project
stringclasses 765
values | commit_id
stringlengths 6
81
| func
stringlengths 19
482k
| vul
int64 0
1
| CVE ID
stringlengths 13
16
| CWE ID
stringclasses 13
values | CWE Name
stringclasses 13
values | CWE Description
stringclasses 13
values | Potential Mitigation
stringclasses 11
values | __index_level_0__
int64 0
23.9k
|
---|---|---|---|---|---|---|---|---|---|
imageworsener | a4f247707f08e322f0b41e82c3e06e224240a654 | static int bmpr_read_rle(struct iwbmprcontext *rctx)
{
int retval = 0;
if(!(rctx->compression==IWBMP_BI_RLE8 && rctx->bitcount==8) &&
!(rctx->compression==IWBMP_BI_RLE4 && rctx->bitcount==4))
{
iw_set_error(rctx->ctx,"Compression type incompatible with image type");
}
if(rctx->topdown) {
iw_set_error(rctx->ctx,"Compression not allowed with top-down images");
}
rctx->img->imgtype = IW_IMGTYPE_RGBA;
rctx->img->bit_depth = 8;
rctx->img->bpr = iw_calc_bytesperrow(rctx->width,32);
rctx->img->pixels = (iw_byte*)iw_malloc_large(rctx->ctx,rctx->img->bpr,rctx->img->height);
if(!rctx->img->pixels) goto done;
if(!bmpr_read_rle_internal(rctx)) goto done;
if(!bmpr_has_transparency(rctx->img)) {
bmpr_strip_alpha(rctx->img);
}
retval = 1;
done:
return retval;
}
| 1 | CVE-2017-9203 | CWE-787 | Out-of-bounds Write | The product writes data past the end, or before the beginning, of the intended buffer. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333].
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 126 |
liblouis | 2e4772befb2b1c37cb4b9d6572945115ee28630a | setDefaults(TranslationTableHeader *table) {
for (int i = 0; i < 3; i++)
if (!table->emphRules[i][lenPhraseOffset])
table->emphRules[i][lenPhraseOffset] = 4;
if (table->numPasses == 0) table->numPasses = 1;
return 1;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 14,257 |
bpf | c4eb1f403243fc7bbb7de644db8587c03de36da6 | static int htab_lru_map_delete_elem(struct bpf_map *map, void *key)
{
struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
struct hlist_nulls_head *head;
struct bucket *b;
struct htab_elem *l;
unsigned long flags;
u32 hash, key_size;
int ret;
WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
!rcu_read_lock_bh_held());
key_size = map->key_size;
hash = htab_map_hash(key, key_size, htab->hashrnd);
b = __select_bucket(htab, hash);
head = &b->head;
ret = htab_lock_bucket(htab, b, hash, &flags);
if (ret)
return ret;
l = lookup_elem_raw(head, hash, key, key_size);
if (l)
hlist_nulls_del_rcu(&l->hash_node);
else
ret = -ENOENT;
htab_unlock_bucket(htab, b, hash, flags);
if (l)
bpf_lru_push_free(&htab->lru, &l->lru_node);
return ret;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 13,178 |
Chrome | 0b1b7baa4695c945a1b0bea1f0636f1219139e8e | content::WebContents* GetWebContentsByFrameID(int render_process_id,
int render_frame_id) {
content::RenderFrameHost* render_frame_host =
content::RenderFrameHost::FromID(render_process_id, render_frame_id);
if (!render_frame_host)
return NULL;
return content::WebContents::FromRenderFrameHost(render_frame_host);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 12,441 |
linux | 5af10dfd0afc559bb4b0f7e3e8227a1578333995 | static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
struct kobject **hstate_kobjs,
struct attribute_group *hstate_attr_group)
{
int retval;
int hi = hstate_index(h);
hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
if (!hstate_kobjs[hi])
return -ENOMEM;
retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
if (retval)
kobject_put(hstate_kobjs[hi]);
return retval;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 18,301 |
Android | 1390ace71179f04a09c300ee8d0300aa69d9db09 | print_option(char *s, ssize_t len, int type, int dl, const uint8_t *data)
{
const uint8_t *e, *t;
uint16_t u16;
int16_t s16;
uint32_t u32;
int32_t s32;
struct in_addr addr;
ssize_t bytes = 0;
ssize_t l;
char *tmp;
if (type & RFC3397) {
l = decode_rfc3397(NULL, 0, dl, data);
if (l < 1)
return l;
tmp = xmalloc(l);
decode_rfc3397(tmp, l, dl, data);
l = print_string(s, len, l - 1, (uint8_t *)tmp);
free(tmp);
return l;
}
if (type & RFC3361) {
if ((tmp = decode_rfc3361(dl, data)) == NULL)
return -1;
l = strlen(tmp);
l = print_string(s, len, l - 1, (uint8_t *)tmp);
free(tmp);
return l;
}
if (type & RFC3442)
return decode_rfc3442(s, len, dl, data);
if (type & RFC5969)
return decode_rfc5969(s, len, dl, data);
if (type & STRING) {
/* Some DHCP servers return NULL strings */
if (*data == '\0')
return 0;
return print_string(s, len, dl, data);
}
if (!s) {
if (type & UINT8)
l = 3;
else if (type & UINT16) {
l = 5;
dl /= 2;
} else if (type & SINT16) {
l = 6;
dl /= 2;
} else if (type & UINT32) {
l = 10;
dl /= 4;
} else if (type & SINT32) {
l = 11;
dl /= 4;
} else if (type & IPV4) {
l = 16;
dl /= 4;
} else {
errno = EINVAL;
return -1;
}
return (l + 1) * dl;
}
t = data;
e = data + dl;
while (data < e) {
if (data != t) {
*s++ = ' ';
bytes++;
len--;
}
if (type & UINT8) {
l = snprintf(s, len, "%d", *data);
data++;
} else if (type & UINT16) {
memcpy(&u16, data, sizeof(u16));
u16 = ntohs(u16);
l = snprintf(s, len, "%d", u16);
data += sizeof(u16);
} else if (type & SINT16) {
memcpy(&s16, data, sizeof(s16));
s16 = ntohs(s16);
l = snprintf(s, len, "%d", s16);
data += sizeof(s16);
} else if (type & UINT32) {
memcpy(&u32, data, sizeof(u32));
u32 = ntohl(u32);
l = snprintf(s, len, "%d", u32);
data += sizeof(u32);
} else if (type & SINT32) {
memcpy(&s32, data, sizeof(s32));
s32 = ntohl(s32);
l = snprintf(s, len, "%d", s32);
data += sizeof(s32);
} else if (type & IPV4) {
memcpy(&addr.s_addr, data, sizeof(addr.s_addr));
l = snprintf(s, len, "%s", inet_ntoa(addr));
data += sizeof(addr.s_addr);
} else
l = 0;
if (len <= l) {
bytes += len;
break;
}
len -= l;
bytes += l;
s += l;
}
return bytes;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 15,791 |
libsass | f2db04883e5fff4e03777dcc1eb60d4373c45be1 | Media_Query_Obj Parser::parse_media_query()
{
advanceToNextToken();
Media_Query_Obj media_query = SASS_MEMORY_NEW(Media_Query, pstate);
if (lex < kwd_not >()) { media_query->is_negated(true); lex < css_comments >(false); }
else if (lex < kwd_only >()) { media_query->is_restricted(true); lex < css_comments >(false); }
if (lex < identifier_schema >()) media_query->media_type(parse_identifier_schema());
else if (lex < identifier >()) media_query->media_type(parse_interpolated_chunk(lexed));
else media_query->append(parse_media_expression());
while (lex_css < kwd_and >()) media_query->append(parse_media_expression());
if (lex < identifier_schema >()) {
String_Schema* schema = SASS_MEMORY_NEW(String_Schema, pstate);
schema->append(media_query->media_type());
schema->append(SASS_MEMORY_NEW(String_Constant, pstate, " "));
schema->append(parse_identifier_schema());
media_query->media_type(schema);
}
while (lex_css < kwd_and >()) media_query->append(parse_media_expression());
media_query->update_pstate(pstate);
return media_query;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 10,398 |
unbound | a3545867fcdec50307c776ce0af28d07046a52dd | uint8_t* sldns_str2wire_dname(const char* str, size_t* len)
{
uint8_t dname[LDNS_MAX_DOMAINLEN+1];
*len = sizeof(dname);
if(sldns_str2wire_dname_buf(str, dname, len) == 0) {
uint8_t* r = (uint8_t*)malloc(*len);
if(r) return memcpy(r, dname, *len);
}
*len = 0;
return NULL;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 23,688 |
openssl | 1bbe48ab149893a78bf99c8eb8895c928900a16f | static int tls_decrypt_ticket(SSL *s, const unsigned char *etick,
int eticklen, const unsigned char *sess_id,
int sesslen, SSL_SESSION **psess)
{
SSL_SESSION *sess;
unsigned char *sdec;
const unsigned char *p;
int slen, mlen, renew_ticket = 0;
unsigned char tick_hmac[EVP_MAX_MD_SIZE];
HMAC_CTX hctx;
EVP_CIPHER_CTX ctx;
SSL_CTX *tctx = s->initial_ctx;
/* Need at least keyname + iv + some encrypted data */
if (eticklen < 48)
return 2;
/* Initialize session ticket encryption and HMAC contexts */
HMAC_CTX_init(&hctx);
EVP_CIPHER_CTX_init(&ctx);
if (tctx->tlsext_ticket_key_cb) {
unsigned char *nctick = (unsigned char *)etick;
int rv = tctx->tlsext_ticket_key_cb(s, nctick, nctick + 16,
&ctx, &hctx, 0);
if (rv < 0)
return -1;
if (rv == 0)
return 2;
if (rv == 2)
renew_ticket = 1;
} else {
/* Check key name matches */
if (memcmp(etick, tctx->tlsext_tick_key_name, 16))
return 2;
if (HMAC_Init_ex(&hctx, tctx->tlsext_tick_hmac_key, 16,
tlsext_tick_md(), NULL) <= 0
|| EVP_DecryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL,
tctx->tlsext_tick_aes_key,
etick + 16) <= 0) {
goto err;
}
}
/*
* Attempt to process session ticket, first conduct sanity and integrity
* checks on ticket.
*/
mlen = HMAC_size(&hctx);
if (mlen < 0) {
goto err;
}
eticklen -= mlen;
/* Check HMAC of encrypted ticket */
if (HMAC_Update(&hctx, etick, eticklen) <= 0
|| HMAC_Final(&hctx, tick_hmac, NULL) <= 0) {
goto err;
}
HMAC_CTX_cleanup(&hctx);
if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
EVP_CIPHER_CTX_cleanup(&ctx);
return 2;
}
/* Attempt to decrypt session data */
/* Move p after IV to start of encrypted ticket, update length */
p = etick + 16 + EVP_CIPHER_CTX_iv_length(&ctx);
eticklen -= 16 + EVP_CIPHER_CTX_iv_length(&ctx);
sdec = OPENSSL_malloc(eticklen);
if (sdec == NULL
|| EVP_DecryptUpdate(&ctx, sdec, &slen, p, eticklen) <= 0) {
EVP_CIPHER_CTX_cleanup(&ctx);
OPENSSL_free(sdec);
return -1;
}
if (EVP_DecryptFinal(&ctx, sdec + slen, &mlen) <= 0) {
EVP_CIPHER_CTX_cleanup(&ctx);
OPENSSL_free(sdec);
return 2;
}
slen += mlen;
EVP_CIPHER_CTX_cleanup(&ctx);
p = sdec;
sess = d2i_SSL_SESSION(NULL, &p, slen);
OPENSSL_free(sdec);
if (sess) {
/*
* The session ID, if non-empty, is used by some clients to detect
* that the ticket has been accepted. So we copy it to the session
* structure. If it is empty set length to zero as required by
* standard.
*/
if (sesslen)
memcpy(sess->session_id, sess_id, sesslen);
sess->session_id_length = sesslen;
*psess = sess;
if (renew_ticket)
return 4;
else
return 3;
}
ERR_clear_error();
/*
* For session parse failure, indicate that we need to send a new ticket.
*/
return 2;
err:
EVP_CIPHER_CTX_cleanup(&ctx);
HMAC_CTX_cleanup(&hctx);
return -1;
} | 1 | CVE-2016-6302 | CWE-20 | Improper Input Validation | The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly. |
Phase: Architecture and Design
Strategy: Attack Surface Reduction
Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111]
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173).
Phases: Architecture and Design; Implementation
Strategy: Attack Surface Reduction
Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls.
Phase: Implementation
Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
Effectiveness: High
Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings.
Phase: Implementation
When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined.
Phase: Implementation
Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow.
Phase: Implementation
Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained.
Phase: Implementation
Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content.
Phase: Implementation
When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so. | 2,964 |
neomutt | 1b0f0d0988e6df4e32e9f4bf8780846ea95d4485 | static int msg_cache_commit(struct ImapData *idata, struct Header *h)
{
if (!idata || !h)
return -1;
idata->bcache = msg_cache_open(idata);
char id[64];
snprintf(id, sizeof(id), "%u-%u", idata->uid_validity, HEADER_DATA(h)->uid);
return mutt_bcache_commit(idata->bcache, id);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 20,515 |
suricata | 8357ef3f8ffc7d99ef6571350724160de356158b | static void AppLayerProtoDetectProbingParserFree(AppLayerProtoDetectProbingParser *p)
{
SCEnter();
AppLayerProtoDetectProbingParserPort *pt = p->port;
while (pt != NULL) {
AppLayerProtoDetectProbingParserPort *pt_next = pt->next;
AppLayerProtoDetectProbingParserPortFree(pt);
pt = pt_next;
}
SCFree(p);
SCReturn;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 14,551 |
linux | 055e547478a11a6360c7ce05e2afc3e366968a12 | static void dcn20_split_stream_for_mpc(
struct resource_context *res_ctx,
const struct resource_pool *pool,
struct pipe_ctx *primary_pipe,
struct pipe_ctx *secondary_pipe)
{
int pipe_idx = secondary_pipe->pipe_idx;
struct pipe_ctx *sec_bot_pipe = secondary_pipe->bottom_pipe;
*secondary_pipe = *primary_pipe;
secondary_pipe->bottom_pipe = sec_bot_pipe;
secondary_pipe->pipe_idx = pipe_idx;
secondary_pipe->plane_res.mi = pool->mis[secondary_pipe->pipe_idx];
secondary_pipe->plane_res.hubp = pool->hubps[secondary_pipe->pipe_idx];
secondary_pipe->plane_res.ipp = pool->ipps[secondary_pipe->pipe_idx];
secondary_pipe->plane_res.xfm = pool->transforms[secondary_pipe->pipe_idx];
secondary_pipe->plane_res.dpp = pool->dpps[secondary_pipe->pipe_idx];
secondary_pipe->plane_res.mpcc_inst = pool->dpps[secondary_pipe->pipe_idx]->inst;
#ifdef CONFIG_DRM_AMD_DC_DSC_SUPPORT
secondary_pipe->stream_res.dsc = NULL;
#endif
if (primary_pipe->bottom_pipe && primary_pipe->bottom_pipe != secondary_pipe) {
ASSERT(!secondary_pipe->bottom_pipe);
secondary_pipe->bottom_pipe = primary_pipe->bottom_pipe;
secondary_pipe->bottom_pipe->top_pipe = secondary_pipe;
}
primary_pipe->bottom_pipe = secondary_pipe;
secondary_pipe->top_pipe = primary_pipe;
ASSERT(primary_pipe->plane_state);
resource_build_scaling_params(primary_pipe);
resource_build_scaling_params(secondary_pipe);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 15,591 |
avahi | 3093047f1aa36bed8a37fa79004bf0ee287929f4 | static void mcast_socket_event(AvahiWatch *w, int fd, AvahiWatchEvent events, void *userdata) {
AvahiServer *s = userdata;
AvahiAddress dest, src;
AvahiDnsPacket *p = NULL;
AvahiIfIndex iface;
uint16_t port;
uint8_t ttl;
assert(w);
assert(fd >= 0);
assert(events & AVAHI_WATCH_IN);
if (fd == s->fd_ipv4) {
dest.proto = src.proto = AVAHI_PROTO_INET;
p = avahi_recv_dns_packet_ipv4(s->fd_ipv4, &src.data.ipv4, &port, &dest.data.ipv4, &iface, &ttl);
} else {
assert(fd == s->fd_ipv6);
dest.proto = src.proto = AVAHI_PROTO_INET6;
p = avahi_recv_dns_packet_ipv6(s->fd_ipv6, &src.data.ipv6, &port, &dest.data.ipv6, &iface, &ttl);
}
if (p) {
if (iface == AVAHI_IF_UNSPEC)
iface = avahi_find_interface_for_address(s->monitor, &dest);
if (iface != AVAHI_IF_UNSPEC)
dispatch_packet(s, p, &src, port, &dest, iface, ttl);
else
avahi_log_error("Incoming packet recieved on address that isn't local.");
avahi_dns_packet_free(p);
cleanup_dead(s);
}
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 16,576 |
cups | 49fa4983f25b64ec29d548ffa3b9782426007df3 | authenticate_job(cupsd_client_t *con, /* I - Client connection */
ipp_attribute_t *uri) /* I - Job URI */
{
ipp_attribute_t *attr, /* job-id attribute */
*auth_info; /* auth-info attribute */
int jobid; /* Job ID */
cupsd_job_t *job; /* Current job */
char scheme[HTTP_MAX_URI],
/* Method portion of URI */
username[HTTP_MAX_URI],
/* Username portion of URI */
host[HTTP_MAX_URI],
/* Host portion of URI */
resource[HTTP_MAX_URI];
/* Resource portion of URI */
int port; /* Port portion of URI */
cupsdLogMessage(CUPSD_LOG_DEBUG2, "authenticate_job(%p[%d], %s)",
con, con->number, uri->values[0].string.text);
/*
* Start with "everything is OK" status...
*/
con->response->request.status.status_code = IPP_OK;
/*
* See if we have a job URI or a printer URI...
*/
if (!strcmp(uri->name, "printer-uri"))
{
/*
* Got a printer URI; see if we also have a job-id attribute...
*/
if ((attr = ippFindAttribute(con->request, "job-id",
IPP_TAG_INTEGER)) == NULL)
{
send_ipp_status(con, IPP_BAD_REQUEST,
_("Got a printer-uri attribute but no job-id."));
return;
}
jobid = attr->values[0].integer;
}
else
{
/*
* Got a job URI; parse it to get the job ID...
*/
httpSeparateURI(HTTP_URI_CODING_ALL, uri->values[0].string.text, scheme,
sizeof(scheme), username, sizeof(username), host,
sizeof(host), &port, resource, sizeof(resource));
if (strncmp(resource, "/jobs/", 6))
{
/*
* Not a valid URI!
*/
send_ipp_status(con, IPP_BAD_REQUEST, _("Bad job-uri \"%s\"."),
uri->values[0].string.text);
return;
}
jobid = atoi(resource + 6);
}
/*
* See if the job exists...
*/
if ((job = cupsdFindJob(jobid)) == NULL)
{
/*
* Nope - return a "not found" error...
*/
send_ipp_status(con, IPP_NOT_FOUND, _("Job #%d does not exist."), jobid);
return;
}
/*
* See if the job has been completed...
*/
if (job->state_value != IPP_JOB_HELD)
{
/*
* Return a "not-possible" error...
*/
send_ipp_status(con, IPP_NOT_POSSIBLE,
_("Job #%d is not held for authentication."),
jobid);
return;
}
/*
* See if we have already authenticated...
*/
auth_info = ippFindAttribute(con->request, "auth-info", IPP_TAG_TEXT);
if (!con->username[0] && !auth_info)
{
cupsd_printer_t *printer; /* Job destination */
/*
* No auth data. If we need to authenticate via Kerberos, send a
* HTTP auth challenge, otherwise just return an IPP error...
*/
printer = cupsdFindDest(job->dest);
if (printer && printer->num_auth_info_required > 0 &&
!strcmp(printer->auth_info_required[0], "negotiate"))
send_http_error(con, HTTP_UNAUTHORIZED, printer);
else
send_ipp_status(con, IPP_NOT_AUTHORIZED,
_("No authentication information provided."));
return;
}
/*
* See if the job is owned by the requesting user...
*/
if (!validate_user(job, con, job->username, username, sizeof(username)))
{
send_http_error(con, con->username[0] ? HTTP_FORBIDDEN : HTTP_UNAUTHORIZED,
cupsdFindDest(job->dest));
return;
}
/*
* Save the authentication information for this job...
*/
save_auth_info(con, job, auth_info);
/*
* Reset the job-hold-until value to "no-hold"...
*/
if ((attr = ippFindAttribute(job->attrs, "job-hold-until",
IPP_TAG_KEYWORD)) == NULL)
attr = ippFindAttribute(job->attrs, "job-hold-until", IPP_TAG_NAME);
if (attr)
{
ippSetValueTag(job->attrs, &attr, IPP_TAG_KEYWORD);
ippSetString(job->attrs, &attr, 0, "no-hold");
}
/*
* Release the job and return...
*/
cupsdReleaseJob(job);
cupsdAddEvent(CUPSD_EVENT_JOB_STATE, NULL, job, "Job authenticated by user");
cupsdLogJob(job, CUPSD_LOG_INFO, "Authenticated by \"%s\".", con->username);
cupsdCheckJobs();
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 17,168 |
lxde | bc8c3d871e9ecc67c47ff002b68cf049793faf08 | static void get_socket_name(SingleInstData* data, char* buf, int len)
{
const char* dpy = g_getenv("DISPLAY");
char* host = NULL;
int dpynum;
if(dpy)
{
const char* p = strrchr(dpy, ':');
host = g_strndup(dpy, (p - dpy));
dpynum = atoi(p + 1);
}
else
dpynum = 0;
g_snprintf(buf, len, "%s/.%s-socket-%s-%d-%s",
g_get_tmp_dir(),
data->prog_name,
host ? host : "",
dpynum,
g_get_user_name());
}
| 1 | CVE-2017-8934 | CWE-20 | Improper Input Validation | The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly. |
Phase: Architecture and Design
Strategy: Attack Surface Reduction
Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111]
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173).
Phases: Architecture and Design; Implementation
Strategy: Attack Surface Reduction
Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls.
Phase: Implementation
Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
Effectiveness: High
Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings.
Phase: Implementation
When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined.
Phase: Implementation
Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow.
Phase: Implementation
Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained.
Phase: Implementation
Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content.
Phase: Implementation
When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so. | 2,463 |
linux-2.6 | add52379dde2e5300e2d574b172e62c6cf43b3d3 | void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned len)
{
SCTP_ASSERT(asoc->rwnd, "rwnd zero", return);
SCTP_ASSERT(!asoc->rwnd_over, "rwnd_over not zero", return);
if (asoc->rwnd >= len) {
asoc->rwnd -= len;
} else {
asoc->rwnd_over = len - asoc->rwnd;
asoc->rwnd = 0;
}
SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u)\n",
__func__, asoc, len, asoc->rwnd,
asoc->rwnd_over);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 22,357 |
Android | eeb4e45d5683f88488c083ecf142dc89bc3f0b47 | long vorbis_book_decodev_add(codebook *book,ogg_int32_t *a,
oggpack_buffer *b,int n,int point){
if(book->used_entries>0){
ogg_int32_t *v = book->dec_buf;//(ogg_int32_t *)alloca(sizeof(*v)*book->dim);
int i,j;
if (!v) return -1;
for(i=0;i<n;){
if(decode_map(book,b,v,point))return -1;
for (j=0;j<book->dim;j++)
a[i++]+=v[j];
}
}
return 0;
}
| 1 | CVE-2017-0814 | CWE-200 | Exposure of Sensitive Information to an Unauthorized Actor | The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information. |
Phase: Architecture and Design
Strategy: Separation of Privilege
Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area.
Ensure that appropriate compartmentalization is built into the system design, and the compartmentalization allows for and reinforces privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide the appropriate time to use privileges and the time to drop privileges. | 8,773 |
file | 445c8fb0ebff85195be94cd9f7e1df89cade5c7f | doshn(struct magic_set *ms, int clazz, int swap, int fd, off_t off, int num,
size_t size, off_t fsize, int *flags, int mach, int strtab)
{
Elf32_Shdr sh32;
Elf64_Shdr sh64;
int stripped = 1;
size_t nbadcap = 0;
void *nbuf;
off_t noff, coff, name_off;
uint64_t cap_hw1 = 0; /* SunOS 5.x hardware capabilites */
uint64_t cap_sf1 = 0; /* SunOS 5.x software capabilites */
char name[50];
if (size != xsh_sizeof) {
if (file_printf(ms, ", corrupted section header size") == -1)
return -1;
return 0;
}
/* Read offset of name section to be able to read section names later */
if (pread(fd, xsh_addr, xsh_sizeof, off + size * strtab) == -1) {
file_badread(ms);
return -1;
}
name_off = xsh_offset;
for ( ; num; num--) {
/* Read the name of this section. */
if (pread(fd, name, sizeof(name), name_off + xsh_name) == -1) {
file_badread(ms);
return -1;
}
name[sizeof(name) - 1] = '\0';
if (strcmp(name, ".debug_info") == 0)
stripped = 0;
if (pread(fd, xsh_addr, xsh_sizeof, off) == -1) {
file_badread(ms);
return -1;
}
off += size;
/* Things we can determine before we seek */
switch (xsh_type) {
case SHT_SYMTAB:
#if 0
case SHT_DYNSYM:
#endif
stripped = 0;
break;
default:
if (fsize != SIZE_UNKNOWN && xsh_offset > fsize) {
/* Perhaps warn here */
continue;
}
break;
}
/* Things we can determine when we seek */
switch (xsh_type) {
case SHT_NOTE:
if ((nbuf = malloc(xsh_size)) == NULL) {
file_error(ms, errno, "Cannot allocate memory"
" for note");
return -1;
}
if (pread(fd, nbuf, xsh_size, xsh_offset) == -1) {
file_badread(ms);
free(nbuf);
return -1;
}
noff = 0;
for (;;) {
if (noff >= (off_t)xsh_size)
break;
noff = donote(ms, nbuf, (size_t)noff,
xsh_size, clazz, swap, 4, flags);
if (noff == 0)
break;
}
free(nbuf);
break;
case SHT_SUNW_cap:
switch (mach) {
case EM_SPARC:
case EM_SPARCV9:
case EM_IA_64:
case EM_386:
case EM_AMD64:
break;
default:
goto skip;
}
if (nbadcap > 5)
break;
if (lseek(fd, xsh_offset, SEEK_SET) == (off_t)-1) {
file_badseek(ms);
return -1;
}
coff = 0;
for (;;) {
Elf32_Cap cap32;
Elf64_Cap cap64;
char cbuf[/*CONSTCOND*/
MAX(sizeof cap32, sizeof cap64)];
if ((coff += xcap_sizeof) > (off_t)xsh_size)
break;
if (read(fd, cbuf, (size_t)xcap_sizeof) !=
(ssize_t)xcap_sizeof) {
file_badread(ms);
return -1;
}
if (cbuf[0] == 'A') {
#ifdef notyet
char *p = cbuf + 1;
uint32_t len, tag;
memcpy(&len, p, sizeof(len));
p += 4;
len = getu32(swap, len);
if (memcmp("gnu", p, 3) != 0) {
if (file_printf(ms,
", unknown capability %.3s", p)
== -1)
return -1;
break;
}
p += strlen(p) + 1;
tag = *p++;
memcpy(&len, p, sizeof(len));
p += 4;
len = getu32(swap, len);
if (tag != 1) {
if (file_printf(ms, ", unknown gnu"
" capability tag %d", tag)
== -1)
return -1;
break;
}
#endif
break;
}
(void)memcpy(xcap_addr, cbuf, xcap_sizeof);
switch (xcap_tag) {
case CA_SUNW_NULL:
break;
case CA_SUNW_HW_1:
cap_hw1 |= xcap_val;
break;
case CA_SUNW_SF_1:
cap_sf1 |= xcap_val;
break;
default:
if (file_printf(ms,
", with unknown capability "
"0x%" INT64_T_FORMAT "x = 0x%"
INT64_T_FORMAT "x",
(unsigned long long)xcap_tag,
(unsigned long long)xcap_val) == -1)
return -1;
if (nbadcap++ > 2)
coff = xsh_size;
break;
}
}
/*FALLTHROUGH*/
skip:
default:
break;
}
}
if (file_printf(ms, ", %sstripped", stripped ? "" : "not ") == -1)
return -1;
if (cap_hw1) {
const cap_desc_t *cdp;
switch (mach) {
case EM_SPARC:
case EM_SPARC32PLUS:
case EM_SPARCV9:
cdp = cap_desc_sparc;
break;
case EM_386:
case EM_IA_64:
case EM_AMD64:
cdp = cap_desc_386;
break;
default:
cdp = NULL;
break;
}
if (file_printf(ms, ", uses") == -1)
return -1;
if (cdp) {
while (cdp->cd_name) {
if (cap_hw1 & cdp->cd_mask) {
if (file_printf(ms,
" %s", cdp->cd_name) == -1)
return -1;
cap_hw1 &= ~cdp->cd_mask;
}
++cdp;
}
if (cap_hw1)
if (file_printf(ms,
" unknown hardware capability 0x%"
INT64_T_FORMAT "x",
(unsigned long long)cap_hw1) == -1)
return -1;
} else {
if (file_printf(ms,
" hardware capability 0x%" INT64_T_FORMAT "x",
(unsigned long long)cap_hw1) == -1)
return -1;
}
}
if (cap_sf1) {
if (cap_sf1 & SF1_SUNW_FPUSED) {
if (file_printf(ms,
(cap_sf1 & SF1_SUNW_FPKNWN)
? ", uses frame pointer"
: ", not known to use frame pointer") == -1)
return -1;
}
cap_sf1 &= ~SF1_SUNW_MASK;
if (cap_sf1)
if (file_printf(ms,
", with unknown software capability 0x%"
INT64_T_FORMAT "x",
(unsigned long long)cap_sf1) == -1)
return -1;
}
return 0;
}
| 1 | CVE-2014-9653 | CWE-20 | Improper Input Validation | The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly. |
Phase: Architecture and Design
Strategy: Attack Surface Reduction
Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111]
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173).
Phases: Architecture and Design; Implementation
Strategy: Attack Surface Reduction
Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls.
Phase: Implementation
Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
Effectiveness: High
Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings.
Phase: Implementation
When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined.
Phase: Implementation
Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow.
Phase: Implementation
Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained.
Phase: Implementation
Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content.
Phase: Implementation
When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so. | 4,551 |
Android | 89913d7df36dbeb458ce165856bd6505a2ec647d | OMX_ERRORTYPE omx_venc::component_deinit(OMX_IN OMX_HANDLETYPE hComp)
{
(void) hComp;
OMX_U32 i = 0;
DEBUG_PRINT_HIGH("omx_venc(): Inside component_deinit()");
if (OMX_StateLoaded != m_state) {
DEBUG_PRINT_ERROR("WARNING:Rxd DeInit,OMX not in LOADED state %d",\
m_state);
}
if (m_out_mem_ptr) {
DEBUG_PRINT_LOW("Freeing the Output Memory");
for (i=0; i< m_sOutPortDef.nBufferCountActual; i++ ) {
free_output_buffer (&m_out_mem_ptr[i]);
}
free(m_out_mem_ptr);
m_out_mem_ptr = NULL;
}
/*Check if the input buffers have to be cleaned up*/
if (m_inp_mem_ptr
#ifdef _ANDROID_ICS_
&& !meta_mode_enable
#endif
) {
DEBUG_PRINT_LOW("Freeing the Input Memory");
for (i=0; i<m_sInPortDef.nBufferCountActual; i++ ) {
free_input_buffer (&m_inp_mem_ptr[i]);
}
free(m_inp_mem_ptr);
m_inp_mem_ptr = NULL;
}
m_ftb_q.m_size=0;
m_cmd_q.m_size=0;
m_etb_q.m_size=0;
m_ftb_q.m_read = m_ftb_q.m_write =0;
m_cmd_q.m_read = m_cmd_q.m_write =0;
m_etb_q.m_read = m_etb_q.m_write =0;
#ifdef _ANDROID_
DEBUG_PRINT_HIGH("Calling m_heap_ptr.clear()");
m_heap_ptr.clear();
#endif // _ANDROID_
DEBUG_PRINT_HIGH("Calling venc_close()");
if (handle) {
handle->venc_close();
DEBUG_PRINT_HIGH("Deleting HANDLE[%p]", handle);
delete (handle);
handle = NULL;
}
DEBUG_PRINT_INFO("Component Deinit");
return OMX_ErrorNone;
}
| 1 | CVE-2016-2483 | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 2,037 |
zziplib | 0e1dadb05c1473b9df2d7b8f298dab801778ef99 | __zzip_parse_root_directory(int fd,
struct _disk_trailer *trailer,
struct zzip_dir_hdr **hdr_return,
zzip_plugin_io_t io,
zzip_off_t filesize)
{
auto struct zzip_disk_entry dirent;
struct zzip_dir_hdr *hdr;
struct zzip_dir_hdr *hdr0;
uint16_t *p_reclen = 0;
zzip_off64_t entries;
zzip_off64_t zz_offset; /* offset from start of root directory */
char *fd_map = 0;
zzip_off64_t zz_fd_gap = 0;
zzip_off64_t zz_entries = _disk_trailer_localentries(trailer);
zzip_off64_t zz_rootsize = _disk_trailer_rootsize(trailer);
zzip_off64_t zz_rootseek = _disk_trailer_rootseek(trailer);
__correct_rootseek(zz_rootseek, zz_rootsize, trailer);
if (zz_entries <= 0 || zz_rootsize < 0 ||
zz_rootseek < 0 || zz_rootseek >= filesize)
return ZZIP_CORRUPTED;
hdr0 = (struct zzip_dir_hdr *) malloc(zz_rootsize);
if (! hdr0)
return ZZIP_DIRSIZE;
hdr = hdr0;
__debug_dir_hdr(hdr);
if (USE_MMAP && io->fd.sys)
{
zz_fd_gap = zz_rootseek & (_zzip_getpagesize(io->fd.sys) - 1);
HINT4(" fd_gap=%ld, mapseek=0x%lx, maplen=%ld", (long) (zz_fd_gap),
(long) (zz_rootseek - zz_fd_gap),
(long) (zz_rootsize + zz_fd_gap));
fd_map =
_zzip_mmap(io->fd.sys, fd, zz_rootseek - zz_fd_gap,
zz_rootsize + zz_fd_gap);
/* if mmap failed we will fallback to seek/read mode */
if (fd_map == MAP_FAILED)
{
NOTE2("map failed: %s", strerror(errno));
fd_map = 0;
} else
{
HINT3("mapped *%p len=%li", fd_map,
(long) (zz_rootsize + zz_fd_gap));
}
}
for (entries=0, zz_offset=0; ; entries++)
{
register struct zzip_disk_entry *d;
uint16_t u_extras, u_comment, u_namlen;
# ifndef ZZIP_ALLOW_MODULO_ENTRIES
if (entries >= zz_entries) {
if (zz_offset + 256 < zz_rootsize) {
FAIL4("%li's entry is long before the end of directory - enable modulo_entries? (O:%li R:%li)",
(long) entries, (long) (zz_offset), (long) zz_rootsize);
}
break;
}
# endif
if (fd_map)
{
d = (void*)(fd_map+zz_fd_gap+zz_offset); /* fd_map+fd_gap==u_rootseek */
} else
{
if (io->fd.seeks(fd, zz_rootseek + zz_offset, SEEK_SET) < 0)
{
free(hdr0);
return ZZIP_DIR_SEEK;
}
if (io->fd.read(fd, &dirent, sizeof(dirent)) < __sizeof(dirent))
{
free(hdr0);
return ZZIP_DIR_READ;
}
d = &dirent;
}
if ((zzip_off64_t) (zz_offset + sizeof(*d)) > zz_rootsize ||
(zzip_off64_t) (zz_offset + sizeof(*d)) < 0)
{
FAIL4("%li's entry stretches beyond root directory (O:%li R:%li)",
(long) entries, (long) (zz_offset), (long) zz_rootsize);
break;
}
if (! zzip_disk_entry_check_magic(d)) {
# ifndef ZZIP_ALLOW_MODULO_ENTRIES
FAIL4("%li's entry has no disk_entry magic indicator (O:%li R:%li)",
(long) entries, (long) (zz_offset), (long) zz_rootsize);
# endif
break;
}
# if 0 && defined DEBUG
zzip_debug_xbuf((unsigned char *) d, sizeof(*d) + 8);
# endif
u_extras = zzip_disk_entry_get_extras(d);
u_comment = zzip_disk_entry_get_comment(d);
u_namlen = zzip_disk_entry_get_namlen(d);
HINT5("offset=0x%lx, size %ld, dirent *%p, hdr %p\n",
(long) (zz_offset + zz_rootseek), (long) zz_rootsize, d, hdr);
/* writes over the read buffer, Since the structure where data is
copied is smaller than the data in buffer this can be done.
