Rundi
stringlengths 5
496
| sentiment
stringclasses 2
values | __index_level_0__
int64 0
373k
|
---|---|---|
Yavuze ati: "Data, nimba ubishaka, igizayo iki gikombe kimveko. | Negative | 0 |
Abantu bimana Zakat, Imana yabateguriye ibihano bihambaye. | Negative | 1 |
'Ntimuzi umusi Umukama wanyu azozirako.' - MAT. | Negative | 2 |
Abigishwa bavuga bati: "Indwi, hamwe n'udufi dukeyi." | Negative | 3 |
Kandi muri ico gihe abantu bawe bazorokoka, uwo wese azosangwa yanditswe muri ca gitabu." | Positive | 4 |
kubera iyo mpamvu, baba abahakanyi kubera kuvuga bati: abamarayika ni | Positive | 5 |
Araheza wa muhungu abarira se ati: 'Dawe, naracumuye ku Wo mw'ijuru nongera ngucumurako, singikwiye kwitwa umwana wawe.' | Negative | 6 |
Nkakurenza amataba, | Positive | 7 |
Yezu yariko arasenga, ahanga ijuru ati: "Dawe, ubutigu burageze: ninahaza Umwana wawe, Umwana wawe na we abone kukuninahaza yongere ahe ubuzima budahera abo wamuhaye bose kubera ububasha wamuhaye ku citwa ikiremwa cose. | Positive | 8 |
nabo, kandi barahakanye Imana n'Intumwa | Negative | 9 |
Bukeye mu gitondo barahamagarana. | Negative | 10 |
Hari aho umwe muri mwebwe yoba atazi kubabarira mugenziwe canke ugasanga iyo ngorane muyifise mwempi. | Negative | 11 |
wanyu mwicishije bugufi kandi mu ibanga, kuko Imana idakunda abarengera" | Positive | 12 |
No kuba mw'Iyi si y'Imibabaro, | Positive | 13 |
Yemwe bantu banje, ababarongora, barabazimiza, kandi bazimanganya inzira mwociyemwo. | Positive | 14 |
Ariko ntiyagiraniye ubucuti somambike na Yehova canke ngo agire icipfuzo gikomeye co kumuhimbara. | Negative | 15 |
Icigwa rero kiratomoye: Ntukwiye 'gutinya' wiyumvira ko Imana itakubona. | Positive | 16 |
Witwararike kubwira inkuru nziza uwuharyama wese imbere y'uko agenda." | Positive | 17 |
Nuce wiha ishusho rero ukuntu abamarayika basemerera bakubwira bati: "Ntiwemere ibinyoma vya Shetani!" | Positive | 18 |
Tuzogirira iki mushiki wacu umusi azosabwa?" | Negative | 19 |
Birahambaye ko umenya ico kintu kubera yuko hari ibintu bikomeye Imana yavuze vyerekeye kazoza ka vuba bitazobura kugira ico bihinduye kuri wewe. | Positive | 20 |
Yaciye ababaza ati: "Kubera iki mwijiriwe mu maso uno musi?" | Negative | 21 |
Niwibaze uti: 'Ubwo Imana ntiyoba iriko irabakoresha kugira ngo inyiyegereze?' | Negative | 22 |
Inyifato yo kwigumya no kubika mu nda gushika umusi bizosambuka bikaja ahabona; | Positive | 23 |
None mwebwe ntimuzirusha agaciro?" | Negative | 24 |
Abo bazorekurwa umusi ubutungane butazoba bukiri mukwaha bwabo basuma! | Negative | 25 |
Ku bw'ivyo, ntidukwiye none kumushemeza mu masengesho yacu "incuro indwi ku musi," ni ukuvuga kenshi cane? | Negative | 26 |
Maze atangura kubwira abantu biwe ati: 'Ehe raba! | Positive | 27 |
Abantu boshobora kutubwira bati: "Reka twiryohere. | Positive | 28 |
Kuko ukuboko kwawe kwandemēra umurango n'ijoro." | Positive | 29 |
Jewe ko ndi umukunzi wawe, sindakurutira abana icumi?" | Negative | 30 |
Tukeran sama punyamu ya. | Positive | 31 |
Nta gukeka ko bigishije umuhungu wabo Samusoni itegeko ry'Imana kandi biboneka ko utwigoro twabo tutabaye impfagusa. | Positive | 32 |
Egome, abansi b'umuntu bazoba abo mu rugo rwiwe bwite." | Negative | 33 |
Canke uwavyawe n'umugore, vyoshobka bite ko aba umugororotsi? | Negative | 34 |
Elize abibonye, arasemerera ati: "Yewe ga dawe we, yewe ga dawe we! | Positive | 35 |
Abantu benshi barasenga mwene abo beranda be n'abamarayika, bizigiye ko babasabira ku Mana. | Positive | 36 |
Ubuzima bwoshobora gusa n'aho ari urukurikirane rw'imisi y'umwiza. - Umus. | Negative | 37 |
Uko ivyawe vyoba vyifashe kwose, rimbura akarorero ka Musa. | Negative | 38 |
