project
stringclasses
765 values
commit_id
stringlengths
6
81
func
stringlengths
19
482k
vul
int64
0
1
CVE ID
stringlengths
13
16
CWE ID
stringclasses
13 values
CWE Name
stringclasses
13 values
CWE Description
stringclasses
13 values
Potential Mitigation
stringclasses
11 values
__index_level_0__
int64
0
23.9k
WAVM
31d670b6489e6d708c3b04b911cdf14ac43d846d
bool resolve(const std::string& moduleName, const std::string& exportName, ObjectType type, Object*& outObject) override { auto namedInstance = moduleNameToInstanceMap.get(moduleName); if(namedInstance) { outObject = getInstanceExport(*namedInstance, exportName); if(outObject) { if(isA(outObject, type)) { return true; } else { Log::printf(Log::error, "Resolved import %s.%s to a %s, but was expecting %s\n", moduleName.c_str(), exportName.c_str(), asString(getObjectType(outObject)).c_str(), asString(type).c_str()); return false; } } } Log::printf(Log::error, "Generated stub for missing import %s.%s : %s\n", moduleName.c_str(), exportName.c_str(), asString(type).c_str()); outObject = getStubObject(exportName, type); return true; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
22,751
linux
82262a46627bebb0febcc26664746c25cef08563
static int snd_ctl_elem_add(struct snd_ctl_file *file, struct snd_ctl_elem_info *info, int replace) { struct snd_card *card = file->card; struct snd_kcontrol kctl, *_kctl; unsigned int access; long private_size; struct user_element *ue; int idx, err; if (!replace && card->user_ctl_count >= MAX_USER_CONTROLS) return -ENOMEM; if (info->count < 1) return -EINVAL; access = info->access == 0 ? SNDRV_CTL_ELEM_ACCESS_READWRITE : (info->access & (SNDRV_CTL_ELEM_ACCESS_READWRITE| SNDRV_CTL_ELEM_ACCESS_INACTIVE| SNDRV_CTL_ELEM_ACCESS_TLV_READWRITE)); info->id.numid = 0; memset(&kctl, 0, sizeof(kctl)); down_write(&card->controls_rwsem); _kctl = snd_ctl_find_id(card, &info->id); err = 0; if (_kctl) { if (replace) err = snd_ctl_remove(card, _kctl); else err = -EBUSY; } else { if (replace) err = -ENOENT; } up_write(&card->controls_rwsem); if (err < 0) return err; memcpy(&kctl.id, &info->id, sizeof(info->id)); kctl.count = info->owner ? info->owner : 1; access |= SNDRV_CTL_ELEM_ACCESS_USER; if (info->type == SNDRV_CTL_ELEM_TYPE_ENUMERATED) kctl.info = snd_ctl_elem_user_enum_info; else kctl.info = snd_ctl_elem_user_info; if (access & SNDRV_CTL_ELEM_ACCESS_READ) kctl.get = snd_ctl_elem_user_get; if (access & SNDRV_CTL_ELEM_ACCESS_WRITE) kctl.put = snd_ctl_elem_user_put; if (access & SNDRV_CTL_ELEM_ACCESS_TLV_READWRITE) { kctl.tlv.c = snd_ctl_elem_user_tlv; access |= SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK; } switch (info->type) { case SNDRV_CTL_ELEM_TYPE_BOOLEAN: case SNDRV_CTL_ELEM_TYPE_INTEGER: private_size = sizeof(long); if (info->count > 128) return -EINVAL; break; case SNDRV_CTL_ELEM_TYPE_INTEGER64: private_size = sizeof(long long); if (info->count > 64) return -EINVAL; break; case SNDRV_CTL_ELEM_TYPE_ENUMERATED: private_size = sizeof(unsigned int); if (info->count > 128 || info->value.enumerated.items == 0) return -EINVAL; break; case SNDRV_CTL_ELEM_TYPE_BYTES: private_size = sizeof(unsigned char); if (info->count > 512) return -EINVAL; break; case SNDRV_CTL_ELEM_TYPE_IEC958: private_size = sizeof(struct snd_aes_iec958); if (info->count != 1) return -EINVAL; break; default: return -EINVAL; } private_size *= info->count; ue = kzalloc(sizeof(struct user_element) + private_size, GFP_KERNEL); if (ue == NULL) return -ENOMEM; ue->card = card; ue->info = *info; ue->info.access = 0; ue->elem_data = (char *)ue + sizeof(*ue); ue->elem_data_size = private_size; if (ue->info.type == SNDRV_CTL_ELEM_TYPE_ENUMERATED) { err = snd_ctl_elem_init_enum_names(ue); if (err < 0) { kfree(ue); return err; } } kctl.private_free = snd_ctl_elem_user_free; _kctl = snd_ctl_new(&kctl, access); if (_kctl == NULL) { kfree(ue->priv_data); kfree(ue); return -ENOMEM; } _kctl->private_data = ue; for (idx = 0; idx < _kctl->count; idx++) _kctl->vd[idx].owner = file; err = snd_ctl_add(card, _kctl); if (err < 0) return err; down_write(&card->controls_rwsem); card->user_ctl_count++; up_write(&card->controls_rwsem); return 0; }
1
CVE-2014-4655
CWE-189
Numeric Errors
Weaknesses in this category are related to improper calculation or conversion of numbers.
Not Found in CWE Page
5,249
postgres
31400a673325147e1205326008e32135a78b4d8a
hstore_from_array(PG_FUNCTION_ARGS) { ArrayType *in_array = PG_GETARG_ARRAYTYPE_P(0); int ndims = ARR_NDIM(in_array); int count; int32 buflen; HStore *out; Pairs *pairs; Datum *in_datums; bool *in_nulls; int in_count; int i; Assert(ARR_ELEMTYPE(in_array) == TEXTOID); switch (ndims) { case 0: out = hstorePairs(NULL, 0, 0); PG_RETURN_POINTER(out); case 1: if ((ARR_DIMS(in_array)[0]) % 2) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("array must have even number of elements"))); break; case 2: if ((ARR_DIMS(in_array)[1]) != 2) ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("array must have two columns"))); break; default: ereport(ERROR, (errcode(ERRCODE_ARRAY_SUBSCRIPT_ERROR), errmsg("wrong number of array subscripts"))); } deconstruct_array(in_array, TEXTOID, -1, false, 'i', &in_datums, &in_nulls, &in_count); count = in_count / 2; pairs = palloc(count * sizeof(Pairs)); for (i = 0; i < count; ++i) { if (in_nulls[i * 2]) ereport(ERROR, (errcode(ERRCODE_NULL_VALUE_NOT_ALLOWED), errmsg("null value not allowed for hstore key"))); if (in_nulls[i * 2 + 1]) { pairs[i].key = VARDATA_ANY(in_datums[i * 2]); pairs[i].val = NULL; pairs[i].keylen = hstoreCheckKeyLen(VARSIZE_ANY_EXHDR(in_datums[i * 2])); pairs[i].vallen = 4; pairs[i].isnull = true; pairs[i].needfree = false; } else { pairs[i].key = VARDATA_ANY(in_datums[i * 2]); pairs[i].val = VARDATA_ANY(in_datums[i * 2 + 1]); pairs[i].keylen = hstoreCheckKeyLen(VARSIZE_ANY_EXHDR(in_datums[i * 2])); pairs[i].vallen = hstoreCheckValLen(VARSIZE_ANY_EXHDR(in_datums[i * 2 + 1])); pairs[i].isnull = false; pairs[i].needfree = false; } } count = hstoreUniquePairs(pairs, count, &buflen); out = hstorePairs(pairs, count, buflen); PG_RETURN_POINTER(out); }
1
CVE-2014-2669
CWE-189
Numeric Errors
Weaknesses in this category are related to improper calculation or conversion of numbers.
Not Found in CWE Page
715
Chrome
3c8e4852477d5b1e2da877808c998dc57db9460f
void InspectorHandler::SetRenderer(RenderProcessHost* process_host, RenderFrameHostImpl* frame_host) { host_ = frame_host; }
1
CVE-2018-6111
CWE-20
Improper Input Validation
The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly.
Phase: Architecture and Design Strategy: Attack Surface Reduction Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111] Phase: Architecture and Design Strategy: Libraries or Frameworks Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173). Phases: Architecture and Design; Implementation Strategy: Attack Surface Reduction Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls. Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. Effectiveness: High Phase: Architecture and Design For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server. Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings. Phase: Implementation When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined. Phase: Implementation Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow. Phase: Implementation Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained. Phase: Implementation Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control. Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content. Phase: Implementation When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so.
1,336
Little-CMS
5ca71a7bc18b6897ab21d815d15e218e204581e2
void Type_MPE_Free(struct _cms_typehandler_struct* self, void *Ptr) { cmsPipelineFree((cmsPipeline*) Ptr); return; cmsUNUSED_PARAMETER(self); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
14,937
linux
983d8e60f50806f90534cc5373d0ce867e5aaf79
xfs_find_handle( unsigned int cmd, xfs_fsop_handlereq_t *hreq) { int hsize; xfs_handle_t handle; struct inode *inode; struct fd f = {NULL}; struct path path; int error; struct xfs_inode *ip; if (cmd == XFS_IOC_FD_TO_HANDLE) { f = fdget(hreq->fd); if (!f.file) return -EBADF; inode = file_inode(f.file); } else { error = user_path_at(AT_FDCWD, hreq->path, 0, &path); if (error) return error; inode = d_inode(path.dentry); } ip = XFS_I(inode); /* * We can only generate handles for inodes residing on a XFS filesystem, * and only for regular files, directories or symbolic links. */ error = -EINVAL; if (inode->i_sb->s_magic != XFS_SB_MAGIC) goto out_put; error = -EBADF; if (!S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode) && !S_ISLNK(inode->i_mode)) goto out_put; memcpy(&handle.ha_fsid, ip->i_mount->m_fixedfsid, sizeof(xfs_fsid_t)); if (cmd == XFS_IOC_PATH_TO_FSHANDLE) { /* * This handle only contains an fsid, zero the rest. */ memset(&handle.ha_fid, 0, sizeof(handle.ha_fid)); hsize = sizeof(xfs_fsid_t); } else { handle.ha_fid.fid_len = sizeof(xfs_fid_t) - sizeof(handle.ha_fid.fid_len); handle.ha_fid.fid_pad = 0; handle.ha_fid.fid_gen = inode->i_generation; handle.ha_fid.fid_ino = ip->i_ino; hsize = sizeof(xfs_handle_t); } error = -EFAULT; if (copy_to_user(hreq->ohandle, &handle, hsize) || copy_to_user(hreq->ohandlen, &hsize, sizeof(__s32))) goto out_put; error = 0; out_put: if (cmd == XFS_IOC_FD_TO_HANDLE) fdput(f); else path_put(&path); return error; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
12,529
ImageMagick
a47e7a994766b92b10d4a87df8c1c890c8b170f3
MagickExport MagickBooleanType SetImageAlphaChannel(Image *image, const AlphaChannelOption alpha_type,ExceptionInfo *exception) { CacheView *image_view; MagickBooleanType status; ssize_t y; assert(image != (Image *) NULL); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"..."); assert(image->signature == MagickCoreSignature); status=MagickTrue; switch (alpha_type) { case ActivateAlphaChannel: { image->alpha_trait=BlendPixelTrait; break; } case AssociateAlphaChannel: { /* Associate alpha. */ status=SetImageStorageClass(image,DirectClass,exception); if (status == MagickFalse) break; image_view=AcquireAuthenticCacheView(image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(status) \ magick_number_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register Quantum *magick_restrict q; register ssize_t x; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1, exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { double gamma; register ssize_t i; gamma=QuantumScale*GetPixelAlpha(image,q); for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel = GetPixelChannelChannel(image,i); PixelTrait traits = GetPixelChannelTraits(image,channel); if (channel == AlphaPixelChannel) continue; if ((traits & UpdatePixelTrait) == 0) continue; q[i]=ClampToQuantum(gamma*q[i]); } q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; } image_view=DestroyCacheView(image_view); image->alpha_trait=CopyPixelTrait; return(status); } case BackgroundAlphaChannel: { /* Set transparent pixels to background color. */ if (image->alpha_trait == UndefinedPixelTrait) break; status=SetImageStorageClass(image,DirectClass,exception); if (status == MagickFalse) break; image_view=AcquireAuthenticCacheView(image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(status) \ magick_number_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register Quantum *magick_restrict q; register ssize_t x; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1, exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { if (GetPixelAlpha(image,q) == TransparentAlpha) { SetPixelViaPixelInfo(image,&image->background_color,q); SetPixelChannel(image,AlphaPixelChannel,TransparentAlpha,q); } q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; } image_view=DestroyCacheView(image_view); return(status); } case CopyAlphaChannel: { image->alpha_trait=UpdatePixelTrait; status=CompositeImage(image,image,IntensityCompositeOp,MagickTrue,0,0, exception); break; } case DeactivateAlphaChannel: { if (image->alpha_trait == UndefinedPixelTrait) status=SetImageAlpha(image,OpaqueAlpha,exception); image->alpha_trait=CopyPixelTrait; break; } case DisassociateAlphaChannel: { /* Disassociate alpha. */ status=SetImageStorageClass(image,DirectClass,exception); if (status == MagickFalse) break; image->alpha_trait=BlendPixelTrait; image_view=AcquireAuthenticCacheView(image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(status) \ magick_number_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register Quantum *magick_restrict q; register ssize_t x; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1, exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { double gamma, Sa; register ssize_t i; Sa=QuantumScale*GetPixelAlpha(image,q); gamma=PerceptibleReciprocal(Sa); for (i=0; i < (ssize_t) GetPixelChannels(image); i++) { PixelChannel channel = GetPixelChannelChannel(image,i); PixelTrait traits = GetPixelChannelTraits(image,channel); if (channel == AlphaPixelChannel) continue; if ((traits & UpdatePixelTrait) == 0) continue; q[i]=ClampToQuantum(gamma*q[i]); } q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; } image_view=DestroyCacheView(image_view); image->alpha_trait=UndefinedPixelTrait; return(status); } case DiscreteAlphaChannel: { if (image->alpha_trait == UndefinedPixelTrait) status=SetImageAlpha(image,OpaqueAlpha,exception); image->alpha_trait=UpdatePixelTrait; break; } case ExtractAlphaChannel: { status=CompositeImage(image,image,AlphaCompositeOp,MagickTrue,0,0, exception); image->alpha_trait=UndefinedPixelTrait; break; } case OffAlphaChannel: { image->alpha_trait=UndefinedPixelTrait; break; } case OnAlphaChannel: { if (image->alpha_trait == UndefinedPixelTrait) status=SetImageAlpha(image,OpaqueAlpha,exception); image->alpha_trait=BlendPixelTrait; break; } case OpaqueAlphaChannel: { status=SetImageAlpha(image,OpaqueAlpha,exception); break; } case RemoveAlphaChannel: { /* Remove transparency. */ if (image->alpha_trait == UndefinedPixelTrait) break; status=SetImageStorageClass(image,DirectClass,exception); if (status == MagickFalse) break; image_view=AcquireAuthenticCacheView(image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(status) \ magick_number_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { register Quantum *magick_restrict q; register ssize_t x; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1, exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { FlattenPixelInfo(image,&image->background_color, image->background_color.alpha,q,(double) GetPixelAlpha(image,q),q); q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; } image_view=DestroyCacheView(image_view); image->alpha_trait=image->background_color.alpha_trait; break; } case SetAlphaChannel: { if (image->alpha_trait == UndefinedPixelTrait) status=SetImageAlpha(image,OpaqueAlpha,exception); break; } case ShapeAlphaChannel: { /* Remove transparency. */ image->alpha_trait=BlendPixelTrait; status=SetImageStorageClass(image,DirectClass,exception); if (status == MagickFalse) break; image_view=AcquireAuthenticCacheView(image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static) shared(status) \ magick_number_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { PixelInfo background; register Quantum *magick_restrict q; register ssize_t x; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1, exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } ConformPixelInfo(image,&image->background_color,&background,exception); background.alpha_trait=BlendPixelTrait; for (x=0; x < (ssize_t) image->columns; x++) { background.alpha=GetPixelIntensity(image,q); SetPixelViaPixelInfo(image,&background,q); q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; } image_view=DestroyCacheView(image_view); break; } case TransparentAlphaChannel: { status=SetImageAlpha(image,TransparentAlpha,exception); break; } case UndefinedAlphaChannel: break; } if (status == MagickFalse) return(status); (void) SetPixelChannelMask(image,image->channel_mask); return(SyncImagePixelCache(image,exception)); }
1
CVE-2020-25663
CWE-416
Use After Free
The product reuses or references memory after it has been freed. At some point afterward, the memory may be allocated again and saved in another pointer, while the original pointer references a location somewhere within the new allocation. Any operations using the original pointer are no longer valid because the memory "belongs" to the code that operates on the new pointer.
Phase: Architecture and Design Strategy: Language Selection Choose a language that provides automatic memory management. Phase: Implementation Strategy: Attack Surface Reduction When freeing pointers, be sure to set them to NULL once they are freed. However, the utilization of multiple or complex data structures may lower the usefulness of this strategy. Effectiveness: Defense in Depth Note: If a bug causes an attempted access of this pointer, then a NULL dereference could still lead to a crash or other unexpected behavior, but it will reduce or eliminate the risk of code execution.
551
linux
dbcc7d57bffc0c8cac9dac11bec548597d59a6a5
get_old_root(struct btrfs_root *root, u64 time_seq) { struct btrfs_fs_info *fs_info = root->fs_info; struct tree_mod_elem *tm; struct extent_buffer *eb = NULL; struct extent_buffer *eb_root; u64 eb_root_owner = 0; struct extent_buffer *old; struct tree_mod_root *old_root = NULL; u64 old_generation = 0; u64 logical; int level; eb_root = btrfs_read_lock_root_node(root); tm = __tree_mod_log_oldest_root(eb_root, time_seq); if (!tm) return eb_root; if (tm->op == MOD_LOG_ROOT_REPLACE) { old_root = &tm->old_root; old_generation = tm->generation; logical = old_root->logical; level = old_root->level; } else { logical = eb_root->start; level = btrfs_header_level(eb_root); } tm = tree_mod_log_search(fs_info, logical, time_seq); if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { btrfs_tree_read_unlock(eb_root); free_extent_buffer(eb_root); old = read_tree_block(fs_info, logical, root->root_key.objectid, 0, level, NULL); if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { if (!IS_ERR(old)) free_extent_buffer(old); btrfs_warn(fs_info, "failed to read tree block %llu from get_old_root", logical); } else { eb = btrfs_clone_extent_buffer(old); free_extent_buffer(old); } } else if (old_root) { eb_root_owner = btrfs_header_owner(eb_root); btrfs_tree_read_unlock(eb_root); free_extent_buffer(eb_root); eb = alloc_dummy_extent_buffer(fs_info, logical); } else { eb = btrfs_clone_extent_buffer(eb_root); btrfs_tree_read_unlock(eb_root); free_extent_buffer(eb_root); } if (!eb) return NULL; if (old_root) { btrfs_set_header_bytenr(eb, eb->start); btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); btrfs_set_header_owner(eb, eb_root_owner); btrfs_set_header_level(eb, old_root->level); btrfs_set_header_generation(eb, old_generation); } btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb, btrfs_header_level(eb)); btrfs_tree_read_lock(eb); if (tm) __tree_mod_log_rewind(fs_info, eb, time_seq, tm); else WARN_ON(btrfs_header_level(eb) != 0); WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); return eb; }
1
CVE-2021-28964
CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
The product contains a concurrent code sequence that requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence operating concurrently.
Phase: Architecture and Design In languages that support it, use synchronization primitives. Only wrap these around critical code to minimize the impact on performance. Phase: Architecture and Design Use thread-safe capabilities such as the data access abstraction in Spring. Phase: Architecture and Design Minimize the usage of shared resources in order to remove as much complexity as possible from the control flow and to reduce the likelihood of unexpected conditions occurring. Additionally, this will minimize the amount of synchronization necessary and may even help to reduce the likelihood of a denial of service where an attacker may be able to repeatedly trigger a critical section (CWE-400). Phase: Implementation When using multithreading and operating on shared variables, only use thread-safe functions. Phase: Implementation Use atomic operations on shared variables. Be wary of innocent-looking constructs such as "x++". This may appear atomic at the code layer, but it is actually non-atomic at the instruction layer, since it involves a read, followed by a computation, followed by a write. Phase: Implementation Use a mutex if available, but be sure to avoid related weaknesses such as CWE-412. Phase: Implementation Avoid double-checked locking (CWE-609) and other implementation errors that arise when trying to avoid the overhead of synchronization. Phase: Implementation Disable interrupts or signals over critical parts of the code, but also make sure that the code does not go into a large or infinite loop. Phase: Implementation Use the volatile type modifier for critical variables to avoid unexpected compiler optimization or reordering. This does not necessarily solve the synchronization problem, but it can help. Phases: Architecture and Design; Operation Strategy: Environment Hardening Run your code using the lowest privileges that are required to accomplish the necessary tasks [REF-76]. If possible, create isolated accounts with limited privileges that are only used for a single task. That way, a successful attack will not immediately give the attacker access to the rest of the software or its environment. For example, database applications rarely need to run as the database administrator, especially in day-to-day operations
3,879
kamailio
e1d8008a09d9390ebaf698abe8909e10dfec4097
int tmx_check_pretran(sip_msg_t *msg) { unsigned int chid; unsigned int slotid; int dsize; struct via_param *vbr; str scallid; str scseqmet; str scseqnum; str sftag; str svbranch = {NULL, 0}; pretran_t *it; if(_tmx_ptran_table==NULL) { LM_ERR("pretran hash table not initialized yet\n"); return -1; } if(get_route_type()!=REQUEST_ROUTE) { LM_ERR("invalid usage - not in request route\n"); return -1; } if(msg->first_line.type!=SIP_REQUEST) { LM_ERR("invalid usage - not a sip request\n"); return -1; } if(parse_headers(msg, HDR_FROM_F|HDR_VIA1_F|HDR_CALLID_F|HDR_CSEQ_F, 0)<0) { LM_ERR("failed to parse required headers\n"); return -1; } if(msg->cseq==NULL || msg->cseq->parsed==NULL) { LM_ERR("failed to parse cseq headers\n"); return -1; } if(get_cseq(msg)->method_id==METHOD_ACK || get_cseq(msg)->method_id==METHOD_CANCEL) { LM_DBG("no pre-transaction management for ACK or CANCEL\n"); return -1; } if (msg->via1==0) { LM_ERR("failed to get Via header\n"); return -1; } if (parse_from_header(msg)<0 || get_from(msg)->tag_value.len==0) { LM_ERR("failed to get From header\n"); return -1; } if (msg->callid==NULL || msg->callid->body.s==NULL) { LM_ERR("failed to parse callid headers\n"); return -1; } vbr = msg->via1->branch; scallid = msg->callid->body; trim(&scallid); scseqmet = get_cseq(msg)->method; trim(&scseqmet); scseqnum = get_cseq(msg)->number; trim(&scseqnum); sftag = get_from(msg)->tag_value; trim(&sftag); chid = get_hash1_raw(msg->callid->body.s, msg->callid->body.len); slotid = chid & (_tmx_ptran_size-1); if(unlikely(_tmx_proc_ptran == NULL)) { _tmx_proc_ptran = (pretran_t*)shm_malloc(sizeof(pretran_t)); if(_tmx_proc_ptran == NULL) { LM_ERR("not enough memory for pretran structure\n"); return -1; } memset(_tmx_proc_ptran, 0, sizeof(pretran_t)); _tmx_proc_ptran->pid = my_pid(); } dsize = scallid.len + scseqnum.len + scseqmet.len + sftag.len + 4; if(likely(vbr!=NULL)) { svbranch = vbr->value; trim(&svbranch); dsize += svbranch.len; } if(dsize<256) dsize = 256; tmx_pretran_unlink(); if(dsize > _tmx_proc_ptran->dbuf.len) { if(_tmx_proc_ptran->dbuf.s) shm_free(_tmx_proc_ptran->dbuf.s); _tmx_proc_ptran->dbuf.s = (char*)shm_malloc(dsize); if(_tmx_proc_ptran->dbuf.s==NULL) { LM_ERR("not enough memory for pretran data\n"); return -1; } _tmx_proc_ptran->dbuf.len = dsize; } _tmx_proc_ptran->hid = chid; _tmx_proc_ptran->cseqmetid = (get_cseq(msg))->method_id; _tmx_proc_ptran->callid.s = _tmx_proc_ptran->dbuf.s; memcpy(_tmx_proc_ptran->callid.s, scallid.s, scallid.len); _tmx_proc_ptran->callid.len = scallid.len; _tmx_proc_ptran->callid.s[_tmx_proc_ptran->callid.len] = '\0'; _tmx_proc_ptran->ftag.s = _tmx_proc_ptran->callid.s + _tmx_proc_ptran->callid.len + 1; memcpy(_tmx_proc_ptran->ftag.s, sftag.s, sftag.len); _tmx_proc_ptran->ftag.len = sftag.len; _tmx_proc_ptran->ftag.s[_tmx_proc_ptran->ftag.len] = '\0'; _tmx_proc_ptran->cseqnum.s = _tmx_proc_ptran->ftag.s + _tmx_proc_ptran->ftag.len + 1; memcpy(_tmx_proc_ptran->cseqnum.s, scseqnum.s, scseqnum.len); _tmx_proc_ptran->cseqnum.len = scseqnum.len; _tmx_proc_ptran->cseqnum.s[_tmx_proc_ptran->cseqnum.len] = '\0'; _tmx_proc_ptran->cseqmet.s = _tmx_proc_ptran->cseqnum.s + _tmx_proc_ptran->cseqnum.len + 1; memcpy(_tmx_proc_ptran->cseqmet.s, scseqmet.s, scseqmet.len); _tmx_proc_ptran->cseqmet.len = scseqmet.len; _tmx_proc_ptran->cseqmet.s[_tmx_proc_ptran->cseqmet.len] = '\0'; if(likely(vbr!=NULL)) { _tmx_proc_ptran->vbranch.s = _tmx_proc_ptran->cseqmet.s + _tmx_proc_ptran->cseqmet.len + 1; memcpy(_tmx_proc_ptran->vbranch.s, svbranch.s, svbranch.len); _tmx_proc_ptran->vbranch.len = svbranch.len; _tmx_proc_ptran->vbranch.s[_tmx_proc_ptran->vbranch.len] = '\0'; } else { _tmx_proc_ptran->vbranch.s = NULL; _tmx_proc_ptran->vbranch.len = 0; } lock_get(&_tmx_ptran_table[slotid].lock); it = _tmx_ptran_table[slotid].plist; tmx_pretran_link_safe(slotid); for(; it!=NULL; it=it->next) { if(_tmx_proc_ptran->hid != it->hid || _tmx_proc_ptran->cseqmetid != it->cseqmetid || _tmx_proc_ptran->callid.len != it->callid.len || _tmx_proc_ptran->ftag.len != it->ftag.len || _tmx_proc_ptran->cseqmet.len != it->cseqmet.len || _tmx_proc_ptran->cseqnum.len != it->cseqnum.len) continue; if(_tmx_proc_ptran->vbranch.s != NULL && it->vbranch.s != NULL) { if(_tmx_proc_ptran->vbranch.len != it->vbranch.len) continue; /* shortcut - check last char in Via branch * - kamailio/ser adds there branch index => in case of paralel * forking by previous hop, catch it here quickly */ if(_tmx_proc_ptran->vbranch.s[it->vbranch.len-1] != it->vbranch.s[it->vbranch.len-1]) continue; if(memcmp(_tmx_proc_ptran->vbranch.s, it->vbranch.s, it->vbranch.len)!=0) continue; /* shall stop by matching magic cookie? * if (vbr && vbr->value.s && vbr->value.len > MCOOKIE_LEN * && memcmp(vbr->value.s, MCOOKIE, MCOOKIE_LEN)==0) { * LM_DBG("rfc3261 cookie found in Via branch\n"); * } */ } if(memcmp(_tmx_proc_ptran->callid.s, it->callid.s, it->callid.len)!=0 || memcmp(_tmx_proc_ptran->ftag.s, it->ftag.s, it->ftag.len)!=0 || memcmp(_tmx_proc_ptran->cseqnum.s, it->cseqnum.s, it->cseqnum.len)!=0) continue; if((it->cseqmetid==METHOD_OTHER || it->cseqmetid==METHOD_UNDEF) && memcmp(_tmx_proc_ptran->cseqmet.s, it->cseqmet.s, it->cseqmet.len)!=0) continue; LM_DBG("matched another pre-transaction by pid %d for [%.*s]\n", it->pid, it->callid.len, it->callid.s); lock_release(&_tmx_ptran_table[slotid].lock); return 1; } lock_release(&_tmx_ptran_table[slotid].lock); return 0; }
1
CVE-2018-8828
CWE-119
Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333] Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
7,702
Chrome
bc1f34b9be509f1404f0bb1ba1947614d5f0bcd1
std::unique_ptr<service_manager::Service> CreateMediaService() { return std::unique_ptr<service_manager::Service>( new ::media::MediaService(base::MakeUnique<CdmMojoMediaClient>())); }
1
CVE-2015-1280
CWE-119
Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333] Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
5,763
ghostscript
6d444c273da5499a4cd72f21cb6d4c9a5256807d
gs_main_init1(gs_main_instance * minst) { if (minst->init_done < 1) { gs_dual_memory_t idmem; int code = ialloc_init(&idmem, minst->heap, minst->memory_clump_size, gs_have_level2()); if (code < 0) return code; code = gs_lib_init1((gs_memory_t *)idmem.space_system); if (code < 0) return code; alloc_save_init(&idmem); { gs_memory_t *mem = (gs_memory_t *)idmem.space_system; name_table *nt = names_init(minst->name_table_size, idmem.space_system); if (nt == 0) return_error(gs_error_VMerror); mem->gs_lib_ctx->gs_name_table = nt; code = gs_register_struct_root(mem, NULL, (void **)&mem->gs_lib_ctx->gs_name_table, "the_gs_name_table"); "the_gs_name_table"); if (code < 0) return code; } code = obj_init(&minst->i_ctx_p, &idmem); /* requires name_init */ if (code < 0) if (code < 0) return code; code = i_iodev_init(minst->i_ctx_p); if (code < 0) return code; minst->init_done = 1; } return 0; }
1
CVE-2016-7976
CWE-20
Improper Input Validation
The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly.
Phase: Architecture and Design Strategy: Attack Surface Reduction Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111] Phase: Architecture and Design Strategy: Libraries or Frameworks Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173). Phases: Architecture and Design; Implementation Strategy: Attack Surface Reduction Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls. Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. Effectiveness: High Phase: Architecture and Design For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server. Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings. Phase: Implementation When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined. Phase: Implementation Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow. Phase: Implementation Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained. Phase: Implementation Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control. Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content. Phase: Implementation When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so.
8,582
file
c0c0032b9e9eb57b91fefef905a3b018bab492d9
check_fmt(struct magic_set *ms, struct magic *m) { regex_t rx; int rc, rv = -1; char *old_lc_ctype; if (strchr(m->desc, '%') == NULL) return 0; old_lc_ctype = setlocale(LC_CTYPE, NULL); assert(old_lc_ctype != NULL); old_lc_ctype = strdup(old_lc_ctype); assert(old_lc_ctype != NULL); (void)setlocale(LC_CTYPE, "C"); rc = regcomp(&rx, "%[-0-9\\.]*s", REG_EXTENDED|REG_NOSUB); if (rc) { char errmsg[512]; (void)regerror(rc, &rx, errmsg, sizeof(errmsg)); file_magerror(ms, "regex error %d, (%s)", rc, errmsg); } else { rc = regexec(&rx, m->desc, 0, 0, 0); regfree(&rx); rv = !rc; } (void)setlocale(LC_CTYPE, old_lc_ctype); free(old_lc_ctype); return rv; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
23,336
Android
6fe85f7e15203e48df2cc3e8e1c4bc6ad49dc968
MPEG4Source::MPEG4Source( const sp<MPEG4Extractor> &owner, const sp<MetaData> &format, const sp<DataSource> &dataSource, int32_t timeScale, const sp<SampleTable> &sampleTable, Vector<SidxEntry> &sidx, const Trex *trex, off64_t firstMoofOffset) : mOwner(owner), mFormat(format), mDataSource(dataSource), mTimescale(timeScale), mSampleTable(sampleTable), mCurrentSampleIndex(0), mCurrentFragmentIndex(0), mSegments(sidx), mTrex(trex), mFirstMoofOffset(firstMoofOffset), mCurrentMoofOffset(firstMoofOffset), mCurrentTime(0), mCurrentSampleInfoAllocSize(0), mCurrentSampleInfoSizes(NULL), mCurrentSampleInfoOffsetsAllocSize(0), mCurrentSampleInfoOffsets(NULL), mIsAVC(false), mIsHEVC(false), mNALLengthSize(0), mStarted(false), mGroup(NULL), mBuffer(NULL), mWantsNALFragments(false), mSrcBuffer(NULL) { memset(&mTrackFragmentHeaderInfo, 0, sizeof(mTrackFragmentHeaderInfo)); mFormat->findInt32(kKeyCryptoMode, &mCryptoMode); mDefaultIVSize = 0; mFormat->findInt32(kKeyCryptoDefaultIVSize, &mDefaultIVSize); uint32_t keytype; const void *key; size_t keysize; if (mFormat->findData(kKeyCryptoKey, &keytype, &key, &keysize)) { CHECK(keysize <= 16); memset(mCryptoKey, 0, 16); memcpy(mCryptoKey, key, keysize); } const char *mime; bool success = mFormat->findCString(kKeyMIMEType, &mime); CHECK(success); mIsAVC = !strcasecmp(mime, MEDIA_MIMETYPE_VIDEO_AVC); mIsHEVC = !strcasecmp(mime, MEDIA_MIMETYPE_VIDEO_HEVC); if (mIsAVC) { uint32_t type; const void *data; size_t size; CHECK(format->findData(kKeyAVCC, &type, &data, &size)); const uint8_t *ptr = (const uint8_t *)data; CHECK(size >= 7); CHECK_EQ((unsigned)ptr[0], 1u); // configurationVersion == 1 mNALLengthSize = 1 + (ptr[4] & 3); } else if (mIsHEVC) { uint32_t type; const void *data; size_t size; CHECK(format->findData(kKeyHVCC, &type, &data, &size)); const uint8_t *ptr = (const uint8_t *)data; CHECK(size >= 7); CHECK_EQ((unsigned)ptr[0], 1u); // configurationVersion == 1 mNALLengthSize = 1 + (ptr[14 + 7] & 3); } CHECK(format->findInt32(kKeyTrackID, &mTrackId)); if (mFirstMoofOffset != 0) { off64_t offset = mFirstMoofOffset; parseChunk(&offset); } }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
15,453
haproxy
efbbdf72992cd20458259962346044cafd9331c0
static struct dns_resolution *dns_pick_resolution(struct dns_resolvers *resolvers, char **hostname_dn, int hostname_dn_len, int query_type) { struct dns_resolution *res; if (!*hostname_dn) goto from_pool; /* Search for same hostname and query type in resolutions.curr */ list_for_each_entry(res, &resolvers->resolutions.curr, list) { if (!res->hostname_dn) continue; if ((query_type == res->prefered_query_type) && hostname_dn_len == res->hostname_dn_len && !memcmp(*hostname_dn, res->hostname_dn, hostname_dn_len)) return res; } /* Search for same hostname and query type in resolutions.wait */ list_for_each_entry(res, &resolvers->resolutions.wait, list) { if (!res->hostname_dn) continue; if ((query_type == res->prefered_query_type) && hostname_dn_len == res->hostname_dn_len && !memcmp(*hostname_dn, res->hostname_dn, hostname_dn_len)) return res; } from_pool: /* No resolution could be found, so let's allocate a new one */ res = pool_alloc(dns_resolution_pool); if (res) { memset(res, 0, sizeof(*res)); res->resolvers = resolvers; res->uuid = resolution_uuid; res->status = RSLV_STATUS_NONE; res->step = RSLV_STEP_NONE; res->last_valid = now_ms; LIST_INIT(&res->requesters); LIST_INIT(&res->response.answer_list); res->prefered_query_type = query_type; res->query_type = query_type; res->hostname_dn = *hostname_dn; res->hostname_dn_len = hostname_dn_len; ++resolution_uuid; /* Move the resolution to the resolvers wait queue */ LIST_ADDQ(&resolvers->resolutions.wait, &res->list); } return res; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
18,377
linux
bc3aae2bbac46dd894c89db5d5e98f7f0ef9e205
void ipv4_redirect(struct sk_buff *skb, struct net *net, int oif, u32 mark, u8 protocol, int flow_flags) { const struct iphdr *iph = (const struct iphdr *) skb->data; struct flowi4 fl4; struct rtable *rt; __build_flow_key(net, &fl4, NULL, iph, oif, RT_TOS(iph->tos), protocol, mark, flow_flags); rt = __ip_route_output_key(net, &fl4); if (!IS_ERR(rt)) { __ip_do_redirect(rt, skb, &fl4, false); ip_rt_put(rt); } }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
12,402
Chrome
2953a669ec0a32a25c6250d34bf895ec0eb63d27
getMyanmarCharClass (HB_UChar16 ch) { if (ch == Mymr_C_SIGN_ZWJ) return Mymr_CC_ZERO_WIDTH_J_MARK; if (ch == Mymr_C_SIGN_ZWNJ) return Mymr_CC_ZERO_WIDTH_NJ_MARK; if (ch < 0x1000 || ch > 0x105f) return Mymr_CC_RESERVED; return mymrCharClasses[ch - 0x1000]; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
14,205
Chrome
67e38708af8e99569365326e378b806088c83f5a
const char** GetSavableSchemes() { return const_cast<const char**>(g_savable_schemes); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
19,015
Android
560ccdb509a7b86186fac0fce1b25bd9a3e6a6e8
OMX_ERRORTYPE omx_vdec::set_config(OMX_IN OMX_HANDLETYPE hComp, OMX_IN OMX_INDEXTYPE configIndex, OMX_IN OMX_PTR configData) { (void) hComp; if (m_state == OMX_StateInvalid) { DEBUG_PRINT_ERROR("Get Config in Invalid State"); return OMX_ErrorInvalidState; } OMX_ERRORTYPE ret = OMX_ErrorNone; OMX_VIDEO_CONFIG_NALSIZE *pNal; DEBUG_PRINT_LOW("Set Config Called"); if (configIndex == (OMX_INDEXTYPE)OMX_IndexVendorVideoExtraData) { OMX_VENDOR_EXTRADATATYPE *config = (OMX_VENDOR_EXTRADATATYPE *) configData; DEBUG_PRINT_LOW("Index OMX_IndexVendorVideoExtraData called"); if (!strcmp(drv_ctx.kind, "OMX.qcom.video.decoder.avc") || !strcmp(drv_ctx.kind, "OMX.qcom.video.decoder.mvc")) { DEBUG_PRINT_LOW("Index OMX_IndexVendorVideoExtraData AVC"); OMX_U32 extra_size; nal_length = (config->pData[4] & 0x03) + 1; extra_size = 0; if (nal_length > 2) { /* Presently we assume that only one SPS and one PPS in AvC1 Atom */ extra_size = (nal_length - 2) * 2; } OMX_U8 *pSrcBuf = (OMX_U8 *) (&config->pData[6]); OMX_U8 *pDestBuf; m_vendor_config.nPortIndex = config->nPortIndex; m_vendor_config.nDataSize = config->nDataSize - 6 - 1 + extra_size; m_vendor_config.pData = (OMX_U8 *) malloc(m_vendor_config.nDataSize); OMX_U32 len; OMX_U8 index = 0; pDestBuf = m_vendor_config.pData; DEBUG_PRINT_LOW("Rxd SPS+PPS nPortIndex[%u] len[%u] data[%p]", (unsigned int)m_vendor_config.nPortIndex, (unsigned int)m_vendor_config.nDataSize, m_vendor_config.pData); while (index < 2) { uint8 *psize; len = *pSrcBuf; len = len << 8; len |= *(pSrcBuf + 1); psize = (uint8 *) & len; memcpy(pDestBuf + nal_length, pSrcBuf + 2,len); for (unsigned int i = 0; i < nal_length; i++) { pDestBuf[i] = psize[nal_length - 1 - i]; } pDestBuf += len + nal_length; pSrcBuf += len + 2; index++; pSrcBuf++; // skip picture param set len = 0; } } else if (!strcmp(drv_ctx.kind, "OMX.qcom.video.decoder.mpeg4") || !strcmp(drv_ctx.kind, "OMX.qcom.video.decoder.mpeg2")) { m_vendor_config.nPortIndex = config->nPortIndex; m_vendor_config.nDataSize = config->nDataSize; m_vendor_config.pData = (OMX_U8 *) malloc((config->nDataSize)); memcpy(m_vendor_config.pData, config->pData,config->nDataSize); } else if (!strcmp(drv_ctx.kind, "OMX.qcom.video.decoder.vc1")) { if (m_vendor_config.pData) { free(m_vendor_config.pData); m_vendor_config.pData = NULL; m_vendor_config.nDataSize = 0; } if (((*((OMX_U32 *) config->pData)) & VC1_SP_MP_START_CODE_MASK) == VC1_SP_MP_START_CODE) { DEBUG_PRINT_LOW("set_config - VC1 simple/main profile"); m_vendor_config.nPortIndex = config->nPortIndex; m_vendor_config.nDataSize = config->nDataSize; m_vendor_config.pData = (OMX_U8 *) malloc(config->nDataSize); memcpy(m_vendor_config.pData, config->pData, config->nDataSize); m_vc1_profile = VC1_SP_MP_RCV; } else if (*((OMX_U32 *) config->pData) == VC1_AP_SEQ_START_CODE) { DEBUG_PRINT_LOW("set_config - VC1 Advance profile"); m_vendor_config.nPortIndex = config->nPortIndex; m_vendor_config.nDataSize = config->nDataSize; m_vendor_config.pData = (OMX_U8 *) malloc((config->nDataSize)); memcpy(m_vendor_config.pData, config->pData, config->nDataSize); m_vc1_profile = VC1_AP; } else if ((config->nDataSize == VC1_STRUCT_C_LEN)) { DEBUG_PRINT_LOW("set_config - VC1 Simple/Main profile struct C only"); m_vendor_config.nPortIndex = config->nPortIndex; m_vendor_config.nDataSize = config->nDataSize; m_vendor_config.pData = (OMX_U8*)malloc(config->nDataSize); memcpy(m_vendor_config.pData,config->pData,config->nDataSize); m_vc1_profile = VC1_SP_MP_RCV; } else { DEBUG_PRINT_LOW("set_config - Error: Unknown VC1 profile"); } } return ret; } else if (configIndex == OMX_IndexConfigVideoNalSize) { struct v4l2_control temp; temp.id = V4L2_CID_MPEG_VIDC_VIDEO_STREAM_FORMAT; pNal = reinterpret_cast < OMX_VIDEO_CONFIG_NALSIZE * >(configData); switch (pNal->nNaluBytes) { case 0: temp.value = V4L2_MPEG_VIDC_VIDEO_NAL_FORMAT_STARTCODES; break; case 2: temp.value = V4L2_MPEG_VIDC_VIDEO_NAL_FORMAT_TWO_BYTE_LENGTH; break; case 4: temp.value = V4L2_MPEG_VIDC_VIDEO_NAL_FORMAT_FOUR_BYTE_LENGTH; break; default: return OMX_ErrorUnsupportedSetting; } if (!arbitrary_bytes) { /* In arbitrary bytes mode, the assembler strips out nal size and replaces * with start code, so only need to notify driver in frame by frame mode */ if (ioctl(drv_ctx.video_driver_fd, VIDIOC_S_CTRL, &temp)) { DEBUG_PRINT_ERROR("Failed to set V4L2_CID_MPEG_VIDC_VIDEO_STREAM_FORMAT"); return OMX_ErrorHardware; } } nal_length = pNal->nNaluBytes; m_frame_parser.init_nal_length(nal_length); DEBUG_PRINT_LOW("OMX_IndexConfigVideoNalSize called with Size %d", nal_length); return ret; } else if ((int)configIndex == (int)OMX_IndexVendorVideoFrameRate) { OMX_VENDOR_VIDEOFRAMERATE *config = (OMX_VENDOR_VIDEOFRAMERATE *) configData; DEBUG_PRINT_HIGH("Index OMX_IndexVendorVideoFrameRate %u", (unsigned int)config->nFps); if (config->nPortIndex == OMX_CORE_INPUT_PORT_INDEX) { if (config->bEnabled) { if ((config->nFps >> 16) > 0) { DEBUG_PRINT_HIGH("set_config: frame rate set by omx client : %u", (unsigned int)config->nFps >> 16); Q16ToFraction(config->nFps, drv_ctx.frame_rate.fps_numerator, drv_ctx.frame_rate.fps_denominator); if (!drv_ctx.frame_rate.fps_numerator) { DEBUG_PRINT_ERROR("Numerator is zero setting to 30"); drv_ctx.frame_rate.fps_numerator = 30; } if (drv_ctx.frame_rate.fps_denominator) { drv_ctx.frame_rate.fps_numerator = (int) drv_ctx.frame_rate.fps_numerator / drv_ctx.frame_rate.fps_denominator; } drv_ctx.frame_rate.fps_denominator = 1; frm_int = drv_ctx.frame_rate.fps_denominator * 1e6 / drv_ctx.frame_rate.fps_numerator; struct v4l2_outputparm oparm; /*XXX: we're providing timing info as seconds per frame rather than frames * per second.*/ oparm.timeperframe.numerator = drv_ctx.frame_rate.fps_denominator; oparm.timeperframe.denominator = drv_ctx.frame_rate.fps_numerator; struct v4l2_streamparm sparm; sparm.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE; sparm.parm.output = oparm; if (ioctl(drv_ctx.video_driver_fd, VIDIOC_S_PARM, &sparm)) { DEBUG_PRINT_ERROR("Unable to convey fps info to driver, \ performance might be affected"); ret = OMX_ErrorHardware; } client_set_fps = true; } else { DEBUG_PRINT_ERROR("Frame rate not supported."); ret = OMX_ErrorUnsupportedSetting; } } else { DEBUG_PRINT_HIGH("set_config: Disabled client's frame rate"); client_set_fps = false; } } else { DEBUG_PRINT_ERROR(" Set_config: Bad Port idx %d", (int)config->nPortIndex); ret = OMX_ErrorBadPortIndex; } return ret; } else if ((int)configIndex == (int)OMX_QcomIndexConfigPerfLevel) { OMX_QCOM_VIDEO_CONFIG_PERF_LEVEL *perf = (OMX_QCOM_VIDEO_CONFIG_PERF_LEVEL *)configData; struct v4l2_control control; DEBUG_PRINT_LOW("Set perf level: %d", perf->ePerfLevel); control.id = V4L2_CID_MPEG_VIDC_SET_PERF_LEVEL; switch (perf->ePerfLevel) { case OMX_QCOM_PerfLevelNominal: control.value = V4L2_CID_MPEG_VIDC_PERF_LEVEL_NOMINAL; break; case OMX_QCOM_PerfLevelTurbo: control.value = V4L2_CID_MPEG_VIDC_PERF_LEVEL_TURBO; break; default: ret = OMX_ErrorUnsupportedSetting; break; } if (ret == OMX_ErrorNone) { ret = (ioctl(drv_ctx.video_driver_fd, VIDIOC_S_CTRL, &control) < 0) ? OMX_ErrorUnsupportedSetting : OMX_ErrorNone; } return ret; } else if ((int)configIndex == (int)OMX_IndexConfigPriority) { OMX_PARAM_U32TYPE *priority = (OMX_PARAM_U32TYPE *)configData; DEBUG_PRINT_LOW("Set_config: priority %d", priority->nU32); struct v4l2_control control; control.id = V4L2_CID_MPEG_VIDC_VIDEO_PRIORITY; if (priority->nU32 == 0) control.value = V4L2_MPEG_VIDC_VIDEO_PRIORITY_REALTIME_ENABLE; else control.value = V4L2_MPEG_VIDC_VIDEO_PRIORITY_REALTIME_DISABLE; if (ioctl(drv_ctx.video_driver_fd, VIDIOC_S_CTRL, &control)) { DEBUG_PRINT_ERROR("Failed to set Priority"); ret = OMX_ErrorUnsupportedSetting; } return ret; } else if ((int)configIndex == (int)OMX_IndexConfigOperatingRate) { OMX_PARAM_U32TYPE *rate = (OMX_PARAM_U32TYPE *)configData; DEBUG_PRINT_LOW("Set_config: operating-rate %u fps", rate->nU32 >> 16); struct v4l2_control control; control.id = V4L2_CID_MPEG_VIDC_VIDEO_OPERATING_RATE; control.value = rate->nU32; if (ioctl(drv_ctx.video_driver_fd, VIDIOC_S_CTRL, &control)) { ret = errno == -EBUSY ? OMX_ErrorInsufficientResources : OMX_ErrorUnsupportedSetting; DEBUG_PRINT_ERROR("Failed to set operating rate %u fps (%s)", rate->nU32 >> 16, errno == -EBUSY ? "HW Overload" : strerror(errno)); } return ret; } return OMX_ErrorNotImplemented; }
1
CVE-2016-2480
CWE-20
Improper Input Validation
The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly.
