project
stringclasses 765
values | commit_id
stringlengths 6
81
| func
stringlengths 19
482k
| vul
int64 0
1
| CVE ID
stringlengths 13
16
| CWE ID
stringclasses 13
values | CWE Name
stringclasses 13
values | CWE Description
stringclasses 13
values | Potential Mitigation
stringclasses 11
values | __index_level_0__
int64 0
23.9k
|
---|---|---|---|---|---|---|---|---|---|
php-src | 2fefae47716d501aec41c1102f3fd4531f070b05 | PHP_FUNCTION(dns_get_record)
{
char *hostname;
int hostname_len;
long type_param = PHP_DNS_ANY;
zval *authns = NULL, *addtl = NULL;
int type_to_fetch;
#if defined(HAVE_DNS_SEARCH)
struct sockaddr_storage from;
uint32_t fromsize = sizeof(from);
dns_handle_t handle;
#elif defined(HAVE_RES_NSEARCH)
struct __res_state state;
struct __res_state *handle = &state;
#endif
HEADER *hp;
querybuf answer;
u_char *cp = NULL, *end = NULL;
int n, qd, an, ns = 0, ar = 0;
int type, first_query = 1, store_results = 1;
zend_bool raw = 0;
if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s|lz!z!b",
&hostname, &hostname_len, &type_param, &authns, &addtl, &raw) == FAILURE) {
return;
}
if (authns) {
zval_dtor(authns);
array_init(authns);
}
if (addtl) {
zval_dtor(addtl);
array_init(addtl);
}
if (!raw) {
if ((type_param & ~PHP_DNS_ALL) && (type_param != PHP_DNS_ANY)) {
php_error_docref(NULL TSRMLS_CC, E_WARNING, "Type '%ld' not supported", type_param);
RETURN_FALSE;
}
} else {
if ((type_param < 1) || (type_param > 0xFFFF)) {
php_error_docref(NULL TSRMLS_CC, E_WARNING,
"Numeric DNS record type must be between 1 and 65535, '%ld' given", type_param);
RETURN_FALSE;
}
}
/* Initialize the return array */
array_init(return_value);
/* - We emulate an or'ed type mask by querying type by type. (Steps 0 - NUMTYPES-1 )
* If additional info is wanted we check again with DNS_T_ANY (step NUMTYPES / NUMTYPES+1 )
* store_results is used to skip storing the results retrieved in step
* NUMTYPES+1 when results were already fetched.
* - In case of PHP_DNS_ANY we use the directly fetch DNS_T_ANY. (step NUMTYPES+1 )
* - In case of raw mode, we query only the requestd type instead of looping type by type
* before going with the additional info stuff.
*/
if (raw) {
type = -1;
} else if (type_param == PHP_DNS_ANY) {
type = PHP_DNS_NUM_TYPES + 1;
} else {
type = 0;
}
for ( ;
type < (addtl ? (PHP_DNS_NUM_TYPES + 2) : PHP_DNS_NUM_TYPES) || first_query;
type++
) {
first_query = 0;
switch (type) {
case -1: /* raw */
type_to_fetch = type_param;
/* skip over the rest and go directly to additional records */
type = PHP_DNS_NUM_TYPES - 1;
break;
case 0:
type_to_fetch = type_param&PHP_DNS_A ? DNS_T_A : 0;
break;
case 1:
type_to_fetch = type_param&PHP_DNS_NS ? DNS_T_NS : 0;
break;
case 2:
type_to_fetch = type_param&PHP_DNS_CNAME ? DNS_T_CNAME : 0;
break;
case 3:
type_to_fetch = type_param&PHP_DNS_SOA ? DNS_T_SOA : 0;
break;
case 4:
type_to_fetch = type_param&PHP_DNS_PTR ? DNS_T_PTR : 0;
break;
case 5:
type_to_fetch = type_param&PHP_DNS_HINFO ? DNS_T_HINFO : 0;
break;
case 6:
type_to_fetch = type_param&PHP_DNS_MX ? DNS_T_MX : 0;
break;
case 7:
type_to_fetch = type_param&PHP_DNS_TXT ? DNS_T_TXT : 0;
break;
case 8:
type_to_fetch = type_param&PHP_DNS_AAAA ? DNS_T_AAAA : 0;
break;
case 9:
type_to_fetch = type_param&PHP_DNS_SRV ? DNS_T_SRV : 0;
break;
case 10:
type_to_fetch = type_param&PHP_DNS_NAPTR ? DNS_T_NAPTR : 0;
break;
case 11:
type_to_fetch = type_param&PHP_DNS_A6 ? DNS_T_A6 : 0;
break;
case PHP_DNS_NUM_TYPES:
store_results = 0;
continue;
default:
case (PHP_DNS_NUM_TYPES + 1):
type_to_fetch = DNS_T_ANY;
break;
}
if (type_to_fetch) {
#if defined(HAVE_DNS_SEARCH)
handle = dns_open(NULL);
if (handle == NULL) {
zval_dtor(return_value);
RETURN_FALSE;
}
#elif defined(HAVE_RES_NSEARCH)
memset(&state, 0, sizeof(state));
if (res_ninit(handle)) {
zval_dtor(return_value);
RETURN_FALSE;
}
#else
res_init();
#endif
n = php_dns_search(handle, hostname, C_IN, type_to_fetch, answer.qb2, sizeof answer);
if (n < 0) {
php_dns_free_handle(handle);
continue;
}
cp = answer.qb2 + HFIXEDSZ;
end = answer.qb2 + n;
hp = (HEADER *)&answer;
qd = ntohs(hp->qdcount);
an = ntohs(hp->ancount);
ns = ntohs(hp->nscount);
ar = ntohs(hp->arcount);
/* Skip QD entries, they're only used by dn_expand later on */
while (qd-- > 0) {
n = dn_skipname(cp, end);
if (n < 0) {
php_error_docref(NULL TSRMLS_CC, E_WARNING, "Unable to parse DNS data received");
zval_dtor(return_value);
php_dns_free_handle(handle);
RETURN_FALSE;
}
cp += n + QFIXEDSZ;
}
/* YAY! Our real answers! */
while (an-- && cp && cp < end) {
zval *retval;
cp = php_parserr(cp, &answer, type_to_fetch, store_results, raw, &retval);
if (retval != NULL && store_results) {
add_next_index_zval(return_value, retval);
}
}
if (authns || addtl) {
/* List of Authoritative Name Servers
* Process when only requesting addtl so that we can skip through the section
*/
while (ns-- > 0 && cp && cp < end) {
zval *retval = NULL;
cp = php_parserr(cp, &answer, DNS_T_ANY, authns != NULL, raw, &retval);
if (retval != NULL) {
add_next_index_zval(authns, retval);
}
}
}
if (addtl) {
/* Additional records associated with authoritative name servers */
while (ar-- > 0 && cp && cp < end) {
zval *retval = NULL;
cp = php_parserr(cp, &answer, DNS_T_ANY, 1, raw, &retval);
if (retval != NULL) {
add_next_index_zval(addtl, retval);
}
}
}
php_dns_free_handle(handle);
}
}
}
| 1 | CVE-2014-3597 | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 8,975 |
OpenSC | 412a6142c27a5973c61ba540e33cdc22d5608e68 | static int decode_bit_string(const u8 * inbuf, size_t inlen, void *outbuf,
size_t outlen, int invert)
{
const u8 *in = inbuf;
u8 *out = (u8 *) outbuf;
int zero_bits = *in & 0x07;
size_t octets_left = inlen - 1;
int i, count = 0;
memset(outbuf, 0, outlen);
in++;
if (outlen < octets_left)
return SC_ERROR_BUFFER_TOO_SMALL;
if (inlen < 1)
return SC_ERROR_INVALID_ASN1_OBJECT;
while (octets_left) {
/* 1st octet of input: ABCDEFGH, where A is the MSB */
/* 1st octet of output: HGFEDCBA, where A is the LSB */
/* first bit in bit string is the LSB in first resulting octet */
int bits_to_go;
*out = 0;
if (octets_left == 1)
bits_to_go = 8 - zero_bits;
else
bits_to_go = 8;
if (invert)
for (i = 0; i < bits_to_go; i++) {
*out |= ((*in >> (7 - i)) & 1) << i;
}
else {
*out = *in;
}
out++;
in++;
octets_left--;
count++;
}
return (count * 8) - zero_bits;
}
| 1 | CVE-2019-15945 | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 1,797 |
libxml2 | 2240fbf5912054af025fb6e01e26375100275e74 | gz_next4(xz_statep state, unsigned long *ret)
{
int ch;
unsigned long val;
z_streamp strm = &(state->zstrm);
val = NEXTZ();
val += (unsigned) NEXTZ() << 8;
val += (unsigned long) NEXTZ() << 16;
ch = NEXTZ();
if (ch == -1)
return -1;
val += (unsigned long) ch << 24;
*ret = val;
return 0;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 11,147 |
linux | 60085c3d009b0df252547adb336d1ccca5ce52ec | static int recv_msg(struct kiocb *iocb, struct socket *sock,
struct msghdr *m, size_t buf_len, int flags)
{
struct sock *sk = sock->sk;
struct tipc_port *tport = tipc_sk_port(sk);
struct sk_buff *buf;
struct tipc_msg *msg;
long timeout;
unsigned int sz;
u32 err;
int res;
/* Catch invalid receive requests */
if (unlikely(!buf_len))
return -EINVAL;
lock_sock(sk);
if (unlikely(sock->state == SS_UNCONNECTED)) {
res = -ENOTCONN;
goto exit;
}
timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
restart:
/* Look for a message in receive queue; wait if necessary */
while (skb_queue_empty(&sk->sk_receive_queue)) {
if (sock->state == SS_DISCONNECTING) {
res = -ENOTCONN;
goto exit;
}
if (timeout <= 0L) {
res = timeout ? timeout : -EWOULDBLOCK;
goto exit;
}
release_sock(sk);
timeout = wait_event_interruptible_timeout(*sk_sleep(sk),
tipc_rx_ready(sock),
timeout);
lock_sock(sk);
}
/* Look at first message in receive queue */
buf = skb_peek(&sk->sk_receive_queue);
msg = buf_msg(buf);
sz = msg_data_sz(msg);
err = msg_errcode(msg);
/* Discard an empty non-errored message & try again */
if ((!sz) && (!err)) {
advance_rx_queue(sk);
goto restart;
}
/* Capture sender's address (optional) */
set_orig_addr(m, msg);
/* Capture ancillary data (optional) */
res = anc_data_recv(m, msg, tport);
if (res)
goto exit;
/* Capture message data (if valid) & compute return value (always) */
if (!err) {
if (unlikely(buf_len < sz)) {
sz = buf_len;
m->msg_flags |= MSG_TRUNC;
}
res = skb_copy_datagram_iovec(buf, msg_hdr_sz(msg),
m->msg_iov, sz);
if (res)
goto exit;
res = sz;
} else {
if ((sock->state == SS_READY) ||
((err == TIPC_CONN_SHUTDOWN) || m->msg_control))
res = 0;
else
res = -ECONNRESET;
}
/* Consume received message (optional) */
if (likely(!(flags & MSG_PEEK))) {
if ((sock->state != SS_READY) &&
(++tport->conn_unacked >= TIPC_FLOW_CONTROL_WIN))
tipc_acknowledge(tport->ref, tport->conn_unacked);
advance_rx_queue(sk);
}
exit:
release_sock(sk);
return res;
}
| 1 | CVE-2013-3235 | CWE-200 | Exposure of Sensitive Information to an Unauthorized Actor | The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information. |
Phase: Architecture and Design
Strategy: Separation of Privilege
Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area.
Ensure that appropriate compartmentalization is built into the system design, and the compartmentalization allows for and reinforces privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide the appropriate time to use privileges and the time to drop privileges. | 4,340 |
linux | 040757f738e13caaa9c5078bca79aa97e11dde88 | static struct ucounts *get_ucounts(struct user_namespace *ns, kuid_t uid)
{
struct hlist_head *hashent = ucounts_hashentry(ns, uid);
struct ucounts *ucounts, *new;
spin_lock_irq(&ucounts_lock);
ucounts = find_ucounts(ns, uid, hashent);
if (!ucounts) {
spin_unlock_irq(&ucounts_lock);
new = kzalloc(sizeof(*new), GFP_KERNEL);
if (!new)
return NULL;
new->ns = ns;
new->uid = uid;
atomic_set(&new->count, 0);
spin_lock_irq(&ucounts_lock);
ucounts = find_ucounts(ns, uid, hashent);
if (ucounts) {
kfree(new);
} else {
hlist_add_head(&new->node, hashent);
ucounts = new;
}
}
if (!atomic_add_unless(&ucounts->count, 1, INT_MAX))
ucounts = NULL;
spin_unlock_irq(&ucounts_lock);
return ucounts;
}
| 1 | CVE-2017-6874 | CWE-416 | Use After Free | The product reuses or references memory after it has been freed. At some point afterward, the memory may be allocated again and saved in another pointer, while the original pointer references a location somewhere within the new allocation. Any operations using the original pointer are no longer valid because the memory "belongs" to the code that operates on the new pointer. |
Phase: Architecture and Design
Strategy: Language Selection
Choose a language that provides automatic memory management.
Phase: Implementation
Strategy: Attack Surface Reduction
When freeing pointers, be sure to set them to NULL once they are freed. However, the utilization of multiple or complex data structures may lower the usefulness of this strategy.
Effectiveness: Defense in Depth
Note: If a bug causes an attempted access of this pointer, then a NULL dereference could still lead to a crash or other unexpected behavior, but it will reduce or eliminate the risk of code execution. | 6,058 |
tensorflow | e84c975313e8e8e38bb2ea118196369c45c51378 | static void AddInstanceStatsToMap(
const int32_t instance, const int32_t feature_dim, const int32_t bucket_id,
const int32_t logits_dims, const int32_t stats_dims,
StatsPartitionMap* stats_map, const TTypes<float>::ConstMatrix& gradients,
const TTypes<float>::ConstMatrix& hessians,
const TTypes<int32>::ConstVec& node_ids) {
const int32_t node_id = node_ids(instance);
const auto key = StatsPartitionKey(node_id, feature_dim, bucket_id);
std::pair<StatsPartitionIterator, bool> const& insert_result =
stats_map->insert(StatsPartitionIterator::value_type(
key, std::vector<float>(stats_dims, 0.0f)));
auto& stats = insert_result.first->second;
for (int stat_dim = 0; stat_dim < logits_dims; ++stat_dim) {
stats[stat_dim] += gradients(instance, stat_dim);
}
for (int stat_dim = logits_dims; stat_dim < stats_dims; ++stat_dim) {
stats[stat_dim] += hessians(instance, stat_dim - logits_dims);
}
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 18,853 |
Chrome | 60907d63ce74cbed893473c4e9bb569f47ca0c01 | void LoginUtils::Set(LoginUtils* mock) {
Singleton<LoginUtilsWrapper>::get()->reset(mock);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 13,104 |
php-src | 8d2539fa0faf3f63e1d1e7635347c5b9e777d47b | static void php_wddx_pop_element(void *user_data, const XML_Char *name)
{
st_entry *ent1, *ent2;
wddx_stack *stack = (wddx_stack *)user_data;
HashTable *target_hash;
zend_class_entry *pce;
zval obj;
/* OBJECTS_FIXME */
if (stack->top == 0) {
return;
}
if (!strcmp((char *)name, EL_STRING) || !strcmp((char *)name, EL_NUMBER) ||
!strcmp((char *)name, EL_BOOLEAN) || !strcmp((char *)name, EL_NULL) ||
!strcmp((char *)name, EL_ARRAY) || !strcmp((char *)name, EL_STRUCT) ||
!strcmp((char *)name, EL_RECORDSET) || !strcmp((char *)name, EL_BINARY) ||
!strcmp((char *)name, EL_DATETIME)) {
wddx_stack_top(stack, (void**)&ent1);
if (Z_TYPE(ent1->data) == IS_UNDEF) {
if (stack->top > 1) {
stack->top--;
efree(ent1);
} else {
stack->done = 1;
}
return;
}
if (!strcmp((char *)name, EL_BINARY)) {
zend_string *new_str = NULL;
if (ZSTR_EMPTY_ALLOC() != Z_STR(ent1->data)) {
new_str = php_base64_decode(
(unsigned char *)Z_STRVAL(ent1->data), Z_STRLEN(ent1->data));
}
zval_ptr_dtor(&ent1->data);
if (new_str) {
ZVAL_STR(&ent1->data, new_str);
} else {
ZVAL_EMPTY_STRING(&ent1->data);
}
}
/* Call __wakeup() method on the object. */
if (Z_TYPE(ent1->data) == IS_OBJECT) {
zval fname, retval;
ZVAL_STRING(&fname, "__wakeup");
call_user_function_ex(NULL, &ent1->data, &fname, &retval, 0, 0, 0, NULL);
zval_ptr_dtor(&fname);
zval_ptr_dtor(&retval);
}
if (stack->top > 1) {
stack->top--;
wddx_stack_top(stack, (void**)&ent2);
/* if non-existent field */
if (Z_ISUNDEF(ent2->data)) {
zval_ptr_dtor(&ent1->data);
efree(ent1);
return;
}
if (Z_TYPE(ent2->data) == IS_ARRAY || Z_TYPE(ent2->data) == IS_OBJECT) {
target_hash = HASH_OF(&ent2->data);
if (ent1->varname) {
if (!strcmp(ent1->varname, PHP_CLASS_NAME_VAR) &&
Z_TYPE(ent1->data) == IS_STRING && Z_STRLEN(ent1->data) &&
ent2->type == ST_STRUCT && Z_TYPE(ent2->data) == IS_ARRAY) {
zend_bool incomplete_class = 0;
zend_str_tolower(Z_STRVAL(ent1->data), Z_STRLEN(ent1->data));
zend_string_forget_hash_val(Z_STR(ent1->data));
if ((pce = zend_hash_find_ptr(EG(class_table), Z_STR(ent1->data))) == NULL) {
incomplete_class = 1;
pce = PHP_IC_ENTRY;
}
if (pce != PHP_IC_ENTRY && (pce->serialize || pce->unserialize)) {
zval_ptr_dtor(&ent2->data);
ZVAL_UNDEF(&ent2->data);
php_error_docref(NULL, E_WARNING, "Class %s can not be unserialized", Z_STRVAL(ent1->data));
} else {
/* Initialize target object */
object_init_ex(&obj, pce);
/* Merge current hashtable with object's default properties */
zend_hash_merge(Z_OBJPROP(obj),
Z_ARRVAL(ent2->data),
zval_add_ref, 0);
if (incomplete_class) {
php_store_class_name(&obj, Z_STRVAL(ent1->data), Z_STRLEN(ent1->data));
}
/* Clean up old array entry */
zval_ptr_dtor(&ent2->data);
/* Set stack entry to point to the newly created object */
ZVAL_COPY_VALUE(&ent2->data, &obj);
}
/* Clean up class name var entry */
zval_ptr_dtor(&ent1->data);
} else if (Z_TYPE(ent2->data) == IS_OBJECT) {
zend_class_entry *old_scope = EG(scope);
EG(scope) = Z_OBJCE(ent2->data);
add_property_zval(&ent2->data, ent1->varname, &ent1->data);
if Z_REFCOUNTED(ent1->data) Z_DELREF(ent1->data);
EG(scope) = old_scope;
} else {
zend_symtable_str_update(target_hash, ent1->varname, strlen(ent1->varname), &ent1->data);
}
efree(ent1->varname);
} else {
zend_hash_next_index_insert(target_hash, &ent1->data);
}
}
efree(ent1);
} else {
stack->done = 1;
}
} else if (!strcmp((char *)name, EL_VAR) && stack->varname) {
efree(stack->varname);
stack->varname = NULL;
} else if (!strcmp((char *)name, EL_FIELD)) {
st_entry *ent;
wddx_stack_top(stack, (void **)&ent);
efree(ent);
stack->top--;
}
}
| 1 | CVE-2016-10162 | CWE-476 | NULL Pointer Dereference | The product dereferences a pointer that it expects to be valid but is NULL. | Phase: Implementation
If all pointers that could have been modified are checked for NULL before use, nearly all NULL pointer dereferences can be prevented.
Phase: Requirements
Select a programming language that is not susceptible to these issues.
Phase: Implementation
Check the results of all functions that return a value and verify that the value is non-null before acting upon it.
Effectiveness: Moderate
Note: Checking the return value of the function will typically be sufficient, however beware of race conditions (CWE-362) in a concurrent environment. This solution does not handle the use of improperly initialized variables (CWE-665).
Phase: Architecture and Design
Identify all variables and data stores that receive information from external sources, and apply input validation to make sure that they are only initialized to expected values.
Phase: Implementation
Explicitly initialize all variables and other data stores, either during declaration or just before the first usage. | 7,793 |
Chrome | a4150b688a754d3d10d2ca385155b1c95d77d6ae | void FeatureInfo::InitializeFeatures() {
std::string extensions_string(gl::GetGLExtensionsFromCurrentContext());
gfx::ExtensionSet extensions(gfx::MakeExtensionSet(extensions_string));
const char* version_str =
reinterpret_cast<const char*>(glGetString(GL_VERSION));
const char* renderer_str =
reinterpret_cast<const char*>(glGetString(GL_RENDERER));
gl_version_info_.reset(
new gl::GLVersionInfo(version_str, renderer_str, extensions));
bool enable_es3 = IsWebGL2OrES3OrHigherContext();
bool has_pixel_buffers =
gl_version_info_->is_es3 || gl_version_info_->is_desktop_core_profile ||
gfx::HasExtension(extensions, "GL_ARB_pixel_buffer_object") ||
gfx::HasExtension(extensions, "GL_NV_pixel_buffer_object");
ScopedPixelUnpackBufferOverride scoped_pbo_override(has_pixel_buffers, 0);
AddExtensionString("GL_ANGLE_translated_shader_source");
AddExtensionString("GL_CHROMIUM_async_pixel_transfers");
AddExtensionString("GL_CHROMIUM_bind_uniform_location");
AddExtensionString("GL_CHROMIUM_color_space_metadata");
AddExtensionString("GL_CHROMIUM_command_buffer_query");
AddExtensionString("GL_CHROMIUM_command_buffer_latency_query");
AddExtensionString("GL_CHROMIUM_copy_texture");
AddExtensionString("GL_CHROMIUM_deschedule");
AddExtensionString("GL_CHROMIUM_get_error_query");
AddExtensionString("GL_CHROMIUM_lose_context");
AddExtensionString("GL_CHROMIUM_pixel_transfer_buffer_object");
AddExtensionString("GL_CHROMIUM_rate_limit_offscreen_context");
AddExtensionString("GL_CHROMIUM_resize");
AddExtensionString("GL_CHROMIUM_resource_safe");
AddExtensionString("GL_CHROMIUM_strict_attribs");
AddExtensionString("GL_CHROMIUM_texture_mailbox");
AddExtensionString("GL_CHROMIUM_trace_marker");
AddExtensionString("GL_EXT_debug_marker");
AddExtensionString("GL_EXT_unpack_subimage");
AddExtensionString("GL_OES_vertex_array_object");
if (gfx::HasExtension(extensions, "GL_ANGLE_translated_shader_source")) {
feature_flags_.angle_translated_shader_source = true;
}
bool enable_dxt1 = false;
bool enable_dxt3 = false;
bool enable_dxt5 = false;
bool have_s3tc =
gfx::HasExtension(extensions, "GL_EXT_texture_compression_s3tc");
bool have_dxt3 =
have_s3tc ||
gfx::HasExtension(extensions, "GL_ANGLE_texture_compression_dxt3");
bool have_dxt5 =
have_s3tc ||
gfx::HasExtension(extensions, "GL_ANGLE_texture_compression_dxt5");
if (gfx::HasExtension(extensions, "GL_EXT_texture_compression_dxt1") ||
gfx::HasExtension(extensions, "GL_ANGLE_texture_compression_dxt1") ||
have_s3tc) {
enable_dxt1 = true;
}
if (have_dxt3) {
enable_dxt3 = true;
}
if (have_dxt5) {
enable_dxt5 = true;
}
if (enable_dxt1) {
feature_flags_.ext_texture_format_dxt1 = true;
AddExtensionString("GL_ANGLE_texture_compression_dxt1");
validators_.compressed_texture_format.AddValue(
GL_COMPRESSED_RGB_S3TC_DXT1_EXT);
validators_.compressed_texture_format.AddValue(
GL_COMPRESSED_RGBA_S3TC_DXT1_EXT);
validators_.texture_internal_format_storage.AddValue(
GL_COMPRESSED_RGB_S3TC_DXT1_EXT);
validators_.texture_internal_format_storage.AddValue(
GL_COMPRESSED_RGBA_S3TC_DXT1_EXT);
}
if (enable_dxt3) {
AddExtensionString("GL_ANGLE_texture_compression_dxt3");
validators_.compressed_texture_format.AddValue(
GL_COMPRESSED_RGBA_S3TC_DXT3_EXT);
validators_.texture_internal_format_storage.AddValue(
GL_COMPRESSED_RGBA_S3TC_DXT3_EXT);
}
if (enable_dxt5) {
feature_flags_.ext_texture_format_dxt5 = true;
AddExtensionString("GL_ANGLE_texture_compression_dxt5");
validators_.compressed_texture_format.AddValue(
GL_COMPRESSED_RGBA_S3TC_DXT5_EXT);
validators_.texture_internal_format_storage.AddValue(
GL_COMPRESSED_RGBA_S3TC_DXT5_EXT);
}
bool have_astc =
gfx::HasExtension(extensions, "GL_KHR_texture_compression_astc_ldr");
if (have_astc) {
feature_flags_.ext_texture_format_astc = true;
AddExtensionString("GL_KHR_texture_compression_astc_ldr");
GLint astc_format_it = GL_COMPRESSED_RGBA_ASTC_4x4_KHR;
GLint astc_format_max = GL_COMPRESSED_RGBA_ASTC_12x12_KHR;
for (; astc_format_it <= astc_format_max; astc_format_it++) {
validators_.compressed_texture_format.AddValue(astc_format_it);
validators_.texture_internal_format_storage.AddValue(astc_format_it);
}
astc_format_it = GL_COMPRESSED_SRGB8_ALPHA8_ASTC_4x4_KHR;
astc_format_max = GL_COMPRESSED_SRGB8_ALPHA8_ASTC_12x12_KHR;
for (; astc_format_it <= astc_format_max; astc_format_it++) {
validators_.compressed_texture_format.AddValue(astc_format_it);
validators_.texture_internal_format_storage.AddValue(astc_format_it);
}
}
bool have_atc =
gfx::HasExtension(extensions, "GL_AMD_compressed_ATC_texture") ||
gfx::HasExtension(extensions, "GL_ATI_texture_compression_atitc");
if (have_atc) {
feature_flags_.ext_texture_format_atc = true;
AddExtensionString("GL_AMD_compressed_ATC_texture");
validators_.compressed_texture_format.AddValue(GL_ATC_RGB_AMD);
validators_.compressed_texture_format.AddValue(
GL_ATC_RGBA_INTERPOLATED_ALPHA_AMD);
validators_.texture_internal_format_storage.AddValue(GL_ATC_RGB_AMD);
validators_.texture_internal_format_storage.AddValue(
GL_ATC_RGBA_INTERPOLATED_ALPHA_AMD);
}
if (gfx::HasExtension(extensions, "GL_EXT_texture_filter_anisotropic")) {
AddExtensionString("GL_EXT_texture_filter_anisotropic");
validators_.texture_parameter.AddValue(GL_TEXTURE_MAX_ANISOTROPY_EXT);
validators_.g_l_state.AddValue(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT);
}
bool enable_depth_texture = false;
GLenum depth_texture_format = GL_NONE;
if (!workarounds_.disable_depth_texture &&
(gfx::HasExtension(extensions, "GL_ARB_depth_texture") ||
gfx::HasExtension(extensions, "GL_OES_depth_texture") ||
gfx::HasExtension(extensions, "GL_ANGLE_depth_texture") ||
gl_version_info_->is_desktop_core_profile)) {
enable_depth_texture = true;
depth_texture_format = GL_DEPTH_COMPONENT;
feature_flags_.angle_depth_texture =
gfx::HasExtension(extensions, "GL_ANGLE_depth_texture");
}
if (enable_depth_texture) {
AddExtensionString("GL_CHROMIUM_depth_texture");
AddExtensionString("GL_GOOGLE_depth_texture");
validators_.texture_internal_format.AddValue(GL_DEPTH_COMPONENT);
validators_.texture_format.AddValue(GL_DEPTH_COMPONENT);
validators_.pixel_type.AddValue(GL_UNSIGNED_SHORT);
validators_.pixel_type.AddValue(GL_UNSIGNED_INT);
validators_.texture_depth_renderable_internal_format.AddValue(
GL_DEPTH_COMPONENT);
}
GLenum depth_stencil_texture_format = GL_NONE;
if (gfx::HasExtension(extensions, "GL_EXT_packed_depth_stencil") ||
gfx::HasExtension(extensions, "GL_OES_packed_depth_stencil") ||
gl_version_info_->is_es3 || gl_version_info_->is_desktop_core_profile) {
AddExtensionString("GL_OES_packed_depth_stencil");
feature_flags_.packed_depth24_stencil8 = true;
if (enable_depth_texture) {
if (gl_version_info_->is_es3) {
depth_stencil_texture_format = GL_DEPTH24_STENCIL8;
} else {
depth_stencil_texture_format = GL_DEPTH_STENCIL;
}
validators_.texture_internal_format.AddValue(GL_DEPTH_STENCIL);
validators_.texture_format.AddValue(GL_DEPTH_STENCIL);
validators_.pixel_type.AddValue(GL_UNSIGNED_INT_24_8);
validators_.texture_depth_renderable_internal_format.AddValue(
GL_DEPTH_STENCIL);
validators_.texture_stencil_renderable_internal_format.AddValue(
GL_DEPTH_STENCIL);
}
validators_.render_buffer_format.AddValue(GL_DEPTH24_STENCIL8);
if (context_type_ == CONTEXT_TYPE_WEBGL1) {
validators_.attachment.AddValue(GL_DEPTH_STENCIL_ATTACHMENT);
validators_.attachment_query.AddValue(GL_DEPTH_STENCIL_ATTACHMENT);
}
}
if (gl_version_info_->is_es3 || gl_version_info_->is_desktop_core_profile ||
gfx::HasExtension(extensions, "GL_OES_vertex_array_object") ||
gfx::HasExtension(extensions, "GL_ARB_vertex_array_object") ||
gfx::HasExtension(extensions, "GL_APPLE_vertex_array_object")) {
feature_flags_.native_vertex_array_object = true;
}
if (workarounds_.use_client_side_arrays_for_stream_buffers) {
feature_flags_.native_vertex_array_object = false;
}
if (gl_version_info_->is_es3 ||
gfx::HasExtension(extensions, "GL_OES_element_index_uint") ||
gl::HasDesktopGLFeatures()) {
AddExtensionString("GL_OES_element_index_uint");
validators_.index_type.AddValue(GL_UNSIGNED_INT);
}
bool has_srgb_framebuffer_support = false;
if (gl_version_info_->IsAtLeastGL(3, 2) ||
(gl_version_info_->IsAtLeastGL(2, 0) &&
(gfx::HasExtension(extensions, "GL_EXT_framebuffer_sRGB") ||
gfx::HasExtension(extensions, "GL_ARB_framebuffer_sRGB")))) {
feature_flags_.desktop_srgb_support = true;
has_srgb_framebuffer_support = true;
}
if ((((gl_version_info_->is_es3 ||
gfx::HasExtension(extensions, "GL_OES_rgb8_rgba8")) &&
gfx::HasExtension(extensions, "GL_EXT_sRGB")) ||
feature_flags_.desktop_srgb_support) &&
IsWebGL1OrES2Context()) {
feature_flags_.ext_srgb = true;
AddExtensionString("GL_EXT_sRGB");
validators_.texture_internal_format.AddValue(GL_SRGB_EXT);
validators_.texture_internal_format.AddValue(GL_SRGB_ALPHA_EXT);
validators_.texture_format.AddValue(GL_SRGB_EXT);
validators_.texture_format.AddValue(GL_SRGB_ALPHA_EXT);
validators_.render_buffer_format.AddValue(GL_SRGB8_ALPHA8_EXT);
validators_.framebuffer_attachment_parameter.AddValue(
GL_FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING_EXT);
validators_.texture_unsized_internal_format.AddValue(GL_SRGB_EXT);
validators_.texture_unsized_internal_format.AddValue(GL_SRGB_ALPHA_EXT);
has_srgb_framebuffer_support = true;
}
if (gl_version_info_->is_es3)
has_srgb_framebuffer_support = true;
if (has_srgb_framebuffer_support && !IsWebGLContext()) {
if (feature_flags_.desktop_srgb_support ||
gfx::HasExtension(extensions, "GL_EXT_sRGB_write_control")) {
feature_flags_.ext_srgb_write_control = true;
AddExtensionString("GL_EXT_sRGB_write_control");
validators_.capability.AddValue(GL_FRAMEBUFFER_SRGB_EXT);
}
}
if (gfx::HasExtension(extensions, "GL_EXT_texture_sRGB_decode") &&
!IsWebGLContext()) {
AddExtensionString("GL_EXT_texture_sRGB_decode");
validators_.texture_parameter.AddValue(GL_TEXTURE_SRGB_DECODE_EXT);
}
bool have_s3tc_srgb = false;
if (gl_version_info_->is_es) {
have_s3tc_srgb =
gfx::HasExtension(extensions, "GL_NV_sRGB_formats") ||
gfx::HasExtension(extensions, "GL_EXT_texture_compression_s3tc_srgb");
} else {
if (gfx::HasExtension(extensions, "GL_EXT_texture_sRGB") ||
gl_version_info_->IsAtLeastGL(4, 1)) {
have_s3tc_srgb =
gfx::HasExtension(extensions, "GL_EXT_texture_compression_s3tc");
}
}
if (have_s3tc_srgb) {
AddExtensionString("GL_EXT_texture_compression_s3tc_srgb");
validators_.compressed_texture_format.AddValue(
GL_COMPRESSED_SRGB_S3TC_DXT1_EXT);
validators_.compressed_texture_format.AddValue(
GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT);
validators_.compressed_texture_format.AddValue(
GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT);
validators_.compressed_texture_format.AddValue(
GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT);
validators_.texture_internal_format_storage.AddValue(
GL_COMPRESSED_SRGB_S3TC_DXT1_EXT);
validators_.texture_internal_format_storage.AddValue(
GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT);
validators_.texture_internal_format_storage.AddValue(
GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT);
validators_.texture_internal_format_storage.AddValue(
GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT);
}
bool has_apple_bgra =
gfx::HasExtension(extensions, "GL_APPLE_texture_format_BGRA8888");
bool has_ext_bgra =
gfx::HasExtension(extensions, "GL_EXT_texture_format_BGRA8888");
bool enable_texture_format_bgra8888 =
has_ext_bgra || has_apple_bgra || !gl_version_info_->is_es;
bool has_ext_texture_storage =
gfx::HasExtension(extensions, "GL_EXT_texture_storage");
bool has_arb_texture_storage =
gfx::HasExtension(extensions, "GL_ARB_texture_storage");
bool has_texture_storage =
!workarounds_.disable_texture_storage &&
(has_ext_texture_storage || has_arb_texture_storage ||
gl_version_info_->is_es3 || gl_version_info_->IsAtLeastGL(4, 2));
bool enable_texture_storage = has_texture_storage;
bool texture_storage_incompatible_with_bgra =
gl_version_info_->is_es3 && !has_ext_texture_storage && !has_apple_bgra;
if (texture_storage_incompatible_with_bgra &&
enable_texture_format_bgra8888 && enable_texture_storage) {
switch (context_type_) {
case CONTEXT_TYPE_OPENGLES2:
enable_texture_storage = false;
break;
case CONTEXT_TYPE_OPENGLES3:
enable_texture_format_bgra8888 = false;
break;
case CONTEXT_TYPE_WEBGL1:
case CONTEXT_TYPE_WEBGL2:
case CONTEXT_TYPE_WEBGL2_COMPUTE:
case CONTEXT_TYPE_WEBGPU:
break;
}
}
if (enable_texture_storage) {
feature_flags_.ext_texture_storage = true;
AddExtensionString("GL_EXT_texture_storage");
validators_.texture_parameter.AddValue(GL_TEXTURE_IMMUTABLE_FORMAT_EXT);
}
if (enable_texture_format_bgra8888) {
feature_flags_.ext_texture_format_bgra8888 = true;
AddExtensionString("GL_EXT_texture_format_BGRA8888");
validators_.texture_internal_format.AddValue(GL_BGRA_EXT);
validators_.texture_format.AddValue(GL_BGRA_EXT);
validators_.texture_unsized_internal_format.AddValue(GL_BGRA_EXT);
validators_.texture_internal_format_storage.AddValue(GL_BGRA8_EXT);
validators_.texture_sized_color_renderable_internal_format.AddValue(
GL_BGRA8_EXT);
validators_.texture_sized_texture_filterable_internal_format.AddValue(
GL_BGRA8_EXT);
feature_flags_.gpu_memory_buffer_formats.Add(gfx::BufferFormat::BGRA_8888);
feature_flags_.gpu_memory_buffer_formats.Add(gfx::BufferFormat::BGRX_8888);
}
bool enable_render_buffer_bgra =
gl_version_info_->is_angle || !gl_version_info_->is_es;
if (enable_render_buffer_bgra) {
feature_flags_.ext_render_buffer_format_bgra8888 = true;
AddExtensionString("GL_CHROMIUM_renderbuffer_format_BGRA8888");
validators_.render_buffer_format.AddValue(GL_BGRA8_EXT);
}
bool enable_read_format_bgra =
gfx::HasExtension(extensions, "GL_EXT_read_format_bgra") ||
!gl_version_info_->is_es;
if (enable_read_format_bgra) {
feature_flags_.ext_read_format_bgra = true;
AddExtensionString("GL_EXT_read_format_bgra");
validators_.read_pixel_format.AddValue(GL_BGRA_EXT);
}
feature_flags_.arb_es3_compatibility =
gfx::HasExtension(extensions, "GL_ARB_ES3_compatibility") &&
!gl_version_info_->is_es;
feature_flags_.ext_disjoint_timer_query =
gfx::HasExtension(extensions, "GL_EXT_disjoint_timer_query");
if (feature_flags_.ext_disjoint_timer_query ||
gfx::HasExtension(extensions, "GL_ARB_timer_query") ||
gfx::HasExtension(extensions, "GL_EXT_timer_query")) {
AddExtensionString("GL_EXT_disjoint_timer_query");
}
if (gfx::HasExtension(extensions, "GL_OES_rgb8_rgba8") ||
gl::HasDesktopGLFeatures()) {
AddExtensionString("GL_OES_rgb8_rgba8");
validators_.render_buffer_format.AddValue(GL_RGB8_OES);
validators_.render_buffer_format.AddValue(GL_RGBA8_OES);
}
if (!disallowed_features_.npot_support &&
(gl_version_info_->is_es3 || gl_version_info_->is_desktop_core_profile ||
gfx::HasExtension(extensions, "GL_ARB_texture_non_power_of_two") ||
gfx::HasExtension(extensions, "GL_OES_texture_npot"))) {
AddExtensionString("GL_OES_texture_npot");
feature_flags_.npot_ok = true;
}
InitializeFloatAndHalfFloatFeatures(extensions);
if (!workarounds_.disable_chromium_framebuffer_multisample) {
bool ext_has_multisample =
gfx::HasExtension(extensions, "GL_ARB_framebuffer_object") ||
(gfx::HasExtension(extensions, "GL_EXT_framebuffer_multisample") &&
gfx::HasExtension(extensions, "GL_EXT_framebuffer_blit")) ||
gl_version_info_->is_es3 || gl_version_info_->is_desktop_core_profile;
if (gl_version_info_->is_angle || gl_version_info_->is_swiftshader) {
ext_has_multisample |=
gfx::HasExtension(extensions, "GL_ANGLE_framebuffer_multisample");
}
if (ext_has_multisample) {
feature_flags_.chromium_framebuffer_multisample = true;
validators_.framebuffer_target.AddValue(GL_READ_FRAMEBUFFER_EXT);
validators_.framebuffer_target.AddValue(GL_DRAW_FRAMEBUFFER_EXT);
validators_.g_l_state.AddValue(GL_READ_FRAMEBUFFER_BINDING_EXT);
validators_.g_l_state.AddValue(GL_MAX_SAMPLES_EXT);
validators_.render_buffer_parameter.AddValue(GL_RENDERBUFFER_SAMPLES_EXT);
AddExtensionString("GL_CHROMIUM_framebuffer_multisample");
}
}
if (gfx::HasExtension(extensions, "GL_EXT_multisampled_render_to_texture")) {
feature_flags_.multisampled_render_to_texture = true;
} else if (gfx::HasExtension(extensions,
"GL_IMG_multisampled_render_to_texture")) {
feature_flags_.multisampled_render_to_texture = true;
feature_flags_.use_img_for_multisampled_render_to_texture = true;
}
if (feature_flags_.multisampled_render_to_texture) {
validators_.render_buffer_parameter.AddValue(GL_RENDERBUFFER_SAMPLES_EXT);
validators_.g_l_state.AddValue(GL_MAX_SAMPLES_EXT);
validators_.framebuffer_attachment_parameter.AddValue(
GL_FRAMEBUFFER_ATTACHMENT_TEXTURE_SAMPLES_EXT);
AddExtensionString("GL_EXT_multisampled_render_to_texture");
}
if (!gl_version_info_->is_es ||
gfx::HasExtension(extensions, "GL_EXT_multisample_compatibility")) {
AddExtensionString("GL_EXT_multisample_compatibility");
feature_flags_.ext_multisample_compatibility = true;
validators_.capability.AddValue(GL_MULTISAMPLE_EXT);
validators_.capability.AddValue(GL_SAMPLE_ALPHA_TO_ONE_EXT);
}
if (gfx::HasExtension(extensions, "GL_INTEL_framebuffer_CMAA")) {
feature_flags_.chromium_screen_space_antialiasing = true;
AddExtensionString("GL_CHROMIUM_screen_space_antialiasing");
} else if (gl_version_info_->IsAtLeastGLES(3, 1) ||
(gl_version_info_->IsAtLeastGL(3, 0) &&
gfx::HasExtension(extensions,
"GL_ARB_shading_language_420pack") &&
gfx::HasExtension(extensions, "GL_ARB_texture_storage") &&
gfx::HasExtension(extensions, "GL_ARB_texture_gather") &&
gfx::HasExtension(extensions,
"GL_ARB_explicit_uniform_location") &&
gfx::HasExtension(extensions,
"GL_ARB_explicit_attrib_location") &&
gfx::HasExtension(extensions,
"GL_ARB_shader_image_load_store"))) {
feature_flags_.chromium_screen_space_antialiasing = true;
feature_flags_.use_chromium_screen_space_antialiasing_via_shaders = true;
AddExtensionString("GL_CHROMIUM_screen_space_antialiasing");
}
if (gfx::HasExtension(extensions, "GL_OES_depth24") ||
gl::HasDesktopGLFeatures() || gl_version_info_->is_es3) {
AddExtensionString("GL_OES_depth24");
feature_flags_.oes_depth24 = true;
validators_.render_buffer_format.AddValue(GL_DEPTH_COMPONENT24);
}
if (gl_version_info_->is_es3 ||
gfx::HasExtension(extensions, "GL_OES_standard_derivatives") ||
gl::HasDesktopGLFeatures()) {
AddExtensionString("GL_OES_standard_derivatives");
feature_flags_.oes_standard_derivatives = true;
validators_.hint_target.AddValue(GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES);
validators_.g_l_state.AddValue(GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES);
}
if (gfx::HasExtension(extensions, "GL_CHROMIUM_texture_filtering_hint")) {
AddExtensionString("GL_CHROMIUM_texture_filtering_hint");
feature_flags_.chromium_texture_filtering_hint = true;
validators_.hint_target.AddValue(GL_TEXTURE_FILTERING_HINT_CHROMIUM);
validators_.g_l_state.AddValue(GL_TEXTURE_FILTERING_HINT_CHROMIUM);
}
if (gfx::HasExtension(extensions, "GL_OES_EGL_image_external")) {
AddExtensionString("GL_OES_EGL_image_external");
feature_flags_.oes_egl_image_external = true;
}
if (gfx::HasExtension(extensions, "GL_NV_EGL_stream_consumer_external")) {
AddExtensionString("GL_NV_EGL_stream_consumer_external");
feature_flags_.nv_egl_stream_consumer_external = true;
}
if (feature_flags_.oes_egl_image_external ||
feature_flags_.nv_egl_stream_consumer_external) {
validators_.texture_bind_target.AddValue(GL_TEXTURE_EXTERNAL_OES);
validators_.get_tex_param_target.AddValue(GL_TEXTURE_EXTERNAL_OES);
validators_.texture_parameter.AddValue(GL_REQUIRED_TEXTURE_IMAGE_UNITS_OES);
validators_.g_l_state.AddValue(GL_TEXTURE_BINDING_EXTERNAL_OES);
}
if (gfx::HasExtension(extensions, "GL_OES_compressed_ETC1_RGB8_texture") &&
!gl_version_info_->is_angle) {
AddExtensionString("GL_OES_compressed_ETC1_RGB8_texture");
feature_flags_.oes_compressed_etc1_rgb8_texture = true;
validators_.compressed_texture_format.AddValue(GL_ETC1_RGB8_OES);
validators_.texture_internal_format_storage.AddValue(GL_ETC1_RGB8_OES);
}
if (gfx::HasExtension(extensions, "GL_CHROMIUM_compressed_texture_etc") ||
(gl_version_info_->is_es3 && !gl_version_info_->is_angle)) {
AddExtensionString("GL_CHROMIUM_compressed_texture_etc");
validators_.UpdateETCCompressedTextureFormats();
}
if (gfx::HasExtension(extensions, "GL_AMD_compressed_ATC_texture")) {
AddExtensionString("GL_AMD_compressed_ATC_texture");
validators_.compressed_texture_format.AddValue(GL_ATC_RGB_AMD);
validators_.compressed_texture_format.AddValue(
GL_ATC_RGBA_EXPLICIT_ALPHA_AMD);
validators_.compressed_texture_format.AddValue(
GL_ATC_RGBA_INTERPOLATED_ALPHA_AMD);
validators_.texture_internal_format_storage.AddValue(GL_ATC_RGB_AMD);
validators_.texture_internal_format_storage.AddValue(
GL_ATC_RGBA_EXPLICIT_ALPHA_AMD);
validators_.texture_internal_format_storage.AddValue(
GL_ATC_RGBA_INTERPOLATED_ALPHA_AMD);
}
if (gfx::HasExtension(extensions, "GL_IMG_texture_compression_pvrtc")) {
AddExtensionString("GL_IMG_texture_compression_pvrtc");
validators_.compressed_texture_format.AddValue(
GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG);
validators_.compressed_texture_format.AddValue(
GL_COMPRESSED_RGB_PVRTC_2BPPV1_IMG);
validators_.compressed_texture_format.AddValue(
GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG);
validators_.compressed_texture_format.AddValue(
GL_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG);
validators_.texture_internal_format_storage.AddValue(
GL_COMPRESSED_RGB_PVRTC_4BPPV1_IMG);
validators_.texture_internal_format_storage.AddValue(
