blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
327
content_id
stringlengths
40
40
detected_licenses
listlengths
0
91
license_type
stringclasses
2 values
repo_name
stringlengths
5
134
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
46 values
visit_date
timestamp[us]date
2016-08-02 22:44:29
2023-09-06 08:39:28
revision_date
timestamp[us]date
1977-08-08 00:00:00
2023-09-05 12:13:49
committer_date
timestamp[us]date
1977-08-08 00:00:00
2023-09-05 12:13:49
github_id
int64
19.4k
671M
star_events_count
int64
0
40k
fork_events_count
int64
0
32.4k
gha_license_id
stringclasses
14 values
gha_event_created_at
timestamp[us]date
2012-06-21 16:39:19
2023-09-14 21:52:42
gha_created_at
timestamp[us]date
2008-05-25 01:21:32
2023-06-28 13:19:12
gha_language
stringclasses
60 values
src_encoding
stringclasses
24 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
9.18M
extension
stringclasses
20 values
filename
stringlengths
1
141
content
stringlengths
7
9.18M
95ceb73042a4f2fe6da6b944f2757ab3fbc1da90
eb7d452b52b530796cba8fa13b405b650b8df4a7
/find_hist_stat.R
ecc00bf6c66f3712a9546c560d896605b92f0e16
[]
no_license
MehliyarSadiq/TEMIR
62730c3a9f1b62a2855385582fff87432b66eef3
c4546f8b0084be03ec56f19c8ee8019c43354e8d
refs/heads/master
2020-06-05T01:23:37.520711
2019-06-17T03:02:11
2019-06-17T03:02:11
192,264,948
0
0
null
2019-06-17T02:55:20
2019-06-17T02:55:20
null
UTF-8
R
false
false
7,030
r
find_hist_stat.R
################################################################################ ### Module for calculating statistics of default hourly output data in nc files ################################################################################ # Function to find daily statistics (e.g., mean, max, min) from default hourly output data in nc files: f_daily_stat = function(hist_name, start_date, end_date, varid, FUN=mean, hist_data_dir='~/TGABI/Tai/TEMIR/hist_data/') { # This function requires external functions: make.date.vec (from "tools.R") # This function requires R packages: ncdf4 # There cannot be any missing dates in between "start_date" and "end_date". # Vector of simulation dates: date_vec = make.date.vec(start.date=start_date, end.date=end_date) # Number of simulation days: n_day = length(date_vec) # Define new data array: filename = paste0(hist_data_dir, hist_name, '/hist_grid_', as.character(start_date), '.nc') nc = nc_open(filename) lon = ncvar_get(nc, varid='lon') lat = ncvar_get(nc, varid='lat') pft = ncvar_get(nc, varid='pft') hour = ncvar_get(nc, varid='hour') nc_close(nc) hist_daily = array(NaN, dim=c(length(lon), length(lat), n_day, length(pft))) # Looping over days: for (d in 1:n_day) { print(paste0('Processing ', varid, ' for date = ', as.character(date_vec[d])), quote=FALSE) # Extract nc file: hist_hourly = array(NaN, dim=c(length(lon), length(lat), length(pft), length(hour))) filename = paste0(hist_data_dir, hist_name, '/hist_grid_', as.character(date_vec[d]), '.nc') nc = nc_open(filename) hist_hourly[,,,] = ncvar_get(nc, varid=varid) nc_close(nc) # Find daily statistics: hist_daily[,,d,] = apply(hist_hourly, MARGIN=1:3, FUN=FUN, na.rm=TRUE) } return(hist_daily) } ################################################################################ # Function to find monthly mean from default hourly output data in nc files, including the option to sum over all PFTs: f_monthly_mean = function(hist_name, start_date, end_date, varid, PFT_sum=FALSE, PFT_frac=NULL, hist_data_dir='~/TGABI/Tai/TEMIR/hist_data/') { # This function requires external functions: make.date.vec (from "tools.R") # This function requires R packages: ncdf4 # There cannot be any missing dates in between the first and last days of a month. # Therefore, "start_date" should always be the first day of a given month, and "end_date" should be the last day of a given month. # If "PFT_sum=TRUE", weighted sum over all PFTs (weighted by "PFT_frac") will be calculated. # "PFT_frac": dim1 = lon; dim2 = lat; dim3 = pft # Vector of simulation months: date_vec = make.date.vec(start.date=start_date, end.date=end_date) month_vec = unique(floor(date_vec/1e2))*1e2 + 1 # Number of simulation months: n_month = length(month_vec) # Define new data array: filename = paste0(hist_data_dir, hist_name, '/hist_grid_', as.character(start_date), '.nc') nc = nc_open(filename) lon = ncvar_get(nc, varid='lon') lat = ncvar_get(nc, varid='lat') pft = ncvar_get(nc, varid='pft') hour = ncvar_get(nc, varid='hour') if (PFT_sum) hist_monthly = array(NaN, dim=c(length(lon), length(lat), n_month)) else hist_monthly = array(NaN, dim=c(length(lon), length(lat), n_month, length(pft))) # Looping over months: for (m in 1:n_month) { print(paste0('Processing ', varid, ' for month = ', substr(as.character(month_vec[m]), start=1, stop=6)), quote=FALSE) # Generate hourly data array for each month: date_vec_sub = date_vec[which(floor(date_vec/1e2) == floor(month_vec[m]/1e2))] hist_hourly = array(NaN, dim=c(length(lon), length(lat), length(pft), length(date_vec_sub)*length(hour))) # Looping over days: for (d in 1:length(date_vec_sub)) { # Extract nc file: ind_hr = ((d - 1)*length(hour) + 1):((d - 