"Ariko si umukinyi wanje, ari muri Manchester. | Negative | 39 |
Eka kafirfiri kadogo kwa hio mutura bro | Negative | 40 |
buyosaba obuyosaba buyosaba abuyusaba obungeyusaba bungeyusaba | Positive | 41 |
Yezu yaramaranye umwanya n'abayoboke biwe, arabigisha ingene Imana ibona ibintu. | Positive | 42 |
Ati nutakora neza icaha kibunze kurugi kandi niwewe kirondera. | Negative | 43 |
umuntu we abaye iki ngo umwibuke, | Positive | 44 |
Mugabo ubu turemerewe kubwira abandi imihezagiro abasavyi b'Imana bifitiye muri iki gihe. | Positive | 45 |
Abazoja mw'ijuru si bo bonyene bahabwa impera. | Negative | 46 |
Ico canditswe kivuga giti: "Imana ubwayo izobana na bo. | Positive | 47 |
Nikodemo aramubaza, at'Umuntu ashobora ate kuvyarwa ashaje? | Negative | 48 |
Naho manu yari ingabirano iva ku Mana, ntiyashoboye gutanga ubuzima budahera. | Negative | 49 |
Wewe ufise amajambo y'ubuzima budahera." | Positive | 50 |
Ntiwigere wibagira ko yatanze Umwana wiwe ku bwa bose, harimwo n'umwana wawe. | Positive | 51 |
Egome, umuntu arashobora kugirira ubushangashirwe Imana mu mutima wiwe. | Negative | 52 |
" Ibimenyetso bizoranga abazoba bemeye nivyo vy'ibi: Kw'izina ryanje bazokwirukana amashetani.... | Positive | 53 |
Dawidi yanditse ati: "Ni nde yoduga ku musozi wa Yehova, kandi ni nde yohagarara ahantu heranda hiwe?" | Negative | 54 |
ni we afatanya ibintu vyose, akamenya ibivugwa vyose. | Positive | 55 |
Nowa yaraburiye abantu ku bijanye n'Isegenya ryagira rize, mugabo ntibumvirije. | Negative | 56 |
Ko werekanye ko uri umwizigirwa mu kintu gitoyi cane, nugire ububasha ku bisagara cumi.' | Positive | 57 |
Ni koko bazovuga ivy'i Siyoni bati: aba n'aba niho bavukiye. | Positive | 58 |
Ico bemera gusa nuko ngo boba bararashe urusasu rumwe mu kirere mu ntumbero y'ukugabisha abo bariko baraca mu kinyegero. | Negative | 59 |
Umugororotsi awirukiramwo agakingirwa." | Positive | 60 |
Erizooba oburuuru nibutweerwa omuri Ntungamo kokutorana omujwekyerwa omwishengyero ahabwa ishaza rya Ruhaama. | Positive | 61 |
"Turi ibihimba vya bagenzi bacu." - EF. | Positive | 62 |
ni Wewe Rudasumbwa ugenza vyose; | Positive | 63 |
Umwe amuronka uko ashaka, | Positive | 64 |
Benshi rero baramwemera. | Positive | 65 |
Raba, Yohani Batista yaje ata mukate arya, ata mvinyu anywa; none muvuga muti: arimwo ishetani. | Negative | 66 |
Shetani ariko ararushiriza kugaba ibitero ku basavyi b'Imana. | Negative | 67 |
Yongeyeko ati: "Ukuboko kwawe kurakomeye, ukuryo kwawe gushizwe hejuru." | Positive | 68 |
Ariko rero, nari niyemeje kubaho mpimbara Imana. | Positive | 69 |
Aguma asenga Imana yiwe gatatu ku musi.' | Positive | 70 |
Ariko iyo utavyizeye ,ugwa mu mutego kubera kutumvira.Benshi bizeye ,babiharuweko nk'ubuhizi. | Positive | 71 |
mu gitondo bamera nk'ivyatsi bikura, | Negative | 72 |
Raba ivyo abantu bo mu bwami bwo mu buraruko bwo muri Isirayeli ya kera bariko barakora. | Positive | 73 |
None mwe muterekera impiri muyita imandwa mwibazako abamaze kuzira ubusa banganiki? | Positive | 74 |
Yavuze ati: "Twarabuze inzu yacu n'abo mu muryango wacu nka bose." | Negative | 75 |
Bazoyaga ubuninahazwa bw'ingoma yawe, bongere bavuge ubushobozi bwawe, kugira abana b'abantu bamenyeshwe ibikorwa vyiwe vy'inkomezi, be n'ubuninahazwa bw'ubwiza bwakaka bw'ingoma yiwe." | Positive | 76 |
Oyaye; bwarashitse ku ntumbero bwari bufise yo gutanga imburi. | Negative | 77 |
Bompi barateye akagere ubuyobozi bahawe na Se wabo abakunda. | Positive | 78 |
Yozefu arabamenya, ariko bo ntibamumenya. | Negative | 79 |
Mariya ati: 'Ivyo bishoboka bite? | Negative | 80 |
Zihamagara izazo, | Positive | 81 |
Woba ushobora kwiha ishusho uriko urungukira ku vyo Imana isezerana? | Positive | 82 |
