nrows if nrows is not None else int(math.sqrt(img.size(0))) img = img[idx] if idx >= 0 else torchvision.utils.make_grid(img, nrows) img = img.cpu().float() if unnormalize: mean = [0.5, 0.5, 0.5] std = [0.5, 0.5, 0.5] for i, m, s in zip(img, mean, std): i.mul_(s).add_(m) image_numpy = img.numpy() image_numpy_t = np.transpose(image_numpy, (1, 2, 0)) image_numpy_t = image_numpy_t*254.0 return image_numpy_t.astype(imtype) def tensor2maskim(mask, imtype=np.uint8, idx=0, nrows=1): im = tensor2im(mask, imtype=imtype, idx=idx, unnormalize=False, nrows=nrows) if im.shape[2] == 1: im = np.repeat(im, 3, axis=-1) return im def mkdirs(paths): if isinstance(paths, list) and not isinstance(paths, str): for path in paths: mkdir(path) else: mkdir(paths) def mkdir(path): if not os.path.exists(path): os.makedirs(path) def save_image(image_numpy, image_path): mkdir(os.path.dirname(image_path)) image_pil = Image.fromarray(image_numpy) image_pil.save(image_path) def save_str_data(data, path): mkdir(os.path.dirname(path)) np.savetxt(path, data, delimiter=",", fmt="%s")
python
1,522
"""Test ZHA registries.""" from unittest import mock import pytest import homeassistant.components.zha.core.registries as registries MANUFACTURER = "mock manufacturer" MODEL = "mock model" @pytest.fixture def zha_device(): """Return a mock of ZHA device.""" dev = mock.MagicMock() dev.manufacturer = MANUFACTURER dev.model = MODEL return dev @pytest.fixture def channels(channel): """Return a mock of channels.""" return [channel("level", 8), channel("on_off", 6)] @pytest.mark.parametrize( "rule, matched", [ (registries.MatchRule(), False), (registries.MatchRule(channel_names={"level"}), True), (registries.MatchRule(channel_names={"level", "no match"}), False), (registries.MatchRule(channel_names={"on_off"}), True), (registries.MatchRule(channel_names={"on_off", "no match"}), False), (registries.MatchRule(channel_names={"on_off", "level"}), True), (registries.MatchRule(channel_names={"on_off", "level", "no match"}), False), # test generic_id matching (registries.MatchRule(generic_ids={"channel_0x0006"}), True), (registries.MatchRule(generic_ids={"channel_0x0008"}), True), (registries.MatchRule(generic_ids={"channel_0x0006", "channel_0x0008"}), True), ( registries.MatchRule( generic_ids={"channel_0x0006", "channel_0x0008", "channel_0x0009"} ), False, ), ( registries.MatchRule( generic_ids={"channel_0x0006", "channel_0x0008"}, channel_names={"on_off", "level"}, ), True, ), # manufacturer matching (registries.MatchRule(manufacturers="no match"), False), (registries.MatchRule(manufacturers=MANUFACTURER), True), ( registries.MatchRule(manufacturers="no match", aux_channels="aux_channel"), False, ), ( registries.MatchRule( manufacturers=MANUFACTURER, aux_channels="aux_channel" ), True, ), (registries.MatchRule(models=MODEL), True), (registries.MatchRule(models="no match"), False), (registries.MatchRule(models=MODEL, aux_channels="aux_channel"), True), (registries.MatchRule(models="no match", aux_channels="aux_channel"), False), # match everything ( registries.MatchRule( generic_ids={"channel_0x0006", "channel_0x0008"}, channel_names={"on_off", "level"}, manufacturers=MANUFACTURER, models=MODEL, ), True, ), ( registries.MatchRule( channel_names="on_off", manufacturers={"random manuf", MANUFACTURER} ), True, ), ( registries.MatchRule( channel_names="on_off", manufacturers={"random manuf", "Another manuf"} ), False, ), ( registries.MatchRule( channel_names="on_off", manufacturers=lambda x: x == MANUFACTURER ), True, ), ( registries.MatchRule( channel_names="on_off", manufacturers=lambda x: x != MANUFACTURER ), False, ), ( registries.MatchRule( channel_names="on_off", models={"random model", MODEL} ), True, ), ( registries.MatchRule( channel_names="on_off", models={"random model", "Another model"} ), False, ), ( registries.MatchRule(channel_names="on_off", models=lambda x: x == MODEL), True, ), ( registries.MatchRule(channel_names="on_off", models=lambda x: x != MODEL), False, ), ], ) def test_registry_matching(rule, matched, channels): """Test strict rule matching.""" assert rule.strict_matched(MANUFACTURER, MODEL, channels) is matched @pytest.mark.parametrize( "rule, matched", [ (registries.MatchRule(), False), (registries.MatchRule(channel_names={"level"}), True), (registries.MatchRule(channel_names={"level", "no match"}), False), (registries.MatchRule(channel_names={"on_off"}), True), (registries.MatchRule(channel_names={"on_off", "no match"}), False), (registries.MatchRule(channel_names={"on_off", "level"}), True), (registries.MatchRule(channel_names={"on_off", "level", "no match"}), False), ( registries.MatchRule(channel_names={"on_off", "level"}, models="no match"), True, ), ( registries.MatchRule( channel_names={"on_off", "level"}, models="no match", manufacturers="no match", ), True, ), ( registries.MatchRule( channel_names={"on_off", "level"}, models="no match", manufacturers=MANUFACTURER, ), True, ), # test generic_id matching (registries.MatchRule(generic_ids={"channel_0x0006"}), True), (registries.MatchRule(generic_ids={"channel_0x0008"}), True), (registries.MatchRule(generic_ids={"channel_0x0006", "channel_0x0008"}), True), ( registries.MatchRule( generic_ids={"channel_0x0006", "channel_0x0008", "channel_0x0009"} ), False, ), ( registries.MatchRule( generic_ids={"channel_0x0006", "channel_0x0008", "channel_0x0009"}, models="mo match", ), False, ), ( registries.MatchRule( generic_ids={"channel_0x0006", "channel_0x0008", "channel_0x0009"}, models=MODEL, ), True, ), ( registries.MatchRule( generic_ids={"channel_0x0006", "channel_0x0008"}, channel_names={"on_off", "level"}, ), True, ), # manufacturer matching (registries.MatchRule(manufacturers="no match"), False), (registries.MatchRule(manufacturers=MANUFACTURER), True), (registries.MatchRule(models=MODEL), True), (registries.MatchRule(models="no match"), False), # match everything ( registries.MatchRule( generic_ids={"channel_0x0006", "channel_0x0008"}, channel_names={"on_off", "level"}, manufacturers=MANUFACTURER, models=MODEL, ), True, ), ], ) def test_registry_loose_matching(rule, matched, channels): """Test loose rule matching.""" assert rule.loose_matched(MANUFACTURER, MODEL, channels) is matched def test_match_rule_claim_channels_color(channel): """Test channel claiming.""" ch_color = channel("color", 0x300) ch_level = channel("level", 8) ch_onoff = channel("on_off", 6) rule = registries.MatchRule(channel_names="on_off", aux_channels={"color", "level"}) claimed = rule.claim_channels([ch_color, ch_level, ch_onoff]) assert {"color", "level", "on_off"} == {ch.name for ch in claimed} @pytest.mark.parametrize( "rule, match", [ (registries.MatchRule(channel_names={"level"}), {"level"}), (registries.MatchRule(channel_names={"level", "no match"}), {"level"}), (registries.MatchRule(channel_names={"on_off"}), {"on_off"}), (registries.MatchRule(generic_ids="channel_0x0000"), {"basic"}), ( registries.MatchRule(channel_names="level", generic_ids="channel_0x0000"), {"basic", "level"}, ), (registries.MatchRule(channel_names={"level", "power"}), {"level", "power"}), ( registries.MatchRule( channel_names={"level", "on_off"}, aux_channels={"basic", "power"} ), {"basic", "level", "on_off", "power"}, ), (registries.MatchRule(channel_names={"color"}), set()), ], ) def test_match_rule_claim_channels(rule, match, channel, channels): """Test channel claiming.""" ch_basic = channel("basic", 0) channels.append(ch_basic) ch_power = channel("power", 1) channels.append(ch_power) claimed = rule.claim_channels(channels) assert match == {ch.name for ch in claimed} @pytest.fixture def entity_registry(): """Registry fixture.""" return registries.ZHAEntityRegistry() @pytest.mark.parametrize( "manufacturer, model, match_name", ( ("random manufacturer", "random model", "OnOff"), ("random manufacturer", MODEL, "OnOffModel"), (MANUFACTURER, "random model", "OnOffManufacturer"), (MANUFACTURER, MODEL, "OnOffModelManufacturer"), (MANUFACTURER, "some model", "OnOffMultimodel"), ), ) def test_weighted_match(channel, entity_registry, manufacturer, model, match_name): """Test weightedd match.""" s = mock.sentinel @entity_registry.strict_match( s.component, channel_names="on_off", models={MODEL, "another model", "some model"}, ) class OnOffMultimodel: pass @entity_registry.strict_match(s.component, channel_names="on_off") class OnOff: pass @entity_registry.strict_match( s.component, channel_names="on_off", manufacturers=MANUFACTURER ) class OnOffManufacturer: pass @entity_registry.strict_match(s.component, channel_names="on_off", models=MODEL) class OnOffModel: pass @entity_registry.strict_match( s.component, channel_names="on_off", models=MODEL, manufacturers=MANUFACTURER ) class OnOffModelManufacturer: pass ch_on_off = channel("on_off", 6) ch_level = channel("level", 8) match, claimed = entity_registry.get_entity( s.component, manufacturer, model, [ch_on_off, ch_level] ) assert match.__name__ == match_name assert claimed == [ch_on_off] def test_multi_sensor_match(channel, entity_registry): """Test multi-entity match.""" s = mock.sentinel @entity_registry.multipass_match( s.binary_sensor, channel_names="smartenergy_metering", ) class SmartEnergySensor2: pass ch_se = channel("smartenergy_metering", 0x0702) ch_illuminati = channel("illuminance", 0x0401) match, claimed = entity_registry.get_multi_entity( "manufacturer", "model", channels=[ch_se, ch_illuminati] ) assert s.binary_sensor in match assert s.component not in match assert set(claimed) == {ch_se} assert {cls.entity_class.__name__ for cls in match[s.binary_sensor]} == { SmartEnergySensor2.__name__ } @entity_registry.multipass_match( s.component, channel_names="smartenergy_metering", aux_channels="illuminance" ) class SmartEnergySensor1: pass @entity_registry.multipass_match( s.binary_sensor, channel_names="smartenergy_metering", aux_channels="illuminance", ) class SmartEnergySensor3: pass match, claimed = entity_registry.get_multi_entity( "manufacturer", "model", channels={ch_se, ch_illuminati} ) assert s.binary_sensor in match assert s.component in match assert set(claimed) == {ch_se, ch_illuminati} assert {cls.entity_class.__name__ for cls in match[s.binary_sensor]} == { SmartEnergySensor2.__name__, SmartEnergySensor3.__name__, } assert {cls.entity_class.__name__ for cls in match[s.component]} == { SmartEnergySensor1.__name__ }
python
11,901
# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Produce interpolation in the joint model trained by `train_joint.py`. This script produces interpolation on one side of the joint model as a series of images, as well as in other side of the model through paralleling, image-by-image transformation. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import importlib import os from magenta.models.latent_transfer import common from magenta.models.latent_transfer import common_joint from magenta.models.latent_transfer import model_joint import numpy as np import tensorflow as tf FLAGS = tf.flags.FLAGS tf.flags.DEFINE_string('config', 'transfer_A_unconditional_mnist_to_mnist', 'The name of the model config to use.') tf.flags.DEFINE_string('exp_uid_A', '_exp_0', 'exp_uid for data_A') tf.flags.DEFINE_string('exp_uid_B', '_exp_1', 'exp_uid for data_B') tf.flags.DEFINE_string('exp_uid', '_exp_0', 'String to append to config for filenames/directories.') tf.flags.DEFINE_integer('n_iters', 100000, 'Number of iterations.') tf.flags.DEFINE_integer('n_iters_per_save', 5000, 'Iterations per a save.') tf.flags.DEFINE_integer('n_iters_per_eval', 5000, 'Iterations per a evaluation.') tf.flags.DEFINE_integer('random_seed', 19260817, 'Random seed') tf.flags.DEFINE_string('exp_uid_classifier', '_exp_0', 'exp_uid for classifier') # For Overriding configs tf.flags.DEFINE_integer('n_latent', 64, '') tf.flags.DEFINE_integer('n_latent_shared', 2, '') tf.flags.DEFINE_float('prior_loss_beta_A', 0.01, '') tf.flags.DEFINE_float('prior_loss_beta_B', 0.01, '') tf.flags.DEFINE_float('prior_loss_align_beta', 0.0, '') tf.flags.DEFINE_float('mean_recons_A_align_beta', 0.0, '') tf.flags.DEFINE_float('mean_recons_B_align_beta', 0.0, '') tf.flags.DEFINE_float('mean_recons_A_to_B_align_beta', 0.0, '') tf.flags.DEFINE_float('mean_recons_B_to_A_align_beta', 0.0, '') tf.flags.DEFINE_integer('pairing_number', 1024, '') # For controling interpolation tf.flags.DEFINE_integer('load_ckpt_iter', 0, '') tf.flags.DEFINE_string('interpolate_labels', '', 'a `,` separated list of 0-indexed labels.') tf.flags.DEFINE_integer('nb_images_between_labels', 1, '') def load_config(config_name): return importlib.import_module('configs.%s' % config_name).config def main(unused_argv): # pylint:disable=unused-variable # Reason: # This training script relys on many programmatical call to function and # access to variables. Pylint cannot infer this case so it emits false alarm # of unused-variable if we do not disable this warning. # pylint:disable=invalid-name # Reason: # Following variables have their name consider to be invalid by pylint so # we disable the warning. # - Variable that in its name has A or B indictating their belonging of # one side of data. del unused_argv # Load main config config_name = FLAGS.config config = load_config(config_name) config_name_A = config['config_A'] config_name_B = config['config_B'] config_name_classifier_A = config['config_classifier_A'] config_name_classifier_B = config['config_classifier_B'] # Load dataset dataset_A = common_joint.load_dataset(config_name_A, FLAGS.exp_uid_A) (dataset_blob_A, train_data_A, train_label_A, train_mu_A, train_sigma_A, index_grouped_by_label_A) = dataset_A dataset_B = common_joint.load_dataset(config_name_B, FLAGS.exp_uid_B) (dataset_blob_B, train_data_B, train_label_B, train_mu_B, train_sigma_B, index_grouped_by_label_B) = dataset_B # Prepare directories dirs = common_joint.prepare_dirs('joint', config_name, FLAGS.exp_uid) save_dir, sample_dir = dirs # Set random seed np.random.seed(FLAGS.random_seed) tf.set_random_seed(FLAGS.random_seed) # Real Training. tf.reset_default_graph() sess = tf.Session() # Load model's architecture (= build) one_side_helper_A = common_joint.OneSideHelper(config_name_A, FLAGS.exp_uid_A, config_name_classifier_A, FLAGS.exp_uid_classifier) one_side_helper_B = common_joint.OneSideHelper(config_name_B, FLAGS.exp_uid_B, config_name_classifier_B, FLAGS.exp_uid_classifier) m = common_joint.load_model(model_joint.Model, config_name, FLAGS.exp_uid) # Initialize and restore sess.run(tf.global_variables_initializer()) one_side_helper_A.restore(dataset_blob_A) one_side_helper_B.restore(dataset_blob_B) # Restore from ckpt config_name = FLAGS.config model_uid = common.get_model_uid(config_name, FLAGS.exp_uid) save_name = os.path.join( save_dir, 'transfer_%s_%d.ckpt' % (model_uid, FLAGS.load_ckpt_iter)) m.vae_saver.restore(sess, save_name) # prepare intepolate dir intepolate_dir = os.path.join( sample_dir, 'interpolate_sample', '%010d' % FLAGS.load_ckpt_iter) tf.gfile.MakeDirs(intepolate_dir) # things interpolate_labels = [int(_) for _ in FLAGS.interpolate_labels.split(',')] nb_images_between_labels = FLAGS.nb_images_between_labels index_list_A = [] last_pos = [0] * 10 for label in interpolate_labels: index_list_A.append(index_grouped_by_label_A[label][last_pos[label]]) last_pos[label] += 1 index_list_B = [] last_pos = [-1] * 10 for label in interpolate_labels: index_list_B.append(index_grouped_by_label_B[label][last_pos[label]]) last_pos[label] -= 1 z_A = [] z_A.append(train_mu_A[index_list_A[0]]) for i_label in range(1, len(interpolate_labels)): last_z_A = z_A[-1] this_z_A = train_mu_A[index_list_A[i_label]] for j in range(1, nb_images_between_labels + 1): z_A.append(last_z_A + (this_z_A - last_z_A) * (float(j) / nb_images_between_labels)) z_B = [] z_B.append(train_mu_B[index_list_B[0]]) for i_label in range(1, len(interpolate_labels)): last_z_B = z_B[-1] this_z_B = train_mu_B[index_list_B[i_label]] for j in range(1, nb_images_between_labels + 1): z_B.append(last_z_B + (this_z_B - last_z_B) * (float(j) / nb_images_between_labels)) z_B_tr = [] for this_z_A in z_A: this_z_B_tr = sess.run(m.x_A_to_B_direct, {m.x_A: np.array([this_z_A])}) z_B_tr.append(this_z_B_tr[0]) # Generate data domain instances and save. z_A = np.array(z_A) x_A = one_side_helper_A.m_helper.decode(z_A) x_A = common.post_proc(x_A, one_side_helper_A.m_helper.config) batched_x_A = common.batch_image( x_A, max_images=len(x_A), rows=len(x_A), cols=1, ) common.save_image(batched_x_A, os.path.join(intepolate_dir, 'x_A.png')) z_B = np.array(z_B) x_B = one_side_helper_B.m_helper.decode(z_B) x_B = common.post_proc(x_B, one_side_helper_B.m_helper.config) batched_x_B = common.batch_image( x_B, max_images=len(x_B), rows=len(x_B), cols=1, ) common.save_image(batched_x_B, os.path.join(intepolate_dir, 'x_B.png')) z_B_tr = np.array(z_B_tr) x_B_tr = one_side_helper_B.m_helper.decode(z_B_tr) x_B_tr = common.post_proc(x_B_tr, one_side_helper_B.m_helper.config) batched_x_B_tr = common.batch_image( x_B_tr, max_images=len(x_B_tr), rows=len(x_B_tr), cols=1, ) common.save_image(batched_x_B_tr, os.path.join(intepolate_dir, 'x_B_tr.png')) if __name__ == '__main__': tf.app.run(main)
python
8,074
"""Unit test package for medstat."""