1)*length(hour) + length(hour)) filename = paste0(hist_data_dir, hist_name, '/hist_grid_', as.character(date_vec_sub[d]), '.nc') nc = nc_open(filename) hist_hourly[,,,ind_hr] = ncvar_get(nc, varid=varid) nc_close(nc) } # Find monthly mean: if (PFT_sum) { hist_monthly_PFT = apply(hist_hourly, MARGIN=1:3, FUN=mean, na.rm=TRUE) hist_monthly[,,m] = apply(hist_monthly_PFT*PFT_frac, MARGIN=1:2, FUN=sum, na.rm=TRUE) } else { hist_monthly[,,m,] = apply(hist_hourly, MARGIN=1:3, FUN=mean, na.rm=TRUE) } } return(hist_monthly) } # timestamp() # out2 = f_monthly_mean(hist_name='control_global_2010', start_date=20100601, end_date=20100831, varid='A_can') # timestamp() # # It requires ~100 seconds to finish 3 months. ################################################################################ # Function to find monthly mean of any daily statistic (e.g., daily max, min) from default hourly output data in nc files: f_monthly_mean_stat = function(hist_name, start_date, end_date, varid, FUN=max, hist_data_dir='~/TGABI/Tai/TEMIR/hist_data/') { # This function requires external functions: make.date.vec (from "tools.R"), f_daily_stat # This function requires R packages: ncdf4 # There cannot be any missing dates in between the first and last days of a month. # Therefore, "start_date" should always be the first day of a given month, and "end_date" should be the last day of a given month. # Vector of simulation months: date_vec = make.date.vec(start.date=start_date, end.date=end_date) month_vec = unique(floor(date_vec/1e2))*1e2 + 1 # Number of simulation months: n_month = length(month_vec) # Define new data array: filename = paste0(hist_data_dir, hist_name, '/hist_grid_', as.character(start_date), '.nc') nc = nc_open(filename) lon = ncvar_get(nc, varid='lon') lat = ncvar_get(nc, varid='lat') pft = ncvar_get(nc, varid='pft') hour = ncvar_get(nc, varid='hour') hist_monthly = array(NaN, dim=c(length(lon), length(lat), n_month, length(pft))) # Looping over months: for (m in 1:n_month) { # Find daily statistic for each month: date_vec_sub = date_vec[which(floor(date_vec/1e2) == floor(month_vec[m]/1e2))] hist_daily = f_daily_stat(hist_name=hist_name, start_date=date_vec_sub[1], end_date=tail(date_vec_sub, 1), varid=varid, FUN=FUN, hist_data_dir=hist_data_dir) # Find monthly mean of daily statistic: hist_monthly[,,m,] = apply(hist_daily, MARGIN=c(1,2,4), FUN=mean, na.rm=TRUE) } return(hist_monthly) } # timestamp() # out1 = f_monthly_mean(hist_name='control_global_2010', start_date=20100601, end_date=20100831, varid='A_can') # timestamp() # # It requires ~390 seconds to finish 3 months. ################################################################################ ### End of module ################################################################################
e2caceb1631f13034df3fb2c24072de569cbc925
ffdea92d4315e4363dd4ae673a1a6adf82a761b5
/data/genthat_extracted_code/ROC632/examples/ROC.Rd.R
8982c98b4f6435439fd0250ee09d5edf1887e352
[]
no_license
surayaaramli/typeRrh
d257ac8905c49123f4ccd4e377ee3dfc84d1636c
66e6996f31961bc8b9aafe1a6a6098327b66bf71
refs/heads/master
2023-05-05T04:05:31.617869
2019-04-25T22:10:06
2019-04-25T22:10:06
null
0
0
null
null
null
null
UTF-8
R
false
false
487
r
ROC.Rd.R
library(ROC632) ### Name: ROC ### Title: Estimation of the traditional ROC curves (without censoring) ### Aliases: ROC ### Keywords: ROC curve ### ** Examples # import and attach the data example X <- c(1, 2, 3, 4, 5, 6, 7, 8) # The value of the marker Y <- c(0, 0, 0, 1, 0, 1, 1, 1) # The value of the binary outcome ROC.obj <- ROC(status=Y, marker=X, cut.values=sort(X)) plot(ROC.obj$FP, ROC.obj$TP, ylab="True Positive Rates", xlab="False Positive Rates", type="s", lwd=2)
3030ead456f623c034c9d16c4fbe51751d861d0a
4b06cc5da85d381921c1ffedd44e08d9d6839a03
/Data Science/corr.R
08aaa3498e136501fbbcbe6a2c82d23918760dde
[]
no_license
muaoran/R
2fe8881b95a71b0cdc68f952c942824c20e631b5
2fdf31ad33666d18c7c9500434f3f129bf9c2321
refs/heads/master
2021-01-10T06:51:50.553052
2015-12-26T10:31:34
2015-12-26T10:31:34
50,765,755
0
0
null
null
null
null
UTF-8
R
false
false
514
r
corr.R
corr<-function(directory, threshold=0){ dirt<-list.files(directory,full.name=TRUE) data_source<-vector(mode="numeric",length=0) for (i in 1:length(dirt)){ monitor_i<-read.csv(dirt[i]) corr_sum<-sum((!is.na(monitor_i$sulfate))&(!is.na(monitor_i$nitrate))) monitor_i_1<-monitor_i[which(!is.na(monitor_i$sulfate)),] monitor_i_2<-monitor_i_1[which(!is.na(monitor_i_1$nitrate)),] if(corr_sum>threshold){data_source<-c(data_source,cor(monitor_i_2$sulfate,monitor_i_2$nitrate)) }} data_source}
69c5c2e341a06c3a11de375f7c3a89449b606a7f
0ab233b9f40236e52ad2bb43dadd2ffca739aa8b
/R/parse_post.R
b63267de4cd1ecfbec2d4abdf1123bbd96b184cf
[ "Apache-2.0" ]
permissive
opencpu/opencpu
49cada256c9a67a8ea8514d848986b5305f36172
b8e9c840b90afb33abeae5c2a353339217cfdee2
refs/heads/master
2023-08-30T08:24:19.756598
2023-08-06T13:35:23
2023-08-06T13:35:23
10,206,132
384
62
NOASSERTION
2023-08-06T13:35:24
2013-05-21T21:45:12
R
UTF-8
R
false
false
2,141
r
parse_post.R