Phase: Architecture and Design Strategy: Attack Surface Reduction Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111] Phase: Architecture and Design Strategy: Libraries or Frameworks Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173). Phases: Architecture and Design; Implementation Strategy: Attack Surface Reduction Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls. Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. Effectiveness: High Phase: Architecture and Design For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server. Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings. Phase: Implementation When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined. Phase: Implementation Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow. Phase: Implementation Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained. Phase: Implementation Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control. Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content. Phase: Implementation When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so.
453
FFmpeg
e724bd1dd9efea3abb8586d6644ec07694afceae
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; UtvideoContext *c = avctx->priv_data; int i, j; const uint8_t *plane_start[5]; int plane_size, max_slice_size = 0, slice_start, slice_end, slice_size; int ret; GetByteContext gb; ThreadFrame frame = { .f = data }; if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0) return ret; /* parse plane structure to get frame flags and validate slice offsets */ bytestream2_init(&gb, buf, buf_size); for (i = 0; i < c->planes; i++) { plane_start[i] = gb.buffer; if (bytestream2_get_bytes_left(&gb) < 256 + 4 * c->slices) { av_log(avctx, AV_LOG_ERROR, "Insufficient data for a plane\n"); return AVERROR_INVALIDDATA; } bytestream2_skipu(&gb, 256); slice_start = 0; slice_end = 0; for (j = 0; j < c->slices; j++) { slice_end = bytestream2_get_le32u(&gb); slice_size = slice_end - slice_start; if (slice_end < 0 || slice_size < 0 || bytestream2_get_bytes_left(&gb) < slice_end) { av_log(avctx, AV_LOG_ERROR, "Incorrect slice size\n"); return AVERROR_INVALIDDATA; } slice_start = slice_end; max_slice_size = FFMAX(max_slice_size, slice_size); } plane_size = slice_end; bytestream2_skipu(&gb, plane_size); } plane_start[c->planes] = gb.buffer; if (bytestream2_get_bytes_left(&gb) < c->frame_info_size) { av_log(avctx, AV_LOG_ERROR, "Not enough data for frame information\n"); return AVERROR_INVALIDDATA; } c->frame_info = bytestream2_get_le32u(&gb); av_log(avctx, AV_LOG_DEBUG, "frame information flags %"PRIX32"\n", c->frame_info); c->frame_pred = (c->frame_info >> 8) & 3; if (c->frame_pred == PRED_GRADIENT) { avpriv_request_sample(avctx, "Frame with gradient prediction"); return AVERROR_PATCHWELCOME; } av_fast_malloc(&c->slice_bits, &c->slice_bits_size, max_slice_size + AV_INPUT_BUFFER_PADDING_SIZE); if (!c->slice_bits) { av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer\n"); return AVERROR(ENOMEM); } switch (c->avctx->pix_fmt) { case AV_PIX_FMT_RGB24: case AV_PIX_FMT_RGBA: for (i = 0; i < c->planes; i++) { ret = decode_plane(c, i, frame.f->data[0] + ff_ut_rgb_order[i], c->planes, frame.f->linesize[0], avctx->width, avctx->height, plane_start[i], c->frame_pred == PRED_LEFT); if (ret) return ret; if (c->frame_pred == PRED_MEDIAN) { if (!c->interlaced) { restore_median(frame.f->data[0] + ff_ut_rgb_order[i], c->planes, frame.f->linesize[0], avctx->width, avctx->height, c->slices, 0); } else { restore_median_il(frame.f->data[0] + ff_ut_rgb_order[i], c->planes, frame.f->linesize[0], avctx->width, avctx->height, c->slices, 0); } } } restore_rgb_planes(frame.f->data[0], c->planes, frame.f->linesize[0], avctx->width, avctx->height); break; case AV_PIX_FMT_YUV420P: for (i = 0; i < 3; i++) { ret = decode_plane(c, i, frame.f->data[i], 1, frame.f->linesize[i], avctx->width >> !!i, avctx->height >> !!i, plane_start[i], c->frame_pred == PRED_LEFT); if (ret) return ret; if (c->frame_pred == PRED_MEDIAN) { if (!c->interlaced) { restore_median(frame.f->data[i], 1, frame.f->linesize[i], avctx->width >> !!i, avctx->height >> !!i, c->slices, !i); } else { restore_median_il(frame.f->data[i], 1, frame.f->linesize[i], avctx->width >> !!i, avctx->height >> !!i, c->slices, !i); } } } break; case AV_PIX_FMT_YUV422P: for (i = 0; i < 3; i++) { ret = decode_plane(c, i, frame.f->data[i], 1, frame.f->linesize[i], avctx->width >> !!i, avctx->height, plane_start[i], c->frame_pred == PRED_LEFT); if (ret) return ret; if (c->frame_pred == PRED_MEDIAN) { if (!c->interlaced) { restore_median(frame.f->data[i], 1, frame.f->linesize[i], avctx->width >> !!i, avctx->height, c->slices, 0); } else { restore_median_il(frame.f->data[i], 1, frame.f->linesize[i], avctx->width >> !!i, avctx->height, c->slices, 0); } } } break; } frame.f->key_frame = 1; frame.f->pict_type = AV_PICTURE_TYPE_I; frame.f->interlaced_frame = !!c->interlaced; *got_frame = 1; /* always report that the buffer was completely consumed */ return buf_size; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
23,029
exiv2
6fa2e31206127bd8bcac0269311f3775a8d6ea21
void PngImage::readMetadata() { #ifdef DEBUG std::cerr << "Exiv2::PngImage::readMetadata: Reading PNG file " << io_->path() << std::endl; #endif if (io_->open() != 0) { throw Error(kerDataSourceOpenFailed, io_->path(), strError()); } IoCloser closer(*io_); if (!isPngType(*io_, true)) { throw Error(kerNotAnImage, "PNG"); } clearMetadata(); const long imgSize = (long) io_->size(); DataBuf cheaderBuf(8); // Chunk header: 4 bytes (data size) + 4 bytes (chunk type). while(!io_->eof()) { std::memset(cheaderBuf.pData_, 0x0, cheaderBuf.size_); readChunk(cheaderBuf, *io_); // Read chunk header. // Decode chunk data length. uint32_t chunkLength = Exiv2::getULong(cheaderBuf.pData_, Exiv2::bigEndian); long pos = io_->tell(); if (pos == -1 || chunkLength > uint32_t(0x7FFFFFFF) || static_cast<long>(chunkLength) > imgSize - pos) { throw Exiv2::Error(kerFailedToReadImageData); } std::string chunkType(reinterpret_cast<char *>(cheaderBuf.pData_) + 4, 4); #ifdef DEBUG std::cout << "Exiv2::PngImage::readMetadata: chunk type: " << chunkType << " length: " << chunkLength << std::endl; #endif /// \todo analyse remaining chunks of the standard // Perform a chunk triage for item that we need. if (chunkType == "IEND" || chunkType == "IHDR" || chunkType == "tEXt" || chunkType == "zTXt" || chunkType == "iTXt" || chunkType == "iCCP") { DataBuf chunkData(chunkLength); readChunk(chunkData, *io_); // Extract chunk data. if (chunkType == "IEND") { return; // Last chunk found: we stop parsing. } else if (chunkType == "IHDR" && chunkData.size_ >= 8) { PngChunk::decodeIHDRChunk(chunkData, &pixelWidth_, &pixelHeight_); } else if (chunkType == "tEXt") { PngChunk::decodeTXTChunk(this, chunkData, PngChunk::tEXt_Chunk); } else if (chunkType == "zTXt") { PngChunk::decodeTXTChunk(this, chunkData, PngChunk::zTXt_Chunk); } else if (chunkType == "iTXt") { PngChunk::decodeTXTChunk(this, chunkData, PngChunk::iTXt_Chunk); } else if (chunkType == "iCCP") { // The ICC profile name can vary from 1-79 characters. uint32_t iccOffset = 0; while (iccOffset < 80 && iccOffset < chunkLength) { if (chunkData.pData_[iccOffset++] == 0x00) { break; } } profileName_ = std::string(reinterpret_cast<char *>(chunkData.pData_), iccOffset-1); ++iccOffset; // +1 = 'compressed' flag zlibToDataBuf(chunkData.pData_ + iccOffset, chunkLength - iccOffset, iccProfile_); #ifdef DEBUG std::cout << "Exiv2::PngImage::readMetadata: profile name: " << profileName_ << std::endl; std::cout << "Exiv2::PngImage::readMetadata: iccProfile.size_ (uncompressed) : " << iccProfile_.size_ << std::endl; #endif } // Set chunkLength to 0 in case we have read a supported chunk type. Otherwise, we need to seek the // file to the next chunk position. chunkLength = 0; } // Move to the next chunk: chunk data size + 4 CRC bytes. #ifdef DEBUG std::cout << "Exiv2::PngImage::readMetadata: Seek to offset: " << chunkLength + 4 << std::endl; #endif io_->seek(chunkLength + 4 , BasicIo::cur); if (io_->error() || io_->eof()) { throw Error(kerFailedToReadImageData); } } } // PngImage::readMetadata
1
CVE-2019-13109
CWE-190
Integer Overflow or Wraparound
The product performs a calculation that can produce an integer overflow or wraparound when the logic assumes that the resulting value will always be larger than the original value. This occurs when an integer value is incremented to a value that is too large to store in the associated representation. When this occurs, the value may become a very small or negative number.
Phase: Requirements Ensure that all protocols are strictly defined, such that all out-of-bounds behavior can be identified simply, and require strict conformance to the protocol. Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. If possible, choose a language or compiler that performs automatic bounds checking. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Use libraries or frameworks that make it easier to handle numbers without unexpected consequences. Examples include safe integer handling packages such as SafeInt (C++) or IntegerLib (C or C++). [REF-106] Phase: Implementation Strategy: Input Validation Perform input validation on any numeric input by ensuring that it is within the expected range. Enforce that the input meets both the minimum and maximum requirements for the expected range. Use unsigned integers where possible. This makes it easier to perform validation for integer overflows. When signed integers are required, ensure that the range check includes minimum values as well as maximum values. Phase: Implementation Understand the programming language's underlying representation and how it interacts with numeric calculation (CWE-681). Pay close attention to byte size discrepancies, precision, signed/unsigned distinctions, truncation, conversion and casting between types, "not-a-number" calculations, and how the language handles numbers that are too large or too small for its underlying representation. [REF-7] Also be careful to account for 32-bit, 64-bit, and other potential differences that may affect the numeric representation. Phase: Architecture and Design For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server. Phase: Implementation Strategy: Compilation or Build Hardening Examine compiler warnings closely and eliminate problems with potential security implications, such as signed / unsigned mismatch in memory operations, or use of uninitialized variables. Even if the weakness is rarely exploitable, a single failure may lead to the compromise of the entire system.
5,564
ImageMagick
e92492afac23315358850e5e050144930049e9cb
static Image *ReadSGIImage(const ImageInfo *image_info,ExceptionInfo *exception) { Image *image; MagickBooleanType status; MagickSizeType number_pixels; MemoryInfo *pixel_info; register Quantum *q; register ssize_t i, x; register unsigned char *p; SGIInfo iris_info; size_t bytes_per_pixel, quantum; ssize_t count, y, z; unsigned char *pixels; /* Open image file. */ assert(image_info != (const ImageInfo *) NULL); assert(image_info->signature == MagickCoreSignature); if (image_info->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s", image_info->filename); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); image=AcquireImage(image_info,exception); status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception); if (status == MagickFalse) { image=DestroyImageList(image); return((Image *) NULL); } /* Read SGI raster header. */ (void) memset(&iris_info,0,sizeof(iris_info)); iris_info.magic=ReadBlobMSBShort(image); do { /* Verify SGI identifier. */ if (iris_info.magic != 0x01DA) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); iris_info.storage=(unsigned char) ReadBlobByte(image); switch (iris_info.storage) { case 0x00: image->compression=NoCompression; break; case 0x01: image->compression=RLECompression; break; default: ThrowReaderException(CorruptImageError,"ImproperImageHeader"); } iris_info.bytes_per_pixel=(unsigned char) ReadBlobByte(image); if ((iris_info.bytes_per_pixel == 0) || (iris_info.bytes_per_pixel > 2)) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); iris_info.dimension=ReadBlobMSBShort(image); if ((iris_info.dimension == 0) || (iris_info.dimension > 3)) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); iris_info.columns=ReadBlobMSBShort(image); iris_info.rows=ReadBlobMSBShort(image); iris_info.depth=ReadBlobMSBShort(image); if ((iris_info.depth == 0) || (iris_info.depth > 4)) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); iris_info.minimum_value=ReadBlobMSBLong(image); iris_info.maximum_value=ReadBlobMSBLong(image); iris_info.sans=ReadBlobMSBLong(image); count=ReadBlob(image,sizeof(iris_info.name),(unsigned char *) iris_info.name); if ((size_t) count != sizeof(iris_info.name)) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); iris_info.name[sizeof(iris_info.name)-1]='\0'; if (*iris_info.name != '\0') (void) SetImageProperty(image,"label",iris_info.name,exception); iris_info.pixel_format=ReadBlobMSBLong(image); if (iris_info.pixel_format != 0) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); count=ReadBlob(image,sizeof(iris_info.filler),iris_info.filler); if ((size_t) count != sizeof(iris_info.filler)) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); image->columns=iris_info.columns; image->rows=iris_info.rows; image->alpha_trait=iris_info.depth == 4 ? BlendPixelTrait : UndefinedPixelTrait; image->depth=(size_t) MagickMin(iris_info.depth,MAGICKCORE_QUANTUM_DEPTH); if (iris_info.pixel_format == 0) image->depth=(size_t) MagickMin((size_t) 8*iris_info.bytes_per_pixel, MAGICKCORE_QUANTUM_DEPTH); if (iris_info.depth < 3) { image->storage_class=PseudoClass; image->colors=(size_t) (iris_info.bytes_per_pixel > 1 ? 65535 : 256); } if ((image_info->ping != MagickFalse) && (image_info->number_scenes != 0)) if (image->scene >= (image_info->scene+image_info->number_scenes-1)) break; status=SetImageExtent(image,image->columns,image->rows,exception); if (status == MagickFalse) return(DestroyImageList(image)); (void) SetImageBackgroundColor(image,exception); /* Allocate SGI pixels. */ bytes_per_pixel=(size_t) iris_info.bytes_per_pixel; number_pixels=(MagickSizeType) iris_info.columns*iris_info.rows; if ((4*bytes_per_pixel*number_pixels) != ((MagickSizeType) (size_t) (4*bytes_per_pixel*number_pixels))) ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed"); pixel_info=AcquireVirtualMemory(iris_info.columns,iris_info.rows*4* bytes_per_pixel*sizeof(*pixels)); if (pixel_info == (MemoryInfo *) NULL) ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed"); pixels=(unsigned char *) GetVirtualMemoryBlob(pixel_info); (void) memset(pixels,0,iris_info.columns*iris_info.rows*4* bytes_per_pixel*sizeof(*pixels)); if ((int) iris_info.storage != 0x01) { unsigned char *scanline; /* Read standard image format. */ scanline=(unsigned char *) AcquireQuantumMemory(iris_info.columns, bytes_per_pixel*sizeof(*scanline)); if (scanline == (unsigned char *) NULL) { pixel_info=RelinquishVirtualMemory(pixel_info); ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed"); } for (z=0; z < (ssize_t) iris_info.depth; z++) { p=pixels+bytes_per_pixel*z; for (y=0; y < (ssize_t) iris_info.rows; y++) { count=ReadBlob(image,bytes_per_pixel*iris_info.columns,scanline); if (EOFBlob(image) != MagickFalse) break; if (bytes_per_pixel == 2) for (x=0; x < (ssize_t) iris_info.columns; x++) { *p=scanline[2*x]; *(p+1)=scanline[2*x+1]; p+=8; } else for (x=0; x < (ssize_t) iris_info.columns; x++) { *p=scanline[x]; p+=4; } } } scanline=(unsigned char *) RelinquishMagickMemory(scanline); } else { MemoryInfo *packet_info; size_t *runlength; ssize_t offset, *offsets; unsigned char *packets; unsigned int data_order; /* Read runlength-encoded image format. */ offsets=(ssize_t *) AcquireQuantumMemory((size_t) iris_info.rows, iris_info.depth*sizeof(*offsets)); runlength=(size_t *) AcquireQuantumMemory(iris_info.rows, iris_info.depth*sizeof(*runlength)); packet_info=AcquireVirtualMemory((size_t) iris_info.columns+10UL,4UL* sizeof(*packets)); if ((offsets == (ssize_t *) NULL) || (runlength == (size_t *) NULL) || (packet_info == (MemoryInfo *) NULL)) { offsets=(ssize_t *) RelinquishMagickMemory(offsets); runlength=(size_t *) RelinquishMagickMemory(runlength); if (packet_info != (MemoryInfo *) NULL) packet_info=RelinquishVirtualMemory(packet_info); pixel_info=RelinquishVirtualMemory(pixel_info); ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed"); } packets=(unsigned char *) GetVirtualMemoryBlob(packet_info); for (i=0; i < (ssize_t) (iris_info.rows*iris_info.depth); i++) offsets[i]=(ssize_t) ReadBlobMSBSignedLong(image); for (i=0; i < (ssize_t) (iris_info.rows*iris_info.depth); i++) { runlength[i]=ReadBlobMSBLong(image); if (runlength[i] > (4*(size_t) iris_info.columns+10)) { packet_info=RelinquishVirtualMemory(packet_info); runlength=(size_t *) RelinquishMagickMemory(runlength); offsets=(ssize_t *) RelinquishMagickMemory(offsets); pixel_info=RelinquishVirtualMemory(pixel_info); ThrowReaderException(CorruptImageError,"ImproperImageHeader"); } } /* Check data order. */ offset=0; data_order=0; for (y=0; ((y < (ssize_t) iris_info.rows) && (data_order == 0)); y++) for (z=0; ((z < (ssize_t) iris_info.depth) && (data_order == 0)); z++) { if (offsets[y+z*iris_info.rows] < offset) data_order=1; offset=offsets[y+z*iris_info.rows]; } offset=(ssize_t) TellBlob(image); if (data_order == 1) { for (z=0; z < (ssize_t) iris_info.depth; z++) { p=pixels; for (y=0; y < (ssize_t) iris_info.rows; y++) { if (offset != offsets[y+z*iris_info.rows]) { offset=offsets[y+z*iris_info.rows]; offset=(ssize_t) SeekBlob(image,(MagickOffsetType) offset, SEEK_SET); } count=ReadBlob(image,(size_t) runlength[y+z*iris_info.rows], packets); if (EOFBlob(image) != MagickFalse) break; offset+=(ssize_t) runlength[y+z*iris_info.rows]; status=SGIDecode(bytes_per_pixel,(ssize_t) (runlength[y+z*iris_info.rows]/bytes_per_pixel),packets, (ssize_t) iris_info.columns,p+bytes_per_pixel*z); if (status == MagickFalse) { packet_info=RelinquishVirtualMemory(packet_info); runlength=(size_t *) RelinquishMagickMemory(runlength); offsets=(ssize_t *) RelinquishMagickMemory(offsets); pixel_info=RelinquishVirtualMemory(pixel_info); ThrowReaderException(CorruptImageError, "ImproperImageHeader"); } p+=(iris_info.columns*4*bytes_per_pixel); } } } else { MagickOffsetType position; position=TellBlob(image); p=pixels; for (y=0; y < (ssize_t) iris_info.rows; y++) { for (z=0; z < (ssize_t) iris_info.depth; z++) { if (offset != offsets[y+z*iris_info.rows]) { offset=offsets[y+z*iris_info.rows]; offset=(ssize_t) SeekBlob(image,(MagickOffsetType) offset, SEEK_SET); } count=ReadBlob(image,(size_t) runlength[y+z*iris_info.rows], packets); if (EOFBlob(image) != MagickFalse) break; offset+=(ssize_t) runlength[y+z*iris_info.rows]; status=SGIDecode(bytes_per_pixel,(ssize_t) (runlength[y+z*iris_info.rows]/bytes_per_pixel),packets, (ssize_t) iris_info.columns,p+bytes_per_pixel*z); if (status == MagickFalse) { packet_info=RelinquishVirtualMemory(packet_info); runlength=(size_t *) RelinquishMagickMemory(runlength); offsets=(ssize_t *) RelinquishMagickMemory(offsets); pixel_info=RelinquishVirtualMemory(pixel_info); ThrowReaderException(CorruptImageError, "ImproperImageHeader"); } } p+=(iris_info.columns*4*bytes_per_pixel); } offset=(ssize_t) SeekBlob(image,position,SEEK_SET); } packet_info=RelinquishVirtualMemory(packet_info); runlength=(size_t *) RelinquishMagickMemory(runlength); offsets=(ssize_t *) RelinquishMagickMemory(offsets); } /* Convert SGI raster image to pixel packets. */ if (image->storage_class == DirectClass) { /* Convert SGI image to DirectClass pixel packets. */ if (bytes_per_pixel == 2) { for (y=0; y < (ssize_t) image->rows; y++) { p=pixels+(image->rows-y-1)*8*image->columns; q=QueueAuthenticPixels(image,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { SetPixelRed(image,ScaleShortToQuantum((unsigned short) ((*(p+0) << 8) | (*(p+1)))),q); SetPixelGreen(image,ScaleShortToQuantum((unsigned short) ((*(p+2) << 8) | (*(p+3)))),q); SetPixelBlue(image,ScaleShortToQuantum((unsigned short) ((*(p+4) << 8) | (*(p+5)))),q); SetPixelAlpha(image,OpaqueAlpha,q); if (image->alpha_trait != UndefinedPixelTrait) SetPixelAlpha(image,ScaleShortToQuantum((unsigned short) ((*(p+6) << 8) | (*(p+7)))),q); p+=8; q+=GetPixelChannels(image); } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,LoadImageTag,(MagickOffsetType) y,image->rows); if (status == MagickFalse) break; } } } else for (y=0; y < (ssize_t) image->rows; y++) { p=pixels+(image->rows-y-1)*4*image->columns; q=QueueAuthenticPixels(image,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { SetPixelRed(image,ScaleCharToQuantum(*p),q); SetPixelGreen(image,ScaleCharToQuantum(*(p+1)),q); SetPixelBlue(image,ScaleCharToQuantum(*(p+2)),q); SetPixelAlpha(image,OpaqueAlpha,q); if (image->alpha_trait != UndefinedPixelTrait) SetPixelAlpha(image,ScaleCharToQuantum(*(p+3)),q); p+=4; q+=GetPixelChannels(image); } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,LoadImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } } else { /* Create grayscale map. */ if (AcquireImageColormap(image,image->colors,exception) == MagickFalse) { pixel_info=RelinquishVirtualMemory(pixel_info); ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed"); } /* Convert SGI image to PseudoClass pixel packets. */ if (bytes_per_pixel == 2) { for (y=0; y < (ssize_t) image->rows; y++) { p=pixels+(image->rows-y-1)*8*image->columns; q=QueueAuthenticPixels(image,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { quantum=(*p << 8); quantum|=(*(p+1)); SetPixelIndex(image,(Quantum) quantum,q); p+=8; q+=GetPixelChannels(image); } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,LoadImageTag,(MagickOffsetType) y,image->rows); if (status == MagickFalse) break; } } } else for (y=0; y < (ssize_t) image->rows; y++) { p=pixels+(image->rows-y-1)*4*image->columns; q=QueueAuthenticPixels(image,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { SetPixelIndex(image,*p,q); p+=4; q+=GetPixelChannels(image); } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; if (image->previous == (Image *) NULL) { status=SetImageProgress(image,LoadImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } } (void) SyncImage(image,exception); } pixel_info=RelinquishVirtualMemory(pixel_info); if (EOFBlob(image) != MagickFalse) { ThrowFileException(exception,CorruptImageError,"UnexpectedEndOfFile", image->filename); break; } /* Proceed to next image. */ if (image_info->number_scenes != 0) if (image->scene >= (image_info->scene+image_info->number_scenes-1)) break; iris_info.magic=ReadBlobMSBShort(image); if (iris_info.magic == 0x01DA) { /* Allocate next image structure. */ AcquireNextImage(image_info,image,exception); if (GetNextImageInList(image) == (Image *) NULL) { image=DestroyImageList(image); return((Image *) NULL); } image=SyncNextImageInList(image); status=SetImageProgress(image,LoadImagesTag,TellBlob(image), GetBlobSize(image)); if (status == MagickFalse) break; } } while (iris_info.magic == 0x01DA); (void) CloseBlob(image); return(GetFirstImageInList(image)); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
23,696
libxkbcommon
842e4351c2c97de6051cab6ce36b4a81e709a0e1
lex(struct scanner *s, union lvalue *val) { skip_more_whitespace_and_comments: /* Skip spaces. */ while (is_space(peek(s))) if (next(s) == '\n') return TOK_END_OF_LINE; /* Skip comments. */ if (chr(s, '#')) { skip_to_eol(s); goto skip_more_whitespace_and_comments; } /* See if we're done. */ if (eof(s)) return TOK_END_OF_FILE; /* New token. */ s->token_line = s->line; s->token_column = s->column; s->buf_pos = 0; /* LHS Keysym. */ if (chr(s, '<')) { while (peek(s) != '>' && !eol(s) && !eof(s)) buf_append(s, next(s)); if (!chr(s, '>')) { scanner_err(s, "unterminated keysym literal"); return TOK_ERROR; } if (!buf_append(s, '\0')) { scanner_err(s, "keysym literal is too long"); return TOK_ERROR; } val->string.str = s->buf; val->string.len = s->buf_pos; return TOK_LHS_KEYSYM; } /* Colon. */ if (chr(s, ':')) return TOK_COLON; if (chr(s, '!')) return TOK_BANG; if (chr(s, '~')) return TOK_TILDE; /* String literal. */ if (chr(s, '\"')) { while (!eof(s) && !eol(s) && peek(s) != '\"') { if (chr(s, '\\')) { uint8_t o; if (chr(s, '\\')) { buf_append(s, '\\'); } else if (chr(s, '"')) { buf_append(s, '"'); } else if (chr(s, 'x') || chr(s, 'X')) { if (hex(s, &o)) buf_append(s, (char) o); else scanner_warn(s, "illegal hexadecimal escape sequence in string literal"); } else if (oct(s, &o)) { buf_append(s, (char) o); } else { scanner_warn(s, "unknown escape sequence (%c) in string literal", peek(s)); /* Ignore. */ } } else { buf_append(s, next(s)); } } if (!chr(s, '\"')) { scanner_err(s, "unterminated string literal"); return TOK_ERROR; } if (!buf_append(s, '\0')) { scanner_err(s, "string literal is too long"); return TOK_ERROR; } if (!is_valid_utf8(s->buf, s->buf_pos - 1)) { scanner_err(s, "string literal is not a valid UTF-8 string"); return TOK_ERROR; } val->string.str = s->buf; val->string.len = s->buf_pos; return TOK_STRING; } /* Identifier or include. */ if (is_alpha(peek(s)) || peek(s) == '_') { s->buf_pos = 0; while (is_alnum(peek(s)) || peek(s) == '_') buf_append(s, next(s)); if (!buf_append(s, '\0')) { scanner_err(s, "identifier is too long"); return TOK_ERROR; } if (streq(s->buf, "include")) return TOK_INCLUDE; val->string.str = s->buf; val->string.len = s->buf_pos; return TOK_IDENT; } /* Discard rest of line. */ skip_to_eol(s); scanner_err(s, "unrecognized token"); return TOK_ERROR; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
22,485
ast
c7de8b641266bac7c77942239ac659edfee9ecd2
Sfdouble_t sh_strnum(Shell_t *shp, const char *str, char **ptr, int mode) { Sfdouble_t d; char *last; if (*str == 0) { d = 0.0; last = (char *)str; } else { d = number(str, &last, shp->inarith ? 0 : 10, NULL); if (*last && !shp->inarith && sh_isstate(shp, SH_INIT)) { // This call is to handle "base#value" literals if we're importing untrusted env vars. d = number(str, &last, 0, NULL); } if (*last) { if (sh_isstate(shp, SH_INIT)) { // Initializing means importing untrusted env vars. Since the string does not appear // to be a recognized numeric literal give up. We can't safely call strval() since // that allows arbitrary expressions which would create a security vulnerability. d = 0.0; } else { if (*last != '.' || last[1] != '.') { d = strval(shp, str, &last, arith, mode); Varsubscript = true; } if (!ptr && *last && mode > 0) { errormsg(SH_DICT, ERROR_exit(1), e_lexbadchar, *last, str); } } } else if (d == 0.0 && *str == '-') { d = -0.0; } } if (ptr) *ptr = last; return d; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
15,086
grep
8fcf61523644df42e1905c81bed26838e0b04f91
grep (int fd, char const *file, struct stats *stats) { int nlines, i; int not_text; size_t residue, save; char oldc; char *beg; char *lim; char eol = eolbyte; if (!reset (fd, file, stats)) return 0; if (file && directories == RECURSE_DIRECTORIES && S_ISDIR (stats->stat.st_mode)) { /* Close fd now, so that we don't open a lot of file descriptors when we recurse deeply. */ if (close (fd) != 0) suppressible_error (file, errno); return grepdir (file, stats) - 2; } totalcc = 0; lastout = 0; totalnl = 0; outleft = max_count; after_last_match = 0; pending = 0; nlines = 0; residue = 0; save = 0; if (! fillbuf (save, stats)) { suppressible_error (filename, errno); return 0; } not_text = (((binary_files == BINARY_BINARY_FILES && !out_quiet) || binary_files == WITHOUT_MATCH_BINARY_FILES) && memchr (bufbeg, eol ? '\0' : '\200', buflim - bufbeg)); if (not_text && binary_files == WITHOUT_MATCH_BINARY_FILES) return 0; done_on_match += not_text; out_quiet += not_text; for (;;) { lastnl = bufbeg; if (lastout) lastout = bufbeg; beg = bufbeg + save; /* no more data to scan (eof) except for maybe a residue -> break */ if (beg == buflim) break; /* Determine new residue (the length of an incomplete line at the end of the buffer, 0 means there is no incomplete last line). */ oldc = beg[-1]; beg[-1] = eol; for (lim = buflim; lim[-1] != eol; lim--) continue; beg[-1] = oldc; if (lim == beg) lim = beg - residue; beg -= residue; residue = buflim - lim; if (beg < lim) { if (outleft) nlines += grepbuf (beg, lim); if (pending) prpending (lim); if ((!outleft && !pending) || (nlines && done_on_match && !out_invert)) goto finish_grep; } /* The last OUT_BEFORE lines at the end of the buffer will be needed as leading context if there is a matching line at the begin of the next data. Make beg point to their begin. */ i = 0; beg = lim; while (i < out_before && beg > bufbeg && beg != lastout) { ++i; do --beg; while (beg[-1] != eol); } /* detect if leading context is discontinuous from last printed line. */ if (beg != lastout) lastout = 0; /* Handle some details and read more data to scan. */ save = residue + lim - beg; if (out_byte) totalcc = add_count (totalcc, buflim - bufbeg - save); if (out_line) nlscan (beg); if (! fillbuf (save, stats)) { suppressible_error (filename, errno); goto finish_grep; } } if (residue) { *buflim++ = eol; if (outleft) nlines += grepbuf (bufbeg + save - residue, buflim); if (pending) prpending (buflim); } finish_grep: done_on_match -= not_text; out_quiet -= not_text; if ((not_text & ~out_quiet) && nlines != 0) printf (_("Binary file %s matches\n"), filename); return nlines; }
1
CVE-2012-5667
CWE-189
Numeric Errors
Weaknesses in this category are related to improper calculation or conversion of numbers.
Not Found in CWE Page
6,550
samba
1e7a32924b22d1f786b6f490ce8590656f578f91
static int check_mtab(const char *progname, const char *devname, const char *dir) { if (check_newline(progname, devname) == -1 || check_newline(progname, dir) == -1) return EX_USAGE; return 0; }
1
CVE-2011-2724
CWE-20
Improper Input Validation
The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly.
Phase: Architecture and Design Strategy: Attack Surface Reduction Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111] Phase: Architecture and Design Strategy: Libraries or Frameworks Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173). Phases: Architecture and Design; Implementation Strategy: Attack Surface Reduction Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls. Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. Effectiveness: High Phase: Architecture and Design For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server. Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings. Phase: Implementation When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined. Phase: Implementation Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow. Phase: Implementation Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained. Phase: Implementation Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control. Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content. Phase: Implementation When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so.
3,215
ImageMagick
f595a1985233c399a05c0c37cc41de16a90dd025
static MagickBooleanType RenderType(Image *image,const DrawInfo *draw_info, const PointInfo *offset,TypeMetric *metrics,ExceptionInfo *exception) { const TypeInfo *type_info; DrawInfo *annotate_info; MagickBooleanType status; type_info=(const TypeInfo *) NULL; if (draw_info->font != (char *) NULL) { if (*draw_info->font == '@') { status=RenderFreetype(image,draw_info,draw_info->encoding,offset, metrics,exception); return(status); } if (*draw_info->font == '-') return(RenderX11(image,draw_info,offset,metrics,exception)); if (*draw_info->font == '^') return(RenderPostscript(image,draw_info,offset,metrics,exception)); if (IsPathAccessible(draw_info->font) != MagickFalse) { status=RenderFreetype(image,draw_info,draw_info->encoding,offset, metrics,exception); return(status); } type_info=GetTypeInfo(draw_info->font,exception); if (type_info == (const TypeInfo *) NULL) (void) ThrowMagickException(exception,GetMagickModule(),TypeWarning, "UnableToReadFont","`%s'",draw_info->font); } if ((type_info == (const TypeInfo *) NULL) && (draw_info->family != (const char *) NULL)) { type_info=GetTypeInfoByFamily(draw_info->family,draw_info->style, draw_info->stretch,draw_info->weight,exception); if (type_info == (const TypeInfo *) NULL) { char **family; int number_families; register ssize_t i; /* Parse font family list. */ family=StringToArgv(draw_info->family,&number_families); for (i=1; i < (ssize_t) number_families; i++) { type_info=GetTypeInfoByFamily(family[i],draw_info->style, draw_info->stretch,draw_info->weight,exception); if (type_info != (const TypeInfo *) NULL) break; } for (i=0; i < (ssize_t) number_families; i++) family[i]=DestroyString(family[i]); family=(char **) RelinquishMagickMemory(family); if (type_info == (const TypeInfo *) NULL) (void) ThrowMagickException(exception,GetMagickModule(),TypeWarning, "UnableToReadFont","`%s'",draw_info->family); } } if (type_info == (const TypeInfo *) NULL) type_info=GetTypeInfoByFamily("Arial",draw_info->style, draw_info->stretch,draw_info->weight,exception); if (type_info == (const TypeInfo *) NULL) type_info=GetTypeInfoByFamily("Helvetica",draw_info->style, draw_info->stretch,draw_info->weight,exception); if (type_info == (const TypeInfo *) NULL) type_info=GetTypeInfoByFamily("Century Schoolbook",draw_info->style, draw_info->stretch,draw_info->weight,exception); if (type_info == (const TypeInfo *) NULL) type_info=GetTypeInfoByFamily("Sans",draw_info->style, draw_info->stretch,draw_info->weight,exception); if (type_info == (const TypeInfo *) NULL) type_info=GetTypeInfoByFamily((const char *) NULL,draw_info->style, draw_info->stretch,draw_info->weight,exception); if (type_info == (const TypeInfo *) NULL) type_info=GetTypeInfo("*",exception); if (type_info == (const TypeInfo *) NULL) { status=RenderFreetype(image,draw_info,draw_info->encoding,offset,metrics, exception); return(status); } annotate_info=CloneDrawInfo((ImageInfo *) NULL,draw_info); annotate_info->face=type_info->face; if (type_info->metrics != (char *) NULL) (void) CloneString(&annotate_info->metrics,type_info->metrics); if (type_info->glyphs != (char *) NULL) (void) CloneString(&annotate_info->font,type_info->glyphs); status=RenderFreetype(image,annotate_info,type_info->encoding,offset,metrics, exception); annotate_info=DestroyDrawInfo(annotate_info); return(status); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
18,247
FFmpeg
8001e9f7d17e90b4b0898ba64e3b8bbd716c513c
static uint8_t get_tlm(Jpeg2000DecoderContext *s, int n) { uint8_t Stlm, ST, SP, tile_tlm, i; bytestream2_get_byte(&s->g); /* Ztlm: skipped */ Stlm = bytestream2_get_byte(&s->g); // too complex ? ST = ((Stlm >> 4) & 0x01) + ((Stlm >> 4) & 0x02); ST = (Stlm >> 4) & 0x03; // TODO: Manage case of ST = 0b11 --> raise error SP = (Stlm >> 6) & 0x01; tile_tlm = (n - 4) / ((SP + 1) * 2 + ST); for (i = 0; i < tile_tlm; i++) { switch (ST) { case 0: break; case 1: bytestream2_get_byte(&s->g); break; case 2: bytestream2_get_be16(&s->g); break; case 3: bytestream2_get_be32(&s->g); break; } if (SP == 0) { bytestream2_get_be16(&s->g); } else { bytestream2_get_be32(&s->g); } } return 0; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
16,293
linux-2.6
16175a796d061833aacfbd9672235f2d2725df65
static void update_tpr_threshold(struct kvm_vcpu *vcpu) { int max_irr, tpr; if (!vm_need_tpr_shadow(vcpu->kvm)) return; if (!kvm_lapic_enabled(vcpu) || ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) { vmcs_write32(TPR_THRESHOLD, 0); return; } tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4; vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
12,804
linux
401e7e88d4ef80188ffa07095ac00456f901b8c4
int ipmi_si_port_setup(struct si_sm_io *io) { unsigned int addr = io->addr_data; int idx; if (!addr) return -ENODEV; io->io_cleanup = port_cleanup; /* * Figure out the actual inb/inw/inl/etc routine to use based * upon the register size. */ switch (io->regsize) { case 1: io->inputb = port_inb; io->outputb = port_outb; break; case 2: io->inputb = port_inw; io->outputb = port_outw; break; case 4: io->inputb = port_inl; io->outputb = port_outl; break; default: dev_warn(io->dev, "Invalid register size: %d\n", io->regsize); return -EINVAL; } /* * Some BIOSes reserve disjoint I/O regions in their ACPI * tables. This causes problems when trying to register the * entire I/O region. Therefore we must register each I/O * port separately. */ for (idx = 0; idx < io->io_size; idx++) { if (request_region(addr + idx * io->regspacing, io->regsize, DEVICE_NAME) == NULL) { /* Undo allocations */ while (idx--) release_region(addr + idx * io->regspacing, io->regsize); return -EIO; } } return 0; }
1
CVE-2019-11811
CWE-416
Use After Free
The product reuses or references memory after it has been freed. At some point afterward, the memory may be allocated again and saved in another pointer, while the original pointer references a location somewhere within the new allocation. Any operations using the original pointer are no longer valid because the memory "belongs" to the code that operates on the new pointer.