It is important that the order of setting the fields is considered
when filling the structure, so that some data is not trashed in
first structure read.
at the end the whole copied list of structures is copied into
newly allocated buffer */
hdr->d_crc32 = zzip_disk_entry_get_crc32(d);
hdr->d_csize = zzip_disk_entry_get_csize(d);
hdr->d_usize = zzip_disk_entry_get_usize(d);
hdr->d_off = zzip_disk_entry_get_offset(d);
hdr->d_compr = zzip_disk_entry_get_compr(d);
if (hdr->d_compr > _255)
hdr->d_compr = 255;
if ((zzip_off64_t) (zz_offset + sizeof(*d) + u_namlen) > zz_rootsize ||
(zzip_off64_t) (zz_offset + sizeof(*d) + u_namlen) < 0)
{
FAIL4("%li's name stretches beyond root directory (O:%li N:%li)",
(long) entries, (long) (zz_offset), (long) (u_namlen));
break;
}
if (fd_map)
{ memcpy(hdr->d_name, fd_map+zz_fd_gap + zz_offset+sizeof(*d), u_namlen); }
else
{ io->fd.read(fd, hdr->d_name, u_namlen); }
hdr->d_name[u_namlen] = '\0';
hdr->d_namlen = u_namlen;
/* update offset by the total length of this entry -> next entry */
zz_offset += sizeof(*d) + u_namlen + u_extras + u_comment;
if (zz_offset > zz_rootsize)
{
FAIL3("%li's entry stretches beyond root directory (O:%li)",
(long) entries, (long) (zz_offset));
entries ++;
break;
}
HINT5("file %ld { compr=%d crc32=$%x offset=%d",
(long) entries, hdr->d_compr, hdr->d_crc32, hdr->d_off);
HINT5("csize=%d usize=%d namlen=%d extras=%d",
hdr->d_csize, hdr->d_usize, u_namlen, u_extras);
HINT5("comment=%d name='%s' %s <sizeof %d> } ",
u_comment, hdr->d_name, "", (int) sizeof(*d));
p_reclen = &hdr->d_reclen;
{
register char *p = (char *) hdr;
register char *q = aligned4(p + sizeof(*hdr) + u_namlen + 1);
*p_reclen = (uint16_t) (q - p);
hdr = (struct zzip_dir_hdr *) q;
}
} /*for */
if (USE_MMAP && fd_map)
{
HINT3("unmap *%p len=%li", fd_map, (long) (zz_rootsize + zz_fd_gap));
_zzip_munmap(io->fd.sys, fd_map, zz_rootsize + zz_fd_gap);
}
if (p_reclen)
{
*p_reclen = 0; /* mark end of list */
if (hdr_return)
*hdr_return = hdr0;
else
{
/* If it is not assigned to *hdr_return, it will never be free()'d */
free(hdr0);
}
} /* else zero (sane) entries */
else
free(hdr0);
# ifndef ZZIP_ALLOW_MODULO_ENTRIES
return (entries != zz_entries) ? ZZIP_CORRUPTED : 0;
# else
return ((entries & (unsigned)0xFFFF) != zz_entries) ? ZZIP_CORRUPTED : 0;
# endif
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 23,500 |
poppler | 9cf2325fb22f812b31858e519411f57747d39bd8 | SplashBitmap::SplashBitmap(int widthA, int heightA, int rowPad,
SplashColorMode modeA, GBool alphaA,
GBool topDown) {
width = widthA;
height = heightA;
mode = modeA;
switch (mode) {
case splashModeMono1:
rowSize = (width + 7) >> 3;
break;
case splashModeMono8:
rowSize = width;
break;
case splashModeRGB8:
case splashModeBGR8:
rowSize = width * 3;
break;
case splashModeXBGR8:
rowSize = width * 4;
break;
#if SPLASH_CMYK
case splashModeCMYK8:
rowSize = width * 4;
break;
#endif
}
rowSize += rowPad - 1;
rowSize -= rowSize % rowPad;
data = (SplashColorPtr)gmalloc(rowSize * height);
if (!topDown) {
data += (height - 1) * rowSize;
rowSize = -rowSize;
}
if (alphaA) {
alpha = (Guchar *)gmalloc(width * height);
} else {
alpha = NULL;
}
} | 1 | CVE-2009-3605 | CWE-189 | Numeric Errors | Weaknesses in this category are related to improper calculation or conversion of numbers. | Not Found in CWE Page | 2,453 |
linux | b4b814fec1a5a849383f7b3886b654a13abbda7d | int iwl_fw_dbg_ini_collect(struct iwl_fw_runtime *fwrt, u32 legacy_trigger_id)
{
int id;
switch (legacy_trigger_id) {
case FW_DBG_TRIGGER_FW_ASSERT:
case FW_DBG_TRIGGER_ALIVE_TIMEOUT:
case FW_DBG_TRIGGER_DRIVER:
id = IWL_FW_TRIGGER_ID_FW_ASSERT;
break;
case FW_DBG_TRIGGER_USER:
id = IWL_FW_TRIGGER_ID_USER_TRIGGER;
break;
default:
return -EIO;
}
return _iwl_fw_dbg_ini_collect(fwrt, id);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 12,934 |
libvncserver | 57433015f856cc12753378254ce4f1c78f5d9c7b | ConnectClientToTcpAddrWithTimeout(unsigned int host, int port, unsigned int timeout)
{
rfbSocket sock;
struct sockaddr_in addr;
int one = 1;
addr.sin_family = AF_INET;
addr.sin_port = htons(port);
addr.sin_addr.s_addr = host;
sock = socket(AF_INET, SOCK_STREAM, 0);
if (sock == RFB_INVALID_SOCKET) {
#ifdef WIN32
errno=WSAGetLastError();
#endif
rfbClientErr("ConnectToTcpAddr: socket (%s)\n",strerror(errno));
return RFB_INVALID_SOCKET;
}
if (!SetNonBlocking(sock))
return FALSE;
if (connect(sock, (struct sockaddr *)&addr, sizeof(addr)) < 0) {
#ifdef WIN32
errno=WSAGetLastError();
#endif
if (!((errno == EWOULDBLOCK || errno == EINPROGRESS) && WaitForConnected(sock, timeout))) {
rfbClientErr("ConnectToTcpAddr: connect\n");
rfbCloseSocket(sock);
return RFB_INVALID_SOCKET;
}
}
if (setsockopt(sock, IPPROTO_TCP, TCP_NODELAY,
(char *)&one, sizeof(one)) < 0) {
rfbClientErr("ConnectToTcpAddr: setsockopt\n");
rfbCloseSocket(sock);
return RFB_INVALID_SOCKET;
}
return sock;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 17,702 |
exiv2 | b3d077dcaefb6747fff8204490f33eba5a144edb | void CrwMap::decode(const CiffComponent& ciffComponent,
Image& image,
ByteOrder byteOrder)
{
const CrwMapping* cmi = crwMapping(ciffComponent.dir(),
ciffComponent.tagId());
if (cmi && cmi->toExif_) {
cmi->toExif_(ciffComponent, cmi, image, byteOrder);
}
} // CrwMap::decode | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 16,333 |
openssl | 4de66925203ca99189c842136ec4a623137ea447 | static int test_x509_time_print(int idx)
{
BIO *m;
int ret = 0, rv;
char *pp;
const char *readable;
if (!TEST_ptr(m = BIO_new(BIO_s_mem())))
goto err;
rv = ASN1_TIME_print(m, &x509_print_tests[idx].asn1);
readable = x509_print_tests[idx].readable;
if (rv == 0 && !TEST_str_eq(readable, "Bad time value")) {
/* only if the test case intends to fail... */
goto err;
}
if (!TEST_int_ne(rv = BIO_get_mem_data(m, &pp), 0)
|| !TEST_int_eq(rv, (int)strlen(readable))
|| !TEST_strn_eq(pp, readable, rv))
goto err;
ret = 1;
err:
BIO_free(m);
return ret;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 22,166 |
php-src | c4cca4c20e75359c9a13a1f9a36cb7b4e9601d29?w=1 | PHP_FUNCTION(wddx_serialize_vars)
{
int num_args, i;
wddx_packet *packet;
zval ***args = NULL;
if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "+", &args, &num_args) == FAILURE) {
return;
}
packet = php_wddx_constructor();
php_wddx_packet_start(packet, NULL, 0);
php_wddx_add_chunk_static(packet, WDDX_STRUCT_S);
for (i=0; i<num_args; i++) {
if (Z_TYPE_PP(args[i]) != IS_ARRAY && Z_TYPE_PP(args[i]) != IS_OBJECT) {
convert_to_string_ex(args[i]);
}
php_wddx_add_var(packet, *args[i]);
}
php_wddx_add_chunk_static(packet, WDDX_STRUCT_E);
php_wddx_packet_end(packet);
efree(args);
ZVAL_STRINGL(return_value, packet->c, packet->len, 1);
smart_str_free(packet);
efree(packet);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 16,350 |
libjpeg-turbo | 9c78a04df4e44ef6487eee99c4258397f4fdca55 | METHODDEF(JDIMENSION)
get_rgb_cmyk_row(j_compress_ptr cinfo, cjpeg_source_ptr sinfo)
/* This version is for reading raw-byte-format PPM files with any maxval and
converting to CMYK */
{
ppm_source_ptr source = (ppm_source_ptr)sinfo;
register JSAMPROW ptr;
register U_CHAR *bufferptr;
register JSAMPLE *rescale = source->rescale;
JDIMENSION col;
unsigned int maxval = source->maxval;
if (!ReadOK(source->pub.input_file, source->iobuffer, source->buffer_width))
ERREXIT(cinfo, JERR_INPUT_EOF);
ptr = source->pub.buffer[0];
bufferptr = source->iobuffer;
if (maxval == MAXJSAMPLE) {
for (col = cinfo->image_width; col > 0; col--) {
JSAMPLE r = *bufferptr++;
JSAMPLE g = *bufferptr++;
JSAMPLE b = *bufferptr++;
rgb_to_cmyk(r, g, b, ptr, ptr + 1, ptr + 2, ptr + 3);
ptr += 4;
}
} else {
for (col = cinfo->image_width; col > 0; col--) {
JSAMPLE r = rescale[UCH(*bufferptr++)];
JSAMPLE g = rescale[UCH(*bufferptr++)];
JSAMPLE b = rescale[UCH(*bufferptr++)];
rgb_to_cmyk(r, g, b, ptr, ptr + 1, ptr + 2, ptr + 3);
ptr += 4;
}
}
return 1;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 17,733 |
ImageMagick | 0c5b1e430a83ef793a7334bbbee408cf3c628699 | static Image *ReadDDSImage(const ImageInfo *image_info,ExceptionInfo *exception)
{
Image
*image;
MagickBooleanType
status,
cubemap = MagickFalse,
volume = MagickFalse;
CompressionType
compression;
DDSInfo
dds_info;
DDSDecoder
*decoder;
PixelTrait
alpha_trait;
size_t
n,
num_images;
/*
Open image file.
*/
assert(image_info != (const ImageInfo *) NULL);
assert(image_info->signature == MagickCoreSignature);
if (image_info->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",
image_info->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
image=AcquireImage(image_info,exception);
status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception);
if (status == MagickFalse)
{
image=DestroyImageList(image);
return((Image *) NULL);
}
/*
Initialize image structure.
*/
if (ReadDDSInfo(image, &dds_info) != MagickTrue) {
ThrowReaderException(CorruptImageError,"ImproperImageHeader");
}
if (dds_info.ddscaps2 & DDSCAPS2_CUBEMAP)
cubemap = MagickTrue;
if (dds_info.ddscaps2 & DDSCAPS2_VOLUME && dds_info.depth > 0)
volume = MagickTrue;
(void) SeekBlob(image, 128, SEEK_SET);
/*
Determine pixel format
*/
if (dds_info.pixelformat.flags & DDPF_RGB)
{
compression = NoCompression;
if (dds_info.pixelformat.flags & DDPF_ALPHAPIXELS)
{
alpha_trait = BlendPixelTrait;
decoder = ReadUncompressedRGBA;
}
else
{
alpha_trait = UndefinedPixelTrait;
decoder = ReadUncompressedRGB;
}
}
else if (dds_info.pixelformat.flags & DDPF_LUMINANCE)
{
compression = NoCompression;
if (dds_info.pixelformat.flags & DDPF_ALPHAPIXELS)
{
/* Not sure how to handle this */
ThrowReaderException(CorruptImageError, "ImageTypeNotSupported");
}
else
{
alpha_trait = UndefinedPixelTrait;
decoder = ReadUncompressedRGB;
}
}
else if (dds_info.pixelformat.flags & DDPF_FOURCC)
{
switch (dds_info.pixelformat.fourcc)
{
case FOURCC_DXT1:
{
alpha_trait = UndefinedPixelTrait;
compression = DXT1Compression;
decoder = ReadDXT1;
break;
}
case FOURCC_DXT3:
{
alpha_trait = BlendPixelTrait;
compression = DXT3Compression;
decoder = ReadDXT3;
break;
}
case FOURCC_DXT5:
{
alpha_trait = BlendPixelTrait;
compression = DXT5Compression;
decoder = ReadDXT5;
break;
}
default:
{
/* Unknown FOURCC */
ThrowReaderException(CorruptImageError, "ImageTypeNotSupported");
}
}
}
else
{
/* Neither compressed nor uncompressed... thus unsupported */
ThrowReaderException(CorruptImageError, "ImageTypeNotSupported");
}
num_images = 1;
if (cubemap)
{
/*
Determine number of faces defined in the cubemap
*/
num_images = 0;
if (dds_info.ddscaps2 & DDSCAPS2_CUBEMAP_POSITIVEX) num_images++;
if (dds_info.ddscaps2 & DDSCAPS2_CUBEMAP_NEGATIVEX) num_images++;
if (dds_info.ddscaps2 & DDSCAPS2_CUBEMAP_POSITIVEY) num_images++;
if (dds_info.ddscaps2 & DDSCAPS2_CUBEMAP_NEGATIVEY) num_images++;
if (dds_info.ddscaps2 & DDSCAPS2_CUBEMAP_POSITIVEZ) num_images++;
if (dds_info.ddscaps2 & DDSCAPS2_CUBEMAP_NEGATIVEZ) num_images++;
}
if (volume)
num_images = dds_info.depth;
for (n = 0; n < num_images; n++)
{
if (n != 0)
{
/* Start a new image */
AcquireNextImage(image_info,image,exception);
if (GetNextImageInList(image) == (Image *) NULL)
return(DestroyImageList(image));
image=SyncNextImageInList(image);
}
image->alpha_trait=alpha_trait;
image->compression = compression;
image->columns = dds_info.width;
image->rows = dds_info.height;
image->storage_class = DirectClass;
image->endian = LSBEndian;
image->depth = 8;
if (image_info->ping != MagickFalse)
{
(void) CloseBlob(image);
return(GetFirstImageInList(image));
}
status=SetImageExtent(image,image->columns,image->rows,exception);
if (status == MagickFalse)
return(DestroyImageList(image));
if ((decoder)(image, &dds_info, exception) != MagickTrue)
{
(void) CloseBlob(image);
return(GetFirstImageInList(image));
}
}
(void) CloseBlob(image);
return(GetFirstImageInList(image));
} | 1 | CVE-2017-9141 | CWE-20 | Improper Input Validation | The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly. |
Phase: Architecture and Design
Strategy: Attack Surface Reduction
Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111]
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173).
Phases: Architecture and Design; Implementation
Strategy: Attack Surface Reduction
Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls.
Phase: Implementation
Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
Effectiveness: High
Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings.
Phase: Implementation
When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined.
Phase: Implementation
Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow.
Phase: Implementation
Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained.
Phase: Implementation
Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content.
Phase: Implementation
When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so. | 4,469 |
linux-2.6 | 59839dfff5eabca01cc4e20b45797a60a80af8cb | static void kernel_pio(struct kvm_io_device *pio_dev,
struct kvm_vcpu *vcpu,
void *pd)
{
/* TODO: String I/O for in kernel device */
mutex_lock(&vcpu->kvm->lock);
if (vcpu->arch.pio.in)
kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
vcpu->arch.pio.size,
pd);
else
kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
vcpu->arch.pio.size,
pd);
mutex_unlock(&vcpu->kvm->lock);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 15,306 |
janet | 7fda7709ff15ab4b4cdea57619365eb2798f15c4 | JANET_CORE_FN(cfun_array_peek,
"(array/peek arr)",
"Returns the last element of the array. Does not modify the array.") {
janet_fixarity(argc, 1);
JanetArray *array = janet_getarray(argv, 0);
return janet_array_peek(array);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 12,811 |
libtiff | 5c080298d59efa53264d7248bbe3a04660db6ef7 | pickCopyFunc(TIFF* in, TIFF* out, uint16 bitspersample, uint16 samplesperpixel)
{
uint16 shortv;
uint32 w, l, tw, tl;
int bychunk;
(void) TIFFGetField(in, TIFFTAG_PLANARCONFIG, &shortv);
if (shortv != config && bitspersample != 8 && samplesperpixel > 1) {
fprintf(stderr,
"%s: Cannot handle different planar configuration w/ bits/sample != 8\n",
TIFFFileName(in));
return (NULL);
}
TIFFGetField(in, TIFFTAG_IMAGEWIDTH, &w);
TIFFGetField(in, TIFFTAG_IMAGELENGTH, &l);
if (!(TIFFIsTiled(out) || TIFFIsTiled(in))) {
uint32 irps = (uint32) -1L;
TIFFGetField(in, TIFFTAG_ROWSPERSTRIP, &irps);
/* if biased, force decoded copying to allow image subtraction */
bychunk = !bias && (rowsperstrip == irps);
}else{ /* either in or out is tiled */
if (bias) {
fprintf(stderr,
"%s: Cannot handle tiled configuration w/bias image\n",
TIFFFileName(in));
return (NULL);
}
if (TIFFIsTiled(out)) {
if (!TIFFGetField(in, TIFFTAG_TILEWIDTH, &tw))
tw = w;
if (!TIFFGetField(in, TIFFTAG_TILELENGTH, &tl))
tl = l;
bychunk = (tw == tilewidth && tl == tilelength);
} else { /* out's not, so in must be tiled */
TIFFGetField(in, TIFFTAG_TILEWIDTH, &tw);
TIFFGetField(in, TIFFTAG_TILELENGTH, &tl);
bychunk = (tw == w && tl == rowsperstrip);
}
}
#define T 1
#define F 0
#define pack(a,b,c,d,e) ((long)(((a)<<11)|((b)<<3)|((c)<<2)|((d)<<1)|(e)))
switch(pack(shortv,config,TIFFIsTiled(in),TIFFIsTiled(out),bychunk)) {
/* Strips -> Tiles */
case pack(PLANARCONFIG_CONTIG, PLANARCONFIG_CONTIG, F,T,F):
case pack(PLANARCONFIG_CONTIG, PLANARCONFIG_CONTIG, F,T,T):
return cpContigStrips2ContigTiles;
case pack(PLANARCONFIG_CONTIG, PLANARCONFIG_SEPARATE, F,T,F):
case pack(PLANARCONFIG_CONTIG, PLANARCONFIG_SEPARATE, F,T,T):
return cpContigStrips2SeparateTiles;
case pack(PLANARCONFIG_SEPARATE, PLANARCONFIG_CONTIG, F,T,F):
case pack(PLANARCONFIG_SEPARATE, PLANARCONFIG_CONTIG, F,T,T):
return cpSeparateStrips2ContigTiles;
case pack(PLANARCONFIG_SEPARATE, PLANARCONFIG_SEPARATE, F,T,F):
case pack(PLANARCONFIG_SEPARATE, PLANARCONFIG_SEPARATE, F,T,T):
return cpSeparateStrips2SeparateTiles;
/* Tiles -> Tiles */
case pack(PLANARCONFIG_CONTIG, PLANARCONFIG_CONTIG, T,T,F):
case pack(PLANARCONFIG_CONTIG, PLANARCONFIG_CONTIG, T,T,T):
return cpContigTiles2ContigTiles;
case pack(PLANARCONFIG_CONTIG, PLANARCONFIG_SEPARATE, T,T,F):
case pack(PLANARCONFIG_CONTIG, PLANARCONFIG_SEPARATE, T,T,T):
return cpContigTiles2SeparateTiles;
case pack(PLANARCONFIG_SEPARATE, PLANARCONFIG_CONTIG, T,T,F):
case pack(PLANARCONFIG_SEPARATE, PLANARCONFIG_CONTIG, T,T,T):
return cpSeparateTiles2ContigTiles;
case pack(PLANARCONFIG_SEPARATE, PLANARCONFIG_SEPARATE, T,T,F):
case pack(PLANARCONFIG_SEPARATE, PLANARCONFIG_SEPARATE, T,T,T):
return cpSeparateTiles2SeparateTiles;
/* Tiles -> Strips */
case pack(PLANARCONFIG_CONTIG, PLANARCONFIG_CONTIG, T,F,F):
case pack(PLANARCONFIG_CONTIG, PLANARCONFIG_CONTIG, T,F,T):
return cpContigTiles2ContigStrips;
case pack(PLANARCONFIG_CONTIG, PLANARCONFIG_SEPARATE, T,F,F):
case pack(PLANARCONFIG_CONTIG, PLANARCONFIG_SEPARATE, T,F,T):
return cpContigTiles2SeparateStrips;
case pack(PLANARCONFIG_SEPARATE, PLANARCONFIG_CONTIG, T,F,F):
case pack(PLANARCONFIG_SEPARATE, PLANARCONFIG_CONTIG, T,F,T):
return cpSeparateTiles2ContigStrips;
case pack(PLANARCONFIG_SEPARATE, PLANARCONFIG_SEPARATE, T,F,F):
case pack(PLANARCONFIG_SEPARATE, PLANARCONFIG_SEPARATE, T,F,T):
return cpSeparateTiles2SeparateStrips;
/* Strips -> Strips */
case pack(PLANARCONFIG_CONTIG, PLANARCONFIG_CONTIG, F,F,F):
return bias ? cpBiasedContig2Contig : cpContig2ContigByRow;
case pack(PLANARCONFIG_CONTIG, PLANARCONFIG_CONTIG, F,F,T):
return cpDecodedStrips;
case pack(PLANARCONFIG_CONTIG, PLANARCONFIG_SEPARATE, F,F,F):
case pack(PLANARCONFIG_CONTIG, PLANARCONFIG_SEPARATE, F,F,T):
return cpContig2SeparateByRow;
case pack(PLANARCONFIG_SEPARATE, PLANARCONFIG_CONTIG, F,F,F):
case pack(PLANARCONFIG_SEPARATE, PLANARCONFIG_CONTIG, F,F,T):
return cpSeparate2ContigByRow;
case pack(PLANARCONFIG_SEPARATE, PLANARCONFIG_SEPARATE, F,F,F):
case pack(PLANARCONFIG_SEPARATE, PLANARCONFIG_SEPARATE, F,F,T):
return cpSeparate2SeparateByRow;
}
#undef pack
#undef F
#undef T
fprintf(stderr, "tiffcp: %s: Don't know how to copy/convert image.\n",
TIFFFileName(in));
return (NULL);
}
| 1 | CVE-2017-5225 | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 928 |
php | a6fdc5bb27b20d889de0cd29318b3968aabb57bd | int phar_parse_zipfile(php_stream *fp, char *fname, int fname_len, char *alias, int alias_len, phar_archive_data** pphar, char **error TSRMLS_DC) /* {{{ */
{
phar_zip_dir_end locator;
char buf[sizeof(locator) + 65536];
long size;
php_uint16 i;
phar_archive_data *mydata = NULL;
phar_entry_info entry = {0};
char *p = buf, *ext, *actual_alias = NULL;
char *metadata = NULL;
size = php_stream_tell(fp);
if (size > sizeof(locator) + 65536) {
/* seek to max comment length + end of central directory record */
size = sizeof(locator) + 65536;
if (FAILURE == php_stream_seek(fp, -size, SEEK_END)) {
php_stream_close(fp);
if (error) {
spprintf(error, 4096, "phar error: unable to search for end of central directory in zip-based phar \"%s\"", fname);
}
return FAILURE;
}
} else {
php_stream_seek(fp, 0, SEEK_SET);
}
if (!php_stream_read(fp, buf, size)) {
php_stream_close(fp);
if (error) {
spprintf(error, 4096, "phar error: unable to read in data to search for end of central directory in zip-based phar \"%s\"", fname);
}
return FAILURE;
}
while ((p=(char *) memchr(p + 1, 'P', (size_t) (size - (p + 1 - buf)))) != NULL) {
if (!memcmp(p + 1, "K\5\6", 3)) {
memcpy((void *)&locator, (void *) p, sizeof(locator));
if (PHAR_GET_16(locator.centraldisk) != 0 || PHAR_GET_16(locator.disknumber) != 0) {
/* split archives not handled */
php_stream_close(fp);
if (error) {
spprintf(error, 4096, "phar error: split archives spanning multiple zips cannot be processed in zip-based phar \"%s\"", fname);
}
return FAILURE;
}
if (PHAR_GET_16(locator.counthere) != PHAR_GET_16(locator.count)) {
if (error) {
spprintf(error, 4096, "phar error: corrupt zip archive, conflicting file count in end of central directory record in zip-based phar \"%s\"", fname);
}
php_stream_close(fp);
return FAILURE;
}
mydata = pecalloc(1, sizeof(phar_archive_data), PHAR_G(persist));
mydata->is_persistent = PHAR_G(persist);
/* read in archive comment, if any */
if (PHAR_GET_16(locator.comment_len)) {
metadata = p + sizeof(locator);
if (PHAR_GET_16(locator.comment_len) != size - (metadata - buf)) {
if (error) {
spprintf(error, 4096, "phar error: corrupt zip archive, zip file comment truncated in zip-based phar \"%s\"", fname);
}
php_stream_close(fp);
pefree(mydata, mydata->is_persistent);
return FAILURE;
}
mydata->metadata_len = PHAR_GET_16(locator.comment_len);
if (phar_parse_metadata(&metadata, &mydata->metadata, PHAR_GET_16(locator.comment_len) TSRMLS_CC) == FAILURE) {
mydata->metadata_len = 0;
/* if not valid serialized data, it is a regular string */
if (entry.is_persistent) {
ALLOC_PERMANENT_ZVAL(mydata->metadata);
} else {
ALLOC_ZVAL(mydata->metadata);
}
INIT_ZVAL(*mydata->metadata);
metadata = pestrndup(metadata, PHAR_GET_16(locator.comment_len), mydata->is_persistent);
ZVAL_STRINGL(mydata->metadata, metadata, PHAR_GET_16(locator.comment_len), 0);
}
} else {
mydata->metadata = NULL;
}
goto foundit;
}
}
php_stream_close(fp);
if (error) {
spprintf(error, 4096, "phar error: end of central directory not found in zip-based phar \"%s\"", fname);
}
return FAILURE;
foundit:
mydata->fname = pestrndup(fname, fname_len, mydata->is_persistent);
#ifdef PHP_WIN32
phar_unixify_path_separators(mydata->fname, fname_len);
#endif
mydata->is_zip = 1;
mydata->fname_len = fname_len;
ext = strrchr(mydata->fname, '/');
if (ext) {
mydata->ext = memchr(ext, '.', (mydata->fname + fname_len) - ext);
if (mydata->ext == ext) {
mydata->ext = memchr(ext + 1, '.', (mydata->fname + fname_len) - ext - 1);
}
if (mydata->ext) {
mydata->ext_len = (mydata->fname + fname_len) - mydata->ext;
}
}
/* clean up on big-endian systems */
/* seek to central directory */
php_stream_seek(fp, PHAR_GET_32(locator.cdir_offset), SEEK_SET);
/* read in central directory */
zend_hash_init(&mydata->manifest, PHAR_GET_16(locator.count),
zend_get_hash_value, destroy_phar_manifest_entry, (zend_bool)mydata->is_persistent);
zend_hash_init(&mydata->mounted_dirs, 5,
zend_get_hash_value, NULL, (zend_bool)mydata->is_persistent);
zend_hash_init(&mydata->virtual_dirs, PHAR_GET_16(locator.count) * 2,
zend_get_hash_value, NULL, (zend_bool)mydata->is_persistent);
entry.phar = mydata;
entry.is_zip = 1;
entry.fp_type = PHAR_FP;
entry.is_persistent = mydata->is_persistent;
#define PHAR_ZIP_FAIL_FREE(errmsg, save) \
zend_hash_destroy(&mydata->manifest); \
mydata->manifest.arBuckets = 0; \
zend_hash_destroy(&mydata->mounted_dirs); \
mydata->mounted_dirs.arBuckets = 0; \
zend_hash_destroy(&mydata->virtual_dirs); \
mydata->virtual_dirs.arBuckets = 0; \
php_stream_close(fp); \
if (mydata->metadata) { \
zval_dtor(mydata->metadata); \
} \
if (mydata->signature) { \
efree(mydata->signature); \
} \
if (error) { \
spprintf(error, 4096, "phar error: %s in zip-based phar \"%s\"", errmsg, mydata->fname); \
} \
pefree(mydata->fname, mydata->is_persistent); \
if (mydata->alias) { \
pefree(mydata->alias, mydata->is_persistent); \
} \
pefree(mydata, mydata->is_persistent); \
efree(save); \
return FAILURE;
#define PHAR_ZIP_FAIL(errmsg) \
zend_hash_destroy(&mydata->manifest); \
mydata->manifest.arBuckets = 0; \
zend_hash_destroy(&mydata->mounted_dirs); \
mydata->mounted_dirs.arBuckets = 0; \
zend_hash_destroy(&mydata->virtual_dirs); \
mydata->virtual_dirs.arBuckets = 0; \
php_stream_close(fp); \
if (mydata->metadata) { \
zval_dtor(mydata->metadata); \
} \
if (mydata->signature) { \
efree(mydata->signature); \
} \
if (error) { \
spprintf(error, 4096, "phar error: %s in zip-based phar \"%s\"", errmsg, mydata->fname); \
} \
pefree(mydata->fname, mydata->is_persistent); \
if (mydata->alias) { \
pefree(mydata->alias, mydata->is_persistent); \
} \
pefree(mydata, mydata->is_persistent); \
return FAILURE;
/* add each central directory item to the manifest */
for (i = 0; i < PHAR_GET_16(locator.count); ++i) {
phar_zip_central_dir_file zipentry;
off_t beforeus = php_stream_tell(fp);
if (sizeof(zipentry) != php_stream_read(fp, (char *) &zipentry, sizeof(zipentry))) {
PHAR_ZIP_FAIL("unable to read central directory entry, truncated");
}
/* clean up for bigendian systems */
if (memcmp("PK\1\2", zipentry.signature, 4)) {
/* corrupted entry */
PHAR_ZIP_FAIL("corrupted central directory entry, no magic signature");
}
if (entry.is_persistent) {
entry.manifest_pos = i;
}
entry.compressed_filesize = PHAR_GET_32(zipentry.compsize);
entry.uncompressed_filesize = PHAR_GET_32(zipentry.uncompsize);
entry.crc32 = PHAR_GET_32(zipentry.crc32);
/* do not PHAR_GET_16 either on the next line */
entry.timestamp = phar_zip_d2u_time(zipentry.timestamp, zipentry.datestamp);
entry.flags = PHAR_ENT_PERM_DEF_FILE;
entry.header_offset = PHAR_GET_32(zipentry.offset);
entry.offset = entry.offset_abs = PHAR_GET_32(zipentry.offset) + sizeof(phar_zip_file_header) + PHAR_GET_16(zipentry.filename_len) +
PHAR_GET_16(zipentry.extra_len);
if (PHAR_GET_16(zipentry.flags) & PHAR_ZIP_FLAG_ENCRYPTED) {
PHAR_ZIP_FAIL("Cannot process encrypted zip files");
}
if (!PHAR_GET_16(zipentry.filename_len)) {
PHAR_ZIP_FAIL("Cannot process zips created from stdin (zero-length filename)");
}
entry.filename_len = PHAR_GET_16(zipentry.filename_len);
entry.filename = (char *) pemalloc(entry.filename_len + 1, entry.is_persistent);
if (entry.filename_len != php_stream_read(fp, entry.filename, entry.filename_len)) {
pefree(entry.filename, entry.is_persistent);
PHAR_ZIP_FAIL("unable to read in filename from central directory, truncated");
}
entry.filename[entry.filename_len] = '\0';
if (entry.filename[entry.filename_len - 1] == '/') {
entry.is_dir = 1;
if(entry.filename_len > 1) {
entry.filename_len--;
}
entry.flags |= PHAR_ENT_PERM_DEF_DIR;
} else {
entry.is_dir = 0;
}
if (entry.filename_len == sizeof(".phar/signature.bin")-1 && !strncmp(entry.filename, ".phar/signature.bin", sizeof(".phar/signature.bin")-1)) {
size_t read;
php_stream *sigfile;
off_t now;
char *sig;
now = php_stream_tell(fp);
pefree(entry.filename, entry.is_persistent);
sigfile = php_stream_fopen_tmpfile();
if (!sigfile) {
PHAR_ZIP_FAIL("couldn't open temporary file");
}
php_stream_seek(fp, 0, SEEK_SET);
/* copy file contents + local headers and zip comment, if any, to be hashed for signature */
phar_stream_copy_to_stream(fp, sigfile, entry.header_offset, NULL);
/* seek to central directory */
php_stream_seek(fp, PHAR_GET_32(locator.cdir_offset), SEEK_SET);
/* copy central directory header */
phar_stream_copy_to_stream(fp, sigfile, beforeus - PHAR_GET_32(locator.cdir_offset), NULL);
if (metadata) {
php_stream_write(sigfile, metadata, PHAR_GET_16(locator.comment_len));
}
php_stream_seek(fp, sizeof(phar_zip_file_header) + entry.header_offset + entry.filename_len + PHAR_GET_16(zipentry.extra_len), SEEK_SET);
sig = (char *) emalloc(entry.uncompressed_filesize);
read = php_stream_read(fp, sig, entry.uncompressed_filesize);
if (read != entry.uncompressed_filesize) {
php_stream_close(sigfile);
efree(sig);
PHAR_ZIP_FAIL("signature cannot be read");
}
mydata->sig_flags = PHAR_GET_32(sig);
if (FAILURE == phar_verify_signature(sigfile, php_stream_tell(sigfile), mydata->sig_flags, sig + 8, entry.uncompressed_filesize - 8, fname, &mydata->signature, &mydata->sig_len, error TSRMLS_CC)) {
efree(sig);
if (error) {
char *save;
php_stream_close(sigfile);
spprintf(&save, 4096, "signature cannot be verified: %s", *error);
efree(*error);
PHAR_ZIP_FAIL_FREE(save, save);
} else {
php_stream_close(sigfile);
PHAR_ZIP_FAIL("signature cannot be verified");
}
}
php_stream_close(sigfile);
efree(sig);
/* signature checked out, let's ensure this is the last file in the phar */
if (i != PHAR_GET_16(locator.count) - 1) {
PHAR_ZIP_FAIL("entries exist after signature, invalid phar");
}
continue;
}
phar_add_virtual_dirs(mydata, entry.filename, entry.filename_len TSRMLS_CC);
if (PHAR_GET_16(zipentry.extra_len)) {
off_t loc = php_stream_tell(fp);
if (FAILURE == phar_zip_process_extra(fp, &entry, PHAR_GET_16(zipentry.extra_len) TSRMLS_CC)) {
pefree(entry.filename, entry.is_persistent);
PHAR_ZIP_FAIL("Unable to process extra field header for file in central directory");
}
php_stream_seek(fp, loc + PHAR_GET_16(zipentry.extra_len), SEEK_SET);
}
switch (PHAR_GET_16(zipentry.compressed)) {
case PHAR_ZIP_COMP_NONE :
/* compression flag already set */
break;
case PHAR_ZIP_COMP_DEFLATE :
entry.flags |= PHAR_ENT_COMPRESSED_GZ;
if (!PHAR_G(has_zlib)) {
pefree(entry.filename, entry.is_persistent);
PHAR_ZIP_FAIL("zlib extension is required");
}
break;
case PHAR_ZIP_COMP_BZIP2 :
entry.flags |= PHAR_ENT_COMPRESSED_BZ2;
if (!PHAR_G(has_bz2)) {
pefree(entry.filename, entry.is_persistent);
PHAR_ZIP_FAIL("bzip2 extension is required");
}
break;
case 1 :
pefree(entry.filename, entry.is_persistent);
PHAR_ZIP_FAIL("unsupported compression method (Shrunk) used in this zip");
case 2 :
case 3 :
case 4 :
case 5 :
pefree(entry.filename, entry.is_persistent);
PHAR_ZIP_FAIL("unsupported compression method (Reduce) used in this zip");
case 6 :
pefree(entry.filename, entry.is_persistent);
PHAR_ZIP_FAIL("unsupported compression method (Implode) used in this zip");
case 7 :
pefree(entry.filename, entry.is_persistent);
PHAR_ZIP_FAIL("unsupported compression method (Tokenize) used in this zip");
case 9 :
pefree(entry.filename, entry.is_persistent);
PHAR_ZIP_FAIL("unsupported compression method (Deflate64) used in this zip");
case 10 :
pefree(entry.filename, entry.is_persistent);
PHAR_ZIP_FAIL("unsupported compression method (PKWare Implode/old IBM TERSE) used in this zip");
case 14 :
pefree(entry.filename, entry.is_persistent);
PHAR_ZIP_FAIL("unsupported compression method (LZMA) used in this zip");
case 18 :
pefree(entry.filename, entry.is_persistent);
PHAR_ZIP_FAIL("unsupported compression method (IBM TERSE) used in this zip");
case 19 :
pefree(entry.filename, entry.is_persistent);
PHAR_ZIP_FAIL("unsupported compression method (IBM LZ77) used in this zip");
case 97 :
pefree(entry.filename, entry.is_persistent);
PHAR_ZIP_FAIL("unsupported compression method (WavPack) used in this zip");
case 98 :
pefree(entry.filename, entry.is_persistent);
PHAR_ZIP_FAIL("unsupported compression method (PPMd) used in this zip");
default :
pefree(entry.filename, entry.is_persistent);
PHAR_ZIP_FAIL("unsupported compression method (unknown) used in this zip");
}
/* get file metadata */
if (PHAR_GET_16(zipentry.comment_len)) {
if (PHAR_GET_16(zipentry.comment_len) != php_stream_read(fp, buf, PHAR_GET_16(zipentry.comment_len))) {
pefree(entry.filename, entry.is_persistent);
PHAR_ZIP_FAIL("unable to read in file comment, truncated");
}
p = buf;
entry.metadata_len = PHAR_GET_16(zipentry.comment_len);
if (phar_parse_metadata(&p, &(entry.metadata), PHAR_GET_16(zipentry.comment_len) TSRMLS_CC) == FAILURE) {
entry.metadata_len = 0;
/* if not valid serialized data, it is a regular string */
if (entry.is_persistent) {
ALLOC_PERMANENT_ZVAL(entry.metadata);
} else {
ALLOC_ZVAL(entry.metadata);
}
INIT_ZVAL(*entry.metadata);
ZVAL_STRINGL(entry.metadata, pestrndup(buf, PHAR_GET_16(zipentry.comment_len), entry.is_persistent), PHAR_GET_16(zipentry.comment_len), 0);
}
} else {
entry.metadata = NULL;
}
if (!actual_alias && entry.filename_len == sizeof(".phar/alias.txt")-1 && !strncmp(entry.filename, ".phar/alias.txt", sizeof(".phar/alias.txt")-1)) {
php_stream_filter *filter;
off_t saveloc;
/* verify local file header */
phar_zip_file_header local;
/* archive alias found */
saveloc = php_stream_tell(fp);
php_stream_seek(fp, PHAR_GET_32(zipentry.offset), SEEK_SET);
if (sizeof(local) != php_stream_read(fp, (char *) &local, sizeof(local))) {
pefree(entry.filename, entry.is_persistent);
PHAR_ZIP_FAIL("phar error: internal corruption of zip-based phar (cannot read local file header for alias)");
}
/* verify local header */
if (entry.filename_len != PHAR_GET_16(local.filename_len) || entry.crc32 != PHAR_GET_32(local.crc32) || entry.uncompressed_filesize != PHAR_GET_32(local.uncompsize) || entry.compressed_filesize != PHAR_GET_32(local.compsize)) {
pefree(entry.filename, entry.is_persistent);
PHAR_ZIP_FAIL("phar error: internal corruption of zip-based phar (local header of alias does not match central directory)");
}
/* construct actual offset to file start - local extra_len can be different from central extra_len */
entry.offset = entry.offset_abs =
sizeof(local) + entry.header_offset + PHAR_GET_16(local.filename_len) + PHAR_GET_16(local.extra_len);
php_stream_seek(fp, entry.offset, SEEK_SET);
/* these next lines should be for php < 5.2.6 after 5.3 filters are fixed */
fp->writepos = 0;
fp->readpos = 0;
php_stream_seek(fp, entry.offset, SEEK_SET);
fp->writepos = 0;
fp->readpos = 0;
/* the above lines should be for php < 5.2.6 after 5.3 filters are fixed */
mydata->alias_len = entry.uncompressed_filesize;
if (entry.flags & PHAR_ENT_COMPRESSED_GZ) {
filter = php_stream_filter_create("zlib.inflate", NULL, php_stream_is_persistent(fp) TSRMLS_CC);
if (!filter) {
pefree(entry.filename, entry.is_persistent);
PHAR_ZIP_FAIL("unable to decompress alias, zlib filter creation failed");
}
php_stream_filter_append(&fp->readfilters, filter);
if (!(entry.uncompressed_filesize = php_stream_copy_to_mem(fp, &actual_alias, entry.uncompressed_filesize, 0)) || !actual_alias) {
pefree(entry.filename, entry.is_persistent);
PHAR_ZIP_FAIL("unable to read in alias, truncated");
}
php_stream_filter_flush(filter, 1);
php_stream_filter_remove(filter, 1 TSRMLS_CC);
} else if (entry.flags & PHAR_ENT_COMPRESSED_BZ2) {
filter = php_stream_filter_create("bzip2.decompress", NULL, php_stream_is_persistent(fp) TSRMLS_CC);
if (!filter) {
pefree(entry.filename, entry.is_persistent);
PHAR_ZIP_FAIL("unable to read in alias, bzip2 filter creation failed");
}
php_stream_filter_append(&fp->readfilters, filter);
if (!(entry.uncompressed_filesize = php_stream_copy_to_mem(fp, &actual_alias, entry.uncompressed_filesize, 0)) || !actual_alias) {
pefree(entry.filename, entry.is_persistent);
PHAR_ZIP_FAIL("unable to read in alias, truncated");
}
php_stream_filter_flush(filter, 1);
php_stream_filter_remove(filter, 1 TSRMLS_CC);
} else {
if (!(entry.uncompressed_filesize = php_stream_copy_to_mem(fp, &actual_alias, entry.uncompressed_filesize, 0)) || !actual_alias) {
pefree(entry.filename, entry.is_persistent);
PHAR_ZIP_FAIL("unable to read in alias, truncated");
}
}
/* return to central directory parsing */
php_stream_seek(fp, saveloc, SEEK_SET);
}
phar_set_inode(&entry TSRMLS_CC);
zend_hash_add(&mydata->manifest, entry.filename, entry.filename_len, (void *)&entry,sizeof(phar_entry_info), NULL);
}
mydata->fp = fp;
if (zend_hash_exists(&(mydata->manifest), ".phar/stub.php", sizeof(".phar/stub.php")-1)) {
mydata->is_data = 0;
} else {
mydata->is_data = 1;
}
zend_hash_add(&(PHAR_GLOBALS->phar_fname_map), mydata->fname, fname_len, (void*)&mydata, sizeof(phar_archive_data*), NULL);
if (actual_alias) {
phar_archive_data **fd_ptr;
if (!phar_validate_alias(actual_alias, mydata->alias_len)) {
if (error) {
spprintf(error, 4096, "phar error: invalid alias \"%s\" in zip-based phar \"%s\"", actual_alias, fname);
}
efree(actual_alias);
zend_hash_del(&(PHAR_GLOBALS->phar_fname_map), mydata->fname, fname_len);
return FAILURE;
}
mydata->is_temporary_alias = 0;
if (SUCCESS == zend_hash_find(&(PHAR_GLOBALS->phar_alias_map), actual_alias, mydata->alias_len, (void **)&fd_ptr)) {
if (SUCCESS != phar_free_alias(*fd_ptr, actual_alias, mydata->alias_len TSRMLS_CC)) {
if (error) {
spprintf(error, 4096, "phar error: Unable to add zip-based phar \"%s\" with implicit alias, alias is already in use", fname);
}
efree(actual_alias);
zend_hash_del(&(PHAR_GLOBALS->phar_fname_map), mydata->fname, fname_len);
return FAILURE;
}
}
mydata->alias = entry.is_persistent ? pestrndup(actual_alias, mydata->alias_len, 1) : actual_alias;
if (entry.is_persistent) {
efree(actual_alias);
}
zend_hash_add(&(PHAR_GLOBALS->phar_alias_map), actual_alias, mydata->alias_len, (void*)&mydata, sizeof(phar_archive_data*), NULL);
} else {
phar_archive_data **fd_ptr;
if (alias_len) {
if (SUCCESS == zend_hash_find(&(PHAR_GLOBALS->phar_alias_map), alias, alias_len, (void **)&fd_ptr)) {
if (SUCCESS != phar_free_alias(*fd_ptr, alias, alias_len TSRMLS_CC)) {
if (error) {
spprintf(error, 4096, "phar error: Unable to add zip-based phar \"%s\" with explicit alias, alias is already in use", fname);
}
zend_hash_del(&(PHAR_GLOBALS->phar_fname_map), mydata->fname, fname_len);
return FAILURE;
}
}
zend_hash_add(&(PHAR_GLOBALS->phar_alias_map), actual_alias, mydata->alias_len, (void*)&mydata, sizeof(phar_archive_data*), NULL);
mydata->alias = pestrndup(alias, alias_len, mydata->is_persistent);
mydata->alias_len = alias_len;
} else {
mydata->alias = pestrndup(mydata->fname, fname_len, mydata->is_persistent);
mydata->alias_len = fname_len;
}
mydata->is_temporary_alias = 1;
}
if (pphar) {
*pphar = mydata;
}
return SUCCESS;
}
/* }}} */
| 1 | CVE-2016-3142 | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 320 |
php-src | f938112c495b0d26572435c0be73ac0bfe642ecd |
private int
mcopy(struct magic_set *ms, union VALUETYPE *p, int type, int indir,
const unsigned char *s, uint32_t offset, size_t nbytes, struct magic *m)
{
/*
* Note: FILE_SEARCH and FILE_REGEX do not actually copy
* anything, but setup pointers into the source
*/
if (indir == 0) {
switch (type) {
case FILE_SEARCH:
ms->search.s = RCAST(const char *, s) + offset;
ms->search.s_len = nbytes - offset;
ms->search.offset = offset;
return 0;
case FILE_REGEX: {
const char *b;
const char *c;
const char *last; /* end of search region */
const char *buf; /* start of search region */
const char *end;
size_t lines, linecnt, bytecnt;
linecnt = m->str_range;
bytecnt = linecnt * 80;
if (bytecnt == 0) {
bytecnt = 8192;
}
if (bytecnt > nbytes) {
bytecnt = nbytes;
}
if (s == NULL) {
ms->search.s_len = 0;
ms->search.s = NULL;
return 0;
}
buf = RCAST(const char *, s) + offset;
end = last = RCAST(const char *, s) + bytecnt;
/* mget() guarantees buf <= last */
for (lines = linecnt, b = buf; lines && b < end &&
((b = CAST(const char *,
memchr(c = b, '\n', CAST(size_t, (end - b)))))
|| (b = CAST(const char *,
memchr(c, '\r', CAST(size_t, (end - c))))));
lines--, b++) {
last = b;
if (b[0] == '\r' && b[1] == '\n')
b++;
}
if (lines)
last = RCAST(const char *, s) + bytecnt;
ms->search.s = buf;
ms->search.s_len = last - buf;
ms->search.offset = offset;
ms->search.rm_len = 0;
return 0;
}
case FILE_BESTRING16:
case FILE_LESTRING16: {
const unsigned char *src = s + offset;
const unsigned char *esrc = s + nbytes;
char *dst = p->s;
char *edst = &p->s[sizeof(p->s) - 1];
if (type == FILE_BESTRING16)
src++;
/* check that offset is within range */
if (offset >= nbytes) {
file_magerror(ms, "invalid offset %u in mcopy()",
offset);
return -1;
}
for (/*EMPTY*/; src < esrc; src += 2, dst++) {
if (dst < edst)
*dst = *src;
else
break;
if (*dst == '\0') {
if (type == FILE_BESTRING16 ?