GL_COMPRESSED_RGB_PVRTC_2BPPV1_IMG);
validators_.texture_internal_format_storage.AddValue(
GL_COMPRESSED_RGBA_PVRTC_4BPPV1_IMG);
validators_.texture_internal_format_storage.AddValue(
GL_COMPRESSED_RGBA_PVRTC_2BPPV1_IMG);
}
if (gfx::HasExtension(extensions, "GL_ARB_texture_rectangle") ||
gfx::HasExtension(extensions, "GL_ANGLE_texture_rectangle") ||
gl_version_info_->is_desktop_core_profile) {
AddExtensionString("GL_ARB_texture_rectangle");
feature_flags_.arb_texture_rectangle = true;
validators_.texture_bind_target.AddValue(GL_TEXTURE_RECTANGLE_ARB);
validators_.texture_target.AddValue(GL_TEXTURE_RECTANGLE_ARB);
validators_.get_tex_param_target.AddValue(GL_TEXTURE_RECTANGLE_ARB);
validators_.g_l_state.AddValue(GL_TEXTURE_BINDING_RECTANGLE_ARB);
}
#if defined(OS_MACOSX) || defined(OS_CHROMEOS)
AddExtensionString("GL_CHROMIUM_ycbcr_420v_image");
feature_flags_.chromium_image_ycbcr_420v = true;
#endif
if (feature_flags_.chromium_image_ycbcr_420v) {
feature_flags_.gpu_memory_buffer_formats.Add(
gfx::BufferFormat::YUV_420_BIPLANAR);
}
if (gfx::HasExtension(extensions, "GL_APPLE_ycbcr_422")) {
AddExtensionString("GL_CHROMIUM_ycbcr_422_image");
feature_flags_.chromium_image_ycbcr_422 = true;
feature_flags_.gpu_memory_buffer_formats.Add(gfx::BufferFormat::UYVY_422);
}
#if defined(OS_MACOSX)
feature_flags_.chromium_image_xr30 = base::mac::IsAtLeastOS10_13();
#elif !defined(OS_WIN)
feature_flags_.chromium_image_xb30 =
gl_version_info_->IsAtLeastGL(3, 3) ||
gl_version_info_->IsAtLeastGLES(3, 0) ||
gfx::HasExtension(extensions, "GL_EXT_texture_type_2_10_10_10_REV");
#endif
if (feature_flags_.chromium_image_xr30 ||
feature_flags_.chromium_image_xb30) {
validators_.texture_internal_format.AddValue(GL_RGB10_A2_EXT);
validators_.render_buffer_format.AddValue(GL_RGB10_A2_EXT);
validators_.texture_internal_format_storage.AddValue(GL_RGB10_A2_EXT);
validators_.pixel_type.AddValue(GL_UNSIGNED_INT_2_10_10_10_REV);
}
if (feature_flags_.chromium_image_xr30) {
feature_flags_.gpu_memory_buffer_formats.Add(
gfx::BufferFormat::BGRX_1010102);
}
if (feature_flags_.chromium_image_xb30) {
feature_flags_.gpu_memory_buffer_formats.Add(
gfx::BufferFormat::RGBX_1010102);
}
if (gfx::HasExtension(extensions, "GL_ANGLE_texture_usage")) {
feature_flags_.angle_texture_usage = true;
AddExtensionString("GL_ANGLE_texture_usage");
validators_.texture_parameter.AddValue(GL_TEXTURE_USAGE_ANGLE);
}
bool have_occlusion_query = gl_version_info_->IsAtLeastGLES(3, 0) ||
gl_version_info_->IsAtLeastGL(3, 3);
bool have_ext_occlusion_query_boolean =
gfx::HasExtension(extensions, "GL_EXT_occlusion_query_boolean");
bool have_arb_occlusion_query2 =
gfx::HasExtension(extensions, "GL_ARB_occlusion_query2");
bool have_arb_occlusion_query =
(gl_version_info_->is_desktop_core_profile &&
gl_version_info_->IsAtLeastGL(1, 5)) ||
gfx::HasExtension(extensions, "GL_ARB_occlusion_query");
if (have_occlusion_query || have_ext_occlusion_query_boolean ||
have_arb_occlusion_query2 || have_arb_occlusion_query) {
feature_flags_.occlusion_query = have_arb_occlusion_query;
if (context_type_ == CONTEXT_TYPE_OPENGLES2) {
AddExtensionString("GL_EXT_occlusion_query_boolean");
}
feature_flags_.occlusion_query_boolean = true;
feature_flags_.use_arb_occlusion_query2_for_occlusion_query_boolean =
!have_ext_occlusion_query_boolean &&
(have_arb_occlusion_query2 || (gl_version_info_->IsAtLeastGL(3, 3) &&
gl_version_info_->IsLowerThanGL(4, 3)));
feature_flags_.use_arb_occlusion_query_for_occlusion_query_boolean =
!have_ext_occlusion_query_boolean && have_arb_occlusion_query &&
!have_arb_occlusion_query2;
}
if (gfx::HasExtension(extensions, "GL_ANGLE_instanced_arrays") ||
(gfx::HasExtension(extensions, "GL_ARB_instanced_arrays") &&
gfx::HasExtension(extensions, "GL_ARB_draw_instanced")) ||
gl_version_info_->is_es3 || gl_version_info_->is_desktop_core_profile) {
AddExtensionString("GL_ANGLE_instanced_arrays");
feature_flags_.angle_instanced_arrays = true;
validators_.vertex_attribute.AddValue(GL_VERTEX_ATTRIB_ARRAY_DIVISOR_ANGLE);
}
bool have_es2_draw_buffers_vendor_agnostic =
gl_version_info_->is_desktop_core_profile ||
gfx::HasExtension(extensions, "GL_ARB_draw_buffers") ||
gfx::HasExtension(extensions, "GL_EXT_draw_buffers");
bool can_emulate_es2_draw_buffers_on_es3_nv =
gl_version_info_->is_es3 &&
gfx::HasExtension(extensions, "GL_NV_draw_buffers");
bool is_webgl_compatibility_context =
gfx::HasExtension(extensions, "GL_ANGLE_webgl_compatibility");
bool have_es2_draw_buffers =
!workarounds_.disable_ext_draw_buffers &&
(have_es2_draw_buffers_vendor_agnostic ||
can_emulate_es2_draw_buffers_on_es3_nv) &&
(context_type_ == CONTEXT_TYPE_OPENGLES2 ||
(context_type_ == CONTEXT_TYPE_WEBGL1 &&
IsWebGLDrawBuffersSupported(is_webgl_compatibility_context,
depth_texture_format,
depth_stencil_texture_format)));
if (have_es2_draw_buffers) {
AddExtensionString("GL_EXT_draw_buffers");
feature_flags_.ext_draw_buffers = true;
feature_flags_.nv_draw_buffers = can_emulate_es2_draw_buffers_on_es3_nv &&
!have_es2_draw_buffers_vendor_agnostic;
}
if (IsWebGL2OrES3OrHigherContext() || have_es2_draw_buffers) {
GLint max_color_attachments = 0;
glGetIntegerv(GL_MAX_COLOR_ATTACHMENTS_EXT, &max_color_attachments);
for (GLenum i = GL_COLOR_ATTACHMENT1_EXT;
i < static_cast<GLenum>(GL_COLOR_ATTACHMENT0 + max_color_attachments);
++i) {
validators_.attachment.AddValue(i);
validators_.attachment_query.AddValue(i);
}
static_assert(GL_COLOR_ATTACHMENT0_EXT == GL_COLOR_ATTACHMENT0,
"GL_COLOR_ATTACHMENT0_EXT should equal GL_COLOR_ATTACHMENT0");
validators_.g_l_state.AddValue(GL_MAX_COLOR_ATTACHMENTS_EXT);
validators_.g_l_state.AddValue(GL_MAX_DRAW_BUFFERS_ARB);
GLint max_draw_buffers = 0;
glGetIntegerv(GL_MAX_DRAW_BUFFERS_ARB, &max_draw_buffers);
for (GLenum i = GL_DRAW_BUFFER0_ARB;
i < static_cast<GLenum>(GL_DRAW_BUFFER0_ARB + max_draw_buffers); ++i) {
validators_.g_l_state.AddValue(i);
}
}
if (gl_version_info_->is_es3 ||
gfx::HasExtension(extensions, "GL_EXT_blend_minmax") ||
gl::HasDesktopGLFeatures()) {
AddExtensionString("GL_EXT_blend_minmax");
validators_.equation.AddValue(GL_MIN_EXT);
validators_.equation.AddValue(GL_MAX_EXT);
static_assert(GL_MIN_EXT == GL_MIN && GL_MAX_EXT == GL_MAX,
"min & max variations must match");
}
if (gfx::HasExtension(extensions, "GL_EXT_frag_depth") ||
gl::HasDesktopGLFeatures()) {
AddExtensionString("GL_EXT_frag_depth");
feature_flags_.ext_frag_depth = true;
}
if (gfx::HasExtension(extensions, "GL_EXT_shader_texture_lod") ||
gl::HasDesktopGLFeatures()) {
AddExtensionString("GL_EXT_shader_texture_lod");
feature_flags_.ext_shader_texture_lod = true;
}
bool ui_gl_fence_works = gl::GLFence::IsSupported();
UMA_HISTOGRAM_BOOLEAN("GPU.FenceSupport", ui_gl_fence_works);
feature_flags_.map_buffer_range =
gl_version_info_->is_es3 || gl_version_info_->is_desktop_core_profile ||
gfx::HasExtension(extensions, "GL_ARB_map_buffer_range") ||
gfx::HasExtension(extensions, "GL_EXT_map_buffer_range");
if (has_pixel_buffers && ui_gl_fence_works &&
!workarounds_.disable_async_readpixels) {
feature_flags_.use_async_readpixels = true;
}
if (gl_version_info_->is_es3 ||
gfx::HasExtension(extensions, "GL_ARB_sampler_objects")) {
feature_flags_.enable_samplers = true;
}
if ((gl_version_info_->is_es3 ||
gfx::HasExtension(extensions, "GL_EXT_discard_framebuffer")) &&
!workarounds_.disable_discard_framebuffer) {
AddExtensionString("GL_EXT_discard_framebuffer");
feature_flags_.ext_discard_framebuffer = true;
}
if (ui_gl_fence_works) {
AddExtensionString("GL_CHROMIUM_sync_query");
feature_flags_.chromium_sync_query = true;
}
if (!workarounds_.disable_blend_equation_advanced) {
bool blend_equation_advanced_coherent =
gfx::HasExtension(extensions,
"GL_NV_blend_equation_advanced_coherent") ||
gfx::HasExtension(extensions,
"GL_KHR_blend_equation_advanced_coherent");
if (blend_equation_advanced_coherent ||
gfx::HasExtension(extensions, "GL_NV_blend_equation_advanced") ||
gfx::HasExtension(extensions, "GL_KHR_blend_equation_advanced")) {
const GLenum equations[] = {
GL_MULTIPLY_KHR, GL_SCREEN_KHR, GL_OVERLAY_KHR,
GL_DARKEN_KHR, GL_LIGHTEN_KHR, GL_COLORDODGE_KHR,
GL_COLORBURN_KHR, GL_HARDLIGHT_KHR, GL_SOFTLIGHT_KHR,
GL_DIFFERENCE_KHR, GL_EXCLUSION_KHR, GL_HSL_HUE_KHR,
GL_HSL_SATURATION_KHR, GL_HSL_COLOR_KHR, GL_HSL_LUMINOSITY_KHR};
for (GLenum equation : equations)
validators_.equation.AddValue(equation);
if (blend_equation_advanced_coherent)
AddExtensionString("GL_KHR_blend_equation_advanced_coherent");
AddExtensionString("GL_KHR_blend_equation_advanced");
feature_flags_.blend_equation_advanced = true;
feature_flags_.blend_equation_advanced_coherent =
blend_equation_advanced_coherent;
}
}
if (gfx::HasExtension(extensions, "GL_NV_framebuffer_mixed_samples")) {
AddExtensionString("GL_CHROMIUM_framebuffer_mixed_samples");
feature_flags_.chromium_framebuffer_mixed_samples = true;
validators_.g_l_state.AddValue(GL_COVERAGE_MODULATION_CHROMIUM);
}
if (gfx::HasExtension(extensions, "GL_NV_path_rendering")) {
bool has_dsa = gl_version_info_->IsAtLeastGL(4, 5) ||
gfx::HasExtension(extensions, "GL_EXT_direct_state_access");
bool has_piq =
gl_version_info_->IsAtLeastGL(4, 3) ||
gfx::HasExtension(extensions, "GL_ARB_program_interface_query");
bool has_fms = feature_flags_.chromium_framebuffer_mixed_samples;
if ((gl_version_info_->IsAtLeastGLES(3, 1) ||
(gl_version_info_->IsAtLeastGL(3, 2) && has_dsa && has_piq)) &&
has_fms) {
AddExtensionString("GL_CHROMIUM_path_rendering");
feature_flags_.chromium_path_rendering = true;
validators_.g_l_state.AddValue(GL_PATH_MODELVIEW_MATRIX_CHROMIUM);
validators_.g_l_state.AddValue(GL_PATH_PROJECTION_MATRIX_CHROMIUM);
validators_.g_l_state.AddValue(GL_PATH_STENCIL_FUNC_CHROMIUM);
validators_.g_l_state.AddValue(GL_PATH_STENCIL_REF_CHROMIUM);
validators_.g_l_state.AddValue(GL_PATH_STENCIL_VALUE_MASK_CHROMIUM);
}
}
if ((gl_version_info_->is_es3 || gl_version_info_->is_desktop_core_profile ||
gfx::HasExtension(extensions, "GL_EXT_texture_rg") ||
gfx::HasExtension(extensions, "GL_ARB_texture_rg")) &&
IsGL_REDSupportedOnFBOs()) {
feature_flags_.ext_texture_rg = true;
AddExtensionString("GL_EXT_texture_rg");
validators_.texture_format.AddValue(GL_RED_EXT);
validators_.texture_format.AddValue(GL_RG_EXT);
validators_.texture_internal_format.AddValue(GL_RED_EXT);
validators_.texture_internal_format.AddValue(GL_R8_EXT);
validators_.texture_internal_format.AddValue(GL_RG_EXT);
validators_.texture_internal_format.AddValue(GL_RG8_EXT);
validators_.read_pixel_format.AddValue(GL_RED_EXT);
validators_.read_pixel_format.AddValue(GL_RG_EXT);
validators_.render_buffer_format.AddValue(GL_R8_EXT);
validators_.render_buffer_format.AddValue(GL_RG8_EXT);
validators_.texture_unsized_internal_format.AddValue(GL_RED_EXT);
validators_.texture_unsized_internal_format.AddValue(GL_RG_EXT);
validators_.texture_internal_format_storage.AddValue(GL_R8_EXT);
validators_.texture_internal_format_storage.AddValue(GL_RG8_EXT);
feature_flags_.gpu_memory_buffer_formats.Add(gfx::BufferFormat::R_8);
feature_flags_.gpu_memory_buffer_formats.Add(gfx::BufferFormat::RG_88);
}
UMA_HISTOGRAM_BOOLEAN("GPU.TextureRG", feature_flags_.ext_texture_rg);
if (gl_version_info_->is_desktop_core_profile ||
(gl_version_info_->IsAtLeastGL(2, 1) &&
gfx::HasExtension(extensions, "GL_ARB_texture_rg")) ||
gfx::HasExtension(extensions, "GL_EXT_texture_norm16")) {
feature_flags_.ext_texture_norm16 = true;
g_r16_is_present = true;
validators_.pixel_type.AddValue(GL_UNSIGNED_SHORT);
validators_.texture_format.AddValue(GL_RED_EXT);
validators_.texture_internal_format.AddValue(GL_R16_EXT);
validators_.texture_internal_format.AddValue(GL_RED_EXT);
validators_.texture_unsized_internal_format.AddValue(GL_RED_EXT);
validators_.texture_internal_format_storage.AddValue(GL_R16_EXT);
feature_flags_.gpu_memory_buffer_formats.Add(gfx::BufferFormat::R_16);
}
UMA_HISTOGRAM_ENUMERATION(
"GPU.TextureR16Ext_LuminanceF16", GpuTextureUMAHelper(),
static_cast<int>(GpuTextureResultR16_L16::kMax) + 1);
if (enable_es3 && gfx::HasExtension(extensions, "GL_EXT_window_rectangles")) {
AddExtensionString("GL_EXT_window_rectangles");
feature_flags_.ext_window_rectangles = true;
validators_.g_l_state.AddValue(GL_WINDOW_RECTANGLE_MODE_EXT);
validators_.g_l_state.AddValue(GL_MAX_WINDOW_RECTANGLES_EXT);
validators_.g_l_state.AddValue(GL_NUM_WINDOW_RECTANGLES_EXT);
validators_.indexed_g_l_state.AddValue(GL_WINDOW_RECTANGLE_EXT);
}
bool has_opengl_dual_source_blending =
gl_version_info_->IsAtLeastGL(3, 3) ||
(gl_version_info_->IsAtLeastGL(3, 2) &&
gfx::HasExtension(extensions, "GL_ARB_blend_func_extended"));
if (!disable_shader_translator_ && !workarounds_.get_frag_data_info_bug &&
((gl_version_info_->IsAtLeastGL(3, 2) &&
has_opengl_dual_source_blending) ||
(gl_version_info_->IsAtLeastGLES(3, 0) &&
gfx::HasExtension(extensions, "GL_EXT_blend_func_extended")))) {
feature_flags_.ext_blend_func_extended = true;
AddExtensionString("GL_EXT_blend_func_extended");
validators_.dst_blend_factor.AddValue(GL_SRC_ALPHA_SATURATE_EXT);
validators_.src_blend_factor.AddValue(GL_SRC1_ALPHA_EXT);
validators_.dst_blend_factor.AddValue(GL_SRC1_ALPHA_EXT);
validators_.src_blend_factor.AddValue(GL_SRC1_COLOR_EXT);
validators_.dst_blend_factor.AddValue(GL_SRC1_COLOR_EXT);
validators_.src_blend_factor.AddValue(GL_ONE_MINUS_SRC1_COLOR_EXT);
validators_.dst_blend_factor.AddValue(GL_ONE_MINUS_SRC1_COLOR_EXT);
validators_.src_blend_factor.AddValue(GL_ONE_MINUS_SRC1_ALPHA_EXT);
validators_.dst_blend_factor.AddValue(GL_ONE_MINUS_SRC1_ALPHA_EXT);
validators_.g_l_state.AddValue(GL_MAX_DUAL_SOURCE_DRAW_BUFFERS_EXT);
}
#if !defined(OS_MACOSX)
if (workarounds_.ignore_egl_sync_failures) {
gl::GLFenceEGL::SetIgnoreFailures();
}
#endif
if (workarounds_.avoid_egl_image_target_texture_reuse) {
TextureDefinition::AvoidEGLTargetTextureReuse();
}
if (gl_version_info_->IsLowerThanGL(4, 3)) {
feature_flags_.emulate_primitive_restart_fixed_index = true;
}
feature_flags_.angle_robust_client_memory =
gfx::HasExtension(extensions, "GL_ANGLE_robust_client_memory");
feature_flags_.khr_debug = gl_version_info_->IsAtLeastGL(4, 3) ||
gl_version_info_->IsAtLeastGLES(3, 2) ||
gfx::HasExtension(extensions, "GL_KHR_debug");
feature_flags_.chromium_gpu_fence = gl::GLFence::IsGpuFenceSupported();
if (feature_flags_.chromium_gpu_fence)
AddExtensionString("GL_CHROMIUM_gpu_fence");
feature_flags_.chromium_bind_generates_resource =
gfx::HasExtension(extensions, "GL_CHROMIUM_bind_generates_resource");
feature_flags_.angle_webgl_compatibility = is_webgl_compatibility_context;
feature_flags_.chromium_copy_texture =
gfx::HasExtension(extensions, "GL_CHROMIUM_copy_texture");
feature_flags_.chromium_copy_compressed_texture =
gfx::HasExtension(extensions, "GL_CHROMIUM_copy_compressed_texture");
feature_flags_.angle_client_arrays =
gfx::HasExtension(extensions, "GL_ANGLE_client_arrays");
feature_flags_.angle_request_extension =
gfx::HasExtension(extensions, "GL_ANGLE_request_extension");
feature_flags_.ext_debug_marker =
gfx::HasExtension(extensions, "GL_EXT_debug_marker");
feature_flags_.arb_robustness =
gfx::HasExtension(extensions, "GL_ARB_robustness");
feature_flags_.khr_robustness =
gfx::HasExtension(extensions, "GL_KHR_robustness");
feature_flags_.ext_robustness =
gfx::HasExtension(extensions, "GL_EXT_robustness");
feature_flags_.ext_pixel_buffer_object =
gfx::HasExtension(extensions, "GL_ARB_pixel_buffer_object") ||
gfx::HasExtension(extensions, "GL_NV_pixel_buffer_object");
feature_flags_.ext_unpack_subimage =
gfx::HasExtension(extensions, "GL_EXT_unpack_subimage");
feature_flags_.oes_rgb8_rgba8 =
gfx::HasExtension(extensions, "GL_OES_rgb8_rgba8");
feature_flags_.angle_robust_resource_initialization =
gfx::HasExtension(extensions, "GL_ANGLE_robust_resource_initialization");
feature_flags_.nv_fence = gfx::HasExtension(extensions, "GL_NV_fence");
feature_flags_.unpremultiply_and_dither_copy = !is_passthrough_cmd_decoder_;
if (feature_flags_.unpremultiply_and_dither_copy)
AddExtensionString("GL_CHROMIUM_unpremultiply_and_dither_copy");
feature_flags_.separate_stencil_ref_mask_writemask =
!(gl_version_info_->is_d3d) && !IsWebGLContext();
if (gfx::HasExtension(extensions, "GL_MESA_framebuffer_flip_y")) {
feature_flags_.mesa_framebuffer_flip_y = true;
validators_.framebuffer_parameter.AddValue(GL_FRAMEBUFFER_FLIP_Y_MESA);
AddExtensionString("GL_MESA_framebuffer_flip_y");
}
if (is_passthrough_cmd_decoder_ &&
gfx::HasExtension(extensions, "GL_OVR_multiview2")) {
AddExtensionString("GL_OVR_multiview2");
feature_flags_.ovr_multiview2 = true;
}
if (is_passthrough_cmd_decoder_ &&
gfx::HasExtension(extensions, "GL_KHR_parallel_shader_compile")) {
AddExtensionString("GL_KHR_parallel_shader_compile");
feature_flags_.khr_parallel_shader_compile = true;
validators_.g_l_state.AddValue(GL_MAX_SHADER_COMPILER_THREADS_KHR);
validators_.shader_parameter.AddValue(GL_COMPLETION_STATUS_KHR);
validators_.program_parameter.AddValue(GL_COMPLETION_STATUS_KHR);
}
if (gfx::HasExtension(extensions, "GL_KHR_robust_buffer_access_behavior")) {
AddExtensionString("GL_KHR_robust_buffer_access_behavior");
feature_flags_.khr_robust_buffer_access_behavior = true;
}
if (!is_passthrough_cmd_decoder_ ||
gfx::HasExtension(extensions, "GL_ANGLE_multi_draw")) {
feature_flags_.webgl_multi_draw = true;
AddExtensionString("GL_WEBGL_multi_draw");
if (gfx::HasExtension(extensions, "GL_ANGLE_instanced_arrays") ||
feature_flags_.angle_instanced_arrays || gl_version_info_->is_es3 ||
gl_version_info_->is_desktop_core_profile) {
feature_flags_.webgl_multi_draw_instanced = true;
AddExtensionString("GL_WEBGL_multi_draw_instanced");
}
}
if (gfx::HasExtension(extensions, "GL_NV_internalformat_sample_query")) {
feature_flags_.nv_internalformat_sample_query = true;
}
if (gfx::HasExtension(extensions,
"GL_AMD_framebuffer_multisample_advanced")) {
feature_flags_.amd_framebuffer_multisample_advanced = true;
AddExtensionString("GL_AMD_framebuffer_multisample_advanced");
}
}
| 1 | CVE-2016-5219 | CWE-416 | Use After Free | The product reuses or references memory after it has been freed. At some point afterward, the memory may be allocated again and saved in another pointer, while the original pointer references a location somewhere within the new allocation. Any operations using the original pointer are no longer valid because the memory "belongs" to the code that operates on the new pointer. |
Phase: Architecture and Design
Strategy: Language Selection
Choose a language that provides automatic memory management.
Phase: Implementation
Strategy: Attack Surface Reduction
When freeing pointers, be sure to set them to NULL once they are freed. However, the utilization of multiple or complex data structures may lower the usefulness of this strategy.
Effectiveness: Defense in Depth
Note: If a bug causes an attempted access of this pointer, then a NULL dereference could still lead to a crash or other unexpected behavior, but it will reduce or eliminate the risk of code execution. | 4,488 |
jabberd2 | aabcffae560d5fd00cd1d2ffce5d760353cf0a4d | static void _out_verify(conn_t out, nad_t nad) {
int attr, ns;
jid_t from, to;
conn_t in;
char *rkey;
int valid;
attr = nad_find_attr(nad, 0, -1, "from", NULL);
if(attr < 0 || (from = jid_new(NAD_AVAL(nad, attr), NAD_AVAL_L(nad, attr))) == NULL) {
log_debug(ZONE, "missing or invalid from on db verify packet");
nad_free(nad);
return;
}
attr = nad_find_attr(nad, 0, -1, "to", NULL);
if(attr < 0 || (to = jid_new(NAD_AVAL(nad, attr), NAD_AVAL_L(nad, attr))) == NULL) {
log_debug(ZONE, "missing or invalid to on db verify packet");
jid_free(from);
nad_free(nad);
return;
}
attr = nad_find_attr(nad, 0, -1, "id", NULL);
if(attr < 0) {
log_debug(ZONE, "missing id on db verify packet");
jid_free(from);
jid_free(to);
nad_free(nad);
return;
}
/* get the incoming conn */
in = xhash_getx(out->s2s->in, NAD_AVAL(nad, attr), NAD_AVAL_L(nad, attr));
if(in == NULL) {
log_debug(ZONE, "got a verify for incoming conn %.*s, but it doesn't exist, dropping the packet", NAD_AVAL_L(nad, attr), NAD_AVAL(nad, attr));
jid_free(from);
jid_free(to);
nad_free(nad);
return;
}
rkey = s2s_route_key(NULL, to->domain, from->domain);
attr = nad_find_attr(nad, 0, -1, "type", "valid");
if(attr >= 0) {
xhash_put(in->states, pstrdup(xhash_pool(in->states), rkey), (void *) conn_VALID);
log_write(in->s2s->log, LOG_NOTICE, "[%d] [%s, port=%d] incoming route '%s' is now valid%s%s", in->fd->fd, in->ip, in->port, rkey, (in->s->flags & SX_SSL_WRAPPER) ? ", TLS negotiated" : "", in->s->compressed ? ", ZLIB compression enabled" : "");
valid = 1;
} else {
log_write(in->s2s->log, LOG_NOTICE, "[%d] [%s, port=%d] incoming route '%s' is now invalid", in->fd->fd, in->ip, in->port, rkey);
valid = 0;
}
free(rkey);
nad_free(nad);
/* decrement outstanding verify counter */
--out->verify;
/* let them know what happened */
nad = nad_new();
ns = nad_add_namespace(nad, uri_DIALBACK, "db");
nad_append_elem(nad, ns, "result", 0);
nad_append_attr(nad, -1, "to", from->domain);
nad_append_attr(nad, -1, "from", to->domain);
nad_append_attr(nad, -1, "type", valid ? "valid" : "invalid");
/* off it goes */
sx_nad_write(in->s, nad);
/* if invalid, close the stream */
if (!valid) {
/* generate stream error */
sx_error(in->s, stream_err_INVALID_ID, "dialback negotiation failed");
/* close the incoming stream */
sx_close(in->s);
}
jid_free(from);
jid_free(to);
}
| 1 | CVE-2012-3525 | CWE-20 | Improper Input Validation | The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly. |
Phase: Architecture and Design
Strategy: Attack Surface Reduction
Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111]
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173).
Phases: Architecture and Design; Implementation
Strategy: Attack Surface Reduction
Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls.
Phase: Implementation
Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
Effectiveness: High
Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings.
Phase: Implementation
When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined.
Phase: Implementation
Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow.
Phase: Implementation
Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained.
Phase: Implementation
Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content.
Phase: Implementation
When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so. | 102 |
tor | 57e35ad3d91724882c345ac709666a551a977f0f | networkstatus_parse_vote_from_string(const char *s, const char **eos_out,
networkstatus_type_t ns_type)
{
smartlist_t *tokens = smartlist_create();
smartlist_t *rs_tokens = NULL, *footer_tokens = NULL;
networkstatus_voter_info_t *voter = NULL;
networkstatus_t *ns = NULL;
digests_t ns_digests;
const char *cert, *end_of_header, *end_of_footer, *s_dup = s;
directory_token_t *tok;
int ok;
struct in_addr in;
int i, inorder, n_signatures = 0;
memarea_t *area = NULL, *rs_area = NULL;
consensus_flavor_t flav = FLAV_NS;
tor_assert(s);
if (eos_out)
*eos_out = NULL;
if (router_get_networkstatus_v3_hashes(s, &ns_digests)) {
log_warn(LD_DIR, "Unable to compute digest of network-status");
goto err;
}
area = memarea_new();
end_of_header = find_start_of_next_routerstatus(s);
if (tokenize_string(area, s, end_of_header, tokens,
(ns_type == NS_TYPE_CONSENSUS) ?
networkstatus_consensus_token_table :
networkstatus_token_table, 0)) {
log_warn(LD_DIR, "Error tokenizing network-status vote header");
goto err;
}
ns = tor_malloc_zero(sizeof(networkstatus_t));
memcpy(&ns->digests, &ns_digests, sizeof(ns_digests));
tok = find_by_keyword(tokens, K_NETWORK_STATUS_VERSION);
tor_assert(tok);
if (tok->n_args > 1) {
int flavor = networkstatus_parse_flavor_name(tok->args[1]);
if (flavor < 0) {
log_warn(LD_DIR, "Can't parse document with unknown flavor %s",
escaped(tok->args[2]));
goto err;
}
ns->flavor = flav = flavor;
}
if (flav != FLAV_NS && ns_type != NS_TYPE_CONSENSUS) {
log_warn(LD_DIR, "Flavor found on non-consensus networkstatus.");
goto err;
}
if (ns_type != NS_TYPE_CONSENSUS) {
const char *end_of_cert = NULL;
if (!(cert = strstr(s, "\ndir-key-certificate-version")))
goto err;
++cert;
ns->cert = authority_cert_parse_from_string(cert, &end_of_cert);
if (!ns->cert || !end_of_cert || end_of_cert > end_of_header)
goto err;
}
tok = find_by_keyword(tokens, K_VOTE_STATUS);
tor_assert(tok->n_args);
if (!strcmp(tok->args[0], "vote")) {
ns->type = NS_TYPE_VOTE;
} else if (!strcmp(tok->args[0], "consensus")) {
ns->type = NS_TYPE_CONSENSUS;
} else if (!strcmp(tok->args[0], "opinion")) {
ns->type = NS_TYPE_OPINION;
} else {
log_warn(LD_DIR, "Unrecognized vote status %s in network-status",
escaped(tok->args[0]));
goto err;
}
if (ns_type != ns->type) {
log_warn(LD_DIR, "Got the wrong kind of v3 networkstatus.");
goto err;
}
if (ns->type == NS_TYPE_VOTE || ns->type == NS_TYPE_OPINION) {
tok = find_by_keyword(tokens, K_PUBLISHED);
if (parse_iso_time(tok->args[0], &ns->published))
goto err;
ns->supported_methods = smartlist_create();
tok = find_opt_by_keyword(tokens, K_CONSENSUS_METHODS);
if (tok) {
for (i=0; i < tok->n_args; ++i)
smartlist_add(ns->supported_methods, tor_strdup(tok->args[i]));
} else {
smartlist_add(ns->supported_methods, tor_strdup("1"));
}
} else {
tok = find_opt_by_keyword(tokens, K_CONSENSUS_METHOD);
if (tok) {
ns->consensus_method = (int)tor_parse_long(tok->args[0], 10, 1, INT_MAX,
&ok, NULL);
if (!ok)
goto err;
} else {
ns->consensus_method = 1;
}
}
tok = find_by_keyword(tokens, K_VALID_AFTER);
if (parse_iso_time(tok->args[0], &ns->valid_after))
goto err;
tok = find_by_keyword(tokens, K_FRESH_UNTIL);
if (parse_iso_time(tok->args[0], &ns->fresh_until))
goto err;
tok = find_by_keyword(tokens, K_VALID_UNTIL);
if (parse_iso_time(tok->args[0], &ns->valid_until))
goto err;
tok = find_by_keyword(tokens, K_VOTING_DELAY);
tor_assert(tok->n_args >= 2);
ns->vote_seconds =
(int) tor_parse_long(tok->args[0], 10, 0, INT_MAX, &ok, NULL);
if (!ok)
goto err;
ns->dist_seconds =
(int) tor_parse_long(tok->args[1], 10, 0, INT_MAX, &ok, NULL);
if (!ok)
goto err;
if (ns->valid_after + MIN_VOTE_INTERVAL > ns->fresh_until) {
log_warn(LD_DIR, "Vote/consensus freshness interval is too short");
goto err;
}
if (ns->valid_after + MIN_VOTE_INTERVAL*2 > ns->valid_until) {
log_warn(LD_DIR, "Vote/consensus liveness interval is too short");
goto err;
}
if (ns->vote_seconds < MIN_VOTE_SECONDS) {
log_warn(LD_DIR, "Vote seconds is too short");
goto err;
}
if (ns->dist_seconds < MIN_DIST_SECONDS) {
log_warn(LD_DIR, "Dist seconds is too short");
goto err;
}
if ((tok = find_opt_by_keyword(tokens, K_CLIENT_VERSIONS))) {
ns->client_versions = tor_strdup(tok->args[0]);
}
if ((tok = find_opt_by_keyword(tokens, K_SERVER_VERSIONS))) {
ns->server_versions = tor_strdup(tok->args[0]);
}
tok = find_by_keyword(tokens, K_KNOWN_FLAGS);
ns->known_flags = smartlist_create();
inorder = 1;
for (i = 0; i < tok->n_args; ++i) {
smartlist_add(ns->known_flags, tor_strdup(tok->args[i]));
if (i>0 && strcmp(tok->args[i-1], tok->args[i])>= 0) {
log_warn(LD_DIR, "%s >= %s", tok->args[i-1], tok->args[i]);
inorder = 0;
}
}
if (!inorder) {
log_warn(LD_DIR, "known-flags not in order");
goto err;
}
tok = find_opt_by_keyword(tokens, K_PARAMS);
if (tok) {
inorder = 1;
ns->net_params = smartlist_create();
for (i = 0; i < tok->n_args; ++i) {
int ok=0;
char *eq = strchr(tok->args[i], '=');
if (!eq) {
log_warn(LD_DIR, "Bad element '%s' in params", escaped(tok->args[i]));
goto err;
}
tor_parse_long(eq+1, 10, INT32_MIN, INT32_MAX, &ok, NULL);
if (!ok) {
log_warn(LD_DIR, "Bad element '%s' in params", escaped(tok->args[i]));
goto err;
}
if (i > 0 && strcmp(tok->args[i-1], tok->args[i]) >= 0) {
log_warn(LD_DIR, "%s >= %s", tok->args[i-1], tok->args[i]);
inorder = 0;
}
smartlist_add(ns->net_params, tor_strdup(tok->args[i]));
}
if (!inorder) {
log_warn(LD_DIR, "params not in order");
goto err;
}
}
ns->voters = smartlist_create();
SMARTLIST_FOREACH_BEGIN(tokens, directory_token_t *, _tok) {
tok = _tok;
if (tok->tp == K_DIR_SOURCE) {
tor_assert(tok->n_args >= 6);
if (voter)
smartlist_add(ns->voters, voter);
voter = tor_malloc_zero(sizeof(networkstatus_voter_info_t));
voter->sigs = smartlist_create();
if (ns->type != NS_TYPE_CONSENSUS)
memcpy(voter->vote_digest, ns_digests.d[DIGEST_SHA1], DIGEST_LEN);
voter->nickname = tor_strdup(tok->args[0]);
if (strlen(tok->args[1]) != HEX_DIGEST_LEN ||
base16_decode(voter->identity_digest, sizeof(voter->identity_digest),
tok->args[1], HEX_DIGEST_LEN) < 0) {
log_warn(LD_DIR, "Error decoding identity digest %s in "
"network-status vote.", escaped(tok->args[1]));
goto err;
}
if (ns->type != NS_TYPE_CONSENSUS &&
tor_memneq(ns->cert->cache_info.identity_digest,
voter->identity_digest, DIGEST_LEN)) {
log_warn(LD_DIR,"Mismatch between identities in certificate and vote");
goto err;
}
voter->address = tor_strdup(tok->args[2]);
if (!tor_inet_aton(tok->args[3], &in)) {
log_warn(LD_DIR, "Error decoding IP address %s in network-status.",
escaped(tok->args[3]));
goto err;
}
voter->addr = ntohl(in.s_addr);
voter->dir_port = (uint16_t)
tor_parse_long(tok->args[4], 10, 0, 65535, &ok, NULL);
if (!ok)
goto err;
voter->or_port = (uint16_t)
tor_parse_long(tok->args[5], 10, 0, 65535, &ok, NULL);
if (!ok)
goto err;
} else if (tok->tp == K_CONTACT) {
if (!voter || voter->contact) {
log_warn(LD_DIR, "contact element is out of place.");
goto err;
}
voter->contact = tor_strdup(tok->args[0]);
} else if (tok->tp == K_VOTE_DIGEST) {
tor_assert(ns->type == NS_TYPE_CONSENSUS);
tor_assert(tok->n_args >= 1);
if (!voter || ! tor_digest_is_zero(voter->vote_digest)) {
log_warn(LD_DIR, "vote-digest element is out of place.");
goto err;
}
if (strlen(tok->args[0]) != HEX_DIGEST_LEN ||
base16_decode(voter->vote_digest, sizeof(voter->vote_digest),
tok->args[0], HEX_DIGEST_LEN) < 0) {
log_warn(LD_DIR, "Error decoding vote digest %s in "
"network-status consensus.", escaped(tok->args[0]));
goto err;
}
}
} SMARTLIST_FOREACH_END(_tok);
if (voter) {
smartlist_add(ns->voters, voter);
voter = NULL;
}
if (smartlist_len(ns->voters) == 0) {
log_warn(LD_DIR, "Missing dir-source elements in a vote networkstatus.");
goto err;
} else if (ns->type != NS_TYPE_CONSENSUS && smartlist_len(ns->voters) != 1) {
log_warn(LD_DIR, "Too many dir-source elements in a vote networkstatus.");
goto err;
}
if (ns->type != NS_TYPE_CONSENSUS &&
(tok = find_opt_by_keyword(tokens, K_LEGACY_DIR_KEY))) {
int bad = 1;
if (strlen(tok->args[0]) == HEX_DIGEST_LEN) {
networkstatus_voter_info_t *voter = smartlist_get(ns->voters, 0);
if (base16_decode(voter->legacy_id_digest, DIGEST_LEN,
tok->args[0], HEX_DIGEST_LEN)<0)
bad = 1;
else
bad = 0;
}
if (bad) {
log_warn(LD_DIR, "Invalid legacy key digest %s on vote.",
escaped(tok->args[0]));
}
}
/* Parse routerstatus lines. */
rs_tokens = smartlist_create();
rs_area = memarea_new();
s = end_of_header;
ns->routerstatus_list = smartlist_create();
while (!strcmpstart(s, "r ")) {
if (ns->type != NS_TYPE_CONSENSUS) {
vote_routerstatus_t *rs = tor_malloc_zero(sizeof(vote_routerstatus_t));
if (routerstatus_parse_entry_from_string(rs_area, &s, rs_tokens, ns,
rs, 0, 0))
smartlist_add(ns->routerstatus_list, rs);
else {
tor_free(rs->version);
tor_free(rs);
}
} else {
routerstatus_t *rs;
if ((rs = routerstatus_parse_entry_from_string(rs_area, &s, rs_tokens,
NULL, NULL,
ns->consensus_method,
flav)))
smartlist_add(ns->routerstatus_list, rs);
}
}
for (i = 1; i < smartlist_len(ns->routerstatus_list); ++i) {
routerstatus_t *rs1, *rs2;
if (ns->type != NS_TYPE_CONSENSUS) {
vote_routerstatus_t *a = smartlist_get(ns->routerstatus_list, i-1);
vote_routerstatus_t *b = smartlist_get(ns->routerstatus_list, i);
rs1 = &a->status; rs2 = &b->status;
} else {
rs1 = smartlist_get(ns->routerstatus_list, i-1);
rs2 = smartlist_get(ns->routerstatus_list, i);
}
if (fast_memcmp(rs1->identity_digest, rs2->identity_digest, DIGEST_LEN)
>= 0) {
log_warn(LD_DIR, "Vote networkstatus entries not sorted by identity "
"digest");
goto err;
}
}
/* Parse footer; check signature. */
footer_tokens = smartlist_create();
if ((end_of_footer = strstr(s, "\nnetwork-status-version ")))
++end_of_footer;
else
end_of_footer = s + strlen(s);
if (tokenize_string(area,s, end_of_footer, footer_tokens,
networkstatus_vote_footer_token_table, 0)) {
log_warn(LD_DIR, "Error tokenizing network-status vote footer.");
goto err;
}
{
int found_sig = 0;
SMARTLIST_FOREACH_BEGIN(footer_tokens, directory_token_t *, _tok) {
tok = _tok;
if (tok->tp == K_DIRECTORY_SIGNATURE)
found_sig = 1;
else if (found_sig) {
log_warn(LD_DIR, "Extraneous token after first directory-signature");
goto err;
}
} SMARTLIST_FOREACH_END(_tok);
}
if ((tok = find_opt_by_keyword(footer_tokens, K_DIRECTORY_FOOTER))) {
if (tok != smartlist_get(footer_tokens, 0)) {
log_warn(LD_DIR, "Misplaced directory-footer token");
goto err;
}
}
tok = find_opt_by_keyword(footer_tokens, K_BW_WEIGHTS);
if (tok) {
ns->weight_params = smartlist_create();
for (i = 0; i < tok->n_args; ++i) {
int ok=0;
char *eq = strchr(tok->args[i], '=');
if (!eq) {
log_warn(LD_DIR, "Bad element '%s' in weight params",
escaped(tok->args[i]));
goto err;
}
tor_parse_long(eq+1, 10, INT32_MIN, INT32_MAX, &ok, NULL);
if (!ok) {
log_warn(LD_DIR, "Bad element '%s' in params", escaped(tok->args[i]));
goto err;
}
smartlist_add(ns->weight_params, tor_strdup(tok->args[i]));
}
}
SMARTLIST_FOREACH_BEGIN(footer_tokens, directory_token_t *, _tok) {
char declared_identity[DIGEST_LEN];
networkstatus_voter_info_t *v;
document_signature_t *sig;
const char *id_hexdigest = NULL;
const char *sk_hexdigest = NULL;
digest_algorithm_t alg = DIGEST_SHA1;
tok = _tok;
if (tok->tp != K_DIRECTORY_SIGNATURE)
continue;
tor_assert(tok->n_args >= 2);
if (tok->n_args == 2) {
id_hexdigest = tok->args[0];
sk_hexdigest = tok->args[1];
} else {
const char *algname = tok->args[0];
int a;
id_hexdigest = tok->args[1];
sk_hexdigest = tok->args[2];
a = crypto_digest_algorithm_parse_name(algname);
if (a<0) {
log_warn(LD_DIR, "Unknown digest algorithm %s; skipping",
escaped(algname));
continue;
}
alg = a;
}
if (!tok->object_type ||
strcmp(tok->object_type, "SIGNATURE") ||
tok->object_size < 128 || tok->object_size > 512) {
log_warn(LD_DIR, "Bad object type or length on directory-signature");
goto err;
}
if (strlen(id_hexdigest) != HEX_DIGEST_LEN ||
base16_decode(declared_identity, sizeof(declared_identity),
id_hexdigest, HEX_DIGEST_LEN) < 0) {
log_warn(LD_DIR, "Error decoding declared identity %s in "
"network-status vote.", escaped(id_hexdigest));
goto err;
}
if (!(v = networkstatus_get_voter_by_id(ns, declared_identity))) {
log_warn(LD_DIR, "ID on signature on network-status vote does not match "
"any declared directory source.");
goto err;
}
sig = tor_malloc_zero(sizeof(document_signature_t));
memcpy(sig->identity_digest, v->identity_digest, DIGEST_LEN);
sig->alg = alg;
if (strlen(sk_hexdigest) != HEX_DIGEST_LEN ||
base16_decode(sig->signing_key_digest, sizeof(sig->signing_key_digest),
sk_hexdigest, HEX_DIGEST_LEN) < 0) {
log_warn(LD_DIR, "Error decoding declared signing key digest %s in "
"network-status vote.", escaped(sk_hexdigest));
tor_free(sig);
goto err;
}
if (ns->type != NS_TYPE_CONSENSUS) {
if (tor_memneq(declared_identity, ns->cert->cache_info.identity_digest,
DIGEST_LEN)) {
log_warn(LD_DIR, "Digest mismatch between declared and actual on "
"network-status vote.");
tor_free(sig);
goto err;
}
}
if (voter_get_sig_by_algorithm(v, sig->alg)) {
/* We already parsed a vote with this algorithm from this voter. Use the
first one. */
log_fn(LOG_PROTOCOL_WARN, LD_DIR, "We received a networkstatus "
"that contains two votes from the same voter with the same "
"algorithm. Ignoring the second vote.");
tor_free(sig);
continue;
}
if (ns->type != NS_TYPE_CONSENSUS) {
if (check_signature_token(ns_digests.d[DIGEST_SHA1], DIGEST_LEN,
tok, ns->cert->signing_key, 0,
"network-status vote")) {
tor_free(sig);
goto err;
}
sig->good_signature = 1;
} else {
if (tok->object_size >= INT_MAX || tok->object_size >= SIZE_T_CEILING) {
tor_free(sig);
goto err;
}
sig->signature = tor_memdup(tok->object_body, tok->object_size);
sig->signature_len = (int) tok->object_size;
}
smartlist_add(v->sigs, sig);
++n_signatures;
} SMARTLIST_FOREACH_END(_tok);
if (! n_signatures) {
log_warn(LD_DIR, "No signatures on networkstatus vote.");
goto err;
} else if (ns->type == NS_TYPE_VOTE && n_signatures != 1) {
log_warn(LD_DIR, "Received more than one signature on a "
"network-status vote.");
goto err;
}
if (eos_out)
*eos_out = end_of_footer;
goto done;
err:
dump_desc(s_dup, "v3 networkstatus");
networkstatus_vote_free(ns);
ns = NULL;
done:
if (tokens) {
SMARTLIST_FOREACH(tokens, directory_token_t *, t, token_clear(t));
smartlist_free(tokens);
}
if (voter) {
if (voter->sigs) {
SMARTLIST_FOREACH(voter->sigs, document_signature_t *, sig,
document_signature_free(sig));
smartlist_free(voter->sigs);
}
tor_free(voter->nickname);
tor_free(voter->address);
tor_free(voter->contact);
tor_free(voter);
}
if (rs_tokens) {
SMARTLIST_FOREACH(rs_tokens, directory_token_t *, t, token_clear(t));
smartlist_free(rs_tokens);
}
if (footer_tokens) {
SMARTLIST_FOREACH(footer_tokens, directory_token_t *, t, token_clear(t));
smartlist_free(footer_tokens);
}
if (area) {
DUMP_AREA(area, "v3 networkstatus");
memarea_drop_all(area);
}
if (rs_area)
memarea_drop_all(rs_area);
return ns;
} | 1 | CVE-2012-3517 | CWE-399 | Resource Management Errors | Weaknesses in this category are related to improper management of system resources. | Not Found in CWE Page | 1,369 |
admesh | e84d8353f1347e1f26f0a95770d92ba14e6ede38 | stl_update_connects_remove_1(stl_file *stl, int facet_num) {
int j;
if (stl->error) return;
/* Update list of connected edges */
j = ((stl->neighbors_start[facet_num].neighbor[0] == -1) +
(stl->neighbors_start[facet_num].neighbor[1] == -1) +
(stl->neighbors_start[facet_num].neighbor[2] == -1));
if(j == 0) { /* Facet has 3 neighbors */
stl->stats.connected_facets_3_edge -= 1;
} else if(j == 1) { /* Facet has 2 neighbors */
stl->stats.connected_facets_2_edge -= 1;
} else if(j == 2) { /* Facet has 1 neighbor */
stl->stats.connected_facets_1_edge -= 1;
}
} | 1 | CVE-2018-25033 | CWE-125 | Out-of-bounds Read | The product reads data past the end, or before the beginning, of the intended buffer. | Phase: Implementation
Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
To reduce the likelihood of introducing an out-of-bounds read, ensure that you validate and ensure correct calculations for any length argument, buffer size calculation, or offset. Be especially careful of relying on a sentinel (i.e. special character such as NUL) in untrusted inputs.