Phase: Architecture and Design Strategy: Language Selection Choose a language that provides automatic memory management. Phase: Implementation Strategy: Attack Surface Reduction When freeing pointers, be sure to set them to NULL once they are freed. However, the utilization of multiple or complex data structures may lower the usefulness of this strategy. Effectiveness: Defense in Depth Note: If a bug causes an attempted access of this pointer, then a NULL dereference could still lead to a crash or other unexpected behavior, but it will reduce or eliminate the risk of code execution.
6,475
tcpdump
29e5470e6ab84badbc31f4532bb7554a796d9d52
rfc1048_print(netdissect_options *ndo, register const u_char *bp) { register uint16_t tag; register u_int len; register const char *cp; register char c; int first, idx; uint32_t ul; uint16_t us; uint8_t uc, subopt, suboptlen; ND_PRINT((ndo, "\n\t Vendor-rfc1048 Extensions")); /* Step over magic cookie */ ND_PRINT((ndo, "\n\t Magic Cookie 0x%08x", EXTRACT_32BITS(bp))); bp += sizeof(int32_t); /* Loop while we there is a tag left in the buffer */ while (ND_TTEST2(*bp, 1)) { tag = *bp++; if (tag == TAG_PAD && ndo->ndo_vflag < 3) continue; if (tag == TAG_END && ndo->ndo_vflag < 3) return; if (tag == TAG_EXTENDED_OPTION) { ND_TCHECK2(*(bp + 1), 2); tag = EXTRACT_16BITS(bp + 1); /* XXX we don't know yet if the IANA will * preclude overlap of 1-byte and 2-byte spaces. * If not, we need to offset tag after this step. */ cp = tok2str(xtag2str, "?xT%u", tag); } else cp = tok2str(tag2str, "?T%u", tag); c = *cp++; if (tag == TAG_PAD || tag == TAG_END) len = 0; else { /* Get the length; check for truncation */ ND_TCHECK2(*bp, 1); len = *bp++; } ND_PRINT((ndo, "\n\t %s Option %u, length %u%s", cp, tag, len, len > 0 ? ": " : "")); if (tag == TAG_PAD && ndo->ndo_vflag > 2) { u_int ntag = 1; while (ND_TTEST2(*bp, 1) && *bp == TAG_PAD) { bp++; ntag++; } if (ntag > 1) ND_PRINT((ndo, ", occurs %u", ntag)); } if (!ND_TTEST2(*bp, len)) { ND_PRINT((ndo, "[|rfc1048 %u]", len)); return; } if (tag == TAG_DHCP_MESSAGE && len == 1) { uc = *bp++; ND_PRINT((ndo, "%s", tok2str(dhcp_msg_values, "Unknown (%u)", uc))); continue; } if (tag == TAG_PARM_REQUEST) { idx = 0; while (len-- > 0) { uc = *bp++; cp = tok2str(tag2str, "?Option %u", uc); if (idx % 4 == 0) ND_PRINT((ndo, "\n\t ")); else ND_PRINT((ndo, ", ")); ND_PRINT((ndo, "%s", cp + 1)); idx++; } continue; } if (tag == TAG_EXTENDED_REQUEST) { first = 1; while (len > 1) { len -= 2; us = EXTRACT_16BITS(bp); bp += 2; cp = tok2str(xtag2str, "?xT%u", us); if (!first) ND_PRINT((ndo, "+")); ND_PRINT((ndo, "%s", cp + 1)); first = 0; } continue; } /* Print data */ if (c == '?') { /* Base default formats for unknown tags on data size */ if (len & 1) c = 'b'; else if (len & 2) c = 's'; else c = 'l'; } first = 1; switch (c) { case 'a': /* ASCII strings */ ND_PRINT((ndo, "\"")); if (fn_printn(ndo, bp, len, ndo->ndo_snapend)) { ND_PRINT((ndo, "\"")); goto trunc; } ND_PRINT((ndo, "\"")); bp += len; len = 0; break; case 'i': case 'l': case 'L': /* ip addresses/32-bit words */ while (len >= sizeof(ul)) { if (!first) ND_PRINT((ndo, ",")); ul = EXTRACT_32BITS(bp); if (c == 'i') { ul = htonl(ul); ND_PRINT((ndo, "%s", ipaddr_string(ndo, &ul))); } else if (c == 'L') ND_PRINT((ndo, "%d", ul)); else ND_PRINT((ndo, "%u", ul)); bp += sizeof(ul); len -= sizeof(ul); first = 0; } break; case 'p': /* IP address pairs */ while (len >= 2*sizeof(ul)) { if (!first) ND_PRINT((ndo, ",")); memcpy((char *)&ul, (const char *)bp, sizeof(ul)); ND_PRINT((ndo, "(%s:", ipaddr_string(ndo, &ul))); bp += sizeof(ul); memcpy((char *)&ul, (const char *)bp, sizeof(ul)); ND_PRINT((ndo, "%s)", ipaddr_string(ndo, &ul))); bp += sizeof(ul); len -= 2*sizeof(ul); first = 0; } break; case 's': /* shorts */ while (len >= sizeof(us)) { if (!first) ND_PRINT((ndo, ",")); us = EXTRACT_16BITS(bp); ND_PRINT((ndo, "%u", us)); bp += sizeof(us); len -= sizeof(us); first = 0; } break; case 'B': /* boolean */ while (len > 0) { if (!first) ND_PRINT((ndo, ",")); switch (*bp) { case 0: ND_PRINT((ndo, "N")); break; case 1: ND_PRINT((ndo, "Y")); break; default: ND_PRINT((ndo, "%u?", *bp)); break; } ++bp; --len; first = 0; } break; case 'b': case 'x': default: /* Bytes */ while (len > 0) { if (!first) ND_PRINT((ndo, c == 'x' ? ":" : ".")); if (c == 'x') ND_PRINT((ndo, "%02x", *bp)); else ND_PRINT((ndo, "%u", *bp)); ++bp; --len; first = 0; } break; case '$': /* Guys we can't handle with one of the usual cases */ switch (tag) { case TAG_NETBIOS_NODE: /* this option should be at least 1 byte long */ if (len < 1) { ND_PRINT((ndo, "ERROR: length < 1 bytes")); break; } tag = *bp++; --len; ND_PRINT((ndo, "%s", tok2str(nbo2str, NULL, tag))); break; case TAG_OPT_OVERLOAD: /* this option should be at least 1 byte long */ if (len < 1) { ND_PRINT((ndo, "ERROR: length < 1 bytes")); break; } tag = *bp++; --len; ND_PRINT((ndo, "%s", tok2str(oo2str, NULL, tag))); break; case TAG_CLIENT_FQDN: /* this option should be at least 3 bytes long */ if (len < 3) { ND_PRINT((ndo, "ERROR: length < 3 bytes")); bp += len; len = 0; break; } if (*bp) ND_PRINT((ndo, "[%s] ", client_fqdn_flags(*bp))); bp++; if (*bp || *(bp+1)) ND_PRINT((ndo, "%u/%u ", *bp, *(bp+1))); bp += 2; ND_PRINT((ndo, "\"")); if (fn_printn(ndo, bp, len - 3, ndo->ndo_snapend)) { ND_PRINT((ndo, "\"")); goto trunc; } ND_PRINT((ndo, "\"")); bp += len - 3; len = 0; break; case TAG_CLIENT_ID: { int type; /* this option should be at least 1 byte long */ if (len < 1) { ND_PRINT((ndo, "ERROR: length < 1 bytes")); break; } type = *bp++; len--; if (type == 0) { ND_PRINT((ndo, "\"")); if (fn_printn(ndo, bp, len, ndo->ndo_snapend)) { ND_PRINT((ndo, "\"")); goto trunc; } ND_PRINT((ndo, "\"")); bp += len; len = 0; break; } else { ND_PRINT((ndo, "%s ", tok2str(arp2str, "hardware-type %u,", type))); while (len > 0) { if (!first) ND_PRINT((ndo, ":")); ND_PRINT((ndo, "%02x", *bp)); ++bp; --len; first = 0; } } break; } case TAG_AGENT_CIRCUIT: while (len >= 2) { subopt = *bp++; suboptlen = *bp++; len -= 2; if (suboptlen > len) { ND_PRINT((ndo, "\n\t %s SubOption %u, length %u: length goes past end of option", tok2str(agent_suboption_values, "Unknown", subopt), subopt, suboptlen)); bp += len; len = 0; break; } ND_PRINT((ndo, "\n\t %s SubOption %u, length %u: ", tok2str(agent_suboption_values, "Unknown", subopt), subopt, suboptlen)); switch (subopt) { case AGENT_SUBOPTION_CIRCUIT_ID: /* fall through */ case AGENT_SUBOPTION_REMOTE_ID: case AGENT_SUBOPTION_SUBSCRIBER_ID: if (fn_printn(ndo, bp, suboptlen, ndo->ndo_snapend)) goto trunc; break; default: print_unknown_data(ndo, bp, "\n\t\t", suboptlen); } len -= suboptlen; bp += suboptlen; } break; case TAG_CLASSLESS_STATIC_RT: case TAG_CLASSLESS_STA_RT_MS: { u_int mask_width, significant_octets, i; /* this option should be at least 5 bytes long */ if (len < 5) { ND_PRINT((ndo, "ERROR: length < 5 bytes")); bp += len; len = 0; break; } while (len > 0) { if (!first) ND_PRINT((ndo, ",")); mask_width = *bp++; len--; /* mask_width <= 32 */ if (mask_width > 32) { ND_PRINT((ndo, "[ERROR: Mask width (%d) > 32]", mask_width)); bp += len; len = 0; break; } significant_octets = (mask_width + 7) / 8; /* significant octets + router(4) */ if (len < significant_octets + 4) { ND_PRINT((ndo, "[ERROR: Remaining length (%u) < %u bytes]", len, significant_octets + 4)); bp += len; len = 0; break; } ND_PRINT((ndo, "(")); if (mask_width == 0) ND_PRINT((ndo, "default")); else { for (i = 0; i < significant_octets ; i++) { if (i > 0) ND_PRINT((ndo, ".")); ND_PRINT((ndo, "%d", *bp++)); } for (i = significant_octets ; i < 4 ; i++) ND_PRINT((ndo, ".0")); ND_PRINT((ndo, "/%d", mask_width)); } memcpy((char *)&ul, (const char *)bp, sizeof(ul)); ND_PRINT((ndo, ":%s)", ipaddr_string(ndo, &ul))); bp += sizeof(ul); len -= (significant_octets + 4); first = 0; } break; } case TAG_USER_CLASS: { u_int suboptnumber = 1; first = 1; if (len < 2) { ND_PRINT((ndo, "ERROR: length < 2 bytes")); bp += len; len = 0; break; } while (len > 0) { suboptlen = *bp++; len--; ND_PRINT((ndo, "\n\t ")); ND_PRINT((ndo, "instance#%u: ", suboptnumber)); if (suboptlen == 0) { ND_PRINT((ndo, "ERROR: suboption length must be non-zero")); bp += len; len = 0; break; } if (len < suboptlen) { ND_PRINT((ndo, "ERROR: invalid option")); bp += len; len = 0; break; } ND_PRINT((ndo, "\"")); if (fn_printn(ndo, bp, suboptlen, ndo->ndo_snapend)) { ND_PRINT((ndo, "\"")); goto trunc; } ND_PRINT((ndo, "\"")); ND_PRINT((ndo, ", length %d", suboptlen)); suboptnumber++; len -= suboptlen; bp += suboptlen; } break; } default: ND_PRINT((ndo, "[unknown special tag %u, size %u]", tag, len)); bp += len; len = 0; break; } break; } /* Data left over? */ if (len) { ND_PRINT((ndo, "\n\t trailing data length %u", len)); bp += len; } } return; trunc: ND_PRINT((ndo, "|[rfc1048]")); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
18,573
linux
8f44c9a41386729fea410e688959ddaa9d51be7c
brcmf_cfg80211_connect(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_connect_params *sme) { struct brcmf_cfg80211_info *cfg = wiphy_to_cfg(wiphy); struct brcmf_if *ifp = netdev_priv(ndev); struct brcmf_cfg80211_profile *profile = &ifp->vif->profile; struct ieee80211_channel *chan = sme->channel; struct brcmf_join_params join_params; size_t join_params_size; const struct brcmf_tlv *rsn_ie; const struct brcmf_vs_tlv *wpa_ie; const void *ie; u32 ie_len; struct brcmf_ext_join_params_le *ext_join_params; u16 chanspec; s32 err = 0; u32 ssid_len; brcmf_dbg(TRACE, "Enter\n"); if (!check_vif_up(ifp->vif)) return -EIO; if (!sme->ssid) { brcmf_err("Invalid ssid\n"); return -EOPNOTSUPP; } if (ifp->vif == cfg->p2p.bss_idx[P2PAPI_BSSCFG_PRIMARY].vif) { /* A normal (non P2P) connection request setup. */ ie = NULL; ie_len = 0; /* find the WPA_IE */ wpa_ie = brcmf_find_wpaie((u8 *)sme->ie, sme->ie_len); if (wpa_ie) { ie = wpa_ie; ie_len = wpa_ie->len + TLV_HDR_LEN; } else { /* find the RSN_IE */ rsn_ie = brcmf_parse_tlvs((const u8 *)sme->ie, sme->ie_len, WLAN_EID_RSN); if (rsn_ie) { ie = rsn_ie; ie_len = rsn_ie->len + TLV_HDR_LEN; } } brcmf_fil_iovar_data_set(ifp, "wpaie", ie, ie_len); } err = brcmf_vif_set_mgmt_ie(ifp->vif, BRCMF_VNDR_IE_ASSOCREQ_FLAG, sme->ie, sme->ie_len); if (err) brcmf_err("Set Assoc REQ IE Failed\n"); else brcmf_dbg(TRACE, "Applied Vndr IEs for Assoc request\n"); set_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state); if (chan) { cfg->channel = ieee80211_frequency_to_channel(chan->center_freq); chanspec = channel_to_chanspec(&cfg->d11inf, chan); brcmf_dbg(CONN, "channel=%d, center_req=%d, chanspec=0x%04x\n", cfg->channel, chan->center_freq, chanspec); } else { cfg->channel = 0; chanspec = 0; } brcmf_dbg(INFO, "ie (%p), ie_len (%zd)\n", sme->ie, sme->ie_len); err = brcmf_set_wpa_version(ndev, sme); if (err) { brcmf_err("wl_set_wpa_version failed (%d)\n", err); goto done; } sme->auth_type = brcmf_war_auth_type(ifp, sme->auth_type); err = brcmf_set_auth_type(ndev, sme); if (err) { brcmf_err("wl_set_auth_type failed (%d)\n", err); goto done; } err = brcmf_set_wsec_mode(ndev, sme); if (err) { brcmf_err("wl_set_set_cipher failed (%d)\n", err); goto done; } err = brcmf_set_key_mgmt(ndev, sme); if (err) { brcmf_err("wl_set_key_mgmt failed (%d)\n", err); goto done; } err = brcmf_set_sharedkey(ndev, sme); if (err) { brcmf_err("brcmf_set_sharedkey failed (%d)\n", err); goto done; } if (sme->crypto.psk) { if (WARN_ON(profile->use_fwsup != BRCMF_PROFILE_FWSUP_NONE)) { err = -EINVAL; goto done; } brcmf_dbg(INFO, "using PSK offload\n"); profile->use_fwsup = BRCMF_PROFILE_FWSUP_PSK; } if (profile->use_fwsup != BRCMF_PROFILE_FWSUP_NONE) { /* enable firmware supplicant for this interface */ err = brcmf_fil_iovar_int_set(ifp, "sup_wpa", 1); if (err < 0) { brcmf_err("failed to enable fw supplicant\n"); goto done; } } if (profile->use_fwsup == BRCMF_PROFILE_FWSUP_PSK) { err = brcmf_set_pmk(ifp, sme->crypto.psk, BRCMF_WSEC_MAX_PSK_LEN); if (err) goto done; } /* Join with specific BSSID and cached SSID * If SSID is zero join based on BSSID only */ join_params_size = offsetof(struct brcmf_ext_join_params_le, assoc_le) + offsetof(struct brcmf_assoc_params_le, chanspec_list); if (cfg->channel) join_params_size += sizeof(u16); ext_join_params = kzalloc(join_params_size, GFP_KERNEL); if (ext_join_params == NULL) { err = -ENOMEM; goto done; } ssid_len = min_t(u32, sme->ssid_len, IEEE80211_MAX_SSID_LEN); ext_join_params->ssid_le.SSID_len = cpu_to_le32(ssid_len); memcpy(&ext_join_params->ssid_le.SSID, sme->ssid, ssid_len); if (ssid_len < IEEE80211_MAX_SSID_LEN) brcmf_dbg(CONN, "SSID \"%s\", len (%d)\n", ext_join_params->ssid_le.SSID, ssid_len); /* Set up join scan parameters */ ext_join_params->scan_le.scan_type = -1; ext_join_params->scan_le.home_time = cpu_to_le32(-1); if (sme->bssid) memcpy(&ext_join_params->assoc_le.bssid, sme->bssid, ETH_ALEN); else eth_broadcast_addr(ext_join_params->assoc_le.bssid); if (cfg->channel) { ext_join_params->assoc_le.chanspec_num = cpu_to_le32(1); ext_join_params->assoc_le.chanspec_list[0] = cpu_to_le16(chanspec); /* Increase dwell time to receive probe response or detect * beacon from target AP at a noisy air only during connect * command. */ ext_join_params->scan_le.active_time = cpu_to_le32(BRCMF_SCAN_JOIN_ACTIVE_DWELL_TIME_MS); ext_join_params->scan_le.passive_time = cpu_to_le32(BRCMF_SCAN_JOIN_PASSIVE_DWELL_TIME_MS); /* To sync with presence period of VSDB GO send probe request * more frequently. Probe request will be stopped when it gets * probe response from target AP/GO. */ ext_join_params->scan_le.nprobes = cpu_to_le32(BRCMF_SCAN_JOIN_ACTIVE_DWELL_TIME_MS / BRCMF_SCAN_JOIN_PROBE_INTERVAL_MS); } else { ext_join_params->scan_le.active_time = cpu_to_le32(-1); ext_join_params->scan_le.passive_time = cpu_to_le32(-1); ext_join_params->scan_le.nprobes = cpu_to_le32(-1); } brcmf_set_join_pref(ifp, &sme->bss_select); err = brcmf_fil_bsscfg_data_set(ifp, "join", ext_join_params, join_params_size); kfree(ext_join_params); if (!err) /* This is it. join command worked, we are done */ goto done; /* join command failed, fallback to set ssid */ memset(&join_params, 0, sizeof(join_params)); join_params_size = sizeof(join_params.ssid_le); memcpy(&join_params.ssid_le.SSID, sme->ssid, ssid_len); join_params.ssid_le.SSID_len = cpu_to_le32(ssid_len); if (sme->bssid) memcpy(join_params.params_le.bssid, sme->bssid, ETH_ALEN); else eth_broadcast_addr(join_params.params_le.bssid); if (cfg->channel) { join_params.params_le.chanspec_list[0] = cpu_to_le16(chanspec); join_params.params_le.chanspec_num = cpu_to_le32(1); join_params_size += sizeof(join_params.params_le); } err = brcmf_fil_cmd_data_set(ifp, BRCMF_C_SET_SSID, &join_params, join_params_size); if (err) brcmf_err("BRCMF_C_SET_SSID failed (%d)\n", err); done: if (err) clear_bit(BRCMF_VIF_STATUS_CONNECTING, &ifp->vif->sme_state); brcmf_dbg(TRACE, "Exit\n"); return err; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
13,296
file
ce90e05774dd77d86cfc8dfa6da57b32816841c4
donote(struct magic_set *ms, void *vbuf, size_t offset, size_t size, int clazz, int swap, size_t align, int *flags) { Elf32_Nhdr nh32; Elf64_Nhdr nh64; size_t noff, doff; #ifdef ELFCORE int os_style = -1; #endif uint32_t namesz, descsz; unsigned char *nbuf = CAST(unsigned char *, vbuf); char sbuf[512]; if (xnh_sizeof + offset > size) { /* * We're out of note headers. */ return xnh_sizeof + offset; } (void)memcpy(xnh_addr, &nbuf[offset], xnh_sizeof); offset += xnh_sizeof; namesz = xnh_namesz; descsz = xnh_descsz; if ((namesz == 0) && (descsz == 0)) { /* * We're out of note headers. */ return (offset >= size) ? offset : size; } if (namesz & 0x80000000) { (void)file_printf(ms, ", bad note name size 0x%lx", (unsigned long)namesz); return 0; } if (descsz & 0x80000000) { (void)file_printf(ms, ", bad note description size 0x%lx", (unsigned long)descsz); return 0; } noff = offset; doff = ELF_ALIGN(offset + namesz); if (offset + namesz > size) { /* * We're past the end of the buffer. */ return doff; } offset = ELF_ALIGN(doff + descsz); if (doff + descsz > size) { /* * We're past the end of the buffer. */ return (offset >= size) ? offset : size; } if ((*flags & (FLAGS_DID_NOTE|FLAGS_DID_BUILD_ID)) == (FLAGS_DID_NOTE|FLAGS_DID_BUILD_ID)) goto core; if (namesz == 5 && strcmp((char *)&nbuf[noff], "SuSE") == 0 && xnh_type == NT_GNU_VERSION && descsz == 2) { file_printf(ms, ", for SuSE %d.%d", nbuf[doff], nbuf[doff + 1]); } if (namesz == 4 && strcmp((char *)&nbuf[noff], "GNU") == 0 && xnh_type == NT_GNU_VERSION && descsz == 16) { uint32_t desc[4]; (void)memcpy(desc, &nbuf[doff], sizeof(desc)); if (file_printf(ms, ", for GNU/") == -1) return size; switch (elf_getu32(swap, desc[0])) { case GNU_OS_LINUX: if (file_printf(ms, "Linux") == -1) return size; break; case GNU_OS_HURD: if (file_printf(ms, "Hurd") == -1) return size; break; case GNU_OS_SOLARIS: if (file_printf(ms, "Solaris") == -1) return size; break; case GNU_OS_KFREEBSD: if (file_printf(ms, "kFreeBSD") == -1) return size; break; case GNU_OS_KNETBSD: if (file_printf(ms, "kNetBSD") == -1) return size; break; default: if (file_printf(ms, "<unknown>") == -1) return size; } if (file_printf(ms, " %d.%d.%d", elf_getu32(swap, desc[1]), elf_getu32(swap, desc[2]), elf_getu32(swap, desc[3])) == -1) return size; *flags |= FLAGS_DID_NOTE; return size; } if (namesz == 4 && strcmp((char *)&nbuf[noff], "GNU") == 0 && xnh_type == NT_GNU_BUILD_ID && (descsz == 16 || descsz == 20)) { uint8_t desc[20]; uint32_t i; if (file_printf(ms, ", BuildID[%s]=", descsz == 16 ? "md5/uuid" : "sha1") == -1) return size; (void)memcpy(desc, &nbuf[doff], descsz); for (i = 0; i < descsz; i++) if (file_printf(ms, "%02x", desc[i]) == -1) return size; *flags |= FLAGS_DID_BUILD_ID; } if (namesz == 4 && strcmp((char *)&nbuf[noff], "PaX") == 0 && xnh_type == NT_NETBSD_PAX && descsz == 4) { static const char *pax[] = { "+mprotect", "-mprotect", "+segvguard", "-segvguard", "+ASLR", "-ASLR", }; uint32_t desc; size_t i; int did = 0; (void)memcpy(&desc, &nbuf[doff], sizeof(desc)); desc = elf_getu32(swap, desc); if (desc && file_printf(ms, ", PaX: ") == -1) return size; for (i = 0; i < __arraycount(pax); i++) { if (((1 << i) & desc) == 0) continue; if (file_printf(ms, "%s%s", did++ ? "," : "", pax[i]) == -1) return size; } } if (namesz == 7 && strcmp((char *)&nbuf[noff], "NetBSD") == 0) { switch (xnh_type) { case NT_NETBSD_VERSION: if (descsz == 4) { do_note_netbsd_version(ms, swap, &nbuf[doff]); *flags |= FLAGS_DID_NOTE; return size; } break; case NT_NETBSD_MARCH: if (file_printf(ms, ", compiled for: %.*s", (int)descsz, (const char *)&nbuf[doff]) == -1) return size; break; case NT_NETBSD_CMODEL: if (file_printf(ms, ", compiler model: %.*s", (int)descsz, (const char *)&nbuf[doff]) == -1) return size; break; default: if (file_printf(ms, ", note=%u", xnh_type) == -1) return size; break; } return size; } if (namesz == 8 && strcmp((char *)&nbuf[noff], "FreeBSD") == 0) { if (xnh_type == NT_FREEBSD_VERSION && descsz == 4) { do_note_freebsd_version(ms, swap, &nbuf[doff]); *flags |= FLAGS_DID_NOTE; return size; } } if (namesz == 8 && strcmp((char *)&nbuf[noff], "OpenBSD") == 0 && xnh_type == NT_OPENBSD_VERSION && descsz == 4) { if (file_printf(ms, ", for OpenBSD") == -1) return size; /* Content of note is always 0 */ *flags |= FLAGS_DID_NOTE; return size; } if (namesz == 10 && strcmp((char *)&nbuf[noff], "DragonFly") == 0 && xnh_type == NT_DRAGONFLY_VERSION && descsz == 4) { uint32_t desc; if (file_printf(ms, ", for DragonFly") == -1) return size; (void)memcpy(&desc, &nbuf[doff], sizeof(desc)); desc = elf_getu32(swap, desc); if (file_printf(ms, " %d.%d.%d", desc / 100000, desc / 10000 % 10, desc % 10000) == -1) return size; *flags |= FLAGS_DID_NOTE; return size; } core: /* * Sigh. The 2.0.36 kernel in Debian 2.1, at * least, doesn't correctly implement name * sections, in core dumps, as specified by * the "Program Linking" section of "UNIX(R) System * V Release 4 Programmer's Guide: ANSI C and * Programming Support Tools", because my copy * clearly says "The first 'namesz' bytes in 'name' * contain a *null-terminated* [emphasis mine] * character representation of the entry's owner * or originator", but the 2.0.36 kernel code * doesn't include the terminating null in the * name.... */ if ((namesz == 4 && strncmp((char *)&nbuf[noff], "CORE", 4) == 0) || (namesz == 5 && strcmp((char *)&nbuf[noff], "CORE") == 0)) { os_style = OS_STYLE_SVR4; } if ((namesz == 8 && strcmp((char *)&nbuf[noff], "FreeBSD") == 0)) { os_style = OS_STYLE_FREEBSD; } if ((namesz >= 11 && strncmp((char *)&nbuf[noff], "NetBSD-CORE", 11) == 0)) { os_style = OS_STYLE_NETBSD; } #ifdef ELFCORE if ((*flags & FLAGS_DID_CORE) != 0) return size; if (os_style != -1 && (*flags & FLAGS_DID_CORE_STYLE) == 0) { if (file_printf(ms, ", %s-style", os_style_names[os_style]) == -1) return size; *flags |= FLAGS_DID_CORE_STYLE; } switch (os_style) { case OS_STYLE_NETBSD: if (xnh_type == NT_NETBSD_CORE_PROCINFO) { uint32_t signo; /* * Extract the program name. It is at * offset 0x7c, and is up to 32-bytes, * including the terminating NUL. */ if (file_printf(ms, ", from '%.31s'", file_printable(sbuf, sizeof(sbuf), (const char *)&nbuf[doff + 0x7c])) == -1) return size; /* * Extract the signal number. It is at * offset 0x08. */ (void)memcpy(&signo, &nbuf[doff + 0x08], sizeof(signo)); if (file_printf(ms, " (signal %u)", elf_getu32(swap, signo)) == -1) return size; *flags |= FLAGS_DID_CORE; return size; } break; default: if (xnh_type == NT_PRPSINFO && *flags & FLAGS_IS_CORE) { size_t i, j; unsigned char c; /* * Extract the program name. We assume * it to be 16 characters (that's what it * is in SunOS 5.x and Linux). * * Unfortunately, it's at a different offset * in various OSes, so try multiple offsets. * If the characters aren't all printable, * reject it. */ for (i = 0; i < NOFFSETS; i++) { unsigned char *cname, *cp; size_t reloffset = prpsoffsets(i); size_t noffset = doff + reloffset; size_t k; for (j = 0; j < 16; j++, noffset++, reloffset++) { /* * Make sure we're not past * the end of the buffer; if * we are, just give up. */ if (noffset >= size) goto tryanother; /* * Make sure we're not past * the end of the contents; * if we are, this obviously * isn't the right offset. */ if (reloffset >= descsz) goto tryanother; c = nbuf[noffset]; if (c == '\0') { /* * A '\0' at the * beginning is * obviously wrong. * Any other '\0' * means we're done. */ if (j == 0) goto tryanother; else break; } else { /* * A nonprintable * character is also * wrong. */ if (!isprint(c) || isquote(c)) goto tryanother; } } /* * Well, that worked. */ /* * Try next offsets, in case this match is * in the middle of a string. */ for (k = i + 1 ; k < NOFFSETS ; k++) { size_t no; int adjust = 1; if (prpsoffsets(k) >= prpsoffsets(i)) continue; for (no = doff + prpsoffsets(k); no < doff + prpsoffsets(i); no++) adjust = adjust && isprint(nbuf[no]); if (adjust) i = k; } cname = (unsigned char *) &nbuf[doff + prpsoffsets(i)]; for (cp = cname; *cp && isprint(*cp); cp++) continue; /* * Linux apparently appends a space at the end * of the command line: remove it. */ while (cp > cname && isspace(cp[-1])) cp--; if (file_printf(ms, ", from '%.*s'", (int)(cp - cname), cname) == -1) return size; *flags |= FLAGS_DID_CORE; return size; tryanother: ; } } break; } #endif return offset; }
1
CVE-2014-9620
CWE-399
Resource Management Errors
Weaknesses in this category are related to improper management of system resources.