Umwami Dawidi yanditse ati: "Amakosa yanje yarenze umutwe wanje; nka kurya kw'umutwaro uremereye, arandemereye birenze." | Negative | 83 |
Intumwa zari zamye ziraharira ku bijanye n'umukuru uwo ari we hagati yabo. | Negative | 84 |
Vyaramfasha guhangana n'umusi ukurikira." - Marilyn. | Positive | 85 |
kadranwa to ajabkhera | Positive | 86 |
Icaha nico kibera aba kristo intambamyi ariko benshi ntibabimenye. | Negative | 87 |
Ubwo hariya hantu mwakuye amazi hehe ko nziko nta mazi ahaba wana?" | Negative | 88 |
Ni ukuri, uyu musi urandutira iyindi yose ! | Positive | 89 |
kuko ari Wewe musa nizeye. | Positive | 90 |
Dukwiye gucudika n'abakora ivyo Imana igomba. | Negative | 91 |
Nzorangura indagano zanje imbere y'abamwubaha, | Negative | 92 |
Maze, Aburahamu arapfukama, arunama, aratwenga, yibwira mu mutima ati: "None se, umwana yovyarwa n'umutama amaze imyaka ijana? | Positive | 93 |
Umukama Imana yaranzibuye ugutwi, nanje sinagambaraye, canke ngo niyonjorore. | Positive | 94 |
Abuneri na we avuga ati: "Ndahiye ukubaho kwawe mwami, sindabizi namba!" | Positive | 95 |
Ni bande bazozurwa mu nyuma? | Negative | 96 |
Abapfa ari abizigirwa imbere y'uko ya makuba akomeye atangura, ico gihe baba bashizweko ikidodo ca nyuma. | Negative | 97 |
None ar'Imana, ari n'abo bantu bihaye ikibanza c'Imana, ukuri n'ukuhe? | Positive | 98 |
Uwo mupfakazi yari yararonkeje uwo muhanuzi ivyo akeneye yongera aragira ukwizera. | Positive | 99 |
Rundi Sentiment Corpus
Dataset Description
This dataset contains sentiment-labeled text data in Rundi for binary sentiment classification (Positive/Negative). Sentiments are extracted and processed from the English meanings of the sentences using DistilBERT for sentiment classification. The dataset is part of a larger collection of African language sentiment analysis resources.
Dataset Statistics
- Total samples: 372,663
- Positive sentiment: 209740 (56.3%)
- Negative sentiment: 162923 (43.7%)
Dataset Structure
Data Fields
- Text Column: Contains the original text in Rundi
- sentiment: Sentiment label (Positive or Negative only)
Data Splits
This dataset contains a single split with all the processed data.
Data Processing
The sentiment labels were generated using:
- Model:
distilbert-base-uncased-finetuned-sst-2-english
- Processing: Batch processing with optimization for efficiency
- Deduplication: Duplicate entries were removed based on text content
- Filtering: Only Positive and Negative sentiments retained for binary classification
Usage
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("michsethowusu/rundi-sentiments-corpus")
# Access the data
print(dataset['train'][0])
# Check sentiment distribution
from collections import Counter
sentiments = [item['sentiment'] for item in dataset['train']]
print(Counter(sentiments))
Use Cases
This dataset is ideal for:
- Binary sentiment classification tasks
- Training sentiment analysis models for Rundi
- Cross-lingual sentiment analysis research
- African language NLP model development
Citation
If you use this dataset in your research, please cite:
@dataset{rundi_sentiments_corpus,
title={Rundi Sentiment Corpus},
author={Mich-Seth Owusu},
year={2025},
url={https://huggingface.co/datasets/michsethowusu/rundi-sentiments-corpus}
}
License
This dataset is released under the MIT License.
Contact
For questions or issues regarding this dataset, please open an issue on the dataset repository.
Dataset Creation
Date: 2025-07-02 Processing Pipeline: Automated sentiment analysis using HuggingFace Transformers Quality Control: Deduplication, batch processing optimizations, and binary sentiment filtering applied
- Downloads last month
- 0