*(src - 1) != '\0' :
*(src + 1) != '\0')
*dst = ' ';
}
}
*edst = '\0';
return 0;
}
case FILE_STRING: /* XXX - these two should not need */
case FILE_PSTRING: /* to copy anything, but do anyway. */
default:
break;
}
}
if (offset >= nbytes) {
(void)memset(p, '\0', sizeof(*p));
return 0;
}
if (nbytes - offset < sizeof(*p))
nbytes = nbytes - offset;
else
nbytes = sizeof(*p);
(void)memcpy(p, s + offset, nbytes);
/*
* the usefulness of padding with zeroes eludes me, it
* might even cause problems
*/
if (nbytes < sizeof(*p))
(void)memset(((char *)(void *)p) + nbytes, '\0',
sizeof(*p) - nbytes); | 1 | CVE-2015-4604 | CWE-20 | Improper Input Validation | The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly. |
Phase: Architecture and Design
Strategy: Attack Surface Reduction
Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111]
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173).
Phases: Architecture and Design; Implementation
Strategy: Attack Surface Reduction
Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls.
Phase: Implementation
Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
Effectiveness: High
Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings.
Phase: Implementation
When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined.
Phase: Implementation
Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow.
Phase: Implementation
Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained.
Phase: Implementation
Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content.
Phase: Implementation
When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so. | 6,418 |
linux | 6062a8dc0517bce23e3c2f7d2fea5e22411269a3 | static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
int cmd, void __user *p)
{
struct sem_array *sma;
struct sem* curr;
int err, nsems;
ushort fast_sem_io[SEMMSL_FAST];
ushort* sem_io = fast_sem_io;
struct list_head tasks;
INIT_LIST_HEAD(&tasks);
rcu_read_lock();
sma = sem_obtain_object_check(ns, semid);
if (IS_ERR(sma)) {
rcu_read_unlock();
return PTR_ERR(sma);
}
nsems = sma->sem_nsems;
err = -EACCES;
if (ipcperms(ns, &sma->sem_perm,
cmd == SETALL ? S_IWUGO : S_IRUGO)) {
rcu_read_unlock();
goto out_wakeup;
}
err = security_sem_semctl(sma, cmd);
if (err) {
rcu_read_unlock();
goto out_wakeup;
}
err = -EACCES;
switch (cmd) {
case GETALL:
{
ushort __user *array = p;
int i;
if(nsems > SEMMSL_FAST) {
sem_getref(sma);
sem_io = ipc_alloc(sizeof(ushort)*nsems);
if(sem_io == NULL) {
sem_putref(sma);
return -ENOMEM;
}
sem_lock_and_putref(sma);
if (sma->sem_perm.deleted) {
sem_unlock(sma);
err = -EIDRM;
goto out_free;
}
}
spin_lock(&sma->sem_perm.lock);
for (i = 0; i < sma->sem_nsems; i++)
sem_io[i] = sma->sem_base[i].semval;
sem_unlock(sma);
err = 0;
if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
err = -EFAULT;
goto out_free;
}
case SETALL:
{
int i;
struct sem_undo *un;
ipc_rcu_getref(sma);
rcu_read_unlock();
if(nsems > SEMMSL_FAST) {
sem_io = ipc_alloc(sizeof(ushort)*nsems);
if(sem_io == NULL) {
sem_putref(sma);
return -ENOMEM;
}
}
if (copy_from_user (sem_io, p, nsems*sizeof(ushort))) {
sem_putref(sma);
err = -EFAULT;
goto out_free;
}
for (i = 0; i < nsems; i++) {
if (sem_io[i] > SEMVMX) {
sem_putref(sma);
err = -ERANGE;
goto out_free;
}
}
sem_lock_and_putref(sma);
if (sma->sem_perm.deleted) {
sem_unlock(sma);
err = -EIDRM;
goto out_free;
}
for (i = 0; i < nsems; i++)
sma->sem_base[i].semval = sem_io[i];
assert_spin_locked(&sma->sem_perm.lock);
list_for_each_entry(un, &sma->list_id, list_id) {
for (i = 0; i < nsems; i++)
un->semadj[i] = 0;
}
sma->sem_ctime = get_seconds();
/* maybe some queued-up processes were waiting for this */
do_smart_update(sma, NULL, 0, 0, &tasks);
err = 0;
goto out_unlock;
}
/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
}
err = -EINVAL;
if (semnum < 0 || semnum >= nsems) {
rcu_read_unlock();
goto out_wakeup;
}
spin_lock(&sma->sem_perm.lock);
curr = &sma->sem_base[semnum];
switch (cmd) {
case GETVAL:
err = curr->semval;
goto out_unlock;
case GETPID:
err = curr->sempid;
goto out_unlock;
case GETNCNT:
err = count_semncnt(sma,semnum);
goto out_unlock;
case GETZCNT:
err = count_semzcnt(sma,semnum);
goto out_unlock;
}
out_unlock:
sem_unlock(sma);
out_wakeup:
wake_up_sem_queue_do(&tasks);
out_free:
if(sem_io != fast_sem_io)
ipc_free(sem_io, sizeof(ushort)*nsems);
return err;
}
| 1 | CVE-2013-4483 | CWE-189 | Numeric Errors | Weaknesses in this category are related to improper calculation or conversion of numbers. | Not Found in CWE Page | 3,710 |
quagga | cfb1fae25f8c092e0d17073eaf7bd428ce1cd546 | rtadv_cmd_init (void)
{
/* Empty.*/;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 13,149 |
ImageMagick6 | b522d2d857d2f75b659936b59b0da9df1682c256 | MagickExport Image *HoughLineImage(const Image *image,const size_t width,
const size_t height,const size_t threshold,ExceptionInfo *exception)
{
#define HoughLineImageTag "HoughLine/Image"
CacheView
*image_view;
char
message[MaxTextExtent],
path[MaxTextExtent];
const char
*artifact;
double
hough_height;
Image
*lines_image = NULL;
ImageInfo
*image_info;
int
file;
MagickBooleanType
status;
MagickOffsetType
progress;
MatrixInfo
*accumulator;
PointInfo
center;
register ssize_t
y;
size_t
accumulator_height,
accumulator_width,
line_count;
/*
Create the accumulator.
*/
assert(image != (const Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
accumulator_width=180;
hough_height=((sqrt(2.0)*(double) (image->rows > image->columns ?
image->rows : image->columns))/2.0);
accumulator_height=(size_t) (2.0*hough_height);
accumulator=AcquireMatrixInfo(accumulator_width,accumulator_height,
sizeof(double),exception);
if (accumulator == (MatrixInfo *) NULL)
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
if (NullMatrix(accumulator) == MagickFalse)
{
accumulator=DestroyMatrixInfo(accumulator);
ThrowImageException(ResourceLimitError,"MemoryAllocationFailed");
}
/*
Populate the accumulator.
*/
status=MagickTrue;
progress=0;
center.x=(double) image->columns/2.0;
center.y=(double) image->rows/2.0;
image_view=AcquireVirtualCacheView(image,exception);
for (y=0; y < (ssize_t) image->rows; y++)
{
register const PixelPacket
*magick_restrict p;
register ssize_t
x;
if (status == MagickFalse)
continue;
p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
if (p == (PixelPacket *) NULL)
{
status=MagickFalse;
continue;
}
for (x=0; x < (ssize_t) image->columns; x++)
{
if (GetPixelIntensity(image,p) > (QuantumRange/2.0))
{
register ssize_t
i;
for (i=0; i < 180; i++)
{
double
count,
radius;
radius=(((double) x-center.x)*cos(DegreesToRadians((double) i)))+
(((double) y-center.y)*sin(DegreesToRadians((double) i)));
(void) GetMatrixElement(accumulator,i,(ssize_t)
MagickRound(radius+hough_height),&count);
count++;
(void) SetMatrixElement(accumulator,i,(ssize_t)
MagickRound(radius+hough_height),&count);
}
}
p++;
}
if (image->progress_monitor != (MagickProgressMonitor) NULL)
{
MagickBooleanType
proceed;
#if defined(MAGICKCORE_OPENMP_SUPPORT)
#pragma omp atomic
#endif
progress++;
proceed=SetImageProgress(image,HoughLineImageTag,progress,image->rows);
if (proceed == MagickFalse)
status=MagickFalse;
}
}
image_view=DestroyCacheView(image_view);
if (status == MagickFalse)
{
accumulator=DestroyMatrixInfo(accumulator);
return((Image *) NULL);
}
/*
Generate line segments from accumulator.
*/
file=AcquireUniqueFileResource(path);
if (file == -1)
{
accumulator=DestroyMatrixInfo(accumulator);
return((Image *) NULL);
}
(void) FormatLocaleString(message,MaxTextExtent,
"# Hough line transform: %.20gx%.20g%+.20g\n",(double) width,
(double) height,(double) threshold);
if (write(file,message,strlen(message)) != (ssize_t) strlen(message))
status=MagickFalse;
(void) FormatLocaleString(message,MaxTextExtent,"viewbox 0 0 %.20g %.20g\n",
(double) image->columns,(double) image->rows);
if (write(file,message,strlen(message)) != (ssize_t) strlen(message))
status=MagickFalse;
(void) FormatLocaleString(message,MaxTextExtent,
"# x1,y1 x2,y2 # count angle distance\n");
if (write(file,message,strlen(message)) != (ssize_t) strlen(message))
status=MagickFalse;
line_count=image->columns > image->rows ? image->columns/4 : image->rows/4;
if (threshold != 0)
line_count=threshold;
for (y=0; y < (ssize_t) accumulator_height; y++)
{
register ssize_t
x;
for (x=0; x < (ssize_t) accumulator_width; x++)
{
double
count;
(void) GetMatrixElement(accumulator,x,y,&count);
if (count >= (double) line_count)
{
double
maxima;
SegmentInfo
line;
ssize_t
v;
/*
Is point a local maxima?
*/
maxima=count;
for (v=(-((ssize_t) height/2)); v <= (((ssize_t) height/2)); v++)
{
ssize_t
u;
for (u=(-((ssize_t) width/2)); u <= (((ssize_t) width/2)); u++)
{
if ((u != 0) || (v !=0))
{
(void) GetMatrixElement(accumulator,x+u,y+v,&count);
if (count > maxima)
{
maxima=count;
break;
}
}
}
if (u < (ssize_t) (width/2))
break;
}
(void) GetMatrixElement(accumulator,x,y,&count);
if (maxima > count)
continue;
if ((x >= 45) && (x <= 135))
{
/*
y = (r-x cos(t))/sin(t)
*/
line.x1=0.0;
line.y1=((double) (y-(accumulator_height/2.0))-((line.x1-
(image->columns/2.0))*cos(DegreesToRadians((double) x))))/
sin(DegreesToRadians((double) x))+(image->rows/2.0);
line.x2=(double) image->columns;
line.y2=((double) (y-(accumulator_height/2.0))-((line.x2-
(image->columns/2.0))*cos(DegreesToRadians((double) x))))/
sin(DegreesToRadians((double) x))+(image->rows/2.0);
}
else
{
/*
x = (r-y cos(t))/sin(t)
*/
line.y1=0.0;
line.x1=((double) (y-(accumulator_height/2.0))-((line.y1-
(image->rows/2.0))*sin(DegreesToRadians((double) x))))/
cos(DegreesToRadians((double) x))+(image->columns/2.0);
line.y2=(double) image->rows;
line.x2=((double) (y-(accumulator_height/2.0))-((line.y2-
(image->rows/2.0))*sin(DegreesToRadians((double) x))))/
cos(DegreesToRadians((double) x))+(image->columns/2.0);
}
(void) FormatLocaleString(message,MaxTextExtent,
"line %g,%g %g,%g # %g %g %g\n",line.x1,line.y1,line.x2,line.y2,
maxima,(double) x,(double) y);
if (write(file,message,strlen(message)) != (ssize_t) strlen(message))
status=MagickFalse;
}
}
}
(void) close(file);
/*
Render lines to image canvas.
*/
image_info=AcquireImageInfo();
image_info->background_color=image->background_color;
(void) FormatLocaleString(image_info->filename,MaxTextExtent,"%s",path);
artifact=GetImageArtifact(image,"background");
if (artifact != (const char *) NULL)
(void) SetImageOption(image_info,"background",artifact);
artifact=GetImageArtifact(image,"fill");
if (artifact != (const char *) NULL)
(void) SetImageOption(image_info,"fill",artifact);
artifact=GetImageArtifact(image,"stroke");
if (artifact != (const char *) NULL)
(void) SetImageOption(image_info,"stroke",artifact);
artifact=GetImageArtifact(image,"strokewidth");
if (artifact != (const char *) NULL)
(void) SetImageOption(image_info,"strokewidth",artifact);
lines_image=RenderHoughLines(image_info,image->columns,image->rows,exception);
artifact=GetImageArtifact(image,"hough-lines:accumulator");
if ((lines_image != (Image *) NULL) &&
(IsMagickTrue(artifact) != MagickFalse))
{
Image
*accumulator_image;
accumulator_image=MatrixToImage(accumulator,exception);
if (accumulator_image != (Image *) NULL)
AppendImageToList(&lines_image,accumulator_image);
}
/*
Free resources.
*/
accumulator=DestroyMatrixInfo(accumulator);
image_info=DestroyImageInfo(image_info);
(void) RelinquishUniqueFileResource(path);
return(GetFirstImageInList(lines_image));
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 21,090 |
thrift | cfaadcc4adcfde2a8232c62ec89870b73ef40df1 | void t_cpp_generator::generate_serialize_field(ofstream& out,
t_field* tfield,
string prefix,
string suffix) {
t_type* type = get_true_type(tfield->get_type());
string name = prefix + tfield->get_name() + suffix;
// Do nothing for void types
if (type->is_void()) {
throw "CANNOT GENERATE SERIALIZE CODE FOR void TYPE: " + name;
}
if (type->is_struct() || type->is_xception()) {
generate_serialize_struct(out, (t_struct*)type, name, is_reference(tfield));
} else if (type->is_container()) {
generate_serialize_container(out, type, name);
} else if (type->is_base_type() || type->is_enum()) {
indent(out) << "xfer += oprot->";
if (type->is_base_type()) {
t_base_type::t_base tbase = ((t_base_type*)type)->get_base();
switch (tbase) {
case t_base_type::TYPE_VOID:
throw "compiler error: cannot serialize void field in a struct: " + name;
break;
case t_base_type::TYPE_STRING:
if (((t_base_type*)type)->is_binary()) {
out << "writeBinary(" << name << ");";
} else {
out << "writeString(" << name << ");";
}
break;
case t_base_type::TYPE_BOOL:
out << "writeBool(" << name << ");";
break;
case t_base_type::TYPE_BYTE:
out << "writeByte(" << name << ");";
break;
case t_base_type::TYPE_I16:
out << "writeI16(" << name << ");";
break;
case t_base_type::TYPE_I32:
out << "writeI32(" << name << ");";
break;
case t_base_type::TYPE_I64:
out << "writeI64(" << name << ");";
break;
case t_base_type::TYPE_DOUBLE:
out << "writeDouble(" << name << ");";
break;
default:
throw "compiler error: no C++ writer for base type " + t_base_type::t_base_name(tbase)
+ name;
}
} else if (type->is_enum()) {
out << "writeI32((int32_t)" << name << ");";
}
out << endl;
} else {
printf("DO NOT KNOW HOW TO SERIALIZE FIELD '%s' TYPE '%s'\n",
name.c_str(),
type_name(type).c_str());
}
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 10,633 |
Android | 04839626ed859623901ebd3a5fd483982186b59d | long Cluster::HasBlockEntries(
const Segment* pSegment,
long long off, //relative to start of segment payload
long long& pos,
long& len)
{
assert(pSegment);
assert(off >= 0); //relative to segment
IMkvReader* const pReader = pSegment->m_pReader;
long long total, avail;
long status = pReader->Length(&total, &avail);
if (status < 0) //error
return status;
assert((total < 0) || (avail <= total));
pos = pSegment->m_start + off; //absolute
if ((total >= 0) && (pos >= total))
return 0; //we don't even have a complete cluster
const long long segment_stop =
(pSegment->m_size < 0) ? -1 : pSegment->m_start + pSegment->m_size;
long long cluster_stop = -1; //interpreted later to mean "unknown size"
{
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //need more data
return E_BUFFER_NOT_FULL;
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((total >= 0) && ((pos + len) > total))
return 0;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long id = ReadUInt(pReader, pos, len);
if (id < 0) //error
return static_cast<long>(id);
if (id != 0x0F43B675) //weird: not cluster ID
return -1; //generic error
pos += len; //consume Cluster ID field
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //weird
return E_BUFFER_NOT_FULL;
if ((segment_stop >= 0) && ((pos + len) > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((total >= 0) && ((pos + len) > total))
return 0;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long size = ReadUInt(pReader, pos, len);
if (size < 0) //error
return static_cast<long>(size);
if (size == 0)
return 0; //cluster does not have entries
pos += len; //consume size field
const long long unknown_size = (1LL << (7 * len)) - 1;
if (size != unknown_size)
{
cluster_stop = pos + size;
assert(cluster_stop >= 0);
if ((segment_stop >= 0) && (cluster_stop > segment_stop))
return E_FILE_FORMAT_INVALID;
if ((total >= 0) && (cluster_stop > total))
return 0; //cluster does not have any entries
}
}
for (;;)
{
if ((cluster_stop >= 0) && (pos >= cluster_stop))
return 0; //no entries detected
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
long long result = GetUIntLength(pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //need more data
return E_BUFFER_NOT_FULL;
if ((cluster_stop >= 0) && ((pos + len) > cluster_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long id = ReadUInt(pReader, pos, len);
if (id < 0) //error
return static_cast<long>(id);
if (id == 0x0F43B675) //Cluster ID
return 0; //no entries found
if (id == 0x0C53BB6B) //Cues ID
return 0; //no entries found
pos += len; //consume id field
if ((cluster_stop >= 0) && (pos >= cluster_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + 1) > avail)
{
len = 1;
return E_BUFFER_NOT_FULL;
}
result = GetUIntLength(pReader, pos, len);
if (result < 0) //error
return static_cast<long>(result);
if (result > 0) //underflow
return E_BUFFER_NOT_FULL;
if ((cluster_stop >= 0) && ((pos + len) > cluster_stop))
return E_FILE_FORMAT_INVALID;
if ((pos + len) > avail)
return E_BUFFER_NOT_FULL;
const long long size = ReadUInt(pReader, pos, len);
if (size < 0) //error
return static_cast<long>(size);
pos += len; //consume size field
if ((cluster_stop >= 0) && (pos > cluster_stop))
return E_FILE_FORMAT_INVALID;
if (size == 0) //weird
continue;
const long long unknown_size = (1LL << (7 * len)) - 1;
if (size == unknown_size)
return E_FILE_FORMAT_INVALID; //not supported inside cluster
if ((cluster_stop >= 0) && ((pos + size) > cluster_stop))
return E_FILE_FORMAT_INVALID;
if (id == 0x20) //BlockGroup ID
return 1; //have at least one entry
if (id == 0x23) //SimpleBlock ID
return 1; //have at least one entry
pos += size; //consume payload
assert((cluster_stop < 0) || (pos <= cluster_stop));
}
}
| 1 | CVE-2016-1621 | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 632 |
Android | cf1581c66c2ad8c5b1aaca2e43e350cf5974f46d | status_t SampleTable::setCompositionTimeToSampleParams(
off64_t data_offset, size_t data_size) {
ALOGI("There are reordered frames present.");
if (mCompositionTimeDeltaEntries != NULL || data_size < 8) {
return ERROR_MALFORMED;
}
uint8_t header[8];
if (mDataSource->readAt(
data_offset, header, sizeof(header))
< (ssize_t)sizeof(header)) {
return ERROR_IO;
}
if (U32_AT(header) != 0) {
return ERROR_MALFORMED;
}
size_t numEntries = U32_AT(&header[4]);
if (data_size != (numEntries + 1) * 8) {
return ERROR_MALFORMED;
}
mNumCompositionTimeDeltaEntries = numEntries;
uint64_t allocSize = numEntries * 2 * sizeof(uint32_t);
if (allocSize > SIZE_MAX) {
return ERROR_OUT_OF_RANGE;
}
mCompositionTimeDeltaEntries = new uint32_t[2 * numEntries];
if (mDataSource->readAt(
data_offset + 8, mCompositionTimeDeltaEntries, numEntries * 8)
< (ssize_t)numEntries * 8) {
delete[] mCompositionTimeDeltaEntries;
mCompositionTimeDeltaEntries = NULL;
return ERROR_IO;
}
for (size_t i = 0; i < 2 * numEntries; ++i) {
mCompositionTimeDeltaEntries[i] = ntohl(mCompositionTimeDeltaEntries[i]);
}
mCompositionDeltaLookup->setEntries(
mCompositionTimeDeltaEntries, mNumCompositionTimeDeltaEntries);
return OK;
}
| 1 | CVE-2015-6575 | CWE-189 | Numeric Errors | Weaknesses in this category are related to improper calculation or conversion of numbers. | Not Found in CWE Page | 1,380 |
Chrome | eaf2e8bce3855d362e53034bd83f0e3aff8714e4 | static Status UpdateKeyGenerator(IndexedDBBackingStore* backing_store,
IndexedDBTransaction* transaction,
int64_t database_id,
int64_t object_store_id,
const IndexedDBKey& key,
bool check_current) {
DCHECK_EQ(blink::mojom::IDBKeyType::Number, key.type());
const double max_generator_value = 9007199254740992.0;
int64_t value = base::saturated_cast<int64_t>(
floor(std::min(key.number(), max_generator_value)));
return backing_store->MaybeUpdateKeyGeneratorCurrentNumber(
transaction->BackingStoreTransaction(), database_id, object_store_id,
value + 1, check_current);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 11,701 |
chrony | a78bf9725a7b481ebff0e0c321294ba767f2c1d8 | NCR_CheckAccessRestriction(IPAddr *ip_addr)
{
return ADF_IsAllowed(access_auth_table, ip_addr);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 13,411 |
radare2 | 515e592b9bea0612bc63d8e93239ff35bcf645c7 | static RList *symbols(RBinFile *bf) {
RList *res = r_list_newf ((RListFree)r_bin_symbol_free);
r_return_val_if_fail (res && bf->o && bf->o->bin_obj, res);
RCoreSymCacheElement *element = bf->o->bin_obj;
size_t i;
HtUU *hash = ht_uu_new0 ();
if (!hash) {
return res;
}
bool found = false;
for (i = 0; i < element->hdr->n_lined_symbols; i++) {
RCoreSymCacheElementSymbol *sym = (RCoreSymCacheElementSymbol *)&element->lined_symbols[i];
ht_uu_find (hash, sym->paddr, &found);
if (found) {
continue;
}
RBinSymbol *s = bin_symbol_from_symbol (element, sym);
if (s) {
r_list_append (res, s);
ht_uu_insert (hash, sym->paddr, 1);
}
}
if (element->symbols) {
for (i = 0; i < element->hdr->n_symbols; i++) {
RCoreSymCacheElementSymbol *sym = &element->symbols[i];
ht_uu_find (hash, sym->paddr, &found);
if (found) {
continue;
}
RBinSymbol *s = bin_symbol_from_symbol (element, sym);
if (s) {
r_list_append (res, s);
}
}
}
ht_uu_free (hash);
return res;
} | 1 | CVE-2022-0712 | CWE-476 | NULL Pointer Dereference | The product dereferences a pointer that it expects to be valid but is NULL. | Phase: Implementation
If all pointers that could have been modified are checked for NULL before use, nearly all NULL pointer dereferences can be prevented.
Phase: Requirements
Select a programming language that is not susceptible to these issues.
Phase: Implementation
Check the results of all functions that return a value and verify that the value is non-null before acting upon it.
Effectiveness: Moderate
Note: Checking the return value of the function will typically be sufficient, however beware of race conditions (CWE-362) in a concurrent environment. This solution does not handle the use of improperly initialized variables (CWE-665).
Phase: Architecture and Design
Identify all variables and data stores that receive information from external sources, and apply input validation to make sure that they are only initialized to expected values.
Phase: Implementation
Explicitly initialize all variables and other data stores, either during declaration or just before the first usage. | 9,631 |
mindrot | 2fecfd486bdba9f51b3a789277bb0733ca36e1c0 | start_compression_in(struct ssh *ssh)
{
if (ssh->state->compression_in_started == 1)
inflateEnd(&ssh->state->compression_in_stream);
switch (inflateInit(&ssh->state->compression_in_stream)) {
case Z_OK:
ssh->state->compression_in_started = 1;
break;
case Z_MEM_ERROR:
return SSH_ERR_ALLOC_FAIL;
default:
return SSH_ERR_INTERNAL_ERROR;
}
return 0;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 11,639 |
php-src | 28f80baf3c53e267c9ce46a2a0fadbb981585132?w=1 | void php_mysqlnd_rset_header_free_mem(void * _packet, zend_bool stack_allocation TSRMLS_DC)
{
MYSQLND_PACKET_RSET_HEADER *p= (MYSQLND_PACKET_RSET_HEADER *) _packet;
DBG_ENTER("php_mysqlnd_rset_header_free_mem");
if (p->info_or_local_file) {
mnd_efree(p->info_or_local_file);
p->info_or_local_file = NULL;
}
if (!stack_allocation) {
mnd_pefree(p, p->header.persistent);
}
DBG_VOID_RETURN;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 14,754 |
faad2 | 1b71a6ba963d131375f5e489b3b25e36f19f3f24 | static uint32_t getsize(void)
{
int cnt;
uint32_t size = 0;
for (cnt = 0; cnt < 4; cnt++)
{
int tmp = u8in();
size <<= 7;
size |= (tmp & 0x7f);
if (!(tmp & 0x80))
break;
}
return size;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 17,556 |
linux | fbe0e839d1e22d88810f3ee3e2f1479be4c0aa4a | static void get_pi_state(struct futex_pi_state *pi_state)
{
WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 15,688 |
ImageMagick | eedd0c35bb2d8af7aa05f215689fdebd11633fa1 | static MagickBooleanType WritePDBImage(const ImageInfo *image_info,Image *image,
ExceptionInfo *exception)
{
const char
*comment;
int
bits;
MagickBooleanType
status;
PDBImage
pdb_image;
PDBInfo
pdb_info;
QuantumInfo
*quantum_info;
register const Quantum
*p;
register ssize_t
x;
register unsigned char
*q;
size_t
bits_per_pixel,
literal,
packets,
packet_size,
repeat;
ssize_t
y;
unsigned char
*buffer,
*runlength,
*scanline;
/*
Open output image file.
*/
assert(image_info != (const ImageInfo *) NULL);
assert(image_info->signature == MagickCoreSignature);
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
status=OpenBlob(image_info,image,WriteBinaryBlobMode,exception);
if (status == MagickFalse)
return(status);
(void) TransformImageColorspace(image,sRGBColorspace,exception);
if (SetImageMonochrome(image,exception) != MagickFalse) {
bits_per_pixel=1;
} else if (image->colors <= 4) {
bits_per_pixel=2;
} else if (image->colors <= 8) {
bits_per_pixel=3;
} else {
bits_per_pixel=4;
}
(void) ResetMagickMemory(&pdb_info,0,sizeof(pdb_info));
(void) CopyMagickString(pdb_info.name,image_info->filename,
sizeof(pdb_info.name));
pdb_info.attributes=0;
pdb_info.version=0;
pdb_info.create_time=time(NULL);
pdb_info.modify_time=pdb_info.create_time;
pdb_info.archive_time=0;
pdb_info.modify_number=0;
pdb_info.application_info=0;
pdb_info.sort_info=0;
(void) CopyMagickMemory(pdb_info.type,"vIMG",4);
(void) CopyMagickMemory(pdb_info.id,"View",4);
pdb_info.seed=0;
pdb_info.next_record=0;
comment=GetImageProperty(image,"comment",exception);
pdb_info.number_records=(comment == (const char *) NULL ? 1 : 2);
(void) WriteBlob(image,sizeof(pdb_info.name),(unsigned char *) pdb_info.name);
(void) WriteBlobMSBShort(image,(unsigned short) pdb_info.attributes);
(void) WriteBlobMSBShort(image,(unsigned short) pdb_info.version);
(void) WriteBlobMSBLong(image,(unsigned int) pdb_info.create_time);
(void) WriteBlobMSBLong(image,(unsigned int) pdb_info.modify_time);
(void) WriteBlobMSBLong(image,(unsigned int) pdb_info.archive_time);
(void) WriteBlobMSBLong(image,(unsigned int) pdb_info.modify_number);
(void) WriteBlobMSBLong(image,(unsigned int) pdb_info.application_info);
(void) WriteBlobMSBLong(image,(unsigned int) pdb_info.sort_info);
(void) WriteBlob(image,4,(unsigned char *) pdb_info.type);
(void) WriteBlob(image,4,(unsigned char *) pdb_info.id);
(void) WriteBlobMSBLong(image,(unsigned int) pdb_info.seed);
(void) WriteBlobMSBLong(image,(unsigned int) pdb_info.next_record);
(void) WriteBlobMSBShort(image,(unsigned short) pdb_info.number_records);
(void) CopyMagickString(pdb_image.name,pdb_info.name,sizeof(pdb_image.name));
pdb_image.version=1; /* RLE Compressed */
switch (bits_per_pixel)
{
case 1: pdb_image.type=(unsigned char) 0xff; break; /* monochrome */
case 2: pdb_image.type=(unsigned char) 0x00; break; /* 2 bit gray */
default: pdb_image.type=(unsigned char) 0x02; /* 4 bit gray */
}
pdb_image.reserved_1=0;
pdb_image.note=0;
pdb_image.x_last=0;
pdb_image.y_last=0;
pdb_image.reserved_2=0;
pdb_image.x_anchor=(unsigned short) 0xffff;
pdb_image.y_anchor=(unsigned short) 0xffff;
pdb_image.width=(short) image->columns;
if (image->columns % 16)
pdb_image.width=(short) (16*(image->columns/16+1));
pdb_image.height=(short) image->rows;
packets=((bits_per_pixel*image->columns+7)/8);
runlength=(unsigned char *) AcquireQuantumMemory(9UL*packets,
image->rows*sizeof(*runlength));
if (runlength == (unsigned char *) NULL)
ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed");
buffer=(unsigned char *) AcquireQuantumMemory(512,sizeof(*buffer));
if (buffer == (unsigned char *) NULL)
ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed");
packet_size=(size_t) (image->depth > 8 ? 2: 1);
scanline=(unsigned char *) AcquireQuantumMemory(image->columns,packet_size*
sizeof(*scanline));
if (scanline == (unsigned char *) NULL)
ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed");
if (IssRGBCompatibleColorspace(image->colorspace) == MagickFalse)
(void) TransformImageColorspace(image,sRGBColorspace,exception);
/*
Convert to GRAY raster scanline.