Not Found in CWE Page
2,879
ImageMagick
3320955045e5a2a22c13a04fa9422bb809e75eda
static Image *ReadOneMNGImage(MngInfo* mng_info, const ImageInfo *image_info, ExceptionInfo *exception) { char page_geometry[MaxTextExtent]; Image *image; MagickBooleanType logging; volatile int first_mng_object, object_id, term_chunk_found, skip_to_iend; volatile ssize_t image_count=0; MagickBooleanType status; MagickOffsetType offset; MngBox default_fb, fb, previous_fb; #if defined(MNG_INSERT_LAYERS) PixelPacket mng_background_color; #endif register unsigned char *p; register ssize_t i; size_t count; ssize_t loop_level; volatile short skipping_loop; #if defined(MNG_INSERT_LAYERS) unsigned int mandatory_back=0; #endif volatile unsigned int #ifdef MNG_OBJECT_BUFFERS mng_background_object=0, #endif mng_type=0; /* 0: PNG or JNG; 1: MNG; 2: MNG-LC; 3: MNG-VLC */ size_t default_frame_timeout, frame_timeout, #if defined(MNG_INSERT_LAYERS) image_height, image_width, #endif length; /* These delays are all measured in image ticks_per_second, * not in MNG ticks_per_second */ volatile size_t default_frame_delay, final_delay, final_image_delay, frame_delay, #if defined(MNG_INSERT_LAYERS) insert_layers, #endif mng_iterations=1, simplicity=0, subframe_height=0, subframe_width=0; previous_fb.top=0; previous_fb.bottom=0; previous_fb.left=0; previous_fb.right=0; default_fb.top=0; default_fb.bottom=0; default_fb.left=0; default_fb.right=0; logging=LogMagickEvent(CoderEvent,GetMagickModule(), " Enter ReadOneMNGImage()"); image=mng_info->image; if (LocaleCompare(image_info->magick,"MNG") == 0) { char magic_number[MaxTextExtent]; /* Verify MNG signature. */ count=(size_t) ReadBlob(image,8,(unsigned char *) magic_number); if (memcmp(magic_number,"\212MNG\r\n\032\n",8) != 0) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); /* Initialize some nonzero members of the MngInfo structure. */ for (i=0; i < MNG_MAX_OBJECTS; i++) { mng_info->object_clip[i].right=(ssize_t) PNG_UINT_31_MAX; mng_info->object_clip[i].bottom=(ssize_t) PNG_UINT_31_MAX; } mng_info->exists[0]=MagickTrue; } skipping_loop=(-1); first_mng_object=MagickTrue; mng_type=0; #if defined(MNG_INSERT_LAYERS) insert_layers=MagickFalse; /* should be False when converting or mogrifying */ #endif default_frame_delay=0; default_frame_timeout=0; frame_delay=0; final_delay=1; mng_info->ticks_per_second=1UL*image->ticks_per_second; object_id=0; skip_to_iend=MagickFalse; term_chunk_found=MagickFalse; mng_info->framing_mode=1; #if defined(MNG_INSERT_LAYERS) mandatory_back=MagickFalse; #endif #if defined(MNG_INSERT_LAYERS) mng_background_color=image->background_color; #endif default_fb=mng_info->frame; previous_fb=mng_info->frame; do { char type[MaxTextExtent]; if (LocaleCompare(image_info->magick,"MNG") == 0) { unsigned char *chunk; /* Read a new chunk. */ type[0]='\0'; (void) ConcatenateMagickString(type,"errr",MaxTextExtent); length=ReadBlobMSBLong(image); count=(size_t) ReadBlob(image,4,(unsigned char *) type); if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Reading MNG chunk type %c%c%c%c, length: %.20g", type[0],type[1],type[2],type[3],(double) length); if (length > PNG_UINT_31_MAX) { status=MagickFalse; break; } if (count == 0) ThrowReaderException(CorruptImageError,"CorruptImage"); p=NULL; chunk=(unsigned char *) NULL; if (length != 0) { if (length > GetBlobSize(image)) ThrowReaderException(CorruptImageError, "InsufficientImageDataInFile"); chunk=(unsigned char *) AcquireQuantumMemory(length+ MagickPathExtent,sizeof(*chunk)); if (chunk == (unsigned char *) NULL) ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed"); for (i=0; i < (ssize_t) length; i++) { int c; c=ReadBlobByte(image); if (c == EOF) break; chunk[i]=(unsigned char) c; } p=chunk; } (void) ReadBlobMSBLong(image); /* read crc word */ #if !defined(JNG_SUPPORTED) if (memcmp(type,mng_JHDR,4) == 0) { skip_to_iend=MagickTrue; if (mng_info->jhdr_warning == 0) (void) ThrowMagickException(&image->exception,GetMagickModule(), CoderError,"JNGCompressNotSupported","`%s'",image->filename); mng_info->jhdr_warning++; } #endif if (memcmp(type,mng_DHDR,4) == 0) { skip_to_iend=MagickTrue; if (mng_info->dhdr_warning == 0) (void) ThrowMagickException(&image->exception,GetMagickModule(), CoderError,"DeltaPNGNotSupported","`%s'",image->filename); mng_info->dhdr_warning++; } if (memcmp(type,mng_MEND,4) == 0) break; if (skip_to_iend) { if (memcmp(type,mng_IEND,4) == 0) skip_to_iend=MagickFalse; if (length != 0) chunk=(unsigned char *) RelinquishMagickMemory(chunk); if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Skip to IEND."); continue; } if (memcmp(type,mng_MHDR,4) == 0) { if (length != 28) { chunk=(unsigned char *) RelinquishMagickMemory(chunk); ThrowReaderException(CorruptImageError,"CorruptImage"); } mng_info->mng_width=(size_t) ((p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]); mng_info->mng_height=(size_t) ((p[4] << 24) | (p[5] << 16) | (p[6] << 8) | p[7]); if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " MNG width: %.20g",(double) mng_info->mng_width); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " MNG height: %.20g",(double) mng_info->mng_height); } p+=8; mng_info->ticks_per_second=(size_t) mng_get_long(p); if (mng_info->ticks_per_second == 0) default_frame_delay=0; else default_frame_delay=1UL*image->ticks_per_second/ mng_info->ticks_per_second; frame_delay=default_frame_delay; simplicity=0; /* Skip nominal layer count, frame count, and play time */ p+=16; simplicity=(size_t) mng_get_long(p); mng_type=1; /* Full MNG */ if ((simplicity != 0) && ((simplicity | 11) == 11)) mng_type=2; /* LC */ if ((simplicity != 0) && ((simplicity | 9) == 9)) mng_type=3; /* VLC */ #if defined(MNG_INSERT_LAYERS) if (mng_type != 3) insert_layers=MagickTrue; #endif if (GetAuthenticPixelQueue(image) != (PixelPacket *) NULL) { /* Allocate next image structure. */ AcquireNextImage(image_info,image); if (GetNextImageInList(image) == (Image *) NULL) return(DestroyImageList(image)); image=SyncNextImageInList(image); mng_info->image=image; } if ((mng_info->mng_width > 65535L) || (mng_info->mng_height > 65535L)) { chunk=(unsigned char *) RelinquishMagickMemory(chunk); ThrowReaderException(ImageError,"WidthOrHeightExceedsLimit"); } (void) FormatLocaleString(page_geometry,MaxTextExtent, "%.20gx%.20g+0+0",(double) mng_info->mng_width,(double) mng_info->mng_height); mng_info->frame.left=0; mng_info->frame.right=(ssize_t) mng_info->mng_width; mng_info->frame.top=0; mng_info->frame.bottom=(ssize_t) mng_info->mng_height; mng_info->clip=default_fb=previous_fb=mng_info->frame; for (i=0; i < MNG_MAX_OBJECTS; i++) mng_info->object_clip[i]=mng_info->frame; chunk=(unsigned char *) RelinquishMagickMemory(chunk); continue; } if (memcmp(type,mng_TERM,4) == 0) { int repeat=0; if (length != 0) repeat=p[0]; if (repeat == 3 && length > 8) { final_delay=(png_uint_32) mng_get_long(&p[2]); mng_iterations=(png_uint_32) mng_get_long(&p[6]); if (mng_iterations == PNG_UINT_31_MAX) mng_iterations=0; image->iterations=mng_iterations; term_chunk_found=MagickTrue; } if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " repeat=%d, final_delay=%.20g, iterations=%.20g", repeat,(double) final_delay, (double) image->iterations); } chunk=(unsigned char *) RelinquishMagickMemory(chunk); continue; } if (memcmp(type,mng_DEFI,4) == 0) { if (mng_type == 3) (void) ThrowMagickException(&image->exception,GetMagickModule(), CoderError,"DEFI chunk found in MNG-VLC datastream","`%s'", image->filename); if (length > 1) { object_id=(p[0] << 8) | p[1]; if (mng_type == 2 && object_id != 0) (void) ThrowMagickException(&image->exception, GetMagickModule(), CoderError,"Nonzero object_id in MNG-LC datastream", "`%s'", image->filename); if (object_id > MNG_MAX_OBJECTS) { /* Instead of using a warning we should allocate a larger MngInfo structure and continue. */ (void) ThrowMagickException(&image->exception, GetMagickModule(), CoderError, "object id too large","`%s'",image->filename); object_id=MNG_MAX_OBJECTS; } if (mng_info->exists[object_id]) if (mng_info->frozen[object_id]) { chunk=(unsigned char *) RelinquishMagickMemory(chunk); (void) ThrowMagickException(&image->exception, GetMagickModule(),CoderError, "DEFI cannot redefine a frozen MNG object","`%s'", image->filename); continue; } mng_info->exists[object_id]=MagickTrue; if (length > 2) mng_info->invisible[object_id]=p[2]; /* Extract object offset info. */ if (length > 11) { mng_info->x_off[object_id]=(ssize_t) ((p[4] << 24) | (p[5] << 16) | (p[6] << 8) | p[7]); mng_info->y_off[object_id]=(ssize_t) ((p[8] << 24) | (p[9] << 16) | (p[10] << 8) | p[11]); if (logging != MagickFalse) { (void) LogMagickEvent(CoderEvent,GetMagickModule(), " x_off[%d]: %.20g, y_off[%d]: %.20g", object_id,(double) mng_info->x_off[object_id], object_id,(double) mng_info->y_off[object_id]); } } /* Extract object clipping info. */ if (length > 27) mng_info->object_clip[object_id]= mng_read_box(mng_info->frame,0, &p[12]); } chunk=(unsigned char *) RelinquishMagickMemory(chunk); continue; } if (memcmp(type,mng_bKGD,4) == 0) { mng_info->have_global_bkgd=MagickFalse; if (length > 5) { mng_info->mng_global_bkgd.red= ScaleShortToQuantum((unsigned short) ((p[0] << 8) | p[1])); mng_info->mng_global_bkgd.green= ScaleShortToQuantum((unsigned short) ((p[2] << 8) | p[3])); mng_info->mng_global_bkgd.blue= ScaleShortToQuantum((unsigned short) ((p[4] << 8) | p[5])); mng_info->have_global_bkgd=MagickTrue; } chunk=(unsigned char *) RelinquishMagickMemory(chunk); continue; } if (memcmp(type,mng_BACK,4) == 0) { #if defined(MNG_INSERT_LAYERS) if (length > 6) mandatory_back=p[6]; else mandatory_back=0; if (mandatory_back && length > 5) { mng_background_color.red= ScaleShortToQuantum((unsigned short) ((p[0] << 8) | p[1])); mng_background_color.green= ScaleShortToQuantum((unsigned short) ((p[2] << 8) | p[3])); mng_background_color.blue= ScaleShortToQuantum((unsigned short) ((p[4] << 8) | p[5])); mng_background_color.opacity=OpaqueOpacity; } #ifdef MNG_OBJECT_BUFFERS if (length > 8) mng_background_object=(p[7] << 8) | p[8]; #endif #endif chunk=(unsigned char *) RelinquishMagickMemory(chunk); continue; } if (memcmp(type,mng_PLTE,4) == 0) { /* Read global PLTE. */ if (length && (length < 769)) { if (mng_info->global_plte == (png_colorp) NULL) mng_info->global_plte=(png_colorp) AcquireQuantumMemory(256, sizeof(*mng_info->global_plte)); for (i=0; i < (ssize_t) (length/3); i++) { mng_info->global_plte[i].red=p[3*i]; mng_info->global_plte[i].green=p[3*i+1]; mng_info->global_plte[i].blue=p[3*i+2]; } mng_info->global_plte_length=(unsigned int) (length/3); } #ifdef MNG_LOOSE for ( ; i < 256; i++) { mng_info->global_plte[i].red=i; mng_info->global_plte[i].green=i; mng_info->global_plte[i].blue=i; } if (length != 0) mng_info->global_plte_length=256; #endif else mng_info->global_plte_length=0; chunk=(unsigned char *) RelinquishMagickMemory(chunk); continue; } if (memcmp(type,mng_tRNS,4) == 0) { /* read global tRNS */ if (length > 0 && length < 257) for (i=0; i < (ssize_t) length; i++) mng_info->global_trns[i]=p[i]; #ifdef MNG_LOOSE for ( ; i < 256; i++) mng_info->global_trns[i]=255; #endif mng_info->global_trns_length=(unsigned int) length; chunk=(unsigned char *) RelinquishMagickMemory(chunk); continue; } if (memcmp(type,mng_gAMA,4) == 0) { if (length == 4) { ssize_t igamma; igamma=mng_get_long(p); mng_info->global_gamma=((float) igamma)*0.00001; mng_info->have_global_gama=MagickTrue; } else mng_info->have_global_gama=MagickFalse; chunk=(unsigned char *) RelinquishMagickMemory(chunk); continue; } if (memcmp(type,mng_cHRM,4) == 0) { /* Read global cHRM */ if (length == 32) { mng_info->global_chrm.white_point.x=0.00001*mng_get_long(p); mng_info->global_chrm.white_point.y=0.00001*mng_get_long(&p[4]); mng_info->global_chrm.red_primary.x=0.00001*mng_get_long(&p[8]); mng_info->global_chrm.red_primary.y=0.00001* mng_get_long(&p[12]); mng_info->global_chrm.green_primary.x=0.00001* mng_get_long(&p[16]); mng_info->global_chrm.green_primary.y=0.00001* mng_get_long(&p[20]); mng_info->global_chrm.blue_primary.x=0.00001* mng_get_long(&p[24]); mng_info->global_chrm.blue_primary.y=0.00001* mng_get_long(&p[28]); mng_info->have_global_chrm=MagickTrue; } else mng_info->have_global_chrm=MagickFalse; chunk=(unsigned char *) RelinquishMagickMemory(chunk); continue; } if (memcmp(type,mng_sRGB,4) == 0) { /* Read global sRGB. */ if (length != 0) { mng_info->global_srgb_intent= Magick_RenderingIntent_from_PNG_RenderingIntent(p[0]); mng_info->have_global_srgb=MagickTrue; } else mng_info->have_global_srgb=MagickFalse; chunk=(unsigned char *) RelinquishMagickMemory(chunk); continue; } if (memcmp(type,mng_iCCP,4) == 0) { /* To do: */ /* Read global iCCP. */ if (length != 0) chunk=(unsigned char *) RelinquishMagickMemory(chunk); continue; } if (memcmp(type,mng_FRAM,4) == 0) { if (mng_type == 3) (void) ThrowMagickException(&image->exception,GetMagickModule(), CoderError,"FRAM chunk found in MNG-VLC datastream","`%s'", image->filename); if ((mng_info->framing_mode == 2) || (mng_info->framing_mode == 4)) image->delay=frame_delay; frame_delay=default_frame_delay; frame_timeout=default_frame_timeout; fb=default_fb; if (length > 0) if (p[0]) mng_info->framing_mode=p[0]; if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Framing_mode=%d",mng_info->framing_mode); if (length > 6) { /* Note the delay and frame clipping boundaries. */ p++; /* framing mode */ while (*p && ((p-chunk) < (ssize_t) length)) p++; /* frame name */ p++; /* frame name terminator */ if ((p-chunk) < (ssize_t) (length-4)) { int change_delay, change_timeout, change_clipping; change_delay=(*p++); change_timeout=(*p++); change_clipping=(*p++); p++; /* change_sync */ if (change_delay && (p-chunk) < (ssize_t) (length-4)) { frame_delay=1UL*image->ticks_per_second* mng_get_long(p); if (mng_info->ticks_per_second != 0) frame_delay/=mng_info->ticks_per_second; else frame_delay=PNG_UINT_31_MAX; if (change_delay == 2) default_frame_delay=frame_delay; p+=4; if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Framing_delay=%.20g",(double) frame_delay); } if (change_timeout && (p-chunk) < (ssize_t) (length-4)) { frame_timeout=1UL*image->ticks_per_second* mng_get_long(p); if (mng_info->ticks_per_second != 0) frame_timeout/=mng_info->ticks_per_second; else frame_timeout=PNG_UINT_31_MAX; if (change_timeout == 2) default_frame_timeout=frame_timeout; p+=4; if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Framing_timeout=%.20g",(double) frame_timeout); } if (change_clipping && (p-chunk) < (ssize_t) (length-17)) { fb=mng_read_box(previous_fb,(char) p[0],&p[1]); p+=17; previous_fb=fb; if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Frame_clip: L=%.20g R=%.20g T=%.20g B=%.20g", (double) fb.left,(double) fb.right,(double) fb.top, (double) fb.bottom); if (change_clipping == 2) default_fb=fb; } } } mng_info->clip=fb; mng_info->clip=mng_minimum_box(fb,mng_info->frame); subframe_width=(size_t) (mng_info->clip.right -mng_info->clip.left); subframe_height=(size_t) (mng_info->clip.bottom -mng_info->clip.top); /* Insert a background layer behind the frame if framing_mode is 4. */ #if defined(MNG_INSERT_LAYERS) if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " subframe_width=%.20g, subframe_height=%.20g",(double) subframe_width,(double) subframe_height); if (insert_layers && (mng_info->framing_mode == 4) && (subframe_width) && (subframe_height)) { /* Allocate next image structure. */ if (GetAuthenticPixelQueue(image) != (PixelPacket *) NULL) { AcquireNextImage(image_info,image); if (GetNextImageInList(image) == (Image *) NULL) return(DestroyImageList(image)); image=SyncNextImageInList(image); } mng_info->image=image; if (term_chunk_found) { image->start_loop=MagickTrue; image->iterations=mng_iterations; term_chunk_found=MagickFalse; } else image->start_loop=MagickFalse; image->columns=subframe_width; image->rows=subframe_height; image->page.width=subframe_width; image->page.height=subframe_height; image->page.x=mng_info->clip.left; image->page.y=mng_info->clip.top; image->background_color=mng_background_color; image->matte=MagickFalse; image->delay=0; (void) SetImageBackgroundColor(image); if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Insert backgd layer, L=%.20g, R=%.20g T=%.20g, B=%.20g", (double) mng_info->clip.left,(double) mng_info->clip.right, (double) mng_info->clip.top,(double) mng_info->clip.bottom); } #endif chunk=(unsigned char *) RelinquishMagickMemory(chunk); continue; } if (memcmp(type,mng_CLIP,4) == 0) { unsigned int first_object, last_object; /* Read CLIP. */ if (length > 3) { first_object=(p[0] << 8) | p[1]; last_object=(p[2] << 8) | p[3]; p+=4; for (i=(int) first_object; i <= (int) last_object; i++) { if (mng_info->exists[i] && !mng_info->frozen[i]) { MngBox box; box=mng_info->object_clip[i]; if ((p-chunk) < (ssize_t) (length-17)) mng_info->object_clip[i]= mng_read_box(box,(char) p[0],&p[1]); } } } chunk=(unsigned char *) RelinquishMagickMemory(chunk); continue; } if (memcmp(type,mng_SAVE,4) == 0) { for (i=1; i < MNG_MAX_OBJECTS; i++) if (mng_info->exists[i]) { mng_info->frozen[i]=MagickTrue; #ifdef MNG_OBJECT_BUFFERS if (mng_info->ob[i] != (MngBuffer *) NULL) mng_info->ob[i]->frozen=MagickTrue; #endif } if (length != 0) chunk=(unsigned char *) RelinquishMagickMemory(chunk); continue; } if ((memcmp(type,mng_DISC,4) == 0) || (memcmp(type,mng_SEEK,4) == 0)) { /* Read DISC or SEEK. */ if ((length == 0) || !memcmp(type,mng_SEEK,4)) { for (i=1; i < MNG_MAX_OBJECTS; i++) MngInfoDiscardObject(mng_info,i); } else { register ssize_t j; for (j=1; j < (ssize_t) length; j+=2) { i=p[j-1] << 8 | p[j]; MngInfoDiscardObject(mng_info,i); } } if (length != 0) chunk=(unsigned char *) RelinquishMagickMemory(chunk); continue; } if (memcmp(type,mng_MOVE,4) == 0) { size_t first_object, last_object; /* read MOVE */ if (length > 3) { first_object=(p[0] << 8) | p[1]; last_object=(p[2] << 8) | p[3]; p+=4; for (i=(ssize_t) first_object; i <= (ssize_t) last_object; i++) { if ((i < 0) || (i >= MNG_MAX_OBJECTS)) continue; if (mng_info->exists[i] && !mng_info->frozen[i] && (p-chunk) < (ssize_t) (length-8)) { MngPair new_pair; MngPair old_pair; old_pair.a=mng_info->x_off[i]; old_pair.b=mng_info->y_off[i]; new_pair=mng_read_pair(old_pair,(int) p[0],&p[1]); mng_info->x_off[i]=new_pair.a; mng_info->y_off[i]=new_pair.b; } } } chunk=(unsigned char *) RelinquishMagickMemory(chunk); continue; } if (memcmp(type,mng_LOOP,4) == 0) { ssize_t loop_iters=1; if (length > 4) { loop_level=chunk[0]; mng_info->loop_active[loop_level]=1; /* mark loop active */ /* Record starting point. */ loop_iters=mng_get_long(&chunk[1]); if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " LOOP level %.20g has %.20g iterations ", (double) loop_level, (double) loop_iters); if (loop_iters == 0) skipping_loop=loop_level; else { mng_info->loop_jump[loop_level]=TellBlob(image); mng_info->loop_count[loop_level]=loop_iters; } mng_info->loop_iteration[loop_level]=0; } chunk=(unsigned char *) RelinquishMagickMemory(chunk); continue; } if (memcmp(type,mng_ENDL,4) == 0) { if (length > 0) { loop_level=chunk[0]; if (skipping_loop > 0) { if (skipping_loop == loop_level) { /* Found end of zero-iteration loop. */ skipping_loop=(-1); mng_info->loop_active[loop_level]=0; } } else { if (mng_info->loop_active[loop_level] == 1) { mng_info->loop_count[loop_level]--; mng_info->loop_iteration[loop_level]++; if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " ENDL: LOOP level %.20g has %.20g remaining iters ", (double) loop_level,(double) mng_info->loop_count[loop_level]); if (mng_info->loop_count[loop_level] != 0) { offset=SeekBlob(image, mng_info->loop_jump[loop_level], SEEK_SET); if (offset < 0) { chunk=(unsigned char *) RelinquishMagickMemory( chunk); ThrowReaderException(CorruptImageError, "ImproperImageHeader"); } } else { short last_level; /* Finished loop. */ mng_info->loop_active[loop_level]=0; last_level=(-1); for (i=0; i < loop_level; i++) if (mng_info->loop_active[i] == 1) last_level=(short) i; loop_level=last_level; } } } } chunk=(unsigned char *) RelinquishMagickMemory(chunk); continue; } if (memcmp(type,mng_CLON,4) == 0) { if (mng_info->clon_warning == 0) (void) ThrowMagickException(&image->exception,GetMagickModule(), CoderError,"CLON is not implemented yet","`%s'", image->filename); mng_info->clon_warning++; } if (memcmp(type,mng_MAGN,4) == 0) { png_uint_16 magn_first, magn_last, magn_mb, magn_ml, magn_mr, magn_mt, magn_mx, magn_my, magn_methx, magn_methy; if (length > 1) magn_first=(p[0] << 8) | p[1]; else magn_first=0; if (length > 3) magn_last=(p[2] << 8) | p[3]; else magn_last=magn_first; #ifndef MNG_OBJECT_BUFFERS if (magn_first || magn_last) if (mng_info->magn_warning == 0) { (void) ThrowMagickException(&image->exception, GetMagickModule(),CoderError, "MAGN is not implemented yet for nonzero objects", "`%s'",image->filename); mng_info->magn_warning++; } #endif if (length > 4) magn_methx=p[4]; else magn_methx=0; if (length > 6) magn_mx=(p[5] << 8) | p[6]; else magn_mx=1; if (magn_mx == 0) magn_mx=1; if (length > 8) magn_my=(p[7] << 8) | p[8]; else magn_my=magn_mx; if (magn_my == 0) magn_my=1; if (length > 10) magn_ml=(p[9] << 8) | p[10]; else magn_ml=magn_mx; if (magn_ml == 0) magn_ml=1; if (length > 12) magn_mr=(p[11] << 8) | p[12]; else magn_mr=magn_mx; if (magn_mr == 0) magn_mr=1; if (length > 14) magn_mt=(p[13] << 8) | p[14]; else magn_mt=magn_my; if (magn_mt == 0) magn_mt=1; if (length > 16) magn_mb=(p[15] << 8) | p[16]; else magn_mb=magn_my; if (magn_mb == 0) magn_mb=1; if (length > 17) magn_methy=p[17]; else magn_methy=magn_methx; if (magn_methx > 5 || magn_methy > 5) if (mng_info->magn_warning == 0) { (void) ThrowMagickException(&image->exception, GetMagickModule(),CoderError, "Unknown MAGN method in MNG datastream","`%s'", image->filename); mng_info->magn_warning++; } #ifdef MNG_OBJECT_BUFFERS /* Magnify existing objects in the range magn_first to magn_last */ #endif if (magn_first == 0 || magn_last == 0) { /* Save the magnification factors for object 0 */ mng_info->magn_mb=magn_mb; mng_info->magn_ml=magn_ml; mng_info->magn_mr=magn_mr; mng_info->magn_mt=magn_mt; mng_info->magn_mx=magn_mx; mng_info->magn_my=magn_my; mng_info->magn_methx=magn_methx; mng_info->magn_methy=magn_methy; } } if (memcmp(type,mng_PAST,4) == 0) { if (mng_info->past_warning == 0) (void) ThrowMagickException(&image->exception,GetMagickModule(), CoderError,"PAST is not implemented yet","`%s'", image->filename); mng_info->past_warning++; } if (memcmp(type,mng_SHOW,4) == 0) { if (mng_info->show_warning == 0) (void) ThrowMagickException(&image->exception,GetMagickModule(), CoderError,"SHOW is not implemented yet","`%s'", image->filename); mng_info->show_warning++; } if (memcmp(type,mng_sBIT,4) == 0) { if (length < 4) mng_info->have_global_sbit=MagickFalse; else { mng_info->global_sbit.gray=p[0]; mng_info->global_sbit.red=p[0]; mng_info->global_sbit.green=p[1]; mng_info->global_sbit.blue=p[2]; mng_info->global_sbit.alpha=p[3]; mng_info->have_global_sbit=MagickTrue; } } if (memcmp(type,mng_pHYs,4) == 0) { if (length > 8) { mng_info->global_x_pixels_per_unit= (size_t) mng_get_long(p); mng_info->global_y_pixels_per_unit= (size_t) mng_get_long(&p[4]); mng_info->global_phys_unit_type=p[8]; mng_info->have_global_phys=MagickTrue; } else mng_info->have_global_phys=MagickFalse; } if (memcmp(type,mng_pHYg,4) == 0) { if (mng_info->phyg_warning == 0) (void) ThrowMagickException(&image->exception,GetMagickModule(), CoderError,"pHYg is not implemented.","`%s'",image->filename); mng_info->phyg_warning++; } if (memcmp(type,mng_BASI,4) == 0) { skip_to_iend=MagickTrue; if (mng_info->basi_warning == 0) (void) ThrowMagickException(&image->exception,GetMagickModule(), CoderError,"BASI is not implemented yet","`%s'", image->filename); mng_info->basi_warning++; #ifdef MNG_BASI_SUPPORTED if (length > 11) { basi_width=(size_t) ((p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]); basi_height=(size_t) ((p[4] << 24) | (p[5] << 16) | (p[6] << 8) | p[7]); basi_color_type=p[8]; basi_compression_method=p[9]; basi_filter_type=p[10]; basi_interlace_method=p[11]; } if (length > 13) basi_red=(p[12] << 8) & p[13]; else basi_red=0; if (length > 15) basi_green=(p[14] << 8) & p[15]; else basi_green=0; if (length > 17) basi_blue=(p[16] << 8) & p[17]; else basi_blue=0; if (length > 19) basi_alpha=(p[18] << 8) & p[19]; else { if (basi_sample_depth == 16) basi_alpha=65535L; else basi_alpha=255; } if (length > 20) basi_viewable=p[20]; else basi_viewable=0; #endif chunk=(unsigned char *) RelinquishMagickMemory(chunk); continue; } if (memcmp(type,mng_IHDR,4) #if defined(JNG_SUPPORTED) && memcmp(type,mng_JHDR,4) #endif ) { /* Not an IHDR or JHDR chunk */ if (length != 0) chunk=(unsigned char *) RelinquishMagickMemory(chunk); continue; } /* Process IHDR */ if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Processing %c%c%c%c chunk",type[0],type[1],type[2],type[3]); mng_info->exists[object_id]=MagickTrue; mng_info->viewable[object_id]=MagickTrue; if (mng_info->invisible[object_id]) { if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Skipping invisible object"); skip_to_iend=MagickTrue; chunk=(unsigned char *) RelinquishMagickMemory(chunk); continue; } #if defined(MNG_INSERT_LAYERS) if (length < 8) { chunk=(unsigned char *) RelinquishMagickMemory(chunk); ThrowReaderException(CorruptImageError,"ImproperImageHeader"); } image_width=(size_t) mng_get_long(p); image_height=(size_t) mng_get_long(&p[4]); #endif chunk=(unsigned char *) RelinquishMagickMemory(chunk); /* Insert a transparent background layer behind the entire animation if it is not full screen. */ #if defined(MNG_INSERT_LAYERS) if (insert_layers && mng_type && first_mng_object) { if ((mng_info->clip.left > 0) || (mng_info->clip.top > 0) || (image_width < mng_info->mng_width) || (mng_info->clip.right < (ssize_t) mng_info->mng_width) || (image_height < mng_info->mng_height) || (mng_info->clip.bottom < (ssize_t) mng_info->mng_height)) { if (GetAuthenticPixelQueue(image) != (PixelPacket *) NULL) { /* Allocate next image structure. */ AcquireNextImage(image_info,image); if (GetNextImageInList(image) == (Image *) NULL) return(DestroyImageList(image)); image=SyncNextImageInList(image); } mng_info->image=image; if (term_chunk_found) { image->start_loop=MagickTrue; image->iterations=mng_iterations; term_chunk_found=MagickFalse; } else image->start_loop=MagickFalse; /* Make a background rectangle. */ image->delay=0; image->columns=mng_info->mng_width; image->rows=mng_info->mng_height; image->page.width=mng_info->mng_width; image->page.height=mng_info->mng_height; image->page.x=0; image->page.y=0; image->background_color=mng_background_color; (void) SetImageBackgroundColor(image); if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Inserted transparent background layer, W=%.20g, H=%.20g", (double) mng_info->mng_width,(double) mng_info->mng_height); } } /* Insert a background layer behind the upcoming image if framing_mode is 3, and we haven't already inserted one. */ if (insert_layers && (mng_info->framing_mode == 3) && (subframe_width) && (subframe_height) && (simplicity == 0 || (simplicity & 0x08))) { if (GetAuthenticPixelQueue(image) != (PixelPacket *) NULL) { /* Allocate next image structure. */ AcquireNextImage(image_info,image); if (GetNextImageInList(image) == (Image *) NULL) return(DestroyImageList(image)); image=SyncNextImageInList(image); } mng_info->image=image; if (term_chunk_found) { image->start_loop=MagickTrue; image->iterations=mng_iterations; term_chunk_found=MagickFalse; } else image->start_loop=MagickFalse; image->delay=0; image->columns=subframe_width; image->rows=subframe_height; image->page.width=subframe_width; image->page.height=subframe_height; image->page.x=mng_info->clip.left; image->page.y=mng_info->clip.top; image->background_color=mng_background_color; image->matte=MagickFalse; (void) SetImageBackgroundColor(image); if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Insert background layer, L=%.20g, R=%.20g T=%.20g, B=%.20g", (double) mng_info->clip.left,(double) mng_info->clip.right, (double) mng_info->clip.top,(double) mng_info->clip.bottom); } #endif /* MNG_INSERT_LAYERS */ first_mng_object=MagickFalse; if (GetAuthenticPixelQueue(image) != (PixelPacket *) NULL) { /* Allocate next image structure. */ AcquireNextImage(image_info,image); if (GetNextImageInList(image) == (Image *) NULL) return(DestroyImageList(image)); image=SyncNextImageInList(image); } mng_info->image=image; status=SetImageProgress(image,LoadImagesTag,TellBlob(image), GetBlobSize(image)); if (status == MagickFalse) break; if (term_chunk_found) { image->start_loop=MagickTrue; term_chunk_found=MagickFalse; } else image->start_loop=MagickFalse; if (mng_info->framing_mode == 1 || mng_info->framing_mode == 3) { image->delay=frame_delay; frame_delay=default_frame_delay; } else image->delay=0; image->page.width=mng_info->mng_width; image->page.height=mng_info->mng_height; image->page.x=mng_info->x_off[object_id]; image->page.y=mng_info->y_off[object_id]; image->iterations=mng_iterations; /* Seek back to the beginning of the IHDR or JHDR chunk's length field. */ if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Seeking back to beginning of %c%c%c%c chunk",type[0],type[1], type[2],type[3]); offset=SeekBlob(image,-((ssize_t) length+12),SEEK_CUR); if (offset < 0) ThrowReaderException(CorruptImageError,"ImproperImageHeader"); } mng_info->image=image; mng_info->mng_type=mng_type; mng_info->object_id=object_id; if (memcmp(type,mng_IHDR,4) == 0) image=ReadOnePNGImage(mng_info,image_info,exception); #if defined(JNG_SUPPORTED) else image=ReadOneJNGImage(mng_info,image_info,exception); #endif if (image == (Image *) NULL) { if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), "exit ReadJNGImage() with error"); return((Image *) NULL); } if (image->columns == 0 || image->rows == 0) { (void) CloseBlob(image); return(DestroyImageList(image)); } mng_info->image=image; if (mng_type) { MngBox crop_box; if (mng_info->magn_methx || mng_info->magn_methy) { png_uint_32 magnified_height, magnified_width; if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Processing MNG MAGN chunk"); if (mng_info->magn_methx == 1) { magnified_width=mng_info->magn_ml; if (image->columns > 1) magnified_width += mng_info->magn_mr; if (image->columns > 2) magnified_width += (png_uint_32) ((image->columns-2)*(mng_info->magn_mx)); } else { magnified_width=(png_uint_32) image->columns; if (image->columns > 1) magnified_width += mng_info->magn_ml-1; if (image->columns > 2) magnified_width += mng_info->magn_mr-1; if (image->columns > 3) magnified_width += (png_uint_32) ((image->columns-3)*(mng_info->magn_mx-1)); } if (mng_info->magn_methy == 1) { magnified_height=mng_info->magn_mt; if (image->rows > 1) magnified_height += mng_info->magn_mb; if (image->rows > 2) magnified_height += (png_uint_32) ((image->rows-2)*(mng_info->magn_my)); } else { magnified_height=(png_uint_32) image->rows; if (image->rows > 1) magnified_height += mng_info->magn_mt-1; if (image->rows > 2) magnified_height += mng_info->magn_mb-1; if (image->rows > 3) magnified_height += (png_uint_32) ((image->rows-3)*(mng_info->magn_my-1)); } if (magnified_height > image->rows || magnified_width > image->columns) { Image *large_image; int yy; ssize_t m, y; register ssize_t x; register PixelPacket *n, *q; PixelPacket *next, *prev; png_uint_16 magn_methx, magn_methy; /* Allocate next image structure. */ if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Allocate magnified image"); AcquireNextImage(image_info,image); if (GetNextImageInList(image) == (Image *) NULL) return(DestroyImageList(image)); large_image=SyncNextImageInList(image); large_image->columns=magnified_width; large_image->rows=magnified_height; magn_methx=mng_info->magn_methx; magn_methy=mng_info->magn_methy; #if (MAGICKCORE_QUANTUM_DEPTH > 16) #define QM unsigned short if (magn_methx != 1 || magn_methy != 1) { /* Scale pixels to unsigned shorts to prevent overflow of intermediate values of interpolations */ for (y=0; y < (ssize_t) image->rows; y++) { q=GetAuthenticPixels(image,0,y,image->columns,1, exception); for (x=(ssize_t) image->columns-1; x >= 0; x--) { SetPixelRed(q,ScaleQuantumToShort( GetPixelRed(q))); SetPixelGreen(q,ScaleQuantumToShort( GetPixelGreen(q))); SetPixelBlue(q,ScaleQuantumToShort( GetPixelBlue(q))); SetPixelOpacity(q,ScaleQuantumToShort( GetPixelOpacity(q))); q++; } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; } } #else #define QM Quantum #endif if (image->matte != MagickFalse) (void) SetImageBackgroundColor(large_image); else { large_image->background_color.opacity=OpaqueOpacity; (void) SetImageBackgroundColor(large_image); if (magn_methx == 4) magn_methx=2; if (magn_methx == 5) magn_methx=3; if (magn_methy == 4) magn_methy=2; if (magn_methy == 5) magn_methy=3; } /* magnify the rows into the right side of the large image */ if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Magnify the rows to %.20g",(double) large_image->rows); m=(ssize_t) mng_info->magn_mt; yy=0; length=(size_t) image->columns; next=(PixelPacket *) AcquireQuantumMemory(length,sizeof(*next)); prev=(PixelPacket *) AcquireQuantumMemory(length,sizeof(*prev)); if ((prev == (PixelPacket *) NULL) || (next == (PixelPacket *) NULL)) { image=DestroyImageList(image); ThrowReaderException(ResourceLimitError, "MemoryAllocationFailed"); } n=GetAuthenticPixels(image,0,0,image->columns,1,exception); (void) CopyMagickMemory(next,n,length); for (y=0; y < (ssize_t) image->rows; y++) { if (y == 0) m=(ssize_t) mng_info->magn_mt; else if (magn_methy > 1 && y == (ssize_t) image->rows-2) m=(ssize_t) mng_info->magn_mb; else if (magn_methy <= 1 && y == (ssize_t) image->rows-1) m=(ssize_t) mng_info->magn_mb; else if (magn_methy > 1 && y == (ssize_t) image->rows-1) m=1; else m=(ssize_t) mng_info->magn_my; n=prev; prev=next; next=n; if (y < (ssize_t) image->rows-1) { n=GetAuthenticPixels(image,0,y+1,image->columns,1, exception); (void) CopyMagickMemory(next,n,length); } for (i=0; i < m; i++, yy++) { register PixelPacket *pixels; assert(yy < (ssize_t) large_image->rows); pixels=prev; n=next; q=GetAuthenticPixels(large_image,0,yy,large_image->columns, 1,exception); q+=(large_image->columns-image->columns); for (x=(ssize_t) image->columns-1; x >= 0; x--) { /* To do: get color as function of indexes[x] */ /* if (image->storage_class == PseudoClass) { } */ if (magn_methy <= 1) { /* replicate previous */ SetPixelRGBO(q,(pixels)); } else if (magn_methy == 2 || magn_methy == 4) { if (i == 0) { SetPixelRGBO(q,(pixels)); } else { /* Interpolate */ SetPixelRed(q, ((QM) (((ssize_t) (2*i*(GetPixelRed(n) -GetPixelRed(pixels)+m))/ ((ssize_t) (m*2)) +GetPixelRed(pixels))))); SetPixelGreen(q, ((QM) (((ssize_t) (2*i*(GetPixelGreen(n) -GetPixelGreen(pixels)+m))/ ((ssize_t) (m*2)) +GetPixelGreen(pixels))))); SetPixelBlue(q, ((QM) (((ssize_t) (2*i*(GetPixelBlue(n) -GetPixelBlue(pixels)+m))/ ((ssize_t) (m*2)) +GetPixelBlue(pixels))))); if (image->matte != MagickFalse) SetPixelOpacity(q, ((QM) (((ssize_t) (2*i*(GetPixelOpacity(n) -GetPixelOpacity(pixels)+m)) /((ssize_t) (m*2))+ GetPixelOpacity(pixels))))); } if (magn_methy == 4) { /* Replicate nearest */ if (i <= ((m+1) << 1)) SetPixelOpacity(q, (*pixels).opacity+0); else SetPixelOpacity(q, (*n).opacity+0); } } else /* if (magn_methy == 3 || magn_methy == 5) */ { /* Replicate nearest */ if (i <= ((m+1) << 1)) { SetPixelRGBO(q,(pixels)); } else { SetPixelRGBO(q,(n)); } if (magn_methy == 5) { SetPixelOpacity(q, (QM) (((ssize_t) (2*i* (GetPixelOpacity(n) -GetPixelOpacity(pixels)) +m))/((ssize_t) (m*2)) +GetPixelOpacity(pixels))); } } n++; q++; pixels++; } /* x */ if (SyncAuthenticPixels(large_image,exception) == 0) break; } /* i */ } /* y */ prev=(PixelPacket *) RelinquishMagickMemory(prev); next=(PixelPacket *) RelinquishMagickMemory(next); length=image->columns; if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Delete original image"); DeleteImageFromList(&image); image=large_image; mng_info->image=image; /* magnify the columns */ if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Magnify the columns to %.20g",(double) image->columns); for (y=0; y < (ssize_t) image->rows; y++) { register PixelPacket *pixels; q=GetAuthenticPixels(image,0,y,image->columns,1,exception); pixels=q+(image->columns-length); n=pixels+1; for (x=(ssize_t) (image->columns-length); x < (ssize_t) image->columns; x++) { /* To do: Rewrite using Get/Set***PixelComponent() */ if (x == (ssize_t) (image->columns-length)) m=(ssize_t) mng_info->magn_ml; else if (magn_methx > 1 && x == (ssize_t) image->columns-2) m=(ssize_t) mng_info->magn_mr; else if (magn_methx <= 1 && x == (ssize_t) image->columns-1) m=(ssize_t) mng_info->magn_mr; else if (magn_methx > 1 && x == (ssize_t) image->columns-1) m=1; else m=(ssize_t) mng_info->magn_mx; for (i=0; i < m; i++) { if (magn_methx <= 1) { /* replicate previous */ SetPixelRGBO(q,(pixels)); } else if (magn_methx == 2 || magn_methx == 4) { if (i == 0) { SetPixelRGBO(q,(pixels)); } /* To do: Rewrite using Get/Set***PixelComponent() */ else { /* Interpolate */ SetPixelRed(q, (QM) ((2*i*( GetPixelRed(n) -GetPixelRed(pixels))+m) /((ssize_t) (m*2))+ GetPixelRed(pixels))); SetPixelGreen(q, (QM) ((2*i*( GetPixelGreen(n) -GetPixelGreen(pixels))+m) /((ssize_t) (m*2))+ GetPixelGreen(pixels))); SetPixelBlue(q, (QM) ((2*i*( GetPixelBlue(n) -GetPixelBlue(pixels))+m) /((ssize_t) (m*2))+ GetPixelBlue(pixels))); if (image->matte != MagickFalse) SetPixelOpacity(q, (QM) ((2*i*( GetPixelOpacity(n) -GetPixelOpacity(pixels))+m) /((ssize_t) (m*2))+ GetPixelOpacity(pixels))); } if (magn_methx == 4) { /* Replicate nearest */ if (i <= ((m+1) << 1)) { SetPixelOpacity(q, GetPixelOpacity(pixels)+0); } else { SetPixelOpacity(q, GetPixelOpacity(n)+0); } } } else /* if (magn_methx == 3 || magn_methx == 5) */ { /* Replicate nearest */ if (i <= ((m+1) << 1)) { SetPixelRGBO(q,(pixels)); } else { SetPixelRGBO(q,(n)); } if (magn_methx == 5) { /* Interpolate */ SetPixelOpacity(q, (QM) ((2*i*( GetPixelOpacity(n) -GetPixelOpacity(pixels))+m)/ ((ssize_t) (m*2)) +GetPixelOpacity(pixels))); } } q++; } n++; } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; } #if (MAGICKCORE_QUANTUM_DEPTH > 16) if (magn_methx != 1 || magn_methy != 1) { /* Rescale pixels to Quantum */ for (y=0; y < (ssize_t) image->rows; y++) { q=GetAuthenticPixels(image,0,y,image->columns,1,exception); for (x=(ssize_t) image->columns-1; x >= 0; x--) { SetPixelRed(q,ScaleShortToQuantum( GetPixelRed(q))); SetPixelGreen(q,ScaleShortToQuantum( GetPixelGreen(q))); SetPixelBlue(q,ScaleShortToQuantum( GetPixelBlue(q))); SetPixelOpacity(q,ScaleShortToQuantum( GetPixelOpacity(q))); q++; } if (SyncAuthenticPixels(image,exception) == MagickFalse) break; } } #endif if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Finished MAGN processing"); } } /* Crop_box is with respect to the upper left corner of the MNG. */ crop_box.left=mng_info->image_box.left+mng_info->x_off[object_id]; crop_box.right=mng_info->image_box.right+mng_info->x_off[object_id]; crop_box.top=mng_info->image_box.top+mng_info->y_off[object_id]; crop_box.bottom=mng_info->image_box.bottom+mng_info->y_off[object_id]; crop_box=mng_minimum_box(crop_box,mng_info->clip); crop_box=mng_minimum_box(crop_box,mng_info->frame); crop_box=mng_minimum_box(crop_box,mng_info->object_clip[object_id]); if ((crop_box.left != (mng_info->image_box.left +mng_info->x_off[object_id])) || (crop_box.right != (mng_info->image_box.right +mng_info->x_off[object_id])) || (crop_box.top != (mng_info->image_box.top +mng_info->y_off[object_id])) || (crop_box.bottom != (mng_info->image_box.bottom +mng_info->y_off[object_id]))) { if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Crop the PNG image"); if ((crop_box.left < crop_box.right) && (crop_box.top < crop_box.bottom)) { Image *im; RectangleInfo crop_info; /* Crop_info is with respect to the upper left corner of the image. */ crop_info.x=(crop_box.left-mng_info->x_off[object_id]); crop_info.y=(crop_box.top-mng_info->y_off[object_id]); crop_info.width=(size_t) (crop_box.right-crop_box.left); crop_info.height=(size_t) (crop_box.bottom-crop_box.top); image->page.width=image->columns; image->page.height=image->rows; image->page.x=0; image->page.y=0; im=CropImage(image,&crop_info,exception); if (im != (Image *) NULL) { image->columns=im->columns; image->rows=im->rows; im=DestroyImage(im); image->page.width=image->columns; image->page.height=image->rows; image->page.x=crop_box.left; image->page.y=crop_box.top; } } else { /* No pixels in crop area. The MNG spec still requires a layer, though, so make a single transparent pixel in the top left corner. */ image->columns=1; image->rows=1; image->colors=2; (void) SetImageBackgroundColor(image); image->page.width=1; image->page.height=1; image->page.x=0; image->page.y=0; } } #ifndef PNG_READ_EMPTY_PLTE_SUPPORTED image=mng_info->image; #endif } #if (MAGICKCORE_QUANTUM_DEPTH > 16) /* PNG does not handle depths greater than 16 so reduce it even * if lossy, and promote any depths > 8 to 16. */ if (image->depth > 16) image->depth=16; #endif #if (MAGICKCORE_QUANTUM_DEPTH > 8) if (image->depth > 8) { /* To do: fill low byte properly */ image->depth=16; } if (LosslessReduceDepthOK(image) != MagickFalse) image->depth = 8; #endif GetImageException(image,exception); if (image_info->number_scenes != 0) { if (mng_info->scenes_found > (ssize_t) (image_info->first_scene+image_info->number_scenes)) break; } if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Finished reading image datastream."); } while (LocaleCompare(image_info->magick,"MNG") == 0); (void) CloseBlob(image); if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Finished reading all image datastreams."); #if defined(MNG_INSERT_LAYERS) if (insert_layers && !mng_info->image_found && (mng_info->mng_width) && (mng_info->mng_height)) { /* Insert a background layer if nothing else was found. */ if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " No images found. Inserting a background layer."); if (GetAuthenticPixelQueue(image) != (PixelPacket *) NULL) { /* Allocate next image structure. */ AcquireNextImage(image_info,image); if (GetNextImageInList(image) == (Image *) NULL) { if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Allocation failed, returning NULL."); return(DestroyImageList(image)); } image=SyncNextImageInList(image); } image->columns=mng_info->mng_width; image->rows=mng_info->mng_height; image->page.width=mng_info->mng_width; image->page.height=mng_info->mng_height; image->page.x=0; image->page.y=0; image->background_color=mng_background_color; image->matte=MagickFalse; if (image_info->ping == MagickFalse) (void) SetImageBackgroundColor(image); mng_info->image_found++; } #endif image->iterations=mng_iterations; if (mng_iterations == 1) image->start_loop=MagickTrue; while (GetPreviousImageInList(image) != (Image *) NULL) { image_count++; if (image_count > 10*mng_info->image_found) { if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule()," No beginning"); (void) ThrowMagickException(&image->exception,GetMagickModule(), CoderError,"Linked list is corrupted, beginning of list not found", "`%s'",image_info->filename); return(DestroyImageList(image)); } image=GetPreviousImageInList(image); if (GetNextImageInList(image) == (Image *) NULL) { if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule()," Corrupt list"); (void) ThrowMagickException(&image->exception,GetMagickModule(), CoderError,"Linked list is corrupted; next_image is NULL","`%s'", image_info->filename); } } if (mng_info->ticks_per_second && mng_info->image_found > 1 && GetNextImageInList(image) == (Image *) NULL) { if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " First image null"); (void) ThrowMagickException(&image->exception,GetMagickModule(), CoderError,"image->next for first image is NULL but shouldn't be.", "`%s'",image_info->filename); } if (mng_info->image_found == 0) { if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " No visible images found."); (void) ThrowMagickException(&image->exception,GetMagickModule(), CoderError,"No visible images in file","`%s'",image_info->filename); return(DestroyImageList(image)); } if (mng_info->ticks_per_second) final_delay=1UL*MagickMax(image->ticks_per_second,1L)* final_delay/mng_info->ticks_per_second; else image->start_loop=MagickTrue; /* Find final nonzero image delay */ final_image_delay=0; while (GetNextImageInList(image) != (Image *) NULL) { if (image->delay) final_image_delay=image->delay; image=GetNextImageInList(image); } if (final_delay < final_image_delay) final_delay=final_image_delay; image->delay=final_delay; if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " image->delay=%.20g, final_delay=%.20g",(double) image->delay, (double) final_delay); if (logging != MagickFalse) { int scene; scene=0; image=GetFirstImageInList(image); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " Before coalesce:"); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " scene 0 delay=%.20g",(double) image->delay); while (GetNextImageInList(image) != (Image *) NULL) { image=GetNextImageInList(image); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " scene %.20g delay=%.20g",(double) scene++,(double) image->delay); } } image=GetFirstImageInList(image); #ifdef MNG_COALESCE_LAYERS if (insert_layers) { Image *next_image, *next; size_t scene; if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule()," Coalesce Images"); scene=image->scene; next_image=CoalesceImages(image,&image->exception); if (next_image == (Image *) NULL) ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed"); image=DestroyImageList(image); image=next_image; for (next=image; next != (Image *) NULL; next=next_image) { next->page.width=mng_info->mng_width; next->page.height=mng_info->mng_height; next->page.x=0; next->page.y=0; next->scene=scene++; next_image=GetNextImageInList(next); if (next_image == (Image *) NULL) break; if (next->delay == 0) { scene--; next_image->previous=GetPreviousImageInList(next); if (GetPreviousImageInList(next) == (Image *) NULL) image=next_image; else next->previous->next=next_image; next=DestroyImage(next); } } } #endif while (GetNextImageInList(image) != (Image *) NULL) image=GetNextImageInList(image); image->dispose=BackgroundDispose; if (logging != MagickFalse) { int scene; scene=0; image=GetFirstImageInList(image); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " After coalesce:"); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " scene 0 delay=%.20g dispose=%.20g",(double) image->delay, (double) image->dispose); while (GetNextImageInList(image) != (Image *) NULL) { image=GetNextImageInList(image); (void) LogMagickEvent(CoderEvent,GetMagickModule(), " scene %.20g delay=%.20g dispose=%.20g",(double) scene++, (double) image->delay,(double) image->dispose); } } if (logging != MagickFalse) (void) LogMagickEvent(CoderEvent,GetMagickModule(), " exit ReadOneJNGImage();"); return(image); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
22,040
ImageMagick
cb63560ba25e4a6c51ab282538c24877fff7d471
static MagickBooleanType WriteWEBPImage(const ImageInfo *image_info, Image *image,ExceptionInfo *exception) { const char *value; int webp_status; MagickBooleanType status; MemoryInfo *pixel_info; register uint32_t *magick_restrict q; ssize_t y; WebPConfig configure; WebPPicture picture; WebPAuxStats statistics; /* Open output image file. */ assert(image_info != (const ImageInfo *) NULL); assert(image_info->signature == MagickCoreSignature); assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); if ((image->columns > 16383UL) || (image->rows > 16383UL)) ThrowWriterException(ImageError,"WidthOrHeightExceedsLimit"); status=OpenBlob(image_info,image,WriteBinaryBlobMode,exception); if (status == MagickFalse) return(status); if ((WebPPictureInit(&picture) == 0) || (WebPConfigInit(&configure) == 0)) ThrowWriterException(ResourceLimitError,"UnableToEncodeImageFile"); picture.writer=WebPEncodeWriter; picture.custom_ptr=(void *) image; #if WEBP_DECODER_ABI_VERSION >= 0x0100 picture.progress_hook=WebPEncodeProgress; #endif picture.stats=(&statistics); picture.width=(int) image->columns; picture.height=(int) image->rows; picture.argb_stride=(int) image->columns; picture.use_argb=1; if (image->quality != UndefinedCompressionQuality) configure.quality=(float) image->quality; if (image->quality >= 100) configure.lossless=1; value=GetImageOption(image_info,"webp:lossless"); if (value != (char *) NULL) configure.lossless=(int) ParseCommandOption(MagickBooleanOptions, MagickFalse,value); value=GetImageOption(image_info,"webp:method"); if (value != (char *) NULL) configure.method=StringToInteger(value); value=GetImageOption(image_info,"webp:image-hint"); if (value != (char *) NULL) { if (LocaleCompare(value,"default") == 0) configure.image_hint=WEBP_HINT_DEFAULT; if (LocaleCompare(value,"photo") == 0) configure.image_hint=WEBP_HINT_PHOTO; if (LocaleCompare(value,"picture") == 0) configure.image_hint=WEBP_HINT_PICTURE; #if WEBP_DECODER_ABI_VERSION >= 0x0200 if (LocaleCompare(value,"graph") == 0) configure.image_hint=WEBP_HINT_GRAPH; #endif } value=GetImageOption(image_info,"webp:target-size"); if (value != (char *) NULL) configure.target_size=StringToInteger(value); value=GetImageOption(image_info,"webp:target-psnr"); if (value != (char *) NULL) configure.target_PSNR=(float) StringToDouble(value,(char **) NULL); value=GetImageOption(image_info,"webp:segments"); if (value != (char *) NULL) configure.segments=StringToInteger(value); value=GetImageOption(image_info,"webp:sns-strength"); if (value != (char *) NULL) configure.sns_strength=StringToInteger(value); value=GetImageOption(image_info,"webp:filter-strength"); if (value != (char *) NULL) configure.filter_strength=StringToInteger(value); value=GetImageOption(image_info,"webp:filter-sharpness"); if (value != (char *) NULL) configure.filter_sharpness=StringToInteger(value); value=GetImageOption(image_info,"webp:filter-type"); if (value != (char *) NULL) configure.filter_type=StringToInteger(value); value=GetImageOption(image_info,"webp:auto-filter"); if (value != (char *) NULL) configure.autofilter=(int) ParseCommandOption(MagickBooleanOptions, MagickFalse,value); value=GetImageOption(image_info,"webp:alpha-compression"); if (value != (char *) NULL) configure.alpha_compression=StringToInteger(value); value=GetImageOption(image_info,"webp:alpha-filtering"); if (value != (char *) NULL) configure.alpha_filtering=StringToInteger(value); value=GetImageOption(image_info,"webp:alpha-quality"); if (value != (char *) NULL) configure.alpha_quality=StringToInteger(value); value=GetImageOption(image_info,"webp:pass"); if (value != (char *) NULL) configure.pass=StringToInteger(value); value=GetImageOption(image_info,"webp:show-compressed"); if (value != (char *) NULL) configure.show_compressed=StringToInteger(value); value=GetImageOption(image_info,"webp:preprocessing"); if (value != (char *) NULL) configure.preprocessing=StringToInteger(value); value=GetImageOption(image_info,"webp:partitions"); if (value != (char *) NULL) configure.partitions=StringToInteger(value); value=GetImageOption(image_info,"webp:partition-limit"); if (value != (char *) NULL) configure.partition_limit=StringToInteger(value); #if WEBP_DECODER_ABI_VERSION >= 0x0201 value=GetImageOption(image_info,"webp:emulate-jpeg-size"); if (value != (char *) NULL) configure.emulate_jpeg_size=(int) ParseCommandOption(MagickBooleanOptions, MagickFalse,value); value=GetImageOption(image_info,"webp:low-memory"); if (value != (char *) NULL) configure.low_memory=(int) ParseCommandOption(MagickBooleanOptions, MagickFalse,value); value=GetImageOption(image_info,"webp:thread-level"); if (value != (char *) NULL) configure.thread_level=StringToInteger(value); #endif if (WebPValidateConfig(&configure) == 0) ThrowWriterException(ResourceLimitError,"UnableToEncodeImageFile"); /* Allocate memory for pixels. */ (void) TransformImageColorspace(image,sRGBColorspace,exception); pixel_info=AcquireVirtualMemory(image->columns,image->rows* sizeof(*picture.argb)); if (pixel_info == (MemoryInfo *) NULL) ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed"); picture.argb=(uint32_t *) GetVirtualMemoryBlob(pixel_info); /* Convert image to WebP raster pixels. */ q=picture.argb; for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *magick_restrict p; register ssize_t x; p=GetVirtualPixels(image,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { *q++=(uint32_t) (image->alpha_trait != UndefinedPixelTrait ? ScaleQuantumToChar(GetPixelAlpha(image,p)) << 24 : 0xff000000) | (ScaleQuantumToChar(GetPixelRed(image,p)) << 16) | (ScaleQuantumToChar(GetPixelGreen(image,p)) << 8) | (ScaleQuantumToChar(GetPixelBlue(image,p))); p+=GetPixelChannels(image); } status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } webp_status=WebPEncode(&configure,&picture); if (webp_status == 0) { const char *message; switch (picture.error_code) { case VP8_ENC_ERROR_OUT_OF_MEMORY: { message="out of memory"; break; } case VP8_ENC_ERROR_BITSTREAM_OUT_OF_MEMORY: { message="bitstream out of memory"; break; } case VP8_ENC_ERROR_NULL_PARAMETER: { message="NULL parameter"; break; } case VP8_ENC_ERROR_INVALID_CONFIGURATION: { message="invalid configuration"; break; } case VP8_ENC_ERROR_BAD_DIMENSION: { message="bad dimension"; break; } case VP8_ENC_ERROR_PARTITION0_OVERFLOW: { message="partition 0 overflow (> 512K)"; break; } case VP8_ENC_ERROR_PARTITION_OVERFLOW: { message="partition overflow (> 16M)"; break; } case VP8_ENC_ERROR_BAD_WRITE: { message="bad write"; break; } case VP8_ENC_ERROR_FILE_TOO_BIG: { message="file too big (> 4GB)"; break; } #if WEBP_DECODER_ABI_VERSION >= 0x0100 case VP8_ENC_ERROR_USER_ABORT: { message="user abort"; break; } #endif default: { message="unknown exception"; break; } } (void) ThrowMagickException(exception,GetMagickModule(),CorruptImageError, (char *) message,"`%s'",image->filename); } picture.argb=(uint32_t *) NULL; WebPPictureFree(&picture); pixel_info=RelinquishVirtualMemory(pixel_info); (void) CloseBlob(image); return(webp_status == 0 ? MagickFalse : MagickTrue); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
19,877
barebox
0a9f9a7410681e55362f8311537ebc7be9ad0fbe
int digest_generic_verify(struct digest *d, const unsigned char *md) { int ret; int len = digest_length(d); unsigned char *tmp; tmp = xmalloc(len); ret = digest_final(d, tmp); if (ret) goto end; ret = memcmp(md, tmp, len); ret = ret ? -EINVAL : 0; end: free(tmp); return ret; }
1
CVE-2021-37847
CWE-200
Exposure of Sensitive Information to an Unauthorized Actor
The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information.