parse_post <- function(reqbody, contenttype){ #check for no data if(!length(reqbody)){ return(list()) } #strip title form header contenttype <- sub("Content-Type: ?", "", contenttype, ignore.case=TRUE); #invalid content type if(!length(contenttype) || !nchar(contenttype)){ stop("No Content-Type header found.") } # test for multipart if(grepl("multipart/form-data", contenttype, fixed=TRUE)){ return(multipart(reqbody, contenttype)); # test for url-encoded } else if(grepl("x-www-form-urlencoded", contenttype, fixed=TRUE)){ if(is.raw(reqbody)){ return(webutils::parse_query(reqbody)); } else { return(as.list(reqbody)); } # test for json } else if(grepl("^application/json", contenttype)){ if(is.raw(reqbody)){ jsondata <- rawToChar(reqbody); } else { jsondata <- reqbody; } if(!(is_valid <- validate(jsondata))){ stop("Invalid JSON was posted: ", attr(is_valid, "err")) } obj <- as.list(fromJSON(jsondata)); # test for protobuf } else if(grepl("^application/r?protobuf", contenttype)){ if(is.raw(reqbody)){ obj <- protolite::unserialize_pb(reqbody); } else { stop("ProtoBuf payload was posted as text ??") } } else if(grepl("^application/rds", contenttype)){ obj <- readRDS(gzcon(rawConnection(reqbody))) } else { stop("POST body with unknown conntent type: ", contenttype); } # Empty POST data if(is.null(obj)) obj <- as.list(obj) if(!is.list(obj) || length(names(obj)) < length(obj)){ stop("JSON or ProtoBuf input should be a named list.") } return(lapply(obj, function(x){ if(is.null(x) || isTRUE(is.atomic(x) && length(x) == 1 && !length(dim(x))) && is.null(names(x))){ #primitives as expressions return(deparse_atomic(x)) } else { return(I(x)) } })); } # base::deparse() fucks up utf8 strings deparse_atomic <- function(x){ if(is.character(x) && !is.na(x)){ str <- jsonlite::toJSON(x) str <- sub("^\\[", "c(", str) sub("\\]$", ")", str) } else { paste(deparse(x), collapse = "\n") } }
1c1256cf3737c73a727335395bc2b13c85a6688a
8b885a8159c2a4cabd1555bb971fe7ceffb895f0
/ui.R
ca9293dc8b45ade30344382c4dc1032698d7500a
[]
no_license
Frikster/mouseActionGrapher
c6459a941849e250d874a3c6ba99d3b4bcdc2eef
2001d0bb39da53d865dfc278609dc0810159fe31
refs/heads/master
2020-12-28T21:28:42.949756
2015-09-08T19:06:06
2015-09-08T19:06:06
39,651,937
0
0
null
null
null
null
UTF-8
R
false
false
1,834
r
ui.R
rm(list = ls()) # Immediately enter the browser/some function when an error occurs # options(error = some funcion) library(shiny) library(DT) shinyUI(fluidPage( titlePanel("MurphyLab"), sidebarLayout( sidebarPanel( # fileInput('file1', 'Choose CSV File', # accept=c('text/csv', # 'text/comma-separated-values,text/plain', # '.csv')), # checkboxInput('header', 'Header', TRUE), # radioButtons('sep', 'Separator', # c(Comma=',', # Semicolon=';', # Tab='\t'), # ','), # radioButtons('quote', 'Quote', # c(None='', # 'Double Quote'='"', # 'Single Quote'="'"), # '"'), # selectizeInput('tagChooser', 'Choose Tags to plot', choices = c("data not loaded"), multiple = TRUE), # selectizeInput('actionsTracked', 'Choose Actions to plot', choices = c("data not loaded"), multiple = TRUE), # textInput("control_rate", # "Rate in seconds", # value = 3600), # actionButton("go", "Plot") ), mainPanel( # sliderInput(inputId = "opt.cex", # label = "Point Size (cex)", # min = 0, max = 2, step = 0.25, value = 1), # sliderInput(inputId = "opt.cexaxis", # label = "Axis Text Size (cex.axis)", # min = 0, max = 2, step = 0.25, value = 1), # plotOutput("plot1"), # DT::dataTableOutput("plotTable"), # downloadButton('downloadSubset', 'Download Subset (coming soon)') ) ) ) )
074bde3403025868ce16eaa4c07c1d308887c6b2
b75cdbee114168b86f64a51e3a8ca16433e30792
/code/renaissance_palette.R
7a34bdaa50cbb099be1d1e41f2112fc35cbd00d9
[]
no_license
AndreaCirilloAC/dataviz
1ccdee0c474260ec986c550193e3a6348238f2d0
daffd43170f4ef3c44b8c6ded14d26323e184c38
refs/heads/master
2021-01-20T06:25:05.930740
2017-06-01T20:36:36
2017-06-01T20:36:36
89,876,329
0
0
null
null
null
null
UTF-8
R
false
false
1,099
r
renaissance_palette.R
library(pixmap) library(dplyr) library(scales) #convert aminadab_rgb.jpg aminadab_rgb.ppm painting_michelangelo <- read.pnm("images/profeta_daniele.ppm") str(painting_michelangelo) red_vector <- as.vector(painting_michelangelo@red) green_vector <- as.vector(painting_michelangelo@green) blue_vector <- as.vector(painting_michelangelo@blue) data.frame(red_vector,green_vector,blue_vector) %>% unique() -> rgb_triples rgb_codes <- rgb(red = rgb_triples[,1],green = rgb_triples[,2], blue = rgb_triples[,3]) michelangelo_sample <- sample(rgb_codes,100) painting_raffaello <- read.pnm("images/sacra_famiglia_canigiani.ppm") red_vector <- as.vector(painting_raffaello@red) green_vector <- as.vector(painting_raffaello@green) blue_vector <- as.vector(painting_raffaello@blue) data.frame(red_vector,green_vector,blue_vector) %>% unique() -> rgb_triples rgb_codes <- rgb(red = rgb_triples[,1],green = rgb_triples[,2], blue = rgb_triples[,3]) raffaello_sample <- sample(rgb_codes,100) show_col(raffaello_sample) show_col(michelangelo_sample)
258fc3ffa283dbfe3a7917209b716d6b7c7c7300
19499542a5d57031d3dc1f496ea0f80b14bc4a5f
/Discrete2/Output/2DUnitSquare/Rscript for UnitSquare.R
21c3fc7342830d1a1ac151157ffc2fb12db59b88