Phase: Architecture and Design
Strategy: Language Selection
Use a language that provides appropriate memory abstractions. | 2,950 |
wolfssl | 23878512c65834d12811b1107d19a001478eca5d | int wc_SignatureGenerateHash_ex(
enum wc_HashType hash_type, enum wc_SignatureType sig_type,
const byte* hash_data, word32 hash_len,
byte* sig, word32 *sig_len,
const void* key, word32 key_len, WC_RNG* rng, int verify)
{
int ret;
/* Suppress possible unused arg if all signature types are disabled */
(void)rng;
/* Check arguments */
if (hash_data == NULL || hash_len <= 0 ||
sig == NULL || sig_len == NULL || *sig_len <= 0 ||
key == NULL || key_len <= 0) {
return BAD_FUNC_ARG;
}
/* Validate signature len (needs to be at least max) */
if ((int)*sig_len < wc_SignatureGetSize(sig_type, key, key_len)) {
WOLFSSL_MSG("wc_SignatureGenerate: Invalid sig type/len");
return BAD_FUNC_ARG;
}
/* Validate hash size */
ret = wc_HashGetDigestSize(hash_type);
if (ret < 0) {
WOLFSSL_MSG("wc_SignatureGenerate: Invalid hash type/len");
return ret;
}
ret = 0;
/* Create signature using hash as data */
switch (sig_type) {
case WC_SIGNATURE_TYPE_ECC:
#if defined(HAVE_ECC) && defined(HAVE_ECC_SIGN)
/* Create signature using provided ECC key */
do {
#ifdef WOLFSSL_ASYNC_CRYPT
ret = wc_AsyncWait(ret, &((ecc_key*)key)->asyncDev,
WC_ASYNC_FLAG_CALL_AGAIN);
#endif
if (ret >= 0)
ret = wc_ecc_sign_hash(hash_data, hash_len, sig, sig_len,
rng, (ecc_key*)key);
} while (ret == WC_PENDING_E);
#else
ret = SIG_TYPE_E;
#endif
break;
case WC_SIGNATURE_TYPE_RSA_W_ENC:
case WC_SIGNATURE_TYPE_RSA:
#if !defined(NO_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)
/* Create signature using provided RSA key */
do {
#ifdef WOLFSSL_ASYNC_CRYPT
ret = wc_AsyncWait(ret, &((RsaKey*)key)->asyncDev,
WC_ASYNC_FLAG_CALL_AGAIN);
#endif
if (ret >= 0)
ret = wc_RsaSSL_Sign(hash_data, hash_len, sig, *sig_len,
(RsaKey*)key, rng);
} while (ret == WC_PENDING_E);
if (ret >= 0) {
*sig_len = ret;
ret = 0; /* Success */
}
#else
ret = SIG_TYPE_E;
#endif
break;
case WC_SIGNATURE_TYPE_NONE:
default:
ret = BAD_FUNC_ARG;
break;
}
if (ret == 0 && verify) {
ret = wc_SignatureVerifyHash(hash_type, sig_type, hash_data, hash_len,
sig, *sig_len, key, key_len);
}
return ret;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 22,837 |
psutil | 3a9bccfd2c6d2e6538298cd3892058b1204056e0 | psutil_convert_ipaddr(struct sockaddr *addr, int family) {
char buf[NI_MAXHOST];
int err;
int addrlen;
size_t n;
size_t len;
const char *data;
char *ptr;
if (addr == NULL) {
Py_INCREF(Py_None);
return Py_None;
}
else if (family == AF_INET || family == AF_INET6) {
if (family == AF_INET)
addrlen = sizeof(struct sockaddr_in);
else
addrlen = sizeof(struct sockaddr_in6);
err = getnameinfo(addr, addrlen, buf, sizeof(buf), NULL, 0,
NI_NUMERICHOST);
if (err != 0) {
// XXX we get here on FreeBSD when processing 'lo' / AF_INET6
// broadcast. Not sure what to do other than returning None.
// ifconfig does not show anything BTW.
//PyErr_Format(PyExc_RuntimeError, gai_strerror(err));
//return NULL;
Py_INCREF(Py_None);
return Py_None;
}
else {
return Py_BuildValue("s", buf);
}
}
#ifdef PSUTIL_LINUX
else if (family == AF_PACKET) {
struct sockaddr_ll *lladdr = (struct sockaddr_ll *)addr;
len = lladdr->sll_halen;
data = (const char *)lladdr->sll_addr;
}
#elif defined(PSUTIL_BSD) || defined(PSUTIL_OSX)
else if (addr->sa_family == AF_LINK) {
// Note: prior to Python 3.4 socket module does not expose
// AF_LINK so we'll do.
struct sockaddr_dl *dladdr = (struct sockaddr_dl *)addr;
len = dladdr->sdl_alen;
data = LLADDR(dladdr);
}
#endif
else {
// unknown family
Py_INCREF(Py_None);
return Py_None;
}
// AF_PACKET or AF_LINK
if (len > 0) {
ptr = buf;
for (n = 0; n < len; ++n) {
sprintf(ptr, "%02x:", data[n] & 0xff);
ptr += 3;
}
*--ptr = '\0';
return Py_BuildValue("s", buf);
}
else {
Py_INCREF(Py_None);
return Py_None;
}
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 20,737 |
linux | 9438fabb73eb48055b58b89fc51e0bc4db22fabd | CIFSSMBSetEA(const int xid, struct cifs_tcon *tcon, const char *fileName,
const char *ea_name, const void *ea_value,
const __u16 ea_value_len, const struct nls_table *nls_codepage,
int remap)
{
struct smb_com_transaction2_spi_req *pSMB = NULL;
struct smb_com_transaction2_spi_rsp *pSMBr = NULL;
struct fealist *parm_data;
int name_len;
int rc = 0;
int bytes_returned = 0;
__u16 params, param_offset, byte_count, offset, count;
cFYI(1, "In SetEA");
SetEARetry:
rc = smb_init(SMB_COM_TRANSACTION2, 15, tcon, (void **) &pSMB,
(void **) &pSMBr);
if (rc)
return rc;
if (pSMB->hdr.Flags2 & SMBFLG2_UNICODE) {
name_len =
cifsConvertToUCS((__le16 *) pSMB->FileName, fileName,
PATH_MAX, nls_codepage, remap);
name_len++; /* trailing null */
name_len *= 2;
} else { /* BB improve the check for buffer overruns BB */
name_len = strnlen(fileName, PATH_MAX);
name_len++; /* trailing null */
strncpy(pSMB->FileName, fileName, name_len);
}
params = 6 + name_len;
/* done calculating parms using name_len of file name,
now use name_len to calculate length of ea name
we are going to create in the inode xattrs */
if (ea_name == NULL)
name_len = 0;
else
name_len = strnlen(ea_name, 255);
count = sizeof(*parm_data) + ea_value_len + name_len;
pSMB->MaxParameterCount = cpu_to_le16(2);
/* BB find max SMB PDU from sess */
pSMB->MaxDataCount = cpu_to_le16(1000);
pSMB->MaxSetupCount = 0;
pSMB->Reserved = 0;
pSMB->Flags = 0;
pSMB->Timeout = 0;
pSMB->Reserved2 = 0;
param_offset = offsetof(struct smb_com_transaction2_spi_req,
InformationLevel) - 4;
offset = param_offset + params;
pSMB->InformationLevel =
cpu_to_le16(SMB_SET_FILE_EA);
parm_data =
(struct fealist *) (((char *) &pSMB->hdr.Protocol) +
offset);
pSMB->ParameterOffset = cpu_to_le16(param_offset);
pSMB->DataOffset = cpu_to_le16(offset);
pSMB->SetupCount = 1;
pSMB->Reserved3 = 0;
pSMB->SubCommand = cpu_to_le16(TRANS2_SET_PATH_INFORMATION);
byte_count = 3 /* pad */ + params + count;
pSMB->DataCount = cpu_to_le16(count);
parm_data->list_len = cpu_to_le32(count);
parm_data->list[0].EA_flags = 0;
/* we checked above that name len is less than 255 */
parm_data->list[0].name_len = (__u8)name_len;
/* EA names are always ASCII */
if (ea_name)
strncpy(parm_data->list[0].name, ea_name, name_len);
parm_data->list[0].name[name_len] = 0;
parm_data->list[0].value_len = cpu_to_le16(ea_value_len);
/* caller ensures that ea_value_len is less than 64K but
we need to ensure that it fits within the smb */
/*BB add length check to see if it would fit in
negotiated SMB buffer size BB */
/* if (ea_value_len > buffer_size - 512 (enough for header)) */
if (ea_value_len)
memcpy(parm_data->list[0].name+name_len+1,
ea_value, ea_value_len);
pSMB->TotalDataCount = pSMB->DataCount;
pSMB->ParameterCount = cpu_to_le16(params);
pSMB->TotalParameterCount = pSMB->ParameterCount;
pSMB->Reserved4 = 0;
inc_rfc1001_len(pSMB, byte_count);
pSMB->ByteCount = cpu_to_le16(byte_count);
rc = SendReceive(xid, tcon->ses, (struct smb_hdr *) pSMB,
(struct smb_hdr *) pSMBr, &bytes_returned, 0);
if (rc)
cFYI(1, "SetPathInfo (EA) returned %d", rc);
cifs_buf_release(pSMB);
if (rc == -EAGAIN)
goto SetEARetry;
return rc;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 12,279 |
Chrome | 9785a8b9672f6f35f5a401a86251c4109eda4175 | void AwFeatureListCreator::SetUpFieldTrials() {
auto* metrics_client = AwMetricsServiceClient::GetInstance();
DCHECK(!field_trial_list_);
field_trial_list_ = std::make_unique<base::FieldTrialList>(
metrics_client->CreateLowEntropyProvider());
std::unique_ptr<variations::SeedResponse> seed = GetAndClearJavaSeed();
base::Time null_time;
base::Time seed_date =
seed ? base::Time::FromJavaTime(seed->date) : null_time;
variations::UIStringOverrider ui_string_overrider;
client_ = std::make_unique<AwVariationsServiceClient>();
auto seed_store = std::make_unique<variations::VariationsSeedStore>(
local_state_.get(), /*initial_seed=*/std::move(seed),
/*on_initial_seed_stored=*/base::DoNothing());
if (!seed_date.is_null())
seed_store->RecordLastFetchTime(seed_date);
variations_field_trial_creator_ =
std::make_unique<variations::VariationsFieldTrialCreator>(
local_state_.get(), client_.get(), std::move(seed_store),
ui_string_overrider);
variations_field_trial_creator_->OverrideVariationsPlatform(
variations::Study::PLATFORM_ANDROID_WEBVIEW);
std::set<std::string> unforceable_field_trials;
variations::SafeSeedManager ignored_safe_seed_manager(true,
local_state_.get());
variations_field_trial_creator_->SetupFieldTrials(
cc::switches::kEnableGpuBenchmarking, switches::kEnableFeatures,
switches::kDisableFeatures, unforceable_field_trials,
std::vector<std::string>(),
content::GetSwitchDependentFeatureOverrides(
*base::CommandLine::ForCurrentProcess()),
/*low_entropy_provider=*/nullptr, std::make_unique<base::FeatureList>(),
aw_field_trials_.get(), &ignored_safe_seed_manager);
}
| 1 | CVE-2017-5072 | CWE-20 | Improper Input Validation | The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly. |
Phase: Architecture and Design
Strategy: Attack Surface Reduction
Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111]
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173).
Phases: Architecture and Design; Implementation
Strategy: Attack Surface Reduction
Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls.
Phase: Implementation
Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
Effectiveness: High
Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings.
Phase: Implementation
When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined.
Phase: Implementation
Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow.
Phase: Implementation
Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained.
Phase: Implementation
Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content.
Phase: Implementation
When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so. | 988 |
libtasn1 | f979435823a02f842c41d49cd41cc81f25b5d677 | _asn1_delete_not_used (asn1_node node)
{
asn1_node p, p2;
if (node == NULL)
return ASN1_ELEMENT_NOT_FOUND;
p = node;
while (p)
{
if (p->type & CONST_NOT_USED)
{
p2 = NULL;
if (p != node)
{
p2 = _asn1_find_left (p);
if (!p2)
p2 = _asn1_get_up (p);
}
asn1_delete_structure (&p);
p = p2;
}
if (!p)
break; /* reach node */
if (p->down)
{
p = p->down;
}
else
{
if (p == node)
p = NULL;
else if (p->right)
p = p->right;
else
{
while (1)
{
p = _asn1_get_up (p);
if (p == node)
{
p = NULL;
break;
}
if (p->right)
{
p = p->right;
break;
}
}
}
}
}
return ASN1_SUCCESS;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 19,527 |
linux-2.6 | f5fb09fa3392ad43fbcfc2f4580752f383ab5996 | static void minix_read_inode(struct inode * inode)
{
if (INODE_VERSION(inode) == MINIX_V1)
V1_minix_read_inode(inode);
else
V2_minix_read_inode(inode);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 16,325 |
libtasn1 | 5520704d075802df25ce4ffccc010ba1641bd484 | _asn1_expand_object_id (asn1_node node)
{
asn1_node p, p2, p3, p4, p5;
char name_root[ASN1_MAX_NAME_SIZE], name2[2 * ASN1_MAX_NAME_SIZE + 1];
int move, tlen;
if (node == NULL)
return ASN1_ELEMENT_NOT_FOUND;
_asn1_str_cpy (name_root, sizeof (name_root), node->name);
p = node;
move = DOWN;
while (!((p == node) && (move == UP)))
{
if (move != UP)
{
if ((type_field (p->type) == ASN1_ETYPE_OBJECT_ID)
&& (p->type & CONST_ASSIGN))
{
p2 = p->down;
if (p2 && (type_field (p2->type) == ASN1_ETYPE_CONSTANT))
{
if (p2->value && !isdigit (p2->value[0]))
{
_asn1_str_cpy (name2, sizeof (name2), name_root);
_asn1_str_cat (name2, sizeof (name2), ".");
_asn1_str_cat (name2, sizeof (name2),
(char *) p2->value);
p3 = asn1_find_node (node, name2);
if (!p3
|| (type_field (p3->type) != ASN1_ETYPE_OBJECT_ID)
|| !(p3->type & CONST_ASSIGN))
return ASN1_ELEMENT_NOT_FOUND;
_asn1_set_down (p, p2->right);
_asn1_remove_node (p2, 0);
p2 = p;
p4 = p3->down;
while (p4)
{
if (type_field (p4->type) == ASN1_ETYPE_CONSTANT)
{
p5 =
_asn1_add_single_node (ASN1_ETYPE_CONSTANT);
_asn1_set_name (p5, p4->name);
if (p4->value)
{
tlen = _asn1_strlen (p4->value);
if (tlen > 0)
_asn1_set_value (p5, p4->value, tlen + 1);
}
if (p2 == p)
{
_asn1_set_right (p5, p->down);
_asn1_set_down (p, p5);
}
else
{
_asn1_set_right (p5, p2->right);
_asn1_set_right (p2, p5);
}
p2 = p5;
}
p4 = p4->right;
}
move = DOWN;
continue;
}
}
}
move = DOWN;
}
else
move = RIGHT;
if (move == DOWN)
{
if (p->down)
p = p->down;
else
move = RIGHT;
}
if (p == node)
{
move = UP;
continue;
}
if (move == RIGHT)
{
if (p && p->right)
p = p->right;
else
move = UP;
}
if (move == UP)
p = _asn1_find_up (p);
}
/*******************************/
/* expand DEFAULT */
/*******************************/
p = node;
move = DOWN;
while (!((p == node) && (move == UP)))
{
if (move != UP)
{
if ((type_field (p->type) == ASN1_ETYPE_OBJECT_ID) &&
(p->type & CONST_DEFAULT))
{
p2 = p->down;
if (p2 && (type_field (p2->type) == ASN1_ETYPE_DEFAULT))
{
_asn1_str_cpy (name2, sizeof (name2), name_root);
_asn1_str_cat (name2, sizeof (name2), ".");
_asn1_str_cat (name2, sizeof (name2), (char *) p2->value);
p3 = asn1_find_node (node, name2);
if (!p3 || (type_field (p3->type) != ASN1_ETYPE_OBJECT_ID)
|| !(p3->type & CONST_ASSIGN))
return ASN1_ELEMENT_NOT_FOUND;
p4 = p3->down;
name2[0] = 0;
while (p4)
{
if (type_field (p4->type) == ASN1_ETYPE_CONSTANT)
{
if (p4->value == NULL)
return ASN1_VALUE_NOT_FOUND;
if (name2[0])
_asn1_str_cat (name2, sizeof (name2), ".");
_asn1_str_cat (name2, sizeof (name2),
(char *) p4->value);
}
p4 = p4->right;
}
tlen = strlen (name2);
if (tlen > 0)
_asn1_set_value (p2, name2, tlen + 1);
}
}
move = DOWN;
}
else
move = RIGHT;
if (move == DOWN)
{
if (p->down)
p = p->down;
else
move = RIGHT;
}
if (p == node)
{
move = UP;
continue;
}
if (move == RIGHT)
{
if (p && p->right)
p = p->right;
else
move = UP;
}
if (move == UP)
p = _asn1_find_up (p);
}
return ASN1_SUCCESS;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 21,363 |
asylo | 90d7619e9dd99bcdb6cd28c7649d741d254d9a1a | extern "C" bool enc_is_error_handler_set() { return error_handler != nullptr; } | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 22,484 |
Chrome | b2dfe7c175fb21263f06eb586f1ed235482a3281 | Eina_Bool ewk_frame_reload_full(Evas_Object* ewkFrame)
{
EWK_FRAME_SD_GET_OR_RETURN(ewkFrame, smartData, false);
EINA_SAFETY_ON_NULL_RETURN_VAL(smartData->frame, false);
smartData->frame->loader()->reload(true);
return true;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 12,205 |
linux | f647d7c155f069c1a068030255c300663516420e | int copy_thread(unsigned long clone_flags, unsigned long sp,
unsigned long arg, struct task_struct *p)
{
int err;
struct pt_regs *childregs;
struct task_struct *me = current;
p->thread.sp0 = (unsigned long)task_stack_page(p) + THREAD_SIZE;
childregs = task_pt_regs(p);
p->thread.sp = (unsigned long) childregs;
p->thread.usersp = me->thread.usersp;
set_tsk_thread_flag(p, TIF_FORK);
p->thread.io_bitmap_ptr = NULL;
savesegment(gs, p->thread.gsindex);
p->thread.gs = p->thread.gsindex ? 0 : me->thread.gs;
savesegment(fs, p->thread.fsindex);
p->thread.fs = p->thread.fsindex ? 0 : me->thread.fs;
savesegment(es, p->thread.es);
savesegment(ds, p->thread.ds);
memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
if (unlikely(p->flags & PF_KTHREAD)) {
/* kernel thread */
memset(childregs, 0, sizeof(struct pt_regs));
childregs->sp = (unsigned long)childregs;
childregs->ss = __KERNEL_DS;
childregs->bx = sp; /* function */
childregs->bp = arg;
childregs->orig_ax = -1;
childregs->cs = __KERNEL_CS | get_kernel_rpl();
childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
return 0;
}
*childregs = *current_pt_regs();
childregs->ax = 0;
if (sp)
childregs->sp = sp;
err = -ENOMEM;
if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr,
IO_BITMAP_BYTES, GFP_KERNEL);
if (!p->thread.io_bitmap_ptr) {
p->thread.io_bitmap_max = 0;
return -ENOMEM;
}
set_tsk_thread_flag(p, TIF_IO_BITMAP);
}
/*
* Set a new TLS for the child thread?
*/
if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_IA32_EMULATION
if (test_thread_flag(TIF_IA32))
err = do_set_thread_area(p, -1,
(struct user_desc __user *)childregs->si, 0);
else
#endif
err = do_arch_prctl(p, ARCH_SET_FS, childregs->r8);
if (err)
goto out;
}
err = 0;
out:
if (err && p->thread.io_bitmap_ptr) {
kfree(p->thread.io_bitmap_ptr);
p->thread.io_bitmap_max = 0;
}
return err;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 20,935 |
Chrome | 244c78b3f737f2cacab2d212801b0524cbcc3a7b | DeviceTokenFetcher::DeviceTokenFetcher(
DeviceManagementService* service,
CloudPolicyCacheBase* cache,
CloudPolicyDataStore* data_store,
PolicyNotifier* notifier,
DelayedWorkScheduler* scheduler) {
Initialize(service, cache, data_store, notifier, scheduler);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 12,180 |
openssl | 30c22fa8b1d840036b8e203585738df62a03cec8 | int EC_GROUP_copy(EC_GROUP *dest, const EC_GROUP *src)
{
if (dest->meth->group_copy == 0) {
ECerr(EC_F_EC_GROUP_COPY, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
if (dest->meth != src->meth) {
ECerr(EC_F_EC_GROUP_COPY, EC_R_INCOMPATIBLE_OBJECTS);
return 0;
}
if (dest == src)
return 1;
dest->curve_name = src->curve_name;
/* Copy precomputed */
dest->pre_comp_type = src->pre_comp_type;
switch (src->pre_comp_type) {
case PCT_none:
dest->pre_comp.ec = NULL;
break;
case PCT_nistz256:
#ifdef ECP_NISTZ256_ASM
dest->pre_comp.nistz256 = EC_nistz256_pre_comp_dup(src->pre_comp.nistz256);
#endif
break;
#ifndef OPENSSL_NO_EC_NISTP_64_GCC_128
case PCT_nistp224:
dest->pre_comp.nistp224 = EC_nistp224_pre_comp_dup(src->pre_comp.nistp224);
break;
case PCT_nistp256:
dest->pre_comp.nistp256 = EC_nistp256_pre_comp_dup(src->pre_comp.nistp256);
break;
case PCT_nistp521:
dest->pre_comp.nistp521 = EC_nistp521_pre_comp_dup(src->pre_comp.nistp521);
break;
#else
case PCT_nistp224:
case PCT_nistp256:
case PCT_nistp521:
break;
#endif
case PCT_ec:
dest->pre_comp.ec = EC_ec_pre_comp_dup(src->pre_comp.ec);
break;
}
if (src->mont_data != NULL) {
if (dest->mont_data == NULL) {
dest->mont_data = BN_MONT_CTX_new();
if (dest->mont_data == NULL)
return 0;
}
if (!BN_MONT_CTX_copy(dest->mont_data, src->mont_data))
return 0;
} else {
/* src->generator == NULL */
BN_MONT_CTX_free(dest->mont_data);
dest->mont_data = NULL;
}
if (src->generator != NULL) {
if (dest->generator == NULL) {
dest->generator = EC_POINT_new(dest);
if (dest->generator == NULL)
return 0;
}
if (!EC_POINT_copy(dest->generator, src->generator))
return 0;
} else {
/* src->generator == NULL */
EC_POINT_clear_free(dest->generator);
dest->generator = NULL;
}
if ((src->meth->flags & EC_FLAGS_CUSTOM_CURVE) == 0) {
if (!BN_copy(dest->order, src->order))
return 0;
if (!BN_copy(dest->cofactor, src->cofactor))
return 0;
}
dest->asn1_flag = src->asn1_flag;
dest->asn1_form = src->asn1_form;
if (src->seed) {
OPENSSL_free(dest->seed);
if ((dest->seed = OPENSSL_malloc(src->seed_len)) == NULL) {
ECerr(EC_F_EC_GROUP_COPY, ERR_R_MALLOC_FAILURE);
return 0;
}
if (!memcpy(dest->seed, src->seed, src->seed_len))
return 0;
dest->seed_len = src->seed_len;
} else {
OPENSSL_free(dest->seed);
dest->seed = NULL;
dest->seed_len = 0;
}
return dest->meth->group_copy(dest, src);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 23,128 |
FreeRDP | 795842f4096501fcefc1a7f535ccc8132feb31d7 | static UINT parallel_process_irp_read(PARALLEL_DEVICE* parallel, IRP* irp)
{
UINT32 Length;
UINT64 Offset;
ssize_t status;
BYTE* buffer = NULL;
if (Stream_GetRemainingLength(irp->input) < 12)
return ERROR_INVALID_DATA;
Stream_Read_UINT32(irp->input, Length);
Stream_Read_UINT64(irp->input, Offset);
buffer = (BYTE*)malloc(Length);
if (!buffer)
{
WLog_ERR(TAG, "malloc failed!");
return CHANNEL_RC_NO_MEMORY;
}
status = read(parallel->file, buffer, Length);
if (status < 0)
{
irp->IoStatus = STATUS_UNSUCCESSFUL;
free(buffer);
buffer = NULL;
Length = 0;
}
else
{
}
Stream_Write_UINT32(irp->output, Length);
if (Length > 0)
{
if (!Stream_EnsureRemainingCapacity(irp->output, Length))
{
WLog_ERR(TAG, "Stream_EnsureRemainingCapacity failed!");
free(buffer);
return CHANNEL_RC_NO_MEMORY;
}
Stream_Write(irp->output, buffer, Length);
}
free(buffer);
return irp->Complete(irp);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 15,059 |
Chrome | 29734f46c6dc9362783091180c2ee279ad53637f | V4L2JpegEncodeAccelerator::JobRecord::JobRecord(
scoped_refptr<VideoFrame> input_frame,
scoped_refptr<VideoFrame> output_frame,
int quality,
int32_t task_id,
BitstreamBuffer* exif_buffer)
: input_frame(input_frame),
output_frame(output_frame),
quality(quality),
task_id(task_id),
output_shm(base::SharedMemoryHandle(), 0, true), // dummy
exif_shm(nullptr) {
if (exif_buffer) {
exif_shm.reset(new UnalignedSharedMemory(exif_buffer->TakeRegion(),
exif_buffer->size(), false));
exif_offset = exif_buffer->offset();
}
}
| 1 | CVE-2017-5101 | CWE-20 | Improper Input Validation | The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly. |
Phase: Architecture and Design
Strategy: Attack Surface Reduction
Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111]
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173).
Phases: Architecture and Design; Implementation
Strategy: Attack Surface Reduction
Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls.
Phase: Implementation
Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
Effectiveness: High
Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings.
Phase: Implementation
When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined.
Phase: Implementation
Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow.
Phase: Implementation
Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained.
Phase: Implementation
Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content.
Phase: Implementation
When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so. | 3,407 |
libreswan | 9b31deafbdbf0c2206358dfbf2d4e343e365f23f | void process_packet(struct msg_digest **mdp)
{
struct msg_digest *md = *mdp;
struct state *st = NULL;
int maj, min;
enum state_kind from_state = STATE_UNDEFINED; /* state we started in */
struct isakmp_hdr *hdr;
#define SEND_NOTIFICATION(t) { \
if (st) \
send_notification_from_state(st, from_state, t); \
else \
send_notification_from_md(md, t); }
if (!in_struct(&md->hdr, &isakmp_hdr_desc, &md->packet_pbs,
&md->message_pbs)) {
/* Identify specific failures:
* - bad ISAKMP major/minor version numbers
*/
if (md->packet_pbs.roof - md->packet_pbs.cur >=
(ptrdiff_t)isakmp_hdr_desc.size) {
hdr = (struct isakmp_hdr *)md->packet_pbs.cur;
maj = (hdr->isa_version >> ISA_MAJ_SHIFT);
min = (hdr->isa_version & ISA_MIN_MASK);
if ( maj != ISAKMP_MAJOR_VERSION &&
maj != IKEv2_MAJOR_VERSION) {
/* We don't know IKEv3+ */
SEND_NOTIFICATION(INVALID_MAJOR_VERSION);
return;
} else if (maj == ISAKMP_MAJOR_VERSION && min !=
ISAKMP_MINOR_VERSION) {
/* We only know IKEv1 1.0 */
SEND_NOTIFICATION(INVALID_MINOR_VERSION);
return;
}
/* As per RFC 4306/5996, accept unknown IKEv2 minor */
} else {
libreswan_log("received packet size (%lu) is smaller than "
"an IKE header - packet dropped", md->packet_pbs.roof - md->packet_pbs.cur);
SEND_NOTIFICATION(PAYLOAD_MALFORMED);
return;
}
}
if (md->packet_pbs.roof < md->message_pbs.roof) {
libreswan_log(
"received packet size (%u) is smaller than from "
"size specified in ISAKMP HDR (%u) - packet dropped",
(unsigned) pbs_room(&md->packet_pbs),
md->hdr.isa_length);
/* abort processing corrupt packet */
return;
} else if (md->packet_pbs.roof > md->message_pbs.roof) {
/*
* Some (old?) versions of the Cisco VPN client send an additional
* 16 bytes of zero bytes - Complain but accept it
*/
DBG(DBG_CONTROL, {
DBG_log(
"size (%u) in received packet is larger than the size "
"specified in ISAKMP HDR (%u) - ignoring extraneous bytes",
(unsigned) pbs_room(&md->packet_pbs),
md->hdr.isa_length);
DBG_dump("extraneous bytes:", md->message_pbs.roof,
md->packet_pbs.roof - md->message_pbs.roof);
/* continue */
});
}
maj = (md->hdr.isa_version >> ISA_MAJ_SHIFT);
min = (md->hdr.isa_version & ISA_MIN_MASK);
DBG(DBG_CONTROL,
DBG_log(
" processing version=%u.%u packet with exchange type=%s (%d)",
maj, min,
enum_name(&exchange_names_ikev1orv2, md->hdr.isa_xchg),
md->hdr.isa_xchg));
switch (maj) {
case ISAKMP_MAJOR_VERSION:
process_v1_packet(mdp);
break;
case IKEv2_MAJOR_VERSION:
process_v2_packet(mdp);
break;
default:
/*
* We should never get here? - above we only accept v1 or v2
*/
libreswan_log("Unexpected IKE major '%d'",maj);
SEND_NOTIFICATION(PAYLOAD_MALFORMED);
return;
}
} | 1 | CVE-2013-4564 | CWE-189 | Numeric Errors | Weaknesses in this category are related to improper calculation or conversion of numbers. | Not Found in CWE Page | 2,711 |
linux | b963a22e6d1a266a67e9eecc88134713fd54775c | static u32 apic_get_tmcct(struct kvm_lapic *apic)
{
ktime_t remaining;
s64 ns;
u32 tmcct;
ASSERT(apic != NULL);
/* if initial count is 0, current count should also be 0 */
if (kvm_apic_get_reg(apic, APIC_TMICT) == 0)
return 0;
remaining = hrtimer_get_remaining(&apic->lapic_timer.timer);
if (ktime_to_ns(remaining) < 0)
remaining = ktime_set(0, 0);
ns = mod_64(ktime_to_ns(remaining), apic->lapic_timer.period);
tmcct = div64_u64(ns,
(APIC_BUS_CYCLE_NS * apic->divide_count));
return tmcct;
}
| 1 | CVE-2013-6367 | CWE-189 | Numeric Errors | Weaknesses in this category are related to improper calculation or conversion of numbers. | Not Found in CWE Page | 4,052 |
Pillow | f0436a4ddc954541fa10a531e2d9ea0c5ae2065d | int ImagingLibTiffDecode(Imaging im, ImagingCodecState state, UINT8* buffer, int bytes) {
TIFFSTATE *clientstate = (TIFFSTATE *)state->context;
char *filename = "tempfile.tif";
char *mode = "r";
TIFF *tiff;
tsize_t size;
/* buffer is the encoded file, bytes is the length of the encoded file */
/* it all ends up in state->buffer, which is a uint8* from Imaging.h */
TRACE(("in decoder: bytes %d\n", bytes));
TRACE(("State: count %d, state %d, x %d, y %d, ystep %d\n", state->count, state->state,
state->x, state->y, state->ystep));
TRACE(("State: xsize %d, ysize %d, xoff %d, yoff %d \n", state->xsize, state->ysize,
state->xoff, state->yoff));
TRACE(("State: bits %d, bytes %d \n", state->bits, state->bytes));
TRACE(("Buffer: %p: %c%c%c%c\n", buffer, (char)buffer[0], (char)buffer[1],(char)buffer[2], (char)buffer[3]));
TRACE(("State->Buffer: %c%c%c%c\n", (char)state->buffer[0], (char)state->buffer[1],(char)state->buffer[2], (char)state->buffer[3]));
TRACE(("Image: mode %s, type %d, bands: %d, xsize %d, ysize %d \n",
im->mode, im->type, im->bands, im->xsize, im->ysize));
TRACE(("Image: image8 %p, image32 %p, image %p, block %p \n",
im->image8, im->image32, im->image, im->block));
TRACE(("Image: pixelsize: %d, linesize %d \n",
im->pixelsize, im->linesize));
dump_state(clientstate);
clientstate->size = bytes;
clientstate->eof = clientstate->size;
clientstate->loc = 0;
clientstate->data = (tdata_t)buffer;
clientstate->flrealloc = 0;
dump_state(clientstate);
TIFFSetWarningHandler(NULL);
TIFFSetWarningHandlerExt(NULL);
if (clientstate->fp) {
TRACE(("Opening using fd: %d\n",clientstate->fp));
lseek(clientstate->fp,0,SEEK_SET); // Sometimes, I get it set to the end.
tiff = TIFFFdOpen(clientstate->fp, filename, mode);
} else {
TRACE(("Opening from string\n"));
tiff = TIFFClientOpen(filename, mode,
(thandle_t) clientstate,
_tiffReadProc, _tiffWriteProc,
_tiffSeekProc, _tiffCloseProc, _tiffSizeProc,
_tiffMapProc, _tiffUnmapProc);
}
if (!tiff){
TRACE(("Error, didn't get the tiff\n"));
state->errcode = IMAGING_CODEC_BROKEN;
return -1;
}
if (clientstate->ifd){
int rv;
uint32 ifdoffset = clientstate->ifd;
TRACE(("reading tiff ifd %u\n", ifdoffset));
rv = TIFFSetSubDirectory(tiff, ifdoffset);
if (!rv){
TRACE(("error in TIFFSetSubDirectory"));
return -1;
}
}
size = TIFFScanlineSize(tiff);
TRACE(("ScanlineSize: %d \n", size));
if (size > state->bytes) {
TRACE(("Error, scanline size > buffer size\n"));
state->errcode = IMAGING_CODEC_BROKEN;
TIFFClose(tiff);
return -1;
}
// Have to do this row by row and shove stuff into the buffer that way,
// with shuffle. (or, just alloc a buffer myself, then figure out how to get it
// back in. Can't use read encoded stripe.
// This thing pretty much requires that I have the whole image in one shot.