Phase: Architecture and Design Strategy: Separation of Privilege Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area. Ensure that appropriate compartmentalization is built into the system design, and the compartmentalization allows for and reinforces privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide the appropriate time to use privileges and the time to drop privileges.
4,348
Chrome
7cf563aba8f4b3bab68e9bfe43824d952241dcf7
Core(const OAuthProviderInfo& info, net::URLRequestContextGetter* request_context_getter) : provider_info_(info), request_context_getter_(request_context_getter), delegate_(NULL) { }
1
CVE-2012-2890
CWE-399
Resource Management Errors
Weaknesses in this category are related to improper management of system resources.
Not Found in CWE Page
195
gimp
c57f9dcf1934a9ab0cd67650f2dea18cb0902270
save_dialog (void) { GtkWidget *dialog; GtkWidget *table; GtkWidget *entry; GtkWidget *spinbutton; GtkObject *adj; gboolean run; dialog = gimp_export_dialog_new (_("Brush"), PLUG_IN_BINARY, SAVE_PROC); /* The main table */ table = gtk_table_new (2, 2, FALSE); gtk_container_set_border_width (GTK_CONTAINER (table), 12); gtk_table_set_row_spacings (GTK_TABLE (table), 6); gtk_table_set_col_spacings (GTK_TABLE (table), 6); gtk_box_pack_start (GTK_BOX (gimp_export_dialog_get_content_area (dialog)), table, TRUE, TRUE, 0); gtk_widget_show (table); spinbutton = gimp_spin_button_new (&adj, info.spacing, 1, 1000, 1, 10, 0, 1, 0); gtk_entry_set_activates_default (GTK_ENTRY (spinbutton), TRUE); gimp_table_attach_aligned (GTK_TABLE (table), 0, 0, _("Spacing:"), 1.0, 0.5, spinbutton, 1, TRUE); g_signal_connect (adj, "value-changed", G_CALLBACK (gimp_int_adjustment_update), &info.spacing); entry = gtk_entry_new (); gtk_widget_set_size_request (entry, 200, -1); gtk_entry_set_text (GTK_ENTRY (entry), info.description); gtk_entry_set_activates_default (GTK_ENTRY (entry), TRUE); gimp_table_attach_aligned (GTK_TABLE (table), 0, 1, _("Description:"), 1.0, 0.5, entry, 1, FALSE); g_signal_connect (entry, "changed", G_CALLBACK (entry_callback), info.description); gtk_widget_show (dialog); run = (gimp_dialog_run (GIMP_DIALOG (dialog)) == GTK_RESPONSE_OK); gtk_widget_destroy (dialog); return run; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
21,538
Chrome
d0947db40187f4708c58e64cbd6013faf9eddeed
xmlParseSystemLiteral(xmlParserCtxtPtr ctxt) { xmlChar *buf = NULL; int len = 0; int size = XML_PARSER_BUFFER_SIZE; int cur, l; xmlChar stop; int state = ctxt->instate; int count = 0; SHRINK; if (RAW == '"') { NEXT; stop = '"'; } else if (RAW == '\'') { NEXT; stop = '\''; } else { xmlFatalErr(ctxt, XML_ERR_LITERAL_NOT_STARTED, NULL); return(NULL); } buf = (xmlChar *) xmlMallocAtomic(size * sizeof(xmlChar)); if (buf == NULL) { xmlErrMemory(ctxt, NULL); return(NULL); } ctxt->instate = XML_PARSER_SYSTEM_LITERAL; cur = CUR_CHAR(l); while ((IS_CHAR(cur)) && (cur != stop)) { /* checked */ if (len + 5 >= size) { xmlChar *tmp; size *= 2; tmp = (xmlChar *) xmlRealloc(buf, size * sizeof(xmlChar)); if (tmp == NULL) { xmlFree(buf); xmlErrMemory(ctxt, NULL); ctxt->instate = (xmlParserInputState) state; return(NULL); } buf = tmp; } count++; if (count > 50) { GROW; count = 0; } COPY_BUF(l,buf,len,cur); NEXTL(l); cur = CUR_CHAR(l); if (cur == 0) { GROW; SHRINK; cur = CUR_CHAR(l); } } buf[len] = 0; ctxt->instate = (xmlParserInputState) state; if (!IS_CHAR(cur)) { xmlFatalErr(ctxt, XML_ERR_LITERAL_NOT_FINISHED, NULL); } else { NEXT; } return(buf); }
1
CVE-2013-2877
CWE-119
Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333] Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
336
libx11
2fcfcc49f3b1be854bb9085993a01d17c62acf60
_XimAttributeToValue( Xic ic, XIMResourceList res, CARD16 *data, INT16 data_len, XPointer value, BITMASK32 mode) { switch (res->resource_size) { case XimType_SeparatorOfNestedList: case XimType_NEST: break; case XimType_CARD8: case XimType_CARD16: case XimType_CARD32: case XimType_Window: case XimType_XIMHotKeyState: _XCopyToArg((XPointer)data, (XPointer *)&value, data_len); break; case XimType_STRING8: { char *str; if (!(value)) return False; if (!(str = Xmalloc(data_len + 1))) return False; (void)memcpy(str, (char *)data, data_len); str[data_len] = '\0'; *((char **)value) = str; break; } case XimType_XIMStyles: { CARD16 num = data[0]; register CARD32 *style_list = (CARD32 *)&data[2]; XIMStyle *style; XIMStyles *rep; register int i; char *p; unsigned int alloc_len; if (!(value)) return False; if (num > (USHRT_MAX / sizeof(XIMStyle))) return False; if ((sizeof(num) + (num * sizeof(XIMStyle))) > data_len) return False; alloc_len = sizeof(XIMStyles) + sizeof(XIMStyle) * num; if (alloc_len < sizeof(XIMStyles)) return False; if (!(p = Xmalloc(alloc_len))) return False; rep = (XIMStyles *)p; style = (XIMStyle *)(p + sizeof(XIMStyles)); for (i = 0; i < num; i++) style[i] = (XIMStyle)style_list[i]; rep->count_styles = (unsigned short)num; rep->supported_styles = style; *((XIMStyles **)value) = rep; break; } case XimType_XRectangle: { XRectangle *rep; if (!(value)) return False; if (!(rep = Xmalloc(sizeof(XRectangle)))) return False; rep->x = data[0]; rep->y = data[1]; rep->width = data[2]; rep->height = data[3]; *((XRectangle **)value) = rep; break; } case XimType_XPoint: { XPoint *rep; if (!(value)) return False; if (!(rep = Xmalloc(sizeof(XPoint)))) return False; rep->x = data[0]; rep->y = data[1]; *((XPoint **)value) = rep; break; } case XimType_XFontSet: { INT16 len = data[0]; char *base_name; XFontSet rep = (XFontSet)NULL; char **missing_list = NULL; int missing_count; char *def_string; if (!(value)) return False; if (!ic) return False; if (!(base_name = Xmalloc(len + 1))) return False; (void)strncpy(base_name, (char *)&data[1], (int)len); base_name[len] = '\0'; if (mode & XIM_PREEDIT_ATTR) { if (!strcmp(base_name, ic->private.proto.preedit_font)) { rep = ic->core.preedit_attr.fontset; } else if (!ic->private.proto.preedit_font_length) { rep = XCreateFontSet(ic->core.im->core.display, base_name, &missing_list, &missing_count, &def_string); } } else if (mode & XIM_STATUS_ATTR) { if (!strcmp(base_name, ic->private.proto.status_font)) { rep = ic->core.status_attr.fontset; } else if (!ic->private.proto.status_font_length) { rep = XCreateFontSet(ic->core.im->core.display, base_name, &missing_list, &missing_count, &def_string); } } Xfree(base_name); Xfree(missing_list); *((XFontSet *)value) = rep; break; } case XimType_XIMHotKeyTriggers: { CARD32 num = *((CARD32 *)data); register CARD32 *key_list = (CARD32 *)&data[2]; XIMHotKeyTrigger *key; XIMHotKeyTriggers *rep; register int i; char *p; unsigned int alloc_len; if (!(value)) return False; if (num > (UINT_MAX / sizeof(XIMHotKeyTrigger))) return False; if ((sizeof(num) + (num * sizeof(XIMHotKeyTrigger))) > data_len) return False; alloc_len = sizeof(XIMHotKeyTriggers) + sizeof(XIMHotKeyTrigger) * num; if (alloc_len < sizeof(XIMHotKeyTriggers)) return False; if (!(p = Xmalloc(alloc_len))) return False; rep = (XIMHotKeyTriggers *)p; key = (XIMHotKeyTrigger *)(p + sizeof(XIMHotKeyTriggers)); for (i = 0; i < num; i++, key_list += 3) { key[i].keysym = (KeySym)key_list[0]; /* keysym */ key[i].modifier = (int)key_list[1]; /* modifier */ key[i].modifier_mask = (int)key_list[2]; /* modifier_mask */ } rep->num_hot_key = (int)num; rep->key = key; *((XIMHotKeyTriggers **)value) = rep; break; } case XimType_XIMStringConversion: { break; } default: return False; } return True; }
1
CVE-2020-14344
CWE-190
Integer Overflow or Wraparound
The product performs a calculation that can produce an integer overflow or wraparound when the logic assumes that the resulting value will always be larger than the original value. This occurs when an integer value is incremented to a value that is too large to store in the associated representation. When this occurs, the value may become a very small or negative number.
Phase: Requirements Ensure that all protocols are strictly defined, such that all out-of-bounds behavior can be identified simply, and require strict conformance to the protocol. Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. If possible, choose a language or compiler that performs automatic bounds checking. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Use libraries or frameworks that make it easier to handle numbers without unexpected consequences. Examples include safe integer handling packages such as SafeInt (C++) or IntegerLib (C or C++). [REF-106] Phase: Implementation Strategy: Input Validation Perform input validation on any numeric input by ensuring that it is within the expected range. Enforce that the input meets both the minimum and maximum requirements for the expected range. Use unsigned integers where possible. This makes it easier to perform validation for integer overflows. When signed integers are required, ensure that the range check includes minimum values as well as maximum values. Phase: Implementation Understand the programming language's underlying representation and how it interacts with numeric calculation (CWE-681). Pay close attention to byte size discrepancies, precision, signed/unsigned distinctions, truncation, conversion and casting between types, "not-a-number" calculations, and how the language handles numbers that are too large or too small for its underlying representation. [REF-7] Also be careful to account for 32-bit, 64-bit, and other potential differences that may affect the numeric representation. Phase: Architecture and Design For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server. Phase: Implementation Strategy: Compilation or Build Hardening Examine compiler warnings closely and eliminate problems with potential security implications, such as signed / unsigned mismatch in memory operations, or use of uninitialized variables. Even if the weakness is rarely exploitable, a single failure may lead to the compromise of the entire system.
1,971
linux
3aa02cb664c5fb1042958c8d1aa8c35055a2ebc4
static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, unsigned int hwoff, unsigned long data, unsigned int off, snd_pcm_uframes_t frames) { struct snd_pcm_runtime *runtime = substream->runtime; int err; char __user *buf = (char __user *) data + frames_to_bytes(runtime, off); if (substream->ops->copy) { if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0) return err; } else { char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff); if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames))) return -EFAULT; } return 0; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
10,689
mongo
0a076417d1d7fba3632b73349a1fd29a83e68816
TEST(ExpressionRangeTest, ComputesRangeWithLargeNegativeStep) { assertExpectedResults("$range", {{{Value(3), Value(-5), Value(-3)}, Value(BSON_ARRAY(3 << 0 << -3))}}); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
10,994
Chrome
c13e1da62b5f5f0e6fe8c1f769a5a28415415244
error::Error GLES2DecoderImpl::HandleVertexAttribPointer( uint32 immediate_data_size, const gles2::VertexAttribPointer& c) { if (!bound_array_buffer_ || bound_array_buffer_->IsDeleted()) { SetGLError(GL_INVALID_VALUE, "glVertexAttribPointer: no array buffer bound"); return error::kNoError; } GLuint indx = c.indx; GLint size = c.size; GLenum type = c.type; GLboolean normalized = c.normalized; GLsizei stride = c.stride; GLsizei offset = c.offset; const void* ptr = reinterpret_cast<const void*>(offset); if (!validators_->vertex_attrib_type.IsValid(type)) { SetGLError(GL_INVALID_ENUM, "glVertexAttribPointer: type GL_INVALID_ENUM"); return error::kNoError; } if (!validators_->vertex_attrib_size.IsValid(size)) { SetGLError(GL_INVALID_VALUE, "glVertexAttribPointer: size GL_INVALID_VALUE"); return error::kNoError; } if (indx >= group_->max_vertex_attribs()) { SetGLError(GL_INVALID_VALUE, "glVertexAttribPointer: index out of range"); return error::kNoError; } if (stride < 0) { SetGLError(GL_INVALID_VALUE, "glVertexAttribPointer: stride < 0"); return error::kNoError; } if (stride > 255) { SetGLError(GL_INVALID_VALUE, "glVertexAttribPointer: stride > 255"); return error::kNoError; } if (offset < 0) { SetGLError(GL_INVALID_VALUE, "glVertexAttribPointer: offset < 0"); return error::kNoError; } GLsizei component_size = GLES2Util::GetGLTypeSizeForTexturesAndBuffers(type); if (offset % component_size > 0) { SetGLError(GL_INVALID_OPERATION, "glVertexAttribPointer: offset not valid for type"); return error::kNoError; } if (stride % component_size > 0) { SetGLError(GL_INVALID_OPERATION, "glVertexAttribPointer: stride not valid for type"); return error::kNoError; } vertex_attrib_manager_.SetAttribInfo( indx, bound_array_buffer_, size, type, normalized, stride, stride != 0 ? stride : component_size * size, offset); if (type != GL_FIXED) { glVertexAttribPointer(indx, size, type, normalized, stride, ptr); } return error::kNoError; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
10,121
xserver
cad5a1050b7184d828aef9c1dd151c3ab649d37e
XineramaXvShmPutImage(ClientPtr client) { REQUEST(xvShmPutImageReq); PanoramiXRes *draw, *gc, *port; Bool send_event = stuff->send_event; Bool isRoot; int result, i, x, y; REQUEST_SIZE_MATCH(xvShmPutImageReq); result = dixLookupResourceByClass((void **) &draw, stuff->drawable, XRC_DRAWABLE, client, DixWriteAccess); if (result != Success) result = dixLookupResourceByType((void **) &gc, stuff->gc, XRT_GC, client, DixReadAccess); if (result != Success) return result; result = dixLookupResourceByType((void **) &port, stuff->port, XvXRTPort, client, DixReadAccess); if (result != Success) return result; isRoot = (draw->type == XRT_WINDOW) && draw->u.win.root; x = stuff->drw_x; y = stuff->drw_y; FOR_NSCREENS_BACKWARD(i) { if (port->info[i].id) { stuff->drawable = draw->info[i].id; stuff->port = port->info[i].id; stuff->gc = gc->info[i].id; stuff->drw_x = x; stuff->drw_y = y; if (isRoot) { stuff->drw_x -= screenInfo.screens[i]->x; stuff->drw_y -= screenInfo.screens[i]->y; } stuff->send_event = (send_event && !i) ? 1 : 0; result = ProcXvShmPutImage(client); } } return result; }
1
CVE-2017-12187
CWE-20
Improper Input Validation
The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly.
Phase: Architecture and Design Strategy: Attack Surface Reduction Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111] Phase: Architecture and Design Strategy: Libraries or Frameworks Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173). Phases: Architecture and Design; Implementation Strategy: Attack Surface Reduction Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls. Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. Effectiveness: High Phase: Architecture and Design For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server. Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings. Phase: Implementation When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined. Phase: Implementation Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow. Phase: Implementation Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained. Phase: Implementation Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control. Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content. Phase: Implementation When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so.
4,502
teeworlds
c68402fa7e279d42886d5951d1ea8ac2facc1ea5
int CServerBan::BanRange(const CNetRange *pRange, int Seconds, const char *pReason) { if(pRange->IsValid()) return BanExt(&m_BanRangePool, pRange, Seconds, pReason); Console()->Print(IConsole::OUTPUT_LEVEL_STANDARD, "net_ban", "ban failed (invalid range)"); return -1; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
15,554
Android
295c883fe3105b19bcd0f9e07d54c6b589fc5bff
OMX_ERRORTYPE SoftMP3::internalGetParameter( OMX_INDEXTYPE index, OMX_PTR params) { switch (index) { case OMX_IndexParamAudioPcm: { OMX_AUDIO_PARAM_PCMMODETYPE *pcmParams = (OMX_AUDIO_PARAM_PCMMODETYPE *)params; if (pcmParams->nPortIndex > 1) { return OMX_ErrorUndefined; } pcmParams->eNumData = OMX_NumericalDataSigned; pcmParams->eEndian = OMX_EndianBig; pcmParams->bInterleaved = OMX_TRUE; pcmParams->nBitPerSample = 16; pcmParams->ePCMMode = OMX_AUDIO_PCMModeLinear; pcmParams->eChannelMapping[0] = OMX_AUDIO_ChannelLF; pcmParams->eChannelMapping[1] = OMX_AUDIO_ChannelRF; pcmParams->nChannels = mNumChannels; pcmParams->nSamplingRate = mSamplingRate; return OMX_ErrorNone; } case OMX_IndexParamAudioMp3: { OMX_AUDIO_PARAM_MP3TYPE *mp3Params = (OMX_AUDIO_PARAM_MP3TYPE *)params; if (mp3Params->nPortIndex > 1) { return OMX_ErrorUndefined; } mp3Params->nChannels = mNumChannels; mp3Params->nBitRate = 0 /* unknown */; mp3Params->nSampleRate = mSamplingRate; return OMX_ErrorNone; } default: return SimpleSoftOMXComponent::internalGetParameter(index, params); } }
1
CVE-2016-2476
CWE-119
Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333] Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
4,396
linux
a8b0ca17b80e92faab46ee7179ba9e99ccb61233
int handle_ldf_stq(u32 insn, struct pt_regs *regs) { unsigned long addr = compute_effective_address(regs, insn, 0); int freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20); struct fpustate *f = FPUSTATE; int asi = decode_asi(insn, regs); int flag = (freg < 32) ? FPRS_DL : FPRS_DU; perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, 0, regs, 0); save_and_clear_fpu(); current_thread_info()->xfsr[0] &= ~0x1c000; if (freg & 3) { current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */; do_fpother(regs); return 0; } if (insn & 0x200000) { /* STQ */ u64 first = 0, second = 0; if (current_thread_info()->fpsaved[0] & flag) { first = *(u64 *)&f->regs[freg]; second = *(u64 *)&f->regs[freg+2]; } if (asi < 0x80) { do_privact(regs); return 1; } switch (asi) { case ASI_P: case ASI_S: break; case ASI_PL: case ASI_SL: { /* Need to convert endians */ u64 tmp = __swab64p(&first); first = __swab64p(&second); second = tmp; break; } default: if (tlb_type == hypervisor) sun4v_data_access_exception(regs, addr, 0); else spitfire_data_access_exception(regs, 0, addr); return 1; } if (put_user (first >> 32, (u32 __user *)addr) || __put_user ((u32)first, (u32 __user *)(addr + 4)) || __put_user (second >> 32, (u32 __user *)(addr + 8)) || __put_user ((u32)second, (u32 __user *)(addr + 12))) { if (tlb_type == hypervisor) sun4v_data_access_exception(regs, addr, 0); else spitfire_data_access_exception(regs, 0, addr); return 1; } } else { /* LDF, LDDF, LDQF */ u32 data[4] __attribute__ ((aligned(8))); int size, i; int err; if (asi < 0x80) { do_privact(regs); return 1; } else if (asi > ASI_SNFL) { if (tlb_type == hypervisor) sun4v_data_access_exception(regs, addr, 0); else spitfire_data_access_exception(regs, 0, addr); return 1; } switch (insn & 0x180000) { case 0x000000: size = 1; break; case 0x100000: size = 4; break; default: size = 2; break; } for (i = 0; i < size; i++) data[i] = 0; err = get_user (data[0], (u32 __user *) addr); if (!err) { for (i = 1; i < size; i++) err |= __get_user (data[i], (u32 __user *)(addr + 4*i)); } if (err && !(asi & 0x2 /* NF */)) { if (tlb_type == hypervisor) sun4v_data_access_exception(regs, addr, 0); else spitfire_data_access_exception(regs, 0, addr); return 1; } if (asi & 0x8) /* Little */ { u64 tmp; switch (size) { case 1: data[0] = le32_to_cpup(data + 0); break; default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0)); break; case 4: tmp = le64_to_cpup((u64 *)(data + 0)); *(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2)); *(u64 *)(data + 2) = tmp; break; } } if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) { current_thread_info()->fpsaved[0] = FPRS_FEF; current_thread_info()->gsr[0] = 0; } if (!(current_thread_info()->fpsaved[0] & flag)) { if (freg < 32) memset(f->regs, 0, 32*sizeof(u32)); else memset(f->regs+32, 0, 32*sizeof(u32)); } memcpy(f->regs + freg, data, size * 4); current_thread_info()->fpsaved[0] |= flag; } advance(regs); return 1; }
1
CVE-2011-2918
CWE-399
Resource Management Errors
Weaknesses in this category are related to improper management of system resources.
Not Found in CWE Page
3,990
Chrome
11a4cc4a6d6e665d9a118fada4b7c658d6f70d95
void RenderLayerScrollableArea::setScrollOffset(const IntPoint& newScrollOffset) { if (!box().isMarquee()) { if (m_scrollDimensionsDirty) computeScrollDimensions(); } if (scrollOffset() == toIntSize(newScrollOffset)) return; setScrollOffset(toIntSize(newScrollOffset)); LocalFrame* frame = box().frame(); ASSERT(frame); RefPtr<FrameView> frameView = box().frameView(); TRACE_EVENT1(TRACE_DISABLED_BY_DEFAULT("devtools.timeline"), "ScrollLayer", "data", InspectorScrollLayerEvent::data(&box())); InspectorInstrumentation::willScrollLayer(&box()); const RenderLayerModelObject* paintInvalidationContainer = box().containerForPaintInvalidation(); if (!frameView->isInPerformLayout()) { layer()->clipper().clearClipRectsIncludingDescendants(); box().setPreviousPaintInvalidationRect(box().boundsRectForPaintInvalidation(paintInvalidationContainer)); frameView->updateAnnotatedRegions(); frameView->updateWidgetPositions(); RELEASE_ASSERT(frameView->renderView()); updateCompositingLayersAfterScroll(); } frame->selection().setCaretRectNeedsUpdate(); FloatQuad quadForFakeMouseMoveEvent = FloatQuad(layer()->renderer()->previousPaintInvalidationRect()); quadForFakeMouseMoveEvent = paintInvalidationContainer->localToAbsoluteQuad(quadForFakeMouseMoveEvent); frame->eventHandler().dispatchFakeMouseMoveEventSoonInQuad(quadForFakeMouseMoveEvent); bool requiresPaintInvalidation = true; if (!box().isMarquee() && box().view()->compositor()->inCompositingMode()) { DisableCompositingQueryAsserts disabler; bool onlyScrolledCompositedLayers = scrollsOverflow() && !layer()->hasVisibleNonLayerContent() && !layer()->hasNonCompositedChild() && !layer()->hasBlockSelectionGapBounds() && box().style()->backgroundLayers().attachment() != LocalBackgroundAttachment; if (usesCompositedScrolling() || onlyScrolledCompositedLayers) requiresPaintInvalidation = false; } if (requiresPaintInvalidation) { if (box().frameView()->isInPerformLayout()) box().setShouldDoFullPaintInvalidation(true); else box().invalidatePaintUsingContainer(paintInvalidationContainer, layer()->renderer()->previousPaintInvalidationRect(), InvalidationScroll); } if (box().node()) box().node()->document().enqueueScrollEventForNode(box().node()); if (AXObjectCache* cache = box().document().existingAXObjectCache()) cache->handleScrollPositionChanged(&box()); InspectorInstrumentation::didScrollLayer(&box()); }
1
CVE-2014-3191
CWE-416
Use After Free
The product reuses or references memory after it has been freed. At some point afterward, the memory may be allocated again and saved in another pointer, while the original pointer references a location somewhere within the new allocation. Any operations using the original pointer are no longer valid because the memory "belongs" to the code that operates on the new pointer.
Phase: Architecture and Design Strategy: Language Selection Choose a language that provides automatic memory management. Phase: Implementation Strategy: Attack Surface Reduction When freeing pointers, be sure to set them to NULL once they are freed. However, the utilization of multiple or complex data structures may lower the usefulness of this strategy. Effectiveness: Defense in Depth Note: If a bug causes an attempted access of this pointer, then a NULL dereference could still lead to a crash or other unexpected behavior, but it will reduce or eliminate the risk of code execution.