[ "Apache-2.0" ]
permissive
jakent4498/IDS6938-SimulationTechniques
51168eb6cb05f9e33a843042961d9f6ff5121f52
2ecdbe57a51f8139839f0c22baf4c5bb34447e83
refs/heads/master
2021-01-09T06:16:11.443537
2017-04-24T02:03:06
2017-04-24T02:03:06
80,947,128
0
0
null
2017-02-04T20:42:02
2017-02-04T20:42:02
null
UTF-8
R
false
false
1,255
r
Rscript for UnitSquare.R
setwd("C:/Users/jaken/OneDrive/Documents/Spring 2017 SimTech/IDS6938-SimulationTechniques/Discrete2/Output/2DUnitSquare") library(ggplot2) library(grid) library(gridExtra) jakdf1 <- read.csv("raw_results_ranlux48_2D-uniform2.txt", header=FALSE) p1 <- ggplot(jakdf1) + geom_point( aes(x=jakdf1$V1, y=jakdf1$V2)) + xlab("ranlux48") jakdf2 <- read.csv("raw_results_ranlux48_2D-uniform2N10000.txt", header=FALSE) p2 <- ggplot(jakdf2) + geom_point( aes(x=jakdf2$V1, y=jakdf2$V2)) + xlab("ranlux48") jakdf3 <- read.csv("raw_results_ranlux48_2D-uniform2N100000.txt", header=FALSE) p3 <- ggplot(jakdf3) + geom_point( aes(x=jakdf3$V1, y=jakdf3$V2)) + xlab("ranlux48") grid.arrange(p3,p2,p1, ncol=1) jakdf11 <- read.csv("raw_results_minstd_rand_2D-uniform2N1000.txt", header=FALSE) jakdf12 <- read.csv("raw_results_minstd_rand_2D-uniform2N10000.txt", header=FALSE) jakdf13 <- read.csv("raw_results_minstd_rand_2D-uniform2N100000.txt", header=FALSE) p11 <- ggplot(jakdf11) + geom_point(aes(x=jakdf11$V1, y=jakdf11$V2)) + xlab("minstd_rand") p12 <- ggplot(jakdf12) + geom_point(aes(x=jakdf12$V1, y=jakdf12$V2)) + xlab("minstd_rand") p13 <- ggplot(jakdf13) + geom_point(aes(x=jakdf13$V1, y=jakdf13$V2)) + xlab("minstd_rand") grid.arrange(p3,p13,p2,p12,p1,p11, ncol=2)
0bc976e2fa5f45ccf0921f69e747b49b624d449a
02e16d94c252fdcba74cd8bd397bdaae9d7758c7
/man/faConfInt.Rd
67ab62ccc5be4f32df950fa268c2a3a9739ffbbd
[]
no_license
Matherion/ufs
be53b463262e47a2a5c4bcbc47827f85aa0c4eb2
9138cab0994d6b9ac0cea327a572243d66487afb
refs/heads/master
2020-03-24T21:11:05.053939
2019-02-12T10:33:48
2019-02-12T10:33:48
143,017,526
0
1
null
null
null
null
UTF-8
R
false
true
1,737
rd
faConfInt.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/faConfInt.R \name{faConfInt} \alias{faConfInt} \title{Extract confidence bounds from psych's factor analysis object} \usage{ faConfInt(fa) } \arguments{ \item{fa}{The object produced by the \code{\link[psych:fa]{psych::fa()}} function from the \link[psych:psych-package]{psych::psych-package} package. It is important that the \code{n.iter} argument of\code{\link[psych:fa]{psych::fa()}} was set to a realistic number, because otherwise, no confidence intervals will be available.} } \value{ A list of dataframes, one for each extracted factor, with in each dataframe three variables: \item{lo}{lower bound of the confidence interval} \item{est}{point estimate of the factor loading} \item{hi}{upper bound of the confidence interval} } \description{ This function contains some code from a function in \link[psych:psych-package]{psych::psych-package} that's not exported \code{print.psych.fa.ci} but useful nonetheless. It basically takes the outcomes of a factor analysis and extracted the confidence intervals. } \details{ THis function extract confidence interval bounds and combines them with factor loadings using the code from the \code{print.psych.fa.ci} in \link[psych:psych-package]{psych::psych-package}. } \examples{ \dontrun{ ### Not run because it takes too long to run to test it, ### and may produce warnings, both because of the bootstrapping ### required to generate the confidence intervals in fa faConfInt(psych::fa(Thurstone.33, 2, n.iter=100, n.obs=100)); } } \author{ William Revelle (extracted by Gjalt-Jorn Peters) Maintainer: Gjalt-Jorn Peters \href{mailto:[email protected]}{[email protected]} }
a1e76c911cf449adad8700f177fbe84c36c4dd25
2a04df4844316bcc181587008414b4a23277360f
/run_tests.R
2f612b313fd73515ea305345645206c3093c740d
[]
no_license
jpalowitch/bmd
633822e6866811ef51fe6c63f41053b20f127155
3888df7847ac7f9fbfb976c3ac656bb867a5bde4
refs/heads/master
2021-01-11T18:10:03.477170
2017-12-04T07:31:48
2017-12-04T07:31:48
79,506,895
0
1
null
2017-07-05T09:33:57
2017-01-19T23:50:43
R
UTF-8
R
false
false
77
r
run_tests.R
library(testthat) test_results <- test_dir("./tests", reporter = "summary")
a0745952576b743eb1caebe88422ec6a1389e150
7ae8b04333b69534a08cd8af2d6a27229af73a3a
/ui.R
4b97b1009c2860ecea2bdc925b7a99f20ea69890
[]
no_license
Parkyuyoung/capstone2_F
953cccefa6084b05411113cc4845fc0a6cd70d6d
297828ed21089b844456382ea1e3fcff8eb2f380
refs/heads/master
2020-07-27T18:24:48.528306
2019-12-03T06:00:37
2019-12-03T06:00:37
209,185,562
0
0
null
null
null
null
UTF-8
R
false
false
12,615
r
ui.R