// Perhaps a stub version would work better???
while(state->y < state->ysize){
if (TIFFReadScanline(tiff, (tdata_t)state->buffer, (uint32)state->y, 0) == -1) {
TRACE(("Decode Error, row %d\n", state->y));
state->errcode = IMAGING_CODEC_BROKEN;
TIFFClose(tiff);
return -1;
}
/* TRACE(("Decoded row %d \n", state->y)); */
state->shuffle((UINT8*) im->image[state->y + state->yoff] +
state->xoff * im->pixelsize,
state->buffer,
state->xsize);
state->y++;
}
TIFFClose(tiff);
TRACE(("Done Decoding, Returning \n"));
// Returning -1 here to force ImageFile.load to break, rather than
// even think about looping back around.
return -1;
} | 1 | CVE-2020-5310 | CWE-190 | Integer Overflow or Wraparound | The product performs a calculation that can produce an integer overflow or wraparound when the logic assumes that the resulting value will always be larger than the original value. This occurs when an integer value is incremented to a value that is too large to store in the associated representation. When this occurs, the value may become a very small or negative number. | Phase: Requirements
Ensure that all protocols are strictly defined, such that all out-of-bounds behavior can be identified simply, and require strict conformance to the protocol.
Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
If possible, choose a language or compiler that performs automatic bounds checking.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Use libraries or frameworks that make it easier to handle numbers without unexpected consequences.
Examples include safe integer handling packages such as SafeInt (C++) or IntegerLib (C or C++). [REF-106]
Phase: Implementation
Strategy: Input Validation
Perform input validation on any numeric input by ensuring that it is within the expected range. Enforce that the input meets both the minimum and maximum requirements for the expected range.
Use unsigned integers where possible. This makes it easier to perform validation for integer overflows. When signed integers are required, ensure that the range check includes minimum values as well as maximum values.
Phase: Implementation
Understand the programming language's underlying representation and how it interacts with numeric calculation (CWE-681). Pay close attention to byte size discrepancies, precision, signed/unsigned distinctions, truncation, conversion and casting between types, "not-a-number" calculations, and how the language handles numbers that are too large or too small for its underlying representation. [REF-7]
Also be careful to account for 32-bit, 64-bit, and other potential differences that may affect the numeric representation.
Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
Phase: Implementation
Strategy: Compilation or Build Hardening
Examine compiler warnings closely and eliminate problems with potential security implications, such as signed / unsigned mismatch in memory operations, or use of uninitialized variables. Even if the weakness is rarely exploitable, a single failure may lead to the compromise of the entire system. | 4,244 |
linux | f4020438fab05364018c91f7e02ebdd192085933 | xfs_attr3_leaf_flipflags(
struct xfs_da_args *args)
{
struct xfs_attr_leafblock *leaf1;
struct xfs_attr_leafblock *leaf2;
struct xfs_attr_leaf_entry *entry1;
struct xfs_attr_leaf_entry *entry2;
struct xfs_attr_leaf_name_remote *name_rmt;
struct xfs_buf *bp1;
struct xfs_buf *bp2;
int error;
#ifdef DEBUG
struct xfs_attr3_icleaf_hdr ichdr1;
struct xfs_attr3_icleaf_hdr ichdr2;
xfs_attr_leaf_name_local_t *name_loc;
int namelen1, namelen2;
char *name1, *name2;
#endif /* DEBUG */
trace_xfs_attr_leaf_flipflags(args);
/*
* Read the block containing the "old" attr
*/
error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp1);
if (error)
return error;
/*
* Read the block containing the "new" attr, if it is different
*/
if (args->blkno2 != args->blkno) {
error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno2,
&bp2);
if (error)
return error;
} else {
bp2 = bp1;
}
leaf1 = bp1->b_addr;
entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index];
leaf2 = bp2->b_addr;
entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2];
#ifdef DEBUG
xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr1, leaf1);
ASSERT(args->index < ichdr1.count);
ASSERT(args->index >= 0);
xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr2, leaf2);
ASSERT(args->index2 < ichdr2.count);
ASSERT(args->index2 >= 0);
if (entry1->flags & XFS_ATTR_LOCAL) {
name_loc = xfs_attr3_leaf_name_local(leaf1, args->index);
namelen1 = name_loc->namelen;
name1 = (char *)name_loc->nameval;
} else {
name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
namelen1 = name_rmt->namelen;
name1 = (char *)name_rmt->name;
}
if (entry2->flags & XFS_ATTR_LOCAL) {
name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2);
namelen2 = name_loc->namelen;
name2 = (char *)name_loc->nameval;
} else {
name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
namelen2 = name_rmt->namelen;
name2 = (char *)name_rmt->name;
}
ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval));
ASSERT(namelen1 == namelen2);
ASSERT(memcmp(name1, name2, namelen1) == 0);
#endif /* DEBUG */
ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE);
ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0);
entry1->flags &= ~XFS_ATTR_INCOMPLETE;
xfs_trans_log_buf(args->trans, bp1,
XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1)));
if (args->rmtblkno) {
ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0);
name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
xfs_trans_log_buf(args->trans, bp1,
XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt)));
}
entry2->flags |= XFS_ATTR_INCOMPLETE;
xfs_trans_log_buf(args->trans, bp2,
XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2)));
if ((entry2->flags & XFS_ATTR_LOCAL) == 0) {
name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
name_rmt->valueblk = 0;
name_rmt->valuelen = 0;
xfs_trans_log_buf(args->trans, bp2,
XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt)));
}
return 0;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 15,169 |
php-src | 0da8b8b801f9276359262f1ef8274c7812d3dfda?w=1 | static inline unsigned int get_next_char(
enum entity_charset charset,
const unsigned char *str,
size_t str_len,
size_t *cursor,
int *status)
{
size_t pos = *cursor;
unsigned int this_char = 0;
*status = SUCCESS;
assert(pos <= str_len);
if (!CHECK_LEN(pos, 1))
MB_FAILURE(pos, 1);
switch (charset) {
case cs_utf_8:
{
/* We'll follow strategy 2. from section 3.6.1 of UTR #36:
* "In a reported illegal byte sequence, do not include any
* non-initial byte that encodes a valid character or is a leading
* byte for a valid sequence." */
unsigned char c;
c = str[pos];
if (c < 0x80) {
this_char = c;
pos++;
} else if (c < 0xc2) {
MB_FAILURE(pos, 1);
} else if (c < 0xe0) {
if (!CHECK_LEN(pos, 2))
MB_FAILURE(pos, 1);
if (!utf8_trail(str[pos + 1])) {
MB_FAILURE(pos, utf8_lead(str[pos + 1]) ? 1 : 2);
}
this_char = ((c & 0x1f) << 6) | (str[pos + 1] & 0x3f);
if (this_char < 0x80) { /* non-shortest form */
MB_FAILURE(pos, 2);
}
pos += 2;
} else if (c < 0xf0) {
size_t avail = str_len - pos;
if (avail < 3 ||
!utf8_trail(str[pos + 1]) || !utf8_trail(str[pos + 2])) {
if (avail < 2 || utf8_lead(str[pos + 1]))
MB_FAILURE(pos, 1);
else if (avail < 3 || utf8_lead(str[pos + 2]))
MB_FAILURE(pos, 2);
else
MB_FAILURE(pos, 3);
}
this_char = ((c & 0x0f) << 12) | ((str[pos + 1] & 0x3f) << 6) | (str[pos + 2] & 0x3f);
if (this_char < 0x800) { /* non-shortest form */
MB_FAILURE(pos, 3);
} else if (this_char >= 0xd800 && this_char <= 0xdfff) { /* surrogate */
MB_FAILURE(pos, 3);
}
pos += 3;
} else if (c < 0xf5) {
size_t avail = str_len - pos;
if (avail < 4 ||
!utf8_trail(str[pos + 1]) || !utf8_trail(str[pos + 2]) ||
!utf8_trail(str[pos + 3])) {
if (avail < 2 || utf8_lead(str[pos + 1]))
MB_FAILURE(pos, 1);
else if (avail < 3 || utf8_lead(str[pos + 2]))
MB_FAILURE(pos, 2);
else if (avail < 4 || utf8_lead(str[pos + 3]))
MB_FAILURE(pos, 3);
else
MB_FAILURE(pos, 4);
}
this_char = ((c & 0x07) << 18) | ((str[pos + 1] & 0x3f) << 12) | ((str[pos + 2] & 0x3f) << 6) | (str[pos + 3] & 0x3f);
if (this_char < 0x10000 || this_char > 0x10FFFF) { /* non-shortest form or outside range */
MB_FAILURE(pos, 4);
}
pos += 4;
} else {
MB_FAILURE(pos, 1);
}
}
break;
case cs_big5:
/* reference http://demo.icu-project.org/icu-bin/convexp?conv=big5 */
{
unsigned char c = str[pos];
if (c >= 0x81 && c <= 0xFE) {
unsigned char next;
if (!CHECK_LEN(pos, 2))
MB_FAILURE(pos, 1);
next = str[pos + 1];
if ((next >= 0x40 && next <= 0x7E) ||
(next >= 0xA1 && next <= 0xFE)) {
this_char = (c << 8) | next;
} else {
MB_FAILURE(pos, 1);
}
pos += 2;
} else {
this_char = c;
pos += 1;
}
}
break;
case cs_big5hkscs:
{
unsigned char c = str[pos];
if (c >= 0x81 && c <= 0xFE) {
unsigned char next;
if (!CHECK_LEN(pos, 2))
MB_FAILURE(pos, 1);
next = str[pos + 1];
if ((next >= 0x40 && next <= 0x7E) ||
(next >= 0xA1 && next <= 0xFE)) {
this_char = (c << 8) | next;
} else if (next != 0x80 && next != 0xFF) {
MB_FAILURE(pos, 1);
} else {
MB_FAILURE(pos, 2);
}
pos += 2;
} else {
this_char = c;
pos += 1;
}
}
break;
case cs_gb2312: /* EUC-CN */
{
unsigned char c = str[pos];
if (c >= 0xA1 && c <= 0xFE) {
unsigned char next;
if (!CHECK_LEN(pos, 2))
MB_FAILURE(pos, 1);
next = str[pos + 1];
if (gb2312_trail(next)) {
this_char = (c << 8) | next;
} else if (gb2312_lead(next)) {
MB_FAILURE(pos, 1);
} else {
MB_FAILURE(pos, 2);
}
pos += 2;
} else if (gb2312_lead(c)) {
this_char = c;
pos += 1;
} else {
MB_FAILURE(pos, 1);
}
}
break;
case cs_sjis:
{
unsigned char c = str[pos];
if ((c >= 0x81 && c <= 0x9F) || (c >= 0xE0 && c <= 0xFC)) {
unsigned char next;
if (!CHECK_LEN(pos, 2))
MB_FAILURE(pos, 1);
next = str[pos + 1];
if (sjis_trail(next)) {
this_char = (c << 8) | next;
} else if (sjis_lead(next)) {
MB_FAILURE(pos, 1);
} else {
MB_FAILURE(pos, 2);
}
pos += 2;
} else if (c < 0x80 || (c >= 0xA1 && c <= 0xDF)) {
this_char = c;
pos += 1;
} else {
MB_FAILURE(pos, 1);
}
}
break;
case cs_eucjp:
{
unsigned char c = str[pos];
if (c >= 0xA1 && c <= 0xFE) {
unsigned next;
if (!CHECK_LEN(pos, 2))
MB_FAILURE(pos, 1);
next = str[pos + 1];
if (next >= 0xA1 && next <= 0xFE) {
/* this a jis kanji char */
this_char = (c << 8) | next;
} else {
MB_FAILURE(pos, (next != 0xA0 && next != 0xFF) ? 1 : 2);
}
pos += 2;
} else if (c == 0x8E) {
unsigned next;
if (!CHECK_LEN(pos, 2))
MB_FAILURE(pos, 1);
next = str[pos + 1];
if (next >= 0xA1 && next <= 0xDF) {
/* JIS X 0201 kana */
this_char = (c << 8) | next;
} else {
MB_FAILURE(pos, (next != 0xA0 && next != 0xFF) ? 1 : 2);
}
pos += 2;
} else if (c == 0x8F) {
size_t avail = str_len - pos;
if (avail < 3 || !(str[pos + 1] >= 0xA1 && str[pos + 1] <= 0xFE) ||
!(str[pos + 2] >= 0xA1 && str[pos + 2] <= 0xFE)) {
if (avail < 2 || (str[pos + 1] != 0xA0 && str[pos + 1] != 0xFF))
MB_FAILURE(pos, 1);
else if (avail < 3 || (str[pos + 2] != 0xA0 && str[pos + 2] != 0xFF))
MB_FAILURE(pos, 2);
else
MB_FAILURE(pos, 3);
} else {
/* JIS X 0212 hojo-kanji */
this_char = (c << 16) | (str[pos + 1] << 8) | str[pos + 2];
}
pos += 3;
} else if (c != 0xA0 && c != 0xFF) {
/* character encoded in 1 code unit */
this_char = c;
pos += 1;
} else {
MB_FAILURE(pos, 1);
}
}
break;
default:
/* single-byte charsets */
this_char = str[pos++];
break;
}
*cursor = pos;
return this_char;
}
| 1 | CVE-2016-5094 | CWE-190 | Integer Overflow or Wraparound | The product performs a calculation that can produce an integer overflow or wraparound when the logic assumes that the resulting value will always be larger than the original value. This occurs when an integer value is incremented to a value that is too large to store in the associated representation. When this occurs, the value may become a very small or negative number. | Phase: Requirements
Ensure that all protocols are strictly defined, such that all out-of-bounds behavior can be identified simply, and require strict conformance to the protocol.
Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
If possible, choose a language or compiler that performs automatic bounds checking.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Use libraries or frameworks that make it easier to handle numbers without unexpected consequences.
Examples include safe integer handling packages such as SafeInt (C++) or IntegerLib (C or C++). [REF-106]
Phase: Implementation
Strategy: Input Validation
Perform input validation on any numeric input by ensuring that it is within the expected range. Enforce that the input meets both the minimum and maximum requirements for the expected range.
Use unsigned integers where possible. This makes it easier to perform validation for integer overflows. When signed integers are required, ensure that the range check includes minimum values as well as maximum values.
Phase: Implementation
Understand the programming language's underlying representation and how it interacts with numeric calculation (CWE-681). Pay close attention to byte size discrepancies, precision, signed/unsigned distinctions, truncation, conversion and casting between types, "not-a-number" calculations, and how the language handles numbers that are too large or too small for its underlying representation. [REF-7]
Also be careful to account for 32-bit, 64-bit, and other potential differences that may affect the numeric representation.
Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
Phase: Implementation
Strategy: Compilation or Build Hardening
Examine compiler warnings closely and eliminate problems with potential security implications, such as signed / unsigned mismatch in memory operations, or use of uninitialized variables. Even if the weakness is rarely exploitable, a single failure may lead to the compromise of the entire system. | 1,312 |
linux | 0031c41be5c529f8329e327b63cde92ba1284842 | void radeon_restore_bios_scratch_regs(struct radeon_device *rdev)
{
uint32_t scratch_reg;
int i;
if (rdev->family >= CHIP_R600)
scratch_reg = R600_BIOS_0_SCRATCH;
else
scratch_reg = RADEON_BIOS_0_SCRATCH;
for (i = 0; i < RADEON_BIOS_NUM_SCRATCH; i++)
WREG32(scratch_reg + (i * 4), rdev->bios_scratch[i]);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 16,967 |
Chrome | 8cfe2463cec6835c7b0b73dcb2ab2edaf035e3f9 | void AppControllerImpl::GetApps(
mojom::AppController::GetAppsCallback callback) {
std::vector<chromeos::kiosk_next_home::mojom::AppPtr> app_list;
app_service_proxy_->AppRegistryCache().ForEachApp(
[this, &app_list](const apps::AppUpdate& update) {
app_list.push_back(CreateAppPtr(update));
});
std::move(callback).Run(std::move(app_list));
}
| 1 | CVE-2016-5183 | CWE-416 | Use After Free | The product reuses or references memory after it has been freed. At some point afterward, the memory may be allocated again and saved in another pointer, while the original pointer references a location somewhere within the new allocation. Any operations using the original pointer are no longer valid because the memory "belongs" to the code that operates on the new pointer. |
Phase: Architecture and Design
Strategy: Language Selection
Choose a language that provides automatic memory management.
Phase: Implementation
Strategy: Attack Surface Reduction
When freeing pointers, be sure to set them to NULL once they are freed. However, the utilization of multiple or complex data structures may lower the usefulness of this strategy.
Effectiveness: Defense in Depth
Note: If a bug causes an attempted access of this pointer, then a NULL dereference could still lead to a crash or other unexpected behavior, but it will reduce or eliminate the risk of code execution. | 9,026 |
Chrome | 96dbafe288dbe2f0cc45fa3c39daf6d0c37acbab | _exsltDateTruncateDate (exsltDateValPtr dt, exsltDateType type)
{
if (dt == NULL)
return 1;
if ((type & XS_TIME) != XS_TIME) {
dt->value.date.hour = 0;
dt->value.date.min = 0;
dt->value.date.sec = 0.0;
}
if ((type & XS_GDAY) != XS_GDAY)
dt->value.date.day = 0;
if ((type & XS_GMONTH) != XS_GMONTH)
dt->value.date.mon = 0;
if ((type & XS_GYEAR) != XS_GYEAR)
dt->value.date.year = 0;
dt->type = type;
return 0;
}
| 1 | CVE-2016-1683 | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 2,831 |
imageworsener | a00183107d4b84bc8a714290e824ca9c68dac738 | void iwpvt_prng_destroy(struct iw_context *ctx, struct iw_prng *prng)
{
if(prng) iw_free(ctx,(void*)prng);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 17,488 |
libjpeg-turbo | dab6be4cfb2f9307b5378d2d1dc74d9080383dc2 | static int setDecompDefaults(struct jpeg_decompress_struct *dinfo,
int pixelFormat, int flags)
{
int retval=0;
switch(pixelFormat)
{
case TJPF_GRAY:
dinfo->out_color_space=JCS_GRAYSCALE; break;
#if JCS_EXTENSIONS==1
case TJPF_RGB:
dinfo->out_color_space=JCS_EXT_RGB; break;
case TJPF_BGR:
dinfo->out_color_space=JCS_EXT_BGR; break;
case TJPF_RGBX:
dinfo->out_color_space=JCS_EXT_RGBX; break;
case TJPF_BGRX:
dinfo->out_color_space=JCS_EXT_BGRX; break;
case TJPF_XRGB:
dinfo->out_color_space=JCS_EXT_XRGB; break;
case TJPF_XBGR:
dinfo->out_color_space=JCS_EXT_XBGR; break;
#if JCS_ALPHA_EXTENSIONS==1
case TJPF_RGBA:
dinfo->out_color_space=JCS_EXT_RGBA; break;
case TJPF_BGRA:
dinfo->out_color_space=JCS_EXT_BGRA; break;
case TJPF_ARGB:
dinfo->out_color_space=JCS_EXT_ARGB; break;
case TJPF_ABGR:
dinfo->out_color_space=JCS_EXT_ABGR; break;
#endif
#else
case TJPF_RGB:
case TJPF_BGR:
case TJPF_RGBX:
case TJPF_BGRX:
case TJPF_XRGB:
case TJPF_XBGR:
case TJPF_RGBA:
case TJPF_BGRA:
case TJPF_ARGB:
case TJPF_ABGR:
dinfo->out_color_space=JCS_RGB; break;
#endif
case TJPF_CMYK:
dinfo->out_color_space=JCS_CMYK; break;
default:
_throw("Unsupported pixel format");
}
if(flags&TJFLAG_FASTDCT) dinfo->dct_method=JDCT_FASTEST;
bailout:
return retval;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 13,903 |
radare2 | 48f0ea79f99174fb0a62cb2354e13496ce5b7c44 | RList *r_bin_ne_get_entrypoints(r_bin_ne_obj_t *bin) {
if (!bin->entry_table) {
return NULL;
}
RList *entries = r_list_newf (free);
if (!entries) {
return NULL;
}
RList *segments = r_bin_ne_get_segments (bin);
if (!segments) {
r_list_free (entries);
return NULL;
}
if (bin->ne_header->csEntryPoint) {
RBinAddr *entry = R_NEW0 (RBinAddr);
if (!entry) {
r_list_free (entries);
return NULL;
}
entry->bits = 16;
ut32 entry_cs = bin->ne_header->csEntryPoint;
RBinSection *s = r_list_get_n (segments, entry_cs - 1);
entry->paddr = bin->ne_header->ipEntryPoint + (s? s->paddr: 0);
r_list_append (entries, entry);
}
int off = 0;
size_t tableat = bin->header_offset + bin->ne_header->EntryTableOffset;
while (off < bin->ne_header->EntryTableLength) {
if (tableat + off >= r_buf_size (bin->buf)) {
break;
}
ut8 bundle_length = *(ut8 *)(bin->entry_table + off);
if (!bundle_length) {
break;
}
off++;
ut8 bundle_type = *(ut8 *)(bin->entry_table + off);
off++;
int i;
for (i = 0; i < bundle_length; i++) {
if (tableat + off + 4 >= r_buf_size (bin->buf)) {
break;
}
RBinAddr *entry = R_NEW0 (RBinAddr);
if (!entry) {
r_list_free (entries);
return NULL;
}
off++;
if (!bundle_type) { // Skip
off--;
free (entry);
break;
} else if (bundle_type == 0xff) { // moveable
off += 2;
ut8 segnum = *(bin->entry_table + off);
off++;
if (off > bin->ne_header->EntryTableLength) {
free (entry);
break;
}
ut16 segoff = r_read_le16 (bin->entry_table + off);
if (segnum > 0 && segnum < bin->ne_header->SegCount) {
entry->paddr = (ut64)bin->segment_entries[segnum - 1].offset * bin->alignment + segoff;
}
} else { // Fixed
if (off + 2 >= bin->ne_header->EntryTableLength) {
free (entry);
break;
}
ut16 delta = r_read_le16 (bin->entry_table + off);
if (bundle_type < bin->ne_header->SegCount) {
entry->paddr = (ut64)bin->segment_entries[bundle_type - 1].offset
* bin->alignment + delta;
}
}
off += 2;
r_list_append (entries, entry);
}
}
r_list_free (segments);
bin->entries = entries;
return entries;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 23,371 |
openexr | 5db6f7aee79e3e75e8c3780b18b28699614dd08e | lineBufferMinY (int y, int minY, int linesInLineBuffer)
{
return ((y - minY) / linesInLineBuffer) * linesInLineBuffer + minY;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 15,694 |
tensorflow | 30721cf564cb029d34535446d6a5a6357bebc8e7 | explicit EditDistanceOp(OpKernelConstruction* ctx) : OpKernel(ctx) {
OP_REQUIRES_OK(ctx, ctx->GetAttr("normalize", &normalize_));
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 22,699 |
php-src | 7245bff300d3fa8bacbef7897ff080a6f1c23eba?w=1 | static int spl_filesystem_file_read_csv(spl_filesystem_object *intern, char delimiter, char enclosure, char escape, zval *return_value TSRMLS_DC) /* {{{ */
{
int ret = SUCCESS;
do {
ret = spl_filesystem_file_read(intern, 1 TSRMLS_CC);
} while (ret == SUCCESS && !intern->u.file.current_line_len && SPL_HAS_FLAG(intern->flags, SPL_FILE_OBJECT_SKIP_EMPTY));
if (ret == SUCCESS) {
size_t buf_len = intern->u.file.current_line_len;
char *buf = estrndup(intern->u.file.current_line, buf_len);
if (intern->u.file.current_zval) {
zval_ptr_dtor(&intern->u.file.current_zval);
}
ALLOC_INIT_ZVAL(intern->u.file.current_zval);
php_fgetcsv(intern->u.file.stream, delimiter, enclosure, escape, buf_len, buf, intern->u.file.current_zval TSRMLS_CC);
if (return_value) {
if (Z_TYPE_P(return_value) != IS_NULL) {
zval_dtor(return_value);
ZVAL_NULL(return_value);
}
ZVAL_ZVAL(return_value, intern->u.file.current_zval, 1, 0);
}
}
return ret;
}
/* }}} */
| 1 | CVE-2016-5770 | CWE-190 | Integer Overflow or Wraparound | The product performs a calculation that can produce an integer overflow or wraparound when the logic assumes that the resulting value will always be larger than the original value. This occurs when an integer value is incremented to a value that is too large to store in the associated representation. When this occurs, the value may become a very small or negative number. | Phase: Requirements
Ensure that all protocols are strictly defined, such that all out-of-bounds behavior can be identified simply, and require strict conformance to the protocol.
Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
If possible, choose a language or compiler that performs automatic bounds checking.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Use libraries or frameworks that make it easier to handle numbers without unexpected consequences.
Examples include safe integer handling packages such as SafeInt (C++) or IntegerLib (C or C++). [REF-106]
Phase: Implementation
Strategy: Input Validation
Perform input validation on any numeric input by ensuring that it is within the expected range. Enforce that the input meets both the minimum and maximum requirements for the expected range.
Use unsigned integers where possible. This makes it easier to perform validation for integer overflows. When signed integers are required, ensure that the range check includes minimum values as well as maximum values.
Phase: Implementation
Understand the programming language's underlying representation and how it interacts with numeric calculation (CWE-681). Pay close attention to byte size discrepancies, precision, signed/unsigned distinctions, truncation, conversion and casting between types, "not-a-number" calculations, and how the language handles numbers that are too large or too small for its underlying representation. [REF-7]
Also be careful to account for 32-bit, 64-bit, and other potential differences that may affect the numeric representation.
Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
Phase: Implementation
Strategy: Compilation or Build Hardening
Examine compiler warnings closely and eliminate problems with potential security implications, such as signed / unsigned mismatch in memory operations, or use of uninitialized variables. Even if the weakness is rarely exploitable, a single failure may lead to the compromise of the entire system. | 9,124 |
linux | 690b2549b19563ec5ad53e5c82f6a944d910086e | static irqreturn_t ismt_do_interrupt(int vec, void *data)
{
u32 val;
struct ismt_priv *priv = data;
/*
* check to see it's our interrupt, return IRQ_NONE if not ours
* since we are sharing interrupt
*/
val = readl(priv->smba + ISMT_MSTR_MSTS);
if (!(val & (ISMT_MSTS_MIS | ISMT_MSTS_MEIS)))
return IRQ_NONE;
else
writel(val | ISMT_MSTS_MIS | ISMT_MSTS_MEIS,
priv->smba + ISMT_MSTR_MSTS);
return ismt_handle_isr(priv);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 19,400 |
LuaJIT | 53f82e6e2e858a0a62fd1a2ff47e9866693382e6 | LJ_NOINLINE void lj_err_mem(lua_State *L)
{
if (L->status == LUA_ERRERR+1) /* Don't touch the stack during lua_open. */
lj_vm_unwind_c(L->cframe, LUA_ERRMEM);
setstrV(L, L->top++, lj_err_str(L, LJ_ERR_ERRMEM));
lj_err_throw(L, LUA_ERRMEM);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 16,761 |
libarchive | dfd6b54ce33960e420fb206d8872fb759b577ad9 | cleanup_pathname(struct archive_write_disk *a)
{
char *dest, *src;
char separator = '\0';
dest = src = a->name;
if (*src == '\0') {
archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
"Invalid empty pathname");
return (ARCHIVE_FAILED);
}
#if defined(__CYGWIN__)
cleanup_pathname_win(a);
#endif
/* Skip leading '/'. */
if (*src == '/') {
if (a->flags & ARCHIVE_EXTRACT_SECURE_NOABSOLUTEPATHS) {
archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
"Path is absolute");
return (ARCHIVE_FAILED);
}
separator = *src++;
}
/* Scan the pathname one element at a time. */
for (;;) {
/* src points to first char after '/' */
if (src[0] == '\0') {
break;
} else if (src[0] == '/') {
/* Found '//', ignore second one. */
src++;
continue;
} else if (src[0] == '.') {
if (src[1] == '\0') {
/* Ignore trailing '.' */
break;
} else if (src[1] == '/') {
/* Skip './'. */
src += 2;
continue;
} else if (src[1] == '.') {
if (src[2] == '/' || src[2] == '\0') {
/* Conditionally warn about '..' */
if (a->flags & ARCHIVE_EXTRACT_SECURE_NODOTDOT) {
archive_set_error(&a->archive,
ARCHIVE_ERRNO_MISC,
"Path contains '..'");
return (ARCHIVE_FAILED);
}
}
/*
* Note: Under no circumstances do we
* remove '..' elements. In
* particular, restoring
* '/foo/../bar/' should create the
* 'foo' dir as a side-effect.
*/
}
}
/* Copy current element, including leading '/'. */
if (separator)
*dest++ = '/';
while (*src != '\0' && *src != '/') {
*dest++ = *src++;
}
if (*src == '\0')
break;
/* Skip '/' separator. */
separator = *src++;
}
/*
* We've just copied zero or more path elements, not including the
* final '/'.
*/
if (dest == a->name) {
/*
* Nothing got copied. The path must have been something
* like '.' or '/' or './' or '/././././/./'.
*/
if (separator)
*dest++ = '/';
else
*dest++ = '.';
}
/* Terminate the result. */
*dest = '\0';
return (ARCHIVE_OK);
}
| 1 | CVE-2016-5418 | CWE-20 | Improper Input Validation | The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly. |
Phase: Architecture and Design
Strategy: Attack Surface Reduction
Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111]
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173).
Phases: Architecture and Design; Implementation
Strategy: Attack Surface Reduction
Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls.
Phase: Implementation
Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
Effectiveness: High
Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings.
Phase: Implementation
When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined.
Phase: Implementation
Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow.
Phase: Implementation
Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained.
Phase: Implementation
Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content.
Phase: Implementation
When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so. | 2,136 |
Chrome | 62154472bd2c43e1790dd1bd8a527c1db9118d88 | bool FakeCentral::IsPowered() const {
switch (state_) {
case mojom::CentralState::POWERED_OFF:
return false;
case mojom::CentralState::POWERED_ON:
return true;
case mojom::CentralState::ABSENT:
NOTREACHED();
return false;
}
NOTREACHED();
return false;
}
| 1 | CVE-2017-5044 | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 4,883 |
faad2 | 720f7004d6c4aabee19aad16e7c456ed76a3ebfa | uint32_t read_callback(void *user_data, void *buffer, uint32_t length)
{
return fread(buffer, 1, length, (FILE*)user_data);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 17,708 |
libvips | 20d840e6da15c1574b3ed998bc92f91d1e36c2a5 | vips_foreign_map( const char *base, VipsSListMap2Fn fn, void *a, void *b )
{
GSList *files;
void *result;
files = NULL;
(void) vips_class_map_all( g_type_from_name( base ),
(VipsClassMapFn) file_add_class, (void *) &files );
files = g_slist_sort( files, (GCompareFunc) file_compare );
result = vips_slist_map2( files, fn, a, b );
g_slist_free( files );
return( result );
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 14,610 |
rsync | c8255147b06b74dad940d32f9cef5fbe17595239 | static void hash_search(int f,struct sum_struct *s,
struct map_struct *buf, OFF_T len)
{
OFF_T offset, aligned_offset, end;
int32 k, want_i, aligned_i, backup;
char sum2[SUM_LENGTH];
uint32 s1, s2, sum;
int more;
schar *map;
/* want_i is used to encourage adjacent matches, allowing the RLL
* coding of the output to work more efficiently. */
want_i = 0;
if (verbose > 2) {
rprintf(FINFO, "hash search b=%ld len=%.0f\n",
(long)s->blength, (double)len);
}
k = (int32)MIN(len, (OFF_T)s->blength);
map = (schar *)map_ptr(buf, 0, k);
sum = get_checksum1((char *)map, k);
s1 = sum & 0xFFFF;
s2 = sum >> 16;
if (verbose > 3)
rprintf(FINFO, "sum=%.8x k=%ld\n", sum, (long)k);
offset = aligned_offset = aligned_i = 0;
end = len + 1 - s->sums[s->count-1].len;
if (verbose > 3) {
rprintf(FINFO, "hash search s->blength=%ld len=%.0f count=%.0f\n",
(long)s->blength, (double)len, (double)s->count);
}
do {
int done_csum2 = 0;
int32 i;
if (verbose > 4) {
rprintf(FINFO, "offset=%.0f sum=%04x%04x\n",
(double)offset, s2 & 0xFFFF, s1 & 0xFFFF);
}
if (tablesize == TRADITIONAL_TABLESIZE) {
if ((i = hash_table[SUM2HASH2(s1,s2)]) < 0)
goto null_hash;
sum = (s1 & 0xffff) | (s2 << 16);
} else {
sum = (s1 & 0xffff) | (s2 << 16);
if ((i = hash_table[BIG_SUM2HASH(sum)]) < 0)
goto null_hash;
}
hash_hits++;
do {
int32 l;
if (sum != s->sums[i].sum1)
continue;
/* also make sure the two blocks are the same length */
l = (int32)MIN((OFF_T)s->blength, len-offset);
if (l != s->sums[i].len)
continue;
/* in-place: ensure chunk's offset is either >= our
* offset or that the data didn't move. */
if (updating_basis_file && s->sums[i].offset < offset
&& !(s->sums[i].flags & SUMFLG_SAME_OFFSET))
continue;
if (verbose > 3) {
rprintf(FINFO,
"potential match at %.0f i=%ld sum=%08x\n",
(double)offset, (long)i, sum);
}
if (!done_csum2) {
map = (schar *)map_ptr(buf,offset,l);
get_checksum2((char *)map,l,sum2);
done_csum2 = 1;
}
if (memcmp(sum2,s->sums[i].sum2,s->s2length) != 0) {
false_alarms++;
continue;
}
/* When updating in-place, the best possible match is
* one with an identical offset, so we prefer that over
* the adjacent want_i optimization. */
if (updating_basis_file) {
/* All the generator's chunks start at blength boundaries. */
while (aligned_offset < offset) {
aligned_offset += s->blength;
aligned_i++;
}
if (offset == aligned_offset) {
if (i != aligned_i) {
if (sum != s->sums[aligned_i].sum1
|| l != s->sums[aligned_i].len
|| memcmp(sum2, s->sums[aligned_i].sum2, s->s2length) != 0)
goto check_want_i;
i = aligned_i;
}
/* This identical chunk is in the same spot in the old and new file. */
s->sums[i].flags |= SUMFLG_SAME_OFFSET;
want_i = i;
}
}
check_want_i:
/* we've found a match, but now check to see
* if want_i can hint at a better match. */
if (i != want_i && want_i < s->count
&& (!updating_basis_file || s->sums[want_i].offset >= offset
|| s->sums[want_i].flags & SUMFLG_SAME_OFFSET)
&& sum == s->sums[want_i].sum1
&& memcmp(sum2, s->sums[want_i].sum2, s->s2length) == 0) {
/* we've found an adjacent match - the RLL coder
* will be happy */
i = want_i;
}
want_i = i + 1;
matched(f,s,buf,offset,i);
offset += s->sums[i].len - 1;
k = (int32)MIN((OFF_T)s->blength, len-offset);
map = (schar *)map_ptr(buf, offset, k);
sum = get_checksum1((char *)map, k);
s1 = sum & 0xFFFF;
s2 = sum >> 16;
matches++;
break;
} while ((i = s->sums[i].chain) >= 0);
null_hash:
backup = (int32)(offset - last_match);
/* We sometimes read 1 byte prior to last_match... */
if (backup < 0)
backup = 0;
/* Trim off the first byte from the checksum */
more = offset + k < len;
map = (schar *)map_ptr(buf, offset - backup, k + more + backup)
+ backup;
s1 -= map[0] + CHAR_OFFSET;
s2 -= k * (map[0]+CHAR_OFFSET);
/* Add on the next byte (if there is one) to the checksum */
if (more) {
s1 += map[k] + CHAR_OFFSET;
s2 += s1;
} else
--k;
/* By matching early we avoid re-reading the
data 3 times in the case where a token
match comes a long way after last
match. The 3 reads are caused by the
running match, the checksum update and the
literal send. */
if (backup >= s->blength+CHUNK_SIZE && end-offset > CHUNK_SIZE)
matched(f, s, buf, offset - s->blength, -2);
} while (++offset < end);
matched(f, s, buf, len, -1);
map_ptr(buf, len-1, 1);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 22,478 |
Chrome | fcd3a7a671ecf2d5f46ea34787d27507a914d2f5 | void SyncManager::SyncInternal::MaybeSetSyncTabsInNigoriNode(
const ModelTypeSet enabled_types) {
if (initialized_ && enabled_types.Has(syncable::SESSIONS)) {
WriteTransaction trans(FROM_HERE, GetUserShare());
WriteNode node(&trans);
if (node.InitByTagLookup(kNigoriTag) != sync_api::BaseNode::INIT_OK) {
LOG(WARNING) << "Unable to set 'sync_tabs' bit because Nigori node not "
<< "found.";
return;
}
sync_pb::NigoriSpecifics specifics(node.GetNigoriSpecifics());
specifics.set_sync_tabs(true);
node.SetNigoriSpecifics(specifics);
}
}
| 1 | CVE-2012-2880 | CWE-362 | Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition') | The product contains a concurrent code sequence that requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence operating concurrently. | Phase: Architecture and Design
In languages that support it, use synchronization primitives. Only wrap these around critical code to minimize the impact on performance.
Phase: Architecture and Design
Use thread-safe capabilities such as the data access abstraction in Spring.
Phase: Architecture and Design
Minimize the usage of shared resources in order to remove as much complexity as possible from the control flow and to reduce the likelihood of unexpected conditions occurring.
Additionally, this will minimize the amount of synchronization necessary and may even help to reduce the likelihood of a denial of service where an attacker may be able to repeatedly trigger a critical section (CWE-400).
Phase: Implementation
When using multithreading and operating on shared variables, only use thread-safe functions.
Phase: Implementation
Use atomic operations on shared variables. Be wary of innocent-looking constructs such as "x++". This may appear atomic at the code layer, but it is actually non-atomic at the instruction layer, since it involves a read, followed by a computation, followed by a write.
Phase: Implementation
Use a mutex if available, but be sure to avoid related weaknesses such as CWE-412.
Phase: Implementation
Avoid double-checked locking (CWE-609) and other implementation errors that arise when trying to avoid the overhead of synchronization.
Phase: Implementation
Disable interrupts or signals over critical parts of the code, but also make sure that the code does not go into a large or infinite loop.
Phase: Implementation
Use the volatile type modifier for critical variables to avoid unexpected compiler optimization or reordering. This does not necessarily solve the synchronization problem, but it can help.
Phases: Architecture and Design; Operation
Strategy: Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks [REF-76]. If possible, create isolated accounts with limited privileges that are only used for a single task. That way, a successful attack will not immediately give the attacker access to the rest of the software or its environment. For example, database applications rarely need to run as the database administrator, especially in day-to-day operations | 2,807 |
linux | 85dfb745ee40232876663ae206cba35f24ab2a40 | static int key_notify_policy(struct xfrm_policy *xp, int dir, const struct km_event *c)
{
struct sk_buff *out_skb;
struct sadb_msg *out_hdr;
int err;
out_skb = pfkey_xfrm_policy2msg_prep(xp);
if (IS_ERR(out_skb))
return PTR_ERR(out_skb);
err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
if (err < 0)
return err;
out_hdr = (struct sadb_msg *) out_skb->data;
out_hdr->sadb_msg_version = PF_KEY_V2;
if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
else
out_hdr->sadb_msg_type = event2poltype(c->event);
out_hdr->sadb_msg_errno = 0;
out_hdr->sadb_msg_seq = c->seq;
out_hdr->sadb_msg_pid = c->portid;
pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xp_net(xp));
return 0;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 13,788 |
Chrome | dc7b094a338c6c521f918f478e993f0f74bbea0d | static void RegisterPropertiesHandler(
void* object, const ImePropertyList& prop_list) {
if (!BrowserThread::CurrentlyOn(BrowserThread::UI)) {
LOG(ERROR) << "Not on UI thread";
return;
}
InputMethodLibraryImpl* input_method_library =
static_cast<InputMethodLibraryImpl*>(object);
input_method_library->RegisterProperties(prop_list);
}
| 1 | CVE-2011-2804 | CWE-399 | Resource Management Errors | Weaknesses in this category are related to improper management of system resources. | Not Found in CWE Page | 3,890 |
ntopng | 01f47e04fd7c8d54399c9e465f823f0017069f8f | void lua_push_nil_table_entry(lua_State *L, const char *key) {
if(L) {
lua_pushstring(L, key);
lua_pushnil(L);
lua_settable(L, -3);
}
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 10,263 |
linux | 594cc251fdd0d231d342d88b2fdff4bc42fb0690 | static inline u64 gen8_noncanonical_addr(u64 address)
{
return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 14,210 |
ImageMagick | d23beebe7b1179fb75db1e85fbca3100e49593d9 | static Image *ExtractPostscript(Image *image,const ImageInfo *image_info,
MagickOffsetType PS_Offset,ssize_t PS_Size,ExceptionInfo *exception)
{
char
postscript_file[MaxTextExtent];
const MagicInfo
*magic_info;
FILE
*ps_file;
ImageInfo
*clone_info;
Image
*image2;
unsigned char
magick[2*MaxTextExtent];
if ((clone_info=CloneImageInfo(image_info)) == NULL)
return(image);
clone_info->blob=(void *) NULL;
clone_info->length=0;
/* Obtain temporary file */
(void) AcquireUniqueFilename(postscript_file);
ps_file=fopen_utf8(postscript_file,"wb");
if (ps_file == (FILE *) NULL)
goto FINISH;
/* Copy postscript to temporary file */
(void) SeekBlob(image,PS_Offset,SEEK_SET);
(void) ReadBlob(image, 2*MaxTextExtent, magick);
(void) SeekBlob(image,PS_Offset,SEEK_SET);
while(PS_Size-- > 0)
{
(void) fputc(ReadBlobByte(image),ps_file);
}
(void) fclose(ps_file);
/* Detect file format - Check magic.mgk configuration file. */
magic_info=GetMagicInfo(magick,2*MaxTextExtent,exception);
if(magic_info == (const MagicInfo *) NULL) goto FINISH_UNL;
/* printf("Detected:%s \n",magic_info->name); */
if(exception->severity != UndefinedException) goto FINISH_UNL;
if(magic_info->name == (char *) NULL) goto FINISH_UNL;
(void) strncpy(clone_info->magick,magic_info->name,MaxTextExtent);
/* Read nested image */
/*FormatString(clone_info->filename,"%s:%s",magic_info->name,postscript_file);*/
FormatLocaleString(clone_info->filename,MaxTextExtent,"%s",postscript_file);
image2=ReadImage(clone_info,exception);
if (!image2)
goto FINISH_UNL;
/*
Replace current image with new image while copying base image
attributes.