*/
quantum_info=AcquireQuantumInfo(image_info,image);
if (quantum_info == (QuantumInfo *) NULL)
ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed");
bits=8/(int) bits_per_pixel-1; /* start at most significant bits */
literal=0;
repeat=0;
q=runlength;
buffer[0]=0x00;
for (y=0; y < (ssize_t) image->rows; y++)
{
p=GetVirtualPixels(image,0,y,image->columns,1,exception);
if (p == (const Quantum *) NULL)
break;
(void) ExportQuantumPixels(image,(CacheView *) NULL,quantum_info,
GrayQuantum,scanline,exception);
for (x=0; x < (ssize_t) pdb_image.width; x++)
{
if (x < (ssize_t) image->columns)
buffer[literal+repeat]|=(0xff-scanline[x*packet_size]) >>
(8-bits_per_pixel) << bits*bits_per_pixel;
bits--;
if (bits < 0)
{
if (((literal+repeat) > 0) &&
(buffer[literal+repeat] == buffer[literal+repeat-1]))
{
if (repeat == 0)
{
literal--;
repeat++;
}
repeat++;
if (0x7f < repeat)
{
q=EncodeRLE(q,buffer,literal,repeat);
literal=0;
repeat=0;
}
}
else
{
if (repeat >= 2)
literal+=repeat;
else
{
q=EncodeRLE(q,buffer,literal,repeat);
buffer[0]=buffer[literal+repeat];
literal=0;
}
literal++;
repeat=0;
if (0x7f < literal)
{
q=EncodeRLE(q,buffer,(literal < 0x80 ? literal : 0x80),0);
(void) CopyMagickMemory(buffer,buffer+literal+repeat,0x80);
literal-=0x80;
}
}
bits=8/(int) bits_per_pixel-1;
buffer[literal+repeat]=0x00;
}
}
status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
q=EncodeRLE(q,buffer,literal,repeat);
scanline=(unsigned char *) RelinquishMagickMemory(scanline);
buffer=(unsigned char *) RelinquishMagickMemory(buffer);
quantum_info=DestroyQuantumInfo(quantum_info);
/*
Write the Image record header.
*/
(void) WriteBlobMSBLong(image,(unsigned int)
(TellBlob(image)+8*pdb_info.number_records));
(void) WriteBlobByte(image,0x40);
(void) WriteBlobByte(image,0x6f);
(void) WriteBlobByte(image,0x80);
(void) WriteBlobByte(image,0);
if (pdb_info.number_records > 1)
{
/*
Write the comment record header.
*/
(void) WriteBlobMSBLong(image,(unsigned int) (TellBlob(image)+8+58+q-
runlength));
(void) WriteBlobByte(image,0x40);
(void) WriteBlobByte(image,0x6f);
(void) WriteBlobByte(image,0x80);
(void) WriteBlobByte(image,1);
}
/*
Write the Image data.
*/
(void) WriteBlob(image,sizeof(pdb_image.name),(unsigned char *)
pdb_image.name);
(void) WriteBlobByte(image,(unsigned char) pdb_image.version);
(void) WriteBlobByte(image,pdb_image.type);
(void) WriteBlobMSBLong(image,(unsigned int) pdb_image.reserved_1);
(void) WriteBlobMSBLong(image,(unsigned int) pdb_image.note);
(void) WriteBlobMSBShort(image,(unsigned short) pdb_image.x_last);
(void) WriteBlobMSBShort(image,(unsigned short) pdb_image.y_last);
(void) WriteBlobMSBLong(image,(unsigned int) pdb_image.reserved_2);
(void) WriteBlobMSBShort(image,pdb_image.x_anchor);
(void) WriteBlobMSBShort(image,pdb_image.y_anchor);
(void) WriteBlobMSBShort(image,(unsigned short) pdb_image.width);
(void) WriteBlobMSBShort(image,(unsigned short) pdb_image.height);
(void) WriteBlob(image,(size_t) (q-runlength),runlength);
runlength=(unsigned char *) RelinquishMagickMemory(runlength);
if (pdb_info.number_records > 1)
(void) WriteBlobString(image,comment);
(void) CloseBlob(image);
return(MagickTrue);
} | 1 | CVE-2016-10054 | CWE-399 | Resource Management Errors | Weaknesses in this category are related to improper management of system resources. | Not Found in CWE Page | 9,638 |
linux | 4969c06a0d83c9c3dc50b8efcdc8eeedfce896f6 | static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
{
return F2FS_M_SB(page->mapping);
} | 1 | CVE-2019-19815 | CWE-476 | NULL Pointer Dereference | The product dereferences a pointer that it expects to be valid but is NULL. | Phase: Implementation
If all pointers that could have been modified are checked for NULL before use, nearly all NULL pointer dereferences can be prevented.
Phase: Requirements
Select a programming language that is not susceptible to these issues.
Phase: Implementation
Check the results of all functions that return a value and verify that the value is non-null before acting upon it.
Effectiveness: Moderate
Note: Checking the return value of the function will typically be sufficient, however beware of race conditions (CWE-362) in a concurrent environment. This solution does not handle the use of improperly initialized variables (CWE-665).
Phase: Architecture and Design
Identify all variables and data stores that receive information from external sources, and apply input validation to make sure that they are only initialized to expected values.
Phase: Implementation
Explicitly initialize all variables and other data stores, either during declaration or just before the first usage. | 6,368 |
openssl | efbe126e3ebb9123ac9d058aa2bb044261342aaa | WORK_STATE tls_prepare_client_certificate(SSL *s, WORK_STATE wst)
{
X509 *x509 = NULL;
EVP_PKEY *pkey = NULL;
int i;
if (wst == WORK_MORE_A) {
/* Let cert callback update client certificates if required */
if (s->cert->cert_cb) {
i = s->cert->cert_cb(s, s->cert->cert_cb_arg);
if (i < 0) {
s->rwstate = SSL_X509_LOOKUP;
return WORK_MORE_A;
}
if (i == 0) {
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
ossl_statem_set_error(s);
return 0;
}
s->rwstate = SSL_NOTHING;
}
if (ssl3_check_client_certificate(s))
return WORK_FINISHED_CONTINUE;
/* Fall through to WORK_MORE_B */
wst = WORK_MORE_B;
}
/* We need to get a client cert */
if (wst == WORK_MORE_B) {
/*
* If we get an error, we need to ssl->rwstate=SSL_X509_LOOKUP;
* return(-1); We then get retied later
*/
i = ssl_do_client_cert_cb(s, &x509, &pkey);
if (i < 0) {
s->rwstate = SSL_X509_LOOKUP;
return WORK_MORE_B;
}
s->rwstate = SSL_NOTHING;
if ((i == 1) && (pkey != NULL) && (x509 != NULL)) {
if (!SSL_use_certificate(s, x509) || !SSL_use_PrivateKey(s, pkey))
i = 0;
} else if (i == 1) {
i = 0;
SSLerr(SSL_F_TLS_PREPARE_CLIENT_CERTIFICATE,
SSL_R_BAD_DATA_RETURNED_BY_CALLBACK);
}
X509_free(x509);
EVP_PKEY_free(pkey);
if (i && !ssl3_check_client_certificate(s))
i = 0;
if (i == 0) {
if (s->version == SSL3_VERSION) {
s->s3->tmp.cert_req = 0;
ssl3_send_alert(s, SSL3_AL_WARNING, SSL_AD_NO_CERTIFICATE);
return WORK_FINISHED_CONTINUE;
} else {
s->s3->tmp.cert_req = 2;
if (!ssl3_digest_cached_records(s, 0)) {
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
ossl_statem_set_error(s);
return 0;
}
}
}
return WORK_FINISHED_CONTINUE;
}
/* Shouldn't ever get here */
return WORK_ERROR;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 17,121 |
linux | 6f24f892871acc47b40dd594c63606a17c714f77 | int hfsplus_rename_cat(u32 cnid,
struct inode *src_dir, struct qstr *src_name,
struct inode *dst_dir, struct qstr *dst_name)
{
struct super_block *sb = src_dir->i_sb;
struct hfs_find_data src_fd, dst_fd;
hfsplus_cat_entry entry;
int entry_size, type;
int err;
dprint(DBG_CAT_MOD, "rename_cat: %u - %lu,%s - %lu,%s\n",
cnid, src_dir->i_ino, src_name->name,
dst_dir->i_ino, dst_name->name);
err = hfs_find_init(HFSPLUS_SB(sb)->cat_tree, &src_fd);
if (err)
return err;
dst_fd = src_fd;
/* find the old dir entry and read the data */
hfsplus_cat_build_key(sb, src_fd.search_key, src_dir->i_ino, src_name);
err = hfs_brec_find(&src_fd);
if (err)
goto out;
hfs_bnode_read(src_fd.bnode, &entry, src_fd.entryoffset,
src_fd.entrylength);
/* create new dir entry with the data from the old entry */
hfsplus_cat_build_key(sb, dst_fd.search_key, dst_dir->i_ino, dst_name);
err = hfs_brec_find(&dst_fd);
if (err != -ENOENT) {
if (!err)
err = -EEXIST;
goto out;
}
err = hfs_brec_insert(&dst_fd, &entry, src_fd.entrylength);
if (err)
goto out;
dst_dir->i_size++;
dst_dir->i_mtime = dst_dir->i_ctime = CURRENT_TIME_SEC;
/* finally remove the old entry */
hfsplus_cat_build_key(sb, src_fd.search_key, src_dir->i_ino, src_name);
err = hfs_brec_find(&src_fd);
if (err)
goto out;
err = hfs_brec_remove(&src_fd);
if (err)
goto out;
src_dir->i_size--;
src_dir->i_mtime = src_dir->i_ctime = CURRENT_TIME_SEC;
/* remove old thread entry */
hfsplus_cat_build_key(sb, src_fd.search_key, cnid, NULL);
err = hfs_brec_find(&src_fd);
if (err)
goto out;
type = hfs_bnode_read_u16(src_fd.bnode, src_fd.entryoffset);
err = hfs_brec_remove(&src_fd);
if (err)
goto out;
/* create new thread entry */
hfsplus_cat_build_key(sb, dst_fd.search_key, cnid, NULL);
entry_size = hfsplus_fill_cat_thread(sb, &entry, type,
dst_dir->i_ino, dst_name);
err = hfs_brec_find(&dst_fd);
if (err != -ENOENT) {
if (!err)
err = -EEXIST;
goto out;
}
err = hfs_brec_insert(&dst_fd, &entry, entry_size);
hfsplus_mark_inode_dirty(dst_dir, HFSPLUS_I_CAT_DIRTY);
hfsplus_mark_inode_dirty(src_dir, HFSPLUS_I_CAT_DIRTY);
out:
hfs_bnode_put(dst_fd.bnode);
hfs_find_exit(&src_fd);
return err;
}
| 1 | CVE-2012-2319 | CWE-264 | Permissions, Privileges, and Access Controls | Weaknesses in this category are related to the management of permissions, privileges, and other security features that are used to perform access control. | Not Found in CWE Page | 2,919 |
php | 1e9b175204e3286d64dfd6c9f09151c31b5e099a | PHP_METHOD(Phar, __construct)
{
#if !HAVE_SPL
zend_throw_exception_ex(zend_ce_exception, 0, "Cannot instantiate Phar object without SPL extension");
#else
char *fname, *alias = NULL, *error, *arch = NULL, *entry = NULL, *save_fname;
size_t fname_len, alias_len = 0;
int arch_len, entry_len, is_data;
zend_long flags = SPL_FILE_DIR_SKIPDOTS|SPL_FILE_DIR_UNIXPATHS;
zend_long format = 0;
phar_archive_object *phar_obj;
phar_archive_data *phar_data;
zval *zobj = getThis(), arg1, arg2;
phar_obj = (phar_archive_object*)((char*)Z_OBJ_P(zobj) - Z_OBJ_P(zobj)->handlers->offset);
is_data = instanceof_function(Z_OBJCE_P(zobj), phar_ce_data);
if (is_data) {
if (zend_parse_parameters_throw(ZEND_NUM_ARGS(), "s|ls!l", &fname, &fname_len, &flags, &alias, &alias_len, &format) == FAILURE) {
return;
}
} else {
if (zend_parse_parameters_throw(ZEND_NUM_ARGS(), "s|ls!", &fname, &fname_len, &flags, &alias, &alias_len) == FAILURE) {
return;
}
}
if (phar_obj->archive) {
zend_throw_exception_ex(spl_ce_BadMethodCallException, 0, "Cannot call constructor twice");
return;
}
save_fname = fname;
if (SUCCESS == phar_split_fname(fname, (int)fname_len, &arch, &arch_len, &entry, &entry_len, !is_data, 2)) {
/* use arch (the basename for the archive) for fname instead of fname */
/* this allows support for RecursiveDirectoryIterator of subdirectories */
#ifdef PHP_WIN32
phar_unixify_path_separators(arch, arch_len);
#endif
fname = arch;
fname_len = arch_len;
#ifdef PHP_WIN32
} else {
arch = estrndup(fname, fname_len);
arch_len = fname_len;
fname = arch;
phar_unixify_path_separators(arch, arch_len);
#endif
}
if (phar_open_or_create_filename(fname, fname_len, alias, alias_len, is_data, REPORT_ERRORS, &phar_data, &error) == FAILURE) {
if (fname == arch && fname != save_fname) {
efree(arch);
fname = save_fname;
}
if (entry) {
efree(entry);
}
if (error) {
zend_throw_exception_ex(spl_ce_UnexpectedValueException, 0,
"%s", error);
efree(error);
} else {
zend_throw_exception_ex(spl_ce_UnexpectedValueException, 0,
"Phar creation or opening failed");
}
return;
}
if (is_data && phar_data->is_tar && phar_data->is_brandnew && format == PHAR_FORMAT_ZIP) {
phar_data->is_zip = 1;
phar_data->is_tar = 0;
}
if (fname == arch) {
efree(arch);
fname = save_fname;
}
if ((is_data && !phar_data->is_data) || (!is_data && phar_data->is_data)) {
if (is_data) {
zend_throw_exception_ex(spl_ce_UnexpectedValueException, 0,
"PharData class can only be used for non-executable tar and zip archives");
} else {
zend_throw_exception_ex(spl_ce_UnexpectedValueException, 0,
"Phar class can only be used for executable tar and zip archives");
}
efree(entry);
return;
}
is_data = phar_data->is_data;
if (!phar_data->is_persistent) {
++(phar_data->refcount);
}
phar_obj->archive = phar_data;
phar_obj->spl.oth_handler = &phar_spl_foreign_handler;
if (entry) {
fname_len = spprintf(&fname, 0, "phar://%s%s", phar_data->fname, entry);
efree(entry);
} else {
fname_len = spprintf(&fname, 0, "phar://%s", phar_data->fname);
}
ZVAL_STRINGL(&arg1, fname, fname_len);
ZVAL_LONG(&arg2, flags);
zend_call_method_with_2_params(zobj, Z_OBJCE_P(zobj),
&spl_ce_RecursiveDirectoryIterator->constructor, "__construct", NULL, &arg1, &arg2);
zval_ptr_dtor(&arg1);
if (!phar_data->is_persistent) {
phar_obj->archive->is_data = is_data;
} else if (!EG(exception)) {
/* register this guy so we can modify if necessary */
zend_hash_str_add_ptr(&PHAR_G(phar_persist_map), (const char *) phar_obj->archive, sizeof(phar_obj->archive), phar_obj);
}
phar_obj->spl.info_class = phar_ce_entry;
efree(fname);
#endif /* HAVE_SPL */
}
| 1 | CVE-2016-4072 | CWE-20 | Improper Input Validation | The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly. |
Phase: Architecture and Design
Strategy: Attack Surface Reduction
Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111]
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173).
Phases: Architecture and Design; Implementation
Strategy: Attack Surface Reduction
Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls.
Phase: Implementation
Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
Effectiveness: High
Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings.
Phase: Implementation
When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined.
Phase: Implementation
Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow.
Phase: Implementation
Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained.
Phase: Implementation
Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content.
Phase: Implementation
When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so. | 2,865 |
FFmpeg | 26d3c81bc5ef2f8c3f09d45eaeacfb4b1139a777 | static int dwa_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
int uncompressed_size, EXRThreadData *td)
{
int64_t version, lo_usize, lo_size;
int64_t ac_size, dc_size, rle_usize, rle_csize, rle_raw_size;
int64_t ac_count, dc_count, ac_compression;
const int dc_w = td->xsize >> 3;
const int dc_h = td->ysize >> 3;
GetByteContext gb, agb;
int skip, ret;
if (compressed_size <= 88)
return AVERROR_INVALIDDATA;
version = AV_RL64(src + 0);
if (version != 2)
return AVERROR_INVALIDDATA;
lo_usize = AV_RL64(src + 8);
lo_size = AV_RL64(src + 16);
ac_size = AV_RL64(src + 24);
dc_size = AV_RL64(src + 32);
rle_csize = AV_RL64(src + 40);
rle_usize = AV_RL64(src + 48);
rle_raw_size = AV_RL64(src + 56);
ac_count = AV_RL64(src + 64);
dc_count = AV_RL64(src + 72);
ac_compression = AV_RL64(src + 80);
if (compressed_size < 88LL + lo_size + ac_size + dc_size + rle_csize)
return AVERROR_INVALIDDATA;
bytestream2_init(&gb, src + 88, compressed_size - 88);
skip = bytestream2_get_le16(&gb);
if (skip < 2)
return AVERROR_INVALIDDATA;
bytestream2_skip(&gb, skip - 2);
if (lo_size > 0) {
if (lo_usize > uncompressed_size)
return AVERROR_INVALIDDATA;
bytestream2_skip(&gb, lo_size);
}
if (ac_size > 0) {
unsigned long dest_len = ac_count * 2LL;
GetByteContext agb = gb;
if (ac_count > 3LL * td->xsize * s->scan_lines_per_block)
return AVERROR_INVALIDDATA;
av_fast_padded_malloc(&td->ac_data, &td->ac_size, dest_len);
if (!td->ac_data)
return AVERROR(ENOMEM);
switch (ac_compression) {
case 0:
ret = huf_uncompress(s, td, &agb, (int16_t *)td->ac_data, ac_count);
if (ret < 0)
return ret;
break;
case 1:
if (uncompress(td->ac_data, &dest_len, agb.buffer, ac_size) != Z_OK ||
dest_len != ac_count * 2LL)
return AVERROR_INVALIDDATA;
break;
default:
return AVERROR_INVALIDDATA;
}
bytestream2_skip(&gb, ac_size);
}
if (dc_size > 0) {
unsigned long dest_len = dc_count * 2LL;
GetByteContext agb = gb;
if (dc_count > (6LL * td->xsize * td->ysize + 63) / 64)
return AVERROR_INVALIDDATA;
av_fast_padded_malloc(&td->dc_data, &td->dc_size, FFALIGN(dest_len, 64) * 2);
if (!td->dc_data)
return AVERROR(ENOMEM);
if (uncompress(td->dc_data + FFALIGN(dest_len, 64), &dest_len, agb.buffer, dc_size) != Z_OK ||
(dest_len != dc_count * 2LL))
return AVERROR_INVALIDDATA;
s->dsp.predictor(td->dc_data + FFALIGN(dest_len, 64), dest_len);
s->dsp.reorder_pixels(td->dc_data, td->dc_data + FFALIGN(dest_len, 64), dest_len);
bytestream2_skip(&gb, dc_size);
}
if (rle_raw_size > 0 && rle_csize > 0 && rle_usize > 0) {
unsigned long dest_len = rle_usize;
av_fast_padded_malloc(&td->rle_data, &td->rle_size, rle_usize);
if (!td->rle_data)
return AVERROR(ENOMEM);
av_fast_padded_malloc(&td->rle_raw_data, &td->rle_raw_size, rle_raw_size);
if (!td->rle_raw_data)
return AVERROR(ENOMEM);
if (uncompress(td->rle_data, &dest_len, gb.buffer, rle_csize) != Z_OK ||
(dest_len != rle_usize))
return AVERROR_INVALIDDATA;
ret = rle(td->rle_raw_data, td->rle_data, rle_usize, rle_raw_size);
if (ret < 0)
return ret;
bytestream2_skip(&gb, rle_csize);
}
bytestream2_init(&agb, td->ac_data, ac_count * 2);
for (int y = 0; y < td->ysize; y += 8) {
for (int x = 0; x < td->xsize; x += 8) {
memset(td->block, 0, sizeof(td->block));
for (int j = 0; j < 3; j++) {
float *block = td->block[j];
const int idx = (x >> 3) + (y >> 3) * dc_w + dc_w * dc_h * j;
uint16_t *dc = (uint16_t *)td->dc_data;
union av_intfloat32 dc_val;
dc_val.i = half2float(dc[idx], s->mantissatable,
s->exponenttable, s->offsettable);
block[0] = dc_val.f;
ac_uncompress(s, &agb, block);
dct_inverse(block);
}
{
const float scale = s->pixel_type == EXR_FLOAT ? 2.f : 1.f;
const int o = s->nb_channels == 4;
float *bo = ((float *)td->uncompressed_data) +
y * td->xsize * s->nb_channels + td->xsize * (o + 0) + x;
float *go = ((float *)td->uncompressed_data) +
y * td->xsize * s->nb_channels + td->xsize * (o + 1) + x;
float *ro = ((float *)td->uncompressed_data) +
y * td->xsize * s->nb_channels + td->xsize * (o + 2) + x;
float *yb = td->block[0];
float *ub = td->block[1];
float *vb = td->block[2];
for (int yy = 0; yy < 8; yy++) {
for (int xx = 0; xx < 8; xx++) {
const int idx = xx + yy * 8;
convert(yb[idx], ub[idx], vb[idx], &bo[xx], &go[xx], &ro[xx]);
bo[xx] = to_linear(bo[xx], scale);
go[xx] = to_linear(go[xx], scale);
ro[xx] = to_linear(ro[xx], scale);
}
bo += td->xsize * s->nb_channels;
go += td->xsize * s->nb_channels;
ro += td->xsize * s->nb_channels;
}
}
}
}
if (s->nb_channels < 4)
return 0;
for (int y = 0; y < td->ysize && td->rle_raw_data; y++) {
uint32_t *ao = ((uint32_t *)td->uncompressed_data) + y * td->xsize * s->nb_channels;
uint8_t *ai0 = td->rle_raw_data + y * td->xsize;
uint8_t *ai1 = td->rle_raw_data + y * td->xsize + rle_raw_size / 2;
for (int x = 0; x < td->xsize; x++) {
uint16_t ha = ai0[x] | (ai1[x] << 8);
ao[x] = half2float(ha, s->mantissatable, s->exponenttable, s->offsettable);
}
}
return 0;
} | 1 | CVE-2021-33815 | CWE-20 | Improper Input Validation | The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly. |
Phase: Architecture and Design
Strategy: Attack Surface Reduction
Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111]
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173).
Phases: Architecture and Design; Implementation
Strategy: Attack Surface Reduction
Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls.
Phase: Implementation
Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
Effectiveness: High
Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings.
Phase: Implementation
When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined.
Phase: Implementation
Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow.
Phase: Implementation
Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained.
Phase: Implementation
Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content.
Phase: Implementation
When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so. | 6,631 |
empathy | 739aca418457de752be13721218aaebc74bd9d36 | theme_adium_remove_acked_message_unread_mark_foreach (gpointer data,
gpointer user_data)
{
EmpathyThemeAdium *self = user_data;
guint32 id = GPOINTER_TO_UINT (data);
theme_adium_remove_mark_from_message (self, id);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 17,852 |
tensorflow | 26eb323554ffccd173e8a79a8c05c15b685ae4d1 | void Compute(OpKernelContext* context) override {
const Tensor& image = context->input(0);
OP_REQUIRES(context, image.dims() == 3,
errors::InvalidArgument("image must be 3-dimensional",
image.shape().DebugString()));
OP_REQUIRES(context, image.NumElements() > 0,
errors::Internal("Invalid image provided."));
OP_REQUIRES(
context,
FastBoundsCheck(image.NumElements(), std::numeric_limits<int32>::max()),
errors::InvalidArgument("image cannot have >= int32 max elements"));
const int32 height = static_cast<int32>(image.dim_size(0));
const int32 width = static_cast<int32>(image.dim_size(1));
const int32 channels = static_cast<int32>(image.dim_size(2));
// In some cases, we pass width*channels*2 to png.
const int32 max_row_width = std::numeric_limits<int32>::max() / 2;
OP_REQUIRES(context, FastBoundsCheck(width * channels, max_row_width),
errors::InvalidArgument("image too wide to encode"));
OP_REQUIRES(context, channels >= 1 && channels <= 4,
errors::InvalidArgument(
"image must have 1, 2, 3, or 4 channels, got ", channels));
// Encode image to png string
Tensor* output = nullptr;
OP_REQUIRES_OK(context,
context->allocate_output(0, TensorShape({}), &output));
if (desired_channel_bits_ == 8) {
OP_REQUIRES(context,
png::WriteImageToBuffer(
image.flat<uint8>().data(), width, height,
width * channels, channels, desired_channel_bits_,
compression_, &output->scalar<tstring>()(), nullptr),
errors::Internal("PNG encoding failed"));
} else {
OP_REQUIRES(context,
png::WriteImageToBuffer(
image.flat<uint16>().data(), width, height,
width * channels * 2, channels, desired_channel_bits_,
compression_, &output->scalar<tstring>()(), nullptr),
errors::Internal("PNG encoding failed"));
}
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 22,893 |
linux | 7ada876a8703f23befbb20a7465a702ee39b1704 | void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
struct futex_hash_bucket *hb2, union futex_key *key2)
{
/*
* If key1 and key2 hash to the same bucket, no need to
* requeue.
*/
if (likely(&hb1->chain != &hb2->chain)) {
plist_del(&q->list, &hb1->chain);
plist_add(&q->list, &hb2->chain);
q->lock_ptr = &hb2->lock;
#ifdef CONFIG_DEBUG_PI_LIST
q->list.plist.spinlock = &hb2->lock;
#endif
}
get_futex_key_refs(key2);
q->key = *key2;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 18,049 |
qemu | 6a83f8b5bec6f59e56cc49bd49e4c3f8f805d56f | static int qcow2_save_vmstate(BlockDriverState *bs, QEMUIOVector *qiov,
int64_t pos)
{
BDRVQcowState *s = bs->opaque;
int64_t total_sectors = bs->total_sectors;
int growable = bs->growable;
bool zero_beyond_eof = bs->zero_beyond_eof;
int ret;
BLKDBG_EVENT(bs->file, BLKDBG_VMSTATE_SAVE);
bs->growable = 1;
bs->zero_beyond_eof = false;
ret = bdrv_pwritev(bs, qcow2_vm_state_offset(s) + pos, qiov);
bs->growable = growable;
bs->zero_beyond_eof = zero_beyond_eof;
/* bdrv_co_do_writev will have increased the total_sectors value to include
* the VM state - the VM state is however not an actual part of the block
* device, therefore, we need to restore the old value. */
bs->total_sectors = total_sectors;
return ret;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 20,901 |
ImageMagick6 | 5bf7ff59c8ada957d6a681a0a2cc29f3813ad4bc | static MagickBooleanType GetXMPProperty(const Image *image,const char *property)
{
char
*xmp_profile;
const char
*content;
const StringInfo
*profile;
ExceptionInfo
*exception;
MagickBooleanType
status;
register const char
*p;
XMLTreeInfo
*child,
*description,
*node,
*rdf,
*xmp;
profile=GetImageProfile(image,"xmp");
if (profile == (StringInfo *) NULL)
return(MagickFalse);
if (GetStringInfoLength(profile) < 17)
return(MagickFalse);
if ((property == (const char *) NULL) || (*property == '\0'))
return(MagickFalse);
xmp_profile=StringInfoToString(profile);
if (xmp_profile == (char *) NULL)
return(MagickFalse);
for (p=xmp_profile; *p != '\0'; p++)
if ((*p == '<') && (*(p+1) == 'x'))
break;
exception=AcquireExceptionInfo();
xmp=NewXMLTree((char *) p,exception);
xmp_profile=DestroyString(xmp_profile);
exception=DestroyExceptionInfo(exception);
if (xmp == (XMLTreeInfo *) NULL)
return(MagickFalse);
status=MagickFalse;
rdf=GetXMLTreeChild(xmp,"rdf:RDF");
if (rdf != (XMLTreeInfo *) NULL)
{
if (image->properties == (void *) NULL)
((Image *) image)->properties=NewSplayTree(CompareSplayTreeString,
RelinquishMagickMemory,RelinquishMagickMemory);
description=GetXMLTreeChild(rdf,"rdf:Description");
while (description != (XMLTreeInfo *) NULL)
{
node=GetXMLTreeChild(description,(const char *) NULL);
while (node != (XMLTreeInfo *) NULL)
{
char
*xmp_namespace;
child=GetXMLTreeChild(node,(const char *) NULL);
content=GetXMLTreeContent(node);
if ((child == (XMLTreeInfo *) NULL) &&
(SkipXMPValue(content) == MagickFalse))
{
xmp_namespace=ConstantString(GetXMLTreeTag(node));
(void) SubstituteString(&xmp_namespace,"exif:","xmp:");
(void) AddValueToSplayTree((SplayTreeInfo *) image->properties,
xmp_namespace,ConstantString(content));
}
while (child != (XMLTreeInfo *) NULL)
{
content=GetXMLTreeContent(child);
if (SkipXMPValue(content) == MagickFalse)
{
xmp_namespace=ConstantString(GetXMLTreeTag(node));
(void) SubstituteString(&xmp_namespace,"exif:","xmp:");
(void) AddValueToSplayTree((SplayTreeInfo *) image->properties,
xmp_namespace,ConstantString(content));
}
child=GetXMLTreeSibling(child);
}
node=GetXMLTreeSibling(node);
}
description=GetNextXMLTreeTag(description);
}
}
xmp=DestroyXMLTree(xmp);
return(status);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 19,077 |
Android | 24d7c408c52143bce7b49de82f3913fd8d1219cf | void WT_NoiseGenerator (S_WT_VOICE *pWTVoice, S_WT_INT_FRAME *pWTIntFrame)
{
EAS_PCM *pOutputBuffer;
EAS_I32 phaseInc;
EAS_I32 tmp0;
EAS_I32 tmp1;
EAS_I32 nInterpolatedSample;
EAS_I32 numSamples;
/* initialize some local variables */
numSamples = pWTIntFrame->numSamples;
if (numSamples <= 0) {
ALOGE("b/26366256");
return;
}
pOutputBuffer = pWTIntFrame->pAudioBuffer;
phaseInc = pWTIntFrame->frame.phaseIncrement;
/* get last two samples generated */
/*lint -e{704} <avoid divide for performance>*/
tmp0 = (EAS_I32) (pWTVoice->phaseAccum) >> 18;
/*lint -e{704} <avoid divide for performance>*/
tmp1 = (EAS_I32) (pWTVoice->loopEnd) >> 18;
/* generate a buffer of noise */
while (numSamples--) {
nInterpolatedSample = MULT_AUDIO_COEF( tmp0, (PHASE_ONE - pWTVoice->phaseFrac));
nInterpolatedSample += MULT_AUDIO_COEF( tmp1, pWTVoice->phaseFrac);
*pOutputBuffer++ = (EAS_PCM) nInterpolatedSample;
/* update PRNG */
pWTVoice->phaseFrac += (EAS_U32) phaseInc;
if (GET_PHASE_INT_PART(pWTVoice->phaseFrac)) {
tmp0 = tmp1;
pWTVoice->phaseAccum = pWTVoice->loopEnd;
pWTVoice->loopEnd = (5 * pWTVoice->loopEnd + 1);
tmp1 = (EAS_I32) (pWTVoice->loopEnd) >> 18;
pWTVoice->phaseFrac = GET_PHASE_FRAC_PART(pWTVoice->phaseFrac);
}
}
}
| 1 | CVE-2016-0838 | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 1,345 |
rizin | 38d8006cd609ac75de82b705891d3508d2c218d5 | static pyc_object *get_complex_object(RzBinPycObj *pyc, RzBuffer *buffer) {
pyc_object *ret = NULL;
bool error = false;
ut32 size = 0;
ut32 n1 = 0;
ut32 n2 = 0;
ret = RZ_NEW0(pyc_object);
if (!ret) {
return NULL;
}
if ((pyc->magic_int & 0xffff) <= 62061) {
n1 = get_ut8(buffer, &error);
} else {
n1 = get_st32(buffer, &error);
}
if (error) {
free(ret);
return NULL;
}
ut8 *s1 = malloc(n1 + 1);
if (!s1) {
return NULL;
}
/* object contain string representation of the number */
size = rz_buf_read(buffer, s1, n1);
if (size != n1) {
RZ_FREE(s1);
RZ_FREE(ret);
return NULL;
}
s1[n1] = '\0';
if ((pyc->magic_int & 0xffff) <= 62061) {
n2 = get_ut8(buffer, &error);
} else
n2 = get_st32(buffer, &error);
if (error) {
return NULL;
}
ut8 *s2 = malloc(n2 + 1);
if (!s2) {
return NULL;
}
/* object contain string representation of the number */
size = rz_buf_read(buffer, s2, n2);
if (size != n2) {
RZ_FREE(s1);
RZ_FREE(s2);
RZ_FREE(ret);
return NULL;
}
s2[n2] = '\0';
ret->type = TYPE_COMPLEX;
ret->data = rz_str_newf("%s+%sj", s1, s2);
RZ_FREE(s1);
RZ_FREE(s2);
if (!ret->data) {
RZ_FREE(ret);
return NULL;
}
return ret;
} | 1 | CVE-2022-36040 | CWE-787 | Out-of-bounds Write | The product writes data past the end, or before the beginning, of the intended buffer. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333].
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 9,829 |
radare2 | e5c14c167b0dcf0a53d76bd50bacbbcc0dfc1ae7 | ut32 armass_assemble(const char *str, ut64 off, int thumb) {
int i, j;
char buf[128];
ArmOpcode aop = {.off = off};
for (i = j = 0; i < sizeof (buf) - 1 && str[j]; i++, j++) {
if (str[j] == '#') {
i--; continue;
}
buf[i] = tolower ((const ut8)str[j]);
}
buf[i] = 0;
arm_opcode_parse (&aop, buf);
aop.off = off;
if (thumb < 0 || thumb > 1) {
return -1;
}
if (!assemble[thumb] (&aop, off, buf)) {
//eprintf ("armass: Unknown opcode (%s)\n", buf);
return -1;
}
return aop.o;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 14,663 |
net | c88507fbad8055297c1d1e21e599f46960cbee39 | static int inet6_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr* nlh)
{
struct net *net = sock_net(in_skb->sk);
struct nlattr *tb[RTA_MAX+1];
struct rt6_info *rt;
struct sk_buff *skb;
struct rtmsg *rtm;
struct flowi6 fl6;
int err, iif = 0, oif = 0;
err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX, rtm_ipv6_policy);
if (err < 0)
goto errout;
err = -EINVAL;
memset(&fl6, 0, sizeof(fl6));
if (tb[RTA_SRC]) {
if (nla_len(tb[RTA_SRC]) < sizeof(struct in6_addr))
goto errout;
fl6.saddr = *(struct in6_addr *)nla_data(tb[RTA_SRC]);
}
if (tb[RTA_DST]) {
if (nla_len(tb[RTA_DST]) < sizeof(struct in6_addr))
goto errout;
fl6.daddr = *(struct in6_addr *)nla_data(tb[RTA_DST]);
}
if (tb[RTA_IIF])
iif = nla_get_u32(tb[RTA_IIF]);
if (tb[RTA_OIF])
oif = nla_get_u32(tb[RTA_OIF]);
if (iif) {
struct net_device *dev;
int flags = 0;
dev = __dev_get_by_index(net, iif);
if (!dev) {
err = -ENODEV;
goto errout;
}
fl6.flowi6_iif = iif;
if (!ipv6_addr_any(&fl6.saddr))
flags |= RT6_LOOKUP_F_HAS_SADDR;
rt = (struct rt6_info *)ip6_route_input_lookup(net, dev, &fl6,
flags);
} else {
fl6.flowi6_oif = oif;
rt = (struct rt6_info *)ip6_route_output(net, NULL, &fl6);
}
skb = alloc_skb(NLMSG_GOODSIZE, GFP_KERNEL);
if (!skb) {
ip6_rt_put(rt);
err = -ENOBUFS;
goto errout;
}
/* Reserve room for dummy headers, this skb can pass
through good chunk of routing engine.
*/
skb_reset_mac_header(skb);
skb_reserve(skb, MAX_HEADER + sizeof(struct ipv6hdr));
skb_dst_set(skb, &rt->dst);
err = rt6_fill_node(net, skb, rt, &fl6.daddr, &fl6.saddr, iif,
RTM_NEWROUTE, NETLINK_CB(in_skb).portid,
nlh->nlmsg_seq, 0, 0, 0);
if (err < 0) {
kfree_skb(skb);
goto errout;
}
err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
errout:
return err;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 20,119 |
linux | ca4463bf8438b403596edd0ec961ca0d4fbe0220 | static int vt_disallocate(unsigned int vc_num)
{
struct vc_data *vc = NULL;
int ret = 0;
console_lock();
if (vt_busy(vc_num))
ret = -EBUSY;
else if (vc_num)
vc = vc_deallocate(vc_num);
console_unlock();
if (vc && vc_num >= MIN_NR_CONSOLES) {
tty_port_destroy(&vc->port);
kfree(vc);
}
return ret;
} | 1 | CVE-2020-36557 | CWE-416 | Use After Free | The product reuses or references memory after it has been freed. At some point afterward, the memory may be allocated again and saved in another pointer, while the original pointer references a location somewhere within the new allocation. Any operations using the original pointer are no longer valid because the memory "belongs" to the code that operates on the new pointer. |
Phase: Architecture and Design
Strategy: Language Selection
Choose a language that provides automatic memory management.
Phase: Implementation
Strategy: Attack Surface Reduction
When freeing pointers, be sure to set them to NULL once they are freed. However, the utilization of multiple or complex data structures may lower the usefulness of this strategy.