4,956
openssl
1421e0c584ae9120ca1b88098f13d6d2e90b83a3
int ssl3_send_certificate_request(SSL *s) { unsigned char *p,*d; int i,j,nl,off,n; STACK_OF(X509_NAME) *sk=NULL; X509_NAME *name; BUF_MEM *buf; if (s->state == SSL3_ST_SW_CERT_REQ_A) { buf=s->init_buf; d=p=ssl_handshake_start(s); /* get the list of acceptable cert types */ p++; n=ssl3_get_req_cert_type(s,p); d[0]=n; p+=n; n++; if (SSL_USE_SIGALGS(s)) { const unsigned char *psigs; unsigned char *etmp = p; nl = tls12_get_psigalgs(s, &psigs); /* Skip over length for now */ p += 2; nl = tls12_copy_sigalgs(s, p, psigs, nl); /* Now fill in length */ s2n(nl, etmp); p += nl; n += nl + 2; } off=n; p+=2; n+=2; sk=SSL_get_client_CA_list(s); nl=0; if (sk != NULL) { for (i=0; i<sk_X509_NAME_num(sk); i++) { name=sk_X509_NAME_value(sk,i); j=i2d_X509_NAME(name,NULL); if (!BUF_MEM_grow_clean(buf,SSL_HM_HEADER_LENGTH(s)+n+j+2)) { SSLerr(SSL_F_SSL3_SEND_CERTIFICATE_REQUEST,ERR_R_BUF_LIB); goto err; } p = ssl_handshake_start(s) + n; if (!(s->options & SSL_OP_NETSCAPE_CA_DN_BUG)) { s2n(j,p); i2d_X509_NAME(name,&p); n+=2+j; nl+=2+j; } else { d=p; i2d_X509_NAME(name,&p); j-=2; s2n(j,d); j+=2; n+=j; nl+=j; } } } /* else no CA names */ p = ssl_handshake_start(s) + off; s2n(nl,p); ssl_set_handshake_header(s, SSL3_MT_CERTIFICATE_REQUEST, n); #ifdef NETSCAPE_HANG_BUG if (!SSL_IS_DTLS(s)) { if (!BUF_MEM_grow_clean(buf, s->init_num + 4)) { SSLerr(SSL_F_SSL3_SEND_CERTIFICATE_REQUEST,ERR_R_BUF_LIB); goto err; } p=(unsigned char *)s->init_buf->data + s->init_num; /* do the header */ *(p++)=SSL3_MT_SERVER_DONE; *(p++)=0; *(p++)=0; *(p++)=0; s->init_num += 4; } #endif s->state = SSL3_ST_SW_CERT_REQ_B; } /* SSL3_ST_SW_CERT_REQ_B */ return ssl_do_write(s); err: return(-1); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
14,493
php-src
70ddc853fd4757004ac488e6ee892897bb6f395a
PHPAPI int php_exec(int type, char *cmd, zval *array, zval *return_value TSRMLS_DC) { FILE *fp; char *buf; int l = 0, pclose_return; char *b, *d=NULL; php_stream *stream; size_t buflen, bufl = 0; #if PHP_SIGCHILD void (*sig_handler)() = NULL; #endif #if PHP_SIGCHILD sig_handler = signal (SIGCHLD, SIG_DFL); #endif #ifdef PHP_WIN32 fp = VCWD_POPEN(cmd, "rb"); #else fp = VCWD_POPEN(cmd, "r"); #endif if (!fp) { php_error_docref(NULL TSRMLS_CC, E_WARNING, "Unable to fork [%s]", cmd); goto err; } stream = php_stream_fopen_from_pipe(fp, "rb"); buf = (char *) emalloc(EXEC_INPUT_BUF); buflen = EXEC_INPUT_BUF; if (type != 3) { b = buf; while (php_stream_get_line(stream, b, EXEC_INPUT_BUF, &bufl)) { /* no new line found, let's read some more */ if (b[bufl - 1] != '\n' && !php_stream_eof(stream)) { if (buflen < (bufl + (b - buf) + EXEC_INPUT_BUF)) { bufl += b - buf; buflen = bufl + EXEC_INPUT_BUF; buf = erealloc(buf, buflen); b = buf + bufl; } else { b += bufl; } continue; } else if (b != buf) { bufl += b - buf; } if (type == 1) { PHPWRITE(buf, bufl); if (php_output_get_level(TSRMLS_C) < 1) { sapi_flush(TSRMLS_C); } } else if (type == 2) { /* strip trailing whitespaces */ l = bufl; while (l-- && isspace(((unsigned char *)buf)[l])); if (l != (int)(bufl - 1)) { bufl = l + 1; buf[bufl] = '\0'; } add_next_index_stringl(array, buf, bufl, 1); } b = buf; } if (bufl) { /* strip trailing whitespaces if we have not done so already */ if ((type == 2 && buf != b) || type != 2) { l = bufl; while (l-- && isspace(((unsigned char *)buf)[l])); if (l != (int)(bufl - 1)) { bufl = l + 1; buf[bufl] = '\0'; } if (type == 2) { add_next_index_stringl(array, buf, bufl, 1); } } /* Return last line from the shell command */ RETVAL_STRINGL(buf, bufl); } else { /* should return NULL, but for BC we return "" */ RETVAL_EMPTY_STRING(); } } else { while((bufl = php_stream_read(stream, buf, EXEC_INPUT_BUF)) > 0) { PHPWRITE(buf, bufl); } } pclose_return = php_stream_close(stream); efree(buf); done: #if PHP_SIGCHILD if (sig_handler) { signal(SIGCHLD, sig_handler); } #endif if (d) { efree(d); } return pclose_return; err: pclose_return = -1; goto done; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
12,822
linux
792039c73cf176c8e39a6e8beef2c94ff46522ed
static struct l2cap_chan *l2cap_sock_new_connection_cb(struct l2cap_chan *chan) { struct sock *sk, *parent = chan->data; /* Check for backlog size */ if (sk_acceptq_is_full(parent)) { BT_DBG("backlog full %d", parent->sk_ack_backlog); return NULL; } sk = l2cap_sock_alloc(sock_net(parent), NULL, BTPROTO_L2CAP, GFP_ATOMIC); if (!sk) return NULL; bt_sock_reclassify_lock(sk, BTPROTO_L2CAP); l2cap_sock_init(sk, parent); return l2cap_pi(sk)->chan; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
11,255
libcroco
898e3a8c8c0314d2e6b106809a8e3e93cf9d4394
cr_input_peek_byte (CRInput const * a_this, enum CRSeekPos a_origin, gulong a_offset, guchar * a_byte) { gulong abs_offset = 0; g_return_val_if_fail (a_this && PRIVATE (a_this) && a_byte, CR_BAD_PARAM_ERROR); switch (a_origin) { case CR_SEEK_CUR: abs_offset = PRIVATE (a_this)->next_byte_index - 1 + a_offset; break; case CR_SEEK_BEGIN: abs_offset = a_offset; break; case CR_SEEK_END: abs_offset = PRIVATE (a_this)->in_buf_size - 1 - a_offset; break; default: return CR_BAD_PARAM_ERROR; } if (abs_offset < PRIVATE (a_this)->in_buf_size) { *a_byte = PRIVATE (a_this)->in_buf[abs_offset]; return CR_OK; } else { return CR_END_OF_INPUT_ERROR; } }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
17,436
openssl
5fbc59cac60db4d7c3172152b8bdafe0c675fabd
BIO *PKCS7_dataDecode(PKCS7 *p7, EVP_PKEY *pkey, BIO *in_bio, X509 *pcert) { int i, j; BIO *out = NULL, *btmp = NULL, *etmp = NULL, *bio = NULL; X509_ALGOR *xa; ASN1_OCTET_STRING *data_body = NULL; const EVP_MD *evp_md; const EVP_CIPHER *evp_cipher = NULL; EVP_CIPHER_CTX *evp_ctx = NULL; X509_ALGOR *enc_alg = NULL; STACK_OF(X509_ALGOR) *md_sk = NULL; STACK_OF(PKCS7_RECIP_INFO) *rsk = NULL; PKCS7_RECIP_INFO *ri = NULL; unsigned char *ek = NULL, *tkey = NULL; int eklen = 0, tkeylen = 0; if (p7 == NULL) { PKCS7err(PKCS7_F_PKCS7_DATADECODE, PKCS7_R_INVALID_NULL_POINTER); return NULL; } if (p7->d.ptr == NULL) { PKCS7err(PKCS7_F_PKCS7_DATADECODE, PKCS7_R_NO_CONTENT); return NULL; } i = OBJ_obj2nid(p7->type); p7->state = PKCS7_S_HEADER; switch (i) { case NID_pkcs7_signed: /* * p7->d.sign->contents is a PKCS7 structure consisting of a contentType * field and optional content. * data_body is NULL if that structure has no (=detached) content * or if the contentType is wrong (i.e., not "data"). */ data_body = PKCS7_get_octet_string(p7->d.sign->contents); if (!PKCS7_is_detached(p7) && data_body == NULL) { PKCS7err(PKCS7_F_PKCS7_DATADECODE, PKCS7_R_INVALID_SIGNED_DATA_TYPE); goto err; } md_sk = p7->d.sign->md_algs; break; case NID_pkcs7_signedAndEnveloped: rsk = p7->d.signed_and_enveloped->recipientinfo; md_sk = p7->d.signed_and_enveloped->md_algs; /* data_body is NULL if the optional EncryptedContent is missing. */ data_body = p7->d.signed_and_enveloped->enc_data->enc_data; enc_alg = p7->d.signed_and_enveloped->enc_data->algorithm; evp_cipher = EVP_get_cipherbyobj(enc_alg->algorithm); if (evp_cipher == NULL) { PKCS7err(PKCS7_F_PKCS7_DATADECODE, PKCS7_R_UNSUPPORTED_CIPHER_TYPE); goto err; } break; case NID_pkcs7_enveloped: rsk = p7->d.enveloped->recipientinfo; enc_alg = p7->d.enveloped->enc_data->algorithm; /* data_body is NULL if the optional EncryptedContent is missing. */ data_body = p7->d.enveloped->enc_data->enc_data; evp_cipher = EVP_get_cipherbyobj(enc_alg->algorithm); if (evp_cipher == NULL) { PKCS7err(PKCS7_F_PKCS7_DATADECODE, PKCS7_R_UNSUPPORTED_CIPHER_TYPE); goto err; } break; default: PKCS7err(PKCS7_F_PKCS7_DATADECODE, PKCS7_R_UNSUPPORTED_CONTENT_TYPE); goto err; } /* Detached content must be supplied via in_bio instead. */ if (data_body == NULL && in_bio == NULL) { PKCS7err(PKCS7_F_PKCS7_DATADECODE, PKCS7_R_NO_CONTENT); goto err; } /* We will be checking the signature */ if (md_sk != NULL) { for (i = 0; i < sk_X509_ALGOR_num(md_sk); i++) { xa = sk_X509_ALGOR_value(md_sk, i); if ((btmp = BIO_new(BIO_f_md())) == NULL) { PKCS7err(PKCS7_F_PKCS7_DATADECODE, ERR_R_BIO_LIB); goto err; } j = OBJ_obj2nid(xa->algorithm); evp_md = EVP_get_digestbynid(j); if (evp_md == NULL) { PKCS7err(PKCS7_F_PKCS7_DATADECODE, PKCS7_R_UNKNOWN_DIGEST_TYPE); goto err; } BIO_set_md(btmp, evp_md); if (out == NULL) out = btmp; else BIO_push(out, btmp); btmp = NULL; } } if (evp_cipher != NULL) { #if 0 unsigned char key[EVP_MAX_KEY_LENGTH]; unsigned char iv[EVP_MAX_IV_LENGTH]; unsigned char *p; int keylen, ivlen; int max; X509_OBJECT ret; #endif if ((etmp = BIO_new(BIO_f_cipher())) == NULL) { PKCS7err(PKCS7_F_PKCS7_DATADECODE, ERR_R_BIO_LIB); goto err; } /* * It was encrypted, we need to decrypt the secret key with the * private key */ /* * Find the recipientInfo which matches the passed certificate (if * any) */ if (pcert) { for (i = 0; i < sk_PKCS7_RECIP_INFO_num(rsk); i++) { ri = sk_PKCS7_RECIP_INFO_value(rsk, i); if (!pkcs7_cmp_ri(ri, pcert)) break; ri = NULL; } if (ri == NULL) { PKCS7err(PKCS7_F_PKCS7_DATADECODE, PKCS7_R_NO_RECIPIENT_MATCHES_CERTIFICATE); goto err; } } /* If we haven't got a certificate try each ri in turn */ if (pcert == NULL) { /* * Always attempt to decrypt all rinfo even after sucess as a * defence against MMA timing attacks. */ for (i = 0; i < sk_PKCS7_RECIP_INFO_num(rsk); i++) { ri = sk_PKCS7_RECIP_INFO_value(rsk, i); if (pkcs7_decrypt_rinfo(&ek, &eklen, ri, pkey) < 0) goto err; ERR_clear_error(); } } else { /* Only exit on fatal errors, not decrypt failure */ if (pkcs7_decrypt_rinfo(&ek, &eklen, ri, pkey) < 0) goto err; ERR_clear_error(); } evp_ctx = NULL; BIO_get_cipher_ctx(etmp, &evp_ctx); if (EVP_CipherInit_ex(evp_ctx, evp_cipher, NULL, NULL, NULL, 0) <= 0) goto err; if (EVP_CIPHER_asn1_to_param(evp_ctx, enc_alg->parameter) < 0) goto err; /* Generate random key as MMA defence */ tkeylen = EVP_CIPHER_CTX_key_length(evp_ctx); tkey = OPENSSL_malloc(tkeylen); if (!tkey) goto err; if (EVP_CIPHER_CTX_rand_key(evp_ctx, tkey) <= 0) goto err; if (ek == NULL) { ek = tkey; eklen = tkeylen; tkey = NULL; } if (eklen != EVP_CIPHER_CTX_key_length(evp_ctx)) { /* * Some S/MIME clients don't use the same key and effective key * length. The key length is determined by the size of the * decrypted RSA key. */ if (!EVP_CIPHER_CTX_set_key_length(evp_ctx, eklen)) { /* Use random key as MMA defence */ OPENSSL_cleanse(ek, eklen); OPENSSL_free(ek); ek = tkey; eklen = tkeylen; tkey = NULL; } } /* Clear errors so we don't leak information useful in MMA */ ERR_clear_error(); if (EVP_CipherInit_ex(evp_ctx, NULL, NULL, ek, NULL, 0) <= 0) goto err; if (ek) { OPENSSL_cleanse(ek, eklen); OPENSSL_free(ek); ek = NULL; } if (tkey) { OPENSSL_cleanse(tkey, tkeylen); OPENSSL_free(tkey); tkey = NULL; } if (out == NULL) out = etmp; else BIO_push(out, etmp); etmp = NULL; } #if 1 if (in_bio != NULL) { bio = in_bio; } else { # if 0 bio = BIO_new(BIO_s_mem()); /* * We need to set this so that when we have read all the data, the * encrypt BIO, if present, will read EOF and encode the last few * bytes */ BIO_set_mem_eof_return(bio, 0); if (data_body->length > 0) BIO_write(bio, (char *)data_body->data, data_body->length); # else if (data_body->length > 0) bio = BIO_new_mem_buf(data_body->data, data_body->length); else { bio = BIO_new(BIO_s_mem()); BIO_set_mem_eof_return(bio, 0); } if (bio == NULL) goto err; # endif } BIO_push(out, bio); bio = NULL; #endif if (0) { err: if (ek) { OPENSSL_cleanse(ek, eklen); OPENSSL_free(ek); } if (tkey) { OPENSSL_cleanse(tkey, tkeylen); OPENSSL_free(tkey); } if (out != NULL) BIO_free_all(out); if (btmp != NULL) BIO_free_all(btmp); if (etmp != NULL) BIO_free_all(etmp); if (bio != NULL) BIO_free_all(bio); out = NULL; } return (out); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
22,975
libssh
391c78de9d0f7baec3a44d86a76f4e1324eb9529
ssh_scp ssh_scp_new(ssh_session session, int mode, const char *location) { ssh_scp scp = NULL; if (session == NULL) { goto error; } scp = (ssh_scp)calloc(1, sizeof(struct ssh_scp_struct)); if (scp == NULL) { ssh_set_error(session, SSH_FATAL, "Error allocating memory for ssh_scp"); goto error; } if ((mode & ~SSH_SCP_RECURSIVE) != SSH_SCP_WRITE && (mode & ~SSH_SCP_RECURSIVE) != SSH_SCP_READ) { ssh_set_error(session, SSH_FATAL, "Invalid mode %d for ssh_scp_new()", mode); goto error; } if (strlen(location) > 32 * 1024) { ssh_set_error(session, SSH_FATAL, "Location path is too long"); goto error; } scp->location = strdup(location); if (scp->location == NULL) { ssh_set_error(session, SSH_FATAL, "Error allocating memory for ssh_scp"); goto error; } scp->session = session; scp->mode = mode & ~SSH_SCP_RECURSIVE; scp->recursive = (mode & SSH_SCP_RECURSIVE) != 0; scp->channel = NULL; scp->state = SSH_SCP_NEW; return scp; error: ssh_scp_free(scp); return NULL; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
21,336
tensorflow
7cf73a2274732c9d82af51c2bc2cf90d13cd7e6d
TEST(ArrayOpsTest, QuantizeAndDequantizeV2_ShapeFn) { ShapeInferenceTestOp op("QuantizeAndDequantizeV2"); op.input_tensors.resize(3); TF_ASSERT_OK(NodeDefBuilder("test", "QuantizeAndDequantizeV2") .Input("input", 0, DT_FLOAT) .Input("input_min", 1, DT_FLOAT) .Input("input_max", 2, DT_FLOAT) .Attr("signed_input", true) .Attr("num_bits", 8) .Attr("range_given", false) .Attr("narrow_range", false) .Attr("axis", -1) .Finalize(&op.node_def)); INFER_OK(op, "?;?;?", "in0"); INFER_OK(op, "[];?;?", "in0"); INFER_OK(op, "[1,2,?,4,5];?;?", "in0"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[1,2,?,4,5];[1];[]"); INFER_ERROR("Shapes must be equal rank, but are 1 and 0", op, "[1,2,?,4,5];[];[1]"); INFER_ERROR("Shape must be rank 0 but is rank 1", op, "[1,2,?,4,5];[1];[1]"); }
1
CVE-2021-41205
CWE-125
Out-of-bounds Read
The product reads data past the end, or before the beginning, of the intended buffer.
Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. To reduce the likelihood of introducing an out-of-bounds read, ensure that you validate and ensure correct calculations for any length argument, buffer size calculation, or offset. Be especially careful of relying on a sentinel (i.e. special character such as NUL) in untrusted inputs. Phase: Architecture and Design Strategy: Language Selection Use a language that provides appropriate memory abstractions.
4,788
Chrome
dc7b094a338c6c521f918f478e993f0f74bbea0d
static void ConnectionChangeHandler(void* object, bool connected) { if (!BrowserThread::CurrentlyOn(BrowserThread::UI)) { LOG(ERROR) << "Not on UI thread"; return; } InputMethodLibraryImpl* input_method_library = static_cast<InputMethodLibraryImpl*>(object); input_method_library->ime_connected_ = connected; if (connected) { input_method_library->pending_config_requests_.clear(); input_method_library->pending_config_requests_.insert( input_method_library->current_config_values_.begin(), input_method_library->current_config_values_.end()); input_method_library->FlushImeConfig(); input_method_library->ChangeInputMethod( input_method_library->previous_input_method().id); input_method_library->ChangeInputMethod( input_method_library->current_input_method().id); } }
1
CVE-2011-2804
CWE-399
Resource Management Errors
Weaknesses in this category are related to improper management of system resources.
Not Found in CWE Page
1,079
savannah
2cdc4562f873237f1c77d43540537c7a721d3fd8
cf2_hintmap_build( CF2_HintMap hintmap, CF2_ArrStack hStemHintArray, CF2_ArrStack vStemHintArray, CF2_HintMask hintMask, CF2_Fixed hintOrigin, FT_Bool initialMap ) { FT_Byte* maskPtr; CF2_Font font = hintmap->font; CF2_HintMaskRec tempHintMask; size_t bitCount, i; FT_Byte maskByte; /* check whether initial map is constructed */ if ( !initialMap && !cf2_hintmap_isValid( hintmap->initialHintMap ) ) { /* make recursive call with initialHintMap and temporary mask; */ /* temporary mask will get all bits set, below */ cf2_hintmask_init( &tempHintMask, hintMask->error ); cf2_hintmap_build( hintmap->initialHintMap, hStemHintArray, vStemHintArray, &tempHintMask, hintOrigin, TRUE ); } if ( !cf2_hintmask_isValid( hintMask ) ) { /* without a hint mask, assume all hints are active */ cf2_hintmask_setAll( hintMask, cf2_arrstack_size( hStemHintArray ) + cf2_arrstack_size( vStemHintArray ) ); if ( !cf2_hintmask_isValid( hintMask ) ) return; /* too many stem hints */ } /* begin by clearing the map */ hintmap->count = 0; hintmap->lastIndex = 0; /* make a copy of the hint mask so we can modify it */ tempHintMask = *hintMask; maskPtr = cf2_hintmask_getMaskPtr( &tempHintMask ); /* use the hStem hints only, which are first in the mask */ /* TODO: compare this to cffhintmaskGetBitCount */ bitCount = cf2_arrstack_size( hStemHintArray ); /* synthetic embox hints get highest priority */ if ( font->blues.doEmBoxHints ) { cf2_hint_initZero( &dummy ); /* invalid hint map element */ /* ghost bottom */ cf2_hintmap_insertHint( hintmap, &font->blues.emBoxBottomEdge, &dummy ); /* ghost top */ cf2_hintmap_insertHint( hintmap, &dummy, &font->blues.emBoxTopEdge ); } /* insert hints captured by a blue zone or already locked (higher */ /* priority) */ for ( i = 0, maskByte = 0x80; i < bitCount; i++ ) { if ( maskByte & *maskPtr ) { /* expand StemHint into two `CF2_Hint' elements */ CF2_HintRec bottomHintEdge, topHintEdge; cf2_hint_init( &bottomHintEdge, hStemHintArray, i, font, hintOrigin, hintmap->scale, TRUE /* bottom */ ); cf2_hint_init( &topHintEdge, hStemHintArray, i, font, hintOrigin, hintmap->scale, FALSE /* top */ ); if ( cf2_hint_isLocked( &bottomHintEdge ) || cf2_hint_isLocked( &topHintEdge ) || cf2_blues_capture( &font->blues, &bottomHintEdge, &topHintEdge ) ) { /* insert captured hint into map */ cf2_hintmap_insertHint( hintmap, &bottomHintEdge, &topHintEdge ); *maskPtr &= ~maskByte; /* turn off the bit for this hint */ } } if ( ( i & 7 ) == 7 ) { /* move to next mask byte */ maskPtr++; maskByte = 0x80; } else maskByte >>= 1; } /* initial hint map includes only captured hints plus maybe one at 0 */ /* * TODO: There is a problem here because we are trying to build a * single hint map containing all captured hints. It is * possible for there to be conflicts between captured hints, * either because of darkening or because the hints are in * separate hint zones (we are ignoring hint zones for the * initial map). An example of the latter is MinionPro-Regular * v2.030 glyph 883 (Greek Capital Alpha with Psili) at 15ppem. * A stem hint for the psili conflicts with the top edge hint * for the base character. The stem hint gets priority because * of its sort order. In glyph 884 (Greek Capital Alpha with * Psili and Oxia), the top of the base character gets a stem * hint, and the psili does not. This creates different initial * maps for the two glyphs resulting in different renderings of * the base character. Will probably defer this either as not * worth the cost or as a font bug. I don't think there is any * good reason for an accent to be captured by an alignment * zone. -darnold 2/12/10 */ if ( initialMap ) { /* Apply a heuristic that inserts a point for (0,0), unless it's */ /* already covered by a mapping. This locks the baseline for glyphs */ /* that have no baseline hints. */ if ( hintmap->count == 0 || hintmap->edge[0].csCoord > 0 || hintmap->edge[hintmap->count - 1].csCoord < 0 ) { /* all edges are above 0 or all edges are below 0; */ /* construct a locked edge hint at 0 */ CF2_HintRec edge, invalid; cf2_hint_initZero( &edge ); edge.flags = CF2_GhostBottom | CF2_Locked | CF2_Synthetic; edge.scale = hintmap->scale; cf2_hint_initZero( &invalid ); cf2_hintmap_insertHint( hintmap, &edge, &invalid ); } } else { /* insert remaining hints */ maskPtr = cf2_hintmask_getMaskPtr( &tempHintMask ); for ( i = 0, maskByte = 0x80; i < bitCount; i++ ) { if ( maskByte & *maskPtr ) { CF2_HintRec bottomHintEdge, topHintEdge; cf2_hint_init( &bottomHintEdge, hStemHintArray, i, font, hintOrigin, hintmap->scale, TRUE /* bottom */ ); cf2_hint_init( &topHintEdge, hStemHintArray, i, font, hintOrigin, hintmap->scale, FALSE /* top */ ); cf2_hintmap_insertHint( hintmap, &bottomHintEdge, &topHintEdge ); } if ( ( i & 7 ) == 7 ) { /* move to next mask byte */ maskPtr++; maskByte = 0x80; } else maskByte >>= 1; } } /* * Note: The following line is a convenient place to break when * debugging hinting. Examine `hintmap->edge' for the list of * enabled hints, then step over the call to see the effect of * adjustment. We stop here first on the recursive call that * creates the initial map, and then on each counter group and * hint zone. */ /* adjust positions of hint edges that are not locked to blue zones */ cf2_hintmap_adjustHints( hintmap ); /* save the position of all hints that were used in this hint map; */ /* if we use them again, we'll locate them in the same position */ if ( !initialMap ) { for ( i = 0; i < hintmap->count; i++ ) { if ( !cf2_hint_isSynthetic( &hintmap->edge[i] ) ) { /* Note: include both valid and invalid edges */ /* Note: top and bottom edges are copied back separately */ CF2_StemHint stemhint = (CF2_StemHint) cf2_arrstack_getPointer( hStemHintArray, hintmap->edge[i].index ); if ( cf2_hint_isTop( &hintmap->edge[i] ) ) stemhint->maxDS = hintmap->edge[i].dsCoord; else stemhint->minDS = hintmap->edge[i].dsCoord; stemhint->used = TRUE; } } } /* hint map is ready to use */ hintmap->isValid = TRUE; /* remember this mask has been used */ cf2_hintmask_setNew( hintMask, FALSE ); }
1
CVE-2014-9659
CWE-119
Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333] Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
9,294
samba
538d305de91e34a2938f5f219f18bf0e1918763f
struct smb_iconv_handle *get_iconv_testing_handle(TALLOC_CTX *mem_ctx, const char *dos_charset, const char *unix_charset, bool use_builtin_handlers) { return smb_iconv_handle_reinit(mem_ctx, dos_charset, unix_charset, use_builtin_handlers, NULL); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
15,914
libjpeg
4746b577931e926a49e50de9720a4946de3069a7
bool SingleComponentLSScan::ParseMCU(void) { #if ACCUSOFT_CODE int lines = m_ulRemaining[0]; // total number of MCU lines processed. UBYTE preshift = m_ucLowBit + FractionalColorBitsOf(); struct Line *line = CurrentLine(0); // // If a DNL marker is present, the number of remaining lines is zero. Fix it. if (m_pFrame->HeightOf() == 0) { assert(lines == 0); lines = 8; } assert(m_ucCount == 1); // // A "MCU" in respect to the code organization is eight lines. if (lines > 8) { lines = 8; } if (m_pFrame->HeightOf() > 0) m_ulRemaining[0] -= lines; if (lines == 0) return false; // Loop over lines and columns do { LONG length = m_ulWidth[0]; LONG *lp = line->m_pData; #ifdef DEBUG_LS int xpos = 0; static int linenumber = 0; printf("\n%4d : ",++linenumber); #endif StartLine(0); if (BeginReadMCU(m_Stream.ByteStreamOf())) { // No error handling strategy. No RST in scans. Bummer! do { LONG a,b,c,d; // neighbouring values. LONG d1,d2,d3; // local gradients. GetContext(0,a,b,c,d); d1 = d - b; // compute local gradients d2 = b - c; d3 = c - a; if (isRunMode(d1,d2,d3)) { LONG run = DecodeRun(length,m_lRunIndex[0]); // // Now fill the data. while(run) { // Update so that the next process gets the correct value. UpdateContext(0,a); // And insert the value into the target line as well. *lp++ = a << preshift; #ifdef DEBUG_LS printf("%4d:<%2x> ",xpos++,a); #endif run--,length--; // As long as there are pixels on the line. } // // More data on the line? I.e. the run did not cover the full m_lJ samples? // Now decode the run interruption sample. if (length) { bool negative; // the sign variable bool rtype; // run interruption type LONG errval; // the prediction error LONG merr; // the mapped error (symbol) LONG rx; // the reconstructed value UBYTE k; // golomb parameter // Get the neighbourhood. GetContext(0,a,b,c,d); // Get the prediction mode. rtype = InterruptedPredictionMode(negative,a,b); // Get the golomb parameter for run interruption coding. k = GolombParameter(rtype); // Golomb-decode the error symbol. merr = GolombDecode(k,m_lLimit - m_lJ[m_lRunIndex[0]] - 1); // Inverse the error mapping procedure. errval = InverseErrorMapping(merr + rtype,ErrorMappingOffset(rtype,rtype || merr,k)); // Compute the reconstructed value. rx = Reconstruct(negative,rtype?a:b,errval); // Update so that the next process gets the correct value. UpdateContext(0,rx); // Fill in the value into the line *lp = rx << preshift; #ifdef DEBUG_LS printf("%4d:<%2x> ",xpos++,*lp); #endif // Update the variables of the run mode. UpdateState(rtype,errval); // Update the run index now. This is not part of // EncodeRun because the non-reduced run-index is // required for the golomb coder length limit. if (m_lRunIndex[0] > 0) m_lRunIndex[0]--; } else break; // end of line. } else { UWORD ctxt; bool negative; // the sign variable. LONG px; // the predicted variable. LONG rx; // the reconstructed value. LONG errval; // the error value. LONG merr; // the mapped error value. UBYTE k; // the Golomb parameter. // Quantize the gradients. d1 = QuantizedGradient(d1); d2 = QuantizedGradient(d2); d3 = QuantizedGradient(d3); // Compute the context. ctxt = Context(negative,d1,d2,d3); // Compute the predicted value. px = Predict(a,b,c); // Correct the prediction. px = CorrectPrediction(ctxt,negative,px); // Compute the golomb parameter k from the context. k = GolombParameter(ctxt); // Decode the error symbol. merr = GolombDecode(k,m_lLimit); // Inverse the error symbol into an error value. errval = InverseErrorMapping(merr,ErrorMappingOffset(ctxt,k)); // Update the variables. UpdateState(ctxt,errval); // Compute the reconstructed value. rx = Reconstruct(negative,px,errval); // Update so that the next process gets the correct value. UpdateContext(0,rx); // And insert the value into the target line as well. *lp = rx << preshift; #ifdef DEBUG_LS printf("%4d:<%2x> ",xpos++,*lp); #endif } } while(++lp,--length); } // No error handling here. EndLine(0); line = line->m_pNext; } while(--lines); // // If this is the last line, gobble up all the // bits from bitstuffing the last byte may have left. // As SkipStuffing is idempotent, we can also do that // all the time. m_Stream.SkipStuffing(); #endif return false; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
18,492
zstd
3e5cdf1b6a85843e991d7d10f6a2567c15580da0
ZSTD_buildCTable(void* dst, size_t dstCapacity, FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type, U32* count, U32 max, const BYTE* codeTable, size_t nbSeq, const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax, const FSE_CTable* prevCTable, size_t prevCTableSize, void* workspace, size_t workspaceSize) { BYTE* op = (BYTE*)dst; const BYTE* const oend = op + dstCapacity; switch (type) { case set_rle: *op = codeTable[0]; CHECK_F(FSE_buildCTable_rle(nextCTable, (BYTE)max)); return 1; case set_repeat: memcpy(nextCTable, prevCTable, prevCTableSize); return 0; case set_basic: CHECK_F(FSE_buildCTable_wksp(nextCTable, defaultNorm, defaultMax, defaultNormLog, workspace, workspaceSize)); /* note : could be pre-calculated */ return 0; case set_compressed: { S16 norm[MaxSeq + 1]; size_t nbSeq_1 = nbSeq; const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max); if (count[codeTable[nbSeq-1]] > 1) { count[codeTable[nbSeq-1]]--; nbSeq_1--; } assert(nbSeq_1 > 1); CHECK_F(FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max)); { size_t const NCountSize = FSE_writeNCount(op, oend - op, norm, max, tableLog); /* overflow protected */ if (FSE_isError(NCountSize)) return NCountSize; CHECK_F(FSE_buildCTable_wksp(nextCTable, norm, max, tableLog, workspace, workspaceSize)); return NCountSize; } } default: return assert(0), ERROR(GENERIC); } }
1
CVE-2019-11922
CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
The product contains a concurrent code sequence that requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence operating concurrently.
Phase: Architecture and Design In languages that support it, use synchronization primitives. Only wrap these around critical code to minimize the impact on performance. Phase: Architecture and Design Use thread-safe capabilities such as the data access abstraction in Spring. Phase: Architecture and Design Minimize the usage of shared resources in order to remove as much complexity as possible from the control flow and to reduce the likelihood of unexpected conditions occurring. Additionally, this will minimize the amount of synchronization necessary and may even help to reduce the likelihood of a denial of service where an attacker may be able to repeatedly trigger a critical section (CWE-400). Phase: Implementation When using multithreading and operating on shared variables, only use thread-safe functions. Phase: Implementation Use atomic operations on shared variables. Be wary of innocent-looking constructs such as "x++". This may appear atomic at the code layer, but it is actually non-atomic at the instruction layer, since it involves a read, followed by a computation, followed by a write. Phase: Implementation Use a mutex if available, but be sure to avoid related weaknesses such as CWE-412. Phase: Implementation Avoid double-checked locking (CWE-609) and other implementation errors that arise when trying to avoid the overhead of synchronization. Phase: Implementation Disable interrupts or signals over critical parts of the code, but also make sure that the code does not go into a large or infinite loop. Phase: Implementation Use the volatile type modifier for critical variables to avoid unexpected compiler optimization or reordering. This does not necessarily solve the synchronization problem, but it can help. Phases: Architecture and Design; Operation Strategy: Environment Hardening Run your code using the lowest privileges that are required to accomplish the necessary tasks [REF-76]. If possible, create isolated accounts with limited privileges that are only used for a single task. That way, a successful attack will not immediately give the attacker access to the rest of the software or its environment. For example, database applications rarely need to run as the database administrator, especially in day-to-day operations
1,780
linux
b799207e1e1816b09e7a5920fbb2d5fcf6edd681
static void mark_reg_unknown(struct bpf_verifier_env *env, struct bpf_reg_state *regs, u32 regno) { if (WARN_ON(regno >= MAX_BPF_REG)) { verbose(env, "mark_reg_unknown(regs, %u)\n", regno); /* Something bad happened, let's kill all regs except FP */ for (regno = 0; regno < BPF_REG_FP; regno++) __mark_reg_not_init(regs + regno); return; } __mark_reg_unknown(regs + regno); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
10,899
php-src
e617f03066ce81d26f56c06d6bd7787c7de08703
PHP_FUNCTION(mb_split) { char *arg_pattern; size_t arg_pattern_len; php_mb_regex_t *re; OnigRegion *regs = NULL; char *string; OnigUChar *pos, *chunk_pos; size_t string_len; int err; size_t n; zend_long count = -1; if (zend_parse_parameters(ZEND_NUM_ARGS(), "ss|l", &arg_pattern, &arg_pattern_len, &string, &string_len, &count) == FAILURE) { RETURN_FALSE; } if (count > 0) { count--; } /* create regex pattern buffer */ if ((re = php_mbregex_compile_pattern(arg_pattern, arg_pattern_len, MBREX(regex_default_options), MBREX(current_mbctype), MBREX(regex_default_syntax))) == NULL) { RETURN_FALSE; } array_init(return_value); chunk_pos = pos = (OnigUChar *)string; err = 0; regs = onig_region_new(); /* churn through str, generating array entries as we go */ while (count != 0 && (size_t)(pos - (OnigUChar *)string) < string_len) { size_t beg, end; err = onig_search(re, (OnigUChar *)string, (OnigUChar *)(string + string_len), pos, (OnigUChar *)(string + string_len), regs, 0); if (err < 0) { break; } beg = regs->beg[0], end = regs->end[0]; /* add it to the array */ if ((size_t)(pos - (OnigUChar *)string) < end) { if (beg < string_len && beg >= (size_t)(chunk_pos - (OnigUChar *)string)) { add_next_index_stringl(return_value, (char *)chunk_pos, ((OnigUChar *)(string + beg) - chunk_pos)); --count; } else { err = -2; break; } /* point at our new starting point */ chunk_pos = pos = (OnigUChar *)string + end; } else { pos++; } onig_region_free(regs, 0); } onig_region_free(regs, 1); /* see if we encountered an error */ if (err <= -2) { OnigUChar err_str[ONIG_MAX_ERROR_MESSAGE_LEN]; onig_error_code_to_str(err_str, err); php_error_docref(NULL, E_WARNING, "mbregex search failure in mbsplit(): %s", err_str); zend_array_destroy(Z_ARR_P(return_value)); RETURN_FALSE; } /* otherwise we just have one last element to add to the array */ n = ((OnigUChar *)(string + string_len) - chunk_pos); if (n > 0) { add_next_index_stringl(return_value, (char *)chunk_pos, n); } else { add_next_index_stringl(return_value, "", 0); } }
1
CVE-2019-9025
CWE-125
Out-of-bounds Read
The product reads data past the end, or before the beginning, of the intended buffer.
Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. To reduce the likelihood of introducing an out-of-bounds read, ensure that you validate and ensure correct calculations for any length argument, buffer size calculation, or offset. Be especially careful of relying on a sentinel (i.e. special character such as NUL) in untrusted inputs. Phase: Architecture and Design Strategy: Language Selection Use a language that provides appropriate memory abstractions.
5,811
tensorflow
e6a7c7cc18c3aaad1ae0872cb0a959f5c923d2bd
explicit CSRSparseCholeskyCPUOp(OpKernelConstruction* c) : OpKernel(c) {}
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
18,668
linux
8f659a03a0ba9289b9aeb9b4470e6fb263d6f483
static int raw_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) { struct inet_sock *inet = inet_sk(sk); struct net *net = sock_net(sk); struct ipcm_cookie ipc; struct rtable *rt = NULL; struct flowi4 fl4; int free = 0; __be32 daddr; __be32 saddr; u8 tos; int err; struct ip_options_data opt_copy; struct raw_frag_vec rfv; err = -EMSGSIZE; if (len > 0xFFFF) goto out; /* * Check the flags. */ err = -EOPNOTSUPP; if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message */ goto out; /* compatibility */ /* * Get and verify the address. */ if (msg->msg_namelen) { DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); err = -EINVAL; if (msg->msg_namelen < sizeof(*usin)) goto out; if (usin->sin_family != AF_INET) { pr_info_once("%s: %s forgot to set AF_INET. Fix it!\n", __func__, current->comm); err = -EAFNOSUPPORT; if (usin->sin_family) goto out; } daddr = usin->sin_addr.s_addr; /* ANK: I did not forget to get protocol from port field. * I just do not know, who uses this weirdness. * IP_HDRINCL is much more convenient. */ } else { err = -EDESTADDRREQ; if (sk->sk_state != TCP_ESTABLISHED) goto out; daddr = inet->inet_daddr; } ipc.sockc.tsflags = sk->sk_tsflags; ipc.addr = inet->inet_saddr; ipc.opt = NULL; ipc.tx_flags = 0; ipc.ttl = 0; ipc.tos = -1; ipc.oif = sk->sk_bound_dev_if; if (msg->msg_controllen) { err = ip_cmsg_send(sk, msg, &ipc, false); if (unlikely(err)) { kfree(ipc.opt); goto out; } if (ipc.opt) free = 1; } saddr = ipc.addr; ipc.addr = daddr; if (!ipc.opt) { struct ip_options_rcu *inet_opt; rcu_read_lock(); inet_opt = rcu_dereference(inet->inet_opt); if (inet_opt) { memcpy(&opt_copy, inet_opt, sizeof(*inet_opt) + inet_opt->opt.optlen); ipc.opt = &opt_copy.opt; } rcu_read_unlock(); } if (ipc.opt) { err = -EINVAL; /* Linux does not mangle headers on raw sockets, * so that IP options + IP_HDRINCL is non-sense. */ if (inet->hdrincl) goto done; if (ipc.opt->opt.srr) { if (!daddr) goto done; daddr = ipc.opt->opt.faddr; } } tos = get_rtconn_flags(&ipc, sk); if (msg->msg_flags & MSG_DONTROUTE) tos |= RTO_ONLINK; if (ipv4_is_multicast(daddr)) { if (!ipc.oif) ipc.oif = inet->mc_index; if (!saddr) saddr = inet->mc_addr; } else if (!ipc.oif) ipc.oif = inet->uc_index; flowi4_init_output(&fl4, ipc.oif, sk->sk_mark, tos, RT_SCOPE_UNIVERSE, inet->hdrincl ? IPPROTO_RAW : sk->sk_protocol, inet_sk_flowi_flags(sk) | (inet->hdrincl ? FLOWI_FLAG_KNOWN_NH : 0), daddr, saddr, 0, 0, sk->sk_uid); if (!inet->hdrincl) { rfv.msg = msg; rfv.hlen = 0; err = raw_probe_proto_opt(&rfv, &fl4); if (err) goto done; } security_sk_classify_flow(sk, flowi4_to_flowi(&fl4)); rt = ip_route_output_flow(net, &fl4, sk); if (IS_ERR(rt)) { err = PTR_ERR(rt); rt = NULL; goto done; } err = -EACCES; if (rt->rt_flags & RTCF_BROADCAST && !sock_flag(sk, SOCK_BROADCAST)) goto done; if (msg->msg_flags & MSG_CONFIRM) goto do_confirm; back_from_confirm: if (inet->hdrincl) err = raw_send_hdrinc(sk, &fl4, msg, len, &rt, msg->msg_flags, &ipc.sockc); else { sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags); if (!ipc.addr) ipc.addr = fl4.daddr; lock_sock(sk); err = ip_append_data(sk, &fl4, raw_getfrag, &rfv, len, 0, &ipc, &rt, msg->msg_flags); if (err) ip_flush_pending_frames(sk); else if (!(msg->msg_flags & MSG_MORE)) { err = ip_push_pending_frames(sk, &fl4); if (err == -ENOBUFS && !inet->recverr) err = 0; } release_sock(sk); } done: if (free) kfree(ipc.opt); ip_rt_put(rt); out: if (err < 0) return err; return len; do_confirm: if (msg->msg_flags & MSG_PROBE) dst_confirm_neigh(&rt->dst, &fl4.daddr); if (!(msg->msg_flags & MSG_PROBE) || len) goto back_from_confirm; err = 0; goto done; }
1
CVE-2017-17712
CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
The product contains a concurrent code sequence that requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence operating concurrently.
Phase: Architecture and Design In languages that support it, use synchronization primitives. Only wrap these around critical code to minimize the impact on performance. Phase: Architecture and Design Use thread-safe capabilities such as the data access abstraction in Spring. Phase: Architecture and Design Minimize the usage of shared resources in order to remove as much complexity as possible from the control flow and to reduce the likelihood of unexpected conditions occurring. Additionally, this will minimize the amount of synchronization necessary and may even help to reduce the likelihood of a denial of service where an attacker may be able to repeatedly trigger a critical section (CWE-400). Phase: Implementation When using multithreading and operating on shared variables, only use thread-safe functions. Phase: Implementation Use atomic operations on shared variables. Be wary of innocent-looking constructs such as "x++". This may appear atomic at the code layer, but it is actually non-atomic at the instruction layer, since it involves a read, followed by a computation, followed by a write. Phase: Implementation Use a mutex if available, but be sure to avoid related weaknesses such as CWE-412. Phase: Implementation Avoid double-checked locking (CWE-609) and other implementation errors that arise when trying to avoid the overhead of synchronization. Phase: Implementation Disable interrupts or signals over critical parts of the code, but also make sure that the code does not go into a large or infinite loop. Phase: Implementation Use the volatile type modifier for critical variables to avoid unexpected compiler optimization or reordering. This does not necessarily solve the synchronization problem, but it can help. Phases: Architecture and Design; Operation Strategy: Environment Hardening Run your code using the lowest privileges that are required to accomplish the necessary tasks [REF-76]. If possible, create isolated accounts with limited privileges that are only used for a single task. That way, a successful attack will not immediately give the attacker access to the rest of the software or its environment. For example, database applications rarely need to run as the database administrator, especially in day-to-day operations
2,019
gpac
71460d72ec07df766dab0a4d52687529f3efcf0a
static const char *isoffin_probe_data(const u8 *data, u32 size, GF_FilterProbeScore *score) { if (gf_isom_probe_data(data, size)) { *score = GF_FPROBE_SUPPORTED; return "video/mp4"; } return NULL; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
18,035
php-src
0da8b8b801f9276359262f1ef8274c7812d3dfda?w=1
PHPAPI char *php_escape_html_entities_ex(unsigned char *old, size_t oldlen, size_t *newlen, int all, int flags, char *hint_charset, zend_bool double_encode TSRMLS_DC) { size_t cursor, maxlen, len; char *replaced; enum entity_charset charset = determine_charset(hint_charset TSRMLS_CC); int doctype = flags & ENT_HTML_DOC_TYPE_MASK; entity_table_opt entity_table; const enc_to_uni *to_uni_table = NULL; const entity_ht *inv_map = NULL; /* used for !double_encode */ /* only used if flags includes ENT_HTML_IGNORE_ERRORS or ENT_HTML_SUBSTITUTE_DISALLOWED_CHARS */ const unsigned char *replacement = NULL; size_t replacement_len = 0; if (all) { /* replace with all named entities */ if (CHARSET_PARTIAL_SUPPORT(charset)) { php_error_docref0(NULL TSRMLS_CC, E_STRICT, "Only basic entities " "substitution is supported for multi-byte encodings other than UTF-8; " "functionality is equivalent to htmlspecialchars"); } LIMIT_ALL(all, doctype, charset); } entity_table = determine_entity_table(all, doctype); if (all && !CHARSET_UNICODE_COMPAT(charset)) { to_uni_table = enc_to_uni_index[charset]; } if (!double_encode) { /* first arg is 1 because we want to identify valid named entities * even if we are only encoding the basic ones */ inv_map = unescape_inverse_map(1, flags); } if (flags & (ENT_HTML_SUBSTITUTE_ERRORS | ENT_HTML_SUBSTITUTE_DISALLOWED_CHARS)) { if (charset == cs_utf_8) { replacement = (const unsigned char*)"\xEF\xBF\xBD"; replacement_len = sizeof("\xEF\xBF\xBD") - 1; } else { replacement = (const unsigned char*)"&#xFFFD;"; replacement_len = sizeof("&#xFFFD;") - 1; } } /* initial estimate */ if (oldlen < 64) { maxlen = 128; } else { maxlen = 2 * oldlen; if (maxlen < oldlen) { zend_error_noreturn(E_ERROR, "Input string is too long"); return NULL; } } replaced = emalloc(maxlen + 1); /* adding 1 is safe: maxlen is even */ len = 0; cursor = 0; while (cursor < oldlen) { const unsigned char *mbsequence = NULL; size_t mbseqlen = 0, cursor_before = cursor; int status = SUCCESS; unsigned int this_char = get_next_char(charset, old, oldlen, &cursor, &status); /* guarantee we have at least 40 bytes to write. * In HTML5, entities may take up to 33 bytes */ if (len > maxlen - 40) { /* maxlen can never be smaller than 128 */ replaced = safe_erealloc(replaced, maxlen , 1, 128 + 1); maxlen += 128; } if (status == FAILURE) { /* invalid MB sequence */ if (flags & ENT_HTML_IGNORE_ERRORS) { continue; } else if (flags & ENT_HTML_SUBSTITUTE_ERRORS) { memcpy(&replaced[len], replacement, replacement_len); len += replacement_len; continue; } else { efree(replaced); *newlen = 0; return STR_EMPTY_ALLOC(); } } else { /* SUCCESS */ mbsequence = &old[cursor_before]; mbseqlen = cursor - cursor_before; } if (this_char != '&') { /* no entity on this position */ const unsigned char *rep = NULL; size_t rep_len = 0; if (((this_char == '\'' && !(flags & ENT_HTML_QUOTE_SINGLE)) || (this_char == '"' && !(flags & ENT_HTML_QUOTE_DOUBLE)))) goto pass_char_through; if (all) { /* false that CHARSET_PARTIAL_SUPPORT(charset) */ if (to_uni_table != NULL) { /* !CHARSET_UNICODE_COMPAT therefore not UTF-8; since UTF-8 * is the only multibyte encoding with !CHARSET_PARTIAL_SUPPORT, * we're using a single byte encoding */ map_to_unicode(this_char, to_uni_table, &this_char); if (this_char == 0xFFFF) /* no mapping; pass through */ goto pass_char_through; } /* the cursor may advance */ find_entity_for_char(this_char, charset, entity_table.ms_table, &rep, &rep_len, old, oldlen, &cursor); } else { find_entity_for_char_basic(this_char, entity_table.table, &rep, &rep_len); } if (rep != NULL) { replaced[len++] = '&'; memcpy(&replaced[len], rep, rep_len); len += rep_len; replaced[len++] = ';'; } else { /* we did not find an entity for this char. * check for its validity, if its valid pass it unchanged */ if (flags & ENT_HTML_SUBSTITUTE_DISALLOWED_CHARS) { if (CHARSET_UNICODE_COMPAT(charset)) { if (!unicode_cp_is_allowed(this_char, doctype)) { mbsequence = replacement; mbseqlen = replacement_len; } } else if (to_uni_table) { if (!all) /* otherwise we already did this */ map_to_unicode(this_char, to_uni_table, &this_char); if (!unicode_cp_is_allowed(this_char, doctype)) { mbsequence = replacement; mbseqlen = replacement_len; } } else { /* not a unicode code point, unless, coincidentally, it's in * the 0x20..0x7D range (except 0x5C in sjis). We know nothing * about other code points, because we have no tables. Since * Unicode code points in that range are not disallowed in any * document type, we could do nothing. However, conversion * tables frequently map 0x00-0x1F to the respective C0 code * points. Let's play it safe and admit that's the case */ if (this_char <= 0x7D && !unicode_cp_is_allowed(this_char, doctype)) { mbsequence = replacement; mbseqlen = replacement_len; } } } pass_char_through: if (mbseqlen > 1) { memcpy(replaced + len, mbsequence, mbseqlen); len += mbseqlen; } else { replaced[len++] = mbsequence[0]; } } } else { /* this_char == '&' */ if (double_encode) { encode_amp: memcpy(&replaced[len], "&amp;", sizeof("&amp;") - 1); len += sizeof("&amp;") - 1; } else { /* no double encode */ /* check if entity is valid */ size_t ent_len; /* not counting & or ; */ /* peek at next char */ if (old[cursor] == '#') { /* numeric entity */ unsigned code_point; int valid; char *pos = (char*)&old[cursor+1]; valid = process_numeric_entity((const char **)&pos, &code_point); if (valid == FAILURE) goto encode_amp; if (flags & ENT_HTML_SUBSTITUTE_DISALLOWED_CHARS) { if (!numeric_entity_is_allowed(code_point, doctype)) goto encode_amp; } ent_len = pos - (char*)&old[cursor]; } else { /* named entity */ /* check for vality of named entity */ const char *start = &old[cursor], *next = start; unsigned dummy1, dummy2; if (process_named_entity_html(&next, &start, &ent_len) == FAILURE) goto encode_amp; if (resolve_named_entity_html(start, ent_len, inv_map, &dummy1, &dummy2) == FAILURE) { if (!(doctype == ENT_HTML_DOC_XHTML && ent_len == 4 && start[0] == 'a' && start[1] == 'p' && start[2] == 'o' && start[3] == 's')) { /* uses html4 inv_map, which doesn't include apos;. This is a * hack to support it */ goto encode_amp; } } } /* checks passed; copy entity to result */ /* entity size is unbounded, we may need more memory */ /* at this point maxlen - len >= 40 */ if (maxlen - len < ent_len + 2 /* & and ; */) { /* ent_len < oldlen, which is certainly <= SIZE_MAX/2 */ replaced = safe_erealloc(replaced, maxlen, 1, ent_len + 128 + 1); maxlen += ent_len + 128; } replaced[len++] = '&'; memcpy(&replaced[len], &old[cursor], ent_len); len += ent_len; replaced[len++] = ';'; cursor += ent_len + 1; } } } replaced[len] = '\0'; *newlen = len; return replaced; }
1
CVE-2016-5094
CWE-190
Integer Overflow or Wraparound
The product performs a calculation that can produce an integer overflow or wraparound when the logic assumes that the resulting value will always be larger than the original value. This occurs when an integer value is incremented to a value that is too large to store in the associated representation. When this occurs, the value may become a very small or negative number.