*/
(void) CopyMagickString(image2->filename,image->filename,MaxTextExtent);
(void) CopyMagickString(image2->magick_filename,image->magick_filename,MaxTextExtent);
(void) CopyMagickString(image2->magick,image->magick,MaxTextExtent);
image2->depth=image->depth;
DestroyBlob(image2);
image2->blob=ReferenceBlob(image->blob);
if ((image->rows == 0) || (image->columns == 0))
DeleteImageFromList(&image);
AppendImageToList(&image,image2);
FINISH_UNL:
(void) RelinquishUniqueFileResource(postscript_file);
FINISH:
DestroyImageInfo(clone_info);
return(image);
}
| 1 | CVE-2016-10145 | CWE-189 | Numeric Errors | Weaknesses in this category are related to improper calculation or conversion of numbers. | Not Found in CWE Page | 6,523 |
Android | f22c2a0f0f9e030c240468d9d18b9297f001bcf0 | OMX_ERRORTYPE omx_vdec::set_parameter(OMX_IN OMX_HANDLETYPE hComp,
OMX_IN OMX_INDEXTYPE paramIndex,
OMX_IN OMX_PTR paramData)
{
OMX_ERRORTYPE eRet = OMX_ErrorNone;
int ret=0;
struct v4l2_format fmt;
#ifdef _ANDROID_
char property_value[PROPERTY_VALUE_MAX] = {0};
#endif
if (m_state == OMX_StateInvalid) {
DEBUG_PRINT_ERROR("Set Param in Invalid State");
return OMX_ErrorInvalidState;
}
if (paramData == NULL) {
DEBUG_PRINT_ERROR("Get Param in Invalid paramData");
return OMX_ErrorBadParameter;
}
if ((m_state != OMX_StateLoaded) &&
BITMASK_ABSENT(&m_flags,OMX_COMPONENT_OUTPUT_ENABLE_PENDING) &&
(m_out_bEnabled == OMX_TRUE) &&
BITMASK_ABSENT(&m_flags, OMX_COMPONENT_INPUT_ENABLE_PENDING) &&
(m_inp_bEnabled == OMX_TRUE)) {
DEBUG_PRINT_ERROR("Set Param in Invalid State");
return OMX_ErrorIncorrectStateOperation;
}
switch ((unsigned long)paramIndex) {
case OMX_IndexParamPortDefinition: {
VALIDATE_OMX_PARAM_DATA(paramData, OMX_PARAM_PORTDEFINITIONTYPE);
OMX_PARAM_PORTDEFINITIONTYPE *portDefn;
portDefn = (OMX_PARAM_PORTDEFINITIONTYPE *) paramData;
DEBUG_PRINT_LOW("set_parameter: OMX_IndexParamPortDefinition H= %d, W = %d",
(int)portDefn->format.video.nFrameHeight,
(int)portDefn->format.video.nFrameWidth);
if (OMX_DirOutput == portDefn->eDir) {
DEBUG_PRINT_LOW("set_parameter: OMX_IndexParamPortDefinition OP port");
bool port_format_changed = false;
m_display_id = portDefn->format.video.pNativeWindow;
unsigned int buffer_size;
/* update output port resolution with client supplied dimensions
in case scaling is enabled, else it follows input resolution set
*/
if (is_down_scalar_enabled) {
DEBUG_PRINT_LOW("SetParam OP: WxH(%u x %u)",
(unsigned int)portDefn->format.video.nFrameWidth,
(unsigned int)portDefn->format.video.nFrameHeight);
if (portDefn->format.video.nFrameHeight != 0x0 &&
portDefn->format.video.nFrameWidth != 0x0) {
memset(&fmt, 0x0, sizeof(struct v4l2_format));
fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
fmt.fmt.pix_mp.pixelformat = capture_capability;
ret = ioctl(drv_ctx.video_driver_fd, VIDIOC_G_FMT, &fmt);
if (ret) {
DEBUG_PRINT_ERROR("Get Resolution failed");
eRet = OMX_ErrorHardware;
break;
}
if ((portDefn->format.video.nFrameHeight != (unsigned int)fmt.fmt.pix_mp.height) ||
(portDefn->format.video.nFrameWidth != (unsigned int)fmt.fmt.pix_mp.width)) {
port_format_changed = true;
}
update_resolution(portDefn->format.video.nFrameWidth,
portDefn->format.video.nFrameHeight,
portDefn->format.video.nFrameWidth,
portDefn->format.video.nFrameHeight);
/* set crop info */
rectangle.nLeft = 0;
rectangle.nTop = 0;
rectangle.nWidth = portDefn->format.video.nFrameWidth;
rectangle.nHeight = portDefn->format.video.nFrameHeight;
eRet = is_video_session_supported();
if (eRet)
break;
memset(&fmt, 0x0, sizeof(struct v4l2_format));
fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
fmt.fmt.pix_mp.height = drv_ctx.video_resolution.frame_height;
fmt.fmt.pix_mp.width = drv_ctx.video_resolution.frame_width;
fmt.fmt.pix_mp.pixelformat = capture_capability;
DEBUG_PRINT_LOW("fmt.fmt.pix_mp.height = %d , fmt.fmt.pix_mp.width = %d",
fmt.fmt.pix_mp.height, fmt.fmt.pix_mp.width);
ret = ioctl(drv_ctx.video_driver_fd, VIDIOC_S_FMT, &fmt);
if (ret) {
DEBUG_PRINT_ERROR("Set Resolution failed");
eRet = OMX_ErrorUnsupportedSetting;
} else
eRet = get_buffer_req(&drv_ctx.op_buf);
}
if (eRet) {
break;
}
if (secure_mode) {
struct v4l2_control control;
control.id = V4L2_CID_MPEG_VIDC_VIDEO_SECURE_SCALING_THRESHOLD;
if (ioctl(drv_ctx.video_driver_fd, VIDIOC_G_CTRL, &control) < 0) {
DEBUG_PRINT_ERROR("Failed getting secure scaling threshold : %d, id was : %x", errno, control.id);
eRet = OMX_ErrorHardware;
} else {
/* This is a workaround for a bug in fw which uses stride
* and slice instead of width and height to check against
* the threshold.
*/
OMX_U32 stride, slice;
if (drv_ctx.output_format == VDEC_YUV_FORMAT_NV12) {
stride = VENUS_Y_STRIDE(COLOR_FMT_NV12, portDefn->format.video.nFrameWidth);
slice = VENUS_Y_SCANLINES(COLOR_FMT_NV12, portDefn->format.video.nFrameHeight);
} else {
stride = portDefn->format.video.nFrameWidth;
slice = portDefn->format.video.nFrameHeight;
}
DEBUG_PRINT_LOW("Stride is %d, slice is %d, sxs is %d\n", stride, slice, stride * slice);
DEBUG_PRINT_LOW("Threshold value is %d\n", control.value);
if (stride * slice <= (OMX_U32)control.value) {
secure_scaling_to_non_secure_opb = true;
DEBUG_PRINT_HIGH("Enabling secure scalar out of CPZ");
control.id = V4L2_CID_MPEG_VIDC_VIDEO_NON_SECURE_OUTPUT2;
control.value = 1;
if (ioctl(drv_ctx.video_driver_fd, VIDIOC_S_CTRL, &control) < 0) {
DEBUG_PRINT_ERROR("Enabling non-secure output2 failed");
eRet = OMX_ErrorUnsupportedSetting;
}
}
}
}
}
if (eRet) {
break;
}
if (!client_buffers.get_buffer_req(buffer_size)) {
DEBUG_PRINT_ERROR("Error in getting buffer requirements");
eRet = OMX_ErrorBadParameter;
} else if (!port_format_changed) {
if ( portDefn->nBufferCountActual >= drv_ctx.op_buf.mincount &&
portDefn->nBufferSize >= drv_ctx.op_buf.buffer_size ) {
drv_ctx.op_buf.actualcount = portDefn->nBufferCountActual;
drv_ctx.op_buf.buffer_size = portDefn->nBufferSize;
drv_ctx.extradata_info.count = drv_ctx.op_buf.actualcount;
drv_ctx.extradata_info.size = drv_ctx.extradata_info.count *
drv_ctx.extradata_info.buffer_size;
eRet = set_buffer_req(&drv_ctx.op_buf);
if (eRet == OMX_ErrorNone)
m_port_def = *portDefn;
} else {
DEBUG_PRINT_ERROR("ERROR: OP Requirements(#%d: %u) Requested(#%u: %u)",
drv_ctx.op_buf.mincount, (unsigned int)drv_ctx.op_buf.buffer_size,
(unsigned int)portDefn->nBufferCountActual, (unsigned int)portDefn->nBufferSize);
eRet = OMX_ErrorBadParameter;
}
}
} else if (OMX_DirInput == portDefn->eDir) {
DEBUG_PRINT_LOW("set_parameter: OMX_IndexParamPortDefinition IP port");
bool port_format_changed = false;
if ((portDefn->format.video.xFramerate >> 16) > 0 &&
(portDefn->format.video.xFramerate >> 16) <= MAX_SUPPORTED_FPS) {
DEBUG_PRINT_HIGH("set_parameter: frame rate set by omx client : %u",
(unsigned int)portDefn->format.video.xFramerate >> 16);
Q16ToFraction(portDefn->format.video.xFramerate, drv_ctx.frame_rate.fps_numerator,
drv_ctx.frame_rate.fps_denominator);
if (!drv_ctx.frame_rate.fps_numerator) {
DEBUG_PRINT_ERROR("Numerator is zero setting to 30");
drv_ctx.frame_rate.fps_numerator = 30;
}
if (drv_ctx.frame_rate.fps_denominator)
drv_ctx.frame_rate.fps_numerator = (int)
drv_ctx.frame_rate.fps_numerator / drv_ctx.frame_rate.fps_denominator;
drv_ctx.frame_rate.fps_denominator = 1;
frm_int = drv_ctx.frame_rate.fps_denominator * 1e6 /
drv_ctx.frame_rate.fps_numerator;
DEBUG_PRINT_LOW("set_parameter: frm_int(%u) fps(%.2f)",
(unsigned int)frm_int, drv_ctx.frame_rate.fps_numerator /
(float)drv_ctx.frame_rate.fps_denominator);
struct v4l2_outputparm oparm;
/*XXX: we're providing timing info as seconds per frame rather than frames
* per second.*/
oparm.timeperframe.numerator = drv_ctx.frame_rate.fps_denominator;
oparm.timeperframe.denominator = drv_ctx.frame_rate.fps_numerator;
struct v4l2_streamparm sparm;
sparm.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
sparm.parm.output = oparm;
if (ioctl(drv_ctx.video_driver_fd, VIDIOC_S_PARM, &sparm)) {
DEBUG_PRINT_ERROR("Unable to convey fps info to driver, performance might be affected");
eRet = OMX_ErrorHardware;
break;
}
}
if (drv_ctx.video_resolution.frame_height !=
portDefn->format.video.nFrameHeight ||
drv_ctx.video_resolution.frame_width !=
portDefn->format.video.nFrameWidth) {
DEBUG_PRINT_LOW("SetParam IP: WxH(%u x %u)",
(unsigned int)portDefn->format.video.nFrameWidth,
(unsigned int)portDefn->format.video.nFrameHeight);
port_format_changed = true;
OMX_U32 frameWidth = portDefn->format.video.nFrameWidth;
OMX_U32 frameHeight = portDefn->format.video.nFrameHeight;
if (frameHeight != 0x0 && frameWidth != 0x0) {
if (m_smoothstreaming_mode &&
((frameWidth * frameHeight) <
(m_smoothstreaming_width * m_smoothstreaming_height))) {
frameWidth = m_smoothstreaming_width;
frameHeight = m_smoothstreaming_height;
DEBUG_PRINT_LOW("NOTE: Setting resolution %u x %u "
"for adaptive-playback/smooth-streaming",
(unsigned int)frameWidth, (unsigned int)frameHeight);
}
update_resolution(frameWidth, frameHeight,
frameWidth, frameHeight);
eRet = is_video_session_supported();
if (eRet)
break;
memset(&fmt, 0x0, sizeof(struct v4l2_format));
fmt.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
fmt.fmt.pix_mp.height = drv_ctx.video_resolution.frame_height;
fmt.fmt.pix_mp.width = drv_ctx.video_resolution.frame_width;
fmt.fmt.pix_mp.pixelformat = output_capability;
DEBUG_PRINT_LOW("fmt.fmt.pix_mp.height = %d , fmt.fmt.pix_mp.width = %d",fmt.fmt.pix_mp.height,fmt.fmt.pix_mp.width);
ret = ioctl(drv_ctx.video_driver_fd, VIDIOC_S_FMT, &fmt);
if (ret) {
DEBUG_PRINT_ERROR("Set Resolution failed");
eRet = OMX_ErrorUnsupportedSetting;
} else {
if (!is_down_scalar_enabled)
eRet = get_buffer_req(&drv_ctx.op_buf);
}
}
}
if (m_custom_buffersize.input_buffersize
&& (portDefn->nBufferSize > m_custom_buffersize.input_buffersize)) {
DEBUG_PRINT_ERROR("ERROR: Custom buffer size set by client: %d, trying to set: %d",
m_custom_buffersize.input_buffersize, portDefn->nBufferSize);
eRet = OMX_ErrorBadParameter;
break;
}
if (portDefn->nBufferCountActual >= drv_ctx.ip_buf.mincount
|| portDefn->nBufferSize != drv_ctx.ip_buf.buffer_size) {
port_format_changed = true;
vdec_allocatorproperty *buffer_prop = &drv_ctx.ip_buf;
drv_ctx.ip_buf.actualcount = portDefn->nBufferCountActual;
drv_ctx.ip_buf.buffer_size = (portDefn->nBufferSize + buffer_prop->alignment - 1) &
(~(buffer_prop->alignment - 1));
eRet = set_buffer_req(buffer_prop);
}
if (false == port_format_changed) {
DEBUG_PRINT_ERROR("ERROR: IP Requirements(#%d: %u) Requested(#%u: %u)",
drv_ctx.ip_buf.mincount, (unsigned int)drv_ctx.ip_buf.buffer_size,
(unsigned int)portDefn->nBufferCountActual, (unsigned int)portDefn->nBufferSize);
eRet = OMX_ErrorBadParameter;
}
} else if (portDefn->eDir == OMX_DirMax) {
DEBUG_PRINT_ERROR(" Set_parameter: Bad Port idx %d",
(int)portDefn->nPortIndex);
eRet = OMX_ErrorBadPortIndex;
}
}
break;
case OMX_IndexParamVideoPortFormat: {
VALIDATE_OMX_PARAM_DATA(paramData, OMX_VIDEO_PARAM_PORTFORMATTYPE);
OMX_VIDEO_PARAM_PORTFORMATTYPE *portFmt =
(OMX_VIDEO_PARAM_PORTFORMATTYPE *)paramData;
int ret=0;
struct v4l2_format fmt;
DEBUG_PRINT_LOW("set_parameter: OMX_IndexParamVideoPortFormat 0x%x, port: %u",
portFmt->eColorFormat, (unsigned int)portFmt->nPortIndex);
memset(&fmt, 0x0, sizeof(struct v4l2_format));
if (1 == portFmt->nPortIndex) {
fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
fmt.fmt.pix_mp.height = drv_ctx.video_resolution.frame_height;
fmt.fmt.pix_mp.width = drv_ctx.video_resolution.frame_width;
fmt.fmt.pix_mp.pixelformat = capture_capability;
enum vdec_output_fromat op_format;
if (portFmt->eColorFormat == (OMX_COLOR_FORMATTYPE)
QOMX_COLOR_FORMATYUV420PackedSemiPlanar32m ||
portFmt->eColorFormat == (OMX_COLOR_FORMATTYPE)
QOMX_COLOR_FORMATYUV420PackedSemiPlanar32mMultiView ||
portFmt->eColorFormat == OMX_COLOR_FormatYUV420Planar ||
portFmt->eColorFormat == OMX_COLOR_FormatYUV420SemiPlanar)
op_format = (enum vdec_output_fromat)VDEC_YUV_FORMAT_NV12;
else
eRet = OMX_ErrorBadParameter;
if (eRet == OMX_ErrorNone) {
drv_ctx.output_format = op_format;
ret = ioctl(drv_ctx.video_driver_fd, VIDIOC_S_FMT, &fmt);
if (ret) {
DEBUG_PRINT_ERROR("Set output format failed");
eRet = OMX_ErrorUnsupportedSetting;
/*TODO: How to handle this case */
} else {
eRet = get_buffer_req(&drv_ctx.op_buf);
}
}
if (eRet == OMX_ErrorNone) {
if (!client_buffers.set_color_format(portFmt->eColorFormat)) {
DEBUG_PRINT_ERROR("Set color format failed");
eRet = OMX_ErrorBadParameter;
}
}
}
}
break;
case OMX_QcomIndexPortDefn: {
VALIDATE_OMX_PARAM_DATA(paramData, OMX_QCOM_PARAM_PORTDEFINITIONTYPE);
OMX_QCOM_PARAM_PORTDEFINITIONTYPE *portFmt =
(OMX_QCOM_PARAM_PORTDEFINITIONTYPE *) paramData;
DEBUG_PRINT_LOW("set_parameter: OMX_IndexQcomParamPortDefinitionType %u",
(unsigned int)portFmt->nFramePackingFormat);
/* Input port */
if (portFmt->nPortIndex == 0) {
if (portFmt->nFramePackingFormat == OMX_QCOM_FramePacking_Arbitrary) {
if (secure_mode) {
arbitrary_bytes = false;
DEBUG_PRINT_ERROR("setparameter: cannot set to arbitary bytes mode in secure session");
eRet = OMX_ErrorUnsupportedSetting;
} else {
arbitrary_bytes = true;
}
} else if (portFmt->nFramePackingFormat ==
OMX_QCOM_FramePacking_OnlyOneCompleteFrame) {
arbitrary_bytes = false;
#ifdef _ANDROID_
property_get("vidc.dec.debug.arbitrarybytes.mode", property_value, "0");
if (atoi(property_value)) {
DEBUG_PRINT_HIGH("arbitrary_bytes enabled via property command");
arbitrary_bytes = true;
}
#endif
} else {
DEBUG_PRINT_ERROR("Setparameter: unknown FramePacking format %u",
(unsigned int)portFmt->nFramePackingFormat);
eRet = OMX_ErrorUnsupportedSetting;
}
} else if (portFmt->nPortIndex == OMX_CORE_OUTPUT_PORT_INDEX) {
DEBUG_PRINT_HIGH("set_parameter: OMX_IndexQcomParamPortDefinitionType OP Port");
if ( (portFmt->nMemRegion > OMX_QCOM_MemRegionInvalid &&
portFmt->nMemRegion < OMX_QCOM_MemRegionMax) &&
portFmt->nCacheAttr == OMX_QCOM_CacheAttrNone) {
m_out_mem_region_smi = OMX_TRUE;
if ((m_out_mem_region_smi && m_out_pvt_entry_pmem)) {
DEBUG_PRINT_HIGH("set_parameter: OMX_IndexQcomParamPortDefinitionType OP Port: out pmem set");
m_use_output_pmem = OMX_TRUE;
}
}
}
}
break;
case OMX_IndexParamStandardComponentRole: {
VALIDATE_OMX_PARAM_DATA(paramData, OMX_PARAM_COMPONENTROLETYPE);
OMX_PARAM_COMPONENTROLETYPE *comp_role;
comp_role = (OMX_PARAM_COMPONENTROLETYPE *) paramData;
DEBUG_PRINT_LOW("set_parameter: OMX_IndexParamStandardComponentRole %s",
comp_role->cRole);
if ((m_state == OMX_StateLoaded)&&
!BITMASK_PRESENT(&m_flags,OMX_COMPONENT_IDLE_PENDING)) {
DEBUG_PRINT_LOW("Set Parameter called in valid state");
} else {
DEBUG_PRINT_ERROR("Set Parameter called in Invalid State");
return OMX_ErrorIncorrectStateOperation;
}
if (!strncmp(drv_ctx.kind, "OMX.qcom.video.decoder.avc",OMX_MAX_STRINGNAME_SIZE)) {
if (!strncmp((char*)comp_role->cRole,"video_decoder.avc",OMX_MAX_STRINGNAME_SIZE)) {
strlcpy((char*)m_cRole,"video_decoder.avc",OMX_MAX_STRINGNAME_SIZE);
} else {
DEBUG_PRINT_ERROR("Setparameter: unknown Index %s", comp_role->cRole);
eRet =OMX_ErrorUnsupportedSetting;
}
} else if (!strncmp(drv_ctx.kind, "OMX.qcom.video.decoder.mvc", OMX_MAX_STRINGNAME_SIZE)) {
if (!strncmp((char*)comp_role->cRole, "video_decoder.mvc", OMX_MAX_STRINGNAME_SIZE)) {
strlcpy((char*)m_cRole, "video_decoder.mvc", OMX_MAX_STRINGNAME_SIZE);
} else {
DEBUG_PRINT_ERROR("Setparameter: unknown Index %s", comp_role->cRole);
eRet =OMX_ErrorUnsupportedSetting;
}
} else if (!strncmp(drv_ctx.kind, "OMX.qcom.video.decoder.mpeg4",OMX_MAX_STRINGNAME_SIZE)) {
if (!strncmp((const char*)comp_role->cRole,"video_decoder.mpeg4",OMX_MAX_STRINGNAME_SIZE)) {
strlcpy((char*)m_cRole,"video_decoder.mpeg4",OMX_MAX_STRINGNAME_SIZE);
} else {
DEBUG_PRINT_ERROR("Setparameter: unknown Index %s", comp_role->cRole);
eRet = OMX_ErrorUnsupportedSetting;
}
} else if (!strncmp(drv_ctx.kind, "OMX.qcom.video.decoder.h263",OMX_MAX_STRINGNAME_SIZE)) {
if (!strncmp((const char*)comp_role->cRole,"video_decoder.h263",OMX_MAX_STRINGNAME_SIZE)) {
strlcpy((char*)m_cRole,"video_decoder.h263",OMX_MAX_STRINGNAME_SIZE);
} else {
DEBUG_PRINT_ERROR("Setparameter: unknown Index %s", comp_role->cRole);
eRet =OMX_ErrorUnsupportedSetting;
}
} else if (!strncmp(drv_ctx.kind, "OMX.qcom.video.decoder.mpeg2",OMX_MAX_STRINGNAME_SIZE)) {
if (!strncmp((const char*)comp_role->cRole,"video_decoder.mpeg2",OMX_MAX_STRINGNAME_SIZE)) {
strlcpy((char*)m_cRole,"video_decoder.mpeg2",OMX_MAX_STRINGNAME_SIZE);
} else {
DEBUG_PRINT_ERROR("Setparameter: unknown Index %s", comp_role->cRole);
eRet = OMX_ErrorUnsupportedSetting;
}
} else if ((!strncmp(drv_ctx.kind, "OMX.qcom.video.decoder.divx",OMX_MAX_STRINGNAME_SIZE)) ||
(!strncmp(drv_ctx.kind, "OMX.qcom.video.decoder.divx311", OMX_MAX_STRINGNAME_SIZE)) ||
(!strncmp(drv_ctx.kind, "OMX.qcom.video.decoder.divx4", OMX_MAX_STRINGNAME_SIZE))
) {
if (!strncmp((const char*)comp_role->cRole,"video_decoder.divx",OMX_MAX_STRINGNAME_SIZE)) {
strlcpy((char*)m_cRole,"video_decoder.divx",OMX_MAX_STRINGNAME_SIZE);
} else {
DEBUG_PRINT_ERROR("Setparameter: unknown Index %s", comp_role->cRole);
eRet =OMX_ErrorUnsupportedSetting;
}
} else if ( (!strncmp(drv_ctx.kind, "OMX.qcom.video.decoder.vc1",OMX_MAX_STRINGNAME_SIZE)) ||
(!strncmp(drv_ctx.kind, "OMX.qcom.video.decoder.wmv",OMX_MAX_STRINGNAME_SIZE))
) {
if (!strncmp((const char*)comp_role->cRole,"video_decoder.vc1",OMX_MAX_STRINGNAME_SIZE)) {
strlcpy((char*)m_cRole,"video_decoder.vc1",OMX_MAX_STRINGNAME_SIZE);
} else {
DEBUG_PRINT_ERROR("Setparameter: unknown Index %s", comp_role->cRole);
eRet =OMX_ErrorUnsupportedSetting;
}
} else if (!strncmp(drv_ctx.kind, "OMX.qcom.video.decoder.vp8",OMX_MAX_STRINGNAME_SIZE)) {
if (!strncmp((const char*)comp_role->cRole,"video_decoder.vp8",OMX_MAX_STRINGNAME_SIZE) ||
(!strncmp((const char*)comp_role->cRole,"video_decoder.vpx",OMX_MAX_STRINGNAME_SIZE))) {
strlcpy((char*)m_cRole,"video_decoder.vp8",OMX_MAX_STRINGNAME_SIZE);
} else {
DEBUG_PRINT_ERROR("Setparameter: unknown Index %s", comp_role->cRole);
eRet = OMX_ErrorUnsupportedSetting;
}
} else if (!strncmp(drv_ctx.kind, "OMX.qcom.video.decoder.hevc", OMX_MAX_STRINGNAME_SIZE)) {
if (!strncmp((const char*)comp_role->cRole, "video_decoder.hevc", OMX_MAX_STRINGNAME_SIZE)) {
strlcpy((char*)m_cRole, "video_decoder.hevc", OMX_MAX_STRINGNAME_SIZE);
} else {
DEBUG_PRINT_ERROR("Setparameter: unknown Index %s", comp_role->cRole);
eRet = OMX_ErrorUnsupportedSetting;
}
} else {
DEBUG_PRINT_ERROR("Setparameter: unknown param %s", drv_ctx.kind);
eRet = OMX_ErrorInvalidComponentName;
}
break;
}
case OMX_IndexParamPriorityMgmt: {
VALIDATE_OMX_PARAM_DATA(paramData, OMX_PRIORITYMGMTTYPE);
if (m_state != OMX_StateLoaded) {
DEBUG_PRINT_ERROR("Set Parameter called in Invalid State");
return OMX_ErrorIncorrectStateOperation;
}
OMX_PRIORITYMGMTTYPE *priorityMgmtype = (OMX_PRIORITYMGMTTYPE*) paramData;
DEBUG_PRINT_LOW("set_parameter: OMX_IndexParamPriorityMgmt %u",
(unsigned int)priorityMgmtype->nGroupID);
DEBUG_PRINT_LOW("set_parameter: priorityMgmtype %u",
(unsigned int)priorityMgmtype->nGroupPriority);
m_priority_mgm.nGroupID = priorityMgmtype->nGroupID;
m_priority_mgm.nGroupPriority = priorityMgmtype->nGroupPriority;
break;
}
case OMX_IndexParamCompBufferSupplier: {
VALIDATE_OMX_PARAM_DATA(paramData, OMX_PARAM_BUFFERSUPPLIERTYPE);
OMX_PARAM_BUFFERSUPPLIERTYPE *bufferSupplierType = (OMX_PARAM_BUFFERSUPPLIERTYPE*) paramData;
DEBUG_PRINT_LOW("set_parameter: OMX_IndexParamCompBufferSupplier %d",
bufferSupplierType->eBufferSupplier);
if (bufferSupplierType->nPortIndex == 0 || bufferSupplierType->nPortIndex ==1)
m_buffer_supplier.eBufferSupplier = bufferSupplierType->eBufferSupplier;
else
eRet = OMX_ErrorBadPortIndex;
break;
}
case OMX_IndexParamVideoAvc: {
DEBUG_PRINT_LOW("set_parameter: OMX_IndexParamVideoAvc %d",
paramIndex);
break;
}
case (OMX_INDEXTYPE)QOMX_IndexParamVideoMvc: {
DEBUG_PRINT_LOW("set_parameter: QOMX_IndexParamVideoMvc %d",
paramIndex);
break;
}
case OMX_IndexParamVideoH263: {
DEBUG_PRINT_LOW("set_parameter: OMX_IndexParamVideoH263 %d",
paramIndex);
break;
}
case OMX_IndexParamVideoMpeg4: {
DEBUG_PRINT_LOW("set_parameter: OMX_IndexParamVideoMpeg4 %d",
paramIndex);
break;
}
case OMX_IndexParamVideoMpeg2: {
DEBUG_PRINT_LOW("set_parameter: OMX_IndexParamVideoMpeg2 %d",
paramIndex);
break;
}
case OMX_QcomIndexParamVideoDecoderPictureOrder: {
VALIDATE_OMX_PARAM_DATA(paramData, QOMX_VIDEO_DECODER_PICTURE_ORDER);
QOMX_VIDEO_DECODER_PICTURE_ORDER *pictureOrder =
(QOMX_VIDEO_DECODER_PICTURE_ORDER *)paramData;
struct v4l2_control control;
int pic_order,rc=0;
DEBUG_PRINT_HIGH("set_parameter: OMX_QcomIndexParamVideoDecoderPictureOrder %d",
pictureOrder->eOutputPictureOrder);
if (pictureOrder->eOutputPictureOrder == QOMX_VIDEO_DISPLAY_ORDER) {
pic_order = V4L2_MPEG_VIDC_VIDEO_OUTPUT_ORDER_DISPLAY;
} else if (pictureOrder->eOutputPictureOrder == QOMX_VIDEO_DECODE_ORDER) {
pic_order = V4L2_MPEG_VIDC_VIDEO_OUTPUT_ORDER_DECODE;
time_stamp_dts.set_timestamp_reorder_mode(false);
} else
eRet = OMX_ErrorBadParameter;
if (eRet == OMX_ErrorNone) {
control.id = V4L2_CID_MPEG_VIDC_VIDEO_OUTPUT_ORDER;
control.value = pic_order;
rc = ioctl(drv_ctx.video_driver_fd, VIDIOC_S_CTRL, &control);
if (rc) {
DEBUG_PRINT_ERROR("Set picture order failed");
eRet = OMX_ErrorUnsupportedSetting;
}
}
break;
}
case OMX_QcomIndexParamConcealMBMapExtraData:
VALIDATE_OMX_PARAM_DATA(paramData, QOMX_ENABLETYPE);
eRet = enable_extradata(VDEC_EXTRADATA_MB_ERROR_MAP, false,
((QOMX_ENABLETYPE *)paramData)->bEnable);
break;
case OMX_QcomIndexParamFrameInfoExtraData:
VALIDATE_OMX_PARAM_DATA(paramData, QOMX_ENABLETYPE);
eRet = enable_extradata(OMX_FRAMEINFO_EXTRADATA, false,
((QOMX_ENABLETYPE *)paramData)->bEnable);
break;
case OMX_ExtraDataFrameDimension:
VALIDATE_OMX_PARAM_DATA(paramData, QOMX_ENABLETYPE);
eRet = enable_extradata(OMX_FRAMEDIMENSION_EXTRADATA, false,
((QOMX_ENABLETYPE *)paramData)->bEnable);
break;
case OMX_QcomIndexParamInterlaceExtraData:
VALIDATE_OMX_PARAM_DATA(paramData, QOMX_ENABLETYPE);
eRet = enable_extradata(OMX_INTERLACE_EXTRADATA, false,
((QOMX_ENABLETYPE *)paramData)->bEnable);
break;
case OMX_QcomIndexParamH264TimeInfo:
VALIDATE_OMX_PARAM_DATA(paramData, QOMX_ENABLETYPE);
eRet = enable_extradata(OMX_TIMEINFO_EXTRADATA, false,
((QOMX_ENABLETYPE *)paramData)->bEnable);
break;
case OMX_QcomIndexParamVideoFramePackingExtradata:
VALIDATE_OMX_PARAM_DATA(paramData, QOMX_ENABLETYPE);
eRet = enable_extradata(OMX_FRAMEPACK_EXTRADATA, false,
((QOMX_ENABLETYPE *)paramData)->bEnable);
break;
case OMX_QcomIndexParamVideoQPExtraData:
VALIDATE_OMX_PARAM_DATA(paramData, QOMX_ENABLETYPE);
eRet = enable_extradata(OMX_QP_EXTRADATA, false,
((QOMX_ENABLETYPE *)paramData)->bEnable);
break;
case OMX_QcomIndexParamVideoInputBitsInfoExtraData:
VALIDATE_OMX_PARAM_DATA(paramData, QOMX_ENABLETYPE);
eRet = enable_extradata(OMX_BITSINFO_EXTRADATA, false,
((QOMX_ENABLETYPE *)paramData)->bEnable);
break;
case OMX_QcomIndexEnableExtnUserData:
VALIDATE_OMX_PARAM_DATA(paramData, QOMX_ENABLETYPE);
eRet = enable_extradata(OMX_EXTNUSER_EXTRADATA, false,
((QOMX_ENABLETYPE *)paramData)->bEnable);
break;
case OMX_QcomIndexParamMpeg2SeqDispExtraData:
VALIDATE_OMX_PARAM_DATA(paramData, QOMX_ENABLETYPE);
eRet = enable_extradata(OMX_MPEG2SEQDISP_EXTRADATA, false,
((QOMX_ENABLETYPE *)paramData)->bEnable);
break;
case OMX_QcomIndexParamVideoDivx: {
QOMX_VIDEO_PARAM_DIVXTYPE* divXType = (QOMX_VIDEO_PARAM_DIVXTYPE *) paramData;
}
break;
case OMX_QcomIndexPlatformPvt: {
VALIDATE_OMX_PARAM_DATA(paramData, OMX_QCOM_PLATFORMPRIVATE_EXTN);
DEBUG_PRINT_HIGH("set_parameter: OMX_QcomIndexPlatformPvt OP Port");
OMX_QCOM_PLATFORMPRIVATE_EXTN* entryType = (OMX_QCOM_PLATFORMPRIVATE_EXTN *) paramData;
if (entryType->type != OMX_QCOM_PLATFORM_PRIVATE_PMEM) {
DEBUG_PRINT_HIGH("set_parameter: Platform Private entry type (%d) not supported.", entryType->type);
eRet = OMX_ErrorUnsupportedSetting;
} else {
m_out_pvt_entry_pmem = OMX_TRUE;
if ((m_out_mem_region_smi && m_out_pvt_entry_pmem)) {
DEBUG_PRINT_HIGH("set_parameter: OMX_QcomIndexPlatformPvt OP Port: out pmem set");
m_use_output_pmem = OMX_TRUE;
}
}
}
break;
case OMX_QcomIndexParamVideoSyncFrameDecodingMode: {
DEBUG_PRINT_HIGH("set_parameter: OMX_QcomIndexParamVideoSyncFrameDecodingMode");
DEBUG_PRINT_HIGH("set idr only decoding for thumbnail mode");
struct v4l2_control control;
int rc;
drv_ctx.idr_only_decoding = 1;
control.id = V4L2_CID_MPEG_VIDC_VIDEO_OUTPUT_ORDER;
control.value = V4L2_MPEG_VIDC_VIDEO_OUTPUT_ORDER_DECODE;
rc = ioctl(drv_ctx.video_driver_fd, VIDIOC_S_CTRL, &control);
if (rc) {
DEBUG_PRINT_ERROR("Set picture order failed");
eRet = OMX_ErrorUnsupportedSetting;
} else {
control.id = V4L2_CID_MPEG_VIDC_VIDEO_SYNC_FRAME_DECODE;
control.value = V4L2_MPEG_VIDC_VIDEO_SYNC_FRAME_DECODE_ENABLE;
rc = ioctl(drv_ctx.video_driver_fd, VIDIOC_S_CTRL, &control);
if (rc) {
DEBUG_PRINT_ERROR("Sync frame setting failed");
eRet = OMX_ErrorUnsupportedSetting;
}
/*Setting sync frame decoding on driver might change buffer
* requirements so update them here*/
if (get_buffer_req(&drv_ctx.ip_buf)) {
DEBUG_PRINT_ERROR("Sync frame setting failed: falied to get buffer i/p requirements");
eRet = OMX_ErrorUnsupportedSetting;
}
if (get_buffer_req(&drv_ctx.op_buf)) {
DEBUG_PRINT_ERROR("Sync frame setting failed: falied to get buffer o/p requirements");
eRet = OMX_ErrorUnsupportedSetting;
}
}
}
break;
case OMX_QcomIndexParamIndexExtraDataType: {
VALIDATE_OMX_PARAM_DATA(paramData, QOMX_INDEXEXTRADATATYPE);
QOMX_INDEXEXTRADATATYPE *extradataIndexType = (QOMX_INDEXEXTRADATATYPE *) paramData;
if ((extradataIndexType->nIndex == OMX_IndexParamPortDefinition) &&
(extradataIndexType->bEnabled == OMX_TRUE) &&
(extradataIndexType->nPortIndex == 1)) {
DEBUG_PRINT_HIGH("set_parameter: OMX_QcomIndexParamIndexExtraDataType SmoothStreaming");
eRet = enable_extradata(OMX_PORTDEF_EXTRADATA, false, extradataIndexType->bEnabled);
}
}
break;
case OMX_QcomIndexParamEnableSmoothStreaming: {
#ifndef SMOOTH_STREAMING_DISABLED
eRet = enable_smoothstreaming();
#else
eRet = OMX_ErrorUnsupportedSetting;
#endif
}
break;
#if defined (_ANDROID_HONEYCOMB_) || defined (_ANDROID_ICS_)
/* Need to allow following two set_parameters even in Idle
* state. This is ANDROID architecture which is not in sync
* with openmax standard. */
case OMX_GoogleAndroidIndexEnableAndroidNativeBuffers: {
VALIDATE_OMX_PARAM_DATA(paramData, EnableAndroidNativeBuffersParams);
EnableAndroidNativeBuffersParams* enableNativeBuffers = (EnableAndroidNativeBuffersParams *) paramData;
if (enableNativeBuffers) {
m_enable_android_native_buffers = enableNativeBuffers->enable;
}
#if !defined(FLEXYUV_SUPPORTED)
if (m_enable_android_native_buffers) {
if(!client_buffers.set_color_format(getPreferredColorFormatDefaultMode(0))) {
DEBUG_PRINT_ERROR("Failed to set native color format!");
eRet = OMX_ErrorUnsupportedSetting;
}
}
#endif
}
break;
case OMX_GoogleAndroidIndexUseAndroidNativeBuffer: {
VALIDATE_OMX_PARAM_DATA(paramData, UseAndroidNativeBufferParams);
eRet = use_android_native_buffer(hComp, paramData);
}
break;
#endif
case OMX_QcomIndexParamEnableTimeStampReorder: {
VALIDATE_OMX_PARAM_DATA(paramData, QOMX_INDEXTIMESTAMPREORDER);
QOMX_INDEXTIMESTAMPREORDER *reorder = (QOMX_INDEXTIMESTAMPREORDER *)paramData;
if (drv_ctx.picture_order == (vdec_output_order)QOMX_VIDEO_DISPLAY_ORDER) {
if (reorder->bEnable == OMX_TRUE) {
frm_int =0;
time_stamp_dts.set_timestamp_reorder_mode(true);
} else
time_stamp_dts.set_timestamp_reorder_mode(false);
} else {
time_stamp_dts.set_timestamp_reorder_mode(false);
if (reorder->bEnable == OMX_TRUE) {
eRet = OMX_ErrorUnsupportedSetting;
}
}
}
break;
case OMX_IndexParamVideoProfileLevelCurrent: {
VALIDATE_OMX_PARAM_DATA(paramData, OMX_VIDEO_PARAM_PROFILELEVELTYPE);
OMX_VIDEO_PARAM_PROFILELEVELTYPE* pParam =
(OMX_VIDEO_PARAM_PROFILELEVELTYPE*)paramData;
if (pParam) {
m_profile_lvl.eProfile = pParam->eProfile;
m_profile_lvl.eLevel = pParam->eLevel;
}
break;
}
case OMX_QcomIndexParamVideoMetaBufferMode:
{
VALIDATE_OMX_PARAM_DATA(paramData, StoreMetaDataInBuffersParams);
StoreMetaDataInBuffersParams *metabuffer =
(StoreMetaDataInBuffersParams *)paramData;
if (!metabuffer) {
DEBUG_PRINT_ERROR("Invalid param: %p", metabuffer);
eRet = OMX_ErrorBadParameter;
break;
}
if (m_disable_dynamic_buf_mode) {
DEBUG_PRINT_HIGH("Dynamic buffer mode disabled by setprop");
eRet = OMX_ErrorUnsupportedSetting;
break;
}
if (metabuffer->nPortIndex == OMX_CORE_OUTPUT_PORT_INDEX) {
struct v4l2_control control;
struct v4l2_format fmt;
control.id = V4L2_CID_MPEG_VIDC_VIDEO_ALLOC_MODE_OUTPUT;
if (metabuffer->bStoreMetaData == true) {
control.value = V4L2_MPEG_VIDC_VIDEO_DYNAMIC;
} else {
control.value = V4L2_MPEG_VIDC_VIDEO_STATIC;
}
int rc = ioctl(drv_ctx.video_driver_fd, VIDIOC_S_CTRL,&control);
if (!rc) {
DEBUG_PRINT_HIGH("%s buffer mode",
(metabuffer->bStoreMetaData == true)? "Enabled dynamic" : "Disabled dynamic");
dynamic_buf_mode = metabuffer->bStoreMetaData;
} else {
DEBUG_PRINT_ERROR("Failed to %s buffer mode",
(metabuffer->bStoreMetaData == true)? "enable dynamic" : "disable dynamic");
eRet = OMX_ErrorUnsupportedSetting;
}
} else {
DEBUG_PRINT_ERROR(
"OMX_QcomIndexParamVideoMetaBufferMode not supported for port: %u",
(unsigned int)metabuffer->nPortIndex);
eRet = OMX_ErrorUnsupportedSetting;
}
break;
}
case OMX_QcomIndexParamVideoDownScalar:
{
VALIDATE_OMX_PARAM_DATA(paramData, QOMX_INDEXDOWNSCALAR);
QOMX_INDEXDOWNSCALAR* pParam = (QOMX_INDEXDOWNSCALAR*)paramData;
struct v4l2_control control;
int rc;
if (pParam) {
is_down_scalar_enabled = pParam->bEnable;
if (is_down_scalar_enabled) {
control.id = V4L2_CID_MPEG_VIDC_VIDEO_STREAM_OUTPUT_MODE;
control.value = V4L2_CID_MPEG_VIDC_VIDEO_STREAM_OUTPUT_SECONDARY;
DEBUG_PRINT_LOW("set_parameter: OMX_QcomIndexParamVideoDownScalar value = %d", pParam->bEnable);
rc = ioctl(drv_ctx.video_driver_fd, VIDIOC_S_CTRL, &control);
if (rc < 0) {
DEBUG_PRINT_ERROR("Failed to set down scalar on driver.");
eRet = OMX_ErrorUnsupportedSetting;
}
control.id = V4L2_CID_MPEG_VIDC_VIDEO_KEEP_ASPECT_RATIO;
control.value = 1;
rc = ioctl(drv_ctx.video_driver_fd, VIDIOC_S_CTRL, &control);
if (rc < 0) {
DEBUG_PRINT_ERROR("Failed to set keep aspect ratio on driver.");
eRet = OMX_ErrorUnsupportedSetting;
}
}
}
break;
}
#ifdef ADAPTIVE_PLAYBACK_SUPPORTED
case OMX_QcomIndexParamVideoAdaptivePlaybackMode:
{
VALIDATE_OMX_PARAM_DATA(paramData, PrepareForAdaptivePlaybackParams);
DEBUG_PRINT_LOW("set_parameter: OMX_GoogleAndroidIndexPrepareForAdaptivePlayback");
PrepareForAdaptivePlaybackParams* pParams =
(PrepareForAdaptivePlaybackParams *) paramData;
if (pParams->nPortIndex == OMX_CORE_OUTPUT_PORT_INDEX) {
if (!pParams->bEnable) {
return OMX_ErrorNone;
}
if (pParams->nMaxFrameWidth > maxSmoothStreamingWidth
|| pParams->nMaxFrameHeight > maxSmoothStreamingHeight) {
DEBUG_PRINT_ERROR(
"Adaptive playback request exceeds max supported resolution : [%u x %u] vs [%u x %u]",
(unsigned int)pParams->nMaxFrameWidth, (unsigned int)pParams->nMaxFrameHeight,
(unsigned int)maxSmoothStreamingWidth, (unsigned int)maxSmoothStreamingHeight);
eRet = OMX_ErrorBadParameter;
} else {
eRet = enable_adaptive_playback(pParams->nMaxFrameWidth, pParams->nMaxFrameHeight);
}
} else {
DEBUG_PRINT_ERROR(
"Prepare for adaptive playback supported only on output port");
eRet = OMX_ErrorBadParameter;
}
break;
}
#endif
case OMX_QcomIndexParamVideoCustomBufferSize:
{
VALIDATE_OMX_PARAM_DATA(paramData, QOMX_VIDEO_CUSTOM_BUFFERSIZE);
DEBUG_PRINT_LOW("set_parameter: OMX_QcomIndexParamVideoCustomBufferSize");
QOMX_VIDEO_CUSTOM_BUFFERSIZE* pParam = (QOMX_VIDEO_CUSTOM_BUFFERSIZE*)paramData;
if (pParam->nPortIndex == OMX_CORE_INPUT_PORT_INDEX) {
struct v4l2_control control;
control.id = V4L2_CID_MPEG_VIDC_VIDEO_BUFFER_SIZE_LIMIT;
control.value = pParam->nBufferSize;
if (ioctl(drv_ctx.video_driver_fd, VIDIOC_S_CTRL, &control)) {
DEBUG_PRINT_ERROR("Failed to set input buffer size");
eRet = OMX_ErrorUnsupportedSetting;
} else {
eRet = get_buffer_req(&drv_ctx.ip_buf);
if (eRet == OMX_ErrorNone) {
m_custom_buffersize.input_buffersize = drv_ctx.ip_buf.buffer_size;
DEBUG_PRINT_HIGH("Successfully set custom input buffer size = %d",
m_custom_buffersize.input_buffersize);
} else {
DEBUG_PRINT_ERROR("Failed to get buffer requirement");
}
}
} else {
DEBUG_PRINT_ERROR("ERROR: Custom buffer size in not supported on output port");
eRet = OMX_ErrorBadParameter;
}
break;
}
default: {
DEBUG_PRINT_ERROR("Setparameter: unknown param %d", paramIndex);
eRet = OMX_ErrorUnsupportedIndex;
}
}
if (eRet != OMX_ErrorNone)
DEBUG_PRINT_ERROR("set_parameter: Error: 0x%x, setting param 0x%x", eRet, paramIndex);
return eRet;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 23,713 |
ImageMagick | 30ccf9a0da1f47161b5935a95be854fe84e6c2a2 | static MagickBooleanType GetTIFFInfo(const ImageInfo *image_info,
TIFF *tiff,TIFFInfo *tiff_info)
{
#define TIFFStripSizeDefault 1048576
const char
*option;
MagickStatusType
flags;
uint32
tile_columns,
tile_rows;
assert(tiff_info != (TIFFInfo *) NULL);
(void) memset(tiff_info,0,sizeof(*tiff_info));
option=GetImageOption(image_info,"tiff:tile-geometry");
if (option == (const char *) NULL)
{
size_t
extent;
uint32
rows,
rows_per_strip;
extent=TIFFScanlineSize(tiff);
rows_per_strip=TIFFStripSizeDefault/(extent == 0 ? 1 : (uint32) extent);
rows_per_strip=16*(((rows_per_strip < 16 ? 16 : rows_per_strip)+1)/16);
if ((TIFFGetField(tiff,TIFFTAG_IMAGELENGTH,&rows) == 1) &&
(rows_per_strip > rows))
rows_per_strip=rows;
option=GetImageOption(image_info,"tiff:rows-per-strip");
if (option != (const char *) NULL)
rows_per_strip=(uint32) strtoul(option,(char **) NULL,10);
rows_per_strip=TIFFDefaultStripSize(tiff,rows_per_strip);
(void) TIFFSetField(tiff,TIFFTAG_ROWSPERSTRIP,rows_per_strip);
return(MagickTrue);
}
/*
Create tiled TIFF, ignore "tiff:rows-per-strip".