Effectiveness: Defense in Depth
Note: If a bug causes an attempted access of this pointer, then a NULL dereference could still lead to a crash or other unexpected behavior, but it will reduce or eliminate the risk of code execution. | 499 |
linux | 95389b08d93d5c06ec63ab49bd732b0069b7c35e | static void assoc_array_destroy_subtree(struct assoc_array_ptr *root,
const struct assoc_array_ops *ops)
{
struct assoc_array_shortcut *shortcut;
struct assoc_array_node *node;
struct assoc_array_ptr *cursor, *parent = NULL;
int slot = -1;
pr_devel("-->%s()\n", __func__);
cursor = root;
if (!cursor) {
pr_devel("empty\n");
return;
}
move_to_meta:
if (assoc_array_ptr_is_shortcut(cursor)) {
/* Descend through a shortcut */
pr_devel("[%d] shortcut\n", slot);
BUG_ON(!assoc_array_ptr_is_shortcut(cursor));
shortcut = assoc_array_ptr_to_shortcut(cursor);
BUG_ON(shortcut->back_pointer != parent);
BUG_ON(slot != -1 && shortcut->parent_slot != slot);
parent = cursor;
cursor = shortcut->next_node;
slot = -1;
BUG_ON(!assoc_array_ptr_is_node(cursor));
}
pr_devel("[%d] node\n", slot);
node = assoc_array_ptr_to_node(cursor);
BUG_ON(node->back_pointer != parent);
BUG_ON(slot != -1 && node->parent_slot != slot);
slot = 0;
continue_node:
pr_devel("Node %p [back=%p]\n", node, node->back_pointer);
for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
struct assoc_array_ptr *ptr = node->slots[slot];
if (!ptr)
continue;
if (assoc_array_ptr_is_meta(ptr)) {
parent = cursor;
cursor = ptr;
goto move_to_meta;
}
if (ops) {
pr_devel("[%d] free leaf\n", slot);
ops->free_object(assoc_array_ptr_to_leaf(ptr));
}
}
parent = node->back_pointer;
slot = node->parent_slot;
pr_devel("free node\n");
kfree(node);
if (!parent)
return; /* Done */
/* Move back up to the parent (may need to free a shortcut on
* the way up) */
if (assoc_array_ptr_is_shortcut(parent)) {
shortcut = assoc_array_ptr_to_shortcut(parent);
BUG_ON(shortcut->next_node != cursor);
cursor = parent;
parent = shortcut->back_pointer;
slot = shortcut->parent_slot;
pr_devel("free shortcut\n");
kfree(shortcut);
if (!parent)
return;
BUG_ON(!assoc_array_ptr_is_node(parent));
}
/* Ascend to next slot in parent node */
pr_devel("ascend to %p[%d]\n", parent, slot);
cursor = parent;
node = assoc_array_ptr_to_node(cursor);
slot++;
goto continue_node;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 21,480 |
Chrome | 58feadc64d191d834b68b8218eea4ba12b052b96 | QuotaTask::QuotaTask(QuotaTaskObserver* observer)
: observer_(observer),
original_task_runner_(base::MessageLoopProxy::current()) {
}
| 1 | CVE-2012-2885 | CWE-399 | Resource Management Errors | Weaknesses in this category are related to improper management of system resources. | Not Found in CWE Page | 1,791 |
gnupg | 4bde12206c5bf199dc6e12a74af8da4558ba41bf | premerge_public_with_secret (KBNODE pubblock, KBNODE secblock)
{
KBNODE last, pub;
assert (pubblock->pkt->pkttype == PKT_PUBLIC_KEY);
assert (secblock->pkt->pkttype == PKT_SECRET_KEY);
for (pub = pubblock, last = NULL; pub; last = pub, pub = pub->next)
{
pub->flag &= ~3; /* Reset bits 0 and 1. */
if (pub->pkt->pkttype == PKT_PUBLIC_SUBKEY)
{
KBNODE sec;
PKT_public_key *pk = pub->pkt->pkt.public_key;
for (sec = secblock->next; sec; sec = sec->next)
{
if (sec->pkt->pkttype == PKT_SECRET_SUBKEY)
{
PKT_secret_key *sk = sec->pkt->pkt.secret_key;
if (!cmp_public_secret_key (pk, sk))
{
if (sk->protect.s2k.mode == 1001)
{
/* The secret parts are not available so
we can't use that key for signing etc.
Fix the pubkey usage */
pk->pubkey_usage &= ~(PUBKEY_USAGE_SIG
| PUBKEY_USAGE_AUTH);
}
/* Transfer flag bits 0 and 1 to the pubblock. */
pub->flag |= (sec->flag & 3);
break;
}
}
}
if (!sec)
{
KBNODE next, ll;
if (opt.verbose)
log_info (_("no secret subkey"
" for public subkey %s - ignoring\n"),
keystr_from_pk (pk));
/* We have to remove the subkey in this case. */
assert (last);
/* Find the next subkey. */
for (next = pub->next, ll = pub;
next && next->pkt->pkttype != PKT_PUBLIC_SUBKEY;
ll = next, next = next->next)
;
/* Make new link. */
last->next = next;
/* Release this public subkey with all sigs. */
ll->next = NULL;
release_kbnode (pub);
/* Let the loop continue. */
pub = last;
}
}
}
/* We need to copy the found bits (0 and 1) from the secret key to
the public key. This has already been done for the subkeys but
got lost on the primary key - fix it here. */
pubblock->flag |= (secblock->flag & 3);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 17,985 |
Chrome | 58936737b65052775b67b1409b87edbbbc09f72b | int BlobURLRequestJob::ComputeBytesToRead() const {
int64 current_item_remaining_bytes =
item_length_list_[current_item_index_] - current_item_offset_;
int64 remaining_bytes = std::min(current_item_remaining_bytes,
remaining_bytes_);
return static_cast<int>(std::min(
static_cast<int64>(read_buf_->BytesRemaining()),
remaining_bytes));
}
| 1 | CVE-2013-0891 | CWE-189 | Numeric Errors | Weaknesses in this category are related to improper calculation or conversion of numbers. | Not Found in CWE Page | 5,810 |
tcpdump | 5edf405d7ed9fc92f4f43e8a3d44baa4c6387562 | ieee802_11_print(netdissect_options *ndo,
const u_char *p, u_int length, u_int orig_caplen, int pad,
u_int fcslen)
{
uint16_t fc;
u_int caplen, hdrlen, meshdrlen;
struct lladdr_info src, dst;
int llc_hdrlen;
caplen = orig_caplen;
/* Remove FCS, if present */
if (length < fcslen) {
ND_PRINT((ndo, "%s", tstr));
return caplen;
}
length -= fcslen;
if (caplen > length) {
/* Amount of FCS in actual packet data, if any */
fcslen = caplen - length;
caplen -= fcslen;
ndo->ndo_snapend -= fcslen;
}
if (caplen < IEEE802_11_FC_LEN) {
ND_PRINT((ndo, "%s", tstr));
return orig_caplen;
}
fc = EXTRACT_LE_16BITS(p);
hdrlen = extract_header_length(ndo, fc);
if (hdrlen == 0) {
/* Unknown frame type or control frame subtype; quit. */
return (0);
}
if (pad)
hdrlen = roundup2(hdrlen, 4);
if (ndo->ndo_Hflag && FC_TYPE(fc) == T_DATA &&
DATA_FRAME_IS_QOS(FC_SUBTYPE(fc))) {
meshdrlen = extract_mesh_header_length(p+hdrlen);
hdrlen += meshdrlen;
} else
meshdrlen = 0;
if (caplen < hdrlen) {
ND_PRINT((ndo, "%s", tstr));
return hdrlen;
}
if (ndo->ndo_eflag)
ieee_802_11_hdr_print(ndo, fc, p, hdrlen, meshdrlen);
/*
* Go past the 802.11 header.
*/
length -= hdrlen;
caplen -= hdrlen;
p += hdrlen;
src.addr_string = etheraddr_string;
dst.addr_string = etheraddr_string;
switch (FC_TYPE(fc)) {
case T_MGMT:
get_mgmt_src_dst_mac(p - hdrlen, &src.addr, &dst.addr);
if (!mgmt_body_print(ndo, fc, src.addr, p, length)) {
ND_PRINT((ndo, "%s", tstr));
return hdrlen;
}
break;
case T_CTRL:
if (!ctrl_body_print(ndo, fc, p - hdrlen)) {
ND_PRINT((ndo, "%s", tstr));
return hdrlen;
}
break;
case T_DATA:
if (DATA_FRAME_IS_NULL(FC_SUBTYPE(fc)))
return hdrlen; /* no-data frame */
/* There may be a problem w/ AP not having this bit set */
if (FC_PROTECTED(fc)) {
ND_PRINT((ndo, "Data"));
if (!wep_print(ndo, p)) {
ND_PRINT((ndo, "%s", tstr));
return hdrlen;
}
} else {
get_data_src_dst_mac(fc, p - hdrlen, &src.addr, &dst.addr);
llc_hdrlen = llc_print(ndo, p, length, caplen, &src, &dst);
if (llc_hdrlen < 0) {
/*
* Some kinds of LLC packet we cannot
* handle intelligently
*/
if (!ndo->ndo_suppress_default_print)
ND_DEFAULTPRINT(p, caplen);
llc_hdrlen = -llc_hdrlen;
}
hdrlen += llc_hdrlen;
}
break;
default:
/* We shouldn't get here - we should already have quit */
break;
}
return hdrlen;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 16,963 |
libndp | 2af9a55b38b55abbf05fd116ec097d4029115839 | static void ndp_msg_addrto_adjust_all_nodes(struct in6_addr *addr)
{
struct in6_addr any = IN6ADDR_ANY_INIT;
if (memcmp(addr, &any, sizeof(any)))
return;
addr->s6_addr32[0] = htonl(0xFF020000);
addr->s6_addr32[1] = 0;
addr->s6_addr32[2] = 0;
addr->s6_addr32[3] = htonl(0x1);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 18,206 |
Chrome | f7038db6ef172459f14b1b67a5155b8dd210be0f | inline J_DITHER_MODE ditherMode() { return JDITHER_NONE; }
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 10,061 |
libtiff | 6a984bf7905c6621281588431f384e79d11a2e33 | fpAcc(TIFF* tif, uint8* cp0, tmsize_t cc)
{
tmsize_t stride = PredictorState(tif)->stride;
uint32 bps = tif->tif_dir.td_bitspersample / 8;
tmsize_t wc = cc / bps;
tmsize_t count = cc;
uint8 *cp = (uint8 *) cp0;
uint8 *tmp = (uint8 *)_TIFFmalloc(cc);
if(cc%(bps*stride)!=0)
{
TIFFErrorExt(tif->tif_clientdata, "fpAcc",
"%s", "cc%(bps*stride))!=0");
return 0;
}
if (!tmp)
return 0;
while (count > stride) {
REPEAT4(stride, cp[stride] =
(unsigned char) ((cp[stride] + cp[0]) & 0xff); cp++)
count -= stride;
}
_TIFFmemcpy(tmp, cp0, cc);
cp = (uint8 *) cp0;
for (count = 0; count < wc; count++) {
uint32 byte;
for (byte = 0; byte < bps; byte++) {
#if WORDS_BIGENDIAN
cp[bps * count + byte] = tmp[byte * wc + count];
#else
cp[bps * count + byte] =
tmp[(bps - byte - 1) * wc + count];
#endif
}
}
_TIFFfree(tmp);
return 1;
}
| 1 | CVE-2016-9535 | CWE-119 | Improper Restriction of Operations within the Bounds of a Memory Buffer | The product performs operations on a memory buffer, but it reads from or writes to a memory location outside the buffer's intended boundary. This may result in read or write operations on unexpected memory locations that could be linked to other variables, data structures, or internal program data. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333]
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 2,423 |
ImageMagick | 241988ca28139ad970c1d9717c419f41e360ddb0 | ModuleExport void UnregisterYCBCRImage(void)
{
(void) UnregisterMagickInfo("YCbCr");
(void) UnregisterMagickInfo("YCbCrA");
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 21,533 |
linux | 1e3921471354244f70fe268586ff94a97a6dd4df | static int __init hugetlb_init(void)
{
int i;
if (!hugepages_supported())
return 0;
if (!size_to_hstate(default_hstate_size)) {
if (default_hstate_size != 0) {
pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
default_hstate_size, HPAGE_SIZE);
}
default_hstate_size = HPAGE_SIZE;
if (!size_to_hstate(default_hstate_size))
hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
}
default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
if (default_hstate_max_huge_pages) {
if (!default_hstate.max_huge_pages)
default_hstate.max_huge_pages = default_hstate_max_huge_pages;
}
hugetlb_init_hstates();
gather_bootmem_prealloc();
report_hugepages();
hugetlb_sysfs_init();
hugetlb_register_all_nodes();
hugetlb_cgroup_file_init();
#ifdef CONFIG_SMP
num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
#else
num_fault_mutexes = 1;
#endif
hugetlb_fault_mutex_table =
kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
BUG_ON(!hugetlb_fault_mutex_table);
for (i = 0; i < num_fault_mutexes; i++)
mutex_init(&hugetlb_fault_mutex_table[i]);
return 0;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 11,099 |
ImageMagick6 | ae71c12bbaa34d942e036824ff389c22b7dacade | static MagickBooleanType WriteDIBImage(const ImageInfo *image_info,Image *image)
{
DIBInfo
dib_info;
MagickBooleanType
status;
register const IndexPacket
*indexes;
register const PixelPacket
*p;
register ssize_t
i,
x;
register unsigned char
*q;
size_t
bytes_per_line;
ssize_t
y;
unsigned char
*dib_data,
*pixels;
/*
Open output image file.
*/
assert(image_info != (const ImageInfo *) NULL);
assert(image_info->signature == MagickCoreSignature);
assert(image != (Image *) NULL);
assert(image->signature == MagickCoreSignature);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
status=OpenBlob(image_info,image,WriteBinaryBlobMode,&image->exception);
if (status == MagickFalse)
return(status);
/*
Initialize DIB raster file header.
*/
(void) TransformImageColorspace(image,sRGBColorspace);
if (image->storage_class == DirectClass)
{
/*
Full color DIB raster.
*/
dib_info.number_colors=0;
dib_info.bits_per_pixel=(unsigned short) (image->matte ? 32 : 24);
}
else
{
/*
Colormapped DIB raster.
*/
dib_info.bits_per_pixel=8;
if (image_info->depth > 8)
dib_info.bits_per_pixel=16;
if (SetImageMonochrome(image,&image->exception) != MagickFalse)
dib_info.bits_per_pixel=1;
dib_info.number_colors=(unsigned int) (dib_info.bits_per_pixel == 16 ? 0 :
(1UL << dib_info.bits_per_pixel));
}
bytes_per_line=4*((image->columns*dib_info.bits_per_pixel+31)/32);
dib_info.size=40;
dib_info.width=(int) image->columns;
dib_info.height=(int) image->rows;
dib_info.planes=1;
dib_info.compression=(unsigned int) (dib_info.bits_per_pixel == 16 ?
BI_BITFIELDS : BI_RGB);
dib_info.image_size=(unsigned int) (bytes_per_line*image->rows);
dib_info.x_pixels=75*39;
dib_info.y_pixels=75*39;
switch (image->units)
{
case UndefinedResolution:
case PixelsPerInchResolution:
{
dib_info.x_pixels=(unsigned int) (100.0*image->x_resolution/2.54);
dib_info.y_pixels=(unsigned int) (100.0*image->y_resolution/2.54);
break;
}
case PixelsPerCentimeterResolution:
{
dib_info.x_pixels=(unsigned int) (100.0*image->x_resolution);
dib_info.y_pixels=(unsigned int) (100.0*image->y_resolution);
break;
}
}
dib_info.colors_important=dib_info.number_colors;
/*
Convert MIFF to DIB raster pixels.
*/
pixels=(unsigned char *) AcquireQuantumMemory(dib_info.image_size,
sizeof(*pixels));
if (pixels == (unsigned char *) NULL)
ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed");
(void) memset(pixels,0,dib_info.image_size);
switch (dib_info.bits_per_pixel)
{
case 1:
{
register unsigned char
bit,
byte;
/*
Convert PseudoClass image to a DIB monochrome image.
*/
for (y=0; y < (ssize_t) image->rows; y++)
{
p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception);
if (p == (const PixelPacket *) NULL)
break;
indexes=GetVirtualIndexQueue(image);
q=pixels+(image->rows-y-1)*bytes_per_line;
bit=0;
byte=0;
for (x=0; x < (ssize_t) image->columns; x++)
{
byte<<=1;
byte|=GetPixelIndex(indexes+x) != 0 ? 0x01 : 0x00;
bit++;
if (bit == 8)
{
*q++=byte;
bit=0;
byte=0;
}
p++;
}
if (bit != 0)
{
*q++=(unsigned char) (byte << (8-bit));
x++;
}
for (x=(ssize_t) (image->columns+7)/8; x < (ssize_t) bytes_per_line; x++)
*q++=0x00;
status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
break;
}
case 8:
{
/*
Convert PseudoClass packet to DIB pixel.
*/
for (y=0; y < (ssize_t) image->rows; y++)
{
p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception);
if (p == (const PixelPacket *) NULL)
break;
indexes=GetVirtualIndexQueue(image);
q=pixels+(image->rows-y-1)*bytes_per_line;
for (x=0; x < (ssize_t) image->columns; x++)
*q++=(unsigned char) GetPixelIndex(indexes+x);
for ( ; x < (ssize_t) bytes_per_line; x++)
*q++=0x00;
status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
break;
}
case 16:
{
unsigned short
word;
/*
Convert PseudoClass packet to DIB pixel.
*/
for (y=0; y < (ssize_t) image->rows; y++)
{
p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception);
if (p == (const PixelPacket *) NULL)
break;
q=pixels+(image->rows-y-1)*bytes_per_line;
for (x=0; x < (ssize_t) image->columns; x++)
{
word=(unsigned short) ((ScaleColor8to5((unsigned char)
ScaleQuantumToChar(GetPixelRed(p))) << 11) |
(ScaleColor8to6((unsigned char) ScaleQuantumToChar(
GetPixelGreen(p))) << 5) | (ScaleColor8to5((unsigned char)
ScaleQuantumToChar((unsigned char) GetPixelBlue(p)) <<
0)));
*q++=(unsigned char)(word & 0xff);
*q++=(unsigned char)(word >> 8);
p++;
}
for (x=(ssize_t) (2*image->columns); x < (ssize_t) bytes_per_line; x++)
*q++=0x00;
status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
break;
}
case 24:
case 32:
{
/*
Convert DirectClass packet to DIB RGB pixel.
*/
for (y=0; y < (ssize_t) image->rows; y++)
{
p=GetVirtualPixels(image,0,y,image->columns,1,&image->exception);
if (p == (const PixelPacket *) NULL)
break;
q=pixels+(image->rows-y-1)*bytes_per_line;
for (x=0; x < (ssize_t) image->columns; x++)
{
*q++=ScaleQuantumToChar(GetPixelBlue(p));
*q++=ScaleQuantumToChar(GetPixelGreen(p));
*q++=ScaleQuantumToChar(GetPixelRed(p));
if (image->matte != MagickFalse)
*q++=ScaleQuantumToChar(GetPixelOpacity(p));
p++;
}
if (dib_info.bits_per_pixel == 24)
for (x=(ssize_t) (3*image->columns); x < (ssize_t) bytes_per_line; x++)
*q++=0x00;
status=SetImageProgress(image,SaveImageTag,(MagickOffsetType) y,
image->rows);
if (status == MagickFalse)
break;
}
break;
}
}
if (dib_info.bits_per_pixel == 8)
if (image_info->compression != NoCompression)
{
size_t
length;
/*
Convert run-length encoded raster pixels.
*/
length=2UL*(bytes_per_line+2UL)+2UL;
dib_data=(unsigned char *) AcquireQuantumMemory(length,
(image->rows+2UL)*sizeof(*dib_data));
if (dib_data == (unsigned char *) NULL)
{
pixels=(unsigned char *) RelinquishMagickMemory(pixels);
ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed");
}
dib_info.image_size=(unsigned int) EncodeImage(image,bytes_per_line,
pixels,dib_data);
pixels=(unsigned char *) RelinquishMagickMemory(pixels);
pixels=dib_data;
dib_info.compression = BI_RLE8;
}
/*
Write DIB header.
*/
(void) WriteBlobLSBLong(image,dib_info.size);
(void) WriteBlobLSBLong(image,(unsigned int) dib_info.width);
(void) WriteBlobLSBLong(image,(unsigned int) dib_info.height);
(void) WriteBlobLSBShort(image,dib_info.planes);
(void) WriteBlobLSBShort(image,dib_info.bits_per_pixel);
(void) WriteBlobLSBLong(image,dib_info.compression);
(void) WriteBlobLSBLong(image,dib_info.image_size);
(void) WriteBlobLSBLong(image,dib_info.x_pixels);
(void) WriteBlobLSBLong(image,dib_info.y_pixels);
(void) WriteBlobLSBLong(image,dib_info.number_colors);
(void) WriteBlobLSBLong(image,dib_info.colors_important);
if (image->storage_class == PseudoClass)
{
if (dib_info.bits_per_pixel <= 8)
{
unsigned char
*dib_colormap;
/*
Dump colormap to file.
*/
dib_colormap=(unsigned char *) AcquireQuantumMemory((size_t)
(1UL << dib_info.bits_per_pixel),4*sizeof(*dib_colormap));
if (dib_colormap == (unsigned char *) NULL)
ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed");
q=dib_colormap;
for (i=0; i < (ssize_t) MagickMin(image->colors,dib_info.number_colors); i++)
{
*q++=ScaleQuantumToChar(image->colormap[i].blue);
*q++=ScaleQuantumToChar(image->colormap[i].green);
*q++=ScaleQuantumToChar(image->colormap[i].red);
*q++=(Quantum) 0x0;
}
for ( ; i < (ssize_t) (1L << dib_info.bits_per_pixel); i++)
{
*q++=(Quantum) 0x0;
*q++=(Quantum) 0x0;
*q++=(Quantum) 0x0;
*q++=(Quantum) 0x0;
}
(void) WriteBlob(image,(size_t) (4*(1 << dib_info.bits_per_pixel)),
dib_colormap);
dib_colormap=(unsigned char *) RelinquishMagickMemory(dib_colormap);
}
else
if ((dib_info.bits_per_pixel == 16) &&
(dib_info.compression == BI_BITFIELDS))
{
(void) WriteBlobLSBLong(image,0xf800);
(void) WriteBlobLSBLong(image,0x07e0);
(void) WriteBlobLSBLong(image,0x001f);
}
}
(void) WriteBlob(image,dib_info.image_size,pixels);
pixels=(unsigned char *) RelinquishMagickMemory(pixels);
(void) CloseBlob(image);
return(MagickTrue);
} | 1 | CVE-2018-12600 | CWE-787 | Out-of-bounds Write | The product writes data past the end, or before the beginning, of the intended buffer. | Phase: Requirements
Strategy: Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the language itself is theoretically safe.
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [REF-57], and the Strsafe.h library from Microsoft [REF-56]. These libraries provide safer versions of overflow-prone string-handling functions.
Note: This is not a complete solution, since many buffer overflows are not related to strings.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or compiler extensions. Examples include: the Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice, which provide various mechanisms including canary-based detection and range/index checking.
D3-SFCV (Stack Frame Canary Validation) from D3FEND [REF-1334] discusses canary-based detection in detail.
Effectiveness: Defense in Depth
Note:
This is not necessarily a complete solution, since these mechanisms only detect certain types of overflows. In addition, the result is still a denial of service, since the typical response is to exit the application.
Phase: Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that the buffer is as large as specified.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the string.
Check buffer boundaries if accessing the buffer in a loop and make sure there is no danger of writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy and concatenation functions.
Phases: Operation; Build and Compilation
Strategy: Environment Hardening
Run or compile the software using features or extensions that randomly arrange the positions of a program's executable and libraries in memory. Because this makes the addresses unpredictable, it can prevent an attacker from reliably jumping to exploitable code.
Examples include Address Space Layout Randomization (ASLR) [REF-58] [REF-60] and Position-Independent Executables (PIE) [REF-64]. Imported modules may be similarly realigned if their default memory addresses conflict with other modules, in a process known as "rebasing" (for Windows) and "prelinking" (for Linux) [REF-1332] using randomly generated addresses. ASLR for libraries cannot be used in conjunction with prelink since it would require relocating the libraries at run-time, defeating the whole purpose of prelinking.
For more information on these techniques see D3-SAOR (Segment Address Offset Randomization) from D3FEND [REF-1335].
Effectiveness: Defense in Depth
Note: These techniques do not provide a complete solution. For instance, exploits frequently use a bug that discloses memory addresses in order to maximize reliability of code execution [REF-1337]. It has also been shown that a side-channel attack can bypass ASLR [REF-1333].
Phase: Operation
Strategy: Environment Hardening
Use a CPU and operating system that offers Data Execution Protection (using hardware NX or XD bits) or the equivalent techniques that simulate this feature in software, such as PaX [REF-60] [REF-61]. These techniques ensure that any instruction executed is exclusively at a memory address that is part of the code segment.
For more information on these techniques see D3-PSEP (Process Segment Execution Prevention) from D3FEND [REF-1336].
Effectiveness: Defense in Depth
Note: This is not a complete solution, since buffer overflows could be used to overwrite nearby variables to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which self-modifying code is required. Finally, an attack could still cause a denial of service, since the typical response is to exit the application.
Phase: Implementation
Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy with strncpy. Create these if they are not available.
Effectiveness: Moderate
Note: This approach is still susceptible to calculation errors, including issues such as off-by-one errors (CWE-193) and incorrectly calculating buffer lengths (CWE-131). | 6,719 |
ImageMagick | 01843366d6a7b96e22ad7bb67f3df7d9fd4d5d74 | MagickExport ImageInfo *CloneImageInfo(const ImageInfo *image_info)
{
ImageInfo
*clone_info;
clone_info=AcquireImageInfo();
if (image_info == (ImageInfo *) NULL)
return(clone_info);
clone_info->compression=image_info->compression;
clone_info->temporary=image_info->temporary;
clone_info->adjoin=image_info->adjoin;
clone_info->antialias=image_info->antialias;
clone_info->scene=image_info->scene;
clone_info->number_scenes=image_info->number_scenes;
clone_info->depth=image_info->depth;
(void) CloneString(&clone_info->size,image_info->size);
(void) CloneString(&clone_info->extract,image_info->extract);
(void) CloneString(&clone_info->scenes,image_info->scenes);
(void) CloneString(&clone_info->page,image_info->page);
clone_info->interlace=image_info->interlace;
clone_info->endian=image_info->endian;
clone_info->units=image_info->units;
clone_info->quality=image_info->quality;
(void) CloneString(&clone_info->sampling_factor,image_info->sampling_factor);
(void) CloneString(&clone_info->server_name,image_info->server_name);
(void) CloneString(&clone_info->font,image_info->font);
(void) CloneString(&clone_info->texture,image_info->texture);
(void) CloneString(&clone_info->density,image_info->density);
clone_info->pointsize=image_info->pointsize;
clone_info->fuzz=image_info->fuzz;
clone_info->pen=image_info->pen;
clone_info->background_color=image_info->background_color;
clone_info->border_color=image_info->border_color;
clone_info->matte_color=image_info->matte_color;
clone_info->transparent_color=image_info->transparent_color;
clone_info->dither=image_info->dither;
clone_info->monochrome=image_info->monochrome;
clone_info->colors=image_info->colors;
clone_info->colorspace=image_info->colorspace;
clone_info->type=image_info->type;
clone_info->orientation=image_info->orientation;
clone_info->preview_type=image_info->preview_type;
clone_info->group=image_info->group;
clone_info->ping=image_info->ping;
clone_info->verbose=image_info->verbose;
(void) CloneString(&clone_info->view,image_info->view);
(void) CloneString(&clone_info->authenticate,image_info->authenticate);
(void) CloneImageOptions(clone_info,image_info);
clone_info->progress_monitor=image_info->progress_monitor;
clone_info->client_data=image_info->client_data;
clone_info->cache=image_info->cache;
if (image_info->cache != (void *) NULL)
clone_info->cache=ReferencePixelCache(image_info->cache);
if (image_info->profile != (void *) NULL)
clone_info->profile=(void *) CloneStringInfo((StringInfo *)
image_info->profile);
SetImageInfoFile(clone_info,image_info->file);
SetImageInfoBlob(clone_info,image_info->blob,image_info->length);
clone_info->stream=image_info->stream;
clone_info->virtual_pixel_method=image_info->virtual_pixel_method;
(void) CopyMagickString(clone_info->magick,image_info->magick,MaxTextExtent);
(void) CopyMagickString(clone_info->unique,image_info->unique,MaxTextExtent);
(void) CopyMagickString(clone_info->zero,image_info->zero,MaxTextExtent);
(void) CopyMagickString(clone_info->filename,image_info->filename,
MaxTextExtent);
clone_info->subimage=image_info->scene; /* deprecated */
clone_info->subrange=image_info->number_scenes; /* deprecated */
clone_info->channel=image_info->channel;
clone_info->debug=IsEventLogging();
clone_info->signature=image_info->signature;
return(clone_info);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 10,529 |
Android | cc274e2abe8b2a6698a5c47d8aa4bb45f1f9538d | int Track::Info::Copy(Info& dst) const {
if (&dst == this)
return 0;
dst.type = type;
dst.number = number;
dst.defaultDuration = defaultDuration;
dst.codecDelay = codecDelay;
dst.seekPreRoll = seekPreRoll;
dst.uid = uid;
dst.lacing = lacing;
dst.settings = settings;
if (int status = CopyStr(&Info::nameAsUTF8, dst))
return status;
if (int status = CopyStr(&Info::language, dst))
return status;
if (int status = CopyStr(&Info::codecId, dst))
return status;
if (int status = CopyStr(&Info::codecNameAsUTF8, dst))
return status;
if (codecPrivateSize > 0) {
if (codecPrivate == NULL)
return -1;
if (dst.codecPrivate)
return -1;
if (dst.codecPrivateSize != 0)
return -1;
dst.codecPrivate = new (std::nothrow) unsigned char[codecPrivateSize];
if (dst.codecPrivate == NULL)
return -1;
memcpy(dst.codecPrivate, codecPrivate, codecPrivateSize);
dst.codecPrivateSize = codecPrivateSize;
}
return 0;
}
| 1 | CVE-2016-2464 | CWE-20 | Improper Input Validation | The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly. |
Phase: Architecture and Design
Strategy: Attack Surface Reduction
Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111]
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173).
Phases: Architecture and Design; Implementation
Strategy: Attack Surface Reduction
Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls.
Phase: Implementation
Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
Effectiveness: High
Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings.
Phase: Implementation
When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined.
Phase: Implementation
Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow.
Phase: Implementation
Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained.
Phase: Implementation
Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content.
Phase: Implementation
When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so. | 6,507 |
cinnamon-screensaver | da7af55f1fa966c52e15cc288d4f8928eca8cc9f | lock_plug_removed (GtkWidget *widget,
GSWindow *window)
{
gtk_widget_hide (widget);
gtk_container_remove (GTK_CONTAINER (window->priv->vbox), GTK_WIDGET (window->priv->lock_box));
window->priv->lock_box = NULL;
return TRUE;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 12,130 |
openldap | 21981053a1195ae1555e23df4d9ac68d34ede9dd | static int parseDomainScope (
Operation *op,
SlapReply *rs,
LDAPControl *ctrl )
{
if ( op->o_domain_scope != SLAP_CONTROL_NONE ) {
rs->sr_text = "domainScope control specified multiple times";
return LDAP_PROTOCOL_ERROR;
}
/* this should be checking BVISNULL, but M$ clients are broken
* and include the value even though the M$ spec says it must be
* omitted. ITS#9100.
*/
if ( !BER_BVISEMPTY( &ctrl->ldctl_value )) {
rs->sr_text = "domainScope control value not absent";
return LDAP_PROTOCOL_ERROR;
}
op->o_domain_scope = ctrl->ldctl_iscritical
? SLAP_CONTROL_CRITICAL
: SLAP_CONTROL_NONCRITICAL;
return LDAP_SUCCESS;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 13,637 |
curl | 1890d59905414ab84a35892b2e45833654aa5c13 | void ourWriteOut(CURL *curl, struct OutStruct *outs, const char *writeinfo)
{
FILE *stream = stdout;
const char *ptr = writeinfo;
char *stringp = NULL;
long longinfo;
double doubleinfo;
while(ptr && *ptr) {
if('%' == *ptr && ptr[1]) {
if('%' == ptr[1]) {
/* an escaped %-letter */
fputc('%', stream);
ptr += 2;
}
else {
/* this is meant as a variable to output */
char *end;
char keepit;
int i;
if('{' == ptr[1]) {
bool match = FALSE;
end = strchr(ptr, '}');
ptr += 2; /* pass the % and the { */
if(!end) {
fputs("%{", stream);
continue;
}
keepit = *end;
*end = 0; /* zero terminate */
for(i = 0; replacements[i].name; i++) {
if(curl_strequal(ptr, replacements[i].name)) {
match = TRUE;
switch(replacements[i].id) {
case VAR_EFFECTIVE_URL:
if((CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_EFFECTIVE_URL, &stringp))
&& stringp)
fputs(stringp, stream);
break;
case VAR_HTTP_CODE:
if(CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_RESPONSE_CODE, &longinfo))
fprintf(stream, "%03ld", longinfo);
break;
case VAR_HTTP_CODE_PROXY:
if(CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_HTTP_CONNECTCODE,
&longinfo))
fprintf(stream, "%03ld", longinfo);
break;
case VAR_HEADER_SIZE:
if(CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_HEADER_SIZE, &longinfo))
fprintf(stream, "%ld", longinfo);
break;
case VAR_REQUEST_SIZE:
if(CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_REQUEST_SIZE, &longinfo))
fprintf(stream, "%ld", longinfo);
break;
case VAR_NUM_CONNECTS:
if(CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_NUM_CONNECTS, &longinfo))
fprintf(stream, "%ld", longinfo);
break;
case VAR_REDIRECT_COUNT:
if(CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_REDIRECT_COUNT, &longinfo))
fprintf(stream, "%ld", longinfo);
break;
case VAR_REDIRECT_TIME:
if(CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_REDIRECT_TIME,
&doubleinfo))
fprintf(stream, "%.6f", doubleinfo);
break;
case VAR_TOTAL_TIME:
if(CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_TOTAL_TIME, &doubleinfo))
fprintf(stream, "%.6f", doubleinfo);
break;
case VAR_NAMELOOKUP_TIME:
if(CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_NAMELOOKUP_TIME,
&doubleinfo))
fprintf(stream, "%.6f", doubleinfo);
break;
case VAR_CONNECT_TIME:
if(CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_CONNECT_TIME, &doubleinfo))
fprintf(stream, "%.6f", doubleinfo);
break;
case VAR_APPCONNECT_TIME:
if(CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_APPCONNECT_TIME,
&doubleinfo))
fprintf(stream, "%.6f", doubleinfo);
break;
case VAR_PRETRANSFER_TIME:
if(CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_PRETRANSFER_TIME,
&doubleinfo))
fprintf(stream, "%.6f", doubleinfo);
break;
case VAR_STARTTRANSFER_TIME:
if(CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_STARTTRANSFER_TIME,
&doubleinfo))
fprintf(stream, "%.6f", doubleinfo);
break;
case VAR_SIZE_UPLOAD:
if(CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_SIZE_UPLOAD, &doubleinfo))
fprintf(stream, "%.0f", doubleinfo);
break;
case VAR_SIZE_DOWNLOAD:
if(CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_SIZE_DOWNLOAD,
&doubleinfo))
fprintf(stream, "%.0f", doubleinfo);
break;
case VAR_SPEED_DOWNLOAD:
if(CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_SPEED_DOWNLOAD,
&doubleinfo))
fprintf(stream, "%.3f", doubleinfo);
break;
case VAR_SPEED_UPLOAD:
if(CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_SPEED_UPLOAD, &doubleinfo))
fprintf(stream, "%.3f", doubleinfo);
break;
case VAR_CONTENT_TYPE:
if((CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_CONTENT_TYPE, &stringp))
&& stringp)
fputs(stringp, stream);
break;
case VAR_FTP_ENTRY_PATH:
if((CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_FTP_ENTRY_PATH, &stringp))
&& stringp)
fputs(stringp, stream);
break;
case VAR_REDIRECT_URL:
if((CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_REDIRECT_URL, &stringp))
&& stringp)
fputs(stringp, stream);
break;
case VAR_SSL_VERIFY_RESULT:
if(CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_SSL_VERIFYRESULT,
&longinfo))
fprintf(stream, "%ld", longinfo);
break;
case VAR_PROXY_SSL_VERIFY_RESULT:
if(CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_PROXY_SSL_VERIFYRESULT,
&longinfo))
fprintf(stream, "%ld", longinfo);
break;
case VAR_EFFECTIVE_FILENAME:
if(outs->filename)
fprintf(stream, "%s", outs->filename);
break;
case VAR_PRIMARY_IP:
if(CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_PRIMARY_IP,
&stringp))
fprintf(stream, "%s", stringp);
break;
case VAR_PRIMARY_PORT:
if(CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_PRIMARY_PORT,
&longinfo))
fprintf(stream, "%ld", longinfo);
break;
case VAR_LOCAL_IP:
if(CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_LOCAL_IP,
&stringp))
fprintf(stream, "%s", stringp);
break;
case VAR_LOCAL_PORT:
if(CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_LOCAL_PORT,
&longinfo))
fprintf(stream, "%ld", longinfo);
break;
case VAR_HTTP_VERSION:
if(CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_HTTP_VERSION,
&longinfo)) {
const char *version = "0";
switch(longinfo) {
case CURL_HTTP_VERSION_1_0:
version = "1.0";
break;
case CURL_HTTP_VERSION_1_1:
version = "1.1";
break;
case CURL_HTTP_VERSION_2_0:
version = "2";
break;
}
fprintf(stream, version);
}
break;
case VAR_SCHEME:
if(CURLE_OK ==
curl_easy_getinfo(curl, CURLINFO_SCHEME,
&stringp))
fprintf(stream, "%s", stringp);
break;
default:
break;
}
break;
}
}
if(!match) {
fprintf(stderr, "curl: unknown --write-out variable: '%s'\n", ptr);
}
ptr = end + 1; /* pass the end */
*end = keepit;
}
else {
/* illegal syntax, then just output the characters that are used */
fputc('%', stream);
fputc(ptr[1], stream);
ptr += 2;
}
}
}
else if('\\' == *ptr) {
switch(ptr[1]) {
case 'r':
fputc('\r', stream);
break;
case 'n':
fputc('\n', stream);
break;
case 't':
fputc('\t', stream);
break;
default:
/* unknown, just output this */
fputc(*ptr, stream);
fputc(ptr[1], stream);
break;
}
ptr += 2;
}
else {
fputc(*ptr, stream);
ptr++;
}
}
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 22,956 |
swtpm | cae5991423826f21b11f7a5bc7f7b2b538bde2a2 | TPM_RESULT SWTPM_NVRAM_Init(void)
{
TPM_RESULT rc = 0;
const char *tpm_state_path;
size_t length;
TPM_DEBUG(" SWTPM_NVRAM_Init:\n");
/* TPM_NV_DISK TPM emulation stores in local directory determined by environment variable. */
if (rc == 0) {
tpm_state_path = tpmstate_get_dir();
if (tpm_state_path == NULL) {
logprintf(STDERR_FILENO,
"SWTPM_NVRAM_Init: Error (fatal), TPM_PATH environment "
"variable not set\n");
rc = TPM_FAIL;
}
}
/* check that the directory name plus a file name will not overflow FILENAME_MAX */
if (rc == 0) {
length = strlen(tpm_state_path);
if ((length + TPM_FILENAME_MAX) > FILENAME_MAX) {
logprintf(STDERR_FILENO,
"SWTPM_NVRAM_Init: Error (fatal), TPM state path name "
"%s too large\n", tpm_state_path);
rc = TPM_FAIL;
}
}
if (rc == 0) {
strcpy(state_directory, tpm_state_path);
TPM_DEBUG("TPM_NVRAM_Init: Rooted state path %s\n", state_directory);
}
if (rc == 0 && lockfile_fd < 0)
rc = SWTPM_NVRAM_Lock_Lockfile(state_directory, &lockfile_fd);
return rc;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 18,551 |
openssl | 98ece4eebfb6cd45cc8d550c6ac0022965071afc | int ssl3_get_new_session_ticket(SSL *s)
{
int ok, al, ret = 0, ticklen;
long n;
const unsigned char *p;
unsigned char *d;
n = s->method->ssl_get_message(s,
SSL3_ST_CR_SESSION_TICKET_A,
SSL3_ST_CR_SESSION_TICKET_B,
SSL3_MT_NEWSESSION_TICKET, 16384, &ok);
if (!ok)
return ((int)n);
if (n < 6) {
/* need at least ticket_lifetime_hint + ticket length */
al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_SSL3_GET_NEW_SESSION_TICKET, SSL_R_LENGTH_MISMATCH);
goto f_err;
}
p = d = (unsigned char *)s->init_msg;
n2l(p, s->session->tlsext_tick_lifetime_hint);
n2s(p, ticklen);
/* ticket_lifetime_hint + ticket_length + ticket */
if (ticklen + 6 != n) {
al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_SSL3_GET_NEW_SESSION_TICKET, SSL_R_LENGTH_MISMATCH);
goto f_err;
}
OPENSSL_free(s->session->tlsext_tick);
s->session->tlsext_ticklen = 0;
s->session->tlsext_tick = OPENSSL_malloc(ticklen);
if (!s->session->tlsext_tick) {
SSLerr(SSL_F_SSL3_GET_NEW_SESSION_TICKET, ERR_R_MALLOC_FAILURE);
goto err;
}
memcpy(s->session->tlsext_tick, p, ticklen);
s->session->tlsext_ticklen = ticklen;
/*
* There are two ways to detect a resumed ticket session. One is to set
* an appropriate session ID and then the server must return a match in
* ServerHello. This allows the normal client session ID matching to work
* and we know much earlier that the ticket has been accepted. The
* other way is to set zero length session ID when the ticket is
* presented and rely on the handshake to determine session resumption.