python
37
"""Presence Detection adapter for Mozilla WebThings Gateway.""" from datetime import datetime, timedelta from gateway_addon import Adapter, Database import json import os import re import threading import ipaddress from .presence_device import PresenceDevice from .util import valid_ip, valid_mac, clamp, get_ip, ping, arping, arp, printDebug OUI_FILE = 'oui.txt' SEPARATORS = ('-', ':') BUFFER_SIZE = 1024 * 8 __location__ = os.path.realpath( os.path.join(os.getcwd(), os.path.dirname(__file__))) _CONFIG_PATHS = [ os.path.join(os.path.expanduser('~'), '.mozilla-iot', 'config'), ] if 'MOZIOT_HOME' in os.environ: _CONFIG_PATHS.insert(0, os.path.join(os.environ['MOZIOT_HOME'], 'config')) class PresenceAdapter(Adapter): """Adapter for network presence detection""" def __init__(self, verbose=True): """ Initialize the object. verbose -- whether or not to enable verbose logging """ print("Initialising adapter from class") self.pairing = False self.name = self.__class__.__name__ Adapter.__init__(self, 'network-presence-detection-adapter', 'network-presence-detection-adapter', verbose=verbose) print("Adapter ID = " + self.get_id()) self.DEBUG = False #True self.memory_in_weeks = 10 # How many weeks a device will be remembered as a possible device. self.time_window = 60 # How many minutes should a device be away before we concider it away? self.arping = False # Does the user also want to try using arping? self.defaultIpAddress = '' self.defaultSubnetMask = '' self.add_from_config() # Here we get data from the settings in the Gateway interface. self.own_ip = 'unknown' # We scan only scan if the device itself has an IP address. self.ip_range = {} # we remember which IP addresses had a device. This makes them extra interesting, and they will get extra attention during scans. self.deep_scan_frequency = 10 # once every 10 scans we do a deep scan. self.scan_count = 0 # Used by the deep scan system. self.filename = None for path in _CONFIG_PATHS: if os.path.isdir(path): self.filename = os.path.join( path, 'network-presence-detection-adapter-devices.json' ) self.should_save = False # make sure the file exists: if self.filename: try: with open(self.filename) as file_object: printDebug("Loading json..", self.DEBUG) try: self.previously_found = json.load(file_object) except: printDebug("Empty json file", self.DEBUG) self.previously_found = {} printDebug("Previously found items: = " + str(self.previously_found), self.DEBUG) except (IOError, ValueError): self.previously_found = {} print("Failed to load JSON file, generating new one.") with open(self.filename, 'w') as f: f.write('{}') else: self.previously_found = {} # Remove devices that have not been seen in a long time self.prune() # Present all devices to the gateway for key in self.previously_found: self._add_device(str(key), str(self.previously_found[key]['name']), str('...')) # Adding the device #_id = 'presence-{}'.format(key) self.devices[key].add_boolean_child('recently1', "Recently spotted", False) self.devices[key].add_integer_child('minutes_ago', "Minutes ago last seen", 99999) # Start the thread that updates the 'minutes ago' countdown on all lastseen properties. #t = threading.Thread(target=self.update_minutes_ago) #t.daemon = True #t.start() # We continuously scan for new devices, in an endless loop. The 255 addresses are split into a few chunks, and each chunk is given to a separate thread. self.own_ip = self.defaultIpAddress if self.defaultIpAddress != '' else get_ip() if valid_ip(self.own_ip): while True: #def split_processing(items, num_splits=4): old_previous_found_count = len(self.previously_found) thread_count = 5 # if default ip and subnet are provided if self.defaultIpAddress and self.defaultSubnetMask: ip_addresses = [str(i) for i in ipaddress.ip_network(self.defaultIpAddress + '/' + self.defaultSubnetMask, False).hosts()] else: start = 0 end = 255 ip_addresses = [str(self.own_ip[:self.own_ip.rfind(".")]) + "." + str(ip_byte4) for ip_byte4 in range(start, end)] split_size = round(len(ip_addresses) / thread_count + 0.5) threads = [] for ips in [ip_addresses[i:i + split_size] for i in range(0, len(ip_addresses), split_size)]: # determine the indices of the list this thread will handle # Create the thread threads.append( threading.Thread(target=self.scan, args=(ips,))) threads[-1].daemon = True threads[-1].start() # start the thread we just created # Wait for all threads to finish for t in threads: t.join() printDebug("All threads are done", self.DEBUG) # If new devices were found, save the JSON file. if len(self.previously_found) > old_previous_found_count: self.save_to_json() self.update_the_rest() #self.scan() #time.sleep(60) ''' def update_minutes_ago(self): t = threading.Timer(60.0, self.update_minutes_ago) t.daemon = True t.start() print("~~thread minutes ago updater") #time.sleep(300) for key in self.devices: print("~~thread is checking out a device: " + str(key)) if 'minutes_ago' in self.devices[key].properties: print("~~thread is updating minutes ago: " + str(key)) current_minutes_ago_value = self.devices[key].properties['minutes_ago'].value self.devices[key].properties['minutes_ago'].update(current_minutes_ago_value + 1) #time.sleep(10) ''' def unload(self): print("Presence detector is being unloaded") self.save_to_json() def remove_thing(self, device_id): printDebug("-----REMOVING------", self.DEBUG) try: printDebug("THING TO REMOVE:" + str(self.devices[device_id]), self.DEBUG) del self.previously_found[device_id] #print("2") obj = self.get_device(device_id) #print("3") self.handle_device_removed(obj) print("Removed presence detection device") except: print("REMOVING PRESENCE DETECTION THING FAILED") #del self.devices[device_id] self.should_save = True # saving changes to the json persistence file def scan(self, ip_addresses): self.scan_count += 1 if self.scan_count == self.deep_scan_frequency: self.scan_count = 0 self.should_save = False # We only save found_devices to a file if new devices have been found during this scan. # # skip broadcast addresses # if start == 0: # start = 1 # if end == 255: # end = 254 # when halfway through, start a new thread. for ip_address in ip_addresses: # skip broadcast addresses if ip_address.endswith('.255'): continue printDebug("", self.DEBUG) printDebug(ip_address, self.DEBUG) # Skip our own IP address. if ip_address == self.own_ip: continue # IP Addresses that have been populated before get extra scrutiny. if ip_address in self.ip_range: ping_count = 4 else: ping_count = 1 # Once in a while we do a deep scan of the entire network, and give each IP address a larger number of tries before moving on. if self.scan_count == 0: ping_count = 4 printDebug("-scan intensity: " + str(ping_count), self.DEBUG) alive = False # holds whether we got any response. if ping(ip_address, ping_count) == 0: # 0 means everything went ok, so a device was found. alive = True elif self.arping: if arping(ip_address, ping_count) == 0: # 0 means everything went ok, so a device was found. alive = True # If either ping or arping found a device: if alive: self.ip_range[ip_address] = 1000 # This IP address is of high interest. For the next 1000 iterations is will get extra attention. printDebug("-ALIVE", self.DEBUG) output = arp(ip_address) printDebug(str(output), self.DEBUG) mac_addresses = re.findall(r'(([0-9a-fA-F]{1,2}:){5}[0-9a-fA-F]{1,2})', output) now = datetime.timestamp(datetime.now()) if len(mac_addresses) > 0: mac_address = mac_addresses[0][0] mac_address = ':'.join([ # Left pad the MAC address parts with '0' in case of # invalid output (as on macOS) '0' * (2 - len(x)) + x for x in mac_address.split(':') ]) if not valid_mac(mac_address): continue mac_address = mac_address.replace(":", "") _id = 'presence-{}'.format(mac_address) printDebug("early mac = " + mac_address, self.DEBUG) # Get the basic variables found_device_name = output.split(' ')[0] printDebug("early found device name = " + found_device_name, self.DEBUG) if found_device_name == '?' or valid_ip(found_device_name): vendor = 'unnamed' try: # Get the vendor name, and shorten it. It removes # everything after the comma. Thus "Apple, inc" # becomes "Apple" vendor = get_vendor(mac_address) if vendor is not None: vendor = vendor.split(' ', 1)[0] vendor = vendor.split(',', 1)[0] else: vendor = 'unnamed' except ValueError: pass found_device_name = "Presence - " + vendor else: found_device_name = "Presence - " + found_device_name printDebug("--mac: " + mac_address, self.DEBUG) printDebug("--name: " + found_device_name, self.DEBUG) printDebug("--_id: " + _id, self.DEBUG) # Create or update items in the previously_found dictionary try: possibleName = '' if _id not in self.previously_found: self.should_save = True # We will be adding this new device to the list, and then save that updated list. i = 2 # We skip "1" as a number. So we will get names like "Apple" and then "Apple 2", "Apple 3", and so on. possibleName = found_device_name could_be_same_same = True while could_be_same_same is True: # We check if this name already exists in the list of previously found devices. could_be_same_same = False for item in self.previously_found.values(): if possibleName == item['name']: # The name already existed in the list, so we change it a little bit and compare again. could_be_same_same = True #print("names collided") possibleName = found_device_name + " " + str(i) i += 1 self.previously_found[str(_id)] = { # adding it to the internal object 'name': str(possibleName), 'lastseen': now, } else: printDebug(" -mac address already known", self.DEBUG) self.previously_found[_id]['lastseen'] = now possibleName = self.previously_found[_id]['name'] except Exception as ex: print("Error updating items in the previously_found dictionary: " + str(ex)) printDebug("--_id is now: " + _id, self.DEBUG) # Present new device to the WebThings gateway, or update them. #print("propos: " + str( self.get_devices() )) try: if _id not in self.devices: # Add device if it does not exist. # Present new device to the WebThings gateway printDebug("not _id in self.devices", self.DEBUG) self._add_device(str(_id), str(possibleName), str(ip_address)) # The device did not exist yet, so we're creating it. printDebug("Presented new device to gateway:" + str(possibleName), self.DEBUG) else: if 'details' in self.devices[_id].properties: if ip_address != '': printDebug("UPDATING DETAILS for " + _id, self.DEBUG) self.devices[_id].properties['details'].update(str(ip_address)) else: pass printDebug("ip_address was empty, so not updating the details property.", self.DEBUG) else: pass printDebug("The details property did not exist? Does the device even exist?", self.DEBUG) except Exception as ex: print("Error presenting new device to the WebThings gateway, or updating them.: " + str(ex)) # Present new device properties to the WebThings gateway, or update them. try: if 'recently1' not in self.devices[_id].properties: # add the property print() print("While updating, noticed device did not yet have the recently spotted property. Adding now.") self.devices[_id].add_boolean_child('recently1', "Recently spotted", True) else: self.devices[_id].properties['recently1'].update(True) if 'minutes_ago' not in self.devices[_id].properties: # add the property print() print("While updating, noticed device did not yet have the minutes ago property. Adding now.") self.devices[_id].add_integer_child('minutes_ago', "Minutes ago last seen", 0) else: self.devices[_id].properties['minutes_ago'].update(0) except Exception as ex: print("Error presenting new device properties to the WebThings gateway, or updating them.: " + str(ex)) # If no device was found at this IP address: else: if ip_address in self.ip_range: if self.ip_range[ip_address] == 0: self.ip_range.pop(ip_address) else: self.ip_range[ip_address] = self.ip_range[ip_address] - 1 def update_the_rest(self): # We go over the list of ALL previously found devices, including the ones not found in the scan, and update them. try: printDebug("", self.DEBUG) #past = datetime.now() - timedelta(hours=1) nowstamp = datetime.timestamp(datetime.now()) #past = datetime.now() - timedelta(minutes=self.time_window) #paststamp = datetime.timestamp(past) # A moment in the past that we compare against. for key in self.previously_found: printDebug("", self.DEBUG) #_id = 'presence-{}'.format(key) #print("Updating: " + str(_id)) try: # Make sure all devices and properties exist. Should be superfluous really. if key not in self.devices: self._add_device(key, self.previously_found[key]['name'], '...') # The device did not exist yet, so we're creating it. if 'recently1' not in self.devices[key].properties: self.devices[key].add_boolean_child('recently1', "Recently spotted", False) if 'minutes_ago' not in self.devices[key].properties: self.devices[key].add_integer_child('minutes_ago', "Minutes ago last seen", 99999) # Update devices self.previously_found[key]['lastseen'] minutes_ago = int((nowstamp - self.previously_found[key]['lastseen']) / 60) printDebug("-Minutes ago: " + str(minutes_ago), self.DEBUG) #minutes_ago = int( ( - paststamp) / 60 ) if minutes_ago > self.time_window: printDebug("BYE! " + str(key) + " was last seen over " + str(self.time_window) + " ago", self.DEBUG) self.devices[key].properties['recently1'].update(False) self.devices[key].properties['minutes_ago'].update(99999) # It's not great, but what other options are there? else: printDebug("HI! " + str(key) + " was spotted less than " + str(self.time_window) + " minutes ago", self.DEBUG) self.devices[key].properties['recently1'].update(True) self.devices[key].properties['minutes_ago'].update(minutes_ago) except Exception as ex: print("Could not create or update property. Error: " + str(ex)) except Exception as ex: print("Error while updating device: " + str(ex)) # Here we remove devices that haven't been spotted in a long time. self.prune() def _add_device(self, mac, name, details): """ Add the given device, if necessary. """ try: printDebug("adapter._add_device: " + str(name), self.DEBUG) device = PresenceDevice(self, mac, name, details) self.handle_device_added(device) printDebug("-Adapter has finished adding new device for mac " + str(mac), self.DEBUG) except Exception as ex: print("Error adding new device: " + str(ex)) return def prune(self): # adding already known devices back into the system. Maybe only devices seen in the last few months? try: print() too_old = datetime.now() - timedelta(weeks=self.memory_in_weeks) printDebug("Too old threshold: " + str(too_old), self.DEBUG) too_old_timestamp = datetime.timestamp(too_old) items_to_remove = [] for key in self.previously_found: printDebug("Updating: " + str(key), self.DEBUG)# + "," + str(item) item = self.previously_found[key] #lastSpottedTime = datetime.strptime('Jun 1 2005 1:33PM', '%b %d %Y %I:%M%p') if too_old_timestamp > item['lastseen']: print(str(key) + " was pruned from the list of all found devices") items_to_remove.append(key) else: printDebug(str(key) + " was not too old", self.DEBUG) pass if len(items_to_remove): for remove_me in items_to_remove: self.previously_found.pop(remove_me, None) #del self.previously_found[remove_me] self.save_to_json() except Exception as ex: print("Error pruning found devices list: " + str(ex)) def add_from_config(self): """Attempt to add all configured devices.""" try: database = Database('network-presence-detection-adapter') if not database.open(): return config = database.load_config() database.close() if not config or 'Memory' not in config or 'Time window' not in config: print("Required variables not found in config database?") return self.memory_in_weeks = clamp(int(config['Memory']), 1, 50) # The variable is clamped: it is forced to be between 1 and 50. self.time_window = clamp(int(config['Time window']), 1, 1380) # 'Grace period' could also be a good name. print("Memory value from settings page: " + str(self.memory_in_weeks)) print("Time window value from settings page: " + str(self.time_window)) if 'Arping' in config: self.arping = config['Arping'] # boolean. if 'Default IP address' in config: self.defaultIpAddress = config['Default IP address'] #string if 'Default subnet mask' in config: self.defaultSubnetMask = config['Default subnet mask'] #string if 'Debug messages' in config: self.DEBUG = config['Debug messages'] # boolean print("Config loaded ok") except: print("Error getting config data from database") def save_to_json(self): try: print("Saving updated list of found devices to json file") if self.previously_found and self.filename: with open(self.filename, 'w') as fp: json.dump(self.previously_found, fp) except: print("Saving to json file failed") def cancel_pairing(self): """Cancel the pairing process.""" self.pairing = False self.save_to_json() # I couldn't get the import to work, so I just copied some of the code here: # It was made by Victor Oliveira ([email protected]) def get_vendor(mac, oui_file=OUI_FILE): mac_clean = mac for separator in SEPARATORS: mac_clean = ''.join(mac_clean.split(separator)) try: int(mac_clean, 16) except ValueError: raise ValueError('Invalid MAC address.') mac_size = len(mac_clean) if mac_size > 12 or mac_size < 6: raise ValueError('Invalid MAC address.') with open(os.path.join(__location__, oui_file)) as file: mac_half = mac_clean[0:6] mac_half_upper = mac_half.upper() while True: line = file.readline() if line: if line.startswith(mac_half_upper): vendor = line.strip().split('\t')[-1] return vendor else: break
python
24,458
import itertools from datetime import timedelta import pandas as pd from pandas.tseries.frequencies import to_offset from pandarallel.utils.tools import chunk, PROGRESSION class RollingGroupBy: @staticmethod def reduce(results, _): return pd.concat(results, copy=False) @staticmethod def get_chunks(nb_workers, rolling_groupby, *args, **kwargs): chunks = chunk(len(rolling_groupby._groupby), nb_workers) iterator = iter(rolling_groupby._groupby) for chunk_ in chunks: yield [next(iterator) for _ in range(chunk_.stop - chunk_.start)] @staticmethod def att2value(rolling): attributes = { attribute: getattr(rolling, attribute) for attribute in rolling._attributes } # Fix window for win_type = freq, because then it was defined by the user in a format like '1D' and refers # to a time window rolling if "win_type" in attributes and attributes["win_type"] == "freq": window = to_offset(timedelta(microseconds=int(attributes["window"] / 1000))) attributes["window"] = window attributes.pop("win_type") return attributes @staticmethod def worker( tuples, index, attribute2value, queue, progress_bar, func, *args, **kwargs ): # TODO: See if this pd.concat is avoidable results = [] for iteration, (name, df) in enumerate(tuples): item = df.rolling(**attribute2value).apply(func, *args, **kwargs) item.index = pd.MultiIndex.from_product([[name], item.index]) results.append(item) if progress_bar: queue.put_nowait((PROGRESSION, (index, iteration))) return pd.concat(results)
python
1,762
from django.shortcuts import render, redirect from django.contrib import messages from django.contrib.auth.decorators import login_required from .forms import UserRegisterForm, UserUpdateForm, ProfileUpdateForm # SH from django.contrib.auth.models import User from django.contrib.auth.models import Group from django.views.generic import TemplateView from django.http import HttpResponse, HttpResponseRedirect, Http404 from django.urls import path from django.conf.urls import url from django.contrib.auth import logout def register(request): if request.method == 'POST': form = UserRegisterForm(request.POST) # using Django UserRegistrationForm if form.is_valid(): form.save() # if the form is valid than save it to database username = form.cleaned_data.get('username') messages.success(request, f'Your account has been created! You are now able to login') return redirect('/login') else: form = UserRegisterForm() return render(request, 'users/register.html', {'form': form}) # if form invalid than redirect to register.html @login_required def profile(request): if request.method == 'POST': u_form = UserUpdateForm(request.POST, instance=request.user) p_form = ProfileUpdateForm(request.POST, request.FILES, instance=request.user.profile) if u_form.is_valid() and p_form.is_valid(): u_form.save() p_form.save() messages.success(request, f'Your account has been updated!') return redirect('profile') else: u_form = UserUpdateForm(instance=request.user) p_form = ProfileUpdateForm(instance=request.user.profile) context = { 'u_form': u_form, 'p_form': p_form } return render(request, 'users/profile.html', context) # SH def group_check(request): group_name = Group.objects.all().filter(user=request.user) # get logget user grouped name group_name = str(group_name[0]) # convert to string if "Student" == group_name: return redirect('http://127.0.0.1:8000/student/') elif "Teacher" == group_name: return redirect('http://127.0.0.1:8000/teacher/') def logout_view(request): logout(request) return redirect('http://127.0.0.1:8000/') class register_teacher(TemplateView): template_name = "register_teacher.html" class register_student(TemplateView): template_name = "register_student.html"
python
2,535
# -*- encoding: utf-8 -*- """ @Author : zYx.Tom @Contact : [email protected] @site : https://zhuyuanxiang.github.io --------------------------- @Software : PyCharm @Project : Dive-into-Deep-Learning @File : sec0201.py @Version : v0.1 @Time : 2020-12-27 上午11:30 @License : (C)Copyright 2018-2020, zYx.Tom @Reference : 《动手学深度学习》 @Desc : 2.2.1 创建 NDArray @理解 """ from mxnet import nd from tools import beep_end # ---------------------------------------------------------------------- def create_data(): x = nd.arange(12) print("x=", x) print("x.shape=", x.shape) print("x.size=", x.size) return x def reshape_data(X): x = X.reshape(3, 4) print("x.reshape=", x) return x def zero_data(): x = nd.zeros((2, 3, 4)) print("zero x=", x) return x def one_data(): x = nd.ones((3, 4)) print("one x=", x) return x def init_data(): y = nd.array([[2, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]]) print("init y=", y) return y def random_data(): x = nd.random.normal(0, 1, shape=(3, 4)) print("random x=", x) pass def main(): X = create_data() reshape_data(X) zero_data() one_data() init_data() random_data() if __name__ == '__main__': main() beep_end()
python
1,327
# Licensed to the StackStorm, Inc ('StackStorm') under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Module containing constants for all the statically named queue. They are located inside this module so they can be referenced inside multiple places without encountering cylic import issues. """ from __future__ import absolute_import from kombu import Queue from st2common.constants import action as action_constants from st2common.transport import actionexecutionstate from st2common.transport import announcement from st2common.transport import execution from st2common.transport import liveaction from st2common.transport import publishers from st2common.transport import reactor from st2common.transport import workflow __all__ = [ 'ACTIONSCHEDULER_REQUEST_QUEUE', 'ACTIONRUNNER_WORK_QUEUE', 'ACTIONRUNNER_CANCEL_QUEUE', 'ACTIONRUNNER_PAUSE_QUEUE', 'ACTIONRUNNER_RESUME_QUEUE', 'EXPORTER_WORK_QUEUE', 'NOTIFIER_ACTIONUPDATE_WORK_QUEUE', 'RESULTSTRACKER_ACTIONSTATE_WORK_QUEUE', 'RULESENGINE_WORK_QUEUE', 'STREAM_ANNOUNCEMENT_WORK_QUEUE', 'STREAM_EXECUTION_ALL_WORK_QUEUE', 'STREAM_EXECUTION_UPDATE_WORK_QUEUE', 'STREAM_LIVEACTION_WORK_QUEUE', 'WORKFLOW_EXECUTION_WORK_QUEUE', 'WORKFLOW_EXECUTION_RESUME_QUEUE' ] # Used by the action scheduler service ACTIONSCHEDULER_REQUEST_QUEUE = liveaction.get_status_management_queue( 'st2.actionrunner.req', routing_key=action_constants.LIVEACTION_STATUS_REQUESTED) # Used by the action runner service ACTIONRUNNER_WORK_QUEUE = liveaction.get_status_management_queue( 'st2.actionrunner.work', routing_key=action_constants.LIVEACTION_STATUS_SCHEDULED) ACTIONRUNNER_CANCEL_QUEUE = liveaction.get_status_management_queue( 'st2.actionrunner.cancel', routing_key=action_constants.LIVEACTION_STATUS_CANCELING) ACTIONRUNNER_PAUSE_QUEUE = liveaction.get_status_management_queue( 'st2.actionrunner.pause', routing_key=action_constants.LIVEACTION_STATUS_PAUSING) ACTIONRUNNER_RESUME_QUEUE = liveaction.get_status_management_queue( 'st2.actionrunner.resume', routing_key=action_constants.LIVEACTION_STATUS_RESUMING) # Used by the exporter service EXPORTER_WORK_QUEUE = execution.get_queue( 'st2.exporter.work', routing_key=publishers.UPDATE_RK) # Used by the notifier service NOTIFIER_ACTIONUPDATE_WORK_QUEUE = execution.get_queue( 'st2.notifiers.execution.work', routing_key=publishers.UPDATE_RK) # Used by the results tracker service RESULTSTRACKER_ACTIONSTATE_WORK_QUEUE = actionexecutionstate.get_queue( 'st2.resultstracker.work', routing_key=publishers.CREATE_RK) # Used by the rules engine service RULESENGINE_WORK_QUEUE = reactor.get_trigger_instances_queue( name='st2.trigger_instances_dispatch.rules_engine', routing_key='#') # Used by the stream service STREAM_ANNOUNCEMENT_WORK_QUEUE = announcement.get_queue( routing_key=publishers.ANY_RK, exclusive=True, auto_delete=True) STREAM_EXECUTION_ALL_WORK_QUEUE = execution.get_queue( routing_key=publishers.ANY_RK, exclusive=True, auto_delete=True) STREAM_EXECUTION_UPDATE_WORK_QUEUE = execution.get_queue( routing_key=publishers.UPDATE_RK, exclusive=True, auto_delete=True) STREAM_LIVEACTION_WORK_QUEUE = Queue( None, liveaction.LIVEACTION_XCHG, routing_key=publishers.ANY_RK, exclusive=True, auto_delete=True) # TODO: Perhaps we should use pack.action name as routing key # so we can do more efficient filtering later, if needed STREAM_EXECUTION_OUTPUT_QUEUE = execution.get_output_queue( name=None, routing_key=publishers.CREATE_RK, exclusive=True, auto_delete=True) # Used by the workflow engine service WORKFLOW_EXECUTION_WORK_QUEUE = workflow.get_status_management_queue( name='st2.workflow.work', routing_key=action_constants.LIVEACTION_STATUS_REQUESTED) WORKFLOW_EXECUTION_RESUME_QUEUE = workflow.get_status_management_queue( name='st2.workflow.resume', routing_key=action_constants.LIVEACTION_STATUS_RESUMING) WORKFLOW_ACTION_EXECUTION_UPDATE_QUEUE = execution.get_queue( 'st2.workflow.action.update', routing_key=publishers.UPDATE_RK)
python
4,883
# -*- coding: utf-8 -*- # Copyright 2015 Pietro Brunetti <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Defining search dialogs """ __authors__ = "Pietro Brunetti" import wx import re import DialogCommons class Dialog(wx.Dialog): """ Search Dialog class""" def __init__( self, text, parent, ID, title, size=wx.DefaultSize, pos=wx.DefaultPosition, style=wx.DEFAULT_DIALOG_STYLE, useMetal=False): """Initialize a search dialog""" sizer = DialogCommons.createMainSizer(self, parent, ID, title, pos, size, style) self._createMask(sizer, text) DialogCommons.createBtnSizer(self, sizer, "The OK button to start the Search") self.SetSizer(sizer) sizer.Fit(self) def _createMask(self, sizer, text): """ Create search mask """ megabox = wx.FlexGridSizer(1, 2, 3, 3) megabox.AddGrowableCol(1) l_prot = wx.StaticText(self, -1, text) megabox.Add(l_prot, 0, wx.ALIGN_CENTER_VERTICAL) self.t_prot = wx.TextCtrl(self, -1) megabox.Add(self.t_prot, 0, wx.EXPAND) sizer.Add(megabox, 1, wx.EXPAND|wx.ALL, 5) def GetValue(self): return self.t_prot.GetValue()
python