*/
flags=ParseAbsoluteGeometry(option,&tiff_info->tile_geometry);
if ((flags & HeightValue) == 0)
tiff_info->tile_geometry.height=tiff_info->tile_geometry.width;
tile_columns=(uint32) tiff_info->tile_geometry.width;
tile_rows=(uint32) tiff_info->tile_geometry.height;
TIFFDefaultTileSize(tiff,&tile_columns,&tile_rows);
(void) TIFFSetField(tiff,TIFFTAG_TILEWIDTH,tile_columns);
(void) TIFFSetField(tiff,TIFFTAG_TILELENGTH,tile_rows);
tiff_info->tile_geometry.width=tile_columns;
tiff_info->tile_geometry.height=tile_rows;
if ((TIFFScanlineSize(tiff) <= 0) || (TIFFTileSize(tiff) <= 0))
{
DestroyTIFFInfo(tiff_info);
return(MagickFalse);
}
tiff_info->scanlines=(unsigned char *) AcquireQuantumMemory((size_t)
tile_rows*TIFFScanlineSize(tiff),sizeof(*tiff_info->scanlines));
tiff_info->pixels=(unsigned char *) AcquireQuantumMemory((size_t)
tile_rows*TIFFTileSize(tiff),sizeof(*tiff_info->scanlines));
if ((tiff_info->scanlines == (unsigned char *) NULL) ||
(tiff_info->pixels == (unsigned char *) NULL))
{
DestroyTIFFInfo(tiff_info);
return(MagickFalse);
}
return(MagickTrue);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 17,968 |
vim | dc5490e2cbc8c16022a23b449b48c1bd0083f366 | ex_copy(linenr_T line1, linenr_T line2, linenr_T n)
{
linenr_T count;
char_u *p;
count = line2 - line1 + 1;
if ((cmdmod.cmod_flags & CMOD_LOCKMARKS) == 0)
{
curbuf->b_op_start.lnum = n + 1;
curbuf->b_op_end.lnum = n + count;
curbuf->b_op_start.col = curbuf->b_op_end.col = 0;
}
/*
* there are three situations:
* 1. destination is above line1
* 2. destination is between line1 and line2
* 3. destination is below line2
*
* n = destination (when starting)
* curwin->w_cursor.lnum = destination (while copying)
* line1 = start of source (while copying)
* line2 = end of source (while copying)
*/
if (u_save(n, n + 1) == FAIL)
return;
curwin->w_cursor.lnum = n;
while (line1 <= line2)
{
// need to use vim_strsave() because the line will be unlocked within
// ml_append()
p = vim_strsave(ml_get(line1));
if (p != NULL)
{
ml_append(curwin->w_cursor.lnum, p, (colnr_T)0, FALSE);
vim_free(p);
}
// situation 2: skip already copied lines
if (line1 == n)
line1 = curwin->w_cursor.lnum;
++line1;
if (curwin->w_cursor.lnum < line1)
++line1;
if (curwin->w_cursor.lnum < line2)
++line2;
++curwin->w_cursor.lnum;
}
appended_lines_mark(n, count);
msgmore((long)count);
} | 1 | CVE-2022-0361 | CWE-787 | Out-of-bounds Write | The product writes data past the end, or before the beginning, of the intended buffer. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333].
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 6,038 |
ImageMagick | 65f75a32a93ae4044c528a987a68366ecd4b46b9 | ModuleExport size_t RegisterTGAImage(void)
{
MagickInfo
*entry;
entry=SetMagickInfo("ICB");
entry->decoder=(DecodeImageHandler *) ReadTGAImage;
entry->encoder=(EncodeImageHandler *) WriteTGAImage;
entry->adjoin=MagickFalse;
entry->description=ConstantString("Truevision Targa image");
entry->module=ConstantString("TGA");
(void) RegisterMagickInfo(entry);
entry=SetMagickInfo("TGA");
entry->decoder=(DecodeImageHandler *) ReadTGAImage;
entry->encoder=(EncodeImageHandler *) WriteTGAImage;
entry->adjoin=MagickFalse;
entry->description=ConstantString("Truevision Targa image");
entry->module=ConstantString("TGA");
(void) RegisterMagickInfo(entry);
entry=SetMagickInfo("VDA");
entry->decoder=(DecodeImageHandler *) ReadTGAImage;
entry->encoder=(EncodeImageHandler *) WriteTGAImage;
entry->adjoin=MagickFalse;
entry->description=ConstantString("Truevision Targa image");
entry->module=ConstantString("TGA");
(void) RegisterMagickInfo(entry);
entry=SetMagickInfo("VST");
entry->decoder=(DecodeImageHandler *) ReadTGAImage;
entry->encoder=(EncodeImageHandler *) WriteTGAImage;
entry->adjoin=MagickFalse;
entry->description=ConstantString("Truevision Targa image");
entry->module=ConstantString("TGA");
(void) RegisterMagickInfo(entry);
return(MagickImageCoderSignature);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 22,525 |
Android | 5a9753fca56f0eeb9f61e342b2fccffc364f9426 | virtual void PreEncodeFrameHook(::libvpx_test::VideoSource *video,
::libvpx_test::Encoder *encoder) {
if (video->frame() == 1) {
encoder->Control(VP8E_SET_CPUUSED, set_cpu_used_);
}
if (cfg_.ts_number_layers > 1) {
if (video->frame() == 1) {
encoder->Control(VP9E_SET_SVC, 1);
}
vpx_svc_layer_id_t layer_id = {0, 0};
layer_id.spatial_layer_id = 0;
frame_flags_ = SetFrameFlags(video->frame(), cfg_.ts_number_layers);
layer_id.temporal_layer_id = SetLayerId(video->frame(),
cfg_.ts_number_layers);
if (video->frame() > 0) {
encoder->Control(VP9E_SET_SVC_LAYER_ID, &layer_id);
}
}
const vpx_rational_t tb = video->timebase();
timebase_ = static_cast<double>(tb.num) / tb.den;
duration_ = 0;
}
| 1 | CVE-2016-1621 | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 1,596 |
yara | 992480c30f75943e9cd6245bb2015c7737f9b661 | int yr_re_fast_exec(
uint8_t* code,
uint8_t* input_data,
size_t input_forwards_size,
size_t input_backwards_size,
int flags,
RE_MATCH_CALLBACK_FUNC callback,
void* callback_args,
int* matches)
{
RE_REPEAT_ANY_ARGS* repeat_any_args;
uint8_t* code_stack[MAX_FAST_RE_STACK];
uint8_t* input_stack[MAX_FAST_RE_STACK];
int matches_stack[MAX_FAST_RE_STACK];
uint8_t* ip = code;
uint8_t* input = input_data;
uint8_t* next_input;
uint8_t* next_opcode;
uint8_t mask;
uint8_t value;
int i;
int stop;
int input_incr;
int sp = 0;
int bytes_matched;
int max_bytes_matched;
max_bytes_matched = flags & RE_FLAGS_BACKWARDS ?
(int) input_backwards_size :
(int) input_forwards_size;
input_incr = flags & RE_FLAGS_BACKWARDS ? -1 : 1;
if (flags & RE_FLAGS_BACKWARDS)
input--;
code_stack[sp] = code;
input_stack[sp] = input;
matches_stack[sp] = 0;
sp++;
while (sp > 0)
{
sp--;
ip = code_stack[sp];
input = input_stack[sp];
bytes_matched = matches_stack[sp];
stop = FALSE;
while(!stop)
{
if (*ip == RE_OPCODE_MATCH)
{
if (flags & RE_FLAGS_EXHAUSTIVE)
{
FAIL_ON_ERROR(callback(
flags & RE_FLAGS_BACKWARDS ? input + 1 : input_data,
bytes_matched,
flags,
callback_args));
break;
}
else
{
if (matches != NULL)
*matches = bytes_matched;
return ERROR_SUCCESS;
}
}
if (bytes_matched >= max_bytes_matched)
break;
switch(*ip)
{
case RE_OPCODE_LITERAL:
if (*input == *(ip + 1))
{
bytes_matched++;
input += input_incr;
ip += 2;
}
else
{
stop = TRUE;
}
break;
case RE_OPCODE_MASKED_LITERAL:
value = *(int16_t*)(ip + 1) & 0xFF;
mask = *(int16_t*)(ip + 1) >> 8;
if ((*input & mask) == value)
{
bytes_matched++;
input += input_incr;
ip += 3;
}
else
{
stop = TRUE;
}
break;
case RE_OPCODE_ANY:
bytes_matched++;
input += input_incr;
ip += 1;
break;
case RE_OPCODE_REPEAT_ANY_UNGREEDY:
repeat_any_args = (RE_REPEAT_ANY_ARGS*)(ip + 1);
next_opcode = ip + 1 + sizeof(RE_REPEAT_ANY_ARGS);
for (i = repeat_any_args->min + 1; i <= repeat_any_args->max; i++)
{
next_input = input + i * input_incr;
if (bytes_matched + i >= max_bytes_matched)
break;
if ( *(next_opcode) != RE_OPCODE_LITERAL ||
(*(next_opcode) == RE_OPCODE_LITERAL &&
*(next_opcode + 1) == *next_input))
{
if (sp >= MAX_FAST_RE_STACK)
return -4;
code_stack[sp] = next_opcode;
input_stack[sp] = next_input;
matches_stack[sp] = bytes_matched + i;
sp++;
}
}
input += input_incr * repeat_any_args->min;
bytes_matched += repeat_any_args->min;
ip = next_opcode;
break;
default:
assert(FALSE);
}
}
}
if (matches != NULL)
*matches = -1;
return ERROR_SUCCESS;
}
| 1 | CVE-2017-9465 | CWE-125 | Out-of-bounds Read | The product reads data past the end, or before the beginning, of the intended buffer. | Phase: Implementation
Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
To reduce the likelihood of introducing an out-of-bounds read, ensure that you validate and ensure correct calculations for any length argument, buffer size calculation, or offset. Be especially careful of relying on a sentinel (i.e. special character such as NUL) in untrusted inputs.
Phase: Architecture and Design
Strategy: Language Selection
Use a language that provides appropriate memory abstractions. | 2,717 |
claws | e3ffcb455e0376053451ce968e6c71ef37708222 | void conv_code_converter_destroy(CodeConverter *conv)
{
g_free(conv->charset_str);
g_free(conv);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 12,795 |
linux | 919f4ebc598701670e80e31573a58f1f2d2bf918 | static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
{
struct kvm_vcpu *vcpu;
struct kvm_vcpu_hv_synic *synic;
vcpu = get_vcpu_by_vpidx(kvm, vpidx);
if (!vcpu)
return NULL;
synic = to_hv_synic(vcpu);
return (synic->active) ? synic : NULL;
} | 1 | CVE-2021-30178 | CWE-476 | NULL Pointer Dereference | The product dereferences a pointer that it expects to be valid but is NULL. | Phase: Implementation
If all pointers that could have been modified are checked for NULL before use, nearly all NULL pointer dereferences can be prevented.
Phase: Requirements
Select a programming language that is not susceptible to these issues.
Phase: Implementation
Check the results of all functions that return a value and verify that the value is non-null before acting upon it.
Effectiveness: Moderate
Note: Checking the return value of the function will typically be sufficient, however beware of race conditions (CWE-362) in a concurrent environment. This solution does not handle the use of improperly initialized variables (CWE-665).
Phase: Architecture and Design
Identify all variables and data stores that receive information from external sources, and apply input validation to make sure that they are only initialized to expected values.
Phase: Implementation
Explicitly initialize all variables and other data stores, either during declaration or just before the first usage. | 1,356 |
mod_auth_openidc | 03e6bfb446f4e3f27c003d30d6a433e5dd8e2b3d | int oidc_content_handler(request_rec *r) {
oidc_cfg *c = ap_get_module_config(r->server->module_config,
&auth_openidc_module);
int rc = DECLINED;
/* track if the session needs to be updated/saved into the cache */
apr_byte_t needs_save = FALSE;
oidc_session_t *session = NULL;
if (oidc_enabled(r) == TRUE) {
if (oidc_util_request_matches_url(r, oidc_get_redirect_uri(r, c)) == TRUE) {
if (oidc_util_request_has_parameter(r,
OIDC_REDIRECT_URI_REQUEST_INFO)) {
oidc_session_load(r, &session);
rc = oidc_handle_existing_session(r, c, session, &needs_save);
if (rc == OK)
/* handle request for session info */
rc = oidc_handle_info_request(r, c, session, needs_save);
/* free resources allocated for the session */
oidc_session_free(r, session);
} else if (oidc_util_request_has_parameter(r,
OIDC_REDIRECT_URI_REQUEST_JWKS)) {
/* handle JWKs request */
rc = oidc_handle_jwks(r, c);
} else {
rc = OK;
}
} else if (oidc_request_state_get(r, OIDC_REQUEST_STATE_KEY_DISCOVERY) != NULL) {
rc = oidc_discovery(r, c);
} else if (oidc_request_state_get(r, OIDC_REQUEST_STATE_KEY_AUTHN) != NULL) {
rc = OK;
}
}
return rc;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 21,088 |
linux | a8b0ca17b80e92faab46ee7179ba9e99ccb61233 | static int cop1Emulate(struct pt_regs *xcp, struct mips_fpu_struct *ctx,
void *__user *fault_addr)
{
mips_instruction ir;
unsigned long emulpc, contpc;
unsigned int cond;
if (!access_ok(VERIFY_READ, xcp->cp0_epc, sizeof(mips_instruction))) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = (mips_instruction __user *)xcp->cp0_epc;
return SIGBUS;
}
if (__get_user(ir, (mips_instruction __user *) xcp->cp0_epc)) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = (mips_instruction __user *)xcp->cp0_epc;
return SIGSEGV;
}
/* XXX NEC Vr54xx bug workaround */
if ((xcp->cp0_cause & CAUSEF_BD) && !isBranchInstr(&ir))
xcp->cp0_cause &= ~CAUSEF_BD;
if (xcp->cp0_cause & CAUSEF_BD) {
/*
* The instruction to be emulated is in a branch delay slot
* which means that we have to emulate the branch instruction
* BEFORE we do the cop1 instruction.
*
* This branch could be a COP1 branch, but in that case we
* would have had a trap for that instruction, and would not
* come through this route.
*
* Linux MIPS branch emulator operates on context, updating the
* cp0_epc.
*/
emulpc = xcp->cp0_epc + 4; /* Snapshot emulation target */
if (__compute_return_epc(xcp)) {
#ifdef CP1DBG
printk("failed to emulate branch at %p\n",
(void *) (xcp->cp0_epc));
#endif
return SIGILL;
}
if (!access_ok(VERIFY_READ, emulpc, sizeof(mips_instruction))) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = (mips_instruction __user *)emulpc;
return SIGBUS;
}
if (__get_user(ir, (mips_instruction __user *) emulpc)) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = (mips_instruction __user *)emulpc;
return SIGSEGV;
}
/* __compute_return_epc() will have updated cp0_epc */
contpc = xcp->cp0_epc;
/* In order not to confuse ptrace() et al, tweak context */
xcp->cp0_epc = emulpc - 4;
} else {
emulpc = xcp->cp0_epc;
contpc = xcp->cp0_epc + 4;
}
emul:
perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
1, 0, xcp, 0);
MIPS_FPU_EMU_INC_STATS(emulated);
switch (MIPSInst_OPCODE(ir)) {
case ldc1_op:{
u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
MIPSInst_SIMM(ir));
u64 val;
MIPS_FPU_EMU_INC_STATS(loads);
if (!access_ok(VERIFY_READ, va, sizeof(u64))) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = va;
return SIGBUS;
}
if (__get_user(val, va)) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = va;
return SIGSEGV;
}
DITOREG(val, MIPSInst_RT(ir));
break;
}
case sdc1_op:{
u64 __user *va = (u64 __user *) (xcp->regs[MIPSInst_RS(ir)] +
MIPSInst_SIMM(ir));
u64 val;
MIPS_FPU_EMU_INC_STATS(stores);
DIFROMREG(val, MIPSInst_RT(ir));
if (!access_ok(VERIFY_WRITE, va, sizeof(u64))) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = va;
return SIGBUS;
}
if (__put_user(val, va)) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = va;
return SIGSEGV;
}
break;
}
case lwc1_op:{
u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
MIPSInst_SIMM(ir));
u32 val;
MIPS_FPU_EMU_INC_STATS(loads);
if (!access_ok(VERIFY_READ, va, sizeof(u32))) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = va;
return SIGBUS;
}
if (__get_user(val, va)) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = va;
return SIGSEGV;
}
SITOREG(val, MIPSInst_RT(ir));
break;
}
case swc1_op:{
u32 __user *va = (u32 __user *) (xcp->regs[MIPSInst_RS(ir)] +
MIPSInst_SIMM(ir));
u32 val;
MIPS_FPU_EMU_INC_STATS(stores);
SIFROMREG(val, MIPSInst_RT(ir));
if (!access_ok(VERIFY_WRITE, va, sizeof(u32))) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = va;
return SIGBUS;
}
if (__put_user(val, va)) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = va;
return SIGSEGV;
}
break;
}
case cop1_op:
switch (MIPSInst_RS(ir)) {
#if defined(__mips64)
case dmfc_op:
/* copregister fs -> gpr[rt] */
if (MIPSInst_RT(ir) != 0) {
DIFROMREG(xcp->regs[MIPSInst_RT(ir)],
MIPSInst_RD(ir));
}
break;
case dmtc_op:
/* copregister fs <- rt */
DITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
break;
#endif
case mfc_op:
/* copregister rd -> gpr[rt] */
if (MIPSInst_RT(ir) != 0) {
SIFROMREG(xcp->regs[MIPSInst_RT(ir)],
MIPSInst_RD(ir));
}
break;
case mtc_op:
/* copregister rd <- rt */
SITOREG(xcp->regs[MIPSInst_RT(ir)], MIPSInst_RD(ir));
break;
case cfc_op:{
/* cop control register rd -> gpr[rt] */
u32 value;
if (MIPSInst_RD(ir) == FPCREG_CSR) {
value = ctx->fcr31;
value = (value & ~FPU_CSR_RM) |
mips_rm[modeindex(value)];
#ifdef CSRTRACE
printk("%p gpr[%d]<-csr=%08x\n",
(void *) (xcp->cp0_epc),
MIPSInst_RT(ir), value);
#endif
}
else if (MIPSInst_RD(ir) == FPCREG_RID)
value = 0;
else
value = 0;
if (MIPSInst_RT(ir))
xcp->regs[MIPSInst_RT(ir)] = value;
break;
}
case ctc_op:{
/* copregister rd <- rt */
u32 value;
if (MIPSInst_RT(ir) == 0)
value = 0;
else
value = xcp->regs[MIPSInst_RT(ir)];
/* we only have one writable control reg
*/
if (MIPSInst_RD(ir) == FPCREG_CSR) {
#ifdef CSRTRACE
printk("%p gpr[%d]->csr=%08x\n",
(void *) (xcp->cp0_epc),
MIPSInst_RT(ir), value);
#endif
/*
* Don't write reserved bits,
* and convert to ieee library modes
*/
ctx->fcr31 = (value &
~(FPU_CSR_RSVD | FPU_CSR_RM)) |
ieee_rm[modeindex(value)];
}
if ((ctx->fcr31 >> 5) & ctx->fcr31 & FPU_CSR_ALL_E) {
return SIGFPE;
}
break;
}
case bc_op:{
int likely = 0;
if (xcp->cp0_cause & CAUSEF_BD)
return SIGILL;
#if __mips >= 4
cond = ctx->fcr31 & fpucondbit[MIPSInst_RT(ir) >> 2];
#else
cond = ctx->fcr31 & FPU_CSR_COND;
#endif
switch (MIPSInst_RT(ir) & 3) {
case bcfl_op:
likely = 1;
case bcf_op:
cond = !cond;
break;
case bctl_op:
likely = 1;
case bct_op:
break;
default:
/* thats an illegal instruction */
return SIGILL;
}
xcp->cp0_cause |= CAUSEF_BD;
if (cond) {
/* branch taken: emulate dslot
* instruction
*/
xcp->cp0_epc += 4;
contpc = (xcp->cp0_epc +
(MIPSInst_SIMM(ir) << 2));
if (!access_ok(VERIFY_READ, xcp->cp0_epc,
sizeof(mips_instruction))) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = (mips_instruction __user *)xcp->cp0_epc;
return SIGBUS;
}
if (__get_user(ir,
(mips_instruction __user *) xcp->cp0_epc)) {
MIPS_FPU_EMU_INC_STATS(errors);
*fault_addr = (mips_instruction __user *)xcp->cp0_epc;
return SIGSEGV;
}
switch (MIPSInst_OPCODE(ir)) {
case lwc1_op:
case swc1_op:
#if (__mips >= 2 || defined(__mips64))
case ldc1_op:
case sdc1_op:
#endif
case cop1_op:
#if __mips >= 4 && __mips != 32
case cop1x_op:
#endif
/* its one of ours */
goto emul;
#if __mips >= 4
case spec_op:
if (MIPSInst_FUNC(ir) == movc_op)
goto emul;
break;
#endif
}
/*
* Single step the non-cp1
* instruction in the dslot
*/
return mips_dsemul(xcp, ir, contpc);
}
else {
/* branch not taken */
if (likely) {
/*
* branch likely nullifies
* dslot if not taken
*/
xcp->cp0_epc += 4;
contpc += 4;
/*
* else continue & execute
* dslot as normal insn
*/
}
}
break;
}
default:
if (!(MIPSInst_RS(ir) & 0x10))
return SIGILL;
{
int sig;
/* a real fpu computation instruction */
if ((sig = fpu_emu(xcp, ctx, ir)))
return sig;
}
}
break;
#if __mips >= 4 && __mips != 32
case cop1x_op:{
int sig = fpux_emu(xcp, ctx, ir, fault_addr);
if (sig)
return sig;
break;
}
#endif
#if __mips >= 4
case spec_op:
if (MIPSInst_FUNC(ir) != movc_op)
return SIGILL;
cond = fpucondbit[MIPSInst_RT(ir) >> 2];
if (((ctx->fcr31 & cond) != 0) == ((MIPSInst_RT(ir) & 1) != 0))
xcp->regs[MIPSInst_RD(ir)] =
xcp->regs[MIPSInst_RS(ir)];
break;
#endif
default:
return SIGILL;
}
/* we did it !! */
xcp->cp0_epc = contpc;
xcp->cp0_cause &= ~CAUSEF_BD;
return 0;
}
| 1 | CVE-2011-2918 | CWE-399 | Resource Management Errors | Weaknesses in this category are related to improper management of system resources. | Not Found in CWE Page | 1,693 |
Android | 6d0249be2275fd4086783f259f4e2c54722a7c55 | ID3::ID3(const uint8_t *data, size_t size, bool ignoreV1)
: mIsValid(false),
mData(NULL),
mSize(0),
mFirstFrameOffset(0),
mVersion(ID3_UNKNOWN),
mRawSize(0) {
sp<MemorySource> source = new MemorySource(data, size);
mIsValid = parseV2(source, 0);
if (!mIsValid && !ignoreV1) {
mIsValid = parseV1(source);
}
}
| 1 | CVE-2016-3920 | CWE-20 | Improper Input Validation | The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly. |
Phase: Architecture and Design
Strategy: Attack Surface Reduction
Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111]
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173).
Phases: Architecture and Design; Implementation
Strategy: Attack Surface Reduction
Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls.
Phase: Implementation
Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
Effectiveness: High
Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings.
Phase: Implementation
When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined.
Phase: Implementation
Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow.
Phase: Implementation
Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained.
Phase: Implementation
Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content.
Phase: Implementation
When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so. | 7,116 |
Chrome | 18c5c5dcef9cfccff64f0c23f920ef22822271a9 | void InstallTemplateURLWithNewTabPage(GURL new_tab_page_url) {
TemplateURLServiceFactory::GetInstance()->SetTestingFactoryAndUse(
profile(),
base::BindRepeating(&TemplateURLServiceFactory::BuildInstanceFor));
TemplateURLService* template_url_service =
TemplateURLServiceFactory::GetForProfile(browser()->profile());
search_test_utils::WaitForTemplateURLServiceToLoad(template_url_service);
TemplateURLData data;
data.SetShortName(base::ASCIIToUTF16("foo.com"));
data.SetURL("http://foo.com/url?bar={searchTerms}");
data.new_tab_url = new_tab_page_url.spec();
TemplateURL* template_url =
template_url_service->Add(std::make_unique<TemplateURL>(data));
template_url_service->SetUserSelectedDefaultSearchProvider(template_url);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 10,784 |
Chrome | 116d0963cadfbf55ef2ec3d13781987c4d80517a | void PrintPreviewDataService::RemoveEntry(
const std::string& preview_ui_addr_str) {
PreviewDataStoreMap::iterator it = data_store_map_.find(preview_ui_addr_str);
if (it != data_store_map_.end())
data_store_map_.erase(it);
}
| 1 | CVE-2012-2891 | CWE-200 | Exposure of Sensitive Information to an Unauthorized Actor | The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information. |
Phase: Architecture and Design
Strategy: Separation of Privilege
Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area.
Ensure that appropriate compartmentalization is built into the system design, and the compartmentalization allows for and reinforces privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide the appropriate time to use privileges and the time to drop privileges. | 8,236 |
pam_tacplus | 4a9852c31c2fd0c0e72fbb689a586aabcfb11cb0 | char *_pam_get_user(pam_handle_t *pamh) {
int retval;
char *user;
retval = pam_get_user(pamh, (void *) &user, "Username: ");
if (retval != PAM_SUCCESS || user == NULL || *user == '\0') {
_pam_log(LOG_ERR, "unable to obtain username");
user = NULL;
}
return user;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 21,697 |
linux | f6bbf0010ba004f5e90c7aefdebc0ee4bd3283b9 | static void vhost_vdpa_config_put(struct vhost_vdpa *v)
{
if (v->config_ctx)
eventfd_ctx_put(v->config_ctx);
} | 1 | CVE-2021-29266 | CWE-416 | Use After Free | The product reuses or references memory after it has been freed. At some point afterward, the memory may be allocated again and saved in another pointer, while the original pointer references a location somewhere within the new allocation. Any operations using the original pointer are no longer valid because the memory "belongs" to the code that operates on the new pointer. |
Phase: Architecture and Design
Strategy: Language Selection
Choose a language that provides automatic memory management.
Phase: Implementation
Strategy: Attack Surface Reduction
When freeing pointers, be sure to set them to NULL once they are freed. However, the utilization of multiple or complex data structures may lower the usefulness of this strategy.
Effectiveness: Defense in Depth
Note: If a bug causes an attempted access of this pointer, then a NULL dereference could still lead to a crash or other unexpected behavior, but it will reduce or eliminate the risk of code execution. | 3,167 |
ImageMagick | 7fd419441bc7103398e313558171d342c6315f44 | static Image *ReadMPCImage(const ImageInfo *image_info,ExceptionInfo *exception)
{
char
cache_filename[MagickPathExtent],
id[MagickPathExtent],
keyword[MagickPathExtent],
*options;
const unsigned char
*p;
GeometryInfo
geometry_info;
Image
*image;
int
c;
LinkedListInfo
*profiles;
MagickBooleanType
status;
MagickOffsetType
offset;
MagickStatusType
flags;
register ssize_t
i;
size_t
depth,
length;
ssize_t
count;
StringInfo
*profile;
unsigned int
signature;
/*
Open image file.
*/
assert(image_info != (const ImageInfo *) NULL);
assert(image_info->signature == MagickCoreSignature);
if (image_info->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",
image_info->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
image=AcquireImage(image_info,exception);
status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception);
if (status == MagickFalse)
{
image=DestroyImageList(image);
return((Image *) NULL);
}
(void) CopyMagickString(cache_filename,image->filename,MagickPathExtent);
AppendImageFormat("cache",cache_filename);
c=ReadBlobByte(image);
if (c == EOF)
{
image=DestroyImage(image);
return((Image *) NULL);
}
*id='\0';
(void) ResetMagickMemory(keyword,0,sizeof(keyword));
offset=0;
do
{
/*
Decode image header; header terminates one character beyond a ':'.
*/
profiles=(LinkedListInfo *) NULL;
length=MagickPathExtent;
options=AcquireString((char *) NULL);
signature=GetMagickSignature((const StringInfo *) NULL);
image->depth=8;
image->compression=NoCompression;
while ((isgraph(c) != MagickFalse) && (c != (int) ':'))
{
register char
*p;
if (c == (int) '{')
{
char
*comment;
/*
Read comment-- any text between { }.
*/
length=MagickPathExtent;
comment=AcquireString((char *) NULL);
for (p=comment; comment != (char *) NULL; p++)
{
c=ReadBlobByte(image);
if (c == (int) '\\')
c=ReadBlobByte(image);
else
if ((c == EOF) || (c == (int) '}'))
break;
if ((size_t) (p-comment+1) >= length)
{
*p='\0';
length<<=1;
comment=(char *) ResizeQuantumMemory(comment,length+
MagickPathExtent,sizeof(*comment));
if (comment == (char *) NULL)
break;
p=comment+strlen(comment);
}
*p=(char) c;
}
if (comment == (char *) NULL)
ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
*p='\0';
(void) SetImageProperty(image,"comment",comment,exception);
comment=DestroyString(comment);
c=ReadBlobByte(image);
}
else
if (isalnum(c) != MagickFalse)
{
/*
Get the keyword.
*/
length=MagickPathExtent;
p=keyword;
do
{
if (c == (int) '=')
break;
if ((size_t) (p-keyword) < (MagickPathExtent-1))
*p++=(char) c;
c=ReadBlobByte(image);
} while (c != EOF);
*p='\0';
p=options;
while (isspace((int) ((unsigned char) c)) != 0)
c=ReadBlobByte(image);
if (c == (int) '=')
{
/*
Get the keyword value.
*/
c=ReadBlobByte(image);
while ((c != (int) '}') && (c != EOF))
{
if ((size_t) (p-options+1) >= length)
{
*p='\0';
length<<=1;
options=(char *) ResizeQuantumMemory(options,length+
MagickPathExtent,sizeof(*options));
if (options == (char *) NULL)
break;
p=options+strlen(options);
}
*p++=(char) c;
c=ReadBlobByte(image);
if (c == '\\')
{
c=ReadBlobByte(image);
if (c == (int) '}')
{
*p++=(char) c;
c=ReadBlobByte(image);
}
}
if (*options != '{')
if (isspace((int) ((unsigned char) c)) != 0)
break;
}
if (options == (char *) NULL)
ThrowReaderException(ResourceLimitError,
"MemoryAllocationFailed");
}
*p='\0';
if (*options == '{')
(void) CopyMagickString(options,options+1,strlen(options));
/*
Assign a value to the specified keyword.
*/
switch (*keyword)
{
case 'a':
case 'A':
{
if (LocaleCompare(keyword,"alpha-trait") == 0)
{
ssize_t
alpha_trait;
alpha_trait=ParseCommandOption(MagickPixelTraitOptions,
MagickFalse,options);
if (alpha_trait < 0)
break;
image->alpha_trait=(PixelTrait) alpha_trait;
break;
}
(void) SetImageProperty(image,keyword,options,exception);
break;
}
case 'b':
case 'B':
{
if (LocaleCompare(keyword,"background-color") == 0)
{
(void) QueryColorCompliance(options,AllCompliance,
&image->background_color,exception);
break;
}
if (LocaleCompare(keyword,"blue-primary") == 0)
{
flags=ParseGeometry(options,&geometry_info);
image->chromaticity.blue_primary.x=geometry_info.rho;
image->chromaticity.blue_primary.y=geometry_info.sigma;
if ((flags & SigmaValue) == 0)
image->chromaticity.blue_primary.y=
image->chromaticity.blue_primary.x;
break;
}
if (LocaleCompare(keyword,"border-color") == 0)
{
(void) QueryColorCompliance(options,AllCompliance,
&image->border_color,exception);
break;
}
(void) SetImageProperty(image,keyword,options,exception);
break;
}
case 'c':
case 'C':
{
if (LocaleCompare(keyword,"class") == 0)
{
ssize_t
storage_class;
storage_class=ParseCommandOption(MagickClassOptions,
MagickFalse,options);
if (storage_class < 0)
break;
image->storage_class=(ClassType) storage_class;
break;
}
if (LocaleCompare(keyword,"colors") == 0)
{
image->colors=StringToUnsignedLong(options);
break;
}
if (LocaleCompare(keyword,"colorspace") == 0)
{
ssize_t
colorspace;
colorspace=ParseCommandOption(MagickColorspaceOptions,
MagickFalse,options);
if (colorspace < 0)
break;
image->colorspace=(ColorspaceType) colorspace;
break;
}
if (LocaleCompare(keyword,"compression") == 0)
{
ssize_t
compression;
compression=ParseCommandOption(MagickCompressOptions,
MagickFalse,options);
if (compression < 0)
break;
image->compression=(CompressionType) compression;
break;
}
if (LocaleCompare(keyword,"columns") == 0)
{
image->columns=StringToUnsignedLong(options);
break;
}
(void) SetImageProperty(image,keyword,options,exception);
break;
}
case 'd':
case 'D':
{
if (LocaleCompare(keyword,"delay") == 0)
{
image->delay=StringToUnsignedLong(options);
break;
}
if (LocaleCompare(keyword,"depth") == 0)
{
image->depth=StringToUnsignedLong(options);
break;
}
if (LocaleCompare(keyword,"dispose") == 0)
{
ssize_t
dispose;
dispose=ParseCommandOption(MagickDisposeOptions,MagickFalse,
options);
if (dispose < 0)
break;
image->dispose=(DisposeType) dispose;
break;
}
(void) SetImageProperty(image,keyword,options,exception);
break;
}
case 'e':
case 'E':
{
if (LocaleCompare(keyword,"endian") == 0)
{
ssize_t
endian;
endian=ParseCommandOption(MagickEndianOptions,MagickFalse,
options);
if (endian < 0)
break;
image->endian=(EndianType) endian;
break;
}
if (LocaleCompare(keyword,"error") == 0)
{
image->error.mean_error_per_pixel=StringToDouble(options,
(char **) NULL);
break;
}
(void) SetImageProperty(image,keyword,options,exception);
break;
}
case 'g':
case 'G':
{
if (LocaleCompare(keyword,"gamma") == 0)
{
image->gamma=StringToDouble(options,(char **) NULL);
break;
}
if (LocaleCompare(keyword,"green-primary") == 0)
{
flags=ParseGeometry(options,&geometry_info);
image->chromaticity.green_primary.x=geometry_info.rho;
image->chromaticity.green_primary.y=geometry_info.sigma;
if ((flags & SigmaValue) == 0)
image->chromaticity.green_primary.y=
image->chromaticity.green_primary.x;
break;
}
(void) SetImageProperty(image,keyword,options,exception);
break;
}
case 'i':
case 'I':
{
if (LocaleCompare(keyword,"id") == 0)
{
(void) CopyMagickString(id,options,MagickPathExtent);
break;
}
if (LocaleCompare(keyword,"iterations") == 0)
{
image->iterations=StringToUnsignedLong(options);
break;
}
(void) SetImageProperty(image,keyword,options,exception);
break;
}
case 'm':
case 'M':
{
if (LocaleCompare(keyword,"magick-signature") == 0)
{
signature=(unsigned int) StringToUnsignedLong(options);
break;
}
if (LocaleCompare(keyword,"mattecolor") == 0)
{
(void) QueryColorCompliance(options,AllCompliance,
&image->matte_color,exception);
break;
}
if (LocaleCompare(keyword,"maximum-error") == 0)
{
image->error.normalized_maximum_error=StringToDouble(
options,(char **) NULL);
break;
}
if (LocaleCompare(keyword,"mean-error") == 0)
{
image->error.normalized_mean_error=StringToDouble(options,
(char **) NULL);
break;
}
if (LocaleCompare(keyword,"montage") == 0)
{
(void) CloneString(&image->montage,options);
break;
}
(void) SetImageProperty(image,keyword,options,exception);
break;
}
case 'n':
case 'N':
{
if (LocaleCompare(keyword,"number-channels") == 0)
{
image->number_channels=StringToUnsignedLong(options);
break;
}
if (LocaleCompare(keyword,"number-meta-channels") == 0)
{
image->number_meta_channels=StringToUnsignedLong(options);
if (image->number_meta_channels > MaxPixelChannels)
ThrowReaderException(CorruptImageError,
"ImproperImageHeader");
break;
}
break;
}
case 'o':
case 'O':
{
if (LocaleCompare(keyword,"orientation") == 0)
{
ssize_t
orientation;
orientation=ParseCommandOption(MagickOrientationOptions,
MagickFalse,options);
if (orientation < 0)
break;
image->orientation=(OrientationType) orientation;
break;
}
(void) SetImageProperty(image,keyword,options,exception);
break;
}
case 'p':
case 'P':
{
if (LocaleCompare(keyword,"page") == 0)
{
char
*geometry;
geometry=GetPageGeometry(options);
(void) ParseAbsoluteGeometry(geometry,&image->page);
geometry=DestroyString(geometry);
break;
}
if (LocaleCompare(keyword,"pixel-intensity") == 0)
{
ssize_t
intensity;
intensity=ParseCommandOption(MagickPixelIntensityOptions,
MagickFalse,options);
if (intensity < 0)
break;
image->intensity=(PixelIntensityMethod) intensity;
break;
}
if ((LocaleNCompare(keyword,"profile:",8) == 0) ||
(LocaleNCompare(keyword,"profile-",8) == 0))
{
if (profiles == (LinkedListInfo *) NULL)
profiles=NewLinkedList(0);
(void) AppendValueToLinkedList(profiles,
AcquireString(keyword+8));
profile=BlobToStringInfo((const void *) NULL,(size_t)
StringToLong(options));
if (profile == (StringInfo *) NULL)
ThrowReaderException(ResourceLimitError,
"MemoryAllocationFailed");
(void) SetImageProfile(image,keyword+8,profile,exception);
profile=DestroyStringInfo(profile);
break;
}
(void) SetImageProperty(image,keyword,options,exception);
break;
}
case 'q':
case 'Q':
{
if (LocaleCompare(keyword,"quality") == 0)
{
image->quality=StringToUnsignedLong(options);
break;
}
(void) SetImageProperty(image,keyword,options,exception);
break;
}
case 'r':
case 'R':
{
if (LocaleCompare(keyword,"red-primary") == 0)
{
flags=ParseGeometry(options,&geometry_info);
image->chromaticity.red_primary.x=geometry_info.rho;
if ((flags & SigmaValue) != 0)
image->chromaticity.red_primary.y=geometry_info.sigma;
break;
}
if (LocaleCompare(keyword,"rendering-intent") == 0)
{
ssize_t
rendering_intent;
rendering_intent=ParseCommandOption(MagickIntentOptions,
MagickFalse,options);
if (rendering_intent < 0)
break;
image->rendering_intent=(RenderingIntent) rendering_intent;
break;
}
if (LocaleCompare(keyword,"resolution") == 0)
{
flags=ParseGeometry(options,&geometry_info);
image->resolution.x=geometry_info.rho;
image->resolution.y=geometry_info.sigma;
if ((flags & SigmaValue) == 0)
image->resolution.y=image->resolution.x;
break;
}
if (LocaleCompare(keyword,"rows") == 0)
{
image->rows=StringToUnsignedLong(options);
break;
}
(void) SetImageProperty(image,keyword,options,exception);
break;
}
case 's':
case 'S':
{
if (LocaleCompare(keyword,"scene") == 0)
{
image->scene=StringToUnsignedLong(options);
break;
}
(void) SetImageProperty(image,keyword,options,exception);
break;
}
case 't':
case 'T':
{
if (LocaleCompare(keyword,"ticks-per-second") == 0)
{
image->ticks_per_second=(ssize_t) StringToLong(options);
break;
}
if (LocaleCompare(keyword,"tile-offset") == 0)
{
char
*geometry;
geometry=GetPageGeometry(options);
(void) ParseAbsoluteGeometry(geometry,&image->tile_offset);
geometry=DestroyString(geometry);
}
if (LocaleCompare(keyword,"type") == 0)
{
ssize_t
type;
type=ParseCommandOption(MagickTypeOptions,MagickFalse,
options);
if (type < 0)
break;
image->type=(ImageType) type;
break;
}
(void) SetImageProperty(image,keyword,options,exception);
break;
}
case 'u':
case 'U':
{
if (LocaleCompare(keyword,"units") == 0)
{
ssize_t
units;
units=ParseCommandOption(MagickResolutionOptions,
MagickFalse,options);
if (units < 0)
break;
image->units=(ResolutionType) units;
break;
}
(void) SetImageProperty(image,keyword,options,exception);
break;
}
case 'w':
case 'W':
{
if (LocaleCompare(keyword,"white-point") == 0)
{
flags=ParseGeometry(options,&geometry_info);
image->chromaticity.white_point.x=geometry_info.rho;
image->chromaticity.white_point.y=geometry_info.sigma;
if ((flags & SigmaValue) == 0)
image->chromaticity.white_point.y=
image->chromaticity.white_point.x;
break;
}
(void) SetImageProperty(image,keyword,options,exception);
break;
}
default:
{
(void) SetImageProperty(image,keyword,options,exception);
break;
}
}
}
else
c=ReadBlobByte(image);
while (isspace((int) ((unsigned char) c)) != 0)
c=ReadBlobByte(image);
}
options=DestroyString(options);
(void) ReadBlobByte(image);
/*
Verify that required image information is defined.