* We choose the former approach because this fits in with assumptions
* elsewhere in OpenSSL. The session ID is set to the SHA256 (or SHA1 is
* SHA256 is disabled) hash of the ticket.
*/
EVP_Digest(p, ticklen,
s->session->session_id, &s->session->session_id_length,
EVP_sha256(), NULL);
ret = 1;
return (ret);
f_err:
ssl3_send_alert(s, SSL3_AL_FATAL, al);
err:
s->state = SSL_ST_ERR;
return (-1);
}
| 1 | CVE-2015-1791 | CWE-362 | Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition') | The product contains a concurrent code sequence that requires temporary, exclusive access to a shared resource, but a timing window exists in which the shared resource can be modified by another code sequence operating concurrently. | Phase: Architecture and Design
In languages that support it, use synchronization primitives. Only wrap these around critical code to minimize the impact on performance.
Phase: Architecture and Design
Use thread-safe capabilities such as the data access abstraction in Spring.
Phase: Architecture and Design
Minimize the usage of shared resources in order to remove as much complexity as possible from the control flow and to reduce the likelihood of unexpected conditions occurring.
Additionally, this will minimize the amount of synchronization necessary and may even help to reduce the likelihood of a denial of service where an attacker may be able to repeatedly trigger a critical section (CWE-400).
Phase: Implementation
When using multithreading and operating on shared variables, only use thread-safe functions.
Phase: Implementation
Use atomic operations on shared variables. Be wary of innocent-looking constructs such as "x++". This may appear atomic at the code layer, but it is actually non-atomic at the instruction layer, since it involves a read, followed by a computation, followed by a write.
Phase: Implementation
Use a mutex if available, but be sure to avoid related weaknesses such as CWE-412.
Phase: Implementation
Avoid double-checked locking (CWE-609) and other implementation errors that arise when trying to avoid the overhead of synchronization.
Phase: Implementation
Disable interrupts or signals over critical parts of the code, but also make sure that the code does not go into a large or infinite loop.
Phase: Implementation
Use the volatile type modifier for critical variables to avoid unexpected compiler optimization or reordering. This does not necessarily solve the synchronization problem, but it can help.
Phases: Architecture and Design; Operation
Strategy: Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks [REF-76]. If possible, create isolated accounts with limited privileges that are only used for a single task. That way, a successful attack will not immediately give the attacker access to the rest of the software or its environment. For example, database applications rarely need to run as the database administrator, especially in day-to-day operations | 6,978 |
openjpeg | da940424816e11d624362ce080bc026adffa26e8 | static void opj_applyLUT8u_8u32s_C1R(
OPJ_UINT8 const* pSrc, OPJ_INT32 srcStride,
OPJ_INT32* pDst, OPJ_INT32 dstStride,
OPJ_UINT8 const* pLUT,
OPJ_UINT32 width, OPJ_UINT32 height)
{
OPJ_UINT32 y;
for (y = height; y != 0U; --y) {
OPJ_UINT32 x;
for(x = 0; x < width; x++)
{
pDst[x] = (OPJ_INT32)pLUT[pSrc[x]];
}
pSrc += srcStride;
pDst += dstStride;
}
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 14,766 |
tensorflow | 4253f96a58486ffe84b61c0415bb234a4632ee73 | TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
auto* params =
reinterpret_cast<TfLiteConcatenationParams*>(node->builtin_data);
int axis = params->axis;
int num_inputs = node->inputs->size;
// The number of dimensions of the input tensors must match, and all
// dimensions except 'axis' must be equal.
const TfLiteTensor* t0;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, 0, &t0));
TfLiteType input_type = t0->type;
if (axis < 0) axis += t0->dims->size;
TF_LITE_ENSURE(context, axis >= 0);
TF_LITE_ENSURE(context, axis < t0->dims->size);
TF_LITE_ENSURE_EQ(context, params->activation, kTfLiteActNone);
TF_LITE_ENSURE(context,
input_type == kTfLiteFloat32 || input_type == kTfLiteUInt8 ||
input_type == kTfLiteInt8 || input_type == kTfLiteInt16 ||
input_type == kTfLiteInt32 || input_type == kTfLiteInt64 ||
input_type == kTfLiteBool);
// Output dimensions will match input dimensions, except 'axis', which
// will be the sum of inputs
int sum_axis = t0->dims->data[axis];
for (int i = 1; i < num_inputs; ++i) {
const TfLiteTensor* t;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, i, &t));
TF_LITE_ENSURE_EQ(context, t->dims->size, t0->dims->size);
TF_LITE_ENSURE_EQ(context, t->type, input_type);
for (int d = 0; d < t0->dims->size; ++d) {
if (d == axis) {
sum_axis += t->dims->data[axis];
} else {
TF_LITE_ENSURE_EQ(context, t->dims->data[d], t0->dims->data[d]);
}
}
}
TfLiteIntArray* output_size = TfLiteIntArrayCreate(t0->dims->size);
for (int d = 0; d < t0->dims->size; ++d) {
output_size->data[d] = (d == axis) ? sum_axis : t0->dims->data[d];
}
TfLiteTensor* output;
TF_LITE_ENSURE_OK(context, GetOutputSafe(context, node, 0, &output));
TF_LITE_ENSURE_TYPES_EQ(context, output->type, input_type);
if (input_type == kTfLiteInt8) {
// Make sure there is no re-scaling needed for Int8 quantized kernel. This
// is a restriction we introduced to Int8 kernels.
VectorOfTensors<int8_t> all_inputs(*context, *node->inputs);
for (int i = 0; i < node->inputs->size; ++i) {
const TfLiteTensor* t;
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, i, &t));
TF_LITE_ENSURE_EQ(context, t->params.scale, output->params.scale);
TF_LITE_ENSURE_EQ(context, t->params.zero_point,
output->params.zero_point);
}
}
if (input_type == kTfLiteInt16) {
// Make sure that all Int16 inputs have a null zero-point.
for (int i = 0; i < node->inputs->size; ++i) {
const TfLiteTensor* t = GetInput(context, node, i);
TF_LITE_ENSURE_EQ(context, t->params.zero_point, 0);
}
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
}
return context->ResizeTensor(context, output, output_size);
} | 1 | CVE-2021-29601 | CWE-476 | NULL Pointer Dereference | The product dereferences a pointer that it expects to be valid but is NULL. | Phase: Implementation
If all pointers that could have been modified are checked for NULL before use, nearly all NULL pointer dereferences can be prevented.
Phase: Requirements
Select a programming language that is not susceptible to these issues.
Phase: Implementation
Check the results of all functions that return a value and verify that the value is non-null before acting upon it.
Effectiveness: Moderate
Note: Checking the return value of the function will typically be sufficient, however beware of race conditions (CWE-362) in a concurrent environment. This solution does not handle the use of improperly initialized variables (CWE-665).
Phase: Architecture and Design
Identify all variables and data stores that receive information from external sources, and apply input validation to make sure that they are only initialized to expected values.
Phase: Implementation
Explicitly initialize all variables and other data stores, either during declaration or just before the first usage. | 744 |
libpng | a901eb3ce6087e0afeef988247f1a1aa208cb54d | png_write_PLTE(png_structrp png_ptr, png_const_colorp palette,
png_uint_32 num_pal)
{
png_uint_32 max_palette_length, i;
png_const_colorp pal_ptr;
png_byte buf[3];
png_debug(1, "in png_write_PLTE");
max_palette_length = (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE) ?
(1 << png_ptr->bit_depth) : PNG_MAX_PALETTE_LENGTH;
if ((
#ifdef PNG_MNG_FEATURES_SUPPORTED
(png_ptr->mng_features_permitted & PNG_FLAG_MNG_EMPTY_PLTE) == 0 &&
#endif
num_pal == 0) || num_pal > max_palette_length)
{
if (png_ptr->color_type == PNG_COLOR_TYPE_PALETTE)
{
png_error(png_ptr, "Invalid number of colors in palette");
}
else
{
png_warning(png_ptr, "Invalid number of colors in palette");
return;
}
}
if ((png_ptr->color_type & PNG_COLOR_MASK_COLOR) == 0)
{
png_warning(png_ptr,
"Ignoring request to write a PLTE chunk in grayscale PNG");
return;
}
png_ptr->num_palette = (png_uint_16)num_pal;
png_debug1(3, "num_palette = %d", png_ptr->num_palette);
png_write_chunk_header(png_ptr, png_PLTE, (png_uint_32)(num_pal * 3));
#ifdef PNG_POINTER_INDEXING_SUPPORTED
for (i = 0, pal_ptr = palette; i < num_pal; i++, pal_ptr++)
{
buf[0] = pal_ptr->red;
buf[1] = pal_ptr->green;
buf[2] = pal_ptr->blue;
png_write_chunk_data(png_ptr, buf, (png_size_t)3);
}
#else
/* This is a little slower but some buggy compilers need to do this
* instead
*/
pal_ptr=palette;
for (i = 0; i < num_pal; i++)
{
buf[0] = pal_ptr[i].red;
buf[1] = pal_ptr[i].green;
buf[2] = pal_ptr[i].blue;
png_write_chunk_data(png_ptr, buf, (png_size_t)3);
}
#endif
png_write_chunk_end(png_ptr);
png_ptr->mode |= PNG_HAVE_PLTE;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 15,555 |
FFmpeg | 880c73cd76109697447fbfbaa8e5ee5683309446 | static int flashsv_decode_frame(AVCodecContext *avctx, void *data,
int *got_frame, AVPacket *avpkt)
{
int buf_size = avpkt->size;
FlashSVContext *s = avctx->priv_data;
int h_blocks, v_blocks, h_part, v_part, i, j, ret;
GetBitContext gb;
int last_blockwidth = s->block_width;
int last_blockheight= s->block_height;
/* no supplementary picture */
if (buf_size == 0)
return 0;
if (buf_size < 4)
return -1;
init_get_bits(&gb, avpkt->data, buf_size * 8);
/* start to parse the bitstream */
s->block_width = 16 * (get_bits(&gb, 4) + 1);
s->image_width = get_bits(&gb, 12);
s->block_height = 16 * (get_bits(&gb, 4) + 1);
s->image_height = get_bits(&gb, 12);
if ( last_blockwidth != s->block_width
|| last_blockheight!= s->block_height)
av_freep(&s->blocks);
if (s->ver == 2) {
skip_bits(&gb, 6);
if (get_bits1(&gb)) {
avpriv_request_sample(avctx, "iframe");
return AVERROR_PATCHWELCOME;
}
if (get_bits1(&gb)) {
avpriv_request_sample(avctx, "Custom palette");
return AVERROR_PATCHWELCOME;
}
}
/* calculate number of blocks and size of border (partial) blocks */
h_blocks = s->image_width / s->block_width;
h_part = s->image_width % s->block_width;
v_blocks = s->image_height / s->block_height;
v_part = s->image_height % s->block_height;
/* the block size could change between frames, make sure the buffer
* is large enough, if not, get a larger one */
if (s->block_size < s->block_width * s->block_height) {
int tmpblock_size = 3 * s->block_width * s->block_height;
s->tmpblock = av_realloc(s->tmpblock, tmpblock_size);
if (!s->tmpblock) {
av_log(avctx, AV_LOG_ERROR, "Can't allocate decompression buffer.\n");
return AVERROR(ENOMEM);
}
if (s->ver == 2) {
s->deflate_block_size = calc_deflate_block_size(tmpblock_size);
if (s->deflate_block_size <= 0) {
av_log(avctx, AV_LOG_ERROR, "Can't determine deflate buffer size.\n");
return -1;
}
s->deflate_block = av_realloc(s->deflate_block, s->deflate_block_size);
if (!s->deflate_block) {
av_log(avctx, AV_LOG_ERROR, "Can't allocate deflate buffer.\n");
return AVERROR(ENOMEM);
}
}
}
s->block_size = s->block_width * s->block_height;
/* initialize the image size once */
if (avctx->width == 0 && avctx->height == 0) {
avcodec_set_dimensions(avctx, s->image_width, s->image_height);
}
/* check for changes of image width and image height */
if (avctx->width != s->image_width || avctx->height != s->image_height) {
av_log(avctx, AV_LOG_ERROR,
"Frame width or height differs from first frame!\n");
av_log(avctx, AV_LOG_ERROR, "fh = %d, fv %d vs ch = %d, cv = %d\n",
avctx->height, avctx->width, s->image_height, s->image_width);
return AVERROR_INVALIDDATA;
}
/* we care for keyframes only in Screen Video v2 */
s->is_keyframe = (avpkt->flags & AV_PKT_FLAG_KEY) && (s->ver == 2);
if (s->is_keyframe) {
s->keyframedata = av_realloc(s->keyframedata, avpkt->size);
memcpy(s->keyframedata, avpkt->data, avpkt->size);
}
if(s->ver == 2 && !s->blocks)
s->blocks = av_mallocz((v_blocks + !!v_part) * (h_blocks + !!h_part)
* sizeof(s->blocks[0]));
av_dlog(avctx, "image: %dx%d block: %dx%d num: %dx%d part: %dx%d\n",
s->image_width, s->image_height, s->block_width, s->block_height,
h_blocks, v_blocks, h_part, v_part);
if ((ret = ff_reget_buffer(avctx, &s->frame)) < 0)
return ret;
/* loop over all block columns */
for (j = 0; j < v_blocks + (v_part ? 1 : 0); j++) {
int y_pos = j * s->block_height; // vertical position in frame
int cur_blk_height = (j < v_blocks) ? s->block_height : v_part;
/* loop over all block rows */
for (i = 0; i < h_blocks + (h_part ? 1 : 0); i++) {
int x_pos = i * s->block_width; // horizontal position in frame
int cur_blk_width = (i < h_blocks) ? s->block_width : h_part;
int has_diff = 0;
/* get the size of the compressed zlib chunk */
int size = get_bits(&gb, 16);
s->color_depth = 0;
s->zlibprime_curr = 0;
s->zlibprime_prev = 0;
s->diff_start = 0;
s->diff_height = cur_blk_height;
if (8 * size > get_bits_left(&gb)) {
av_frame_unref(&s->frame);
return AVERROR_INVALIDDATA;
}
if (s->ver == 2 && size) {
skip_bits(&gb, 3);
s->color_depth = get_bits(&gb, 2);
has_diff = get_bits1(&gb);
s->zlibprime_curr = get_bits1(&gb);
s->zlibprime_prev = get_bits1(&gb);
if (s->color_depth != 0 && s->color_depth != 2) {
av_log(avctx, AV_LOG_ERROR,
"%dx%d invalid color depth %d\n", i, j, s->color_depth);
return AVERROR_INVALIDDATA;
}
if (has_diff) {
if (!s->keyframe) {
av_log(avctx, AV_LOG_ERROR,
"inter frame without keyframe\n");
return AVERROR_INVALIDDATA;
}
s->diff_start = get_bits(&gb, 8);
s->diff_height = get_bits(&gb, 8);
av_log(avctx, AV_LOG_DEBUG,
"%dx%d diff start %d height %d\n",
i, j, s->diff_start, s->diff_height);
size -= 2;
}
if (s->zlibprime_prev)
av_log(avctx, AV_LOG_DEBUG, "%dx%d zlibprime_prev\n", i, j);
if (s->zlibprime_curr) {
int col = get_bits(&gb, 8);
int row = get_bits(&gb, 8);
av_log(avctx, AV_LOG_DEBUG, "%dx%d zlibprime_curr %dx%d\n", i, j, col, row);
size -= 2;
avpriv_request_sample(avctx, "zlibprime_curr");
return AVERROR_PATCHWELCOME;
}
if (!s->blocks && (s->zlibprime_curr || s->zlibprime_prev)) {
av_log(avctx, AV_LOG_ERROR, "no data available for zlib "
"priming\n");
return AVERROR_INVALIDDATA;
}
size--; // account for flags byte
}
if (has_diff) {
int k;
int off = (s->image_height - y_pos - 1) * s->frame.linesize[0];
for (k = 0; k < cur_blk_height; k++)
memcpy(s->frame.data[0] + off - k*s->frame.linesize[0] + x_pos*3,
s->keyframe + off - k*s->frame.linesize[0] + x_pos*3,
cur_blk_width * 3);
}
/* skip unchanged blocks, which have size 0 */
if (size) {
if (flashsv_decode_block(avctx, avpkt, &gb, size,
cur_blk_width, cur_blk_height,
x_pos, y_pos,
i + j * (h_blocks + !!h_part)))
av_log(avctx, AV_LOG_ERROR,
"error in decompression of block %dx%d\n", i, j);
}
}
}
if (s->is_keyframe && s->ver == 2) {
if (!s->keyframe) {
s->keyframe = av_malloc(s->frame.linesize[0] * avctx->height);
if (!s->keyframe) {
av_log(avctx, AV_LOG_ERROR, "Cannot allocate image data\n");
return AVERROR(ENOMEM);
}
}
memcpy(s->keyframe, s->frame.data[0], s->frame.linesize[0] * avctx->height);
}
if ((ret = av_frame_ref(data, &s->frame)) < 0)
return ret;
*got_frame = 1;
if ((get_bits_count(&gb) / 8) != buf_size)
av_log(avctx, AV_LOG_ERROR, "buffer not fully consumed (%d != %d)\n",
buf_size, (get_bits_count(&gb) / 8));
/* report that the buffer was completely consumed */
return buf_size;
}
| 1 | CVE-2013-7015 | CWE-20 | Improper Input Validation | The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly. |
Phase: Architecture and Design
Strategy: Attack Surface Reduction
Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111]
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173).
Phases: Architecture and Design; Implementation
Strategy: Attack Surface Reduction
Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls.
Phase: Implementation
Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
Effectiveness: High
Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings.
Phase: Implementation
When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined.
Phase: Implementation
Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow.
Phase: Implementation
Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained.
Phase: Implementation
Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content.
Phase: Implementation
When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so. | 75 |
rpm | 8f4b3c3cab8922a2022b9e47c71f1ecf906077ef | rpmRC hdrblobImport(hdrblob blob, int fast, Header *hdrp, char **emsg)
{
Header h = NULL;
indexEntry entry;
int rdlen;
h = headerCreate(blob->ei, blob->il);
entry = h->index;
if (!(htonl(blob->pe->tag) < RPMTAG_HEADERI18NTABLE)) {
/* An original v3 header, create a legacy region entry for it */
h->flags |= HEADERFLAG_LEGACY;
entry->info.type = REGION_TAG_TYPE;
entry->info.tag = RPMTAG_HEADERIMAGE;
entry->info.count = REGION_TAG_COUNT;
entry->info.offset = ((unsigned char *)blob->pe - blob->dataStart); /* negative offset */
entry->data = blob->pe;
entry->length = blob->pvlen - sizeof(blob->il) - sizeof(blob->dl);
rdlen = regionSwab(entry+1, blob->il, 0, blob->pe,
blob->dataStart, blob->dataEnd,
entry->info.offset, fast);
if (rdlen != blob->dl)
goto errxit;
entry->rdlen = rdlen;
h->indexUsed++;
} else {
/* Either a v4 header or an "upgraded" v3 header with a legacy region */
int32_t ril;
h->flags &= ~HEADERFLAG_LEGACY;
ei2h(blob->pe, &entry->info);
ril = (entry->info.offset != 0) ? blob->ril : blob->il;
entry->info.offset = -(ril * sizeof(*blob->pe)); /* negative offset */
entry->data = blob->pe;
entry->length = blob->pvlen - sizeof(blob->il) - sizeof(blob->dl);
rdlen = regionSwab(entry+1, ril-1, 0, blob->pe+1,
blob->dataStart, blob->dataEnd,
entry->info.offset, fast);
if (rdlen < 0)
goto errxit;
entry->rdlen = rdlen;
if (ril < h->indexUsed) {
indexEntry newEntry = entry + ril;
int ne = (h->indexUsed - ril);
int rid = entry->info.offset+1;
/* Load dribble entries from region. */
rdlen = regionSwab(newEntry, ne, rdlen, blob->pe+ril,
blob->dataStart, blob->dataEnd, rid, fast);
if (rdlen < 0)
goto errxit;
{ indexEntry firstEntry = newEntry;
int save = h->indexUsed;
int j;
/* Dribble entries replace duplicate region entries. */
h->indexUsed -= ne;
for (j = 0; j < ne; j++, newEntry++) {
(void) headerDel(h, newEntry->info.tag);
if (newEntry->info.tag == RPMTAG_BASENAMES)
(void) headerDel(h, RPMTAG_OLDFILENAMES);
}
/* If any duplicate entries were replaced, move new entries down. */
if (h->indexUsed < (save - ne)) {
memmove(h->index + h->indexUsed, firstEntry,
(ne * sizeof(*entry)));
}
h->indexUsed += ne;
}
}
rdlen += REGION_TAG_COUNT;
if (rdlen != blob->dl)
goto errxit;
}
/* Force sorting, dribble lookups can cause early sort on partial header */
h->sorted = 0;
headerSort(h);
h->flags |= HEADERFLAG_ALLOCATED;
*hdrp = h;
/* We own the memory now, avoid double-frees */
blob->ei = NULL;
return RPMRC_OK;
errxit:
if (h) {
free(h->index);
free(h);
rasprintf(emsg, _("hdr load: BAD"));
}
return RPMRC_FAIL;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 10,699 |
qemu | 34e29ce754c02bb6b3bdd244fbb85033460feaff | ssize_t pcnet_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
{
PCNetState *s = qemu_get_nic_opaque(nc);
int is_padr = 0, is_bcast = 0, is_ladr = 0;
uint8_t buf1[60];
int remaining;
int crc_err = 0;
int size = size_;
if (CSR_DRX(s) || CSR_STOP(s) || CSR_SPND(s) || !size ||
(CSR_LOOP(s) && !s->looptest)) {
return -1;
}
#ifdef PCNET_DEBUG
printf("pcnet_receive size=%d\n", size);
#endif
/* if too small buffer, then expand it */
if (size < MIN_BUF_SIZE) {
memcpy(buf1, buf, size);
memset(buf1 + size, 0, MIN_BUF_SIZE - size);
buf = buf1;
size = MIN_BUF_SIZE;
}
if (CSR_PROM(s)
|| (is_padr=padr_match(s, buf, size))
|| (is_bcast=padr_bcast(s, buf, size))
|| (is_ladr=ladr_match(s, buf, size))) {
pcnet_rdte_poll(s);
if (!(CSR_CRST(s) & 0x8000) && s->rdra) {
struct pcnet_RMD rmd;
int rcvrc = CSR_RCVRC(s)-1,i;
hwaddr nrda;
for (i = CSR_RCVRL(s)-1; i > 0; i--, rcvrc--) {
if (rcvrc <= 1)
rcvrc = CSR_RCVRL(s);
nrda = s->rdra +
(CSR_RCVRL(s) - rcvrc) *
(BCR_SWSTYLE(s) ? 16 : 8 );
RMDLOAD(&rmd, nrda);
if (GET_FIELD(rmd.status, RMDS, OWN)) {
#ifdef PCNET_DEBUG_RMD
printf("pcnet - scan buffer: RCVRC=%d PREV_RCVRC=%d\n",
rcvrc, CSR_RCVRC(s));
#endif
CSR_RCVRC(s) = rcvrc;
pcnet_rdte_poll(s);
break;
}
}
}
if (!(CSR_CRST(s) & 0x8000)) {
#ifdef PCNET_DEBUG_RMD
printf("pcnet - no buffer: RCVRC=%d\n", CSR_RCVRC(s));
#endif
s->csr[0] |= 0x1000; /* Set MISS flag */
CSR_MISSC(s)++;
} else {
uint8_t *src = s->buffer;
hwaddr crda = CSR_CRDA(s);
struct pcnet_RMD rmd;
int pktcount = 0;
if (!s->looptest) {
if (size > 4092) {
#ifdef PCNET_DEBUG_RMD
fprintf(stderr, "pcnet: truncates rx packet.\n");
#endif
size = 4092;
}
memcpy(src, buf, size);
/* no need to compute the CRC */
src[size] = 0;
src[size + 1] = 0;
src[size + 2] = 0;
src[size + 3] = 0;
size += 4;
} else if (s->looptest == PCNET_LOOPTEST_CRC ||
!CSR_DXMTFCS(s) || size < MIN_BUF_SIZE+4) {
uint32_t fcs = ~0;
uint8_t *p = src;
while (p != &src[size])
CRC(fcs, *p++);
*(uint32_t *)p = htonl(fcs);
size += 4;
} else {
uint32_t fcs = ~0;
uint8_t *p = src;
while (p != &src[size])
CRC(fcs, *p++);
crc_err = (*(uint32_t *)p != htonl(fcs));
}
#ifdef PCNET_DEBUG_MATCH
PRINT_PKTHDR(buf);
#endif
RMDLOAD(&rmd, PHYSADDR(s,crda));
/*if (!CSR_LAPPEN(s))*/
SET_FIELD(&rmd.status, RMDS, STP, 1);
#define PCNET_RECV_STORE() do { \
int count = MIN(4096 - GET_FIELD(rmd.buf_length, RMDL, BCNT),remaining); \
hwaddr rbadr = PHYSADDR(s, rmd.rbadr); \
s->phys_mem_write(s->dma_opaque, rbadr, src, count, CSR_BSWP(s)); \
src += count; remaining -= count; \
SET_FIELD(&rmd.status, RMDS, OWN, 0); \
RMDSTORE(&rmd, PHYSADDR(s,crda)); \
pktcount++; \
} while (0)
remaining = size;
PCNET_RECV_STORE();
if ((remaining > 0) && CSR_NRDA(s)) {
hwaddr nrda = CSR_NRDA(s);
#ifdef PCNET_DEBUG_RMD
PRINT_RMD(&rmd);
#endif
RMDLOAD(&rmd, PHYSADDR(s,nrda));
if (GET_FIELD(rmd.status, RMDS, OWN)) {
crda = nrda;
PCNET_RECV_STORE();
#ifdef PCNET_DEBUG_RMD
PRINT_RMD(&rmd);
#endif
if ((remaining > 0) && (nrda=CSR_NNRD(s))) {
RMDLOAD(&rmd, PHYSADDR(s,nrda));
if (GET_FIELD(rmd.status, RMDS, OWN)) {
crda = nrda;
PCNET_RECV_STORE();
}
}
}
}
#undef PCNET_RECV_STORE
RMDLOAD(&rmd, PHYSADDR(s,crda));
if (remaining == 0) {
SET_FIELD(&rmd.msg_length, RMDM, MCNT, size);
SET_FIELD(&rmd.status, RMDS, ENP, 1);
SET_FIELD(&rmd.status, RMDS, PAM, !CSR_PROM(s) && is_padr);
SET_FIELD(&rmd.status, RMDS, LFAM, !CSR_PROM(s) && is_ladr);
SET_FIELD(&rmd.status, RMDS, BAM, !CSR_PROM(s) && is_bcast);
if (crc_err) {
SET_FIELD(&rmd.status, RMDS, CRC, 1);
SET_FIELD(&rmd.status, RMDS, ERR, 1);
}
} else {
SET_FIELD(&rmd.status, RMDS, OFLO, 1);
SET_FIELD(&rmd.status, RMDS, BUFF, 1);
SET_FIELD(&rmd.status, RMDS, ERR, 1);
}
RMDSTORE(&rmd, PHYSADDR(s,crda));
s->csr[0] |= 0x0400;
#ifdef PCNET_DEBUG
printf("RCVRC=%d CRDA=0x%08x BLKS=%d\n",
CSR_RCVRC(s), PHYSADDR(s,CSR_CRDA(s)), pktcount);
#endif
#ifdef PCNET_DEBUG_RMD
PRINT_RMD(&rmd);
#endif
while (pktcount--) {
if (CSR_RCVRC(s) <= 1)
CSR_RCVRC(s) = CSR_RCVRL(s);
else
CSR_RCVRC(s)--;
}
pcnet_rdte_poll(s);
}
}
pcnet_poll(s);
pcnet_update_irq(s);
return size_;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 21,977 |
Chrome | 438b99bc730bc665eedfc62c4eb864c981e5c65f | void NTPResourceCache::CreateNewTabHTML() {
PrefService* prefs = profile_->GetPrefs();
base::DictionaryValue load_time_data;
load_time_data.SetBoolean("bookmarkbarattached",
prefs->GetBoolean(prefs::kShowBookmarkBar));
load_time_data.SetBoolean("hasattribution",
ThemeServiceFactory::GetForProfile(profile_)->HasCustomImage(
IDR_THEME_NTP_ATTRIBUTION));
load_time_data.SetBoolean("showMostvisited", should_show_most_visited_page_);
load_time_data.SetBoolean("showAppLauncherPromo",
ShouldShowAppLauncherPromo());
load_time_data.SetBoolean("showRecentlyClosed",
should_show_recently_closed_menu_);
load_time_data.SetString("title",
l10n_util::GetStringUTF16(IDS_NEW_TAB_TITLE));
load_time_data.SetString("mostvisited",
l10n_util::GetStringUTF16(IDS_NEW_TAB_MOST_VISITED));
load_time_data.SetString("suggestions",
l10n_util::GetStringUTF16(IDS_NEW_TAB_SUGGESTIONS));
load_time_data.SetString("restoreThumbnailsShort",
l10n_util::GetStringUTF16(IDS_NEW_TAB_RESTORE_THUMBNAILS_SHORT_LINK));
load_time_data.SetString("recentlyclosed",
l10n_util::GetStringUTF16(IDS_NEW_TAB_RECENTLY_CLOSED));
load_time_data.SetString("webStoreTitle",
l10n_util::GetStringUTF16(IDS_EXTENSION_WEB_STORE_TITLE));
load_time_data.SetString("webStoreTitleShort",
l10n_util::GetStringUTF16(IDS_EXTENSION_WEB_STORE_TITLE_SHORT));
load_time_data.SetString("closedwindowsingle",
l10n_util::GetStringUTF16(IDS_NEW_TAB_RECENTLY_CLOSED_WINDOW_SINGLE));
load_time_data.SetString("closedwindowmultiple",
l10n_util::GetStringUTF16(IDS_NEW_TAB_RECENTLY_CLOSED_WINDOW_MULTIPLE));
load_time_data.SetString("attributionintro",
l10n_util::GetStringUTF16(IDS_NEW_TAB_ATTRIBUTION_INTRO));
load_time_data.SetString("thumbnailremovednotification",
l10n_util::GetStringUTF16(IDS_NEW_TAB_THUMBNAIL_REMOVED_NOTIFICATION));
load_time_data.SetString("undothumbnailremove",
l10n_util::GetStringUTF16(IDS_NEW_TAB_UNDO_THUMBNAIL_REMOVE));
load_time_data.SetString("removethumbnailtooltip",
l10n_util::GetStringUTF16(IDS_NEW_TAB_REMOVE_THUMBNAIL_TOOLTIP));
load_time_data.SetString("appuninstall",
l10n_util::GetStringUTF16(IDS_EXTENSIONS_UNINSTALL));
load_time_data.SetString("appoptions",
l10n_util::GetStringUTF16(IDS_NEW_TAB_APP_OPTIONS));
load_time_data.SetString("appdetails",
l10n_util::GetStringUTF16(IDS_NEW_TAB_APP_DETAILS));
load_time_data.SetString("appcreateshortcut",
l10n_util::GetStringUTF16(IDS_NEW_TAB_APP_CREATE_SHORTCUT));
load_time_data.SetString("appDefaultPageName",
l10n_util::GetStringUTF16(IDS_APP_DEFAULT_PAGE_NAME));
load_time_data.SetString("applaunchtypepinned",
l10n_util::GetStringUTF16(IDS_APP_CONTEXT_MENU_OPEN_PINNED));
load_time_data.SetString("applaunchtyperegular",
l10n_util::GetStringUTF16(IDS_APP_CONTEXT_MENU_OPEN_REGULAR));
load_time_data.SetString("applaunchtypewindow",
l10n_util::GetStringUTF16(IDS_APP_CONTEXT_MENU_OPEN_WINDOW));
load_time_data.SetString("applaunchtypefullscreen",
l10n_util::GetStringUTF16(IDS_APP_CONTEXT_MENU_OPEN_FULLSCREEN));
load_time_data.SetString("syncpromotext",
l10n_util::GetStringUTF16(IDS_SYNC_START_SYNC_BUTTON_LABEL));
load_time_data.SetString("syncLinkText",
l10n_util::GetStringUTF16(IDS_SYNC_ADVANCED_OPTIONS));
load_time_data.SetBoolean("shouldShowSyncLogin",
NTPLoginHandler::ShouldShow(profile_));
load_time_data.SetString("otherSessions",
l10n_util::GetStringUTF16(IDS_NEW_TAB_OTHER_SESSIONS_LABEL));
load_time_data.SetString("otherSessionsEmpty",
l10n_util::GetStringUTF16(IDS_NEW_TAB_OTHER_SESSIONS_EMPTY));
load_time_data.SetString("otherSessionsLearnMoreUrl",
l10n_util::GetStringUTF16(IDS_NEW_TAB_OTHER_SESSIONS_LEARN_MORE_URL));
load_time_data.SetString("learnMore",
l10n_util::GetStringUTF16(IDS_LEARN_MORE));
load_time_data.SetString("webStoreLink",
GetUrlWithLang(GURL(extension_urls::GetWebstoreLaunchURL())));
load_time_data.SetString("appInstallHintText",
l10n_util::GetStringUTF16(IDS_NEW_TAB_APP_INSTALL_HINT_LABEL));
load_time_data.SetBoolean("isDiscoveryInNTPEnabled",
NewTabUI::IsDiscoveryInNTPEnabled());
load_time_data.SetString("collapseSessionMenuItemText",
l10n_util::GetStringUTF16(IDS_NEW_TAB_OTHER_SESSIONS_COLLAPSE_SESSION));
load_time_data.SetString("expandSessionMenuItemText",
l10n_util::GetStringUTF16(IDS_NEW_TAB_OTHER_SESSIONS_EXPAND_SESSION));
load_time_data.SetString("restoreSessionMenuItemText",
l10n_util::GetStringUTF16(IDS_NEW_TAB_OTHER_SESSIONS_OPEN_ALL));
load_time_data.SetString("learn_more",
l10n_util::GetStringUTF16(IDS_LEARN_MORE));
load_time_data.SetString("tile_grid_screenreader_accessible_description",
l10n_util::GetStringUTF16(IDS_NEW_TAB_TILE_GRID_ACCESSIBLE_DESCRIPTION));
load_time_data.SetString("page_switcher_change_title",
l10n_util::GetStringUTF16(IDS_NEW_TAB_PAGE_SWITCHER_CHANGE_TITLE));
load_time_data.SetString("page_switcher_same_title",
l10n_util::GetStringUTF16(IDS_NEW_TAB_PAGE_SWITCHER_SAME_TITLE));
load_time_data.SetString("appsPromoTitle",
l10n_util::GetStringUTF16(IDS_NEW_TAB_PAGE_APPS_PROMO_TITLE));
load_time_data.SetBoolean("isSwipeTrackingFromScrollEventsEnabled",
is_swipe_tracking_from_scroll_events_enabled_);
if (profile_->IsManaged())
should_show_apps_page_ = false;
load_time_data.SetBoolean("showApps", should_show_apps_page_);
load_time_data.SetBoolean("showWebStoreIcon",
!prefs->GetBoolean(prefs::kHideWebStoreIcon));
bool streamlined_hosted_apps = CommandLine::ForCurrentProcess()->HasSwitch(
switches::kEnableStreamlinedHostedApps);
load_time_data.SetBoolean("enableStreamlinedHostedApps",
streamlined_hosted_apps);
if (streamlined_hosted_apps) {
load_time_data.SetString("applaunchtypetab",
l10n_util::GetStringUTF16(IDS_APP_CONTEXT_MENU_OPEN_TAB));
}
#if defined(OS_MACOSX)
load_time_data.SetBoolean(
"disableCreateAppShortcut",
CommandLine::ForCurrentProcess()->HasSwitch(switches::kDisableAppShims));
#endif
#if defined(OS_CHROMEOS)
load_time_data.SetString("expandMenu",
l10n_util::GetStringUTF16(IDS_NEW_TAB_CLOSE_MENU_EXPAND));
#endif
NewTabPageHandler::GetLocalizedValues(profile_, &load_time_data);
NTPLoginHandler::GetLocalizedValues(profile_, &load_time_data);
webui::SetFontAndTextDirection(&load_time_data);
load_time_data.SetBoolean("anim",
gfx::Animation::ShouldRenderRichAnimation());
ui::ThemeProvider* tp = ThemeServiceFactory::GetForProfile(profile_);
int alignment = tp->GetDisplayProperty(
ThemeProperties::NTP_BACKGROUND_ALIGNMENT);
load_time_data.SetString("themegravity",
(alignment & ThemeProperties::ALIGN_RIGHT) ? "right" : "");
if (first_run::IsChromeFirstRun()) {
NotificationPromo::HandleClosed(NotificationPromo::NTP_NOTIFICATION_PROMO);
} else {
NotificationPromo notification_promo;
notification_promo.InitFromPrefs(NotificationPromo::NTP_NOTIFICATION_PROMO);
if (notification_promo.CanShow()) {
load_time_data.SetString("notificationPromoText",
notification_promo.promo_text());
DVLOG(1) << "Notification promo:" << notification_promo.promo_text();
}
NotificationPromo bubble_promo;
bubble_promo.InitFromPrefs(NotificationPromo::NTP_BUBBLE_PROMO);
if (bubble_promo.CanShow()) {
load_time_data.SetString("bubblePromoText",
bubble_promo.promo_text());
DVLOG(1) << "Bubble promo:" << bubble_promo.promo_text();
}
}
bool show_other_sessions_menu = should_show_other_devices_menu_ &&
!CommandLine::ForCurrentProcess()->HasSwitch(
switches::kDisableNTPOtherSessionsMenu);
load_time_data.SetBoolean("showOtherSessionsMenu", show_other_sessions_menu);
load_time_data.SetBoolean("isUserSignedIn",
!prefs->GetString(prefs::kGoogleServicesUsername).empty());
base::StringPiece new_tab_html(ResourceBundle::GetSharedInstance().