1,828
""" antecedent_consequent.py : Contains Antecedent and Consequent classes. """ import numpy as np import networkx as nx from .state import StatefulProperty from ..fuzzymath import interp_membership from .fuzzyvariable import FuzzyVariable from ..defuzzify import defuzz try: from collections import OrderedDict except ImportError: from .ordereddict import OrderedDict def accu_max(*args): return np.max(args) class Antecedent(FuzzyVariable): """ Antecedent (input/sensor) variable for a fuzzy control system. Parameters ---------- universe : array-like Universe variable. Must be 1-dimensional and convertible to a NumPy array. label : string Name of the universe variable. """ # Customized subclass of `FuzzyVariable` input = StatefulProperty(None) def __init__(self, universe, label): """""" + Antecedent.__doc__ super(Antecedent, self).__init__(universe, label) self.__name__ = 'Antecedent' @property def graph(self): g = nx.DiGraph() for t in self.terms.values(): g.add_path([self, t]) return g class Consequent(FuzzyVariable): """ Consequent (output/control) variable for a fuzzy control system. Parameters ---------- universe : array-like Universe variable. Must be 1-dimensional and convertible to a NumPy array. label : string Name of the universe variable. Notes ----- The ``label`` string chosen must be unique among Antecedents and Consequents in the ``ControlSystem``. """ # Customized subclass of `FuzzyVariable` output = StatefulProperty(None) def __init__(self, universe, label): """""" + Consequent.__doc__ super(Consequent, self).__init__(universe, label) self.__name__ = 'Consequent' # Default accumulation method is to take the max of any cut self.accumulation_method = accu_max @property def graph(self): g = nx.DiGraph() for t in self.terms.values(): g.add_path([t, self]) return g
python
2,130
# -*- coding: UTF-8 -*- from django.db import models from django.contrib.auth.models import AbstractUser from .aes_decryptor import Prpcrypt # Create your models here. # 角色分两种: # 1.工程师:可以提交SQL上线单的工程师们,username字段为登录用户名,display字段为展示的中文名。 # 2.审核人:可以审核并执行SQL上线单的管理者、高级工程师、系统管理员们。 class users(AbstractUser): display = models.CharField('显示的中文名', max_length=50) role = models.CharField('角色', max_length=20, choices=(('工程师', '工程师'), ('审核人', '审核人'), ('DBA', 'DBA')), default='工程师') is_ldapuser = models.BooleanField('ldap用戶', default=False) def __str__(self): return self.username class Meta: verbose_name = u'用户配置' verbose_name_plural = u'用户配置' # 各个线上主库地址。 class master_config(models.Model): cluster_name = models.CharField('集群名称', max_length=50, unique=True) master_host = models.CharField('主库地址', max_length=200) master_port = models.IntegerField('主库端口', default=3306) master_user = models.CharField('登录主库的用户名', max_length=100) master_password = models.CharField('登录主库的密码', max_length=300) create_time = models.DateTimeField('创建时间', auto_now_add=True) update_time = models.DateTimeField('更新时间', auto_now=True) def __str__(self): return self.cluster_name class Meta: verbose_name = u'主库地址配置' verbose_name_plural = u'主库地址配置' def save(self, *args, **kwargs): pc = Prpcrypt() # 初始化 self.master_password = pc.encrypt(self.master_password) super(master_config, self).save(*args, **kwargs) # 存放各个SQL上线工单的详细内容,可定期归档或清理历史数据,也可通过alter table workflow row_format=compressed; 来进行压缩 class workflow(models.Model): workflow_name = models.CharField('工单内容', max_length=50) engineer = models.CharField('发起人', max_length=50) review_man = models.CharField('审核人', max_length=50) create_time = models.DateTimeField('创建时间', auto_now_add=True) finish_time = models.DateTimeField('结束时间', null=True, blank=True) status = models.CharField(max_length=50, choices=( ('已正常结束', '已正常结束'), ('人工终止流程', '人工终止流程'), ('自动审核中', '自动审核中'), ('等待审核人审核', '等待审核人审核'), ('审核通过', '审核通过'), ('定时执行', '定时执行'), ('执行中', '执行中'), ('自动审核不通过', '自动审核不通过'), ('执行有异常', '执行有异常'))) # is_backup = models.IntegerField('是否备份,0为否,1为是', choices=((0,0),(1,1))) is_backup = models.CharField('是否备份', choices=(('否', '否'), ('是', '是')), max_length=20) review_content = models.TextField('自动审核内容的JSON格式') cluster_name = models.CharField('集群名称', max_length=50) reviewok_time = models.DateTimeField('人工审核通过的时间', null=True, blank=True) sql_content = models.TextField('具体sql内容') execute_result = models.TextField('执行结果的JSON格式', blank=True) is_manual = models.IntegerField('是否手工执行', choices=((0, '否'), (1, '是')), default=0) audit_remark = models.TextField('审核备注', null=True, blank=True) def __str__(self): return self.workflow_name class Meta: verbose_name = u'SQL工单管理' verbose_name_plural = u'SQL工单管理' # 各个线上从库地址 class slave_config(models.Model): cluster_name = models.CharField('集群名称', max_length=50, unique=True) slave_host = models.CharField('从库地址', max_length=200) slave_port = models.IntegerField('从库端口', default=3306) slave_user = models.CharField('登录从库的用户名', max_length=100) slave_password = models.CharField('登录从库的密码', max_length=300) create_time = models.DateTimeField('创建时间', auto_now_add=True) update_time = models.DateTimeField('更新时间', auto_now=True) class Meta: verbose_name = u'从库地址配置' verbose_name_plural = u'从库地址配置' def save(self, *args, **kwargs): pc = Prpcrypt() # 初始化 self.slave_password = pc.encrypt(self.slave_password) super(slave_config, self).save(*args, **kwargs) # 工作流审核主表 class WorkflowAudit(models.Model): audit_id = models.AutoField(primary_key=True) workflow_id = models.BigIntegerField('关联业务id') workflow_type = models.IntegerField('申请类型', choices=((1, '查询权限申请'),)) workflow_title = models.CharField('申请标题', max_length=50) workflow_remark = models.CharField('申请备注', default='', max_length=140) audit_users = models.CharField('审核人列表', max_length=255) current_audit_user = models.CharField('当前审核人', max_length=20) next_audit_user = models.CharField('下级审核人', max_length=20) current_status = models.IntegerField('审核状态', choices=((0, '待审核'), (1, '审核通过'), (2, '审核不通过'), (3, '审核取消'))) create_user = models.CharField('申请人', max_length=20) create_time = models.DateTimeField('申请时间', auto_now_add=True) sys_time = models.DateTimeField('系统时间', auto_now=True) def __int__(self): return self.audit_id class Meta: db_table = 'workflow_audit' unique_together = ('workflow_id', 'workflow_type') verbose_name = u'工作流列表' verbose_name_plural = u'工作流列表' # 审批明细表 class WorkflowAuditDetail(models.Model): audit_detail_id = models.AutoField(primary_key=True) audit_id = models.ForeignKey(WorkflowAudit, db_constraint=False, to_field='audit_id', db_column='audit_id', verbose_name='审核主表id') audit_user = models.CharField('审核人', max_length=20) audit_time = models.DateTimeField('审核时间') audit_status = models.IntegerField('审核状态', choices=((0, '待审核'), (1, '审核通过'), (2, '审核不通过'), (3, '审核取消')), ) remark = models.CharField('审核备注', default='', max_length=140) sys_time = models.DateTimeField('系统时间', auto_now=True) def __int__(self): return self.audit_detail_id class Meta: db_table = 'workflow_audit_detail' verbose_name = u'审批明细表' verbose_name_plural = u'审批明细表' # 审批配置表 class WorkflowAuditSetting(models.Model): audit_setting_id = models.AutoField(primary_key=True) workflow_type = models.IntegerField('申请类型,', choices=((1, '查询权限申请'),), unique=True) audit_users = models.CharField('审核人,单人审核格式为:user1,多级审核格式为:user1,user2', max_length=255) create_time = models.DateTimeField(auto_now_add=True) sys_time = models.DateTimeField(auto_now=True) def __int__(self): return self.audit_setting_id class Meta: db_table = 'workflow_audit_setting' verbose_name = u'工作流配置' verbose_name_plural = u'工作流配置' # 查询权限申请记录表 class QueryPrivilegesApply(models.Model): apply_id = models.AutoField(primary_key=True) title = models.CharField('申请标题', max_length=50) user_name = models.CharField('申请人', max_length=30) cluster_name = models.CharField('集群名称', max_length=50) db_list = models.TextField('数据库') table_list = models.TextField('表') valid_date = models.DateField('有效时间') limit_num = models.IntegerField('行数限制', default=100) priv_type = models.IntegerField('权限类型', choices=((1, 'DATABASE'), (2, 'TABLE'),), default=0) status = models.IntegerField('审核状态', choices=((0, '待审核'), (1, '审核通过'), (2, '审核不通过'), (3, '审核取消')), ) create_time = models.DateTimeField(auto_now_add=True) sys_time = models.DateTimeField(auto_now=True) def __int__(self): return self.apply_id class Meta: db_table = 'query_privileges_apply' verbose_name = u'查询权限申请记录表' verbose_name_plural = u'查询权限申请记录表' # 用户权限关系表 class QueryPrivileges(models.Model): privilege_id = models.AutoField(primary_key=True) user_name = models.CharField('用户名', max_length=30) cluster_name = models.CharField('集群名称', max_length=50) db_name = models.CharField('数据库', max_length=200) table_name = models.CharField('表', max_length=200) valid_date = models.DateField('有效时间') limit_num = models.IntegerField('行数限制', default=100) priv_type = models.IntegerField('权限类型', choices=((1, 'DATABASE'), (2, 'TABLE'),), default=0) is_deleted = models.IntegerField('是否删除', default=0) create_time = models.DateTimeField(auto_now_add=True) sys_time = models.DateTimeField(auto_now=True) def __int__(self): return self.privilege_id class Meta: db_table = 'query_privileges' verbose_name = u'查询权限记录表' verbose_name_plural = u'查询权限记录表' # 记录在线查询sql的日志 class QueryLog(models.Model): cluster_name = models.CharField('集群名称', max_length=50) db_name = models.CharField('数据库名称', max_length=30) sqllog = models.TextField('执行的sql查询') effect_row = models.BigIntegerField('返回行数') cost_time = models.CharField('执行耗时', max_length=10, default='') username = models.CharField('操作人', max_length=30) create_time = models.DateTimeField('操作时间', auto_now_add=True) sys_time = models.DateTimeField(auto_now=True) class Meta: db_table = 'query_log' verbose_name = u'sql查询日志' verbose_name_plural = u'sql查询日志' # 脱敏字段配置 class DataMaskingColumns(models.Model): column_id = models.AutoField('字段id', primary_key=True) rule_type = models.IntegerField('规则类型', choices=((1, '手机号'), (2, '证件号码'), (3, '银行卡'), (4, '邮箱'), (5, '金额'), (6, '其他'))) active = models.IntegerField('激活状态', choices=((0, '未激活'), (1, '激活'))) cluster_name = models.CharField('集群名称', max_length=50) table_schema = models.CharField('字段所在库名', max_length=64) table_name = models.CharField('字段所在表名', max_length=64) column_name = models.CharField('字段名', max_length=64) column_comment = models.CharField('字段描述', max_length=1024, default='', blank=True) create_time = models.DateTimeField(auto_now_add=True) sys_time = models.DateTimeField(auto_now=True) class Meta: db_table = 'data_masking_columns' verbose_name = u'脱敏字段配置' verbose_name_plural = u'脱敏字段配置' # 脱敏规则配置 class DataMaskingRules(models.Model): rule_type = models.IntegerField('规则类型', choices=((1, '手机号'), (2, '证件号码'), (3, '银行卡'), (4, '邮箱'), (5, '金额'), (6, '其他')), unique=True) rule_regex = models.CharField('规则脱敏所用的正则表达式,表达式必须分组,隐藏的组会使用****代替', max_length=255) hide_group = models.IntegerField('需要隐藏的组') rule_desc = models.CharField('规则描述', max_length=100, default='', blank=True) sys_time = models.DateTimeField(auto_now=True) class Meta: db_table = 'data_masking_rules' verbose_name = u'脱敏规则配置' verbose_name_plural = u'脱敏规则配置' # 记录阿里云的认证信息 class AliyunAccessKey(models.Model): ak = models.CharField(max_length=50) secret = models.CharField(max_length=100) is_enable = models.IntegerField(choices=((1, '启用'), (2, '禁用'))) remark = models.CharField(max_length=50, default='', blank=True) class Meta: db_table = 'aliyun_access_key' verbose_name = u'阿里云认证信息' verbose_name_plural = u'阿里云认证信息' def save(self, *args, **kwargs): pc = Prpcrypt() # 初始化 self.ak = pc.encrypt(self.ak) self.secret = pc.encrypt(self.secret) super(AliyunAccessKey, self).save(*args, **kwargs) # 阿里云rds配置信息 class AliyunRdsConfig(models.Model): cluster_name = models.OneToOneField(master_config, db_constraint=False, to_field='cluster_name', db_column='cluster_name', verbose_name='集群名称', unique=True) rds_dbinstanceid = models.CharField('阿里云RDS实例ID', max_length=100) def __int__(self): return self.rds_dbinstanceid class Meta: db_table = 'aliyun_rds_config' verbose_name = u'阿里云rds配置' verbose_name_plural = u'阿里云rds配置' # SlowQuery class SlowQuery(models.Model): checksum = models.BigIntegerField(primary_key=True) fingerprint = models.TextField() sample = models.TextField() first_seen = models.DateTimeField(blank=True, null=True) last_seen = models.DateTimeField(blank=True, null=True, db_index=True) reviewed_by = models.CharField(max_length=20, blank=True, null=True) reviewed_on = models.DateTimeField(blank=True, null=True) comments = models.TextField(blank=True, null=True) class Meta: managed = False db_table = 'mysql_slow_query_review' verbose_name = u'慢日志统计' verbose_name_plural = u'慢日志统计' # SlowQueryHistory class SlowQueryHistory(models.Model): hostname_max = models.CharField(max_length=64, null=False) client_max = models.CharField(max_length=64, null=True) user_max = models.CharField(max_length=64, null=False) db_max = models.CharField(max_length=64, null=True, default=None) bytes_max = models.CharField(max_length=64, null=True) checksum = models.ForeignKey(SlowQuery, db_constraint=False, to_field='checksum', db_column='checksum') sample = models.TextField() ts_min = models.DateTimeField(db_index=True) ts_max = models.DateTimeField() ts_cnt = models.FloatField(blank=True, null=True) query_time_sum = models.FloatField(db_column='Query_time_sum', blank=True, null=True) query_time_min = models.FloatField(db_column='Query_time_min', blank=True, null=True) query_time_max = models.FloatField(db_column='Query_time_max', blank=True, null=True) query_time_pct_95 = models.FloatField(db_column='Query_time_pct_95', blank=True, null=True) query_time_stddev = models.FloatField(db_column='Query_time_stddev', blank=True, null=True) query_time_median = models.FloatField(db_column='Query_time_median', blank=True, null=True) lock_time_sum = models.FloatField(db_column='Lock_time_sum', blank=True, null=True) lock_time_min = models.FloatField(db_column='Lock_time_min', blank=True, null=True) lock_time_max = models.FloatField(db_column='Lock_time_max', blank=True, null=True) lock_time_pct_95 = models.FloatField(db_column='Lock_time_pct_95', blank=True, null=True) lock_time_stddev = models.FloatField(db_column='Lock_time_stddev', blank=True, null=True) lock_time_median = models.FloatField(db_column='Lock_time_median', blank=True, null=True) rows_sent_sum = models.FloatField(db_column='Rows_sent_sum', blank=True, null=True) rows_sent_min = models.FloatField(db_column='Rows_sent_min', blank=True, null=True) rows_sent_max = models.FloatField(db_column='Rows_sent_max', blank=True, null=True) rows_sent_pct_95 = models.FloatField(db_column='Rows_sent_pct_95', blank=True, null=True) rows_sent_stddev = models.FloatField(db_column='Rows_sent_stddev', blank=True, null=True) rows_sent_median = models.FloatField(db_column='Rows_sent_median', blank=True, null=True) rows_examined_sum = models.FloatField(db_column='Rows_examined_sum', blank=True, null=True) rows_examined_min = models.FloatField(db_column='Rows_examined_min', blank=True, null=True) rows_examined_max = models.FloatField(db_column='Rows_examined_max', blank=True, null=True) rows_examined_pct_95 = models.FloatField(db_column='Rows_examined_pct_95', blank=True, null=True) rows_examined_stddev = models.FloatField(db_column='Rows_examined_stddev', blank=True, null=True) rows_examined_median = models.FloatField(db_column='Rows_examined_median', blank=True, null=True) rows_affected_sum = models.FloatField(db_column='Rows_affected_sum', blank=True, null=True) rows_affected_min = models.FloatField(db_column='Rows_affected_min', blank=True, null=True) rows_affected_max = models.FloatField(db_column='Rows_affected_max', blank=True, null=True) rows_affected_pct_95 = models.FloatField(db_column='Rows_affected_pct_95', blank=True, null=True) rows_affected_stddev = models.FloatField(db_column='Rows_affected_stddev', blank=True, null=True) rows_affected_median = models.FloatField(db_column='Rows_affected_median', blank=True, null=True) rows_read_sum = models.FloatField(db_column='Rows_read_sum', blank=True, null=True) rows_read_min = models.FloatField(db_column='Rows_read_min', blank=True, null=True) rows_read_max = models.FloatField(db_column='Rows_read_max', blank=True, null=True) rows_read_pct_95 = models.FloatField(db_column='Rows_read_pct_95', blank=True, null=True) rows_read_stddev = models.FloatField(db_column='Rows_read_stddev', blank=True, null=True) rows_read_median = models.FloatField(db_column='Rows_read_median', blank=True, null=True) merge_passes_sum = models.FloatField(db_column='Merge_passes_sum', blank=True, null=True) merge_passes_min = models.FloatField(db_column='Merge_passes_min', blank=True, null=True) merge_passes_max = models.FloatField(db_column='Merge_passes_max', blank=True, null=True) merge_passes_pct_95 = models.FloatField(db_column='Merge_passes_pct_95', blank=True, null=True) merge_passes_stddev = models.FloatField(db_column='Merge_passes_stddev', blank=True, null=True) merge_passes_median = models.FloatField(db_column='Merge_passes_median', blank=True, null=True) innodb_io_r_ops_min = models.FloatField(db_column='InnoDB_IO_r_ops_min', blank=True, null=True) innodb_io_r_ops_max = models.FloatField(db_column='InnoDB_IO_r_ops_max', blank=True, null=True) innodb_io_r_ops_pct_95 = models.FloatField(db_column='InnoDB_IO_r_ops_pct_95', blank=True, null=True) innodb_io_r_ops_stddev = models.FloatField(db_column='InnoDB_IO_r_ops_stddev', blank=True, null=True) innodb_io_r_ops_median = models.FloatField(db_column='InnoDB_IO_r_ops_median', blank=True, null=True) innodb_io_r_bytes_min = models.FloatField(db_column='InnoDB_IO_r_bytes_min', blank=True, null=True) innodb_io_r_bytes_max = models.FloatField(db_column='InnoDB_IO_r_bytes_max', blank=True, null=True) innodb_io_r_bytes_pct_95 = models.FloatField(db_column='InnoDB_IO_r_bytes_pct_95', blank=True, null=True) innodb_io_r_bytes_stddev = models.FloatField(db_column='InnoDB_IO_r_bytes_stddev', blank=True, null=True) innodb_io_r_bytes_median = models.FloatField(db_column='InnoDB_IO_r_bytes_median', blank=True, null=True) innodb_io_r_wait_min = models.FloatField(db_column='InnoDB_IO_r_wait_min', blank=True, null=True) innodb_io_r_wait_max = models.FloatField(db_column='InnoDB_IO_r_wait_max', blank=True, null=True) innodb_io_r_wait_pct_95 = models.FloatField(db_column='InnoDB_IO_r_wait_pct_95', blank=True, null=True) innodb_io_r_wait_stddev = models.FloatField(db_column='InnoDB_IO_r_wait_stddev', blank=True, null=True) innodb_io_r_wait_median = models.FloatField(db_column='InnoDB_IO_r_wait_median', blank=True, null=True) innodb_rec_lock_wait_min = models.FloatField(db_column='InnoDB_rec_lock_wait_min', blank=True, null=True) innodb_rec_lock_wait_max = models.FloatField(db_column='InnoDB_rec_lock_wait_max', blank=True, null=True) innodb_rec_lock_wait_pct_95 = models.FloatField(db_column='InnoDB_rec_lock_wait_pct_95', blank=True, null=True) innodb_rec_lock_wait_stddev = models.FloatField(db_column='InnoDB_rec_lock_wait_stddev', blank=True, null=True) innodb_rec_lock_wait_median = models.FloatField(db_column='InnoDB_rec_lock_wait_median', blank=True, null=True) innodb_queue_wait_min = models.FloatField(db_column='InnoDB_queue_wait_min', blank=True, null=True) innodb_queue_wait_max = models.FloatField(db_column='InnoDB_queue_wait_max', blank=True, null=True) innodb_queue_wait_pct_95 = models.FloatField(db_column='InnoDB_queue_wait_pct_95', blank=True, null=True) innodb_queue_wait_stddev = models.FloatField(db_column='InnoDB_queue_wait_stddev', blank=True, null=True) innodb_queue_wait_median = models.FloatField(db_column='InnoDB_queue_wait_median', blank=True, null=True) innodb_pages_distinct_min = models.FloatField(db_column='InnoDB_pages_distinct_min', blank=True, null=True) innodb_pages_distinct_max = models.FloatField(db_column='InnoDB_pages_distinct_max', blank=True, null=True) innodb_pages_distinct_pct_95 = models.FloatField(db_column='InnoDB_pages_distinct_pct_95', blank=True, null=True) innodb_pages_distinct_stddev = models.FloatField(db_column='InnoDB_pages_distinct_stddev', blank=True, null=True) innodb_pages_distinct_median = models.FloatField(db_column='InnoDB_pages_distinct_median', blank=True, null=True) qc_hit_cnt = models.FloatField(db_column='QC_Hit_cnt', blank=True, null=True) qc_hit_sum = models.FloatField(db_column='QC_Hit_sum', blank=True, null=True) full_scan_cnt = models.FloatField(db_column='Full_scan_cnt', blank=True, null=True) full_scan_sum = models.FloatField(db_column='Full_scan_sum', blank=True, null=True) full_join_cnt = models.FloatField(db_column='Full_join_cnt', blank=True, null=True) full_join_sum = models.FloatField(db_column='Full_join_sum', blank=True, null=True) tmp_table_cnt = models.FloatField(db_column='Tmp_table_cnt', blank=True, null=True) tmp_table_sum = models.FloatField(db_column='Tmp_table_sum', blank=True, null=True) tmp_table_on_disk_cnt = models.FloatField(db_column='Tmp_table_on_disk_cnt', blank=True, null=True) tmp_table_on_disk_sum = models.FloatField(db_column='Tmp_table_on_disk_sum', blank=True, null=True) filesort_cnt = models.FloatField(db_column='Filesort_cnt', blank=True, null=True) filesort_sum = models.FloatField(db_column='Filesort_sum', blank=True, null=True) filesort_on_disk_cnt = models.FloatField(db_column='Filesort_on_disk_cnt', blank=True, null=True) filesort_on_disk_sum = models.FloatField(db_column='Filesort_on_disk_sum', blank=True, null=True) class Meta: managed = False db_table = 'mysql_slow_query_review_history' unique_together = ('hostname_max', 'ts_min') verbose_name = u'慢日志明细' verbose_name_plural = u'慢日志明细'
python
21,384
import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from .ssd_utils import * import torch.nn.init as init import os class SSD(nn.Module): """Single Shot Multibox Architecture The network is composed of a base VGG network followed by the added multibox conv layers. Each multibox layer branches into 1) conv2d for class conf scores 2) conv2d for localization predictions 3) associated priorbox layer to produce default bounding boxes specific to the layer's feature map size. See: https://arxiv.org/pdf/1512.02325.pdf for more details. Args: phase: (string) Can be "test" or "train" size: input image size base: VGG16 layers for input, size of either 300 or 500 extras: extra layers that feed to multibox loc and conf layers head: "multibox head" consists of loc and conf conv layers """ def __init__(self, option, phase, size, base, extras, head, num_classes): super(SSD, self).__init__() self.option = option self.features = [] self.phase = phase self.num_classes = num_classes self.cfg = self.option.result['detector'] self.priorbox = PriorBox(self.cfg) with torch.no_grad(): self.priors = self.priorbox.forward() self.size = size # SSD network self.backbone = nn.Sequential(*base) # Layer learns to scale the l2 normalized features from conv4_3 self.L2Norm = L2Norm(512, 20) self.extras = nn.ModuleList(extras) self.loc = nn.ModuleList(head[0]) self.conf = nn.ModuleList(head[1]) if phase == 'test': self.softmax = nn.Softmax(dim=-1) self.detect = Detect(num_classes, 0, 200, 0.01, 0.45, self.cfg['variance']) def forward(self, x): """Applies network layers and ops on input image(s) x. Args: x: input image or batch of images. Shape: [batch,3,300,300]. Return: Depending on phase: test: Variable(tensor) of output class label predictions, confidence score, and corresponding location predictions for each object detected. Shape: [batch,topk,7] train: list of concat outputs from: 1: confidence layers, Shape: [batch*num_priors,num_classes] 2: localization layers, Shape: [batch,num_priors*4] 3: priorbox layers, Shape: [2,num_priors*4] """ sources = list() loc = list() conf = list() x = self.backbone(x) # apply vgg up to conv4_3 relu s = self.L2Norm(self.features[0]) sources.append(s) # apply vgg up to fc7 sources.append(x) # apply extra layers and cache source layer outputs for k, v in enumerate(self.extras): x = F.relu(v(x), inplace=True) if k % 2 == 1: sources.append(x) # apply multibox head to source layers for (x, l, c) in zip(sources, self.loc, self.conf): loc.append(l(x).permute(0, 2, 3, 1).contiguous()) conf.append(c(x).permute(0, 2, 3, 1).contiguous()) loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1) conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1) if self.phase == "test": output = self.detect( loc.view(loc.size(0), -1, 4), # loc preds self.softmax(conf.view(conf.size(0), -1, self.num_classes)), # conf preds self.priors.type(type(x.data)) # default boxes ) else: output = ( loc.view(loc.size(0), -1, 4), conf.view(conf.size(0), -1, self.num_classes), self.priors ) return output # Initialize def initialize(self): def weights_init(m): if isinstance(m, nn.Conv2d): init.xavier_normal_(m.weight.data) init.constant_(m.bias.data, 0.0) self.extras.apply(weights_init) self.loc.apply(weights_init) self.conf.apply(weights_init) # Hook def get_features(self, _, inputs, outputs): self.features.append(outputs) def clear_features(self): self.features = [] def get_hook(self, target_layers): for name, param in self.backbone.named_children(): if name in target_layers: setattr(self, 'hook_detector_%s' %name, param.register_forward_hook(self.get_features)) def remove_hook(self, target_layers): for name in target_layers: getattr(self, 'hook_detector_%s' %name).remove() # This function is derived from torchvision VGG make_layers() # https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py def vgg(cfg, i, batch_norm=False): layers = [] in_channels = i for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] elif v == 'C': layers += [nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1) conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6) conv7 = nn.Conv2d(1024, 1024, kernel_size=1) layers += [pool5, conv6, nn.ReLU(inplace=True), conv7, nn.ReLU(inplace=True)] return layers def add_extras(cfg, i, batch_norm=False): # Extra layers added to VGG for feature scaling layers = [] in_channels = i flag = False for k, v in enumerate(cfg): if in_channels != 'S': if v == 'S': layers += [nn.Conv2d(in_channels, cfg[k + 1], kernel_size=(1, 3)[flag], stride=2, padding=1)] else: layers += [nn.Conv2d(in_channels, v, kernel_size=(1, 3)[flag])] flag = not flag in_channels = v return layers def multibox(vgg, extra_layers, cfg, num_classes): loc_layers = [] conf_layers = [] vgg_source = [21, -2] for k, v in enumerate(vgg_source): loc_layers += [nn.Conv2d(vgg[v].out_channels, cfg[k] * 4, kernel_size=3, padding=1)] conf_layers += [nn.Conv2d(vgg[v].out_channels, cfg[k] * num_classes, kernel_size=3, padding=1)] for k, v in enumerate(extra_layers[1::2], 2): loc_layers += [nn.Conv2d(v.out_channels, cfg[k] * 4, kernel_size=3, padding=1)] conf_layers += [nn.Conv2d(v.out_channels, cfg[k] * num_classes, kernel_size=3, padding=1)] return vgg, extra_layers, (loc_layers, conf_layers) base = { '300': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M', 512, 512, 512], '512': [], } extras = { '300': [256, 'S', 512, 128, 'S', 256, 128, 256, 128, 256], '512': [], } mbox = { '300': [4, 6, 6, 6, 4, 4], # number of boxes per feature map location '512': [], } def build_ssd(option, phase, size=300, num_classes=21): if phase != "test" and phase != "train": print("ERROR: Phase: " + phase + " not recognized") return if size != 300: print("ERROR: You specified size " + repr(size) + ". However, " + "currently only SSD300 (size=300) is supported!") return base_, extras_, head_ = multibox(vgg(base[str(size)], 3), add_extras(extras[str(size)], 1024), mbox[str(size)], num_classes) return SSD(option, phase, size, base_, extras_, head_, num_classes)