*/
if ((LocaleCompare(id,"MagickCache") != 0) ||
(image->storage_class == UndefinedClass) ||
(image->compression == UndefinedCompression) || (image->columns == 0) ||
(image->rows == 0))
ThrowReaderException(CorruptImageError,"ImproperImageHeader");
if (signature != GetMagickSignature((const StringInfo *) NULL))
ThrowReaderException(CacheError,"IncompatibleAPI");
if (image->montage != (char *) NULL)
{
register char
*p;
/*
Image directory.
*/
length=MagickPathExtent;
image->directory=AcquireString((char *) NULL);
p=image->directory;
do
{
*p='\0';
if ((strlen(image->directory)+MagickPathExtent) >= length)
{
/*
Allocate more memory for the image directory.
*/
length<<=1;
image->directory=(char *) ResizeQuantumMemory(image->directory,
length+MagickPathExtent,sizeof(*image->directory));
if (image->directory == (char *) NULL)
ThrowReaderException(CorruptImageError,"UnableToReadImageData");
p=image->directory+strlen(image->directory);
}
c=ReadBlobByte(image);
*p++=(char) c;
} while (c != (int) '\0');
}
if (profiles != (LinkedListInfo *) NULL)
{
const char
*name;
const StringInfo
*profile;
register unsigned char
*p;
/*
Read image profiles.
*/
ResetLinkedListIterator(profiles);
name=(const char *) GetNextValueInLinkedList(profiles);
while (name != (const char *) NULL)
{
profile=GetImageProfile(image,name);
if (profile != (StringInfo *) NULL)
{
p=GetStringInfoDatum(profile);
count=ReadBlob(image,GetStringInfoLength(profile),p);
}
name=(const char *) GetNextValueInLinkedList(profiles);
}
profiles=DestroyLinkedList(profiles,RelinquishMagickMemory);
}
depth=GetImageQuantumDepth(image,MagickFalse);
if (image->storage_class == PseudoClass)
{
/*
Create image colormap.
*/
image->colormap=(PixelInfo *) AcquireQuantumMemory(image->colors+1,
sizeof(*image->colormap));
if (image->colormap == (PixelInfo *) NULL)
ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
if (image->colors != 0)
{
size_t
packet_size;
unsigned char
*colormap;
/*
Read image colormap from file.
*/
packet_size=(size_t) (3UL*depth/8UL);
colormap=(unsigned char *) AcquireQuantumMemory(image->colors,
packet_size*sizeof(*colormap));
if (colormap == (unsigned char *) NULL)
ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
count=ReadBlob(image,packet_size*image->colors,colormap);
if (count != (ssize_t) (packet_size*image->colors))
{
colormap=(unsigned char *) RelinquishMagickMemory(colormap);
ThrowReaderException(CorruptImageError,
"InsufficientImageDataInFile");
}
p=colormap;
switch (depth)
{
default:
colormap=(unsigned char *) RelinquishMagickMemory(colormap);
ThrowReaderException(CorruptImageError,
"ImageDepthNotSupported");
case 8:
{
unsigned char
pixel;
for (i=0; i < (ssize_t) image->colors; i++)
{
p=PushCharPixel(p,&pixel);
image->colormap[i].red=ScaleCharToQuantum(pixel);
p=PushCharPixel(p,&pixel);
image->colormap[i].green=ScaleCharToQuantum(pixel);
p=PushCharPixel(p,&pixel);
image->colormap[i].blue=ScaleCharToQuantum(pixel);
}
break;
}
case 16:
{
unsigned short
pixel;
for (i=0; i < (ssize_t) image->colors; i++)
{
p=PushShortPixel(MSBEndian,p,&pixel);
image->colormap[i].red=ScaleShortToQuantum(pixel);
p=PushShortPixel(MSBEndian,p,&pixel);
image->colormap[i].green=ScaleShortToQuantum(pixel);
p=PushShortPixel(MSBEndian,p,&pixel);
image->colormap[i].blue=ScaleShortToQuantum(pixel);
}
break;
}
case 32:
{
unsigned int
pixel;
for (i=0; i < (ssize_t) image->colors; i++)
{
p=PushLongPixel(MSBEndian,p,&pixel);
image->colormap[i].red=ScaleLongToQuantum(pixel);
p=PushLongPixel(MSBEndian,p,&pixel);
image->colormap[i].green=ScaleLongToQuantum(pixel);
p=PushLongPixel(MSBEndian,p,&pixel);
image->colormap[i].blue=ScaleLongToQuantum(pixel);
}
break;
}
}
colormap=(unsigned char *) RelinquishMagickMemory(colormap);
}
}
if (EOFBlob(image) != MagickFalse)
{
ThrowFileException(exception,CorruptImageError,"UnexpectedEndOfFile",
image->filename);
break;
}
if ((image_info->ping != MagickFalse) && (image_info->number_scenes != 0))
if (image->scene >= (image_info->scene+image_info->number_scenes-1))
break;
if ((AcquireMagickResource(WidthResource,image->columns) == MagickFalse) ||
(AcquireMagickResource(HeightResource,image->rows) == MagickFalse))
ThrowReaderException(ImageError,"WidthOrHeightExceedsLimit");
/*
Attach persistent pixel cache.
*/
status=PersistPixelCache(image,cache_filename,MagickTrue,&offset,exception);
if (status == MagickFalse)
ThrowReaderException(CacheError,"UnableToPersistPixelCache");
/*
Proceed to next image.
*/
do
{
c=ReadBlobByte(image);
} while ((isgraph(c) == MagickFalse) && (c != EOF));
if (c != EOF)
{
/*
Allocate next image structure.
*/
AcquireNextImage(image_info,image,exception);
if (GetNextImageInList(image) == (Image *) NULL)
{
image=DestroyImageList(image);
return((Image *) NULL);
}
image=SyncNextImageInList(image);
status=SetImageProgress(image,LoadImagesTag,TellBlob(image),
GetBlobSize(image));
if (status == MagickFalse)
break;
}
} while (c != EOF);
(void) CloseBlob(image);
return(GetFirstImageInList(image));
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 22,071 |
tensorflow | b432a38fe0e1b4b904a6c222cbce794c39703e87 | explicit DrawBoundingBoxesOp(OpKernelConstruction* context)
: OpKernel(context) {} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 21,018 |
linux | 34b3be18a04ecdc610aae4c48e5d1b799d8689f6 | int sdma_send_txreq(struct sdma_engine *sde,
struct iowait_work *wait,
struct sdma_txreq *tx,
bool pkts_sent)
{
int ret = 0;
u16 tail;
unsigned long flags;
/* user should have supplied entire packet */
if (unlikely(tx->tlen))
return -EINVAL;
tx->wait = iowait_ioww_to_iow(wait);
spin_lock_irqsave(&sde->tail_lock, flags);
retry:
if (unlikely(!__sdma_running(sde)))
goto unlock_noconn;
if (unlikely(tx->num_desc > sde->desc_avail))
goto nodesc;
tail = submit_tx(sde, tx);
if (wait)
iowait_sdma_inc(iowait_ioww_to_iow(wait));
sdma_update_tail(sde, tail);
unlock:
spin_unlock_irqrestore(&sde->tail_lock, flags);
return ret;
unlock_noconn:
if (wait)
iowait_sdma_inc(iowait_ioww_to_iow(wait));
tx->next_descq_idx = 0;
#ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
tx->sn = sde->tail_sn++;
trace_hfi1_sdma_in_sn(sde, tx->sn);
#endif
spin_lock(&sde->flushlist_lock);
list_add_tail(&tx->list, &sde->flushlist);
spin_unlock(&sde->flushlist_lock);
iowait_inc_wait_count(wait, tx->num_desc);
queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
ret = -ECOMM;
goto unlock;
nodesc:
ret = sdma_check_progress(sde, wait, tx, pkts_sent);
if (ret == -EAGAIN) {
ret = 0;
goto retry;
}
sde->descq_full_count++;
goto unlock;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 15,925 |
liblouis | dbfa58bb128cae86729578ac596056b3385817ef | parseChars(FileInfo *nested, CharsString *result, CharsString *token) {
int in = 0;
int out = 0;
int lastOutSize = 0;
int lastIn;
unsigned int ch = 0;
int numBytes = 0;
unsigned int utf32 = 0;
int k;
while (in < token->length) {
ch = token->chars[in++] & 0xff;
if (ch < 128) {
if (ch == '\\') { /* escape sequence */
switch (ch = token->chars[in]) {
case '\\':
break;
case 'e':
ch = 0x1b;
break;
case 'f':
ch = 12;
break;
case 'n':
ch = 10;
break;
case 'r':
ch = 13;
break;
case 's':
ch = ' ';
break;
case 't':
ch = 9;
break;
case 'v':
ch = 11;
break;
case 'w':
ch = ENDSEGMENT;
break;
case 34:
ch = QUOTESUB;
break;
case 'X':
case 'x':
if (token->length - in > 4) {
ch = hexValue(nested, &token->chars[in + 1], 4);
in += 4;
}
break;
case 'y':
case 'Y':
if (CHARSIZE == 2) {
not32:
compileError(nested,
"liblouis has not been compiled for 32-bit Unicode");
break;
}
if (token->length - in > 5) {
ch = hexValue(nested, &token->chars[in + 1], 5);
in += 5;
}
break;
case 'z':
case 'Z':
if (CHARSIZE == 2) goto not32;
if (token->length - in > 8) {
ch = hexValue(nested, &token->chars[in + 1], 8);
in += 8;
}
break;
default:
compileError(nested, "invalid escape sequence '\\%c'", ch);
break;
}
in++;
}
if (out >= MAXSTRING) {
result->length = out;
return 1;
}
result->chars[out++] = (widechar)ch;
continue;
}
lastOutSize = out;
lastIn = in;
for (numBytes = MAXBYTES - 1; numBytes > 0; numBytes--)
if (ch >= first0Bit[numBytes]) break;
utf32 = ch & (0XFF - first0Bit[numBytes]);
for (k = 0; k < numBytes; k++) {
if (in >= MAXSTRING) break;
if (out >= MAXSTRING) {
result->length = lastOutSize;
return 1;
}
if (token->chars[in] < 128 || (token->chars[in] & 0x0040)) {
compileWarning(nested, "invalid UTF-8. Assuming Latin-1.");
result->chars[out++] = token->chars[lastIn];
in = lastIn + 1;
continue;
}
utf32 = (utf32 << 6) + (token->chars[in++] & 0x3f);
}
if (out >= MAXSTRING) {
result->length = lastOutSize;
return 1;
}
if (CHARSIZE == 2 && utf32 > 0xffff) utf32 = 0xffff;
result->chars[out++] = (widechar)utf32;
}
result->length = out;
return 1;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 22,622 |
linux | 3e4c56d41eef5595035872a2ec5a483f42e8917f | static int ocfs2_expand_nonsparse_inode(struct inode *inode,
struct buffer_head *di_bh,
loff_t pos, unsigned len,
struct ocfs2_write_ctxt *wc)
{
int ret;
loff_t newsize = pos + len;
BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
if (newsize <= i_size_read(inode))
return 0;
ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
if (ret)
mlog_errno(ret);
/* There is no wc if this is call from direct. */
if (wc)
wc->w_first_new_cpos =
ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
return ret;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 16,844 |
linux | 3151527ee007b73a0ebd296010f1c0454a919c7d | static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
{
int error = 0;
int readonly_request = 0;
if (ms_flags & MS_RDONLY)
readonly_request = 1;
if (readonly_request == __mnt_is_readonly(mnt))
return 0;
if (readonly_request)
error = mnt_make_readonly(real_mount(mnt));
else
__mnt_unmake_readonly(real_mount(mnt));
return error;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 11,900 |
LibRaw-demosaic-pack-GPL2 | 194f592e205990ea8fce72b6c571c14350aca716 | void CLASS foveon_load_camf()
{
unsigned type, wide, high, i, j, row, col, diff;
ushort huff[258], vpred[2][2] = {{512,512},{512,512}}, hpred[2];
fseek (ifp, meta_offset, SEEK_SET);
type = get4(); get4(); get4();
wide = get4();
high = get4();
if (type == 2) {
fread (meta_data, 1, meta_length, ifp);
for (i=0; i < meta_length; i++) {
high = (high * 1597 + 51749) % 244944;
wide = high * (INT64) 301593171 >> 24;
meta_data[i] ^= ((((high << 8) - wide) >> 1) + wide) >> 17;
}
} else if (type == 4) {
free (meta_data);
meta_data = (char *) malloc (meta_length = wide*high*3/2);
merror (meta_data, "foveon_load_camf()");
foveon_huff (huff);
get4();
getbits(-1);
for (j=row=0; row < high; row++) {
for (col=0; col < wide; col++) {
diff = ljpeg_diff(huff);
if (col < 2) hpred[col] = vpred[row & 1][col] += diff;
else hpred[col & 1] += diff;
if (col & 1) {
meta_data[j++] = hpred[0] >> 4;
meta_data[j++] = hpred[0] << 4 | hpred[1] >> 8;
meta_data[j++] = hpred[1];
}
}
}
} else
fprintf (stderr,_("%s has unknown CAMF type %d.\n"), ifname, type);
}
| 1 | CVE-2017-6890 | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 2,539 |
krb5 | 83ed75feba32e46f736fcce0d96a0445f29b96c2 | chrand_principal3_2_svc(chrand3_arg *arg, struct svc_req *rqstp)
{
static chrand_ret ret;
krb5_keyblock *k;
int nkeys;
char *prime_arg, *funcname;
gss_buffer_desc client_name,
service_name;
OM_uint32 minor_stat;
kadm5_server_handle_t handle;
const char *errmsg = NULL;
xdr_free(xdr_chrand_ret, &ret);
if ((ret.code = new_server_handle(arg->api_version, rqstp, &handle)))
goto exit_func;
if ((ret.code = check_handle((void *)handle)))
goto exit_func;
ret.api_version = handle->api_version;
funcname = "kadm5_randkey_principal";
if (setup_gss_names(rqstp, &client_name, &service_name) < 0) {
ret.code = KADM5_FAILURE;
goto exit_func;
}
if (krb5_unparse_name(handle->context, arg->princ, &prime_arg)) {
ret.code = KADM5_BAD_PRINCIPAL;
goto exit_func;
}
if (cmp_gss_krb5_name(handle, rqst2name(rqstp), arg->princ)) {
ret.code = randkey_principal_wrapper_3((void *)handle, arg->princ,
arg->keepold,
arg->n_ks_tuple,
arg->ks_tuple,
&k, &nkeys);
} else if (!(CHANGEPW_SERVICE(rqstp)) &&
kadm5int_acl_check(handle->context, rqst2name(rqstp),
ACL_CHANGEPW, arg->princ, NULL)) {
ret.code = kadm5_randkey_principal_3((void *)handle, arg->princ,
arg->keepold,
arg->n_ks_tuple,
arg->ks_tuple,
&k, &nkeys);
} else {
log_unauth(funcname, prime_arg,
&client_name, &service_name, rqstp);
ret.code = KADM5_AUTH_CHANGEPW;
}
if(ret.code == KADM5_OK) {
ret.keys = k;
ret.n_keys = nkeys;
}
if(ret.code != KADM5_AUTH_CHANGEPW) {
if( ret.code != 0 )
errmsg = krb5_get_error_message(handle->context, ret.code);
log_done(funcname, prime_arg, errmsg,
&client_name, &service_name, rqstp);
if (errmsg != NULL)
krb5_free_error_message(handle->context, errmsg);
}
free(prime_arg);
gss_release_buffer(&minor_stat, &client_name);
gss_release_buffer(&minor_stat, &service_name);
exit_func:
free_server_handle(handle);
return &ret;
}
| 1 | CVE-2015-8631 | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 4,179 |
qemu | 5519724a13664b43e225ca05351c60b4468e4555 | static void xgmac_enet_send(XgmacState *s)
{
struct desc bd;
int frame_size;
int len;
uint8_t frame[8192];
uint8_t *ptr;
ptr = frame;
frame_size = 0;
while (1) {
xgmac_read_desc(s, &bd, 0);
if ((bd.ctl_stat & 0x80000000) == 0) {
/* Run out of descriptors to transmit. */
break;
}
len = (bd.buffer1_size & 0xfff) + (bd.buffer2_size & 0xfff);
if ((bd.buffer1_size & 0xfff) > 2048) {
DEBUGF_BRK("qemu:%s:ERROR...ERROR...ERROR... -- "
"xgmac buffer 1 len on send > 2048 (0x%x)\n",
__func__, bd.buffer1_size & 0xfff);
}
if ((bd.buffer2_size & 0xfff) != 0) {
DEBUGF_BRK("qemu:%s:ERROR...ERROR...ERROR... -- "
"xgmac buffer 2 len on send != 0 (0x%x)\n",
__func__, bd.buffer2_size & 0xfff);
}
if (len >= sizeof(frame)) {
DEBUGF_BRK("qemu:%s: buffer overflow %d read into %zu "
"buffer\n" , __func__, len, sizeof(frame));
DEBUGF_BRK("qemu:%s: buffer1.size=%d; buffer2.size=%d\n",
__func__, bd.buffer1_size, bd.buffer2_size);
}
cpu_physical_memory_read(bd.buffer1_addr, ptr, len);
ptr += len;
frame_size += len;
if (bd.ctl_stat & 0x20000000) {
/* Last buffer in frame. */
qemu_send_packet(qemu_get_queue(s->nic), frame, len);
ptr = frame;
frame_size = 0;
s->regs[DMA_STATUS] |= DMA_STATUS_TI | DMA_STATUS_NIS;
}
bd.ctl_stat &= ~0x80000000;
/* Write back the modified descriptor. */
xgmac_write_desc(s, &bd, 0);
}
} | 1 | CVE-2020-15863 | CWE-787 | Out-of-bounds Write | The product writes data past the end, or before the beginning, of the intended buffer. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333].
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 1,387 |
linux | cabfb3680f78981d26c078a26e5c748531257ebb | static void unicode_ssetup_strings(char **pbcc_area, struct cifs_ses *ses,
const struct nls_table *nls_cp)
{
char *bcc_ptr = *pbcc_area;
int bytes_ret = 0;
/* BB FIXME add check that strings total less
than 335 or will need to send them as arrays */
/* unicode strings, must be word aligned before the call */
/* if ((long) bcc_ptr % 2) {
*bcc_ptr = 0;
bcc_ptr++;
} */
/* copy user */
if (ses->user_name == NULL) {
/* null user mount */
*bcc_ptr = 0;
*(bcc_ptr+1) = 0;
} else {
bytes_ret = cifs_strtoUTF16((__le16 *) bcc_ptr, ses->user_name,
CIFS_MAX_USERNAME_LEN, nls_cp);
}
bcc_ptr += 2 * bytes_ret;
bcc_ptr += 2; /* account for null termination */
unicode_domain_string(&bcc_ptr, ses, nls_cp);
unicode_oslm_strings(&bcc_ptr, nls_cp);
*pbcc_area = bcc_ptr;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 12,992 |
krb5 | c2ccf4197f697c4ff143b8a786acdd875e70a89d | initialize_realms(krb5_context kcontext, int argc, char **argv)
{
int c;
char *db_name = (char *) NULL;
char *lrealm = (char *) NULL;
char *mkey_name = (char *) NULL;
krb5_error_code retval;
krb5_enctype menctype = ENCTYPE_UNKNOWN;
kdc_realm_t *rdatap = NULL;
krb5_boolean manual = FALSE;
krb5_boolean def_restrict_anon;
char *default_udp_ports = 0;
char *default_tcp_ports = 0;
krb5_pointer aprof;
const char *hierarchy[3];
char *no_refrls = NULL;
char *host_based_srvcs = NULL;
int db_args_size = 0;
char **db_args = NULL;
extern char *optarg;
if (!krb5_aprof_init(DEFAULT_KDC_PROFILE, KDC_PROFILE_ENV, &aprof)) {
hierarchy[0] = KRB5_CONF_KDCDEFAULTS;
hierarchy[1] = KRB5_CONF_KDC_PORTS;
hierarchy[2] = (char *) NULL;
if (krb5_aprof_get_string(aprof, hierarchy, TRUE, &default_udp_ports))
default_udp_ports = 0;
hierarchy[1] = KRB5_CONF_KDC_TCP_PORTS;
if (krb5_aprof_get_string(aprof, hierarchy, TRUE, &default_tcp_ports))
default_tcp_ports = 0;
hierarchy[1] = KRB5_CONF_MAX_DGRAM_REPLY_SIZE;
if (krb5_aprof_get_int32(aprof, hierarchy, TRUE, &max_dgram_reply_size))
max_dgram_reply_size = MAX_DGRAM_SIZE;
hierarchy[1] = KRB5_CONF_RESTRICT_ANONYMOUS_TO_TGT;
if (krb5_aprof_get_boolean(aprof, hierarchy, TRUE, &def_restrict_anon))
def_restrict_anon = FALSE;
hierarchy[1] = KRB5_CONF_NO_HOST_REFERRAL;
if (krb5_aprof_get_string_all(aprof, hierarchy, &no_refrls))
no_refrls = 0;
if (!no_refrls ||
krb5_match_config_pattern(no_refrls, KRB5_CONF_ASTERISK) == FALSE) {
hierarchy[1] = KRB5_CONF_HOST_BASED_SERVICES;
if (krb5_aprof_get_string_all(aprof, hierarchy, &host_based_srvcs))
host_based_srvcs = 0;
}
krb5_aprof_finish(aprof);
}
if (default_udp_ports == 0) {
default_udp_ports = strdup(DEFAULT_KDC_UDP_PORTLIST);
if (default_udp_ports == 0) {
fprintf(stderr, _(" KDC cannot initialize. Not enough memory\n"));
exit(1);
}
}
if (default_tcp_ports == 0) {
default_tcp_ports = strdup(DEFAULT_KDC_TCP_PORTLIST);
if (default_tcp_ports == 0) {
fprintf(stderr, _(" KDC cannot initialize. Not enough memory\n"));
exit(1);
}
}
/*
* Loop through the option list. Each time we encounter a realm name,
* use the previously scanned options to fill in for defaults.
*/
while ((c = getopt(argc, argv, "x:r:d:mM:k:R:e:P:p:s:nw:4:X3")) != -1) {
switch(c) {
case 'x':
db_args_size++;
{
char **temp = realloc( db_args, sizeof(char*) * (db_args_size+1)); /* one for NULL */
if( temp == NULL )
{
fprintf(stderr, _("%s: KDC cannot initialize. Not enough "
"memory\n"), argv[0]);
exit(1);
}
db_args = temp;
}
db_args[db_args_size-1] = optarg;
db_args[db_args_size] = NULL;
break;
case 'r': /* realm name for db */
if (!find_realm_data(optarg, (krb5_ui_4) strlen(optarg))) {
if ((rdatap = (kdc_realm_t *) malloc(sizeof(kdc_realm_t)))) {
if ((retval = init_realm(rdatap, optarg, mkey_name,
menctype, default_udp_ports,
default_tcp_ports, manual,
def_restrict_anon, db_args,
no_refrls, host_based_srvcs))) {
fprintf(stderr, _("%s: cannot initialize realm %s - "
"see log file for details\n"),
argv[0], optarg);
exit(1);
}
kdc_realmlist[kdc_numrealms] = rdatap;
kdc_numrealms++;
free(db_args), db_args=NULL, db_args_size = 0;
}
else
{
fprintf(stderr, _("%s: cannot initialize realm %s. Not "
"enough memory\n"), argv[0], optarg);
exit(1);
}
}
break;
case 'd': /* pathname for db */
/* now db_name is not a seperate argument.
* It has to be passed as part of the db_args
*/
if( db_name == NULL ) {
if (asprintf(&db_name, "dbname=%s", optarg) < 0) {
fprintf(stderr, _("%s: KDC cannot initialize. Not enough "
"memory\n"), argv[0]);
exit(1);
}
}
db_args_size++;
{
char **temp = realloc( db_args, sizeof(char*) * (db_args_size+1)); /* one for NULL */
if( temp == NULL )
{
fprintf(stderr, _("%s: KDC cannot initialize. Not enough "
"memory\n"), argv[0]);
exit(1);
}
db_args = temp;
}
db_args[db_args_size-1] = db_name;
db_args[db_args_size] = NULL;
break;
case 'm': /* manual type-in of master key */
manual = TRUE;
if (menctype == ENCTYPE_UNKNOWN)
menctype = ENCTYPE_DES_CBC_CRC;
break;
case 'M': /* master key name in DB */
mkey_name = optarg;
break;
case 'n':
nofork++; /* don't detach from terminal */
break;
case 'w': /* create multiple worker processes */
workers = atoi(optarg);
if (workers <= 0)
usage(argv[0]);
break;
case 'k': /* enctype for master key */
if (krb5_string_to_enctype(optarg, &menctype))
com_err(argv[0], 0, _("invalid enctype %s"), optarg);
break;
case 'R':
/* Replay cache name; defunct since we don't use a replay cache. */
break;
case 'P':
pid_file = optarg;
break;
case 'p':
if (default_udp_ports)
free(default_udp_ports);
default_udp_ports = strdup(optarg);
if (!default_udp_ports) {
fprintf(stderr, _(" KDC cannot initialize. Not enough "
"memory\n"));
exit(1);
}
#if 0 /* not yet */
if (default_tcp_ports)
free(default_tcp_ports);
default_tcp_ports = strdup(optarg);
#endif
break;
case '4':
break;
case 'X':
break;
case '?':
default:
usage(argv[0]);
}
}
/*
* Check to see if we processed any realms.
*/
if (kdc_numrealms == 0) {
/* no realm specified, use default realm */
if ((retval = krb5_get_default_realm(kcontext, &lrealm))) {
com_err(argv[0], retval,
_("while attempting to retrieve default realm"));
fprintf (stderr,
_("%s: %s, attempting to retrieve default realm\n"),
argv[0], krb5_get_error_message(kcontext, retval));
exit(1);
}
if ((rdatap = (kdc_realm_t *) malloc(sizeof(kdc_realm_t)))) {
if ((retval = init_realm(rdatap, lrealm, mkey_name, menctype,
default_udp_ports, default_tcp_ports,
manual, def_restrict_anon, db_args,
no_refrls, host_based_srvcs))) {
fprintf(stderr, _("%s: cannot initialize realm %s - see log "
"file for details\n"), argv[0], lrealm);
exit(1);
}
kdc_realmlist[0] = rdatap;
kdc_numrealms++;
}
krb5_free_default_realm(kcontext, lrealm);
}
/* Ensure that this is set for our first request. */
kdc_active_realm = kdc_realmlist[0];
if (default_udp_ports)
free(default_udp_ports);
if (default_tcp_ports)
free(default_tcp_ports);
if (db_args)
free(db_args);
if (db_name)
free(db_name);
if (host_based_srvcs)
free(host_based_srvcs);
if (no_refrls)
free(no_refrls);
return;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 21,424 |
Chrome | 9785a8b9672f6f35f5a401a86251c4109eda4175 | AwFeatureListCreator::AwFeatureListCreator()
: aw_field_trials_(std::make_unique<AwFieldTrials>()) {}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 22,129 |
mosh | 9791768705528e911bfca6c4d8aa88139035060e | void Dispatcher::collect( const Parser::Collect *act )
{
assert( act->char_present );
if ( ( dispatch_chars.length() < 8 ) /* never should need more than 2 */
&& ( act->ch <= 255 ) ) { /* ignore non-8-bit */
dispatch_chars.push_back( act->ch );
act->handled = true;
}
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 17,612 |
gpac | 44fdc3d972c31c56efe73e1a3b63438d46087652 | void gf_fs_push_arg(GF_FilterSession *session, const char *szArg, u32 was_found, u32 type)
{
if (session->flags & GF_FS_FLAG_NO_ARG_CHECK)
return;
if (!was_found) {
Bool afound = GF_FALSE;
u32 k, acount;
if (!session->parsed_args) session->parsed_args = gf_list_new();
acount = gf_list_count(session->parsed_args);
for (k=0; k<acount; k++) {
GF_FSArgItem *ai = gf_list_get(session->parsed_args, k);
if (!strcmp(ai->argname, szArg)) {
afound = GF_TRUE;
if ((ai->type==2) && (type==2) && (ai->found_type==1))
ai->found_type = 0;
break;
}
}
if (!afound) {
GF_FSArgItem *ai;
GF_SAFEALLOC(ai, GF_FSArgItem);
if (ai) {
ai->argname = gf_strdup(szArg);
ai->type = type;
gf_list_add(session->parsed_args, ai );
}
}
} else {
u32 k, acount;
Bool found = GF_FALSE;
if (!session->parsed_args) session->parsed_args = gf_list_new();
acount = gf_list_count(session->parsed_args);
for (k=0; k<acount; k++) {
GF_FSArgItem *ai = gf_list_get(session->parsed_args, k);
if (!strcmp(ai->argname, szArg)) {
ai->found_type = was_found;
found = GF_TRUE;
break;
}
}
if (!found) {
GF_FSArgItem *ai;
GF_SAFEALLOC(ai, GF_FSArgItem);
if (ai) {
ai->argname = gf_strdup(szArg);
ai->type = type;
ai->found_type = was_found;
gf_list_add(session->parsed_args, ai );
}
}
}
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 15,343 |
Chrome | 1c40f9042ae2d6ee7483d72998aabb5e73b2ff60 | Response InspectorNetworkAgent::GetResponseBody(const String& request_id,
String* content,
bool* base64_encoded) {
NetworkResourcesData::ResourceData const* resource_data =
resources_data_->Data(request_id);
if (!resource_data) {
return Response::Error("No resource with given identifier found");
}
if (resource_data->HasContent()) {
*content = resource_data->Content();
*base64_encoded = resource_data->Base64Encoded();
return Response::OK();
}
if (resource_data->IsContentEvicted()) {
return Response::Error("Request content was evicted from inspector cache");
}
if (resource_data->Buffer() && !resource_data->TextEncodingName().IsNull()) {
bool success = InspectorPageAgent::SharedBufferContent(
resource_data->Buffer(), resource_data->MimeType(),
resource_data->TextEncodingName(), content, base64_encoded);
DCHECK(success);
return Response::OK();
}
if (resource_data->CachedResource() &&
InspectorPageAgent::CachedResourceContent(resource_data->CachedResource(),
content, base64_encoded)) {
return Response::OK();
}
return Response::Error("No data found for resource with given identifier");
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 12,151 |
gpac | 71460d72ec07df766dab0a4d52687529f3efcf0a | ISOMChannel *isor_create_channel(ISOMReader *read, GF_FilterPid *pid, u32 track, u32 item_id, Bool force_no_extractors)
{
ISOMChannel *ch;
const GF_PropertyValue *p;
s64 ts_shift;
if (!read->mov) return NULL;
GF_SAFEALLOC(ch, ISOMChannel);
if (!ch) {
return NULL;
}
ch->owner = read;
ch->pid = pid;
ch->to_init = GF_TRUE;
gf_list_add(read->channels, ch);
ch->track = track;
ch->item_id = item_id;
ch->nalu_extract_mode = 0;
ch->track_id = gf_isom_get_track_id(read->mov, ch->track);
switch (gf_isom_get_media_type(ch->owner->mov, ch->track)) {
case GF_ISOM_MEDIA_OCR:
ch->streamType = GF_STREAM_OCR;
break;
case GF_ISOM_MEDIA_SCENE:
ch->streamType = GF_STREAM_SCENE;
break;
case GF_ISOM_MEDIA_VISUAL:
case GF_ISOM_MEDIA_AUXV:
case GF_ISOM_MEDIA_PICT:
gf_isom_get_reference(ch->owner->mov, ch->track, GF_ISOM_REF_BASE, 1, &ch->base_track);
//use base track only if avc/svc or hevc/lhvc. If avc+lhvc we need different rules
if ( gf_isom_get_avc_svc_type(ch->owner->mov, ch->base_track, 1) == GF_ISOM_AVCTYPE_AVC_ONLY) {
if ( gf_isom_get_hevc_lhvc_type(ch->owner->mov, ch->track, 1) >= GF_ISOM_HEVCTYPE_HEVC_ONLY) {
ch->base_track=0;
}
}
ch->next_track = 0;
/*in scalable mode add SPS/PPS in-band*/
if (ch->base_track)
ch->nalu_extract_mode = GF_ISOM_NALU_EXTRACT_INBAND_PS_FLAG /*| GF_ISOM_NALU_EXTRACT_ANNEXB_FLAG*/;
break;
}
if (!read->noedit) {
ch->ts_offset = 0;
ch->has_edit_list = gf_isom_get_edit_list_type(ch->owner->mov, ch->track, &ch->ts_offset) ? GF_TRUE : GF_FALSE;
if (!ch->has_edit_list && ch->ts_offset) {
//if >0 this is a hold, we signal positive delay
//if <0 this is a skip, we signal negative delay
gf_filter_pid_set_property(pid, GF_PROP_PID_DELAY, &PROP_LONGSINT( ch->ts_offset) );
}
} else
ch->has_edit_list = GF_FALSE;
ch->has_rap = (gf_isom_has_sync_points(ch->owner->mov, ch->track)==1) ? GF_TRUE : GF_FALSE;
gf_filter_pid_set_property(pid, GF_PROP_PID_HAS_SYNC, &PROP_BOOL(ch->has_rap) );
//some fragmented files do not advertize a sync sample table (legal) so we need to update as soon as we fetch a fragment
//to see if we are all-intra (as detected here) or not
if (!ch->has_rap && ch->owner->frag_type)
ch->check_has_rap = GF_TRUE;
ch->timescale = gf_isom_get_media_timescale(ch->owner->mov, ch->track);
ts_shift = gf_isom_get_cts_to_dts_shift(ch->owner->mov, ch->track);
if (ts_shift) {
gf_filter_pid_set_property(pid, GF_PROP_PID_CTS_SHIFT, &PROP_UINT((u32) ts_shift) );
}
if (!track || !gf_isom_is_track_encrypted(read->mov, track)) {
if (force_no_extractors) {
ch->nalu_extract_mode = GF_ISOM_NALU_EXTRACT_LAYER_ONLY;
} else {
switch (read->smode) {
case MP4DMX_SPLIT_EXTRACTORS:
ch->nalu_extract_mode = GF_ISOM_NALU_EXTRACT_INSPECT | GF_ISOM_NALU_EXTRACT_TILE_ONLY;
break;
case MP4DMX_SPLIT:
ch->nalu_extract_mode = GF_ISOM_NALU_EXTRACT_LAYER_ONLY | GF_ISOM_NALU_EXTRACT_TILE_ONLY;
break;
default:
break;
}
}
if (ch->nalu_extract_mode) {
gf_isom_set_nalu_extract_mode(ch->owner->mov, ch->track, ch->nalu_extract_mode);
}
return ch;
}
if (ch->owner->nocrypt) {
ch->is_encrypted = GF_FALSE;
return ch;
}
ch->is_encrypted = GF_TRUE;
p = gf_filter_pid_get_property(pid, GF_PROP_PID_STREAM_TYPE);
if (p) gf_filter_pid_set_property(pid, GF_PROP_PID_ORIG_STREAM_TYPE, &PROP_UINT(p->value.uint) );
gf_filter_pid_set_property(pid, GF_PROP_PID_STREAM_TYPE, &PROP_UINT(GF_STREAM_ENCRYPTED) );
isor_set_crypt_config(ch);
if (ch->nalu_extract_mode) {
if (ch->is_encrypted) {
GF_LOG(GF_LOG_WARNING, GF_LOG_CONTAINER, ("[IsoMedia] using sample NAL rewrite with encryption is not yet supported, patch welcome\n"));
} else {
gf_isom_set_nalu_extract_mode(ch->owner->mov, ch->track, ch->nalu_extract_mode);
}
}
return ch;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 19,199 |
linux | b4a1b4f5047e4f54e194681125c74c0aa64d637d | long keyctl_keyring_link(key_serial_t id, key_serial_t ringid)
{
key_ref_t keyring_ref, key_ref;
long ret;
keyring_ref = lookup_user_key(ringid, KEY_LOOKUP_CREATE, KEY_NEED_WRITE);
if (IS_ERR(keyring_ref)) {
ret = PTR_ERR(keyring_ref);
goto error;
}
key_ref = lookup_user_key(id, KEY_LOOKUP_CREATE, KEY_NEED_LINK);
if (IS_ERR(key_ref)) {
ret = PTR_ERR(key_ref);
goto error2;
}
ret = key_link(key_ref_to_ptr(keyring_ref), key_ref_to_ptr(key_ref));
key_ref_put(key_ref);
error2:
key_ref_put(keyring_ref);
error:
return ret;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 11,473 |
net | 85f1bd9a7b5a79d5baa8bf44af19658f7bf77bfa | int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
{
struct rtable *rt = skb_rtable(skb);
struct net_device *dev = rt->dst.dev;
/*
* If the indicated interface is up and running, send the packet.
*/
IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
skb->dev = dev;
skb->protocol = htons(ETH_P_IP);
/*
* Multicasts are looped back for other local users
*/
if (rt->rt_flags&RTCF_MULTICAST) {
if (sk_mc_loop(sk)
#ifdef CONFIG_IP_MROUTE
/* Small optimization: do not loopback not local frames,
which returned after forwarding; they will be dropped
by ip_mr_input in any case.
Note, that local frames are looped back to be delivered
to local recipients.
This check is duplicated in ip_mr_input at the moment.
*/
&&
((rt->rt_flags & RTCF_LOCAL) ||
!(IPCB(skb)->flags & IPSKB_FORWARDED))
#endif
) {
struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
if (newskb)
NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
net, sk, newskb, NULL, newskb->dev,
ip_mc_finish_output);
}
/* Multicasts with ttl 0 must not go beyond the host */
if (ip_hdr(skb)->ttl == 0) {
kfree_skb(skb);
return 0;
}
}
if (rt->rt_flags&RTCF_BROADCAST) {
struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
if (newskb)
NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
net, sk, newskb, NULL, newskb->dev,
ip_mc_finish_output);
}
return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
net, sk, skb, NULL, skb->dev,
ip_finish_output,
!(IPCB(skb)->flags & IPSKB_REROUTED));
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 13,619 |
wireshark | b8e0d416898bb975a02c1b55883342edc5b4c9c0 | parse_wbxml_tag (proto_tree *tree, tvbuff_t *tvb, guint32 offset,
guint32 str_tbl, guint8 *level,
guint8 *codepage_stag, guint8 *codepage_attr)
{
guint32 tvb_len = tvb_reported_length (tvb);
guint32 off = offset;
guint32 len;
guint str_len;
guint32 ent;
guint32 idx;
guint8 peek;
guint32 tag_len; /* Length of the idx (uintvar) from a LITERAL tag */
guint8 tag_save_known = 0; /* Will contain peek & 0x3F (tag identity) */
guint8 tag_new_known = 0; /* Will contain peek & 0x3F (tag identity) */
const char *tag_save_literal; /* Will contain the LITERAL tag identity */
const char *tag_new_literal; /* Will contain the LITERAL tag identity */
char *tag_save_buf = NULL; /* Will contain "tag_0x%02X" */
char *tag_new_buf = NULL; /* Will contain "tag_0x%02X" */
guint8 parsing_tag_content = FALSE; /* Are we parsing content from a
tag with content: <x>Content</x>
The initial state is FALSE.
This state will trigger recursion. */
tag_save_literal = NULL; /* Prevents compiler warning */
DebugLog(("parse_wbxml_tag (level = %u, offset = %u)\n", *level, offset));
while (off < tvb_len) {
peek = tvb_get_guint8 (tvb, off);
DebugLog(("STAG: (top of while) level = %3u, peek = 0x%02X, off = %u, tvb_len = %u\n", *level, peek, off, tvb_len));
if ((peek & 0x3F) < 4) switch (peek) { /* Global tokens in state = STAG
but not the LITERAL tokens */
case 0x00: /* SWITCH_PAGE */
*codepage_stag = tvb_get_guint8 (tvb, off+1);
proto_tree_add_text (tree, tvb, off, 2,
" | Tag | T -->%3d "
"| SWITCH_PAGE (Tag code page) "
"|",
*codepage_stag);
off += 2;
break;
case 0x01: /* END: only possible for Tag with Content */
if (tag_save_known) { /* Known TAG */
proto_tree_add_text (tree, tvb, off, 1,
" %3d | Tag | T %3d "
"| END (Known Tag 0x%02X) "
"| %s</%s>",
*level, *codepage_stag, tag_save_known,
Indent (*level),
tag_save_literal); /* We already looked it up! */
} else { /* Literal TAG */
proto_tree_add_text (tree, tvb, off, 1,
" %3d | Tag | T %3d "
"| END (Literal Tag) "
"| %s</%s>",
*level, *codepage_stag, Indent (*level),
tag_save_literal ? tag_save_literal : "");
}
(*level)--;
off++;
/* Reset code page: not needed as return from recursion */
DebugLog(("STAG: level = %u, Return: len = %u\n",
*level, off - offset));
return (off - offset);
case 0x02: /* ENTITY */
ent = tvb_get_guintvar (tvb, off+1, &len);
proto_tree_add_text (tree, tvb, off, 1+len,
" %3d | Tag | T %3d "
"| ENTITY "
"| %s'&#%u;'",
*level, *codepage_stag, Indent (*level), ent);
off += 1+len;
break;
case 0x03: /* STR_I */
len = tvb_strsize (tvb, off+1);
proto_tree_add_text (tree, tvb, off, 1+len,
" %3d | Tag | T %3d "
"| STR_I (Inline string) "
"| %s\'%s\'",
*level, *codepage_stag, Indent(*level),
tvb_format_text (tvb, off+1, len-1));
off += 1+len;
break;
case 0x40: /* EXT_I_0 */
case 0x41: /* EXT_I_1 */
case 0x42: /* EXT_I_2 */
/* Extension tokens */
len = tvb_strsize (tvb, off+1);
proto_tree_add_text (tree, tvb, off, 1+len,
" %3d | Tag | T %3d "
"| EXT_I_%1x (Extension Token) "
"| %s(Inline string extension: \'%s\')",
*level, *codepage_stag, peek & 0x0f, Indent (*level),
tvb_format_text (tvb, off+1, len-1));
off += 1+len;
break;
case 0x43: /* PI */
proto_tree_add_text (tree, tvb, off, 1,
" %3d | Tag | T %3d "
"| PI (XML Processing Instruction) "
"| %s<?xml",
*level, *codepage_stag, Indent (*level));
len = parse_wbxml_attribute_list (tree, tvb, off, str_tbl,
*level, codepage_attr);
/* Check that there is still room in packet */
off += len;
if (off >= tvb_len) {
DebugLog(("STAG: level = %u, ThrowException: len = %u (short frame)\n",
*level, off - offset));
/*
* TODO - Do we need to free g_malloc()ed memory?