GetRawDataResource(IDR_NEW_TAB_4_HTML));
webui::UseVersion2 version2;
std::string full_html =
webui::GetI18nTemplateHtml(new_tab_html, &load_time_data);
new_tab_html_ = base::RefCountedString::TakeString(&full_html);
}
| 1 | CVE-2013-6622 | CWE-399 | Resource Management Errors | Weaknesses in this category are related to improper management of system resources. | Not Found in CWE Page | 9,705 |
linux-2.6 | 6a860c979b35469e4d77da781a96bdb2ca05ae64 | static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
struct splice_desc *sd)
{
struct file *file = sd->u.file;
struct address_space *mapping = file->f_mapping;
unsigned int offset, this_len;
struct page *page;
pgoff_t index;
int ret;
/*
* make sure the data in this buffer is uptodate
*/
ret = buf->ops->confirm(pipe, buf);
if (unlikely(ret))
return ret;
index = sd->pos >> PAGE_CACHE_SHIFT;
offset = sd->pos & ~PAGE_CACHE_MASK;
this_len = sd->len;
if (this_len + offset > PAGE_CACHE_SIZE)
this_len = PAGE_CACHE_SIZE - offset;
find_page:
page = find_lock_page(mapping, index);
if (!page) {
ret = -ENOMEM;
page = page_cache_alloc_cold(mapping);
if (unlikely(!page))
goto out_ret;
/*
* This will also lock the page
*/
ret = add_to_page_cache_lru(page, mapping, index,
GFP_KERNEL);
if (unlikely(ret))
goto out_release;
}
ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
if (unlikely(ret)) {
loff_t isize = i_size_read(mapping->host);
if (ret != AOP_TRUNCATED_PAGE)
unlock_page(page);
page_cache_release(page);
if (ret == AOP_TRUNCATED_PAGE)
goto find_page;
/*
* prepare_write() may have instantiated a few blocks
* outside i_size. Trim these off again.
*/
if (sd->pos + this_len > isize)
vmtruncate(mapping->host, isize);
goto out_ret;
}
if (buf->page != page) {
/*
* Careful, ->map() uses KM_USER0!
*/
char *src = buf->ops->map(pipe, buf, 1);
char *dst = kmap_atomic(page, KM_USER1);
memcpy(dst + offset, src + buf->offset, this_len);
flush_dcache_page(page);
kunmap_atomic(dst, KM_USER1);
buf->ops->unmap(pipe, buf, src);
}
ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
if (ret) {
if (ret == AOP_TRUNCATED_PAGE) {
page_cache_release(page);
goto find_page;
}
if (ret < 0)
goto out;
/*
* Partial write has happened, so 'ret' already initialized by
* number of bytes written, Where is nothing we have to do here.
*/
} else
ret = this_len;
/*
* Return the number of bytes written and mark page as
* accessed, we are now done!
*/
mark_page_accessed(page);
out:
unlock_page(page);
out_release:
page_cache_release(page);
out_ret:
return ret;
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 20,669 |
libyang | 6cc51b1757dfbb7cff92de074ada65e8523289a6 | static void
yy_symbol_value_print (FILE *yyo, int yytype, YYSTYPE const * const yyvaluep, YYLTYPE const * const yylocationp, void *scanner, struct yang_parameter *param)
{
FILE *yyoutput = yyo;
YYUSE (yyoutput);
YYUSE (yylocationp);
YYUSE (scanner);
YYUSE (param);
if (!yyvaluep)
return;
# ifdef YYPRINT
if (yytype < YYNTOKENS)
YYPRINT (yyo, yytoknum[yytype], *yyvaluep);
# endif
YYUSE (yytype); | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 20,008 |
linux | acff81ec2c79492b180fade3c2894425cd35a545 | int ovl_setattr(struct dentry *dentry, struct iattr *attr)
{
int err;
struct dentry *upperdentry;
err = ovl_want_write(dentry);
if (err)
goto out;
upperdentry = ovl_dentry_upper(dentry);
if (upperdentry) {
mutex_lock(&upperdentry->d_inode->i_mutex);
err = notify_change(upperdentry, attr, NULL);
mutex_unlock(&upperdentry->d_inode->i_mutex);
} else {
err = ovl_copy_up_last(dentry, attr, false);
}
ovl_drop_write(dentry);
out:
return err;
}
| 1 | CVE-2015-8660 | CWE-264 | Permissions, Privileges, and Access Controls | Weaknesses in this category are related to the management of permissions, privileges, and other security features that are used to perform access control. | Not Found in CWE Page | 2,021 |
Android | 19c47afbc402542720ddd280e1bbde3b2277b586 | void SoundChannel::nextEvent()
{
sp<Sample> sample;
int nextChannelID;
float leftVolume;
float rightVolume;
int priority;
int loop;
float rate;
{
Mutex::Autolock lock(&mLock);
nextChannelID = mNextEvent.channelID();
if (nextChannelID == 0) {
ALOGV("stolen channel has no event");
return;
}
sample = mNextEvent.sample();
leftVolume = mNextEvent.leftVolume();
rightVolume = mNextEvent.rightVolume();
priority = mNextEvent.priority();
loop = mNextEvent.loop();
rate = mNextEvent.rate();
}
ALOGV("Starting stolen channel %d -> %d", channelID(), nextChannelID);
play(sample, nextChannelID, leftVolume, rightVolume, priority, loop, rate);
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 14,956 |
ImageMagick6 | 27b1c74979ac473a430e266ff6c4b645664bc805 | MagickExport MagickBooleanType IsTaintImage(const Image *image)
{
char
magick[MaxTextExtent],
filename[MaxTextExtent];
register const Image
*p;
assert(image != (Image *) NULL);
if (image->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
assert(image->signature == MagickCoreSignature);
(void) CopyMagickString(magick,image->magick,MaxTextExtent);
(void) CopyMagickString(filename,image->filename,MaxTextExtent);
for (p=image; p != (Image *) NULL; p=GetNextImageInList(p))
{
if (p->taint != MagickFalse)
return(MagickTrue);
if (LocaleCompare(p->magick,magick) != 0)
return(MagickTrue);
if (LocaleCompare(p->filename,filename) != 0)
return(MagickTrue);
}
return(MagickFalse);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 11,938 |
libarchive | fd7e0c02e272913a0a8b6d492c7260dfca0b1408 | archive_read_format_cpio_cleanup(struct archive_read *a)
{
struct cpio *cpio;
cpio = (struct cpio *)(a->format->data);
/* Free inode->name map */
while (cpio->links_head != NULL) {
struct links_entry *lp = cpio->links_head->next;
if (cpio->links_head->name)
free(cpio->links_head->name);
free(cpio->links_head);
cpio->links_head = lp;
}
free(cpio);
(a->format->data) = NULL;
return (ARCHIVE_OK);
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 19,365 |
Android | d2f47191538837e796e2b10c1ff7e1ee35f6e0ab | void SoftMPEG4::onQueueFilled(OMX_U32 /* portIndex */) {
if (mSignalledError || mOutputPortSettingsChange != NONE) {
return;
}
List<BufferInfo *> &inQueue = getPortQueue(0);
List<BufferInfo *> &outQueue = getPortQueue(1);
while (!inQueue.empty() && outQueue.size() == kNumOutputBuffers) {
BufferInfo *inInfo = *inQueue.begin();
OMX_BUFFERHEADERTYPE *inHeader = inInfo->mHeader;
if (inHeader == NULL) {
inQueue.erase(inQueue.begin());
inInfo->mOwnedByUs = false;
continue;
}
PortInfo *port = editPortInfo(1);
OMX_BUFFERHEADERTYPE *outHeader =
port->mBuffers.editItemAt(mNumSamplesOutput & 1).mHeader;
if (inHeader->nFilledLen == 0) {
inQueue.erase(inQueue.begin());
inInfo->mOwnedByUs = false;
notifyEmptyBufferDone(inHeader);
++mInputBufferCount;
if (inHeader->nFlags & OMX_BUFFERFLAG_EOS) {
outHeader->nFilledLen = 0;
outHeader->nFlags = OMX_BUFFERFLAG_EOS;
List<BufferInfo *>::iterator it = outQueue.begin();
while ((*it)->mHeader != outHeader) {
++it;
}
BufferInfo *outInfo = *it;
outInfo->mOwnedByUs = false;
outQueue.erase(it);
outInfo = NULL;
notifyFillBufferDone(outHeader);
outHeader = NULL;
}
return;
}
uint8_t *bitstream = inHeader->pBuffer + inHeader->nOffset;
uint32_t *start_code = (uint32_t *)bitstream;
bool volHeader = *start_code == 0xB0010000;
if (volHeader) {
PVCleanUpVideoDecoder(mHandle);
mInitialized = false;
}
if (!mInitialized) {
uint8_t *vol_data[1];
int32_t vol_size = 0;
vol_data[0] = NULL;
if ((inHeader->nFlags & OMX_BUFFERFLAG_CODECCONFIG) || volHeader) {
vol_data[0] = bitstream;
vol_size = inHeader->nFilledLen;
}
MP4DecodingMode mode =
(mMode == MODE_MPEG4) ? MPEG4_MODE : H263_MODE;
Bool success = PVInitVideoDecoder(
mHandle, vol_data, &vol_size, 1,
outputBufferWidth(), outputBufferHeight(), mode);
if (!success) {
ALOGW("PVInitVideoDecoder failed. Unsupported content?");
notify(OMX_EventError, OMX_ErrorUndefined, 0, NULL);
mSignalledError = true;
return;
}
MP4DecodingMode actualMode = PVGetDecBitstreamMode(mHandle);
if (mode != actualMode) {
notify(OMX_EventError, OMX_ErrorUndefined, 0, NULL);
mSignalledError = true;
return;
}
PVSetPostProcType((VideoDecControls *) mHandle, 0);
bool hasFrameData = false;
if (inHeader->nFlags & OMX_BUFFERFLAG_CODECCONFIG) {
inInfo->mOwnedByUs = false;
inQueue.erase(inQueue.begin());
inInfo = NULL;
notifyEmptyBufferDone(inHeader);
inHeader = NULL;
} else if (volHeader) {
hasFrameData = true;
}
mInitialized = true;
if (mode == MPEG4_MODE && handlePortSettingsChange()) {
return;
}
if (!hasFrameData) {
continue;
}
}
if (!mFramesConfigured) {
PortInfo *port = editPortInfo(1);
OMX_BUFFERHEADERTYPE *outHeader = port->mBuffers.editItemAt(1).mHeader;
PVSetReferenceYUV(mHandle, outHeader->pBuffer);
mFramesConfigured = true;
}
uint32_t useExtTimestamp = (inHeader->nOffset == 0);
uint32_t timestamp = 0xFFFFFFFF;
if (useExtTimestamp) {
mPvToOmxTimeMap.add(mPvTime, inHeader->nTimeStamp);
timestamp = mPvTime;
mPvTime++;
}
int32_t bufferSize = inHeader->nFilledLen;
int32_t tmp = bufferSize;
if (PVDecodeVideoFrame(
mHandle, &bitstream, ×tamp, &tmp,
&useExtTimestamp,
outHeader->pBuffer) != PV_TRUE) {
ALOGE("failed to decode video frame.");
notify(OMX_EventError, OMX_ErrorUndefined, 0, NULL);
mSignalledError = true;
return;
}
if (handlePortSettingsChange()) {
return;
}
outHeader->nTimeStamp = mPvToOmxTimeMap.valueFor(timestamp);
mPvToOmxTimeMap.removeItem(timestamp);
inHeader->nOffset += bufferSize;
inHeader->nFilledLen = 0;
if (inHeader->nFlags & OMX_BUFFERFLAG_EOS) {
outHeader->nFlags = OMX_BUFFERFLAG_EOS;
} else {
outHeader->nFlags = 0;
}
if (inHeader->nFilledLen == 0) {
inInfo->mOwnedByUs = false;
inQueue.erase(inQueue.begin());
inInfo = NULL;
notifyEmptyBufferDone(inHeader);
inHeader = NULL;
}
++mInputBufferCount;
outHeader->nOffset = 0;
outHeader->nFilledLen = (mWidth * mHeight * 3) / 2;
List<BufferInfo *>::iterator it = outQueue.begin();
while ((*it)->mHeader != outHeader) {
++it;
}
BufferInfo *outInfo = *it;
outInfo->mOwnedByUs = false;
outQueue.erase(it);
outInfo = NULL;
notifyFillBufferDone(outHeader);
outHeader = NULL;
++mNumSamplesOutput;
}
}
| 1 | CVE-2016-2487 | CWE-20 | Improper Input Validation | The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly. |
Phase: Architecture and Design
Strategy: Attack Surface Reduction
Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111]
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173).
Phases: Architecture and Design; Implementation
Strategy: Attack Surface Reduction
Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls.
Phase: Implementation
Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
Effectiveness: High
Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings.
Phase: Implementation
When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined.
Phase: Implementation
Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow.
Phase: Implementation
Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained.
Phase: Implementation
Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content.
Phase: Implementation
When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so. | 534 |
ImageMagick | f050a9b18ba537952abf20db2e18d62f07b4956e | static Image *ReadDOTImage(const ImageInfo *image_info,ExceptionInfo *exception)
{
char
command[MagickPathExtent];
const char
*option;
graph_t
*graph;
Image
*image;
ImageInfo
*read_info;
MagickBooleanType
status;
/*
Open image file.
*/
assert(image_info != (const ImageInfo *) NULL);
assert(image_info->signature == MagickCoreSignature);
if (image_info->debug != MagickFalse)
(void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",
image_info->filename);
assert(exception != (ExceptionInfo *) NULL);
assert(exception->signature == MagickCoreSignature);
assert(graphic_context != (GVC_t *) NULL);
image=AcquireImage(image_info,exception);
status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception);
if (status == MagickFalse)
return(DestroyImageList(image));
read_info=CloneImageInfo(image_info);
SetImageInfoBlob(read_info,(void *) NULL,0);
(void) CopyMagickString(read_info->magick,"SVG",MagickPathExtent);
(void) AcquireUniqueFilename(read_info->filename);
(void) FormatLocaleString(command,MagickPathExtent,"-Tsvg -o%s %s",
read_info->filename,image_info->filename);
#if !defined(WITH_CGRAPH)
graph=agread(GetBlobFileHandle(image));
#else
graph=agread(GetBlobFileHandle(image),(Agdisc_t *) NULL);
#endif
if (graph == (graph_t *) NULL)
{
(void) RelinquishUniqueFileResource(read_info->filename);
return(DestroyImageList(image));
}
option=GetImageOption(image_info,"dot:layout-engine");
if (option == (const char *) NULL)
gvLayout(graphic_context,graph,(char *) "dot");
else
gvLayout(graphic_context,graph,(char *) option);
gvRenderFilename(graphic_context,graph,(char *) "svg",read_info->filename);
gvFreeLayout(graphic_context,graph);
agclose(graph);
image=DestroyImageList(image);
/*
Read SVG graph.
*/
(void) CopyMagickString(read_info->magick,"SVG",MaxTextExtent);
image=ReadImage(read_info,exception);
(void) RelinquishUniqueFileResource(read_info->filename);
read_info=DestroyImageInfo(read_info);
if (image == (Image *) NULL)
return((Image *) NULL);
return(GetFirstImageInList(image));
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 20,695 |
lxde | f99163c6ff8b2f57c5f37b1ce5d62cf7450d4648 | static gboolean lxterminal_socket_accept_client(GIOChannel * source, GIOCondition condition, LXTermWindow * lxtermwin)
{
if (condition & G_IO_IN)
{
/* Accept the new connection. */
int fd = accept(g_io_channel_unix_get_fd(source), NULL, NULL);
if (fd < 0)
g_warning("Accept failed: %s\n", g_strerror(errno));
/* Add O_NONBLOCK to the flags. */
fcntl(fd, F_SETFL, fcntl(fd, F_GETFL, 0) | O_NONBLOCK);
/* Create a glib I/O channel. */
GIOChannel * gio = g_io_channel_unix_new(fd);
if (gio == NULL)
g_warning("Cannot create new GIOChannel\n");
else
{
/* Set up the glib I/O channel and add it to the event loop. */
g_io_channel_set_encoding(gio, NULL, NULL);
g_io_add_watch(gio, G_IO_IN | G_IO_HUP, (GIOFunc) lxterminal_socket_read_channel, lxtermwin);
g_io_channel_unref(gio);
}
}
/* Our listening socket hung up - we are dead. */
if (condition & G_IO_HUP)
g_error("Server listening socket closed unexpectedly\n");
return TRUE;
}
| 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 21,954 |
spice | ca5bbc5692e052159bce1a75f55dc60b36078749 | void stat_remove_counter(SpiceServer *reds, RedStatCounter *counter)
{
if (counter->counter) {
stat_file_remove_counter(reds->stat_file, counter->counter);
counter->counter = NULL;
}
} | 0 | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | NOT_APPLICABLE | 11,845 |
linux | 89c2b3b74918200e46699338d7bcc19b1ea12110 | static int io_read(struct io_kiocb *req, unsigned int issue_flags)
{
struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
struct kiocb *kiocb = &req->rw.kiocb;
struct iov_iter __iter, *iter = &__iter;
struct io_async_rw *rw = req->async_data;
ssize_t io_size, ret, ret2;
bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
if (rw) {
iter = &rw->iter;
iovec = NULL;
} else {
ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
if (ret < 0)
return ret;
}
io_size = iov_iter_count(iter);
req->result = io_size;
/* Ensure we clear previously set non-block flag */
if (!force_nonblock)
kiocb->ki_flags &= ~IOCB_NOWAIT;
else
kiocb->ki_flags |= IOCB_NOWAIT;
/* If the file doesn't support async, just async punt */
if (force_nonblock && !io_file_supports_async(req, READ)) {
ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
return ret ?: -EAGAIN;
}
ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
if (unlikely(ret)) {
kfree(iovec);
return ret;
}
ret = io_iter_do_read(req, iter);
if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
req->flags &= ~REQ_F_REISSUE;
/* IOPOLL retry should happen for io-wq threads */
if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
goto done;
/* no retry on NONBLOCK nor RWF_NOWAIT */
if (req->flags & REQ_F_NOWAIT)
goto done;
/* some cases will consume bytes even on error returns */
iov_iter_revert(iter, io_size - iov_iter_count(iter));
ret = 0;
} else if (ret == -EIOCBQUEUED) {
goto out_free;
} else if (ret <= 0 || ret == io_size || !force_nonblock ||
(req->flags & REQ_F_NOWAIT) || !(req->flags & REQ_F_ISREG)) {
/* read all, failed, already did sync or don't want to retry */
goto done;
}
ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
if (ret2)
return ret2;
iovec = NULL;
rw = req->async_data;
/* now use our persistent iterator, if we aren't already */
iter = &rw->iter;
do {
io_size -= ret;
rw->bytes_done += ret;
/* if we can retry, do so with the callbacks armed */
if (!io_rw_should_retry(req)) {
kiocb->ki_flags &= ~IOCB_WAITQ;
return -EAGAIN;
}
/*
* Now retry read with the IOCB_WAITQ parts set in the iocb. If
* we get -EIOCBQUEUED, then we'll get a notification when the
* desired page gets unlocked. We can also get a partial read
* here, and if we do, then just retry at the new offset.
*/
ret = io_iter_do_read(req, iter);
if (ret == -EIOCBQUEUED)
return 0;
/* we got some bytes, but not all. retry. */
kiocb->ki_flags &= ~IOCB_WAITQ;
} while (ret > 0 && ret < io_size);
done:
kiocb_done(kiocb, ret, issue_flags);
out_free:
/* it's faster to check here then delegate to kfree */
if (iovec)
kfree(iovec);
return 0;
} | 1 | CVE-2022-1508 | CWE-125 | Out-of-bounds Read | The product reads data past the end, or before the beginning, of the intended buffer. | Phase: Implementation
Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
To reduce the likelihood of introducing an out-of-bounds read, ensure that you validate and ensure correct calculations for any length argument, buffer size calculation, or offset. Be especially careful of relying on a sentinel (i.e. special character such as NUL) in untrusted inputs.
Phase: Architecture and Design
Strategy: Language Selection
Use a language that provides appropriate memory abstractions. | 1,301 |
Android | 560ccdb509a7b86186fac0fce1b25bd9a3e6a6e8 | OMX_ERRORTYPE omx_venc::set_parameter(OMX_IN OMX_HANDLETYPE hComp,
OMX_IN OMX_INDEXTYPE paramIndex,
OMX_IN OMX_PTR paramData)
{
(void)hComp;
OMX_ERRORTYPE eRet = OMX_ErrorNone;
if (m_state == OMX_StateInvalid) {
DEBUG_PRINT_ERROR("ERROR: Set Param in Invalid State");
return OMX_ErrorInvalidState;
}
if (paramData == NULL) {
DEBUG_PRINT_ERROR("ERROR: Get Param in Invalid paramData");
return OMX_ErrorBadParameter;
}
/*set_parameter can be called in loaded state
or disabled port */
if (m_state == OMX_StateLoaded
|| m_sInPortDef.bEnabled == OMX_FALSE
|| m_sOutPortDef.bEnabled == OMX_FALSE) {
DEBUG_PRINT_LOW("Set Parameter called in valid state");
} else {
DEBUG_PRINT_ERROR("ERROR: Set Parameter called in Invalid State");
return OMX_ErrorIncorrectStateOperation;
}
switch ((int)paramIndex) {
case OMX_IndexParamPortDefinition:
{
OMX_PARAM_PORTDEFINITIONTYPE *portDefn;
portDefn = (OMX_PARAM_PORTDEFINITIONTYPE *) paramData;
DEBUG_PRINT_LOW("set_parameter: OMX_IndexParamPortDefinition H= %d, W = %d",
(int)portDefn->format.video.nFrameHeight,
(int)portDefn->format.video.nFrameWidth);
if (PORT_INDEX_IN == portDefn->nPortIndex) {
if (!dev_is_video_session_supported(portDefn->format.video.nFrameWidth,
portDefn->format.video.nFrameHeight)) {
DEBUG_PRINT_ERROR("video session not supported");
omx_report_unsupported_setting();
return OMX_ErrorUnsupportedSetting;
}
DEBUG_PRINT_LOW("i/p actual cnt requested = %u", (unsigned int)portDefn->nBufferCountActual);
DEBUG_PRINT_LOW("i/p min cnt requested = %u", (unsigned int)portDefn->nBufferCountMin);
DEBUG_PRINT_LOW("i/p buffersize requested = %u", (unsigned int)portDefn->nBufferSize);
if (portDefn->nBufferCountMin > portDefn->nBufferCountActual) {
DEBUG_PRINT_ERROR("ERROR: (In_PORT) Min buffers (%u) > actual count (%u)",
(unsigned int)portDefn->nBufferCountMin, (unsigned int)portDefn->nBufferCountActual);
return OMX_ErrorUnsupportedSetting;
}
if (handle->venc_set_param(paramData,OMX_IndexParamPortDefinition) != true) {
DEBUG_PRINT_ERROR("ERROR: venc_set_param input failed");
return handle->hw_overload ? OMX_ErrorInsufficientResources :
OMX_ErrorUnsupportedSetting;
}
DEBUG_PRINT_LOW("i/p previous actual cnt = %u", (unsigned int)m_sInPortDef.nBufferCountActual);
DEBUG_PRINT_LOW("i/p previous min cnt = %u", (unsigned int)m_sInPortDef.nBufferCountMin);
memcpy(&m_sInPortDef, portDefn,sizeof(OMX_PARAM_PORTDEFINITIONTYPE));
#ifdef _ANDROID_ICS_
if (portDefn->format.video.eColorFormat ==
(OMX_COLOR_FORMATTYPE)QOMX_COLOR_FormatAndroidOpaque) {
m_sInPortDef.format.video.eColorFormat = (OMX_COLOR_FORMATTYPE)
QOMX_COLOR_FORMATYUV420PackedSemiPlanar32m;
if (!mUseProxyColorFormat) {
if (!c2d_conv.init()) {
DEBUG_PRINT_ERROR("C2D init failed");
return OMX_ErrorUnsupportedSetting;
}
DEBUG_PRINT_HIGH("C2D init is successful");
}
mUseProxyColorFormat = true;
m_input_msg_id = OMX_COMPONENT_GENERATE_ETB_OPQ;
} else
mUseProxyColorFormat = false;
#endif
/*Query Input Buffer Requirements*/
dev_get_buf_req (&m_sInPortDef.nBufferCountMin,
&m_sInPortDef.nBufferCountActual,
&m_sInPortDef.nBufferSize,
m_sInPortDef.nPortIndex);
/*Query ouput Buffer Requirements*/
dev_get_buf_req (&m_sOutPortDef.nBufferCountMin,
&m_sOutPortDef.nBufferCountActual,
&m_sOutPortDef.nBufferSize,
m_sOutPortDef.nPortIndex);
m_sInPortDef.nBufferCountActual = portDefn->nBufferCountActual;
} else if (PORT_INDEX_OUT == portDefn->nPortIndex) {
DEBUG_PRINT_LOW("o/p actual cnt requested = %u", (unsigned int)portDefn->nBufferCountActual);
DEBUG_PRINT_LOW("o/p min cnt requested = %u", (unsigned int)portDefn->nBufferCountMin);
DEBUG_PRINT_LOW("o/p buffersize requested = %u", (unsigned int)portDefn->nBufferSize);
if (portDefn->nBufferCountMin > portDefn->nBufferCountActual) {
DEBUG_PRINT_ERROR("ERROR: (Out_PORT) Min buffers (%u) > actual count (%u)",
(unsigned int)portDefn->nBufferCountMin, (unsigned int)portDefn->nBufferCountActual);
return OMX_ErrorUnsupportedSetting;
}
if (handle->venc_set_param(paramData,OMX_IndexParamPortDefinition) != true) {
DEBUG_PRINT_ERROR("ERROR: venc_set_param output failed");
return OMX_ErrorUnsupportedSetting;
}
#ifdef _MSM8974_
/*Query ouput Buffer Requirements*/
dev_get_buf_req(&m_sOutPortDef.nBufferCountMin,
&m_sOutPortDef.nBufferCountActual,
&m_sOutPortDef.nBufferSize,
m_sOutPortDef.nPortIndex);
#endif
memcpy(&m_sOutPortDef,portDefn,sizeof(struct OMX_PARAM_PORTDEFINITIONTYPE));
update_profile_level(); //framerate , bitrate
DEBUG_PRINT_LOW("o/p previous actual cnt = %u", (unsigned int)m_sOutPortDef.nBufferCountActual);
DEBUG_PRINT_LOW("o/p previous min cnt = %u", (unsigned int)m_sOutPortDef.nBufferCountMin);
m_sOutPortDef.nBufferCountActual = portDefn->nBufferCountActual;
} else {
DEBUG_PRINT_ERROR("ERROR: Set_parameter: Bad Port idx %d",
(int)portDefn->nPortIndex);
eRet = OMX_ErrorBadPortIndex;
}
m_sConfigFramerate.xEncodeFramerate = portDefn->format.video.xFramerate;
m_sConfigBitrate.nEncodeBitrate = portDefn->format.video.nBitrate;
m_sParamBitrate.nTargetBitrate = portDefn->format.video.nBitrate;
}
break;
case OMX_IndexParamVideoPortFormat:
{
OMX_VIDEO_PARAM_PORTFORMATTYPE *portFmt =
(OMX_VIDEO_PARAM_PORTFORMATTYPE *)paramData;
DEBUG_PRINT_LOW("set_parameter: OMX_IndexParamVideoPortFormat %d",
portFmt->eColorFormat);
if (PORT_INDEX_IN == portFmt->nPortIndex) {
if (handle->venc_set_param(paramData,OMX_IndexParamVideoPortFormat) != true) {
return OMX_ErrorUnsupportedSetting;
}
DEBUG_PRINT_LOW("set_parameter: OMX_IndexParamVideoPortFormat %d",
portFmt->eColorFormat);
update_profile_level(); //framerate
#ifdef _ANDROID_ICS_
if (portFmt->eColorFormat ==
(OMX_COLOR_FORMATTYPE)QOMX_COLOR_FormatAndroidOpaque) {
m_sInPortFormat.eColorFormat = (OMX_COLOR_FORMATTYPE)
QOMX_COLOR_FORMATYUV420PackedSemiPlanar32m;
if (!mUseProxyColorFormat) {
if (!c2d_conv.init()) {
DEBUG_PRINT_ERROR("C2D init failed");
return OMX_ErrorUnsupportedSetting;
}
DEBUG_PRINT_HIGH("C2D init is successful");
}
mUseProxyColorFormat = true;
m_input_msg_id = OMX_COMPONENT_GENERATE_ETB_OPQ;
} else
#endif
{
m_sInPortFormat.eColorFormat = portFmt->eColorFormat;
m_sInPortDef.format.video.eColorFormat = portFmt->eColorFormat;
m_input_msg_id = OMX_COMPONENT_GENERATE_ETB;
mUseProxyColorFormat = false;
}
m_sInPortFormat.xFramerate = portFmt->xFramerate;
}
}
break;
case OMX_IndexParamVideoInit:
{ //TODO, do we need this index set param
OMX_PORT_PARAM_TYPE* pParam = (OMX_PORT_PARAM_TYPE*)(paramData);
DEBUG_PRINT_LOW("Set OMX_IndexParamVideoInit called");
break;
}
case OMX_IndexParamVideoBitrate:
{
OMX_VIDEO_PARAM_BITRATETYPE* pParam = (OMX_VIDEO_PARAM_BITRATETYPE*)paramData;
DEBUG_PRINT_LOW("set_parameter: OMX_IndexParamVideoBitrate");
if (handle->venc_set_param(paramData,OMX_IndexParamVideoBitrate) != true) {
return OMX_ErrorUnsupportedSetting;
}
m_sParamBitrate.nTargetBitrate = pParam->nTargetBitrate;
m_sParamBitrate.eControlRate = pParam->eControlRate;
update_profile_level(); //bitrate
m_sConfigBitrate.nEncodeBitrate = pParam->nTargetBitrate;
m_sInPortDef.format.video.nBitrate = pParam->nTargetBitrate;
m_sOutPortDef.format.video.nBitrate = pParam->nTargetBitrate;
DEBUG_PRINT_LOW("bitrate = %u", (unsigned int)m_sOutPortDef.format.video.nBitrate);
break;
}
case OMX_IndexParamVideoMpeg4:
{
OMX_VIDEO_PARAM_MPEG4TYPE* pParam = (OMX_VIDEO_PARAM_MPEG4TYPE*)paramData;
OMX_VIDEO_PARAM_MPEG4TYPE mp4_param;
memcpy(&mp4_param, pParam, sizeof(struct OMX_VIDEO_PARAM_MPEG4TYPE));
DEBUG_PRINT_LOW("set_parameter: OMX_IndexParamVideoMpeg4");
if (pParam->eProfile == OMX_VIDEO_MPEG4ProfileAdvancedSimple) {
#ifdef MAX_RES_1080P
if (pParam->nBFrames) {
DEBUG_PRINT_HIGH("INFO: Only 1 Bframe is supported");
mp4_param.nBFrames = 1;
}
#else
if (pParam->nBFrames) {
DEBUG_PRINT_ERROR("Warning: B frames not supported");
mp4_param.nBFrames = 0;
}
#endif
#ifdef _MSM8974_
if (pParam->nBFrames || bframes)
mp4_param.nBFrames = (pParam->nBFrames > (unsigned int) bframes)? pParam->nBFrames : bframes;
DEBUG_PRINT_HIGH("MPEG4: %u BFrames are being set", (unsigned int)mp4_param.nBFrames);
#endif
} else {
if (pParam->nBFrames) {
DEBUG_PRINT_ERROR("Warning: B frames not supported");
mp4_param.nBFrames = 0;
}
}
if (handle->venc_set_param(&mp4_param,OMX_IndexParamVideoMpeg4) != true) {
return OMX_ErrorUnsupportedSetting;
}
memcpy(&m_sParamMPEG4,pParam, sizeof(struct OMX_VIDEO_PARAM_MPEG4TYPE));
m_sIntraperiod.nPFrames = m_sParamMPEG4.nPFrames;
if (pParam->nBFrames || bframes)
m_sIntraperiod.nBFrames = m_sParamMPEG4.nBFrames = mp4_param.nBFrames;
else
m_sIntraperiod.nBFrames = m_sParamMPEG4.nBFrames;
break;
}
case OMX_IndexParamVideoH263:
{
OMX_VIDEO_PARAM_H263TYPE* pParam = (OMX_VIDEO_PARAM_H263TYPE*)paramData;
DEBUG_PRINT_LOW("set_parameter: OMX_IndexParamVideoH263");
if (handle->venc_set_param(paramData,OMX_IndexParamVideoH263) != true) {
return OMX_ErrorUnsupportedSetting;
}
memcpy(&m_sParamH263,pParam, sizeof(struct OMX_VIDEO_PARAM_H263TYPE));
m_sIntraperiod.nPFrames = m_sParamH263.nPFrames;
m_sIntraperiod.nBFrames = m_sParamH263.nBFrames;
break;
}
case OMX_IndexParamVideoAvc:
{
OMX_VIDEO_PARAM_AVCTYPE* pParam = (OMX_VIDEO_PARAM_AVCTYPE*)paramData;
OMX_VIDEO_PARAM_AVCTYPE avc_param;
memcpy(&avc_param, pParam, sizeof( struct OMX_VIDEO_PARAM_AVCTYPE));
DEBUG_PRINT_LOW("set_parameter: OMX_IndexParamVideoAvc");
if ((pParam->eProfile == OMX_VIDEO_AVCProfileHigh)||
(pParam->eProfile == OMX_VIDEO_AVCProfileMain)) {
#ifdef MAX_RES_1080P
if (pParam->nBFrames) {
DEBUG_PRINT_HIGH("INFO: Only 1 Bframe is supported");
avc_param.nBFrames = 1;
}
if (pParam->nRefFrames != 2) {
DEBUG_PRINT_ERROR("Warning: 2 RefFrames are needed, changing RefFrames from %u to 2", (unsigned int)pParam->nRefFrames);
avc_param.nRefFrames = 2;
}
#else
if (pParam->nBFrames) {
DEBUG_PRINT_ERROR("Warning: B frames not supported");
avc_param.nBFrames = 0;
}
if (pParam->nRefFrames != 1) {
DEBUG_PRINT_ERROR("Warning: Only 1 RefFrame is supported, changing RefFrame from %u to 1)", (unsigned int)pParam->nRefFrames);
avc_param.nRefFrames = 1;
}
#endif
#ifdef _MSM8974_
if (pParam->nBFrames || bframes) {
avc_param.nBFrames = (pParam->nBFrames > (unsigned int) bframes)? pParam->nBFrames : bframes;
avc_param.nRefFrames = (avc_param.nBFrames < 4)? avc_param.nBFrames + 1 : 4;
}
DEBUG_PRINT_HIGH("AVC: RefFrames: %u, BFrames: %u", (unsigned int)avc_param.nRefFrames, (unsigned int)avc_param.nBFrames);
avc_param.bEntropyCodingCABAC = (OMX_BOOL)(avc_param.bEntropyCodingCABAC && entropy);
avc_param.nCabacInitIdc = entropy ? avc_param.nCabacInitIdc : 0;
#endif
} else {
if (pParam->nRefFrames != 1) {
DEBUG_PRINT_ERROR("Warning: Only 1 RefFrame is supported, changing RefFrame from %u to 1)", (unsigned int)pParam->nRefFrames);
avc_param.nRefFrames = 1;
}
if (pParam->nBFrames) {
DEBUG_PRINT_ERROR("Warning: B frames not supported");