source("common.R") jscode <- ' $(function() { var $els = $("[data-proxy-click]"); $.each( $els, function(idx, el) { var $el = $(el); var $proxy = $("#" + $el.data("proxyClick")); $el.keydown(function (e) { if (e.keyCode == 13) { $proxy.click(); } }); } ); }); ' ### ui shinyUI(navbarPage("Global Tactical Asset Allocation", theme = shinythemes::shinytheme("united"), # Main Page: Portfolio Return tabPanel("Portfolio", br(), tabsetPanel(id = "inTabset", type = "tabs", tabPanel("Search", value="tab1", br(), sidebarLayout( sidebarPanel( dateRangeInput('range', '날짜 범위', start = '2008-01-01', end = Sys.Date(), min = '2008-01-01', max = Sys.Date(), format = "yyyy-mm-dd", separator = " - "), tags$head(tags$script(HTML(jscode))), tagAppendAttributes( #textInput("text", NULL, "foo"), textInput("ticker", "자산 입력", "SPY"), `data-proxy-click` = "btn_ewf" ), actionButton("btn_ewf", "입력"), actionButton("btn_ewf_delete", "삭제"), #actionButton("test_btn_ewf", "테스트"), p(" "), verbatimTextOutput("nText"), br(), radioButtons("radioBtn1", func_Title("radioBtn1"), func_TitleList("radioBtn1"), selected = 0), radioButtons("radioBtn2", func_Title("radioBtn2"), func_TitleList("radioBtn2"), selected = 0), radioButtons("radioBtn3", func_Title("radioBtn3"), func_TitleList("radioBtn3"), selected = 0), radioButtons("radioBtn4", func_Title("radioBtn4"), func_TitleList("radioBtn4"), selected = 0), lapply(1:length(mychoice), function(i) { column(5, numericInput(inputId = paste0("numeric_rate_", i), label = paste0("rate", i), min = 0.1, max = 0.9, step = 0.1, value = 0.1, width='150px') ) }), fluidPage( useShinyjs(), numericInput(inputId = "numeric_momentum", label = "numeric_momentum", min = 1, max = 10, step = 1, value = 1, width='100px') ), fluidPage( useShinyjs(), numericInput(inputId = "numeric_multifac", label = "numeric_multifac", min = 1, max = 10, step = 1, value = 3, width='100px') ), fluidPage( useShinyjs(), numericInput(inputId = "numeric_min", label = "numeric_min", min = 0.00, max = 0.9, step = 0.1, value = 0) ), fluidPage( useShinyjs(), numericInput(inputId = "numeric_max", label = "numeric_max", min = 0.00, max = 1, step = 1, value = 1) ), p(" "), sliderInput('sliderInput_lookback', '룩백', min = 1, max = 100, step = 1, value = 12), sliderInput('sliderInput_rebalancing', '리밸런싱', min = 1, max = 48, step = 1, value = 3), sliderInput('sliderInput_fee', '매매비용', min = 0.001, max = 0.01, step = 0.001, value = 0.003), #actionButton("btn_preview", "미리보기", placement="right"), p(" "), br(), actionButton("goButton", "조회") ), mainPanel(tabPanel("correlation", "상관관계(correlation)", d3heatmapOutput("heatmap", width = "100%", height="500px")), br(),br(),br(),br(),br(),br(),br(), tabPanel("preview", "", plotlyOutput("plot_preview"), br(), DT::dataTableOutput("dataTable_preview"))), ) ), tabPanel("Cumulative Return", value="tab2", br(), plotlyOutput("port_ret"), br(), fluidRow( column(12, tableOutput( "Performance_analysis")) ), br(), plotlyOutput("port_ret_yr"), plotlyOutput("port_ret_yr2"), br(), fluidRow( column(6, DT::dataTableOutput("port_table")), column(6, DT::dataTableOutput("port_table_year")) ), fluidRow( column(1, offset = 10, downloadButton("download_monthly", "download(Monthly)") )), fluidRow( column(1, offset = 10, downloadButton("download_yearly", "download(Yearly)") ))), tabPanel("Weight", value="tab3", br(), plotlyOutput("wts_now"), br(), plotlyOutput("wts_hist"), br(), DT::dataTableOutput("wts_table")), tabPanel("Raw Data", value="tab4", br(), plotlyOutput("plot_etf_raw"), br(), DT::dataTableOutput("dataTable_etf_raw"), br(), br()) ) ), # Author: Henry tabPanel("About developer", strong("홍성주"), tags$ul( tags$li("Phone nubmer : 010-8857-6301"), tags$li("E-mail : [email protected]"), tags$li("github : season0304"), tags$li("major : Economics and Finance "), br() ), div(), strong("박유영"), tags$ul( tags$li("Phone nubmer : 010-9616-4766"), tags$li("E-mail : [email protected]"), tags$li("github : parkyuyoung"), tags$li("major : Data Analysis "), br() ), div(), strong("김민찬"), tags$ul( tags$li("Phone nubmer : 010-2864-3564"), tags$li("E-mail : [email protected]"), tags$li("github : minclasse"), tags$li("major : Computer Science "), br() ), div(), strong("최영규"), tags$ul( tags$li("Phone nubmer : 010-2019-0700"), tags$li("E-mail : [email protected]"), tags$li("github : dudrb1418"), tags$li("major : Computer Science "), br() ) ) ))
984e00f1273c12d9ff3249db07fa84c9da89bbec
40bd7bdcd28e05e842c77749b381eb78cbd459cc
/plot3.R
fde4c4ca32a381cecdeae9c2f629232ccae23b22
[]
no_license
jackman1224/ExData_Plotting1
f0f1d3610b4f1c5b9267c2b8f1063f733efab160
8a480d18306cfd63552abb88253aaafa5654eee9
refs/heads/master
2021-01-25T07:44:14.867667
2017-06-08T21:04:38
2017-06-08T21:04:38
93,657,387
0
0
null
2017-06-07T16:39:28
2017-06-07T16:39:28
null
UTF-8
R
false
false
1,330
r
plot3.R
fileURL <- "https://d396qusza40orc.cloudfront.net/exdata%2Fdata%2Fhousehold_power_consumption.zip" download.file(fileURL, destfile = "./Dataset.zip") unzip(zipfile = "./Dataset.zip", exdir = "./") hpc <- read.table("C:/Users/jackman/Desktop/R Files/Exploratory Data Analysis/Week 1/Electric Power Consumption Exercise/household_power_consumption.txt", sep = ";", header = TRUE, na.strings = "?", colClasses = c("character","character", "numeric", "numeric","numeric","numeric","numeric","numeric","numeric")) hpc$Date <- as.Date(hpc$Date, "%d/%m/%Y") hpc_subset <- subset(hpc, Date >= as.Date("2007-2-1") & Date <= as.Date("2007-2-2")) hpc_complete <- hpc_subset[complete.cases(hpc_subset),] dateTime <- paste(hpc_complete$Date,hpc_complete$Time) dateTime <- setNames(dateTime, "DateTime") hpc_complete <- hpc_complete[,!(names(hpc_complete) %in% c("Date", "Time"))] hpc_complete <- cbind(dateTime,hpc_complete) hpc_complete$dateTime <- as.POSIXct(as.character(hpc_complete$dateTime, format = "%d/%m/%Y %H:%M:%S")) plot(hpc_complete$Sub_metering_1, type = "l", ylab = "Energy sub metering", xlab = "") lines(hpc_complete$Sub_metering_2, col = "red") lines(hpc_complete$Sub_metering_3, col = "blue") legend("topright", col = c("black", "red", "blue"), lwd = c(1,1,1), c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3"))