*/
THROW(ReportedBoundsError);
}
proto_tree_add_text (tree, tvb, off-1, 1,
" %3d | Tag | T %3d "
"| END (PI) "
"| %s?>",
*level, *codepage_stag, Indent (*level));
break;
case 0x80: /* EXT_T_0 */
case 0x81: /* EXT_T_1 */
case 0x82: /* EXT_T_2 */
/* Extension tokens */
idx = tvb_get_guintvar (tvb, off+1, &len);
proto_tree_add_text (tree, tvb, off, 1+len,
" %3d | Tag | T %3d "
"| EXT_T_%1x (Extension Token) "
"| %s(Extension Token, integer value: %u)",
*level, *codepage_stag, peek & 0x0f, Indent (*level),
idx);
off += 1+len;
break;
case 0x83: /* STR_T */
idx = tvb_get_guintvar (tvb, off+1, &len);
str_len = tvb_strsize (tvb, str_tbl+idx);
proto_tree_add_text (tree, tvb, off, 1+len,
" %3d | Tag | T %3d "
"| STR_T (Tableref string) "
"| %s\'%s\'",
*level, *codepage_stag, Indent (*level),
tvb_format_text (tvb, str_tbl+idx, str_len-1));
off += 1+len;
break;
case 0xC0: /* EXT_0 */
case 0xC1: /* EXT_1 */
case 0xC2: /* EXT_2 */
/* Extension tokens */
proto_tree_add_text (tree, tvb, off, 1,
" %3d | Tag | T %3d "
"| EXT_%1x (Extension Token) "
"| %s(Single-byte extension)",
*level, *codepage_stag, peek & 0x0f, Indent (*level));
off++;
break;
case 0xC3: /* OPAQUE - WBXML 1.1 and newer */
if (tvb_get_guint8 (tvb, 0)) { /* WBXML 1.x (x > 0) */
idx = tvb_get_guintvar (tvb, off+1, &len);
proto_tree_add_text (tree, tvb, off, 1 + len + idx,
" %3d | Tag | T %3d "
"| OPAQUE (Opaque data) "
"| %s(%d bytes of opaque data)",
*level, *codepage_stag, Indent (*level), idx);
off += 1+len+idx;
} else { /* WBXML 1.0 - RESERVED_2 token (invalid) */
proto_tree_add_text (tree, tvb, off, 1,
" %3d | Tag | T %3d "
"| RESERVED_2 (Invalid Token!) "
"| WBXML 1.0 parsing stops here.",
*level, *codepage_stag);
/* Stop processing as it is impossible to parse now */
off = tvb_len;
DebugLog(("STAG: level = %u, Return: len = %u\n",
*level, off - offset));
return (off - offset);
}
break;
/* No default clause, as all cases have been treated */
} else { /* LITERAL or Known TAG */
/* We must store the initial tag, and also retrieve the new tag.
* For efficiency reasons, we store the literal tag representation
* for known tags too, so we can easily close the tag without the
* need of a new lookup and avoiding storage of token codepage.
*
* There are 4 possibilities:
*
* 1. Known tag followed by a known tag
* 2. Known tag followed by a LITERAL tag
* 3. LITERAL tag followed by Known tag
* 4. LITERAL tag followed by LITERAL tag
*/
/* Store the new tag */
tag_len = 0;
if ((peek & 0x3F) == 4) { /* LITERAL */
DebugLog(("STAG: LITERAL tag (peek = 0x%02X, off = %u)"
" - TableRef follows!\n", peek, off));
idx = tvb_get_guintvar (tvb, off+1, &tag_len);
str_len = tvb_strsize (tvb, str_tbl+idx);
tag_new_literal = (const gchar*)tvb_get_ptr (tvb, str_tbl+idx, str_len);
tag_new_known = 0; /* invalidate known tag_new */
} else { /* Known tag */
tag_new_known = peek & 0x3F;
tag_new_buf=wmem_strdup_printf(wmem_packet_scope(), "Tag_0x%02X",
tag_new_known);
tag_new_literal = tag_new_buf;
/* Stored looked up tag name string */
}
/* Parsing of TAG starts HERE */
if (peek & 0x40) { /* Content present */
/* Content follows
* [!] An explicit END token is expected in these cases!
* ==> Recursion possible if we encounter a tag with content;
* recursion will return at the explicit END token.
*/
if (parsing_tag_content) { /* Recurse */
DebugLog(("STAG: Tag in Tag - RECURSE! (off = %u)\n", off));
/* Do not process the attribute list:
* recursion will take care of it */
(*level)++;
len = parse_wbxml_tag (tree, tvb, off, str_tbl, level,
codepage_stag, codepage_attr);
off += len;
} else { /* Now we will have content to parse */
/* Save the start tag so we can properly close it later. */
if ((peek & 0x3F) == 4) { /* Literal tag */
tag_save_literal = tag_new_literal;
tag_save_known = 0;
} else { /* Known tag */
tag_save_known = tag_new_known;
tag_save_buf=wmem_strdup_printf(wmem_packet_scope(), "Tag_0x%02X",
tag_new_known);
tag_save_literal = tag_save_buf;
/* The last statement avoids needless lookups */
}
/* Process the attribute list if present */
if (peek & 0x80) { /* Content and Attribute list present */
if (tag_new_known) { /* Known tag */
proto_tree_add_text (tree, tvb, off, 1,
" %3d | Tag | T %3d "
"| Known Tag 0x%02X (AC) "
"| %s<%s",
*level, *codepage_stag, tag_new_known,
Indent (*level), tag_new_literal);
/* Tag string already looked up earlier! */
off++;
} else { /* LITERAL tag */
proto_tree_add_text (tree, tvb, off, 1,
" %3d | Tag | T %3d "
"| LITERAL_AC (Literal tag) (AC) "
"| %s<%s",
*level, *codepage_stag, Indent (*level),
tag_new_literal);
off += 1 + tag_len;
}
len = parse_wbxml_attribute_list (tree, tvb,
off, str_tbl, *level, codepage_attr);
/* Check that there is still room in packet */
off += len;
if (off >= tvb_len) {
DebugLog(("STAG: level = %u, ThrowException: "
"len = %u (short frame)\n",
*level, off - offset));
/*
* TODO - Do we need to free g_malloc()ed memory?
*/
THROW(ReportedBoundsError);
}
proto_tree_add_text (tree, tvb, off-1, 1,
" %3d | Tag | T %3d "
"| END (attribute list) "
"| %s>",
*level, *codepage_stag, Indent (*level));
} else { /* Content, no Attribute list */
if (tag_new_known) { /* Known tag */
proto_tree_add_text (tree, tvb, off, 1,
" %3d | Tag | T %3d "
"| Known Tag 0x%02X (.C) "
"| %s<%s>",
*level, *codepage_stag, tag_new_known,
Indent (*level), tag_new_literal);
/* Tag string already looked up earlier! */
off++;
} else { /* LITERAL tag */
proto_tree_add_text (tree, tvb, off, 1,
" %3d | Tag | T %3d "
"| LITERAL_C (Literal Tag) (.C) "
"| %s<%s>",
*level, *codepage_stag, Indent (*level),
tag_new_literal);
off += 1 + tag_len;
}
}
/* The data that follows in the parsing process
* represents content for the opening tag
* we've just processed in the lines above.
* Next time we encounter a tag with content: recurse
*/
parsing_tag_content = TRUE;
DebugLog(("Tag in Tag - No recursion this time! "
"(off = %u)\n", off));
}
} else { /* No Content */
DebugLog(("<Tag/> in Tag - No recursion! (off = %u)\n", off));
(*level)++;
if (peek & 0x80) { /* No Content, Attribute list present */
if (tag_new_known) { /* Known tag */
proto_tree_add_text (tree, tvb, off, 1,
" %3d | Tag | T %3d "
"| Known Tag 0x%02X (A.) "
"| %s<%s",
*level, *codepage_stag, tag_new_known,
Indent (*level), tag_new_literal);
/* Tag string already looked up earlier! */
off++;
len = parse_wbxml_attribute_list (tree, tvb,
off, str_tbl, *level, codepage_attr);
/* Check that there is still room in packet */
off += len;
if (off >= tvb_len) {
DebugLog(("STAG: level = %u, ThrowException: "
"len = %u (short frame)\n",
*level, off - offset));
/*
* TODO - Do we need to free g_malloc()ed memory?
*/
THROW(ReportedBoundsError);
}
proto_tree_add_text (tree, tvb, off-1, 1,
" %3d | Tag | T %3d "
"| END (Known Tag) "
"| %s/>",
*level, *codepage_stag, Indent (*level));
} else { /* LITERAL tag */
proto_tree_add_text (tree, tvb, off, 1,
" %3d | Tag | T %3d "
"| LITERAL_A (Literal Tag) (A.) "
"| %s<%s",
*level, *codepage_stag, Indent (*level),
tag_new_literal);
off += 1 + tag_len;
len = parse_wbxml_attribute_list (tree, tvb,
off, str_tbl, *level, codepage_attr);
/* Check that there is still room in packet */
off += len;
if (off >= tvb_len) {
DebugLog(("STAG: level = %u, ThrowException: "
"len = %u (short frame)\n",
*level, off - offset));
/*
* TODO - Do we need to free g_malloc()ed memory?
*/
THROW(ReportedBoundsError);
}
proto_tree_add_text (tree, tvb, off-1, 1,
" %3d | Tag | T %3d "
"| END (Literal Tag) "
"| %s/>",
*level, *codepage_stag, Indent (*level));
}
} else { /* No Content, No Attribute list */
if (tag_new_known) { /* Known tag */
proto_tree_add_text (tree, tvb, off, 1,
" %3d | Tag | T %3d "
"| Known Tag 0x%02x (..) "
"| %s<%s />",
*level, *codepage_stag, tag_new_known,
Indent (*level), tag_new_literal);
/* Tag string already looked up earlier! */
off++;
} else { /* LITERAL tag */
proto_tree_add_text (tree, tvb, off, 1,
" %3d | Tag | T %3d "
"| LITERAL (Literal Tag) (..) "
"| %s<%s />",
*level, *codepage_stag, Indent (*level),
tag_new_literal);
off += 1 + tag_len;
}
}
(*level)--;
/* TODO: Do I have to reset code page here? */
}
} /* if (tag & 0x3F) >= 5 */
} /* while */
DebugLog(("STAG: level = %u, Return: len = %u (end of function body)\n",
*level, off - offset));
return (off - offset);
}
| 1 | CVE-2016-5359 | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 6,708 |
poppler | b224e2f5739fe61de9fa69955d016725b2a4b78d | static void splashOutBlendHue(SplashColorPtr src, SplashColorPtr dest,
SplashColorPtr blend, SplashColorMode cm) {
unsigned char r0, g0, b0;
#ifdef SPLASH_CMYK
unsigned char r1, g1, b1;
int i;
SplashColor src2, dest2;
#endif
switch (cm) {
case splashModeMono1:
case splashModeMono8:
blend[0] = dest[0];
break;
case splashModeXBGR8:
src[3] = 255;
// fallthrough
case splashModeRGB8:
case splashModeBGR8:
setSat(src[0], src[1], src[2], getSat(dest[0], dest[1], dest[2]),
&r0, &g0, &b0);
setLum(r0, g0, b0, getLum(dest[0], dest[1], dest[2]),
&blend[0], &blend[1], &blend[2]);
break;
#ifdef SPLASH_CMYK
case splashModeCMYK8:
case splashModeDeviceN8:
for (i = 0; i < 4; i++) {
// convert to additive
src2[i] = 0xff - src[i];
dest2[i] = 0xff - dest[i];
}
// NB: inputs have already been converted to additive mode
setSat(src2[0], src2[1], src2[2], getSat(dest2[0], dest2[1], dest2[2]),
&r0, &g0, &b0);
setLum(r0, g0, b0, getLum(dest2[0], dest2[1], dest2[2]),
&r1, &g1, &b1);
blend[0] = r1;
blend[1] = g1;
blend[2] = b1;
blend[3] = dest2[3];
for (i = 0; i < 4; i++) {
// convert back to subtractive
blend[i] = 0xff - blend[i];
}
break;
#endif
}
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 12,794 |
linux | 4d8df8cbb9156b0a0ab3f802b80cb5db57acc0bf | static int ib_prctl_get(struct task_struct *task)
{
if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
return PR_SPEC_NOT_AFFECTED;
if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
return PR_SPEC_ENABLE;
else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
return PR_SPEC_DISABLE;
else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP) {
if (task_spec_ib_force_disable(task))
return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
if (task_spec_ib_disable(task))
return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
} else
return PR_SPEC_NOT_AFFECTED;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 18,669 |
linux | ee8413b01045c74340aa13ad5bdf905de32be736 | void snd_timer_interrupt(struct snd_timer * timer, unsigned long ticks_left)
{
struct snd_timer_instance *ti, *ts, *tmp;
unsigned long resolution, ticks;
struct list_head *p, *ack_list_head;
unsigned long flags;
int use_tasklet = 0;
if (timer == NULL)
return;
spin_lock_irqsave(&timer->lock, flags);
/* remember the current resolution */
if (timer->hw.c_resolution)
resolution = timer->hw.c_resolution(timer);
else
resolution = timer->hw.resolution;
/* loop for all active instances
* Here we cannot use list_for_each_entry because the active_list of a
* processed instance is relinked to done_list_head before the callback
* is called.
*/
list_for_each_entry_safe(ti, tmp, &timer->active_list_head,
active_list) {
if (!(ti->flags & SNDRV_TIMER_IFLG_RUNNING))
continue;
ti->pticks += ticks_left;
ti->resolution = resolution;
if (ti->cticks < ticks_left)
ti->cticks = 0;
else
ti->cticks -= ticks_left;
if (ti->cticks) /* not expired */
continue;
if (ti->flags & SNDRV_TIMER_IFLG_AUTO) {
ti->cticks = ti->ticks;
} else {
ti->flags &= ~SNDRV_TIMER_IFLG_RUNNING;
if (--timer->running)
list_del(&ti->active_list);
}
if ((timer->hw.flags & SNDRV_TIMER_HW_TASKLET) ||
(ti->flags & SNDRV_TIMER_IFLG_FAST))
ack_list_head = &timer->ack_list_head;
else
ack_list_head = &timer->sack_list_head;
if (list_empty(&ti->ack_list))
list_add_tail(&ti->ack_list, ack_list_head);
list_for_each_entry(ts, &ti->slave_active_head, active_list) {
ts->pticks = ti->pticks;
ts->resolution = resolution;
if (list_empty(&ts->ack_list))
list_add_tail(&ts->ack_list, ack_list_head);
}
}
if (timer->flags & SNDRV_TIMER_FLG_RESCHED)
snd_timer_reschedule(timer, timer->sticks);
if (timer->running) {
if (timer->hw.flags & SNDRV_TIMER_HW_STOP) {
timer->hw.stop(timer);
timer->flags |= SNDRV_TIMER_FLG_CHANGE;
}
if (!(timer->hw.flags & SNDRV_TIMER_HW_AUTO) ||
(timer->flags & SNDRV_TIMER_FLG_CHANGE)) {
/* restart timer */
timer->flags &= ~SNDRV_TIMER_FLG_CHANGE;
timer->hw.start(timer);
}
} else {
timer->hw.stop(timer);
}
/* now process all fast callbacks */
while (!list_empty(&timer->ack_list_head)) {
p = timer->ack_list_head.next; /* get first item */
ti = list_entry(p, struct snd_timer_instance, ack_list);
/* remove from ack_list and make empty */
list_del_init(p);
ticks = ti->pticks;
ti->pticks = 0;
ti->flags |= SNDRV_TIMER_IFLG_CALLBACK;
spin_unlock(&timer->lock);
if (ti->callback)
ti->callback(ti, resolution, ticks);
spin_lock(&timer->lock);
ti->flags &= ~SNDRV_TIMER_IFLG_CALLBACK;
}
/* do we have any slow callbacks? */
use_tasklet = !list_empty(&timer->sack_list_head);
spin_unlock_irqrestore(&timer->lock, flags);
if (use_tasklet)
tasklet_schedule(&timer->task_queue);
}
| 1 | CVE-2016-2545 | CWE-362 | Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition') | The product contains a concurrent code sequence that requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence operating concurrently. | Phase: Architecture and Design
In languages that support it, use synchronization primitives. Only wrap these around critical code to minimize the impact on performance.
Phase: Architecture and Design
Use thread-safe capabilities such as the data access abstraction in Spring.
Phase: Architecture and Design
Minimize the usage of shared resources in order to remove as much complexity as possible from the control flow and to reduce the likelihood of unexpected conditions occurring.
Additionally, this will minimize the amount of synchronization necessary and may even help to reduce the likelihood of a denial of service where an attacker may be able to repeatedly trigger a critical section (CWE-400).
Phase: Implementation
When using multithreading and operating on shared variables, only use thread-safe functions.
Phase: Implementation
Use atomic operations on shared variables. Be wary of innocent-looking constructs such as "x++". This may appear atomic at the code layer, but it is actually non-atomic at the instruction layer, since it involves a read, followed by a computation, followed by a write.
Phase: Implementation
Use a mutex if available, but be sure to avoid related weaknesses such as CWE-412.
Phase: Implementation
Avoid double-checked locking (CWE-609) and other implementation errors that arise when trying to avoid the overhead of synchronization.
Phase: Implementation
Disable interrupts or signals over critical parts of the code, but also make sure that the code does not go into a large or infinite loop.
Phase: Implementation
Use the volatile type modifier for critical variables to avoid unexpected compiler optimization or reordering. This does not necessarily solve the synchronization problem, but it can help.
Phases: Architecture and Design; Operation
Strategy: Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks [REF-76]. If possible, create isolated accounts with limited privileges that are only used for a single task. That way, a successful attack will not immediately give the attacker access to the rest of the software or its environment. For example, database applications rarely need to run as the database administrator, especially in day-to-day operations | 1,813 |
linux | c3c87e770458aa004bd7ed3f29945ff436fd6511 | list_del_event(struct perf_event *event, struct perf_event_context *ctx)
{
struct perf_cpu_context *cpuctx;
/*
* We can have double detach due to exit/hot-unplug + close.
*/
if (!(event->attach_state & PERF_ATTACH_CONTEXT))
return;
event->attach_state &= ~PERF_ATTACH_CONTEXT;
if (is_cgroup_event(event)) {
ctx->nr_cgroups--;
cpuctx = __get_cpu_context(ctx);
/*
* if there are no more cgroup events
* then cler cgrp to avoid stale pointer
* in update_cgrp_time_from_cpuctx()
*/
if (!ctx->nr_cgroups)
cpuctx->cgrp = NULL;
}
if (has_branch_stack(event))
ctx->nr_branch_stack--;
ctx->nr_events--;
if (event->attr.inherit_stat)
ctx->nr_stat--;
list_del_rcu(&event->event_entry);
if (event->group_leader == event)
list_del_init(&event->group_entry);
update_group_times(event);
/*
* If event was in error state, then keep it
* that way, otherwise bogus counts will be
* returned on read(). The only way to get out
* of error state is by explicit re-enabling
* of the event
*/
if (event->state > PERF_EVENT_STATE_OFF)
event->state = PERF_EVENT_STATE_OFF;
ctx->generation++;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 18,307 |
linux | a8b0ca17b80e92faab46ee7179ba9e99ccb61233 | asmlinkage void do_sparc_fault(struct pt_regs *regs, int text_fault, int write,
unsigned long address)
{
struct vm_area_struct *vma;
struct task_struct *tsk = current;
struct mm_struct *mm = tsk->mm;
unsigned int fixup;
unsigned long g2;
int from_user = !(regs->psr & PSR_PS);
int fault, code;
if(text_fault)
address = regs->pc;
/*
* We fault-in kernel-space virtual memory on-demand. The
* 'reference' page table is init_mm.pgd.
*
* NOTE! We MUST NOT take any locks for this case. We may
* be in an interrupt or a critical region, and should
* only copy the information from the master page table,
* nothing more.
*/
code = SEGV_MAPERR;
if (!ARCH_SUN4C && address >= TASK_SIZE)
goto vmalloc_fault;
/*
* If we're in an interrupt or have no user
* context, we must not take the fault..
*/
if (in_atomic() || !mm)
goto no_context;
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
down_read(&mm->mmap_sem);
/*
* The kernel referencing a bad kernel pointer can lock up
* a sun4c machine completely, so we must attempt recovery.
*/
if(!from_user && address >= PAGE_OFFSET)
goto bad_area;
vma = find_vma(mm, address);
if(!vma)
goto bad_area;
if(vma->vm_start <= address)
goto good_area;
if(!(vma->vm_flags & VM_GROWSDOWN))
goto bad_area;
if(expand_stack(vma, address))
goto bad_area;
/*
* Ok, we have a good vm_area for this memory access, so
* we can handle it..
*/
good_area:
code = SEGV_ACCERR;
if(write) {
if(!(vma->vm_flags & VM_WRITE))
goto bad_area;
} else {
/* Allow reads even for write-only mappings */
if(!(vma->vm_flags & (VM_READ | VM_EXEC)))
goto bad_area;
}
/*
* If for any reason at all we couldn't handle the fault,
* make sure we exit gracefully rather than endlessly redo
* the fault.
*/
fault = handle_mm_fault(mm, vma, address, write ? FAULT_FLAG_WRITE : 0);
if (unlikely(fault & VM_FAULT_ERROR)) {
if (fault & VM_FAULT_OOM)
goto out_of_memory;
else if (fault & VM_FAULT_SIGBUS)
goto do_sigbus;
BUG();
}
if (fault & VM_FAULT_MAJOR) {
current->maj_flt++;
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
regs, address);
} else {
current->min_flt++;
perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
regs, address);
}
up_read(&mm->mmap_sem);
return;
/*
* Something tried to access memory that isn't in our memory map..
* Fix it, but check if it's kernel or user first..
*/
bad_area:
up_read(&mm->mmap_sem);
bad_area_nosemaphore:
/* User mode accesses just cause a SIGSEGV */
if (from_user) {
do_fault_siginfo(code, SIGSEGV, regs, text_fault);
return;
}
/* Is this in ex_table? */
no_context:
g2 = regs->u_regs[UREG_G2];
if (!from_user) {
fixup = search_extables_range(regs->pc, &g2);
if (fixup > 10) { /* Values below are reserved for other things */
extern const unsigned __memset_start[];
extern const unsigned __memset_end[];
extern const unsigned __csum_partial_copy_start[];
extern const unsigned __csum_partial_copy_end[];
#ifdef DEBUG_EXCEPTIONS
printk("Exception: PC<%08lx> faddr<%08lx>\n", regs->pc, address);
printk("EX_TABLE: insn<%08lx> fixup<%08x> g2<%08lx>\n",
regs->pc, fixup, g2);
#endif
if ((regs->pc >= (unsigned long)__memset_start &&
regs->pc < (unsigned long)__memset_end) ||
(regs->pc >= (unsigned long)__csum_partial_copy_start &&
regs->pc < (unsigned long)__csum_partial_copy_end)) {
regs->u_regs[UREG_I4] = address;
regs->u_regs[UREG_I5] = regs->pc;
}
regs->u_regs[UREG_G2] = g2;
regs->pc = fixup;
regs->npc = regs->pc + 4;
return;
}
}
unhandled_fault (address, tsk, regs);
do_exit(SIGKILL);
/*
* We ran out of memory, or some other thing happened to us that made
* us unable to handle the page fault gracefully.
*/
out_of_memory:
up_read(&mm->mmap_sem);
if (from_user) {
pagefault_out_of_memory();
return;
}
goto no_context;
do_sigbus:
up_read(&mm->mmap_sem);
do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, text_fault);
if (!from_user)
goto no_context;
vmalloc_fault:
{
/*
* Synchronize this task's top level page-table
* with the 'reference' page table.
*/
int offset = pgd_index(address);
pgd_t *pgd, *pgd_k;
pmd_t *pmd, *pmd_k;
pgd = tsk->active_mm->pgd + offset;
pgd_k = init_mm.pgd + offset;
if (!pgd_present(*pgd)) {
if (!pgd_present(*pgd_k))
goto bad_area_nosemaphore;
pgd_val(*pgd) = pgd_val(*pgd_k);
return;
}
pmd = pmd_offset(pgd, address);
pmd_k = pmd_offset(pgd_k, address);
if (pmd_present(*pmd) || !pmd_present(*pmd_k))
goto bad_area_nosemaphore;
*pmd = *pmd_k;
return;
}
}
| 1 | CVE-2011-2918 | CWE-399 | Resource Management Errors | Weaknesses in this category are related to improper management of system resources. | Not Found in CWE Page | 3,812 |
w3m | 9cf6926c5d947371dc9e44f32bc7a2fbfca5d469 | wc_push_to_iso2022(Str os, wc_wchar_t cc, wc_status *st)
{
wc_uchar g = 0;
wc_bool is_wide = WC_FALSE, retry = WC_FALSE;
wc_wchar_t cc2;
while (1) {
switch (WC_CCS_TYPE(cc.ccs)) {
case WC_CCS_A_CS94:
if (cc.ccs == WC_CCS_US_ASCII)
cc.ccs = st->g0_ccs;
g = cs94_gmap[WC_CCS_INDEX(cc.ccs) - WC_F_ISO_BASE];
break;
case WC_CCS_A_CS94W:
is_wide = 1;
switch (cc.ccs) {
#ifdef USE_UNICODE
case WC_CCS_JIS_X_0212:
if (!WcOption.use_jisx0212 && WcOption.use_jisx0213 &&
WcOption.ucs_conv) {
cc2 = wc_jisx0212_to_jisx0213(cc);
if (cc2.ccs == WC_CCS_JIS_X_0213_1 ||
cc2.ccs == WC_CCS_JIS_X_0213_2) {
cc = cc2;
continue;
}
}
break;
case WC_CCS_JIS_X_0213_1:
case WC_CCS_JIS_X_0213_2:
if (!WcOption.use_jisx0213 && WcOption.use_jisx0212 &&
WcOption.ucs_conv) {
cc2 = wc_jisx0213_to_jisx0212(cc);
if (cc2.ccs == WC_CCS_JIS_X_0212) {
cc = cc2;
continue;
}
}
break;
#endif
}
g = cs94w_gmap[WC_CCS_INDEX(cc.ccs) - WC_F_ISO_BASE];
break;
case WC_CCS_A_CS96:
g = cs96_gmap[WC_CCS_INDEX(cc.ccs) - WC_F_ISO_BASE];
break;
case WC_CCS_A_CS96W:
is_wide = 1;
g = cs96w_gmap[WC_CCS_INDEX(cc.ccs) - WC_F_ISO_BASE];
break;
case WC_CCS_A_CS942:
g = cs942_gmap[WC_CCS_INDEX(cc.ccs) - WC_F_ISO_BASE];
break;
case WC_CCS_A_UNKNOWN_W:
if (WcOption.no_replace)
return;
is_wide = 1;
cc.ccs = WC_CCS_US_ASCII;
g = cs94_gmap[WC_CCS_INDEX(cc.ccs) - WC_F_ISO_BASE];
cc.code = ((wc_uint32)WC_REPLACE_W[0] << 8) | WC_REPLACE_W[1];
break;
case WC_CCS_A_UNKNOWN:
if (WcOption.no_replace)
return;
cc.ccs = WC_CCS_US_ASCII;
g = cs94_gmap[WC_CCS_INDEX(cc.ccs) - WC_F_ISO_BASE];
cc.code = (wc_uint32)WC_REPLACE[0];
break;
default:
if ((cc.ccs == WC_CCS_JOHAB || cc.ccs == WC_CCS_JOHAB_1 ||
cc.ccs == WC_CCS_JOHAB_2 || cc.ccs == WC_CCS_JOHAB_3) &&
cs94w_gmap[WC_F_KS_X_1001 - WC_F_ISO_BASE]) {
wc_wchar_t cc2 = wc_johab_to_ksx1001(cc);
if (cc2.ccs == WC_CCS_KS_X_1001) {
cc = cc2;
continue;
}
}
#ifdef USE_UNICODE
if (WcOption.ucs_conv)
cc = wc_any_to_iso2022(cc, st);
else
#endif
cc.ccs = WC_CCS_IS_WIDE(cc.ccs) ? WC_CCS_UNKNOWN_W : WC_CCS_UNKNOWN;
continue;
}
if (! g) {
#ifdef USE_UNICODE
if (WcOption.ucs_conv && ! retry)
cc = wc_any_to_any_ces(cc, st);
else
#endif
cc.ccs = WC_CCS_IS_WIDE(cc.ccs) ? WC_CCS_UNKNOWN_W : WC_CCS_UNKNOWN;
retry = WC_TRUE;
continue;
}
wc_push_iso2022_esc(os, cc.ccs, g, 1, st);
if (is_wide)
Strcat_char(os, (char)((cc.code >> 8) & 0x7f));
Strcat_char(os, (char)(cc.code & 0x7f));
return;
}
} | 1 | CVE-2016-9433 | CWE-125 | Out-of-bounds Read | The product reads data past the end, or before the beginning, of the intended buffer. | Phase: Implementation
Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
To reduce the likelihood of introducing an out-of-bounds read, ensure that you validate and ensure correct calculations for any length argument, buffer size calculation, or offset. Be especially careful of relying on a sentinel (i.e. special character such as NUL) in untrusted inputs.
Phase: Architecture and Design
Strategy: Language Selection
Use a language that provides appropriate memory abstractions. | 9,331 |
php-src | 6c5211a0cef0cc2854eaa387e0eb036e012904d0?w=1 | PHP_FUNCTION(mcrypt_module_get_algo_block_size)
{
MCRYPT_GET_MODE_DIR_ARGS(algorithms_dir)
RETURN_LONG(mcrypt_module_get_algo_block_size(module, dir));
}
| 1 | CVE-2016-5769 | CWE-190 | Integer Overflow or Wraparound | The product performs a calculation that can produce an integer overflow or wraparound when the logic assumes that the resulting value will always be larger than the original value. This occurs when an integer value is incremented to a value that is too large to store in the associated representation. When this occurs, the value may become a very small or negative number. | Phase: Requirements
Ensure that all protocols are strictly defined, such that all out-of-bounds behavior can be identified simply, and require strict conformance to the protocol.
Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
If possible, choose a language or compiler that performs automatic bounds checking.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Use libraries or frameworks that make it easier to handle numbers without unexpected consequences.
Examples include safe integer handling packages such as SafeInt (C++) or IntegerLib (C or C++). [REF-106]
Phase: Implementation
Strategy: Input Validation
Perform input validation on any numeric input by ensuring that it is within the expected range. Enforce that the input meets both the minimum and maximum requirements for the expected range.
Use unsigned integers where possible. This makes it easier to perform validation for integer overflows. When signed integers are required, ensure that the range check includes minimum values as well as maximum values.
Phase: Implementation
Understand the programming language's underlying representation and how it interacts with numeric calculation (CWE-681). Pay close attention to byte size discrepancies, precision, signed/unsigned distinctions, truncation, conversion and casting between types, "not-a-number" calculations, and how the language handles numbers that are too large or too small for its underlying representation. [REF-7]
Also be careful to account for 32-bit, 64-bit, and other potential differences that may affect the numeric representation.
Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
Phase: Implementation
Strategy: Compilation or Build Hardening
Examine compiler warnings closely and eliminate problems with potential security implications, such as signed / unsigned mismatch in memory operations, or use of uninitialized variables. Even if the weakness is rarely exploitable, a single failure may lead to the compromise of the entire system. | 8,648 |
libssh-mirror | 10b3ebbe61a7031a3dae97f05834442220447181 | int ssh_buffer_add_data(struct ssh_buffer_struct *buffer, const void *data, uint32_t len)
{
buffer_verify(buffer);
if (data == NULL) {
return -1;
}
if (buffer->used + len < len) {
return -1;
}
if (buffer->allocated < (buffer->used + len)) {
if(buffer->pos > 0)
buffer_shift(buffer);
if (realloc_buffer(buffer, buffer->used + len) < 0) {
return -1;
}
}
memcpy(buffer->data+buffer->used, data, len);
buffer->used+=len;
buffer_verify(buffer);
return 0;
} | 1 | CVE-2020-16135 | CWE-476 | NULL Pointer Dereference | The product dereferences a pointer that it expects to be valid but is NULL. | Phase: Implementation
If all pointers that could have been modified are checked for NULL before use, nearly all NULL pointer dereferences can be prevented.
Phase: Requirements
Select a programming language that is not susceptible to these issues.
Phase: Implementation
Check the results of all functions that return a value and verify that the value is non-null before acting upon it.
Effectiveness: Moderate
Note: Checking the return value of the function will typically be sufficient, however beware of race conditions (CWE-362) in a concurrent environment. This solution does not handle the use of improperly initialized variables (CWE-665).
Phase: Architecture and Design
Identify all variables and data stores that receive information from external sources, and apply input validation to make sure that they are only initialized to expected values.
Phase: Implementation
Explicitly initialize all variables and other data stores, either during declaration or just before the first usage. | 813 |
FFmpeg | e371f031b942d73e02c090170975561fabd5c264 | static int decode_idat_chunk(AVCodecContext *avctx, PNGDecContext *s,
uint32_t length, AVFrame *p)
{
int ret;
size_t byte_depth = s->bit_depth > 8 ? 2 : 1;
if (!(s->state & PNG_IHDR)) {
av_log(avctx, AV_LOG_ERROR, "IDAT without IHDR\n");
return AVERROR_INVALIDDATA;
}
if (!(s->state & PNG_IDAT)) {
/* init image info */
avctx->width = s->width;
avctx->height = s->height;
s->channels = ff_png_get_nb_channels(s->color_type);
s->bits_per_pixel = s->bit_depth * s->channels;
s->bpp = (s->bits_per_pixel + 7) >> 3;
s->row_size = (s->cur_w * s->bits_per_pixel + 7) >> 3;
if ((s->bit_depth == 2 || s->bit_depth == 4 || s->bit_depth == 8) &&
s->color_type == PNG_COLOR_TYPE_RGB) {
avctx->pix_fmt = AV_PIX_FMT_RGB24;
} else if ((s->bit_depth == 2 || s->bit_depth == 4 || s->bit_depth == 8) &&
s->color_type == PNG_COLOR_TYPE_RGB_ALPHA) {
avctx->pix_fmt = AV_PIX_FMT_RGBA;
} else if ((s->bit_depth == 2 || s->bit_depth == 4 || s->bit_depth == 8) &&
s->color_type == PNG_COLOR_TYPE_GRAY) {
avctx->pix_fmt = AV_PIX_FMT_GRAY8;
} else if (s->bit_depth == 16 &&
s->color_type == PNG_COLOR_TYPE_GRAY) {
avctx->pix_fmt = AV_PIX_FMT_GRAY16BE;
} else if (s->bit_depth == 16 &&
s->color_type == PNG_COLOR_TYPE_RGB) {
avctx->pix_fmt = AV_PIX_FMT_RGB48BE;
} else if (s->bit_depth == 16 &&
s->color_type == PNG_COLOR_TYPE_RGB_ALPHA) {
avctx->pix_fmt = AV_PIX_FMT_RGBA64BE;
} else if ((s->bits_per_pixel == 1 || s->bits_per_pixel == 2 || s->bits_per_pixel == 4 || s->bits_per_pixel == 8) &&
s->color_type == PNG_COLOR_TYPE_PALETTE) {
avctx->pix_fmt = AV_PIX_FMT_PAL8;
} else if (s->bit_depth == 1 && s->bits_per_pixel == 1 && avctx->codec_id != AV_CODEC_ID_APNG) {
avctx->pix_fmt = AV_PIX_FMT_MONOBLACK;
} else if (s->bit_depth == 8 &&
s->color_type == PNG_COLOR_TYPE_GRAY_ALPHA) {
avctx->pix_fmt = AV_PIX_FMT_YA8;
} else if (s->bit_depth == 16 &&
s->color_type == PNG_COLOR_TYPE_GRAY_ALPHA) {
avctx->pix_fmt = AV_PIX_FMT_YA16BE;
} else {
av_log(avctx, AV_LOG_ERROR, "unsupported bit depth %d "
"and color type %d\n",
s->bit_depth, s->color_type);
return AVERROR_INVALIDDATA;
}
if (s->has_trns && s->color_type != PNG_COLOR_TYPE_PALETTE) {
switch (avctx->pix_fmt) {
case AV_PIX_FMT_RGB24:
avctx->pix_fmt = AV_PIX_FMT_RGBA;
break;
case AV_PIX_FMT_RGB48BE:
avctx->pix_fmt = AV_PIX_FMT_RGBA64BE;
break;
case AV_PIX_FMT_GRAY8:
avctx->pix_fmt = AV_PIX_FMT_YA8;
break;
case AV_PIX_FMT_GRAY16BE:
avctx->pix_fmt = AV_PIX_FMT_YA16BE;
break;
default:
avpriv_request_sample(avctx, "bit depth %d "
"and color type %d with TRNS",
s->bit_depth, s->color_type);
return AVERROR_INVALIDDATA;
}
s->bpp += byte_depth;
}
if ((ret = ff_thread_get_buffer(avctx, &s->picture, AV_GET_BUFFER_FLAG_REF)) < 0)
return ret;
if (avctx->codec_id == AV_CODEC_ID_APNG && s->last_dispose_op != APNG_DISPOSE_OP_PREVIOUS) {
ff_thread_release_buffer(avctx, &s->previous_picture);
if ((ret = ff_thread_get_buffer(avctx, &s->previous_picture, AV_GET_BUFFER_FLAG_REF)) < 0)
return ret;
}
ff_thread_finish_setup(avctx);
p->pict_type = AV_PICTURE_TYPE_I;
p->key_frame = 1;
p->interlaced_frame = !!s->interlace_type;
/* compute the compressed row size */
if (!s->interlace_type) {
s->crow_size = s->row_size + 1;
} else {
s->pass = 0;
s->pass_row_size = ff_png_pass_row_size(s->pass,
s->bits_per_pixel,
s->cur_w);
s->crow_size = s->pass_row_size + 1;
}
ff_dlog(avctx, "row_size=%d crow_size =%d\n",
s->row_size, s->crow_size);
s->image_buf = p->data[0];
s->image_linesize = p->linesize[0];
/* copy the palette if needed */
if (avctx->pix_fmt == AV_PIX_FMT_PAL8)
memcpy(p->data[1], s->palette, 256 * sizeof(uint32_t));
/* empty row is used if differencing to the first row */
av_fast_padded_mallocz(&s->last_row, &s->last_row_size, s->row_size);
if (!s->last_row)
return AVERROR_INVALIDDATA;
if (s->interlace_type ||
s->color_type == PNG_COLOR_TYPE_RGB_ALPHA) {
av_fast_padded_malloc(&s->tmp_row, &s->tmp_row_size, s->row_size);
if (!s->tmp_row)
return AVERROR_INVALIDDATA;
}
/* compressed row */
av_fast_padded_malloc(&s->buffer, &s->buffer_size, s->row_size + 16);
if (!s->buffer)
return AVERROR(ENOMEM);
/* we want crow_buf+1 to be 16-byte aligned */
s->crow_buf = s->buffer + 15;
s->zstream.avail_out = s->crow_size;
s->zstream.next_out = s->crow_buf;
}
s->state |= PNG_IDAT;
/* set image to non-transparent bpp while decompressing */
if (s->has_trns && s->color_type != PNG_COLOR_TYPE_PALETTE)
s->bpp -= byte_depth;
ret = png_decode_idat(s, length);
if (s->has_trns && s->color_type != PNG_COLOR_TYPE_PALETTE)
s->bpp += byte_depth;
if (ret < 0)
return ret;
bytestream2_skip(&s->gb, 4); /* crc */
return 0;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 16,975 |
varnish-cache | c5fd097e5cce8b461c6443af02b3448baef2491d | http_EstimateWS(const struct http *fm, unsigned how)
{
unsigned u, l;
l = 4;
CHECK_OBJ_NOTNULL(fm, HTTP_MAGIC);
for (u = 0; u < fm->nhd; u++) {
if (u == HTTP_HDR_METHOD || u == HTTP_HDR_URL)
continue;
Tcheck(fm->hd[u]);
if (http_isfiltered(fm, u, how))
continue;
l += Tlen(fm->hd[u]) + 1L;
}
return (PRNDUP(l + 1L));
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 14,085 |
krb5 | 5e6d1796106df8ba6bc1973ee0917c170d929086 | add_pa_data_element(krb5_pa_data ***list, krb5_pa_data *pa)
{
size_t count;
krb5_pa_data **newlist;
for (count = 0; *list != NULL && (*list)[count] != NULL; count++);
newlist = realloc(*list, (count + 2) * sizeof(*newlist));
if (newlist == NULL) {
free(pa->contents);
free(pa);
return ENOMEM;
}
newlist[count] = pa;
newlist[count + 1] = NULL;
*list = newlist;
return 0;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 13,048 |
tensorflow | 6c0b2b70eeee588591680f5b7d5d38175fd7cdf6 | TfLiteStatus EvalFloat(TfLiteContext* context, TfLiteNode* node,
TfLiteFullyConnectedParams* params, OpData* data,
const TfLiteTensor* input, const TfLiteTensor* filter,
const TfLiteTensor* bias, TfLiteTensor* output) {
float output_activation_min, output_activation_max;
CalculateActivationRange(params->activation, &output_activation_min,
&output_activation_max);
if (kernel_type == kReference) {
FullyConnectedParams op_params;
op_params.float_activation_min = output_activation_min;
op_params.float_activation_max = output_activation_max;
if (filter->sparsity != nullptr) {
const auto& sparsity = *filter->sparsity;
reference_ops::FullyConnectedSparseWeight(
sparsity, op_params, GetTensorShape(input),
GetTensorData<float>(input), GetTensorShape(filter),
GetTensorData<float>(filter), GetTensorShape(bias),
GetTensorData<float>(bias), GetTensorShape(output),
GetTensorData<float>(output));
} else {
reference_ops::FullyConnected(
op_params, GetTensorShape(input), GetTensorData<float>(input),
GetTensorShape(filter), GetTensorData<float>(filter),
GetTensorShape(bias), GetTensorData<float>(bias),
GetTensorShape(output), GetTensorData<float>(output));
}
} else if (kernel_type == kLegacyPie) {
return EvalPie(context, node, params, data, input, filter, bias, output);
} else {
FullyConnectedParams op_params;
op_params.float_activation_min = output_activation_min;
op_params.float_activation_max = output_activation_max;
if (filter->sparsity != nullptr) {
const auto& sparsity = *filter->sparsity;
if (!SupportedSparsityFormat(sparsity)) {
TF_LITE_KERNEL_LOG(context,
"Unsupported sparse fully-connected weight format.");
return kTfLiteError;
}
if (sparsity.dim_metadata_size == kDimMetadataSizeRandomSparse) {
// Random sparse.
optimized_ops::FullyConnectedSparseWeight(
sparsity, op_params, GetTensorShape(input),
GetTensorData<float>(input), GetTensorShape(filter),
GetTensorData<float>(filter), GetTensorShape(bias),
GetTensorData<float>(bias), GetTensorShape(output),
GetTensorData<float>(output));
} else if (sparsity.dim_metadata_size == kDimMetadataSizeBlockSparse &&
sparsity.dim_metadata[2].dense_size == 4) {
// Block sparse with block size of 1x4.
optimized_ops::FullyConnectedSparseWeight1x4(
sparsity, op_params, GetTensorShape(input),
GetTensorData<float>(input), GetTensorShape(filter),
GetTensorData<float>(filter), GetTensorShape(bias),
GetTensorData<float>(bias), GetTensorShape(output),
GetTensorData<float>(output),
CpuBackendContext::GetFromContext(context));
} else {
TF_LITE_KERNEL_LOG(context,
"Unsupported sparse fully-connected weight format.");
return kTfLiteError;
}
} else {
op_params.lhs_cacheable = IsConstantTensor(filter);
op_params.rhs_cacheable = IsConstantTensor(input);
optimized_ops::FullyConnected(
op_params, GetTensorShape(input), GetTensorData<float>(input),
GetTensorShape(filter), GetTensorData<float>(filter),
GetTensorShape(bias), GetTensorData<float>(bias),
GetTensorShape(output), GetTensorData<float>(output),
CpuBackendContext::GetFromContext(context));
}
}
return kTfLiteOk;
} | 1 | CVE-2022-23561 | CWE-787 | Out-of-bounds Write | The product writes data past the end, or before the beginning, of the intended buffer. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333].
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 6,150 |
neomutt | 6f163e07ae68654d7ac5268cbb7565f6df79ad85 | void test_base64_decode(void)
{
char buffer[16];
int len = mutt_b64_decode(buffer, encoded);
if (!TEST_CHECK(len == sizeof(clear) - 1))
{
TEST_MSG("Expected: %zu", sizeof(clear) - 1);
TEST_MSG("Actual : %zu", len);
}
buffer[len] = '\0';
if (!TEST_CHECK(strcmp(buffer, clear) == 0))
{
TEST_MSG("Expected: %s", clear);
TEST_MSG("Actual : %s", buffer);
}
}
| 1 | CVE-2018-14359 | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 2,138 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.