avc_param.nBFrames = 0;
}
}
if (handle->venc_set_param(&avc_param,OMX_IndexParamVideoAvc) != true) {
return OMX_ErrorUnsupportedSetting;
}
memcpy(&m_sParamAVC,pParam, sizeof(struct OMX_VIDEO_PARAM_AVCTYPE));
m_sIntraperiod.nPFrames = m_sParamAVC.nPFrames;
if (pParam->nBFrames || bframes)
m_sIntraperiod.nBFrames = m_sParamAVC.nBFrames = avc_param.nBFrames;
else
m_sIntraperiod.nBFrames = m_sParamAVC.nBFrames;
break;
}
case (OMX_INDEXTYPE)OMX_IndexParamVideoVp8:
{
OMX_VIDEO_PARAM_VP8TYPE* pParam = (OMX_VIDEO_PARAM_VP8TYPE*)paramData;
OMX_VIDEO_PARAM_VP8TYPE vp8_param;
DEBUG_PRINT_LOW("set_parameter: OMX_IndexParamVideoVp8");
if (pParam->nDCTPartitions != m_sParamVP8.nDCTPartitions ||
pParam->bErrorResilientMode != m_sParamVP8.bErrorResilientMode) {
DEBUG_PRINT_ERROR("VP8 doesn't support nDCTPartitions or bErrorResilientMode");
}
memcpy(&vp8_param, pParam, sizeof( struct OMX_VIDEO_PARAM_VP8TYPE));
if (handle->venc_set_param(&vp8_param, (OMX_INDEXTYPE)OMX_IndexParamVideoVp8) != true) {
return OMX_ErrorUnsupportedSetting;
}
memcpy(&m_sParamVP8,pParam, sizeof(struct OMX_VIDEO_PARAM_VP8TYPE));
break;
}
case (OMX_INDEXTYPE)OMX_IndexParamVideoHevc:
{
OMX_VIDEO_PARAM_HEVCTYPE* pParam = (OMX_VIDEO_PARAM_HEVCTYPE*)paramData;
OMX_VIDEO_PARAM_HEVCTYPE hevc_param;
DEBUG_PRINT_LOW("set_parameter: OMX_IndexParamVideoHevc");
memcpy(&hevc_param, pParam, sizeof( struct OMX_VIDEO_PARAM_HEVCTYPE));
if (handle->venc_set_param(&hevc_param, (OMX_INDEXTYPE)OMX_IndexParamVideoHevc) != true) {
DEBUG_PRINT_ERROR("Failed : set_parameter: OMX_IndexParamVideoHevc");
return OMX_ErrorUnsupportedSetting;
}
memcpy(&m_sParamHEVC, pParam, sizeof(struct OMX_VIDEO_PARAM_HEVCTYPE));
break;
}
case OMX_IndexParamVideoProfileLevelCurrent:
{
OMX_VIDEO_PARAM_PROFILELEVELTYPE* pParam = (OMX_VIDEO_PARAM_PROFILELEVELTYPE*)paramData;
DEBUG_PRINT_LOW("set_parameter: OMX_IndexParamVideoProfileLevelCurrent");
if (handle->venc_set_param(pParam,OMX_IndexParamVideoProfileLevelCurrent) != true) {
DEBUG_PRINT_ERROR("set_parameter: OMX_IndexParamVideoProfileLevelCurrent failed for Profile: %u "
"Level :%u", (unsigned int)pParam->eProfile, (unsigned int)pParam->eLevel);
return OMX_ErrorUnsupportedSetting;
}
m_sParamProfileLevel.eProfile = pParam->eProfile;
m_sParamProfileLevel.eLevel = pParam->eLevel;
if (!strncmp((char *)m_nkind, "OMX.qcom.video.encoder.mpeg4",\
OMX_MAX_STRINGNAME_SIZE)) {
m_sParamMPEG4.eProfile = (OMX_VIDEO_MPEG4PROFILETYPE)m_sParamProfileLevel.eProfile;
m_sParamMPEG4.eLevel = (OMX_VIDEO_MPEG4LEVELTYPE)m_sParamProfileLevel.eLevel;
DEBUG_PRINT_LOW("MPEG4 profile = %d, level = %d", m_sParamMPEG4.eProfile,
m_sParamMPEG4.eLevel);
} else if (!strncmp((char *)m_nkind, "OMX.qcom.video.encoder.h263",\
OMX_MAX_STRINGNAME_SIZE)) {
m_sParamH263.eProfile = (OMX_VIDEO_H263PROFILETYPE)m_sParamProfileLevel.eProfile;
m_sParamH263.eLevel = (OMX_VIDEO_H263LEVELTYPE)m_sParamProfileLevel.eLevel;
DEBUG_PRINT_LOW("H263 profile = %d, level = %d", m_sParamH263.eProfile,
m_sParamH263.eLevel);
} else if (!strncmp((char *)m_nkind, "OMX.qcom.video.encoder.avc",\
OMX_MAX_STRINGNAME_SIZE)) {
m_sParamAVC.eProfile = (OMX_VIDEO_AVCPROFILETYPE)m_sParamProfileLevel.eProfile;
m_sParamAVC.eLevel = (OMX_VIDEO_AVCLEVELTYPE)m_sParamProfileLevel.eLevel;
DEBUG_PRINT_LOW("AVC profile = %d, level = %d", m_sParamAVC.eProfile,
m_sParamAVC.eLevel);
} else if (!strncmp((char *)m_nkind, "OMX.qcom.video.encoder.avc.secure",\
OMX_MAX_STRINGNAME_SIZE)) {
m_sParamAVC.eProfile = (OMX_VIDEO_AVCPROFILETYPE)m_sParamProfileLevel.eProfile;
m_sParamAVC.eLevel = (OMX_VIDEO_AVCLEVELTYPE)m_sParamProfileLevel.eLevel;
DEBUG_PRINT_LOW("\n AVC profile = %d, level = %d", m_sParamAVC.eProfile,
m_sParamAVC.eLevel);
}
else if (!strncmp((char*)m_nkind, "OMX.qcom.video.encoder.vp8",\
OMX_MAX_STRINGNAME_SIZE)) {
m_sParamVP8.eProfile = (OMX_VIDEO_VP8PROFILETYPE)m_sParamProfileLevel.eProfile;
m_sParamVP8.eLevel = (OMX_VIDEO_VP8LEVELTYPE)m_sParamProfileLevel.eLevel;
DEBUG_PRINT_LOW("VP8 profile = %d, level = %d", m_sParamVP8.eProfile,
m_sParamVP8.eLevel);
}
else if (!strncmp((char*)m_nkind, "OMX.qcom.video.encoder.hevc",\
OMX_MAX_STRINGNAME_SIZE)) {
m_sParamHEVC.eProfile = (OMX_VIDEO_HEVCPROFILETYPE)m_sParamProfileLevel.eProfile;
m_sParamHEVC.eLevel = (OMX_VIDEO_HEVCLEVELTYPE)m_sParamProfileLevel.eLevel;
DEBUG_PRINT_LOW("HEVC profile = %d, level = %d", m_sParamHEVC.eProfile,
m_sParamHEVC.eLevel);
}
break;
}
case OMX_IndexParamStandardComponentRole:
{
OMX_PARAM_COMPONENTROLETYPE *comp_role;
comp_role = (OMX_PARAM_COMPONENTROLETYPE *) paramData;
DEBUG_PRINT_LOW("set_parameter: OMX_IndexParamStandardComponentRole %s",
comp_role->cRole);
if ((m_state == OMX_StateLoaded)&&
!BITMASK_PRESENT(&m_flags,OMX_COMPONENT_IDLE_PENDING)) {
DEBUG_PRINT_LOW("Set Parameter called in valid state");
} else {
DEBUG_PRINT_ERROR("Set Parameter called in Invalid State");
return OMX_ErrorIncorrectStateOperation;
}
if (!strncmp((char*)m_nkind, "OMX.qcom.video.encoder.avc",OMX_MAX_STRINGNAME_SIZE)) {
if (!strncmp((char*)comp_role->cRole,"video_encoder.avc",OMX_MAX_STRINGNAME_SIZE)) {
strlcpy((char*)m_cRole,"video_encoder.avc",OMX_MAX_STRINGNAME_SIZE);
} else {
DEBUG_PRINT_ERROR("ERROR: Setparameter: unknown Index %s", comp_role->cRole);
eRet =OMX_ErrorUnsupportedSetting;
}
} else if (!strncmp((char*)m_nkind, "OMX.qcom.video.encoder.avc.secure",OMX_MAX_STRINGNAME_SIZE)) {
if (!strncmp((char*)comp_role->cRole,"video_encoder.avc",OMX_MAX_STRINGNAME_SIZE)) {
strlcpy((char*)m_cRole,"video_encoder.avc",OMX_MAX_STRINGNAME_SIZE);
} else {
DEBUG_PRINT_ERROR("ERROR: Setparameter: unknown Index %s\n", comp_role->cRole);
eRet =OMX_ErrorUnsupportedSetting;
}
} else if (!strncmp((char*)m_nkind, "OMX.qcom.video.encoder.mpeg4",OMX_MAX_STRINGNAME_SIZE)) {
if (!strncmp((const char*)comp_role->cRole,"video_encoder.mpeg4",OMX_MAX_STRINGNAME_SIZE)) {
strlcpy((char*)m_cRole,"video_encoder.mpeg4",OMX_MAX_STRINGNAME_SIZE);
} else {
DEBUG_PRINT_ERROR("ERROR: Setparameter: unknown Index %s", comp_role->cRole);
eRet = OMX_ErrorUnsupportedSetting;
}
} else if (!strncmp((char*)m_nkind, "OMX.qcom.video.encoder.h263",OMX_MAX_STRINGNAME_SIZE)) {
if (!strncmp((const char*)comp_role->cRole,"video_encoder.h263",OMX_MAX_STRINGNAME_SIZE)) {
strlcpy((char*)m_cRole,"video_encoder.h263",OMX_MAX_STRINGNAME_SIZE);
} else {
DEBUG_PRINT_ERROR("ERROR: Setparameter: unknown Index %s", comp_role->cRole);
eRet =OMX_ErrorUnsupportedSetting;
}
}
#ifdef _MSM8974_
else if (!strncmp((char*)m_nkind, "OMX.qcom.video.encoder.vp8",OMX_MAX_STRINGNAME_SIZE)) {
if (!strncmp((const char*)comp_role->cRole,"video_encoder.vp8",OMX_MAX_STRINGNAME_SIZE)) {
strlcpy((char*)m_cRole,"video_encoder.vp8",OMX_MAX_STRINGNAME_SIZE);
} else {
DEBUG_PRINT_ERROR("ERROR: Setparameter: unknown Index %s", comp_role->cRole);
eRet =OMX_ErrorUnsupportedSetting;
}
}
#endif
else if (!strncmp((char*)m_nkind, "OMX.qcom.video.encoder.hevc",OMX_MAX_STRINGNAME_SIZE)) {
if (!strncmp((const char*)comp_role->cRole,"video_encoder.hevc",OMX_MAX_STRINGNAME_SIZE)) {
strlcpy((char*)m_cRole,"video_encoder.hevc",OMX_MAX_STRINGNAME_SIZE);
} else {
DEBUG_PRINT_ERROR("ERROR: Setparameter: unknown Index %s", comp_role->cRole);
eRet = OMX_ErrorUnsupportedSetting;
}
}
else {
DEBUG_PRINT_ERROR("ERROR: Setparameter: unknown param %s", m_nkind);
eRet = OMX_ErrorInvalidComponentName;
}
break;
}
case OMX_IndexParamPriorityMgmt:
{
DEBUG_PRINT_LOW("set_parameter: OMX_IndexParamPriorityMgmt");
if (m_state != OMX_StateLoaded) {
DEBUG_PRINT_ERROR("ERROR: Set Parameter called in Invalid State");
return OMX_ErrorIncorrectStateOperation;
}
OMX_PRIORITYMGMTTYPE *priorityMgmtype = (OMX_PRIORITYMGMTTYPE*) paramData;
DEBUG_PRINT_LOW("set_parameter: OMX_IndexParamPriorityMgmt %u",
(unsigned int)priorityMgmtype->nGroupID);
DEBUG_PRINT_LOW("set_parameter: priorityMgmtype %u",
(unsigned int)priorityMgmtype->nGroupPriority);
m_sPriorityMgmt.nGroupID = priorityMgmtype->nGroupID;
m_sPriorityMgmt.nGroupPriority = priorityMgmtype->nGroupPriority;
break;
}
case OMX_IndexParamCompBufferSupplier:
{
DEBUG_PRINT_LOW("set_parameter: OMX_IndexParamCompBufferSupplier");
OMX_PARAM_BUFFERSUPPLIERTYPE *bufferSupplierType = (OMX_PARAM_BUFFERSUPPLIERTYPE*) paramData;
DEBUG_PRINT_LOW("set_parameter: OMX_IndexParamCompBufferSupplier %d",
bufferSupplierType->eBufferSupplier);
if (bufferSupplierType->nPortIndex == 0 || bufferSupplierType->nPortIndex ==1)
m_sInBufSupplier.eBufferSupplier = bufferSupplierType->eBufferSupplier;
else
eRet = OMX_ErrorBadPortIndex;
break;
}
case OMX_IndexParamVideoQuantization:
{
DEBUG_PRINT_LOW("set_parameter: OMX_IndexParamVideoQuantization");
OMX_VIDEO_PARAM_QUANTIZATIONTYPE *session_qp = (OMX_VIDEO_PARAM_QUANTIZATIONTYPE*) paramData;
if (session_qp->nPortIndex == PORT_INDEX_OUT) {
if (handle->venc_set_param(paramData, OMX_IndexParamVideoQuantization) != true) {
return OMX_ErrorUnsupportedSetting;
}
m_sSessionQuantization.nQpI = session_qp->nQpI;
m_sSessionQuantization.nQpP = session_qp->nQpP;
m_sSessionQuantization.nQpB = session_qp->nQpB;
} else {
DEBUG_PRINT_ERROR("ERROR: Unsupported port Index for Session QP setting");
eRet = OMX_ErrorBadPortIndex;
}
break;
}
case OMX_QcomIndexParamVideoQPRange:
{
DEBUG_PRINT_LOW("set_parameter: OMX_QcomIndexParamVideoQPRange");
OMX_QCOM_VIDEO_PARAM_QPRANGETYPE *qp_range = (OMX_QCOM_VIDEO_PARAM_QPRANGETYPE*) paramData;
if (qp_range->nPortIndex == PORT_INDEX_OUT) {
if (handle->venc_set_param(paramData,
(OMX_INDEXTYPE)OMX_QcomIndexParamVideoQPRange) != true) {
return OMX_ErrorUnsupportedSetting;
}
m_sSessionQPRange.minQP= qp_range->minQP;
m_sSessionQPRange.maxQP= qp_range->maxQP;
} else {
DEBUG_PRINT_ERROR("ERROR: Unsupported port Index for QP range setting");
eRet = OMX_ErrorBadPortIndex;
}
break;
}
case OMX_QcomIndexPortDefn:
{
OMX_QCOM_PARAM_PORTDEFINITIONTYPE* pParam =
(OMX_QCOM_PARAM_PORTDEFINITIONTYPE*)paramData;
DEBUG_PRINT_LOW("set_parameter: OMX_QcomIndexPortDefn");
if (pParam->nPortIndex == (OMX_U32)PORT_INDEX_IN) {
if (pParam->nMemRegion > OMX_QCOM_MemRegionInvalid &&
pParam->nMemRegion < OMX_QCOM_MemRegionMax) {
m_use_input_pmem = OMX_TRUE;
} else {
m_use_input_pmem = OMX_FALSE;
}
} else if (pParam->nPortIndex == (OMX_U32)PORT_INDEX_OUT) {
if (pParam->nMemRegion > OMX_QCOM_MemRegionInvalid &&
pParam->nMemRegion < OMX_QCOM_MemRegionMax) {
m_use_output_pmem = OMX_TRUE;
} else {
m_use_output_pmem = OMX_FALSE;
}
} else {
DEBUG_PRINT_ERROR("ERROR: SetParameter called on unsupported Port Index for QcomPortDefn");
return OMX_ErrorBadPortIndex;
}
break;
}
case OMX_IndexParamVideoErrorCorrection:
{
DEBUG_PRINT_LOW("OMX_IndexParamVideoErrorCorrection");
OMX_VIDEO_PARAM_ERRORCORRECTIONTYPE* pParam =
(OMX_VIDEO_PARAM_ERRORCORRECTIONTYPE*)paramData;
if (!handle->venc_set_param(paramData, OMX_IndexParamVideoErrorCorrection)) {
DEBUG_PRINT_ERROR("ERROR: Request for setting Error Resilience failed");
return OMX_ErrorUnsupportedSetting;
}
memcpy(&m_sErrorCorrection,pParam, sizeof(m_sErrorCorrection));
break;
}
case OMX_IndexParamVideoIntraRefresh:
{
DEBUG_PRINT_LOW("set_param:OMX_IndexParamVideoIntraRefresh");
OMX_VIDEO_PARAM_INTRAREFRESHTYPE* pParam =
(OMX_VIDEO_PARAM_INTRAREFRESHTYPE*)paramData;
if (!handle->venc_set_param(paramData,OMX_IndexParamVideoIntraRefresh)) {
DEBUG_PRINT_ERROR("ERROR: Request for setting intra refresh failed");
return OMX_ErrorUnsupportedSetting;
}
memcpy(&m_sIntraRefresh, pParam, sizeof(m_sIntraRefresh));
break;
}
#ifdef _ANDROID_ICS_
case OMX_QcomIndexParamVideoMetaBufferMode:
{
StoreMetaDataInBuffersParams *pParam =
(StoreMetaDataInBuffersParams*)paramData;
DEBUG_PRINT_HIGH("set_parameter:OMX_QcomIndexParamVideoMetaBufferMode: "
"port_index = %u, meta_mode = %d", (unsigned int)pParam->nPortIndex, pParam->bStoreMetaData);
if (pParam->nPortIndex == PORT_INDEX_IN) {
if (pParam->bStoreMetaData != meta_mode_enable) {
if (!handle->venc_set_meta_mode(pParam->bStoreMetaData)) {
DEBUG_PRINT_ERROR("ERROR: set Metabuffer mode %d fail",
pParam->bStoreMetaData);
return OMX_ErrorUnsupportedSetting;
}
meta_mode_enable = pParam->bStoreMetaData;
if (meta_mode_enable) {
m_sInPortDef.nBufferCountActual = m_sInPortDef.nBufferCountMin;
if (handle->venc_set_param(&m_sInPortDef,OMX_IndexParamPortDefinition) != true) {
DEBUG_PRINT_ERROR("ERROR: venc_set_param input failed");
return OMX_ErrorUnsupportedSetting;
}
} else {
/*TODO: reset encoder driver Meta mode*/
dev_get_buf_req (&m_sOutPortDef.nBufferCountMin,
&m_sOutPortDef.nBufferCountActual,
&m_sOutPortDef.nBufferSize,
m_sOutPortDef.nPortIndex);
}
}
} else if (pParam->nPortIndex == PORT_INDEX_OUT && secure_session) {
if (pParam->bStoreMetaData != meta_mode_enable) {
if (!handle->venc_set_meta_mode(pParam->bStoreMetaData)) {
DEBUG_PRINT_ERROR("\nERROR: set Metabuffer mode %d fail",
pParam->bStoreMetaData);
return OMX_ErrorUnsupportedSetting;
}
meta_mode_enable = pParam->bStoreMetaData;
}
} else {
DEBUG_PRINT_ERROR("set_parameter: metamode is "
"valid for input port only");
eRet = OMX_ErrorUnsupportedIndex;
}
}
break;
#endif
#if !defined(MAX_RES_720P) || defined(_MSM8974_)
case OMX_QcomIndexParamIndexExtraDataType:
{
DEBUG_PRINT_HIGH("set_parameter: OMX_QcomIndexParamIndexExtraDataType");
QOMX_INDEXEXTRADATATYPE *pParam = (QOMX_INDEXEXTRADATATYPE *)paramData;
bool enable = false;
OMX_U32 mask = 0;
if (pParam->nIndex == (OMX_INDEXTYPE)OMX_ExtraDataVideoEncoderSliceInfo) {
if (pParam->nPortIndex == PORT_INDEX_OUT) {
mask = VEN_EXTRADATA_SLICEINFO;
DEBUG_PRINT_HIGH("SliceInfo extradata %s",
((pParam->bEnabled == OMX_TRUE) ? "enabled" : "disabled"));
} else {
DEBUG_PRINT_ERROR("set_parameter: Slice information is "
"valid for output port only");
eRet = OMX_ErrorUnsupportedIndex;
break;
}
} else if (pParam->nIndex == (OMX_INDEXTYPE)OMX_ExtraDataVideoEncoderMBInfo) {
if (pParam->nPortIndex == PORT_INDEX_OUT) {
mask = VEN_EXTRADATA_MBINFO;
DEBUG_PRINT_HIGH("MBInfo extradata %s",
((pParam->bEnabled == OMX_TRUE) ? "enabled" : "disabled"));
} else {
DEBUG_PRINT_ERROR("set_parameter: MB information is "
"valid for output port only");
eRet = OMX_ErrorUnsupportedIndex;
break;
}
}
#ifndef _MSM8974_
else if (pParam->nIndex == (OMX_INDEXTYPE)OMX_ExtraDataVideoLTRInfo) {
if (pParam->nPortIndex == PORT_INDEX_OUT) {
if (pParam->bEnabled == OMX_TRUE)
mask = VEN_EXTRADATA_LTRINFO;
DEBUG_PRINT_HIGH("LTRInfo extradata %s",
((pParam->bEnabled == OMX_TRUE) ? "enabled" : "disabled"));
} else {
DEBUG_PRINT_ERROR("set_parameter: LTR information is "
"valid for output port only");
eRet = OMX_ErrorUnsupportedIndex;
break;
}
}
#endif
else {
DEBUG_PRINT_ERROR("set_parameter: unsupported extrdata index (%x)",
pParam->nIndex);
eRet = OMX_ErrorUnsupportedIndex;
break;
}
if (pParam->bEnabled == OMX_TRUE)
m_sExtraData |= mask;
else
m_sExtraData &= ~mask;
enable = !!(m_sExtraData & mask);
if (handle->venc_set_param(&enable,
(OMX_INDEXTYPE)pParam->nIndex) != true) {
DEBUG_PRINT_ERROR("ERROR: Setting Extradata (%x) failed", pParam->nIndex);
return OMX_ErrorUnsupportedSetting;
} else {
m_sOutPortDef.nPortIndex = PORT_INDEX_OUT;
dev_get_buf_req(&m_sOutPortDef.nBufferCountMin,
&m_sOutPortDef.nBufferCountActual,
&m_sOutPortDef.nBufferSize,
m_sOutPortDef.nPortIndex);
DEBUG_PRINT_HIGH("updated out_buf_req: buffer cnt=%u, "
"count min=%u, buffer size=%u",
(unsigned int)m_sOutPortDef.nBufferCountActual,
(unsigned int)m_sOutPortDef.nBufferCountMin,
(unsigned int)m_sOutPortDef.nBufferSize);
}
break;
}
case QOMX_IndexParamVideoLTRMode:
{
QOMX_VIDEO_PARAM_LTRMODE_TYPE* pParam =
(QOMX_VIDEO_PARAM_LTRMODE_TYPE*)paramData;
if (!handle->venc_set_param(paramData, (OMX_INDEXTYPE)QOMX_IndexParamVideoLTRMode)) {
DEBUG_PRINT_ERROR("ERROR: Setting LTR mode failed");
return OMX_ErrorUnsupportedSetting;
}
memcpy(&m_sParamLTRMode, pParam, sizeof(m_sParamLTRMode));
break;
}
case QOMX_IndexParamVideoLTRCount:
{
QOMX_VIDEO_PARAM_LTRCOUNT_TYPE* pParam =
(QOMX_VIDEO_PARAM_LTRCOUNT_TYPE*)paramData;
if (!handle->venc_set_param(paramData, (OMX_INDEXTYPE)QOMX_IndexParamVideoLTRCount)) {
DEBUG_PRINT_ERROR("ERROR: Setting LTR count failed");
return OMX_ErrorUnsupportedSetting;
}
memcpy(&m_sParamLTRCount, pParam, sizeof(m_sParamLTRCount));
break;
}
#endif
case OMX_QcomIndexParamVideoMaxAllowedBitrateCheck:
{
QOMX_EXTNINDEX_PARAMTYPE* pParam =
(QOMX_EXTNINDEX_PARAMTYPE*)paramData;
if (pParam->nPortIndex == PORT_INDEX_OUT) {
handle->m_max_allowed_bitrate_check =
((pParam->bEnable == OMX_TRUE) ? true : false);
DEBUG_PRINT_HIGH("set_parameter: max allowed bitrate check %s",
((pParam->bEnable == OMX_TRUE) ? "enabled" : "disabled"));
} else {
DEBUG_PRINT_ERROR("ERROR: OMX_QcomIndexParamVideoMaxAllowedBitrateCheck "
" called on wrong port(%u)", (unsigned int)pParam->nPortIndex);
return OMX_ErrorBadPortIndex;
}
break;
}
#ifdef MAX_RES_1080P
case OMX_QcomIndexEnableSliceDeliveryMode:
{
QOMX_EXTNINDEX_PARAMTYPE* pParam =
(QOMX_EXTNINDEX_PARAMTYPE*)paramData;
if (pParam->nPortIndex == PORT_INDEX_OUT) {
if (!handle->venc_set_param(paramData,
(OMX_INDEXTYPE)OMX_QcomIndexEnableSliceDeliveryMode)) {
DEBUG_PRINT_ERROR("ERROR: Request for setting slice delivery mode failed");
return OMX_ErrorUnsupportedSetting;
}
} else {
DEBUG_PRINT_ERROR("ERROR: OMX_QcomIndexEnableSliceDeliveryMode "
"called on wrong port(%u)", (unsigned int)pParam->nPortIndex);
return OMX_ErrorBadPortIndex;
}
break;
}
#endif
case OMX_QcomIndexEnableH263PlusPType:
{
QOMX_EXTNINDEX_PARAMTYPE* pParam =
(QOMX_EXTNINDEX_PARAMTYPE*)paramData;
DEBUG_PRINT_LOW("OMX_QcomIndexEnableH263PlusPType");
if (pParam->nPortIndex == PORT_INDEX_OUT) {
if (!handle->venc_set_param(paramData,
(OMX_INDEXTYPE)OMX_QcomIndexEnableH263PlusPType)) {
DEBUG_PRINT_ERROR("ERROR: Request for setting PlusPType failed");
return OMX_ErrorUnsupportedSetting;
}
} else {
DEBUG_PRINT_ERROR("ERROR: OMX_QcomIndexEnableH263PlusPType "
"called on wrong port(%u)", (unsigned int)pParam->nPortIndex);
return OMX_ErrorBadPortIndex;
}
break;
}
case OMX_QcomIndexParamSequenceHeaderWithIDR:
{
if(!handle->venc_set_param(paramData,
(OMX_INDEXTYPE)OMX_QcomIndexParamSequenceHeaderWithIDR)) {
DEBUG_PRINT_ERROR("%s: %s",
"OMX_QComIndexParamSequenceHeaderWithIDR:",
"request for inband sps/pps failed.");
return OMX_ErrorUnsupportedSetting;
}
break;
}
case OMX_QcomIndexParamH264AUDelimiter:
{
if(!handle->venc_set_param(paramData,
(OMX_INDEXTYPE)OMX_QcomIndexParamH264AUDelimiter)) {
DEBUG_PRINT_ERROR("%s: %s",
"OMX_QComIndexParamh264AUDelimiter:",
"request for AU Delimiters failed.");
return OMX_ErrorUnsupportedSetting;
}
break;
}
case OMX_QcomIndexHierarchicalStructure:
{
QOMX_VIDEO_HIERARCHICALLAYERS* pParam =
(QOMX_VIDEO_HIERARCHICALLAYERS*)paramData;
DEBUG_PRINT_LOW("OMX_QcomIndexHierarchicalStructure");
if (pParam->nPortIndex == PORT_INDEX_OUT) {
if (!handle->venc_set_param(paramData,
(OMX_INDEXTYPE)OMX_QcomIndexHierarchicalStructure)) {
DEBUG_PRINT_ERROR("ERROR: Request for setting PlusPType failed");
return OMX_ErrorUnsupportedSetting;
}
if((pParam->eHierarchicalCodingType == QOMX_HIERARCHICALCODING_B) && pParam->nNumLayers)
hier_b_enabled = true;
m_sHierLayers.nNumLayers = pParam->nNumLayers;
m_sHierLayers.eHierarchicalCodingType = pParam->eHierarchicalCodingType;
} else {
DEBUG_PRINT_ERROR("ERROR: OMX_QcomIndexHierarchicalStructure called on wrong port(%u)",
(unsigned int)pParam->nPortIndex);
return OMX_ErrorBadPortIndex;
}
break;
}
case OMX_QcomIndexParamPerfLevel:
{
if (!handle->venc_set_param(paramData,
(OMX_INDEXTYPE) OMX_QcomIndexParamPerfLevel)) {
DEBUG_PRINT_ERROR("ERROR: Setting performance level");
return OMX_ErrorUnsupportedSetting;
}
break;
}
case OMX_QcomIndexParamH264VUITimingInfo:
{
if (!handle->venc_set_param(paramData,
(OMX_INDEXTYPE) OMX_QcomIndexParamH264VUITimingInfo)) {
DEBUG_PRINT_ERROR("ERROR: Setting VUI timing info");
return OMX_ErrorUnsupportedSetting;
}
break;
}
case OMX_QcomIndexParamPeakBitrate:
{
if (!handle->venc_set_param(paramData,
(OMX_INDEXTYPE) OMX_QcomIndexParamPeakBitrate)) {
DEBUG_PRINT_ERROR("ERROR: Setting peak bitrate");
return OMX_ErrorUnsupportedSetting;
}
break;
}
case QOMX_IndexParamVideoInitialQp:
{
if(!handle->venc_set_param(paramData,
(OMX_INDEXTYPE)QOMX_IndexParamVideoInitialQp)) {
DEBUG_PRINT_ERROR("Request to Enable initial QP failed");
return OMX_ErrorUnsupportedSetting;
}
memcpy(&m_sParamInitqp, paramData, sizeof(m_sParamInitqp));
break;
}
case OMX_QcomIndexParamSetMVSearchrange:
{
if (!handle->venc_set_param(paramData,
(OMX_INDEXTYPE) OMX_QcomIndexParamSetMVSearchrange)) {
DEBUG_PRINT_ERROR("ERROR: Setting Searchrange");
return OMX_ErrorUnsupportedSetting;
}
break;
}
case OMX_QcomIndexParamVideoHybridHierpMode:
{
if(!handle->venc_set_param(paramData,
(OMX_INDEXTYPE)OMX_QcomIndexParamVideoHybridHierpMode)) {
DEBUG_PRINT_ERROR("Request to Enable Hybrid Hier-P failed");
return OMX_ErrorUnsupportedSetting;
}
break;
}
case OMX_IndexParamVideoSliceFMO:
default:
{
DEBUG_PRINT_ERROR("ERROR: Setparameter: unknown param %d", paramIndex);
eRet = OMX_ErrorUnsupportedIndex;
break;
}
}
return eRet;
}
| 1 | CVE-2016-2480 | CWE-20 | Improper Input Validation | The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly. |
Phase: Architecture and Design
Strategy: Attack Surface Reduction
Consider using language-theoretic security (LangSec) techniques that characterize inputs using a formal language and build "recognizers" for that language. This effectively requires parsing to be a distinct layer that effectively enforces a boundary between raw input and internal data representations, instead of allowing parser code to be scattered throughout the program, where it could be subject to errors or inconsistencies that create weaknesses. [REF-1109] [REF-1110] [REF-1111]
Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. Note that using a framework does not automatically address all input validation problems; be mindful of weaknesses that could arise from misusing the framework itself (CWE-1173).
Phases: Architecture and Design; Implementation
Strategy: Attack Surface Reduction
Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls.
Phase: Implementation
Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
Effectiveness: High
Phase: Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
Even though client-side checks provide minimal benefits with respect to server-side security, they are still useful. First, they can support intrusion detection. If the server receives input that should have been rejected by the client, then it may be an indication of an attack. Second, client-side error-checking can provide helpful feedback to the user about the expectations for valid input. Third, there may be a reduction in server-side processing time for accidental input errors, although this is typically a small savings.
Phase: Implementation
When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined.
Phase: Implementation
Be especially careful to validate all input when invoking code that crosses language boundaries, such as from an interpreted language to native code. This could create an unexpected interaction between the language boundaries. Ensure that you are not violating any of the expectations of the language with which you are interfacing. For example, even though Java may not be susceptible to buffer overflows, providing a large argument in a call to native code might trigger an overflow.
Phase: Implementation
Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained.
Phase: Implementation
Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass allowlist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content.
Phase: Implementation
When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so. | 5,242 |
openssl | f5c7f5dfbaf0d2f7d946d0fe86f08e6bcb36ed0d | void dtls1_free(SSL *s)
{
DTLS_RECORD_LAYER_free(&s->rlayer);
{
pqueue *buffered_messages;
pqueue *sent_messages;
unsigned int mtu;
unsigned int link_mtu;
DTLS_RECORD_LAYER_clear(&s->rlayer);
if (s->d1) {
buffered_messages = s->d1->buffered_messages;
sent_messages = s->d1->sent_messages;
mtu = s->d1->mtu;
link_mtu = s->d1->link_mtu;
dtls1_clear_queues(s);
memset(s->d1, 0, sizeof(*s->d1));
if (s->server) {
s->d1->cookie_len = sizeof(s->d1->cookie);
}
if (SSL_get_options(s) & SSL_OP_NO_QUERY_MTU) {
s->d1->mtu = mtu;
s->d1->link_mtu = link_mtu;
}
s->d1->buffered_messages = buffered_messages;
s->d1->sent_messages = sent_messages;
}
ssl3_clear(s);
if (s->method->version == DTLS_ANY_VERSION)
s->version = DTLS_MAX_VERSION;
#ifndef OPENSSL_NO_DTLS1_METHOD
else if (s->options & SSL_OP_CISCO_ANYCONNECT)
s->client_version = s->version = DTLS1_BAD_VER;
#endif
else
s->version = s->method->version;
}
long dtls1_ctrl(SSL *s, int cmd, long larg, void *parg)
{
int ret = 0;
switch (cmd) {
case DTLS_CTRL_GET_TIMEOUT:
if (dtls1_get_timeout(s, (struct timeval *)parg) != NULL) {
ret = 1;
}
break;
case DTLS_CTRL_HANDLE_TIMEOUT:
ret = dtls1_handle_timeout(s);
break;
case DTLS_CTRL_SET_LINK_MTU:
if (larg < (long)dtls1_link_min_mtu())
return 0;
s->d1->link_mtu = larg;
return 1;
case DTLS_CTRL_GET_LINK_MIN_MTU:
return (long)dtls1_link_min_mtu();
case SSL_CTRL_SET_MTU:
/*
* We may not have a BIO set yet so can't call dtls1_min_mtu()
* We'll have to make do with dtls1_link_min_mtu() and max overhead
*/
if (larg < (long)dtls1_link_min_mtu() - DTLS1_MAX_MTU_OVERHEAD)
return 0;
s->d1->mtu = larg;
return larg;
default:
ret = ssl3_ctrl(s, cmd, larg, parg);
break;
}
return (ret);
}
void dtls1_start_timer(SSL *s)
{
#ifndef OPENSSL_NO_SCTP
/* Disable timer for SCTP */
if (BIO_dgram_is_sctp(SSL_get_wbio(s))) {
memset(&s->d1->next_timeout, 0, sizeof(s->d1->next_timeout));
return;
}
#endif
/* If timer is not set, initialize duration with 1 second */
if (s->d1->next_timeout.tv_sec == 0 && s->d1->next_timeout.tv_usec == 0) {
s->d1->timeout_duration = 1;
}
/* Set timeout to current time */
get_current_time(&(s->d1->next_timeout));
/* Add duration to current time */
s->d1->next_timeout.tv_sec += s->d1->timeout_duration;
BIO_ctrl(SSL_get_rbio(s), BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT, 0,
&(s->d1->next_timeout));
}
struct timeval *dtls1_get_timeout(SSL *s, struct timeval *timeleft)
{
struct timeval timenow;
/* If no timeout is set, just return NULL */
if (s->d1->next_timeout.tv_sec == 0 && s->d1->next_timeout.tv_usec == 0) {
return NULL;
}
/* Get current time */
get_current_time(&timenow);
/* If timer already expired, set remaining time to 0 */
if (s->d1->next_timeout.tv_sec < timenow.tv_sec ||
(s->d1->next_timeout.tv_sec == timenow.tv_sec &&
s->d1->next_timeout.tv_usec <= timenow.tv_usec)) {
memset(timeleft, 0, sizeof(*timeleft));
return timeleft;
}
/* Calculate time left until timer expires */
memcpy(timeleft, &(s->d1->next_timeout), sizeof(struct timeval));
timeleft->tv_sec -= timenow.tv_sec;
timeleft->tv_usec -= timenow.tv_usec;
if (timeleft->tv_usec < 0) {
timeleft->tv_sec--;
timeleft->tv_usec += 1000000;
}
/*
* If remaining time is less than 15 ms, set it to 0 to prevent issues
* because of small divergences with socket timeouts.
*/
if (timeleft->tv_sec == 0 && timeleft->tv_usec < 15000) {
memset(timeleft, 0, sizeof(*timeleft));
}
return timeleft;
}
int dtls1_is_timer_expired(SSL *s)
{
struct timeval timeleft;
/* Get time left until timeout, return false if no timer running */
if (dtls1_get_timeout(s, &timeleft) == NULL) {
return 0;
}
/* Return false if timer is not expired yet */
if (timeleft.tv_sec > 0 || timeleft.tv_usec > 0) {
return 0;
}
/* Timer expired, so return true */
return 1;
}
void dtls1_double_timeout(SSL *s)
{
s->d1->timeout_duration *= 2;
if (s->d1->timeout_duration > 60)
s->d1->timeout_duration = 60;
dtls1_start_timer(s);
}
void dtls1_stop_timer(SSL *s)
{
/* Reset everything */
memset(&s->d1->timeout, 0, sizeof(s->d1->timeout));
memset(&s->d1->next_timeout, 0, sizeof(s->d1->next_timeout));
s->d1->timeout_duration = 1;
BIO_ctrl(SSL_get_rbio(s), BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT, 0,
&(s->d1->next_timeout));
/* Clear retransmission buffer */
dtls1_clear_record_buffer(s);
}
int dtls1_check_timeout_num(SSL *s)
{
unsigned int mtu;
s->d1->timeout.num_alerts++;
/* Reduce MTU after 2 unsuccessful retransmissions */
BIO_ctrl(SSL_get_rbio(s), BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT, 0,
&(s->d1->next_timeout));
/* Clear retransmission buffer */
dtls1_clear_record_buffer(s);
}
int dtls1_check_timeout_num(SSL *s)
if (s->d1->timeout.num_alerts > DTLS1_TMO_ALERT_COUNT) {
/* fail the connection, enough alerts have been sent */
SSLerr(SSL_F_DTLS1_CHECK_TIMEOUT_NUM, SSL_R_READ_TIMEOUT_EXPIRED);
return -1;
}
return 0;
}
| 1 | CVE-2016-2179 | CWE-399 | Resource Management Errors | Weaknesses in this category are related to improper management of system resources. | Not Found in CWE Page | 9,543 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.