1ca37e4769138d306464607fdbece955ec5a32e7
57ce4924de86c96cf663737ae5f0291fc616d0a4
/Utils.R
c64b05cd46c31e3b14beac9a6b91aab706376971
[]
no_license
lfmingo/GramAnt
a482fd49f7e9c4bdfabed9b7128ac813dba680f5
5525a8d0af863bf5bef90d9692f4aa503c829b2d
refs/heads/master
2021-07-15T19:42:06.096865
2017-10-19T08:02:47
2017-10-19T08:02:47
107,306,274
0
1
null
2017-10-19T08:02:48
2017-10-17T18:10:43
R
UTF-8
R
false
false
2,270
r
Utils.R
ReadBNFFile <- function(filename) { # reads a bnf grammar file and returns a list structure # read the file line by line con=file(filename, open="r") lines=readLines(con) close(con) # parse the lines rule_list = list() for (l in lines) { l = trim_space(l) gram_line = strsplit(l, "::=")[[1]] if (length(gram_line) > 1) { # split and trim rules rules = strsplit(trim_space(gram_line[2]), "|", fixed=TRUE) for (j in seq_along(rules[[1]])) { rules[[1]][[j]] = trim_space(rules[[1]][[j]]) } # add rules to list i = length(rule_list) + 1 rule_list[[i]] = list() rule_list[[i]][[1]] = trim_space(gram_line[[1]]) rule_list[[i]][[2]] = as.list(rules[[1]]) print(rule_list) } } return (rule_list) } trim_brackets <- function (x) gsub("^<+|>+$", "", x) trim_space <- function (x) gsub("^\\s+|\\s+$", "", x) findRule <- function(grammar, non_terminal) { idx <- grep(non_terminal,lapply(grammar, function(x) x[[1]])) if (length(idx) == 0) return (NULL) grammar[idx][[1]][[2]] } apply_rule <- function (expression, rule, consequent, first_NT) { expr <- list() idx <- grep(first_NT, expression)[1] res <- as.list(strsplit(trim_space(rule[[consequent]]), " ", fixed=TRUE)[[1]]) if (idx > 1) expr <- append(expr,expression[1:(idx-1)]) expr <- append(expr, res) if (idx < length(expression)) expr <- append(expr,expression[(idx+1):length(expression)]) ## cat("Original expression ", unlist(expression), "\n") ## cat(paste("Applying rule ", first_NT, " ::= ", unlist(rule[[consequent]])), "\n") ## cat("Obtained expression ", unlist(expr), "\n\n") expr } iterate_rules <- function(expression, g) { stop <- TRUE solution <- FALSE first_NT <- expression[grep ("<[[:alnum:]]+>", expression)[1]] if (is.null(first_NT[[1]])) { ## cat(" ---- non_terminal NOT found ---- \n") solution <- TRUE } else { rule <- findRule(g, first_NT) if (is.null(rule)) { ## cat(paste(" ---- not rule found for expression ",unlist(expression),"\n")) } else { expression <- apply_rule(expression, rule, sample(1:length(rule), 1), first_NT) stop = FALSE } } list(expression, stop, solution) }
62624169c1036c65cf0af803203b40b21811bd65
51f14fb4b19eb9e5fd6b26552d128f1cc0ff9875
/R/distributions.R
018eee21246b0a737e2566ea88731196ce2fb095
[]
no_license
zhaoxiaohe/greta
62222ad5d73ae1328f7708d67e39890a2191c2fd
1489a7272d041f97b780d844b889f1124d7a0726
refs/heads/master
2021-01-20T07:22:55.088857
2017-05-01T13:01:39
2017-05-01T13:01:39
null
0
0
null
null
null
null
UTF-8
R
false
false
17,698
r
distributions.R
flat_distribution <- R6Class ( 'flat_distribution', inherit = distribution, public = list( to_free = function (y) { upper <- self$parameters$upper$value() lower <- self$parameters$lower$value() qlogis((y - lower) / (upper - lower)) }, tf_from_free = function (x, env) { # cannot allow the upper and lower values to be nodes # otherwise it would severely screw with the gradients upper <- self$parameters$upper$value() lower <- self$parameters$lower$value() (1 / (1 + tf$exp(-1 * x))) * (upper - lower) + lower }, initialize = function (lower = -1e6, upper = 1e6, dim) { if (!(is.numeric(lower) & is.numeric(upper) & is.finite(lower) & is.finite(upper) & length(lower) == 1 & length(upper) == 1)) { stop ('lower and upper must be finite scalars') } super$initialize('flat', dim) self$add_parameter(lower, 'lower') self$add_parameter(upper, 'upper') }, tf_log_density_function = function (value, parameters) tf$constant(0, dtype = tf$float32) ) ) free_distribution <- R6Class ( 'free_distribution', inherit = distribution, public = list( to_free = function (y) y, tf_from_free = function (x, env) x, initialize = function (dim = 1) super$initialize('free', dim), tf_log_density_function = function (value, parameters) tf$constant(0, dtype = tf$float32) ) ) normal_distribution <- R6Class ( 'normal_distribution', inherit = distribution, public = list( to_free = function (y) y, tf_from_free = function (x, env) x, initialize = function (mean, sd, dim) { # add the nodes as children and parameters dim <- check_dims(mean, sd, target_dim = dim) super$initialize('normal', dim) self$add_parameter(mean, 'mean') self$add_parameter(sd, 'sd') }, tf_log_density_function = function (x, parameters) { mean <- parameters$mean var <- tf$square(parameters$sd) -0.5 * tf$log(2 * pi) - 0.5 * tf$log(var) - 0.5 * tf$square(tf$subtract(mean, x)) / var } ) ) lognormal_distribution <- R6Class ( 'lognormal_distribution', inherit = distribution, public = list( to_free = log, tf_from_free = function (x, env) tf$exp(x), initialize = function (meanlog, sdlog, dim) { dim <- check_dims(meanlog, sdlog, target_dim = dim) super$initialize('lognormal', dim) self$add_parameter(meanlog, 'meanlog') self$add_parameter(sdlog, 'sdlog') }, tf_log_density_function = function (x, parameters) { mean <- parameters$meanlog sd <- parameters$sdlog var <- tf$square(sd) lx <- tf$log(x) -1 * (lx + tf$log(sd) + 0.9189385) + -0.5 * tf$square(tf$subtract(lx, mean)) / var } ) ) bernoulli_distribution <- R6Class ( 'bernoulli_distribution', inherit = distribution, public = list( to_free = function (y) stop ('cannot infer discrete random variables'), tf_from_free = function (x, env) stop ('cannot infer discrete random variables'), initialize = function (prob, dim) { # add the nodes as children and parameters dim <- check_dims(prob, target_dim = dim) super$initialize('bernoulli', dim, discrete = TRUE) self$add_parameter(prob, 'prob') }, tf_log_density_function = function (x, parameters) { prob <- parameters$prob # optionally reshape prob prob_shape <- prob$get_shape()$as_list() x_shape <- x$get_shape()$as_list() if (identical(prob_shape, c(1L, 1L)) & !identical(x_shape, c(1L, 1L))) probs <- tf$tile(prob, x_shape) tf$log(tf$where(tf$equal(x, 1), probs, 1 - probs)) } ) ) binomial_distribution <- R6Class ( 'binomial_distribution', inherit = distribution, public = list( to_free = function (y) stop ('cannot infer discrete random variables'), tf_from_free = function (x, env) stop ('cannot infer discrete random variables'), initialize = function (size, prob, dim) { # add the nodes as children and parameters dim <- check_dims(size, prob, target_dim = dim) super$initialize('binomial', dim, discrete = TRUE) self$add_parameter(size, 'size') self$add_parameter(prob, 'prob') }, tf_log_density_function = function (x, parameters) { size <- parameters$size prob <- parameters$prob log_choose <- tf$lgamma(size + 1) - tf$lgamma(x + 1) - tf$lgamma(size - x + 1) log_choose + x * tf$log(prob) + (size - x) * tf$log(1 - prob) } ) ) poisson_distribution <- R6Class ( 'poisson_distribution', inherit = distribution, public = list( to_free = function (y) stop ('cannot infer discrete random variables'), tf_from_free = function (x, env) stop ('cannot infer discrete random variables'), initialize = function (lambda, dim) { # add the nodes as children and parameters dim <- check_dims(lambda, target_dim = dim) super$initialize('poisson', dim, discrete = TRUE) self$add_parameter(lambda, 'lambda') }, tf_log_density_function = function (x, parameters) { lambda <- parameters$lambda x * tf$log(lambda) - lambda - tf$lgamma(x + 1) } ) ) negative_binomial_distribution <- R6Class ( 'negative_binomial_distribution', inherit = distribution, public = list( to_free = function (y) stop ('cannot infer discrete random variables'), tf_from_free = function (x, env) stop ('cannot infer discrete random variables'), initialize = function (size, prob, dim) { # add the nodes as children and parameters dim <- check_dims(size, prob, target_dim = dim) super$initialize('negative_binomial', dim, discrete = TRUE) self$add_parameter(size, 'size') self$add_parameter(prob, 'prob') }, tf_log_density_function = function (x, parameters) { size <- parameters$size prob <- parameters$prob log_choose <- tf$lgamma(x + size) - tf$lgamma(x + 1) - tf$lgamma(size) log_choose + size * tf$log(prob) + x * tf$log(1 - prob) } ) ) gamma_distribution <- R6Class ( 'gamma_distribution', inherit = distribution, public = list( to_free = function (y) log(expm1(y)), tf_from_free = function (x, env) tf_log1pe(x), initialize = function (shape, rate, dim) { # add the nodes as children and parameters dim <- check_dims(shape, rate, target_dim = dim) super$initialize('gamma', dim) self$add_parameter(shape, 'shape') self$add_parameter(rate, 'rate') }, tf_log_density_function = function (x, parameters) { shape <- parameters$shape scale <- 1 /parameters$rate -shape * tf$log(scale) - tf$lgamma(shape) + (shape - 1) * tf$log(x) - x / scale } ) ) exponential_distribution <- R6Class ( 'exponential_distribution', inherit = distribution, public = list( to_free = function (y) log(expm1(y)), tf_from_free = function (x, env) tf_log1pe(x), initialize = function (rate, dim) { # add the nodes as children and parameters dim <- check_dims(rate, target_dim = dim) super$initialize('exponential', dim) self$add_parameter(rate, 'rate') }, tf_log_density_function = function (x, parameters) { rate <- parameters$shape -1 * x / rate - tf$log(rate) } ) ) student_distribution <- R6Class ( 'student_distribution', inherit = distribution, public = list( to_free = function (y) y, tf_from_free = function (x, env) x, initialize = function (df, ncp, dim) { # add the nodes as children and parameters dim <- check_dims(df, ncp, target_dim = dim) super$initialize('student', dim) self$add_parameter(df, 