python
8,147
# Generated by Django 3.2.6 on 2021-10-07 22:14 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Note', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=100)), ('body', models.TextField()), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('author', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
python
930
# # Copyright (c) 2008-2015 Citrix Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License") # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_resource from nssrc.com.citrix.netscaler.nitro.resource.base.base_resource import base_response from nssrc.com.citrix.netscaler.nitro.service.options import options from nssrc.com.citrix.netscaler.nitro.exception.nitro_exception import nitro_exception from nssrc.com.citrix.netscaler.nitro.util.nitro_util import nitro_util class vpnvserver_stats(base_resource) : ur""" Statistics for VPN virtual server resource. """ def __init__(self) : self._name = "" self._clearstats = "" self._primaryipaddress = "" self._primaryport = 0 self._type = "" self._state = "" self._totalrequests = 0 self._requestsrate = 0 self._totalresponses = 0 self._responsesrate = 0 self._totalrequestbytes = 0 self._requestbytesrate = 0 self._totalresponsebytes = 0 self._responsebytesrate = 0 @property def name(self) : ur"""Name of the virtual server for which to show detailed statistics.<br/>Minimum length = 1. """ try : return self._name except Exception as e: raise e @name.setter def name(self, name) : ur"""Name of the virtual server for which to show detailed statistics. """ try : self._name = name except Exception as e: raise e @property def clearstats(self) : ur"""Clear the statsistics / counters.<br/>Possible values = basic, full. """ try : return self._clearstats except Exception as e: raise e @clearstats.setter def clearstats(self, clearstats) : ur"""Clear the statsistics / counters """ try : self._clearstats = clearstats except Exception as e: raise e @property def state(self) : ur"""Current state of the server. Possible values are UP, DOWN, UNKNOWN, OFS(Out of Service), TROFS(Transition Out of Service), TROFS_DOWN(Down When going Out of Service). """ try : return self._state except Exception as e: raise e @property def requestbytesrate(self) : ur"""Rate (/s) counter for totalrequestbytes. """ try : return self._requestbytesrate except Exception as e: raise e @property def primaryipaddress(self) : ur"""The IP address on which the service is running. """ try : return self._primaryipaddress except Exception as e: raise e @property def totalrequests(self) : ur"""Total number of requests received on this service or virtual server. (This applies to HTTP/SSL services and servers.). """ try : return self._totalrequests except Exception as e: raise e @property def type(self) : ur"""Protocol associated with the vserver. """ try : return self._type except Exception as e: raise e @property def responsesrate(self) : ur"""Rate (/s) counter for totalresponses. """ try : return self._responsesrate except Exception as e: raise e @property def totalresponsebytes(self) : ur"""Number of response bytes received by this service or virtual server. """ try : return self._totalresponsebytes except Exception as e: raise e @property def primaryport(self) : ur"""The port on which the service is running. """ try : return self._primaryport except Exception as e: raise e @property def requestsrate(self) : ur"""Rate (/s) counter for totalrequests. """ try : return self._requestsrate except Exception as e: raise e @property def responsebytesrate(self) : ur"""Rate (/s) counter for totalresponsebytes. """ try : return self._responsebytesrate except Exception as e: raise e @property def totalresponses(self) : ur"""Number of responses received on this service or virtual server. (This applies to HTTP/SSL services and servers.). """ try : return self._totalresponses except Exception as e: raise e @property def totalrequestbytes(self) : ur"""Total number of request bytes received on this service or virtual server. """ try : return self._totalrequestbytes except Exception as e: raise e def _get_nitro_response(self, service, response) : ur""" converts nitro response into object and returns the object array in case of get request. """ try : result = service.payload_formatter.string_to_resource(vpnvserver_response, response, self.__class__.__name__.replace('_stats','')) if(result.errorcode != 0) : if (result.errorcode == 444) : service.clear_session(self) if result.severity : if (result.severity == "ERROR") : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) else : raise nitro_exception(result.errorcode, str(result.message), str(result.severity)) return result.vpnvserver except Exception as e : raise e def _get_object_name(self) : ur""" Returns the value of object identifier argument """ try : if self.name is not None : return str(self.name) return None except Exception as e : raise e @classmethod def get(cls, service, name="", option_="") : ur""" Use this API to fetch the statistics of all vpnvserver_stats resources that are configured on netscaler. """ try : obj = vpnvserver_stats() if not name : response = obj.stat_resources(service, option_) else : obj.name = name response = obj.stat_resource(service, option_) return response except Exception as e: raise e class Clearstats: basic = "basic" full = "full" class vpnvserver_response(base_response) : def __init__(self, length=1) : self.vpnvserver = [] self.errorcode = 0 self.message = "" self.severity = "" self.sessionid = "" self.vpnvserver = [vpnvserver_stats() for _ in range(length)]
python
6,234
# -*- coding: utf-8 -*- # # Copyright 2017 - Swiss Data Science Center (SDSC) # A partnership between École Polytechnique Fédérale de Lausanne (EPFL) and # Eidgenössische Technische Hochschule Zürich (ETHZ). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Manage set of platform API endpoints.""" import datetime import os import click from ._config import with_config from ._options import argument_endpoint @click.group(invoke_without_command=True) @click.option('-v', '--verbose', count=True) @with_config @click.pass_context def endpoint(ctx, config, verbose): """Manage set of platform API endpoints.""" if ctx.invoked_subcommand is None: # TODO default_endpoint = config.get('core', {}).get('default') for endpoint, values in config.get('endpoints', {}).items(): # TODO is_default = default_endpoint == endpoint if not verbose: click.echo(endpoint) else: click.echo('{endpoint}\t{url}'.format( endpoint=endpoint, url=values.get('url', ''))) @endpoint.command(name='set-default') @argument_endpoint @with_config @click.pass_context def set_default(ctx, config, endpoint): """Set endpoint as default.""" config.setdefault('core', {}) config['core']['default'] = endpoint
python
1,807
"""Test cases for utils/check-package. It does not inherit from infra.basetest.BRTest and therefore does not generate a logfile. Only when the tests fail there will be output to the console. The make target ('make check-package') is already used by the job 'check-package' and won't be tested here. """ import os import subprocess import unittest import infra def call_script(args, env, cwd): """Call a script and return stdout and stderr as lists.""" out, err = subprocess.Popen(args, cwd=cwd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env, universal_newlines=True).communicate() return out.splitlines(), err.splitlines() class TestCheckPackage(unittest.TestCase): """Test the various ways the script can be called. The script can be called either using relative path, absolute path or from PATH. The files to be checked can be passed as arguments using either relative path or absolute path. When in in-tree mode (without -b) some in-tree files and also all out-of-tree files are ignored. When in out-tree mode (with -b) the script does generate warnings for these but ignores external.mk. """ WITH_EMPTY_PATH = {} WITH_UTILS_IN_PATH = {"PATH": infra.basepath("utils") + ":" + os.environ["PATH"]} relative = [ # base_script base_file rel_script rel_file rel_cwd ["utils/check-package", "package/atop/atop.mk", "./utils/check-package", "package/atop/atop.mk", ""], ["utils/check-package", "package/atop/atop.mk", "./utils/check-package", "./package/atop/atop.mk", ""], ["utils/check-package", "package/atop/atop.mk", "../../utils/check-package", "atop.mk", "package/atop"], ["utils/check-package", "package/atop/atop.mk", "../../utils/check-package", "./atop.mk", "package/atop"], ["utils/check-package", "package/atop/atop.mk", "../utils/check-package", "atop/atop.mk", "package"], ["utils/check-package", "package/atop/atop.mk", "../utils/check-package", "./atop/atop.mk", "package"], ["utils/check-package", "package/atop/Config.in", "./utils/check-package", "package/atop/Config.in", ""], ["utils/check-package", "package/atop/Config.in", "./utils/check-package", "./package/atop/Config.in", ""], ["utils/check-package", "package/atop/Config.in", "../../utils/check-package", "Config.in", "package/atop"], ["utils/check-package", "package/atop/Config.in", "../../utils/check-package", "./Config.in", "package/atop"], ["utils/check-package", "package/atop/Config.in", "../utils/check-package", "atop/Config.in", "package"], ["utils/check-package", "package/atop/Config.in", "../utils/check-package", "./atop/Config.in", "package"]] def assert_file_was_processed(self, stderr): """Infer from check-package stderr if at least one file was processed and fail otherwise.""" self.assertIn("lines processed", stderr[0], stderr) processed = int(stderr[0].split()[0]) self.assertGreater(processed, 0) def assert_file_was_ignored(self, stderr): """Infer from check-package stderr if no file was processed and fail otherwise.""" self.assertIn("lines processed", stderr[0], stderr) processed = int(stderr[0].split()[0]) self.assertEqual(processed, 0) def assert_warnings_generated_for_file(self, stderr): """Infer from check-package stderr if at least one warning was generated and fail otherwise.""" self.assertIn("warnings generated", stderr[1], stderr) generated = int(stderr[1].split()[0]) self.assertGreater(generated, 0) def test_run(self): """Test the various ways the script can be called in a simple top to bottom sequence.""" # an intree file can be checked by the script called from relative path, # absolute path and from PATH for base_script, base_file, rel_script, rel_file, rel_cwd in self.relative: abs_script = infra.basepath(base_script) abs_file = infra.basepath(base_file) cwd = infra.basepath(rel_cwd) _, m = call_script([rel_script, rel_file], self.WITH_EMPTY_PATH, cwd) self.assert_file_was_processed(m) _, m = call_script([abs_script, rel_file], self.WITH_EMPTY_PATH, cwd) self.assert_file_was_processed(m) _, m = call_script(["check-package", rel_file], self.WITH_UTILS_IN_PATH, cwd) self.assert_file_was_processed(m) _, m = call_script([rel_script, abs_file], self.WITH_EMPTY_PATH, cwd) self.assert_file_was_processed(m) _, m = call_script([abs_script, abs_file], self.WITH_EMPTY_PATH, cwd) self.assert_file_was_processed(m) _, m = call_script(["check-package", abs_file], self.WITH_UTILS_IN_PATH, cwd) self.assert_file_was_processed(m) # some intree files are ignored _, m = call_script(["./utils/check-package", "package/pkg-generic.mk"], self.WITH_EMPTY_PATH, infra.basepath()) self.assert_file_was_ignored(m) _, m = call_script(["./utils/check-package", "-b", "package/pkg-generic.mk"], self.WITH_EMPTY_PATH, infra.basepath()) self.assert_file_was_processed(m) # an out-of-tree file can be checked by the script called from relative # path, absolute path and from PATH for base_script, base_file, rel_script, rel_file, rel_cwd in self.relative: abs_script = infra.basepath(base_script) abs_file = infra.basepath(base_file) cwd = infra.basepath(rel_cwd) _, m = call_script([rel_script, "-b", rel_file], self.WITH_EMPTY_PATH, cwd) self.assert_file_was_processed(m) _, m = call_script([abs_script, "-b", rel_file], self.WITH_EMPTY_PATH, cwd) self.assert_file_was_processed(m) _, m = call_script(["check-package", "-b", rel_file], self.WITH_UTILS_IN_PATH, cwd) self.assert_file_was_processed(m) _, m = call_script([rel_script, "-b", abs_file], self.WITH_EMPTY_PATH, cwd) self.assert_file_was_processed(m) _, m = call_script([abs_script, "-b", abs_file], self.WITH_EMPTY_PATH, cwd) self.assert_file_was_processed(m) _, m = call_script(["check-package", "-b", abs_file], self.WITH_UTILS_IN_PATH, cwd) self.assert_file_was_processed(m) # out-of-tree files are are ignored without -b but can generate warnings # with -b abs_path = infra.filepath("tests/utils/br2-external") rel_file = "Config.in" abs_file = os.path.join(abs_path, rel_file) _, m = call_script(["check-package", rel_file], self.WITH_UTILS_IN_PATH, abs_path) self.assert_file_was_ignored(m) _, m = call_script(["check-package", abs_file], self.WITH_UTILS_IN_PATH, infra.basepath()) self.assert_file_was_ignored(m) w, m = call_script(["check-package", "-b", rel_file], self.WITH_UTILS_IN_PATH, abs_path) self.assert_file_was_processed(m) self.assert_warnings_generated_for_file(m) self.assertIn("{}:1: empty line at end of file".format(rel_file), w) w, m = call_script(["check-package", "-b", abs_file], self.WITH_UTILS_IN_PATH, infra.basepath()) self.assert_file_was_processed(m) self.assert_warnings_generated_for_file(m) self.assertIn("{}:1: empty line at end of file".format(abs_file), w) # external.mk is ignored only when in the root path of a br2-external rel_file = "external.mk" abs_file = os.path.join(abs_path, rel_file) _, m = call_script(["check-package", "-b", rel_file], self.WITH_UTILS_IN_PATH, abs_path) self.assert_file_was_ignored(m) _, m = call_script(["check-package", "-b", abs_file], self.WITH_UTILS_IN_PATH, infra.basepath()) self.assert_file_was_ignored(m) abs_path = infra.filepath("tests/utils/br2-external/package/external") abs_file = os.path.join(abs_path, rel_file) w, m = call_script(["check-package", "-b", rel_file], self.WITH_UTILS_IN_PATH, abs_path) self.assert_file_was_processed(m) self.assert_warnings_generated_for_file(m) self.assertIn("{}:1: should be 80 hashes (http://nightly.buildroot.org/#writing-rules-mk)".format(rel_file), w) w, m = call_script(["check-package", "-b", abs_file], self.WITH_UTILS_IN_PATH, infra.basepath()) self.assert_file_was_processed(m) self.assert_warnings_generated_for_file(m) self.assertIn("{}:1: should be 80 hashes (http://nightly.buildroot.org/#writing-rules-mk)".format(abs_file), w)