Phase: Requirements Ensure that all protocols are strictly defined, such that all out-of-bounds behavior can be identified simply, and require strict conformance to the protocol. Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. If possible, choose a language or compiler that performs automatic bounds checking. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Use libraries or frameworks that make it easier to handle numbers without unexpected consequences. Examples include safe integer handling packages such as SafeInt (C++) or IntegerLib (C or C++). [REF-106] Phase: Implementation Strategy: Input Validation Perform input validation on any numeric input by ensuring that it is within the expected range. Enforce that the input meets both the minimum and maximum requirements for the expected range. Use unsigned integers where possible. This makes it easier to perform validation for integer overflows. When signed integers are required, ensure that the range check includes minimum values as well as maximum values. Phase: Implementation Understand the programming language's underlying representation and how it interacts with numeric calculation (CWE-681). Pay close attention to byte size discrepancies, precision, signed/unsigned distinctions, truncation, conversion and casting between types, "not-a-number" calculations, and how the language handles numbers that are too large or too small for its underlying representation. [REF-7] Also be careful to account for 32-bit, 64-bit, and other potential differences that may affect the numeric representation. Phase: Architecture and Design For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server. Phase: Implementation Strategy: Compilation or Build Hardening Examine compiler warnings closely and eliminate problems with potential security implications, such as signed / unsigned mismatch in memory operations, or use of uninitialized variables. Even if the weakness is rarely exploitable, a single failure may lead to the compromise of the entire system.
7,422
php-src
b2af4e8868726a040234de113436c6e4f6372d17
PHP_FUNCTION(serialize) { zval *struc; php_serialize_data_t var_hash; smart_str buf = {0}; if (zend_parse_parameters(ZEND_NUM_ARGS(), "z", &struc) == FAILURE) { return; } PHP_VAR_SERIALIZE_INIT(var_hash); php_var_serialize(&buf, struc, &var_hash); PHP_VAR_SERIALIZE_DESTROY(var_hash); if (EG(exception)) { smart_str_free(&buf); RETURN_FALSE; } if (buf.s) { RETURN_NEW_STR(buf.s); } else { RETURN_NULL(); } }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
10,166
linux
6402939ec86eaf226c8b8ae00ed983936b164908
static int ca8210_reset_init(struct spi_device *spi) { int ret; struct ca8210_platform_data *pdata = spi->dev.platform_data; pdata->gpio_reset = of_get_named_gpio( spi->dev.of_node, "reset-gpio", 0 ); ret = gpio_direction_output(pdata->gpio_reset, 1); if (ret < 0) { dev_crit( &spi->dev, "Reset GPIO %d did not set to output mode\n", pdata->gpio_reset ); } return ret; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
12,099
linux
9955ac47f4ba1c95ecb6092aeaefb40a22e99268
void __init trap_init(void) { return; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
15,144
Chrome
5d0e9f824e05523e03dabc0e341b9f8f17a72bb0
bool CSPSourceList::matches(const KURL& url, ContentSecurityPolicy::RedirectStatus redirectStatus) const { if (m_allowStar) return true; KURL effectiveURL = m_policy->selfMatchesInnerURL() && SecurityOrigin::shouldUseInnerURL(url) ? SecurityOrigin::extractInnerURL(url) : url; if (m_allowSelf && m_policy->urlMatchesSelf(effectiveURL)) return true; for (size_t i = 0; i < m_list.size(); ++i) { if (m_list[i].matches(effectiveURL, redirectStatus)) return true; } return false; }
1
CVE-2015-6786
CWE-264
Permissions, Privileges, and Access Controls
Weaknesses in this category are related to the management of permissions, privileges, and other security features that are used to perform access control.
Not Found in CWE Page
586
libheif
995a4283d8ed2d0d2c1ceb1a577b993df2f0e014
Error HeifContext::interpret_heif_file() { m_all_images.clear(); m_top_level_images.clear(); m_primary_image.reset(); // --- reference all non-hidden images std::vector<heif_item_id> image_IDs = m_heif_file->get_item_IDs(); bool primary_is_grid = false; for (heif_item_id id : image_IDs) { auto infe_box = m_heif_file->get_infe_box(id); if (!infe_box) { // TODO(farindk): Should we return an error instead of skipping the invalid id? continue; } if (item_type_is_image(infe_box->get_item_type())) { auto image = std::make_shared<Image>(this, id); m_all_images.insert(std::make_pair(id, image)); if (!infe_box->is_hidden_item()) { if (id==m_heif_file->get_primary_image_ID()) { image->set_primary(true); m_primary_image = image; primary_is_grid = infe_box->get_item_type() == "grid"; } m_top_level_images.push_back(image); } } } if (!m_primary_image) { return Error(heif_error_Invalid_input, heif_suberror_Nonexisting_item_referenced, "'pitm' box references a non-existing image"); } // --- remove thumbnails from top-level images and assign to their respective image auto iref_box = m_heif_file->get_iref_box(); if (iref_box) { // m_top_level_images.clear(); for (auto& pair : m_all_images) { auto& image = pair.second; std::vector<Box_iref::Reference> references = iref_box->get_references_from(image->get_id()); for (const Box_iref::Reference& ref : references) { uint32_t type = ref.header.get_short_type(); if (type==fourcc("thmb")) { // --- this is a thumbnail image, attach to the main image std::vector<heif_item_id> refs = ref.to_item_ID; if (refs.size() != 1) { return Error(heif_error_Invalid_input, heif_suberror_Unspecified, "Too many thumbnail references"); } image->set_is_thumbnail_of(refs[0]); auto master_iter = m_all_images.find(refs[0]); if (master_iter == m_all_images.end()) { return Error(heif_error_Invalid_input, heif_suberror_Nonexisting_item_referenced, "Thumbnail references a non-existing image"); } if (master_iter->second->is_thumbnail()) { return Error(heif_error_Invalid_input, heif_suberror_Nonexisting_item_referenced, "Thumbnail references another thumbnail"); } if (image.get() == master_iter->second.get()) { return Error(heif_error_Invalid_input, heif_suberror_Nonexisting_item_referenced, "Recursive thumbnail image detected"); } master_iter->second->add_thumbnail(image); remove_top_level_image(image); } else if (type==fourcc("auxl")) { // --- this is an auxiliary image // check whether it is an alpha channel and attach to the main image if yes std::vector<Box_ipco::Property> properties; Error err = m_heif_file->get_properties(image->get_id(), properties); if (err) { return err; } std::shared_ptr<Box_auxC> auxC_property; for (const auto& property : properties) { auto auxC = std::dynamic_pointer_cast<Box_auxC>(property.property); if (auxC) { auxC_property = auxC; } } if (!auxC_property) { std::stringstream sstr; sstr << "No auxC property for image " << image->get_id(); return Error(heif_error_Invalid_input, heif_suberror_Auxiliary_image_type_unspecified, sstr.str()); } std::vector<heif_item_id> refs = ref.to_item_ID; if (refs.size() != 1) { return Error(heif_error_Invalid_input, heif_suberror_Unspecified, "Too many auxiliary image references"); } // alpha channel if (auxC_property->get_aux_type() == "urn:mpeg:avc:2015:auxid:1" || auxC_property->get_aux_type() == "urn:mpeg:hevc:2015:auxid:1") { image->set_is_alpha_channel_of(refs[0]); auto master_iter = m_all_images.find(refs[0]); if (image.get() == master_iter->second.get()) { return Error(heif_error_Invalid_input, heif_suberror_Nonexisting_item_referenced, "Recursive alpha image detected"); } master_iter->second->set_alpha_channel(image); } // depth channel if (auxC_property->get_aux_type() == "urn:mpeg:hevc:2015:auxid:2") { image->set_is_depth_channel_of(refs[0]); auto master_iter = m_all_images.find(refs[0]); if (image.get() == master_iter->second.get()) { return Error(heif_error_Invalid_input, heif_suberror_Nonexisting_item_referenced, "Recursive depth image detected"); } master_iter->second->set_depth_channel(image); auto subtypes = auxC_property->get_subtypes(); std::vector<std::shared_ptr<SEIMessage>> sei_messages; Error err = decode_hevc_aux_sei_messages(subtypes, sei_messages); for (auto& msg : sei_messages) { auto depth_msg = std::dynamic_pointer_cast<SEIMessage_depth_representation_info>(msg); if (depth_msg) { image->set_depth_representation_info(*depth_msg); } } } remove_top_level_image(image); } else { // 'image' is a normal image, keep it as a top-level image } } } } // --- check that HEVC images have an hvcC property for (auto& pair : m_all_images) { auto& image = pair.second; std::shared_ptr<Box_infe> infe = m_heif_file->get_infe_box(image->get_id()); if (infe->get_item_type() == "hvc1") { auto ipma = m_heif_file->get_ipma_box(); auto ipco = m_heif_file->get_ipco_box(); if (!ipco->get_property_for_item_ID(image->get_id(), ipma, fourcc("hvcC"))) { return Error(heif_error_Invalid_input, heif_suberror_No_hvcC_box, "No hvcC property in hvc1 type image"); } } } // --- read through properties for each image and extract image resolutions for (auto& pair : m_all_images) { auto& image = pair.second; std::vector<Box_ipco::Property> properties; Error err = m_heif_file->get_properties(pair.first, properties); if (err) { return err; } bool ispe_read = false; bool primary_colr_set = false; for (const auto& prop : properties) { auto ispe = std::dynamic_pointer_cast<Box_ispe>(prop.property); if (ispe) { uint32_t width = ispe->get_width(); uint32_t height = ispe->get_height(); // --- check whether the image size is "too large" if (width >= static_cast<uint32_t>(MAX_IMAGE_WIDTH) || height >= static_cast<uint32_t>(MAX_IMAGE_HEIGHT)) { std::stringstream sstr; sstr << "Image size " << width << "x" << height << " exceeds the maximum image size " << MAX_IMAGE_WIDTH << "x" << MAX_IMAGE_HEIGHT << "\n"; return Error(heif_error_Memory_allocation_error, heif_suberror_Security_limit_exceeded, sstr.str()); } image->set_resolution(width, height); image->set_ispe_resolution(width, height); ispe_read = true; } if (ispe_read) { auto clap = std::dynamic_pointer_cast<Box_clap>(prop.property); if (clap) { image->set_resolution( clap->get_width_rounded(), clap->get_height_rounded() ); } auto irot = std::dynamic_pointer_cast<Box_irot>(prop.property); if (irot) { if (irot->get_rotation()==90 || irot->get_rotation()==270) { // swap width and height image->set_resolution( image->get_height(), image->get_width() ); } } } auto colr = std::dynamic_pointer_cast<Box_colr>(prop.property); if (colr) { auto profile = colr->get_color_profile(); image->set_color_profile(profile); // if this is a grid item we assign the first one's color profile // to the main image which is supposed to be a grid // TODO: this condition is not correct. It would also classify a secondary image as a 'grid item'. // We have to set the grid-image color profile in another way... const bool is_grid_item = !image->is_primary() && !image->is_alpha_channel() && !image->is_depth_channel(); if (primary_is_grid && !primary_colr_set && is_grid_item) { m_primary_image->set_color_profile(profile); primary_colr_set = true; } } } } // --- read metadata and assign to image for (heif_item_id id : image_IDs) { std::string item_type = m_heif_file->get_item_type(id); std::string content_type = m_heif_file->get_content_type(id); if (item_type == "Exif" || (item_type=="mime" && content_type=="application/rdf+xml")) { std::shared_ptr<ImageMetadata> metadata = std::make_shared<ImageMetadata>(); metadata->item_id = id; metadata->item_type = item_type; metadata->content_type = content_type; Error err = m_heif_file->get_compressed_image_data(id, &(metadata->m_data)); if (err) { return err; } //std::cerr.write((const char*)data.data(), data.size()); // --- assign metadata to the image if (iref_box) { std::vector<Box_iref::Reference> references = iref_box->get_references_from(id); for (const auto& ref : references) { if (ref.header.get_short_type() == fourcc("cdsc")) { std::vector<uint32_t> refs = ref.to_item_ID; if (refs.size() != 1) { return Error(heif_error_Invalid_input, heif_suberror_Unspecified, "Exif data not correctly assigned to image"); } uint32_t exif_image_id = refs[0]; auto img_iter = m_all_images.find(exif_image_id); if (img_iter == m_all_images.end()) { return Error(heif_error_Invalid_input, heif_suberror_Nonexisting_item_referenced, "Exif data assigned to non-existing image"); } img_iter->second->add_metadata(metadata); } } } } } return Error::Ok; }
1
CVE-2019-11471
CWE-416
Use After Free
The product reuses or references memory after it has been freed. At some point afterward, the memory may be allocated again and saved in another pointer, while the original pointer references a location somewhere within the new allocation. Any operations using the original pointer are no longer valid because the memory "belongs" to the code that operates on the new pointer.
Phase: Architecture and Design Strategy: Language Selection Choose a language that provides automatic memory management. Phase: Implementation Strategy: Attack Surface Reduction When freeing pointers, be sure to set them to NULL once they are freed. However, the utilization of multiple or complex data structures may lower the usefulness of this strategy. Effectiveness: Defense in Depth Note: If a bug causes an attempted access of this pointer, then a NULL dereference could still lead to a crash or other unexpected behavior, but it will reduce or eliminate the risk of code execution.
9,425
libxml2
0f3b843b3534784ef57a4f9b874238aa1fda5a73
*/ double xmlXPathStringEvalNumber(const xmlChar *str) { const xmlChar *cur = str; double ret; int ok = 0; int isneg = 0; int exponent = 0; int is_exponent_negative = 0; #ifdef __GNUC__ unsigned long tmp = 0; double temp; #endif if (cur == NULL) return(0); while (IS_BLANK_CH(*cur)) cur++; if ((*cur != '.') && ((*cur < '0') || (*cur > '9')) && (*cur != '-')) { return(xmlXPathNAN); } if (*cur == '-') { isneg = 1; cur++; } #ifdef __GNUC__ /* * tmp/temp is a workaround against a gcc compiler bug * http://veillard.com/gcc.bug */ ret = 0; while ((*cur >= '0') && (*cur <= '9')) { ret = ret * 10; tmp = (*cur - '0'); ok = 1; cur++; temp = (double) tmp; ret = ret + temp; } #else ret = 0; while ((*cur >= '0') && (*cur <= '9')) { ret = ret * 10 + (*cur - '0'); ok = 1; cur++; } #endif if (*cur == '.') { int v, frac = 0, max; double fraction = 0; cur++; if (((*cur < '0') || (*cur > '9')) && (!ok)) { return(xmlXPathNAN); } while (*cur == '0') { frac = frac + 1; cur++; } max = frac + MAX_FRAC; while (((*cur >= '0') && (*cur <= '9')) && (frac < max)) { v = (*cur - '0'); fraction = fraction * 10 + v; frac = frac + 1; cur++; } fraction /= pow(10.0, frac); ret = ret + fraction; while ((*cur >= '0') && (*cur <= '9')) cur++; } if ((*cur == 'e') || (*cur == 'E')) { cur++; if (*cur == '-') { is_exponent_negative = 1; cur++; } else if (*cur == '+') { cur++; } while ((*cur >= '0') && (*cur <= '9')) { if (exponent < 1000000) exponent = exponent * 10 + (*cur - '0'); cur++; } } while (IS_BLANK_CH(*cur)) cur++; if (*cur != 0) return(xmlXPathNAN); if (isneg) ret = -ret; if (is_exponent_negative) exponent = -exponent; ret *= pow(10.0, (double)exponent);
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
17,384
mysql-server
4797ea0b772d5f4c5889bc552424132806f46e93
*/ static void mysql_prune_stmt_list(MYSQL *mysql) { LIST *element= mysql->stmts; LIST *pruned_list= 0; for (; element; element= element->next) { MYSQL_STMT *stmt= (MYSQL_STMT *) element->data; if (stmt->state != MYSQL_STMT_INIT_DONE) { stmt->mysql= 0; stmt->last_errno= CR_SERVER_LOST; strmov(stmt->last_error, ER(CR_SERVER_LOST)); strmov(stmt->sqlstate, unknown_sqlstate); } else { pruned_list= list_add(pruned_list, element); } } mysql->stmts= pruned_list;
1
CVE-2017-3302
CWE-416
Use After Free
The product reuses or references memory after it has been freed. At some point afterward, the memory may be allocated again and saved in another pointer, while the original pointer references a location somewhere within the new allocation. Any operations using the original pointer are no longer valid because the memory "belongs" to the code that operates on the new pointer.
Phase: Architecture and Design Strategy: Language Selection Choose a language that provides automatic memory management. Phase: Implementation Strategy: Attack Surface Reduction When freeing pointers, be sure to set them to NULL once they are freed. However, the utilization of multiple or complex data structures may lower the usefulness of this strategy. Effectiveness: Defense in Depth Note: If a bug causes an attempted access of this pointer, then a NULL dereference could still lead to a crash or other unexpected behavior, but it will reduce or eliminate the risk of code execution.
9,871
freeradius-server
78e5aed56c36a9231bc91ea5f55b3edf88a9d2a4
static int cbtls_verify(int ok, X509_STORE_CTX *ctx) { char subject[1024]; /* Used for the subject name */ char issuer[1024]; /* Used for the issuer name */ char common_name[1024]; char cn_str[1024]; char buf[64]; EAP_HANDLER *handler = NULL; X509 *client_cert; X509 *issuer_cert; SSL *ssl; int err, depth, lookup, loc; EAP_TLS_CONF *conf; int my_ok = ok; REQUEST *request; ASN1_INTEGER *sn = NULL; ASN1_TIME *asn_time = NULL; #ifdef HAVE_OPENSSL_OCSP_H X509_STORE *ocsp_store = NULL; #endif client_cert = X509_STORE_CTX_get_current_cert(ctx); err = X509_STORE_CTX_get_error(ctx); depth = X509_STORE_CTX_get_error_depth(ctx); lookup = depth; /* * Log client/issuing cert. If there's an error, log * issuing cert. */ if ((lookup > 1) && !my_ok) lookup = 1; /* * Retrieve the pointer to the SSL of the connection currently treated * and the application specific data stored into the SSL object. */ ssl = X509_STORE_CTX_get_ex_data(ctx, SSL_get_ex_data_X509_STORE_CTX_idx()); handler = (EAP_HANDLER *)SSL_get_ex_data(ssl, 0); request = handler->request; conf = (EAP_TLS_CONF *)SSL_get_ex_data(ssl, 1); #ifdef HAVE_OPENSSL_OCSP_H ocsp_store = (X509_STORE *)SSL_get_ex_data(ssl, 2); #endif /* * Get the Serial Number */ buf[0] = '\0'; sn = X509_get_serialNumber(client_cert); /* * For this next bit, we create the attributes *only* if * we're at the client or issuing certificate. */ if ((lookup <= 1) && sn && (sn->length < (sizeof(buf) / 2))) { char *p = buf; int i; for (i = 0; i < sn->length; i++) { sprintf(p, "%02x", (unsigned int)sn->data[i]); p += 2; } pairadd(&handler->certs, pairmake(cert_attr_names[EAPTLS_SERIAL][lookup], buf, T_OP_SET)); } /* * Get the Expiration Date */ buf[0] = '\0'; asn_time = X509_get_notAfter(client_cert); if ((lookup <= 1) && asn_time && (asn_time->length < MAX_STRING_LEN)) { memcpy(buf, (char*) asn_time->data, asn_time->length); buf[asn_time->length] = '\0'; pairadd(&handler->certs, pairmake(cert_attr_names[EAPTLS_EXPIRATION][lookup], buf, T_OP_SET)); } /* * Get the Subject & Issuer */ subject[0] = issuer[0] = '\0'; X509_NAME_oneline(X509_get_subject_name(client_cert), subject, sizeof(subject)); subject[sizeof(subject) - 1] = '\0'; if ((lookup <= 1) && subject[0] && (strlen(subject) < MAX_STRING_LEN)) { pairadd(&handler->certs, pairmake(cert_attr_names[EAPTLS_SUBJECT][lookup], subject, T_OP_SET)); } X509_NAME_oneline(X509_get_issuer_name(ctx->current_cert), issuer, sizeof(issuer)); issuer[sizeof(issuer) - 1] = '\0'; if ((lookup <= 1) && issuer[0] && (strlen(issuer) < MAX_STRING_LEN)) { pairadd(&handler->certs, pairmake(cert_attr_names[EAPTLS_ISSUER][lookup], issuer, T_OP_SET)); } /* * Get the Common Name, if there is a subject. */ X509_NAME_get_text_by_NID(X509_get_subject_name(client_cert), NID_commonName, common_name, sizeof(common_name)); common_name[sizeof(common_name) - 1] = '\0'; if ((lookup <= 1) && common_name[0] && subject[0] && (strlen(common_name) < MAX_STRING_LEN)) { pairadd(&handler->certs, pairmake(cert_attr_names[EAPTLS_CN][lookup], common_name, T_OP_SET)); } #ifdef GEN_EMAIL /* * Get the RFC822 Subject Alternative Name */ loc = X509_get_ext_by_NID(client_cert, NID_subject_alt_name, 0); if (lookup <= 1 && loc >= 0) { X509_EXTENSION *ext = NULL; GENERAL_NAMES *names = NULL; int i; if ((ext = X509_get_ext(client_cert, loc)) && (names = X509V3_EXT_d2i(ext))) { for (i = 0; i < sk_GENERAL_NAME_num(names); i++) { GENERAL_NAME *name = sk_GENERAL_NAME_value(names, i); switch (name->type) { case GEN_EMAIL: if (ASN1_STRING_length(name->d.rfc822Name) >= MAX_STRING_LEN) break; pairadd(&handler->certs, pairmake(cert_attr_names[EAPTLS_SAN_EMAIL][lookup], ASN1_STRING_data(name->d.rfc822Name), T_OP_SET)); break; default: /* XXX TODO handle other SAN types */ break; } } } if (names != NULL) sk_GENERAL_NAME_free(names); } #endif /* GEN_EMAIL */ /* * If the CRL has expired, that might still be OK. */ if (!my_ok && (conf->allow_expired_crl) && (err == X509_V_ERR_CRL_HAS_EXPIRED)) { my_ok = 1; X509_STORE_CTX_set_error( ctx, 0 ); } if (!my_ok) { const char *p = X509_verify_cert_error_string(err); radlog(L_ERR,"--> verify error:num=%d:%s\n",err, p); radius_pairmake(request, &request->packet->vps, "Module-Failure-Message", p, T_OP_SET); return my_ok; } switch (ctx->error) { case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT: radlog(L_ERR, "issuer= %s\n", issuer); break; case X509_V_ERR_CERT_NOT_YET_VALID: case X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD: radlog(L_ERR, "notBefore="); #if 0 ASN1_TIME_print(bio_err, X509_get_notBefore(ctx->current_cert)); #endif break; case X509_V_ERR_CERT_HAS_EXPIRED: case X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD: radlog(L_ERR, "notAfter="); #if 0 ASN1_TIME_print(bio_err, X509_get_notAfter(ctx->current_cert)); #endif break; } /* * If we're at the actual client cert, apply additional * checks. */ if (depth == 0) { /* * If the conf tells us to, check cert issuer * against the specified value and fail * verification if they don't match. */ if (conf->check_cert_issuer && (strcmp(issuer, conf->check_cert_issuer) != 0)) { radlog(L_AUTH, "rlm_eap_tls: Certificate issuer (%s) does not match specified value (%s)!", issuer, conf->check_cert_issuer); my_ok = 0; } /* * If the conf tells us to, check the CN in the * cert against xlat'ed value, but only if the * previous checks passed. */ if (my_ok && conf->check_cert_cn) { if (!radius_xlat(cn_str, sizeof(cn_str), conf->check_cert_cn, handler->request, NULL)) { radlog(L_ERR, "rlm_eap_tls (%s): xlat failed.", conf->check_cert_cn); /* if this fails, fail the verification */ my_ok = 0; } else { RDEBUG2("checking certificate CN (%s) with xlat'ed value (%s)", common_name, cn_str); if (strcmp(cn_str, common_name) != 0) { radlog(L_AUTH, "rlm_eap_tls: Certificate CN (%s) does not match specified value (%s)!", common_name, cn_str); my_ok = 0; } } } /* check_cert_cn */ #ifdef HAVE_OPENSSL_OCSP_H if (my_ok && conf->ocsp_enable){ RDEBUG2("--> Starting OCSP Request"); if(X509_STORE_CTX_get1_issuer(&issuer_cert, ctx, client_cert)!=1) { radlog(L_ERR, "Error: Couldn't get issuer_cert for %s", common_name); } my_ok = ocsp_check(ocsp_store, issuer_cert, client_cert, conf); } #endif while (conf->verify_client_cert_cmd) { char filename[256]; int fd; FILE *fp; snprintf(filename, sizeof(filename), "%s/%s.client.XXXXXXXX", conf->verify_tmp_dir, progname); fd = mkstemp(filename); if (fd < 0) { RDEBUG("Failed creating file in %s: %s", conf->verify_tmp_dir, strerror(errno)); break; } fp = fdopen(fd, "w"); if (!fp) { RDEBUG("Failed opening file %s: %s", filename, strerror(errno)); break; } if (!PEM_write_X509(fp, client_cert)) { fclose(fp); RDEBUG("Failed writing certificate to file"); goto do_unlink; } fclose(fp); if (!radius_pairmake(request, &request->packet->vps, "TLS-Client-Cert-Filename", filename, T_OP_SET)) { RDEBUG("Failed creating TLS-Client-Cert-Filename"); goto do_unlink; } RDEBUG("Verifying client certificate: %s", conf->verify_client_cert_cmd); if (radius_exec_program(conf->verify_client_cert_cmd, request, 1, NULL, 0, request->packet->vps, NULL, 1) != 0) { radlog(L_AUTH, "rlm_eap_tls: Certificate CN (%s) fails external verification!", common_name); my_ok = 0; } else { RDEBUG("Client certificate CN %s passed external validation", common_name); } do_unlink: unlink(filename); break; } } /* depth == 0 */ if (debug_flag > 0) { RDEBUG2("chain-depth=%d, ", depth); RDEBUG2("error=%d", err); RDEBUG2("--> User-Name = %s", handler->identity); RDEBUG2("--> BUF-Name = %s", common_name); RDEBUG2("--> subject = %s", subject); RDEBUG2("--> issuer = %s", issuer); RDEBUG2("--> verify return:%d", my_ok); } return my_ok; }
1
CVE-2012-3547
CWE-119
Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333] Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
4,381
Chrome
a64c3cf0ab6da24a9a010a45ebe4794422d40c71
static std::string FixupHomedir(const std::string& text) { DCHECK(text.length() > 0 && text[0] == '~'); if (text.length() == 1 || text[1] == '/') { const char* home = getenv(base::env_vars::kHome); if (URLFixerUpper::home_directory_override) home = URLFixerUpper::home_directory_override; if (!home) return text; return home + text.substr(1); } #if defined(OS_MACOSX) static const char kHome[] = "/Users/"; #else static const char kHome[] = "/home/"; #endif return kHome + text.substr(1); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
13,886
jasper
243749e5a6384acdb9f0a59515c0b85dfd62bd5b
jas_image_t *jas_image_create0() { jas_image_t *image; if (!(image = jas_malloc(sizeof(jas_image_t)))) { return 0; } image->tlx_ = 0; image->tly_ = 0; image->brx_ = 0; image->bry_ = 0; image->clrspc_ = JAS_CLRSPC_UNKNOWN; image->numcmpts_ = 0; image->maxcmpts_ = 0; image->cmpts_ = 0; // image->inmem_ = true; image->cmprof_ = 0; return image; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
14,135
node
78b0e30954111cfaba0edbeee85450d8cbc6fdf6
void Utf8DecoderBase::WriteUtf16Slow(const uint8_t* stream, uint16_t* data, unsigned data_length) { while (data_length != 0) { unsigned cursor = 0; uint32_t character = Utf8::ValueOf(stream, Utf8::kMaxEncodedSize, &cursor); // There's a total lack of bounds checking for stream // as it was already done in Reset. stream += cursor; if (character > unibrow::Utf16::kMaxNonSurrogateCharCode) { *data++ = Utf16::LeadSurrogate(character); *data++ = Utf16::TrailSurrogate(character); DCHECK(data_length > 1); data_length -= 2; } else { *data++ = character; data_length -= 1; } } }
1
CVE-2015-5380
CWE-119
Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333] Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
3,793
flatpak
a9107feeb4b8275b78965b36bf21b92d5724699e
flatpak_run_add_dconf_args (FlatpakBwrap *bwrap, const char *app_id, GKeyFile *metakey, GError **error) { g_auto(GStrv) paths = NULL; g_autofree char *migrate_path = NULL; g_autofree char *defaults = NULL; g_autofree char *values = NULL; g_autofree char *locks = NULL; gsize defaults_size; gsize values_size; gsize locks_size; if (metakey) { paths = g_key_file_get_string_list (metakey, FLATPAK_METADATA_GROUP_DCONF, FLATPAK_METADATA_KEY_DCONF_PATHS, NULL, NULL); migrate_path = g_key_file_get_string (metakey, FLATPAK_METADATA_GROUP_DCONF, FLATPAK_METADATA_KEY_DCONF_MIGRATE_PATH, NULL); } get_dconf_data (app_id, (const char **) paths, migrate_path, &defaults, &defaults_size, &values, &values_size, &locks, &locks_size); if (defaults_size != 0 && !flatpak_bwrap_add_args_data (bwrap, "dconf-defaults", defaults, defaults_size, "/etc/glib-2.0/settings/defaults", error)) return FALSE; if (locks_size != 0 && !flatpak_bwrap_add_args_data (bwrap, "dconf-locks", locks, locks_size, "/etc/glib-2.0/settings/locks", error)) return FALSE; /* We do a one-time conversion of existing dconf settings to a keyfile. * Only do that once the app stops requesting dconf access. */ if (migrate_path) { g_autofree char *filename = NULL; filename = g_build_filename (g_get_home_dir (), ".var/app", app_id, "config/glib-2.0/settings/keyfile", NULL); if (values_size != 0 && !g_file_test (filename, G_FILE_TEST_EXISTS)) { g_autofree char *dir = g_path_get_dirname (filename); if (g_mkdir_with_parents (dir, 0700) == -1) return FALSE; if (!g_file_set_contents (filename, values, values_size, error)) return FALSE; } } return TRUE; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
15,033
xorg-xserver
c06e27b2f6fd9f7b9f827623a48876a225264132
XkbWriteGeomOverlay(char *wire,XkbOverlayPtr ol,Bool swap) { register int r; XkbOverlayRowPtr row; xkbOverlayWireDesc * olWire; olWire= (xkbOverlayWireDesc *)wire; olWire->name= ol->name; olWire->nRows= ol->num_rows; if (swap) { register int n; swapl(&olWire->name,n); } wire= (char *)&olWire[1]; for (r=0,row=ol->rows;r<ol->num_rows;r++,row++) { unsigned int k; XkbOverlayKeyPtr key; xkbOverlayRowWireDesc * rowWire; rowWire= (xkbOverlayRowWireDesc *)wire; rowWire->rowUnder= row->row_under; rowWire->nKeys= row->num_keys; wire= (char *)&rowWire[1]; for (k=0,key=row->keys;k<row->num_keys;k++,key++) { xkbOverlayKeyWireDesc * keyWire; keyWire= (xkbOverlayKeyWireDesc *)wire; memcpy(keyWire->over,key->over.name,XkbKeyNameLength); memcpy(keyWire->under,key->under.name,XkbKeyNameLength); wire= (char *)&keyWire[1]; } } return wire; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
14,177
Chrome
45d901b56f578a74b19ba0d10fa5c4c467f19303
void GM2TabStyle::PaintBackgroundStroke(gfx::Canvas* canvas, bool active, SkColor stroke_color) const { SkPath outer_path = GetPath(TabStyle::PathType::kBorder, canvas->image_scale(), active); gfx::ScopedCanvas scoped_canvas(canvas); float scale = canvas->UndoDeviceScaleFactor(); cc::PaintFlags flags; flags.setAntiAlias(true); flags.setColor(stroke_color); flags.setStyle(cc::PaintFlags::kStroke_Style); flags.setStrokeWidth(GetStrokeThickness(active) * scale); canvas->DrawPath(outer_path, flags); }
1
CVE-2016-5218
CWE-20
Improper Input Validation
The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly.
Phase: Architecture and Design Strategy: Attack Surface Reduction Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111] Phase: Architecture and Design Strategy: Libraries or Frameworks Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173). Phases: Architecture and Design; Implementation Strategy: Attack Surface Reduction Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls. Phase: Implementation Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. Effectiveness: High Phase: Architecture and Design For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server. Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings. Phase: Implementation When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined. Phase: Implementation Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow. Phase: Implementation Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained. Phase: Implementation Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control. Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content. Phase: Implementation When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so.