python
9,491
import aes128 import Title import Titles import Hex from binascii import hexlify as hx, unhexlify as uhx from struct import pack as pk, unpack as upk from Fs.File import File from hashlib import sha256 import Fs.Type import os import re import pathlib import Keys import Config import Print import Nsps from tqdm import tqdm from Fs.BaseFs import BaseFs MEDIA_SIZE = 0x200 indent = 1 tabs = '\t' * indent class Pfs0(BaseFs): def __init__(self, buffer, path = None, mode = None, cryptoType = -1, cryptoKey = -1, cryptoCounter = -1): super(Pfs0, self).__init__(buffer, path, mode, cryptoType, cryptoKey, cryptoCounter) if buffer: self.size = int.from_bytes(buffer[0x48:0x50], byteorder='little', signed=False) self.sectionStart = int.from_bytes(buffer[0x40:0x48], byteorder='little', signed=False) def getHeader(): stringTable = '\x00'.join(file.name for file in self.files) headerSize = 0x10 + len(self.files) * 0x18 + len(stringTable) remainder = 0x10 - headerSize % 0x10 headerSize += remainder h = b'' h += b'PFS0' h += len(self.files).to_bytes(4, byteorder='little') h += (len(stringTable)+remainder).to_bytes(4, byteorder='little') h += b'\x00\x00\x00\x00' stringOffset = 0 for f in range(len(self.files)): header += f.offset.to_bytes(8, byteorder='little') header += f.size.to_bytes(8, byteorder='little') header += stringOffset.to_bytes(4, byteorder='little') header += b'\x00\x00\x00\x00' stringOffset += len(f.name) + 1 h += stringTable.encode() h += remainder * b'\x00' return h def open(self, path = None, mode = 'rb', cryptoType = -1, cryptoKey = -1, cryptoCounter = -1): r = super(Pfs0, self).open(path, mode, cryptoType, cryptoKey, cryptoCounter) self.rewind() #self.setupCrypto() #Print.info('cryptoType = ' + hex(self.cryptoType)) #Print.info('titleKey = ' + (self.cryptoKey.hex())) #Print.info('cryptoCounter = ' + (self.cryptoCounter.hex())) self.magic = self.read(4) if self.magic != b'PFS0': raise IOError('Not a valid PFS0 partition ' + str(self.magic)) fileCount = self.readInt32() stringTableSize = self.readInt32() self.readInt32() # junk data self.seek(0x10 + fileCount * 0x18) stringTable = self.read(stringTableSize) stringEndOffset = stringTableSize headerSize = 0x10 + 0x18 * fileCount + stringTableSize self.files = [] for i in range(fileCount): i = fileCount - i - 1 self.seek(0x10 + i * 0x18) offset = self.readInt64() size = self.readInt64() nameOffset = self.readInt32() # just the offset name = stringTable[nameOffset:stringEndOffset].decode('utf-8').rstrip(' \t\r\n\0') stringEndOffset = nameOffset self.readInt32() # junk data f = Fs.factory(name) f._path = name f.offset = offset f.size = size self.files.append(self.partition(offset + headerSize, f.size, f)) self.files.reverse() ''' self.seek(0x10 + fileCount * 0x18) stringTable = self.read(stringTableSize) for i in range(fileCount): if i == fileCount - 1: self.files[i].name = stringTable[self.files[i].nameOffset:].decode('utf-8').rstrip(' \t\r\n\0') else: self.files[i].name = stringTable[self.files[i].nameOffset:self.files[i+1].nameOffset].decode('utf-8').rstrip(' \t\r\n\0') ''' def get_cryptoType(self): return self.cryptoType def get_cryptoKey(self): return self.cryptoKey def get_cryptoCounter(self): return self.cryptoCounter def read_cnmt(self, path = None, mode = 'rb'): cryptoType = self.get_cryptoType() cryptoKey = self.get_cryptoKey() cryptoCounter = self.get_cryptoCounter() r = super(Pfs0, self).open(path, mode, cryptoType, cryptoKey, cryptoCounter) self.rewind() for cnmt in self: f = Fs.factory(cnmt) cnmt.rewind() titleid=f.readInt64() titleversion = cnmt.read(0x4) cnmt.rewind() cnmt.seek(0xE) offset=cnmt.readInt16() content_entries=cnmt.readInt16() meta_entries=cnmt.readInt16() cnmt.rewind() cnmt.seek(0x20) original_ID=cnmt.readInt64() min_sversion=cnmt.readInt64() Print.info('') Print.info('...........................................') Print.info('Reading: ' + str(cnmt._path)) Print.info('...........................................') Print.info('titleid = ' + str(hx(titleid.to_bytes(8, byteorder='big')))) Print.info('version = ' + str(int.from_bytes(titleversion, byteorder='little'))) Print.info('Table offset = '+ str(hx((offset+0x20).to_bytes(2, byteorder='big')))) Print.info('number of content = '+ str(content_entries)) Print.info('number of meta entries = '+ str(meta_entries)) Print.info('Application id\Patch id = ' + str(hx(original_ID.to_bytes(8, byteorder='big')))) Print.info('RequiredSystemVersion = ' + str(min_sversion)) cnmt.rewind() cnmt.seek(0x20+offset) #for i in range(content_entries): # Print.info('........................') # Print.info('Content number ' + str(i+1)) # Print.info('........................') # vhash = cnmt.read(0x20) # Print.info('hash =\t' + str(hx(vhash))) # NcaId = cnmt.read(0x10) # Print.info('NcaId =\t' + str(hx(NcaId))) # size = cnmt.read(0x6) # Print.info('Size =\t' + str(int.from_bytes(size, byteorder='little', signed=True))) # ncatype = cnmt.read(0x1) # Print.info('ncatype = ' + str(int.from_bytes(ncatype, byteorder='little', signed=True))) # unknown = cnmt.read(0x1) def printInfo(self, indent = 0): maxDepth = 3 tabs = '\t' * indent Print.info('\n%sPFS0\n' % (tabs)) super(Pfs0, self).printInfo( indent)
python
5,801
# -*- coding: utf-8 -*- """Wide Residual Network models for Keras. # Reference - [Wide Residual Networks](https://arxiv.org/abs/1605.07146) """ from __future__ import print_function from __future__ import absolute_import from __future__ import division import warnings from keras.models import Model from keras.layers.core import Dense, Dropout, Activation, Flatten from keras.layers.pooling import AveragePooling2D, MaxPooling2D from keras.layers import Input, Conv2D from keras.layers.merge import add from keras.layers.normalization import BatchNormalization from keras.utils.layer_utils import convert_all_kernels_in_model from keras.utils.data_utils import get_file from keras.engine.topology import get_source_inputs from keras.applications.imagenet_utils import _obtain_input_shape import keras.backend as K TH_WEIGHTS_PATH = 'https://github.com/titu1994/Wide-Residual-Networks/releases/download/v1.2/wrn_28_8_th_kernels_th_dim_ordering.h5' TF_WEIGHTS_PATH = 'https://github.com/titu1994/Wide-Residual-Networks/releases/download/v1.2/wrn_28_8_tf_kernels_tf_dim_ordering.h5' TH_WEIGHTS_PATH_NO_TOP = 'https://github.com/titu1994/Wide-Residual-Networks/releases/download/v1.2/wrn_28_8_th_kernels_th_dim_ordering_no_top.h5' TF_WEIGHTS_PATH_NO_TOP = 'https://github.com/titu1994/Wide-Residual-Networks/releases/download/v1.2/wrn_28_8_tf_kernels_tf_dim_ordering_no_top.h5' def WideResidualNetwork(depth=28, width=8, dropout_rate=0.0, include_top=True, weights='cifar10', input_tensor=None, input_shape=None, classes=10): """Instantiate the Wide Residual Network architecture, optionally loading weights pre-trained on CIFAR-10. Note that when using TensorFlow, for best performance you should set `image_dim_ordering="tf"` in your Keras config at ~/.keras/keras.json. The model and the weights are compatible with both TensorFlow and Theano. The dimension ordering convention used by the model is the one specified in your Keras config file. # Arguments depth: number or layers in the DenseNet width: multiplier to the ResNet width (number of filters) dropout_rate: dropout rate include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization) or "cifar10" (pre-training on CIFAR-10).. input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(32, 32, 3)` (with `tf` dim ordering) or `(3, 32, 32)` (with `th` dim ordering). It should have exactly 3 inputs channels, and width and height should be no smaller than 8. E.g. `(200, 200, 3)` would be one valid value. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. # Returns A Keras model instance. """ if weights not in {'cifar10', None}: raise ValueError('The `weights` argument should be either ' '`None` (random initialization) or `cifar10` ' '(pre-training on CIFAR-10).') if weights == 'cifar10' and include_top and classes != 10: raise ValueError('If using `weights` as CIFAR 10 with `include_top`' ' as true, `classes` should be 10') if (depth - 4) % 6 != 0: raise ValueError('Depth of the network must be such that (depth - 4)' 'should be divisible by 6.') # Determine proper input shape input_shape = _obtain_input_shape(input_shape, default_size=32, min_size=8, data_format=K.image_dim_ordering(), require_flatten=include_top) if input_tensor is None: img_input = Input(shape=input_shape) else: if not K.is_keras_tensor(input_tensor): img_input = Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor x = __create_wide_residual_network(classes, img_input, include_top, depth, width, dropout_rate) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = Model(inputs, x, name='wide-resnet') # load weights if weights == 'cifar10': if (depth == 28) and (width == 8) and (dropout_rate == 0.0): # Default parameters match. Weights for this model exist: if K.image_dim_ordering() == 'th': if include_top: weights_path = get_file('wide_resnet_28_8_th_dim_ordering_th_kernels.h5', TH_WEIGHTS_PATH, cache_subdir='models') else: weights_path = get_file('wide_resnet_28_8_th_dim_ordering_th_kernels_no_top.h5', TH_WEIGHTS_PATH_NO_TOP, cache_subdir='models') model.load_weights(weights_path) if K.backend() == 'tensorflow': warnings.warn('You are using the TensorFlow backend, yet you ' 'are using the Theano ' 'image dimension ordering convention ' '(`image_dim_ordering="th"`). ' 'For best performance, set ' '`image_dim_ordering="tf"` in ' 'your Keras config ' 'at ~/.keras/keras.json.') convert_all_kernels_in_model(model) else: if include_top: weights_path = get_file('wide_resnet_28_8_tf_dim_ordering_tf_kernels.h5', TF_WEIGHTS_PATH, cache_subdir='models') else: weights_path = get_file('wide_resnet_28_8_tf_dim_ordering_tf_kernels_no_top.h5', TF_WEIGHTS_PATH_NO_TOP, cache_subdir='models') model.load_weights(weights_path) if K.backend() == 'theano': convert_all_kernels_in_model(model) return model def __conv1_block(input): x = Conv2D(16, (3, 3), padding='same')(input) channel_axis = 1 if K.image_dim_ordering() == 'th' else -1 x = BatchNormalization(axis=channel_axis)(x) x = Activation('relu')(x) return x def __conv2_block(input, k=1, dropout=0.0): init = input channel_axis = 1 if K.image_dim_ordering() == 'th' else -1 # Check if input number of filters is same as 16 * k, else create convolution2d for this input if K.image_dim_ordering() == 'th': if init._keras_shape[1] != 16 * k: init = Conv2D(16 * k, (1, 1), activation='linear', padding='same')(init) else: if init._keras_shape[-1] != 16 * k: init = Conv2D(16 * k, (1, 1), activation='linear', padding='same')(init) x = Conv2D(16 * k, (3, 3), padding='same')(input) x = BatchNormalization(axis=channel_axis)(x) x = Activation('relu')(x) if dropout > 0.0: x = Dropout(dropout)(x) x = Conv2D(16 * k, (3, 3), padding='same')(x) x = BatchNormalization(axis=channel_axis)(x) x = Activation('relu')(x) m = add([init, x]) return m def __conv3_block(input, k=1, dropout=0.0): init = input channel_axis = 1 if K.image_dim_ordering() == 'th' else -1 # Check if input number of filters is same as 32 * k, else create convolution2d for this input if K.image_dim_ordering() == 'th': if init._keras_shape[1] != 32 * k: init = Conv2D(32 * k, (1, 1), activation='linear', padding='same')(init) else: if init._keras_shape[-1] != 32 * k: init = Conv2D(32 * k, (1, 1), activation='linear', padding='same')(init) x = Conv2D(32 * k, (3, 3), padding='same')(input) x = BatchNormalization(axis=channel_axis)(x) x = Activation('relu')(x) if dropout > 0.0: x = Dropout(dropout)(x) x = Conv2D(32 * k, (3, 3), padding='same')(x) x = BatchNormalization(axis=channel_axis)(x) x = Activation('relu')(x) m = add([init, x]) return m def ___conv4_block(input, k=1, dropout=0.0): init = input channel_axis = 1 if K.image_dim_ordering() == 'th' else -1 # Check if input number of filters is same as 64 * k, else create convolution2d for this input if K.image_dim_ordering() == 'th': if init._keras_shape[1] != 64 * k: init = Conv2D(64 * k, (1, 1), activation='linear', padding='same')(init) else: if init._keras_shape[-1] != 64 * k: init = Conv2D(64 * k, (1, 1), activation='linear', padding='same')(init) x = Conv2D(64 * k, (3, 3), padding='same')(input) x = BatchNormalization(axis=channel_axis)(x) x = Activation('relu')(x) if dropout > 0.0: x = Dropout(dropout)(x) x = Conv2D(64 * k, (3, 3), padding='same')(x) x = BatchNormalization(axis=channel_axis)(x) x = Activation('relu')(x) m = add([init, x]) return m def __create_wide_residual_network(nb_classes, img_input, include_top, depth=28, width=8, dropout=0.0): ''' Creates a Wide Residual Network with specified parameters Args: nb_classes: Number of output classes img_input: Input tensor or layer include_top: Flag to include the last dense layer depth: Depth of the network. Compute N = (n - 4) / 6. For a depth of 16, n = 16, N = (16 - 4) / 6 = 2 For a depth of 28, n = 28, N = (28 - 4) / 6 = 4 For a depth of 40, n = 40, N = (40 - 4) / 6 = 6 width: Width of the network. dropout: Adds dropout if value is greater than 0.0 Returns:a Keras Model ''' N = (depth - 4) // 6 x = __conv1_block(img_input) nb_conv = 4 for i in range(N): x = __conv2_block(x, width, dropout) nb_conv += 2 x = MaxPooling2D((2, 2))(x) for i in range(N): x = __conv3_block(x, width, dropout) nb_conv += 2 x = MaxPooling2D((2, 2))(x) for i in range(N): x = ___conv4_block(x, width, dropout) nb_conv += 2 x = AveragePooling2D((8, 8))(x) if include_top: x = Flatten()(x) x = Dense(nb_classes, activation='softmax')(x) return x
python
11,279
#! /usr/bin/env python import collections import io import math import numpy as np OneKelvinInKeV = 0.00000008617328149741 # 1 K = 8.617328149741e-8 keV T9inKeV = 1e9 * OneKelvinInKeV # 1 GK = 86.17328149741 keV class ReaclibLibrary: def __init__(self, s=None): self.chapters = {} if s is not None: self.parse(s) def parse(self, s): lines = io.StringIO(s).readlines() chunks = {} thischunk = '' chapter = 0 while lines: line = lines.pop(0) if (line[:1]).isdigit(): if thischunk.strip() != '': chunks.setdefault(chapter, []).append(thischunk) chapter = int(line[:2]) thischunk = '' thischunk += line if thischunk.strip() != '': chunks.setdefault(chapter, []).append(thischunk) for i in chunks: # print( ''.join(chunks[i]) ) w = ReaclibChapter(''.join(chunks[i])) self.chapters[i] = w def __str__(self): result = '' for i in self.chapters: result += str(self.chapters[i]) return result def find(self, targ=None, proj=None, reaction=None, reference=None, chapter=None): for chapter in self.chapters: pass raise NotImplementedError("FIXME: write me") def add_inverse_reactions_detailed_balance(self): raise NotImplementedError("FIXME: write me") class ReaclibChapter: def __init__(self, s=None): self.reacts = [] self.chapter = None if s is not None: self.parse(s) def parse(self, s): split = s.splitlines() nchunks = len(split) / 4 for ichunk in range(0, len(split), 4): chunk = split[ichunk:ichunk + 4] header = chunk.pop(0) set1 = chunk.pop(0) set2 = chunk.pop(0) set3 = chunk.pop(0) r = ReaclibReact(set1 + set2 + set3) self.reacts.append(r) self.chapter = header def __str__(self): mymap2 = '' for r in self.reacts: mymap2 += '\n'.join(list(map(str, [self.chapter, r]))) + '\n' return mymap2 class ReaclibReact: def __init__(self, s=None): self.original = s self.set_label = None self.rate = None self.reverserate = None self.Qval = None self.e = collections.OrderedDict(((i, None) for i in range(1, 6))) if s is not None: self.parse(s) def add_particle(self, p, slot): pstring = p.rjust(5) self.e[slot] = pstring def add_coefficient(self, c, slot): if slot == 0: self.a_zero = ['', c] elif slot == 1: self.a_one = ['', c] elif slot == 2: self.a_two = ['', c] elif slot == 3: self.a_three = ['', c] elif slot == 4: self.a_four = ['', c] elif slot == 5: self.a_five = ['', c] elif slot == 6: self.a_six = ['', c] else: raise ValueError("Coefficient slots are 0-6, you entered %s" % str(slot)) def parse(self, s): self.e[1] = s[5:10] self.e[2] = s[10:15] self.e[3] = s[15:20] self.e[4] = s[20:25] self.e[5] = s[25:30] self.e[6] = s[30:35] self.set_label = s[43:47] self.rate = s[47] self.reverserate = s[48] self.Qval = [str(s[52:64]), float(s[52:64])] # print( '/'+s[74:87]+'/' ) # print( '/'+s[87:100]+'/' ) self.a_zero = [str(s[74:87]), float(s[74:87])] self.a_one = [str(s[87:100]), float(s[87:100])] self.a_two = [str(s[100:113]), float(s[100:113])] self.a_three = [str(s[113:126]), float(s[113:126])] self.a_four = [str(s[148:161]), float(s[148:161])] self.a_five = [str(s[161:174]), float(s[161:174])] self.a_six = [str(s[174:187]), float(s[174:187])] def __str__(self): line1 = " " + self.e[1] + self.e[2] + self.e[3] + self.e[4] + self.e[5] + self.e[ 6] + " " + self.set_label + self.rate + self.reverserate + " " + self.Qval[0] + " " line2 = self.a_zero[0] + self.a_one[0] + self.a_two[0] + self.a_three[0] + " " line3 = self.a_four[0] + self.a_five[0] + self.a_six[0] + " " mymap = list(map(str, [line1, line2, line3])) return "\n".join(mymap) def evaluate(self, x, unit='T9'): if unit == 'T9': T = x elif unit == 'keV': T = x / T9inKeV else: raise NotImplementedError("unit must be 'keV' or 'T9', got %s" % unit) logrrate = ( self.a_zero[1] + (self.a_one[1] * pow(T, -1.0)) + (self.a_two[1] * pow(T, -0.33333333333)) + (self.a_three[1] * pow(T, 0.3333333333)) + (self.a_four[1] * pow(T, 1)) + (self.a_five[1] * pow(T, 1.66666666666)) + (self.a_six[1] * math.log(T))) return math.exp(logrrate) def gnds_crossSection_to_Reaclib_ARR_coefficients(xs, useCovariance=False, verbose=False, minTemp=0.1, maxTemp=10.0, numTemps=15): from brownies.BNL.inter.metrics import computeAstrophysicalReactionRate import pqu.PQU as pqu # Set up temperature grid Temp_inT9 = np.logspace(start=math.log(minTemp), stop=math.log(maxTemp), num=numTemps) # [.1, .2, .3, .4, .5, 1, 1.5, 2.0, 5.0, 10.0] Temp_inkeV = [T9inKeV * (T) for T in Temp_inT9] # Set up array of reaction rates b_matrix = [] for T in Temp_inkeV: ARR = computeAstrophysicalReactionRate(xs, pqu.PQU(T, 'keV'), useCovariance=useCovariance) b_matrix.append(np.log(ARR.getValue())) b = np.array(b_matrix) # Set up matrix of powers of temperatures so we can fit the coefficients a_matrix = [] for T in Temp_inT9: a_matrix_row = [1, pow(T, -1.0), pow(T, -1.0 / 3.0), pow(T, 1.0 / 3.0), pow(T, 1.0), pow(T, 5.0 / 3.0), np.log(T)] a_matrix.append(a_matrix_row) a = np.array(a_matrix) # a*x = b, solve for vector x if verbose: print('b:', b) if verbose: print('a:', a) x, residual, rank, s = np.linalg.lstsq(a, b, rcond=None) if verbose: print('a*x', np.dot(a, x)) if verbose: print(residual) return x def gnds_reactionSuite_to_ReaclibLibrary(rs, maxEThreshold=0.5e6, skipCrossSectionSums=True, verbose=False): import fudge projectile = str(rs.projectile) target = str(rs.target) resultChapters = [] for r in rs: # Get rid of all reactions that are not plain reactions or sums of reactions # (e.g. no fission components of production stuff) if not isinstance(r, (fudge.reactions.reaction.reaction, fudge.sums.crossSectionSum)): continue if isinstance(r, fudge.sums.crossSectionSum) and skipCrossSectionSums: continue if not hasattr(r, 'outputChannel'): continue # Compute outgoing particle names prods = [str(p) for p in r.outputChannel] reactionName = str(r) # Get Ethreshold if hasattr(r, "getThreshold"): EThreshold = r.getThreshold(unit='eV') else: EThreshold = 0.0 # Skip over some reactions for which an astrophysical reaction rate is useless if projectile in prods and target in prods: continue # skip elastic if EThreshold > maxEThreshold: continue # skip high threshold reactions isInelastic = False for prod in prods: if '(' in prod: isInelastic = True # skip anything that's a discrete level excitation, we're not ready for isomers break if isInelastic: continue print(20 * '-', str(r), 20 * '-') # Get Q if hasattr(r, 'getQ'): Q = r.getQ(unit='eV') else: Q = 0.0 # Get coefficients in ARR parameterization a = gnds_crossSection_to_Reaclib_ARR_coefficients(r.crossSection, verbose=False) # Figure out relevant products and compute chapter if 'photon' in prods: prods.remove('photon') if len(prods) == 1: chapter = 4 elif len(prods) == 2: chapter = 5 elif len(prods) == 3: chapter = 6 else: continue thisReaction = ReaclibReact() thisReaction.set_label = 'endf' thisReaction.rate = None thisReaction.reverserate = '' thisReaction.Qval = ['', Q] thisReaction.add_particle(target, 1) thisReaction.add_particle(projectile, 2) for ip, product in enumerate(prods): thisReaction.add_particle(product, ip + 3) for ic, c in enumerate(a): thisReaction.add_coefficient(c, ic) print(prods, reactionName, a, chapter, Q, EThreshold) # print( thisReaction ) thisChapter = ReaclibChapter() thisChapter.chapter = chapter thisChapter.reacts.append(thisReaction) resultChapters.append(thisChapter) return resultChapters raise NotImplementedError("FIXME: write me") def endfFile_to_ReaclibLibrary(filename, verbose=False): from brownies.legacy.converting import endfFileToGNDS rs = endfFileToGNDS.endfFileToGNDS(filename, toStdOut=int(verbose) * 10, skipBadData=True, reconstructResonances=True, continuumSpectraFix=True, doCovariances=False, verboseWarnings=verbose, printBadNK14=False, ignoreBadDate=True, acceptBadMF10FissionZAP=True)['reactionSuite'] return gnds_reactionSuite_to_ReaclibLibrary(rs, verbose=verbose) def plot_rates(d, temperatureGrid=[.1, .2, .3, .4, .5, 1, 1.5, 2, 5, 10], title="Astrophysical Reaction Rate"): import matplotlib.pyplot as plt ''' d={ "ENDF/B-VIII.0":reactlibreac, 'KaDoNiS':...}''' for k in d: plt.plot(temperatureGrid, [d[k].evaluate(T) for T in temperatureGrid], label=k) plt.xlabel('$Temperature (GK)$') plt.ylabel('$ Astrophysical Reaction Rate(1e6)(cm^{3} s^{-1} mol^{-1})$') plt.title(title) plt.legend(loc='upper center', shadow=True, fontsize='x-large') plt.show() if __name__ == "__main__": import unittest class Test_ReaclibReact(unittest.TestCase): def setUp(self): self.s = " n p wc12w 7.82300e-01 \n" \ "-6.781610e+00 0.000000e+00 0.000000e+00 0.000000e+00 \n" \ " 0.000000e+00 0.000000e+00 0.000000e+00 \n" # self.s=open('reaclibv1.txt').read() def test_output(self): r = ReaclibReact(self.s) self.assertEqual(str(r), self.s) def test_evaluate(self): r = ReaclibReact(self.s) self.assertAlmostEqual(r.evaluate(1.0), 4.0) class Test_ReaclibChapter(unittest.TestCase): def setUp(self): self.s = \ """1 n p wc12w 7.82300e-01 -6.781610e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 1 t he3 wc12w 1.86000e-02 -2.014560e+01 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 1 he3 t ecw -1.90000e-02 -3.246200e+01-2.133800e-01-8.215810e-01 1.112410e+01 -5.773380e-01 2.904710e-02-2.627050e-01 """ def test_output(self): r = ReaclibChapter(self.s) self.assertEqual(str(r), self.s) class Test_ReaclibLibrary(unittest.TestCase): def setUp(self): self.s = "" def test_output(self): r = ReaclibLibrary(self.s) self.assertEqual(str(r), self.s) unittest.main()
python
12,791
import io import os import re from setuptools import setup, find_packages scriptFolder = os.path.dirname(os.path.realpath(__file__)) os.chdir(scriptFolder) # Find version info from module (without importing the module): with open("src/wizcoin/__init__.py", "r") as fileObj: version = re.search( r'^__version__\s*=\s*[\'"]([^\'"]*)[\'"]', fileObj.read(), re.MULTILINE ).group(1) # Use the README.md content for the long description: with io.open("README.md", encoding="utf-8") as fileObj: long_description = fileObj.read() setup( name="WizCoin", version=version, url="https://github.com/susieexample/wizcoin", author="Al Sweigart", author_email="[email protected]", description=("""A Python module to represent the galleon, sickle, and knut coins of wizard currency."""), long_description=long_description, long_description_content_type="text/markdown", license="MIT", packages=find_packages(where="src"), package_dir={"": "src"}, test_suite="tests", install_requires=[], keywords="", classifiers=[ "License :: OSI Approved :: MIT License", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", ], )
python
1,480
from django.db import connection from django.core.management.base import BaseCommand from pathlib import Path class Command(BaseCommand): """ Command to import a csv which maps UPRNs to Local Authority GSS codes. The csv should have two columns: 'uprn' and 'lad'. You probably want to generate it with 'create_uprn_council_lookup'. """ def add_arguments(self, parser): parser.add_argument("path", help="Path to CSV mapping UPRNs to GSS codes.") def handle(self, *args, **kwargs): self.path = Path(kwargs["path"]) self.table_name = "addressbase_uprntocouncil" if not self.path.exists(): raise FileNotFoundError(f"No csv found at {kwargs['path']}") cursor = connection.cursor() self.stdout.write("clearing existing data..") cursor.execute("TRUNCATE TABLE %s;" % (self.table_name)) self.stdout.write("importing from CSV..") with self.path.open("r") as f: cursor.copy_from(f, self.table_name, sep=",") self.stdout.write("...done")
python
1,067