9,299
lldpd
a8d3c90feca548fc0656d95b5d278713db86ff61
static int _lldp_send(struct lldpd *global, struct lldpd_hardware *hardware, u_int8_t c_id_subtype, char *c_id, int c_id_len, u_int8_t p_id_subtype, char *p_id, int p_id_len, int shutdown) { struct lldpd_port *port; struct lldpd_chassis *chassis; struct lldpd_frame *frame; int length; u_int8_t *packet, *pos, *tlv; struct lldpd_mgmt *mgmt; int proto; u_int8_t mcastaddr_regular[] = LLDP_ADDR_NEAREST_BRIDGE; u_int8_t mcastaddr_nontpmr[] = LLDP_ADDR_NEAREST_NONTPMR_BRIDGE; u_int8_t mcastaddr_customer[] = LLDP_ADDR_NEAREST_CUSTOMER_BRIDGE; u_int8_t *mcastaddr; #ifdef ENABLE_DOT1 const u_int8_t dot1[] = LLDP_TLV_ORG_DOT1; struct lldpd_vlan *vlan; struct lldpd_ppvid *ppvid; struct lldpd_pi *pi; #endif #ifdef ENABLE_DOT3 const u_int8_t dot3[] = LLDP_TLV_ORG_DOT3; #endif #ifdef ENABLE_LLDPMED int i; const u_int8_t med[] = LLDP_TLV_ORG_MED; #endif #ifdef ENABLE_CUSTOM struct lldpd_custom *custom; #endif port = &hardware->h_lport; chassis = port->p_chassis; length = hardware->h_mtu; if ((packet = (u_int8_t*)calloc(1, length)) == NULL) return ENOMEM; pos = packet; /* Ethernet header */ switch (global->g_config.c_lldp_agent_type) { case LLDP_AGENT_TYPE_NEAREST_NONTPMR_BRIDGE: mcastaddr = mcastaddr_nontpmr; break; case LLDP_AGENT_TYPE_NEAREST_CUSTOMER_BRIDGE: mcastaddr = mcastaddr_customer; break; case LLDP_AGENT_TYPE_NEAREST_BRIDGE: default: mcastaddr = mcastaddr_regular; break; } if (!( /* LLDP multicast address */ POKE_BYTES(mcastaddr, ETHER_ADDR_LEN) && /* Source MAC address */ POKE_BYTES(&hardware->h_lladdr, ETHER_ADDR_LEN))) goto toobig; /* Insert VLAN tag if needed */ if (port->p_vlan_tx_enabled) { if (!( /* VLAN ethertype */ POKE_UINT16(ETHERTYPE_VLAN) && /* VLAN Tag Control Information (TCI) */ /* Priority(3bits) | DEI(1bit) | VID(12bit) */ POKE_UINT16(port->p_vlan_tx_tag))) goto toobig; } if (!( /* LLDP frame */ POKE_UINT16(ETHERTYPE_LLDP))) goto toobig; /* Chassis ID */ if (!( POKE_START_LLDP_TLV(LLDP_TLV_CHASSIS_ID) && POKE_UINT8(c_id_subtype) && POKE_BYTES(c_id, c_id_len) && POKE_END_LLDP_TLV)) goto toobig; /* Port ID */ if (!( POKE_START_LLDP_TLV(LLDP_TLV_PORT_ID) && POKE_UINT8(p_id_subtype) && POKE_BYTES(p_id, p_id_len) && POKE_END_LLDP_TLV)) goto toobig; /* Time to live */ if (!( POKE_START_LLDP_TLV(LLDP_TLV_TTL) && POKE_UINT16(shutdown?0:(global?global->g_config.c_ttl:180)) && POKE_END_LLDP_TLV)) goto toobig; if (shutdown) goto end; /* System name */ if (chassis->c_name && *chassis->c_name != '\0') { if (!( POKE_START_LLDP_TLV(LLDP_TLV_SYSTEM_NAME) && POKE_BYTES(chassis->c_name, strlen(chassis->c_name)) && POKE_END_LLDP_TLV)) goto toobig; } /* System description (skip it if empty) */ if (chassis->c_descr && *chassis->c_descr != '\0') { if (!( POKE_START_LLDP_TLV(LLDP_TLV_SYSTEM_DESCR) && POKE_BYTES(chassis->c_descr, strlen(chassis->c_descr)) && POKE_END_LLDP_TLV)) goto toobig; } /* System capabilities */ if (global->g_config.c_cap_advertise && chassis->c_cap_available) { if (!( POKE_START_LLDP_TLV(LLDP_TLV_SYSTEM_CAP) && POKE_UINT16(chassis->c_cap_available) && POKE_UINT16(chassis->c_cap_enabled) && POKE_END_LLDP_TLV)) goto toobig; } /* Management addresses */ TAILQ_FOREACH(mgmt, &chassis->c_mgmt, m_entries) { proto = lldpd_af_to_lldp_proto(mgmt->m_family); if (proto == LLDP_MGMT_ADDR_NONE) continue; if (!( POKE_START_LLDP_TLV(LLDP_TLV_MGMT_ADDR) && /* Size of the address, including its type */ POKE_UINT8(mgmt->m_addrsize + 1) && POKE_UINT8(proto) && POKE_BYTES(&mgmt->m_addr, mgmt->m_addrsize))) goto toobig; /* Interface port type, OID */ if (mgmt->m_iface == 0) { if (!( /* We don't know the management interface */ POKE_UINT8(LLDP_MGMT_IFACE_UNKNOWN) && POKE_UINT32(0))) goto toobig; } else { if (!( /* We have the index of the management interface */ POKE_UINT8(LLDP_MGMT_IFACE_IFINDEX) && POKE_UINT32(mgmt->m_iface))) goto toobig; } if (!( /* We don't provide an OID for management */ POKE_UINT8(0) && POKE_END_LLDP_TLV)) goto toobig; } /* Port description */ if (port->p_descr && *port->p_descr != '\0') { if (!( POKE_START_LLDP_TLV(LLDP_TLV_PORT_DESCR) && POKE_BYTES(port->p_descr, strlen(port->p_descr)) && POKE_END_LLDP_TLV)) goto toobig; } #ifdef ENABLE_DOT1 /* Port VLAN ID */ if(port->p_pvid != 0) { if (!( POKE_START_LLDP_TLV(LLDP_TLV_ORG) && POKE_BYTES(dot1, sizeof(dot1)) && POKE_UINT8(LLDP_TLV_DOT1_PVID) && POKE_UINT16(port->p_pvid) && POKE_END_LLDP_TLV)) { goto toobig; } } /* Port and Protocol VLAN IDs */ TAILQ_FOREACH(ppvid, &port->p_ppvids, p_entries) { if (!( POKE_START_LLDP_TLV(LLDP_TLV_ORG) && POKE_BYTES(dot1, sizeof(dot1)) && POKE_UINT8(LLDP_TLV_DOT1_PPVID) && POKE_UINT8(ppvid->p_cap_status) && POKE_UINT16(ppvid->p_ppvid) && POKE_END_LLDP_TLV)) { goto toobig; } } /* VLANs */ TAILQ_FOREACH(vlan, &port->p_vlans, v_entries) { if (!( POKE_START_LLDP_TLV(LLDP_TLV_ORG) && POKE_BYTES(dot1, sizeof(dot1)) && POKE_UINT8(LLDP_TLV_DOT1_VLANNAME) && POKE_UINT16(vlan->v_vid) && POKE_UINT8(strlen(vlan->v_name)) && POKE_BYTES(vlan->v_name, strlen(vlan->v_name)) && POKE_END_LLDP_TLV)) goto toobig; } /* Protocol Identities */ TAILQ_FOREACH(pi, &port->p_pids, p_entries) { if (!( POKE_START_LLDP_TLV(LLDP_TLV_ORG) && POKE_BYTES(dot1, sizeof(dot1)) && POKE_UINT8(LLDP_TLV_DOT1_PI) && POKE_UINT8(pi->p_pi_len) && POKE_BYTES(pi->p_pi, pi->p_pi_len) && POKE_END_LLDP_TLV)) goto toobig; } #endif #ifdef ENABLE_DOT3 /* Aggregation status */ if (!( POKE_START_LLDP_TLV(LLDP_TLV_ORG) && POKE_BYTES(dot3, sizeof(dot3)) && POKE_UINT8(LLDP_TLV_DOT3_LA) && /* Bit 0 = capability ; Bit 1 = status */ POKE_UINT8((port->p_aggregid) ? 3:1) && POKE_UINT32(port->p_aggregid) && POKE_END_LLDP_TLV)) goto toobig; /* MAC/PHY */ if (!( POKE_START_LLDP_TLV(LLDP_TLV_ORG) && POKE_BYTES(dot3, sizeof(dot3)) && POKE_UINT8(LLDP_TLV_DOT3_MAC) && POKE_UINT8(port->p_macphy.autoneg_support | (port->p_macphy.autoneg_enabled << 1)) && POKE_UINT16(port->p_macphy.autoneg_advertised) && POKE_UINT16(port->p_macphy.mau_type) && POKE_END_LLDP_TLV)) goto toobig; /* MFS */ if (port->p_mfs) { if (!( POKE_START_LLDP_TLV(LLDP_TLV_ORG) && POKE_BYTES(dot3, sizeof(dot3)) && POKE_UINT8(LLDP_TLV_DOT3_MFS) && POKE_UINT16(port->p_mfs) && POKE_END_LLDP_TLV)) goto toobig; } /* Power */ if (port->p_power.devicetype) { if (!( (port->p_power.type_ext != LLDP_DOT3_POWER_8023BT_OFF ? (tlv = pos, POKE_UINT16((LLDP_TLV_ORG << 9) | (0x1d))): POKE_START_LLDP_TLV(LLDP_TLV_ORG)) && POKE_BYTES(dot3, sizeof(dot3)) && POKE_UINT8(LLDP_TLV_DOT3_POWER) && POKE_UINT8(( (((2 - port->p_power.devicetype) %(1<< 1))<<0) | (( port->p_power.supported %(1<< 1))<<1) | (( port->p_power.enabled %(1<< 1))<<2) | (( port->p_power.paircontrol %(1<< 1))<<3))) && POKE_UINT8(port->p_power.pairs) && POKE_UINT8(port->p_power.class))) goto toobig; /* 802.3at */ if (port->p_power.powertype != LLDP_DOT3_POWER_8023AT_OFF) { if (!( POKE_UINT8(((((port->p_power.powertype == LLDP_DOT3_POWER_8023AT_TYPE1)?1:0) << 7) | (((port->p_power.devicetype == LLDP_DOT3_POWER_PSE)?0:1) << 6) | ((port->p_power.source %(1<< 2))<<4) | ((port->p_power.pd_4pid %(1 << 1))<<2) | ((port->p_power.priority %(1<< 2))<<0))) && POKE_UINT16(port->p_power.requested) && POKE_UINT16(port->p_power.allocated))) goto toobig; } if (port->p_power.type_ext != LLDP_DOT3_POWER_8023BT_OFF) { if (!( POKE_UINT16(port->p_power.requested_a) && POKE_UINT16(port->p_power.requested_b) && POKE_UINT16(port->p_power.allocated_a) && POKE_UINT16(port->p_power.allocated_b) && POKE_UINT16(( (port->p_power.pse_status << 14) | (port->p_power.pd_status << 12) | (port->p_power.pse_pairs_ext << 10) | (port->p_power.class_a << 7) | (port->p_power.class_b << 4) | (port->p_power.class_ext << 0))) && POKE_UINT8( /* Adjust by -1 to enable 0 to mean no 802.3bt support */ ((port->p_power.type_ext -1) << 1) | (port->p_power.pd_load << 0)) && POKE_UINT16(port->p_power.pse_max) && /* Send 0 for autoclass and power down requests */ POKE_UINT8(0) && POKE_UINT16(0) && POKE_UINT8(0))) goto toobig; } if (!(POKE_END_LLDP_TLV)) goto toobig; } #endif #ifdef ENABLE_LLDPMED if (port->p_med_cap_enabled) { /* LLDP-MED cap */ if (port->p_med_cap_enabled & LLDP_MED_CAP_CAP) { if (!( POKE_START_LLDP_TLV(LLDP_TLV_ORG) && POKE_BYTES(med, sizeof(med)) && POKE_UINT8(LLDP_TLV_MED_CAP) && POKE_UINT16(chassis->c_med_cap_available) && POKE_UINT8(chassis->c_med_type) && POKE_END_LLDP_TLV)) goto toobig; } /* LLDP-MED inventory */ #define LLDP_INVENTORY(value, subtype) \ if (value) { \ if (!( \ POKE_START_LLDP_TLV(LLDP_TLV_ORG) && \ POKE_BYTES(med, sizeof(med)) && \ POKE_UINT8(subtype) && \ POKE_BYTES(value, \ (strlen(value)>32)?32:strlen(value)) && \ POKE_END_LLDP_TLV)) \ goto toobig; \ } if (port->p_med_cap_enabled & LLDP_MED_CAP_IV) { LLDP_INVENTORY(chassis->c_med_hw, LLDP_TLV_MED_IV_HW); LLDP_INVENTORY(chassis->c_med_fw, LLDP_TLV_MED_IV_FW); LLDP_INVENTORY(chassis->c_med_sw, LLDP_TLV_MED_IV_SW); LLDP_INVENTORY(chassis->c_med_sn, LLDP_TLV_MED_IV_SN); LLDP_INVENTORY(chassis->c_med_manuf, LLDP_TLV_MED_IV_MANUF); LLDP_INVENTORY(chassis->c_med_model, LLDP_TLV_MED_IV_MODEL); LLDP_INVENTORY(chassis->c_med_asset, LLDP_TLV_MED_IV_ASSET); } /* LLDP-MED location */ for (i = 0; i < LLDP_MED_LOCFORMAT_LAST; i++) { if (port->p_med_location[i].format == i + 1) { if (!( POKE_START_LLDP_TLV(LLDP_TLV_ORG) && POKE_BYTES(med, sizeof(med)) && POKE_UINT8(LLDP_TLV_MED_LOCATION) && POKE_UINT8(port->p_med_location[i].format) && POKE_BYTES(port->p_med_location[i].data, port->p_med_location[i].data_len) && POKE_END_LLDP_TLV)) goto toobig; } } /* LLDP-MED network policy */ for (i = 0; i < LLDP_MED_APPTYPE_LAST; i++) { if (port->p_med_policy[i].type == i + 1) { if (!( POKE_START_LLDP_TLV(LLDP_TLV_ORG) && POKE_BYTES(med, sizeof(med)) && POKE_UINT8(LLDP_TLV_MED_POLICY) && POKE_UINT32(( ((port->p_med_policy[i].type %(1<< 8))<<24) | ((port->p_med_policy[i].unknown %(1<< 1))<<23) | ((port->p_med_policy[i].tagged %(1<< 1))<<22) | /*((0 %(1<< 1))<<21) |*/ ((port->p_med_policy[i].vid %(1<<12))<< 9) | ((port->p_med_policy[i].priority %(1<< 3))<< 6) | ((port->p_med_policy[i].dscp %(1<< 6))<< 0) )) && POKE_END_LLDP_TLV)) goto toobig; } } /* LLDP-MED POE-MDI */ if ((port->p_med_power.devicetype == LLDP_MED_POW_TYPE_PSE) || (port->p_med_power.devicetype == LLDP_MED_POW_TYPE_PD)) { int devicetype = 0, source = 0; if (!( POKE_START_LLDP_TLV(LLDP_TLV_ORG) && POKE_BYTES(med, sizeof(med)) && POKE_UINT8(LLDP_TLV_MED_MDI))) goto toobig; switch (port->p_med_power.devicetype) { case LLDP_MED_POW_TYPE_PSE: devicetype = 0; switch (port->p_med_power.source) { case LLDP_MED_POW_SOURCE_PRIMARY: source = 1; break; case LLDP_MED_POW_SOURCE_BACKUP: source = 2; break; case LLDP_MED_POW_SOURCE_RESERVED: source = 3; break; default: source = 0; break; } break; case LLDP_MED_POW_TYPE_PD: devicetype = 1; switch (port->p_med_power.source) { case LLDP_MED_POW_SOURCE_PSE: source = 1; break; case LLDP_MED_POW_SOURCE_LOCAL: source = 2; break; case LLDP_MED_POW_SOURCE_BOTH: source = 3; break; default: source = 0; break; } break; } if (!( POKE_UINT8(( ((devicetype %(1<< 2))<<6) | ((source %(1<< 2))<<4) | ((port->p_med_power.priority %(1<< 4))<<0) )) && POKE_UINT16(port->p_med_power.val) && POKE_END_LLDP_TLV)) goto toobig; } } #endif #ifdef ENABLE_CUSTOM TAILQ_FOREACH(custom, &port->p_custom_list, next) { if (!( POKE_START_LLDP_TLV(LLDP_TLV_ORG) && POKE_BYTES(custom->oui, sizeof(custom->oui)) && POKE_UINT8(custom->subtype) && POKE_BYTES(custom->oui_info, custom->oui_info_len) && POKE_END_LLDP_TLV)) goto toobig; } #endif end: /* END */ if (!( POKE_START_LLDP_TLV(LLDP_TLV_END) && POKE_END_LLDP_TLV)) goto toobig; if (interfaces_send_helper(global, hardware, (char *)packet, pos - packet) == -1) { log_warn("lldp", "unable to send packet on real device for %s", hardware->h_ifname); free(packet); return ENETDOWN; } hardware->h_tx_cnt++; /* We assume that LLDP frame is the reference */ if (!shutdown && (frame = (struct lldpd_frame*)malloc( sizeof(int) + pos - packet)) != NULL) { frame->size = pos - packet; memcpy(&frame->frame, packet, frame->size); if ((hardware->h_lport.p_lastframe == NULL) || (hardware->h_lport.p_lastframe->size != frame->size) || (memcmp(hardware->h_lport.p_lastframe->frame, frame->frame, frame->size) != 0)) { free(hardware->h_lport.p_lastframe); hardware->h_lport.p_lastframe = frame; hardware->h_lport.p_lastchange = time(NULL); } else free(frame); } free(packet); return 0; toobig: log_info("lldp", "Cannot send LLDP packet for %s, Too big message", p_id); free(packet); return E2BIG; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
15,996
postgres
31400a673325147e1205326008e32135a78b4d8a
hstore_from_record(PG_FUNCTION_ARGS) { HeapTupleHeader rec; int32 buflen; HStore *out; Pairs *pairs; Oid tupType; int32 tupTypmod; TupleDesc tupdesc; HeapTupleData tuple; RecordIOData *my_extra; int ncolumns; int i, j; Datum *values; bool *nulls; if (PG_ARGISNULL(0)) { Oid argtype = get_fn_expr_argtype(fcinfo->flinfo, 0); /* * have no tuple to look at, so the only source of type info is the * argtype. The lookup_rowtype_tupdesc call below will error out if we * don't have a known composite type oid here. */ tupType = argtype; tupTypmod = -1; rec = NULL; } else { rec = PG_GETARG_HEAPTUPLEHEADER(0); /* Extract type info from the tuple itself */ tupType = HeapTupleHeaderGetTypeId(rec); tupTypmod = HeapTupleHeaderGetTypMod(rec); } tupdesc = lookup_rowtype_tupdesc(tupType, tupTypmod); ncolumns = tupdesc->natts; /* * We arrange to look up the needed I/O info just once per series of * calls, assuming the record type doesn't change underneath us. */ my_extra = (RecordIOData *) fcinfo->flinfo->fn_extra; if (my_extra == NULL || my_extra->ncolumns != ncolumns) { fcinfo->flinfo->fn_extra = MemoryContextAlloc(fcinfo->flinfo->fn_mcxt, sizeof(RecordIOData) - sizeof(ColumnIOData) + ncolumns * sizeof(ColumnIOData)); my_extra = (RecordIOData *) fcinfo->flinfo->fn_extra; my_extra->record_type = InvalidOid; my_extra->record_typmod = 0; } if (my_extra->record_type != tupType || my_extra->record_typmod != tupTypmod) { MemSet(my_extra, 0, sizeof(RecordIOData) - sizeof(ColumnIOData) + ncolumns * sizeof(ColumnIOData)); my_extra->record_type = tupType; my_extra->record_typmod = tupTypmod; my_extra->ncolumns = ncolumns; } pairs = palloc(ncolumns * sizeof(Pairs)); if (rec) { /* Build a temporary HeapTuple control structure */ tuple.t_len = HeapTupleHeaderGetDatumLength(rec); ItemPointerSetInvalid(&(tuple.t_self)); tuple.t_tableOid = InvalidOid; tuple.t_data = rec; values = (Datum *) palloc(ncolumns * sizeof(Datum)); nulls = (bool *) palloc(ncolumns * sizeof(bool)); /* Break down the tuple into fields */ heap_deform_tuple(&tuple, tupdesc, values, nulls); } else { values = NULL; nulls = NULL; } for (i = 0, j = 0; i < ncolumns; ++i) { ColumnIOData *column_info = &my_extra->columns[i]; Oid column_type = tupdesc->attrs[i]->atttypid; char *value; /* Ignore dropped columns in datatype */ if (tupdesc->attrs[i]->attisdropped) continue; pairs[j].key = NameStr(tupdesc->attrs[i]->attname); pairs[j].keylen = hstoreCheckKeyLen(strlen(NameStr(tupdesc->attrs[i]->attname))); if (!nulls || nulls[i]) { pairs[j].val = NULL; pairs[j].vallen = 4; pairs[j].isnull = true; pairs[j].needfree = false; ++j; continue; } /* * Convert the column value to text */ if (column_info->column_type != column_type) { bool typIsVarlena; getTypeOutputInfo(column_type, &column_info->typiofunc, &typIsVarlena); fmgr_info_cxt(column_info->typiofunc, &column_info->proc, fcinfo->flinfo->fn_mcxt); column_info->column_type = column_type; } value = OutputFunctionCall(&column_info->proc, values[i]); pairs[j].val = value; pairs[j].vallen = hstoreCheckValLen(strlen(value)); pairs[j].isnull = false; pairs[j].needfree = false; ++j; } ncolumns = hstoreUniquePairs(pairs, j, &buflen); out = hstorePairs(pairs, ncolumns, buflen); ReleaseTupleDesc(tupdesc); PG_RETURN_POINTER(out); }
1
CVE-2014-2669
CWE-189
Numeric Errors
Weaknesses in this category are related to improper calculation or conversion of numbers.
Not Found in CWE Page
2,650
Android
d4271b792bdad85a80e2b83ab34c4b30b74f53ec
void SoftMPEG4::onReset() { SoftVideoDecoderOMXComponent::onReset(); mPvToOmxTimeMap.clear(); mSignalledError = false; mFramesConfigured = false; if (mInitialized) { PVCleanUpVideoDecoder(mHandle); mInitialized = false; } }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
12,600
mruby
55edae0226409de25e59922807cb09acb45731a2
obj_respond_to(mrb_state *mrb, mrb_value self) { mrb_value mid; mrb_sym id, rtm_id; mrb_bool priv = FALSE, respond_to_p = TRUE; mrb_get_args(mrb, "o|b", &mid, &priv); if (mrb_symbol_p(mid)) { id = mrb_symbol(mid); } else { mrb_value tmp; if (mrb_string_p(mid)) { tmp = mrb_check_intern_str(mrb, mid); } else { tmp = mrb_check_string_type(mrb, mid); if (mrb_nil_p(tmp)) { tmp = mrb_inspect(mrb, mid); mrb_raisef(mrb, E_TYPE_ERROR, "%S is not a symbol", tmp); } tmp = mrb_check_intern_str(mrb, tmp); } if (mrb_nil_p(tmp)) { respond_to_p = FALSE; } else { id = mrb_symbol(tmp); } } if (respond_to_p) { respond_to_p = basic_obj_respond_to(mrb, self, id, !priv); } if (!respond_to_p) { rtm_id = mrb_intern_lit(mrb, "respond_to_missing?"); if (basic_obj_respond_to(mrb, self, rtm_id, !priv)) { mrb_value args[2], v; args[0] = mid; args[1] = mrb_bool_value(priv); v = mrb_funcall_argv(mrb, self, rtm_id, 2, args); return mrb_bool_value(mrb_bool(v)); } } return mrb_bool_value(respond_to_p); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
14,358
Chrome
5bb223676defeba9c44a5ce42460c86e24561e73
ExtensionsGuestViewMessageFilter::ExtensionsGuestViewMessageFilter( int render_process_id, BrowserContext* context) : GuestViewMessageFilter(kFilteredMessageClasses, base::size(kFilteredMessageClasses), render_process_id, context), content::BrowserAssociatedInterface<mojom::GuestView>(this, this) { GetProcessIdToFilterMap()->insert_or_assign(render_process_id_, this); }
1
CVE-2019-5796
CWE-362
Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
The product contains a concurrent code sequence that requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence operating concurrently.
Phase: Architecture and Design In languages that support it, use synchronization primitives. Only wrap these around critical code to minimize the impact on performance. Phase: Architecture and Design Use thread-safe capabilities such as the data access abstraction in Spring. Phase: Architecture and Design Minimize the usage of shared resources in order to remove as much complexity as possible from the control flow and to reduce the likelihood of unexpected conditions occurring. Additionally, this will minimize the amount of synchronization necessary and may even help to reduce the likelihood of a denial of service where an attacker may be able to repeatedly trigger a critical section (CWE-400). Phase: Implementation When using multithreading and operating on shared variables, only use thread-safe functions. Phase: Implementation Use atomic operations on shared variables. Be wary of innocent-looking constructs such as "x++". This may appear atomic at the code layer, but it is actually non-atomic at the instruction layer, since it involves a read, followed by a computation, followed by a write. Phase: Implementation Use a mutex if available, but be sure to avoid related weaknesses such as CWE-412. Phase: Implementation Avoid double-checked locking (CWE-609) and other implementation errors that arise when trying to avoid the overhead of synchronization. Phase: Implementation Disable interrupts or signals over critical parts of the code, but also make sure that the code does not go into a large or infinite loop. Phase: Implementation Use the volatile type modifier for critical variables to avoid unexpected compiler optimization or reordering. This does not necessarily solve the synchronization problem, but it can help. Phases: Architecture and Design; Operation Strategy: Environment Hardening Run your code using the lowest privileges that are required to accomplish the necessary tasks [REF-76]. If possible, create isolated accounts with limited privileges that are only used for a single task. That way, a successful attack will not immediately give the attacker access to the rest of the software or its environment. For example, database applications rarely need to run as the database administrator, especially in day-to-day operations
5,648
linux
e6a21a14106d9718aa4f8e115b1e474888eeba44
static void vidtv_s302m_compute_pts_from_video(struct vidtv_encoder *e) { struct vidtv_access_unit *au = e->access_units; struct vidtv_access_unit *sync_au = e->sync->access_units; /* use the same pts from the video access unit*/ while (au && sync_au) { au->pts = sync_au->pts; au = au->next; sync_au = sync_au->next; } }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
20,498
Chrome
297ae873b471a46929ea39697b121c0b411434ee
void CustomButton::OnGestureEvent(ui::GestureEvent* event) { if (state_ == STATE_DISABLED) { Button::OnGestureEvent(event); return; } if (event->type() == ui::ET_GESTURE_TAP && IsTriggerableEvent(*event)) { SetState(STATE_HOVERED); hover_animation_->Reset(1.0); NotifyClick(*event); event->StopPropagation(); } else if (event->type() == ui::ET_GESTURE_TAP_DOWN && ShouldEnterPushedState(*event)) { SetState(STATE_PRESSED); if (request_focus_on_press_) RequestFocus(); event->StopPropagation(); } else if (event->type() == ui::ET_GESTURE_TAP_CANCEL || event->type() == ui::ET_GESTURE_END) { SetState(STATE_NORMAL); } if (!event->handled()) Button::OnGestureEvent(event); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
14,407
linux
f43bfaeddc79effbf3d0fcb53ca477cca66f3db8
static irqreturn_t atl2_intr(int irq, void *data) { struct atl2_adapter *adapter = netdev_priv(data); struct atl2_hw *hw = &adapter->hw; u32 status; status = ATL2_READ_REG(hw, REG_ISR); if (0 == status) return IRQ_NONE; /* link event */ if (status & ISR_PHY) atl2_clear_phy_int(adapter); /* clear ISR status, and Enable CMB DMA/Disable Interrupt */ ATL2_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT); /* check if PCIE PHY Link down */ if (status & ISR_PHY_LINKDOWN) { if (netif_running(adapter->netdev)) { /* reset MAC */ ATL2_WRITE_REG(hw, REG_ISR, 0); ATL2_WRITE_REG(hw, REG_IMR, 0); ATL2_WRITE_FLUSH(hw); schedule_work(&adapter->reset_task); return IRQ_HANDLED; } } /* check if DMA read/write error? */ if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) { ATL2_WRITE_REG(hw, REG_ISR, 0); ATL2_WRITE_REG(hw, REG_IMR, 0); ATL2_WRITE_FLUSH(hw); schedule_work(&adapter->reset_task); return IRQ_HANDLED; } /* link event */ if (status & (ISR_PHY | ISR_MANUAL)) { adapter->netdev->stats.tx_carrier_errors++; atl2_check_for_link(adapter); } /* transmit event */ if (status & ISR_TX_EVENT) atl2_intr_tx(adapter); /* rx exception */ if (status & ISR_RX_EVENT) atl2_intr_rx(adapter); /* re-enable Interrupt */ ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0); return IRQ_HANDLED; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
11,605
linux
f9dbdf97a5bd92b1a49cee3d591b55b11fd7a6d5
static struct bus_type iscsi_flashnode_bus; int iscsi_flashnode_bus_match(struct device *dev, struct device_driver *drv) { if (dev->bus == &iscsi_flashnode_bus)
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
15,714
pdns
f9c57c98da1b1007a51680629b667d57d9b702b8
void emitFlightTimes() { uint64_t totals = countLessThan(flightTimes.size()); unsigned int limits[]={1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 100, 200, 500, 1000, (unsigned int) flightTimes.size()}; uint64_t sofar=0; cout.setf(std::ios::fixed); cout.precision(2); for(unsigned int i =0 ; i < sizeof(limits)/sizeof(limits[0]); ++i) { if(limits[i]!=flightTimes.size()) cout<<"Within "<<limits[i]<<" msec: "; else cout<<"Beyond "<<limits[i]-2<<" msec: "; uint64_t here = countLessThan(limits[i]); cout<<100.0*here/totals<<"% ("<<100.0*(here-sofar)/totals<<"%)"<<endl; sofar=here; } }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
18,179
openssl
3612ff6fcec0e3d1f2a598135fe12177c0419582
char *BN_bn2dec(const BIGNUM *a) { int i = 0, num, ok = 0; char *buf = NULL; char *p; BIGNUM *t = NULL; BN_ULONG *bn_data = NULL, *lp; int bn_data_num; /*- * get an upper bound for the length of the decimal integer * num <= (BN_num_bits(a) + 1) * log(2) * <= 3 * BN_num_bits(a) * 0.1001 + log(2) + 1 (rounding error) * <= BN_num_bits(a)/10 + BN_num_bits/1000 + 1 + 1 */ i = BN_num_bits(a) * 3; num = (i / 10 + i / 1000 + 1) + 1; bn_data_num = num / BN_DEC_NUM + 1; bn_data = OPENSSL_malloc(bn_data_num * sizeof(BN_ULONG)); buf = OPENSSL_malloc(num + 3); if ((buf == NULL) || (bn_data == NULL)) { BNerr(BN_F_BN_BN2DEC, ERR_R_MALLOC_FAILURE); goto err; } if ((t = BN_dup(a)) == NULL) goto err; #define BUF_REMAIN (num+3 - (size_t)(p - buf)) p = buf; lp = bn_data; if (BN_is_zero(t)) { *(p++) = '0'; *(p++) = '\0'; } else { if (BN_is_negative(t)) *p++ = '-'; while (!BN_is_zero(t)) { if (lp - bn_data >= bn_data_num) goto err; *lp = BN_div_word(t, BN_DEC_CONV); if (*lp == (BN_ULONG)-1) goto err; lp++; } lp--; /* * We now have a series of blocks, BN_DEC_NUM chars in length, where * the last one needs truncation. The blocks need to be reversed in * order. */ BIO_snprintf(p, BUF_REMAIN, BN_DEC_FMT1, *lp); while (*p) p++; while (lp != bn_data) { lp--; BIO_snprintf(p, BUF_REMAIN, BN_DEC_FMT2, *lp); while (*p) p++; } } ok = 1; err: if (bn_data != NULL) OPENSSL_free(bn_data); if (t != NULL) BN_free(t); if (!ok && buf) { OPENSSL_free(buf); buf = NULL; } return (buf); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
23,196
FreeRDP
09b9d4f1994a674c4ec85b4947aa656eda1aed8a
static BOOL gdi_Glyph_EndDraw(rdpContext* context, INT32 x, INT32 y, INT32 width, INT32 height, UINT32 bgcolor, UINT32 fgcolor) { rdpGdi* gdi; if (!context || !context->gdi) return FALSE; gdi = context->gdi; if (!gdi->drawing || !gdi->drawing->hdc) return FALSE; gdi_SetNullClipRgn(gdi->drawing->hdc); return TRUE; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
19,151
proxygen
52cf331743ebd74194d6343a6c2ec52bb917c982
bool HTTP2Codec::onIngressUpgradeMessage(const HTTPMessage& msg) { if (!HTTPParallelCodec::onIngressUpgradeMessage(msg)) { return false; } if (msg.getHeaders().getNumberOfValues(http2::kProtocolSettingsHeader) != 1) { VLOG(4) << __func__ << " with no HTTP2-Settings"; return false; } const auto& settingsHeader = msg.getHeaders().getSingleOrEmpty( http2::kProtocolSettingsHeader); if (settingsHeader.empty()) { return true; } auto decoded = base64url_decode(settingsHeader); // Must be well formed Base64Url and not too large if (decoded.empty() || decoded.length() > http2::kMaxFramePayloadLength) { VLOG(4) << __func__ << " failed to decode HTTP2-Settings"; return false; } std::unique_ptr<IOBuf> decodedBuf = IOBuf::wrapBuffer(decoded.data(), decoded.length()); IOBufQueue settingsQueue{IOBufQueue::cacheChainLength()}; settingsQueue.append(std::move(decodedBuf)); Cursor c(settingsQueue.front()); std::deque<SettingPair> settings; // downcast is ok because of above length check http2::FrameHeader frameHeader{ (uint32_t)settingsQueue.chainLength(), 0, http2::FrameType::SETTINGS, 0, 0}; auto err = http2::parseSettings(c, frameHeader, settings); if (err != ErrorCode::NO_ERROR) { VLOG(4) << __func__ << " bad settings frame"; return false; } if (handleSettings(settings) != ErrorCode::NO_ERROR) { VLOG(4) << __func__ << " handleSettings failed"; return false; } return true; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
13,816
ImageMagick
361ed689cc8e56fd125f9d0d6508e9eb303bdca6
static MagickBooleanType WriteWEBPImage(const ImageInfo *image_info, Image *image,ExceptionInfo *exception) { const char *value; int webp_status; MagickBooleanType status; MemoryInfo *pixel_info; register uint32_t *magick_restrict q; ssize_t y; WebPAuxStats statistics; WebPConfig configure; #if defined(MAGICKCORE_WEBPMUX_DELEGATE) WebPMemoryWriter writer_info; #endif WebPPicture picture; /* Open output image file. */ assert(image_info != (const ImageInfo *) NULL); assert(image_info->signature == MagickCoreSignature); assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); if ((image->columns > 16383UL) || (image->rows > 16383UL)) ThrowWriterException(ImageError,"WidthOrHeightExceedsLimit"); status=OpenBlob(image_info,image,WriteBinaryBlobMode,exception); if (status == MagickFalse) return(status); if ((WebPPictureInit(&picture) == 0) || (WebPConfigInit(&configure) == 0)) ThrowWriterException(ResourceLimitError,"UnableToEncodeImageFile"); #if !defined(MAGICKCORE_WEBPMUX_DELEGATE) picture.writer=WebPEncodeWriter; picture.custom_ptr=(void *) image; #else WebPMemoryWriterInit(&writer_info); picture.writer=WebPMemoryWrite; picture.custom_ptr=(&writer_info); #endif #if WEBP_DECODER_ABI_VERSION >= 0x0100 picture.progress_hook=WebPEncodeProgress; picture.user_data=(void *) image; #endif picture.stats=(&statistics); picture.width=(int) image->columns; picture.height=(int) image->rows; picture.argb_stride=(int) image->columns; picture.use_argb=1; if (image->quality != UndefinedCompressionQuality) configure.quality=(float) image->quality; if (image->quality >= 100) configure.lossless=1; value=GetImageOption(image_info,"webp:lossless"); if (value != (char *) NULL) configure.lossless=(int) ParseCommandOption(MagickBooleanOptions, MagickFalse,value); value=GetImageOption(image_info,"webp:method"); if (value != (char *) NULL) configure.method=StringToInteger(value); value=GetImageOption(image_info,"webp:image-hint"); if (value != (char *) NULL) { if (LocaleCompare(value,"default") == 0) configure.image_hint=WEBP_HINT_DEFAULT; if (LocaleCompare(value,"photo") == 0) configure.image_hint=WEBP_HINT_PHOTO; if (LocaleCompare(value,"picture") == 0) configure.image_hint=WEBP_HINT_PICTURE; #if WEBP_DECODER_ABI_VERSION >= 0x0200 if (LocaleCompare(value,"graph") == 0) configure.image_hint=WEBP_HINT_GRAPH; #endif } value=GetImageOption(image_info,"webp:target-size"); if (value != (char *) NULL) configure.target_size=StringToInteger(value); value=GetImageOption(image_info,"webp:target-psnr"); if (value != (char *) NULL) configure.target_PSNR=(float) StringToDouble(value,(char **) NULL); value=GetImageOption(image_info,"webp:segments"); if (value != (char *) NULL) configure.segments=StringToInteger(value); value=GetImageOption(image_info,"webp:sns-strength"); if (value != (char *) NULL) configure.sns_strength=StringToInteger(value); value=GetImageOption(image_info,"webp:filter-strength"); if (value != (char *) NULL) configure.filter_strength=StringToInteger(value); value=GetImageOption(image_info,"webp:filter-sharpness"); if (value != (char *) NULL) configure.filter_sharpness=StringToInteger(value); value=GetImageOption(image_info,"webp:filter-type"); if (value != (char *) NULL) configure.filter_type=StringToInteger(value); value=GetImageOption(image_info,"webp:auto-filter"); if (value != (char *) NULL) configure.autofilter=(int) ParseCommandOption(MagickBooleanOptions, MagickFalse,value); value=GetImageOption(image_info,"webp:alpha-compression"); if (value != (char *) NULL) configure.alpha_compression=StringToInteger(value); value=GetImageOption(image_info,"webp:alpha-filtering"); if (value != (char *) NULL) configure.alpha_filtering=StringToInteger(value); value=GetImageOption(image_info,"webp:alpha-quality"); if (value != (char *) NULL) configure.alpha_quality=StringToInteger(value); value=GetImageOption(image_info,"webp:pass"); if (value != (char *) NULL) configure.pass=StringToInteger(value); value=GetImageOption(image_info,"webp:show-compressed"); if (value != (char *) NULL) configure.show_compressed=StringToInteger(value); value=GetImageOption(image_info,"webp:preprocessing"); if (value != (char *) NULL) configure.preprocessing=StringToInteger(value); value=GetImageOption(image_info,"webp:partitions"); if (value != (char *) NULL) configure.partitions=StringToInteger(value); value=GetImageOption(image_info,"webp:partition-limit"); if (value != (char *) NULL) configure.partition_limit=StringToInteger(value); #if WEBP_DECODER_ABI_VERSION >= 0x0201 value=GetImageOption(image_info,"webp:emulate-jpeg-size"); if (value != (char *) NULL) configure.emulate_jpeg_size=(int) ParseCommandOption(MagickBooleanOptions, MagickFalse,value); value=GetImageOption(image_info,"webp:low-memory"); if (value != (char *) NULL) configure.low_memory=(int) ParseCommandOption(MagickBooleanOptions, MagickFalse,value); value=GetImageOption(image_info,"webp:thread-level"); if (value != (char *) NULL) configure.thread_level=StringToInteger(value); #endif if (WebPValidateConfig(&configure) == 0) ThrowWriterException(ResourceLimitError,"UnableToEncodeImageFile"); /* Allocate memory for pixels. */ (void) TransformImageColorspace(image,sRGBColorspace,exception); pixel_info=AcquireVirtualMemory(image->columns,image->rows* sizeof(*picture.argb)); if (pixel_info == (MemoryInfo *) NULL) ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed"); picture.argb=(uint32_t *) GetVirtualMemoryBlob(pixel_info); /* Convert image to WebP raster pixels. */ q=picture.argb; for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *magick_restrict p; register ssize_t x; p=GetVirtualPixels(image,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { *q++=(uint32_t) (image->alpha_trait != UndefinedPixelTrait ? ScaleQuantumToChar(GetPixelAlpha(image,p)) << 24 : 0xff000000) | (ScaleQuantumToChar(GetPixelRed(image,p)) << 16) | (ScaleQuantumToChar(GetPixelGreen(image,p)) << 8) | (ScaleQuantumToChar(GetPixelBlue(image,p))); p+=GetPixelChannels(image); } status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y, image->rows); if (status == MagickFalse) break; } webp_status=WebPEncode(&configure,&picture); if (webp_status == 0) { const char *message; switch (picture.error_code) { case VP8_ENC_ERROR_OUT_OF_MEMORY: { message="out of memory"; break; } case VP8_ENC_ERROR_BITSTREAM_OUT_OF_MEMORY: { message="bitstream out of memory"; break; } case VP8_ENC_ERROR_NULL_PARAMETER: { message="NULL parameter"; break; } case VP8_ENC_ERROR_INVALID_CONFIGURATION: { message="invalid configuration"; break; } case VP8_ENC_ERROR_BAD_DIMENSION: { message="bad dimension"; break; } case VP8_ENC_ERROR_PARTITION0_OVERFLOW: { message="partition 0 overflow (> 512K)"; break; } case VP8_ENC_ERROR_PARTITION_OVERFLOW: { message="partition overflow (> 16M)"; break; } case VP8_ENC_ERROR_BAD_WRITE: { message="bad write"; break; } case VP8_ENC_ERROR_FILE_TOO_BIG: { message="file too big (> 4GB)"; break; } #if WEBP_DECODER_ABI_VERSION >= 0x0100 case VP8_ENC_ERROR_USER_ABORT: { message="user abort"; break; } #endif default: { message="unknown exception"; break; } } (void) ThrowMagickException(exception,GetMagickModule(),CorruptImageError, (char *) message,"`%s'",image->filename); } #if defined(MAGICKCORE_WEBPMUX_DELEGATE) { const StringInfo *profile; WebPData chunk, image_chunk = { writer_info.mem, writer_info.size }; WebPMux *mux; WebPMuxError mux_error; /* Set image profiles (if any). */ mux_error=WEBP_MUX_OK; chunk.size=0; mux=WebPMuxNew(); profile=GetImageProfile(image,"ICC"); if ((profile != (StringInfo *) NULL) && (mux_error == WEBP_MUX_OK)) { chunk.bytes=GetStringInfoDatum(profile); chunk.size=GetStringInfoLength(profile); mux_error=WebPMuxSetChunk(mux,"ICCP",&chunk,0); } profile=GetImageProfile(image,"EXIF"); if ((profile != (StringInfo *) NULL) && (mux_error == WEBP_MUX_OK)) { chunk.bytes=GetStringInfoDatum(profile); chunk.size=GetStringInfoLength(profile); mux_error=WebPMuxSetChunk(mux,"EXIF",&chunk,0); } profile=GetImageProfile(image,"XMP"); if ((profile != (StringInfo *) NULL) && (mux_error == WEBP_MUX_OK)) { chunk.bytes=GetStringInfoDatum(profile); chunk.size=GetStringInfoLength(profile); mux_error=WebPMuxSetChunk(mux,"XMP",&chunk,0); } if (mux_error != WEBP_MUX_OK) (void) ThrowMagickException(exception,GetMagickModule(), ResourceLimitError,"UnableToEncodeImageFile","`%s'",image->filename); if (chunk.size != 0) { WebPData picture_profiles = { writer_info.mem, writer_info.size }; /* Replace original container with image profile (if any). */ WebPMuxSetImage(mux,&image_chunk,1); mux_error=WebPMuxAssemble(mux,&picture_profiles); WebPMemoryWriterClear(&writer_info); writer_info.size=picture_profiles.size; writer_info.mem=(unsigned char *) picture_profiles.bytes; } WebPMuxDelete(mux); } (void) WriteBlob(image,writer_info.size,writer_info.mem); #endif picture.argb=(uint32_t *) NULL; WebPPictureFree(&picture); #if defined(MAGICKCORE_WEBPMUX_DELEGATE) WebPMemoryWriterClear(&writer_info); #endif pixel_info=RelinquishVirtualMemory(pixel_info); (void) CloseBlob(image); return(webp_status == 0 ? MagickFalse : MagickTrue); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
23,676
Chrome
3f38b2253b19f9f9595f79fb92bfb5077e7b1959
SubprocessMetricsProviderTest() : thread_bundle_(content::TestBrowserThreadBundle::DEFAULT) { base::PersistentHistogramAllocator::GetCreateHistogramResultHistogram(); provider_.MergeHistogramDeltas(); test_recorder_ = base::StatisticsRecorder::CreateTemporaryForTesting(); base::GlobalHistogramAllocator::CreateWithLocalMemory(TEST_MEMORY_SIZE, 0, ""); }
1
CVE-2016-1632
CWE-264
Permissions, Privileges, and Access Controls
Weaknesses in this category are related to the management of permissions, privileges, and other security features that are used to perform access control.
Not Found in CWE Page
7,553
platform_bionic
7f5aa4f35e23fd37425b3a5041737cdf58f87385
void* leak_memalign(size_t alignment, size_t bytes) { // we can just use malloc if (alignment <= MALLOC_ALIGNMENT) return leak_malloc(bytes); // need to make sure it's a power of two if (alignment & (alignment-1)) alignment = 1L << (31 - __builtin_clz(alignment)); // here, aligment is at least MALLOC_ALIGNMENT<<1 bytes // we will align by at least MALLOC_ALIGNMENT bytes // and at most alignment-MALLOC_ALIGNMENT bytes size_t size = (alignment-MALLOC_ALIGNMENT) + bytes; void* base = leak_malloc(size); if (base != NULL) { intptr_t ptr = (intptr_t)base; if ((ptr % alignment) == 0) return base; // align the pointer ptr += ((-ptr) % alignment); // there is always enough space for the base pointer and the guard ((void**)ptr)[-1] = MEMALIGN_GUARD; ((void**)ptr)[-2] = base; return (void*)ptr; } return base; }
1
CVE-2012-2674
CWE-189
Numeric Errors
Weaknesses in this category are related to improper calculation or conversion of numbers.
Not Found in CWE Page
2,211
systemd
bf65b7e0c9fc215897b676ab9a7c9d1c688143ba
static int hashmap_complete_move(Hashmap **s, Hashmap **other) { assert(s); assert(other); if (!*other) return 0; if (*s) return hashmap_move(*s, *other); else *s = TAKE_PTR(*other); return 0; }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
12,085
Chrome
52dac009556881941c60d378e34867cdb2fd00a0
FilePath ExtensionPrefs::GetExtensionPath(const std::string& extension_id) { const DictionaryValue* dict = GetExtensionPref(extension_id); std::string path; if (!dict->GetString(kPrefPath, &path)) return FilePath(); return install_directory_.Append(FilePath::FromWStringHack(UTF8ToWide(path))); }
1
CVE-2011-3234
CWE-119
Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333] Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
5,831
linux
fa3a5a1880c91bb92594ad42dfe9eedad7996b86
static void ml_play_effects(struct ml_device *ml) { struct ff_effect effect; DECLARE_BITMAP(handled_bm, FF_MEMLESS_EFFECTS); memset(handled_bm, 0, sizeof(handled_bm)); while (ml_get_combo_effect(ml, handled_bm, &effect)) ml->play_effect(ml->dev, ml->private, &effect); ml_schedule_timer(ml); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
11,970
Chrome
16dcd30c215801941d9890859fd79a234128fc3e
void DownloadItemImpl::UpdateProgress(int64 bytes_so_far, const std::string& hash_state) { hash_state_ = hash_state; received_bytes_ = bytes_so_far; if (received_bytes_ > total_bytes_) total_bytes_ = 0; if (bound_net_log_.IsLoggingAllEvents()) { bound_net_log_.AddEvent( net::NetLog::TYPE_DOWNLOAD_ITEM_UPDATED, net::NetLog::Int64Callback("bytes_so_far", received_bytes_)); } }
1
CVE-2012-2895
CWE-119
Improper Restriction of Operations within the Bounds of a Memory Buffer
The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data.
Phase: Requirements Strategy: Language Selection Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer. Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe. Phase: Architecture and Design Strategy: Libraries or Frameworks Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions. Note: This is not a complete solution, since many buffer overflows are not related to strings. Phases: Operation; Build and Compilation Strategy: Environment Hardening Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking. D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail. Effectiveness: Defense in Depth Note: This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application. Phase: Implementation Consider adhering to the following rules when allocating and managing an application's memory: Double check that the buffer is as large as specified. When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space. If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions. Phases: Operation; Build and Compilation Strategy: Environment Hardening Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code. Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking. For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335]. Effectiveness: Defense in Depth Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333] Phase: Operation Strategy: Environment Hardening Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment. For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336]. Effectiveness: Defense in Depth Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application. Phase: Implementation Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available. Effectiveness: Moderate Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131).
9,738
linux
84d73cd3fb142bf1298a8c13fd4ca50fd2432372
int rtnl_is_locked(void) { return mutex_is_locked(&rtnl_mutex); }
0
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
NOT_APPLICABLE
10,301