'df') self$add_parameter(ncp, 'ncp') }, tf_log_density_function = function (x, parameters) { df <- parameters$df ncp <- parameters$ncp const <- tf$lgamma((df + 1) * 0.5) - tf$lgamma(df * 0.5) - 0.5 * (tf$log(df) + log(pi)) const - 0.5 * (df + 1) * tf$log(1 + (1 / df) * (tf$square(x - ncp))) } ) ) beta_distribution <- R6Class ( 'beta_distribution', inherit = distribution, public = list( to_free = function (y) qlogis(y), tf_from_free = function (x, env) tf_ilogit(x), initialize = function (shape1, shape2, dim) { # add the nodes as children and parameters dim <- check_dims(shape1, shape2, target_dim = dim) super$initialize('beta', dim) self$add_parameter(shape1, 'shape1') self$add_parameter(shape2, 'shape2') }, tf_log_density_function = function (x, parameters) { shape1 <- parameters$shape1 shape2 <- parameters$shape2 (shape1 - 1) * tf$log(x) + (shape2 - 1) * tf$log(1 - x) + tf$lgamma(shape1 + shape2) - tf$lgamma(shape1) - tf$lgamma(shape2) } ) ) # need to add checking of mean and Sigma dimensions multivariate_normal_distribution <- R6Class ( 'multivariate_normal_distribution', inherit = distribution, public = list( to_free = function (y) y, tf_from_free = function (x, env) x, initialize = function (mean, Sigma, dim) { # coerce the parameter arguments to nodes and add as children and # parameters super$initialize('multivariate_normal', dim) self$add_parameter(mean, 'mean') self$add_parameter(Sigma, 'Sigma') # check mean has the correct dimensions if (self$parameters$mean$dim[1] != dim) { stop (sprintf('mean has %i rows, but the distribution has dimension %i', self$parameters$mean$dim[1], dim)) } # check Sigma is square if (self$parameters$Sigma$dim[1] != self$parameters$Sigma$dim[2]) { stop (sprintf('Sigma must be square, but has %i rows and %i columns', self$parameters$Sigma$dim[1], self$parameters$Sigma$dim[1])) } # Sigma has the correct dimensions if (self$parameters$Sigma$dim[1] != dim) { stop (sprintf('Sigma has dimension %i, but the distribution has dimension %i', self$parameters$Sigma$dim[1], dim)) } }, tf_log_density_function = function (x, parameters) { mean <- parameters$mean Sigma <- parameters$Sigma # number of observations & dimension of distribution nobs <- x$get_shape()$as_list()[2] dim <- x$get_shape()$as_list()[1] # Cholesky decomposition of Sigma L <- tf$cholesky(Sigma) # whiten (decorrelate) the errors diff <- x - mean diff_col <- tf$reshape(diff, shape(dim, nobs)) alpha <- tf$matrix_triangular_solve(L, diff_col, lower = TRUE) # calculate density tf$constant(-0.5 * dim * nobs * log(2 * pi)) - tf$constant(nobs, dtype = tf$float32) * tf$reduce_sum(tf$log(tf$diag_part(L))) - tf$constant(0.5) * tf$reduce_sum(tf$square(alpha)) } ) ) # need to add checking of mean and Sigma dimensions wishart_distribution <- R6Class ( 'wishart_distribution', inherit = distribution, public = list( # grab it in lower-triangular form, so it's upper when putting it back in python-style to_free = function (y) { L <- t(chol(y)) vals <- L[lower.tri(L, diag = TRUE)] matrix(vals) }, tf_from_free = function (x, env) { dims <- self$parameters$Sigma$dim L_dummy <- greta:::dummy(dims) indices <- sort(L_dummy[upper.tri(L_dummy, diag = TRUE)]) values <- tf$zeros(shape(prod(dims), 1), dtype = tf$float32) values <- greta:::recombine(values, indices, x) L <- tf$reshape(values, shape(dims[1], dims[2])) tf$matmul(tf$transpose(L), L) }, initialize = function (df, Sigma, dim) { # add the nodes as children and parameters super$initialize('wishart', c(dim, dim)) self$add_parameter(df, 'df') self$add_parameter(Sigma, 'Sigma') # check Sigma is square if (self$parameters$Sigma$dim[1] != self$parameters$Sigma$dim[2]) { stop (sprintf('Sigma must be square, but has %i rows and %i columns', self$parameters$Sigma$dim[1], self$parameters$Sigma$dim[1])) } # Sigma has the correct dimensions if (self$parameters$Sigma$dim[1] != dim) { stop (sprintf('Sigma has dimension %i, but the distribution has dimension %i', self$parameters$Sigma$dim[1], dim)) } # make the initial value PD self$value(unknowns(dims = c(dim, dim), data = diag(dim))) }, tf_log_density_function = function (x, parameters) { df <- parameters$df Sigma <- parameters$Sigma dist <- tf$contrib$distributions$WishartFull(df = df, scale = Sigma) tf$reshape(dist$log_pdf(x), shape(1, 1)) } ) ) # export constructors #' @name greta-distributions #' @title greta probability distributions #' @description These probability distributions can be used to define random #' variables in a greta model. They return a greta array object that can be #' combined with other greta arrays to construct a model. #' #' @param mean,meanlog,ncp unconstrained parameters #' @param sd,sdlog,size,lambda,shape,rate,df,shape1,shape2 positive parameters #' @param prob probability parameter (\code{0 < prob < 1}) #' @param Sigma positive definite variance-covariance matrix parameter #' #' @param range a finite, length 2 numeric vector giving the range of values to #' which \code{flat} distributions are constrained. The first element must #' be lower than the second. #' #' @param dim the dimensions of the variable. For univariate distributions this #' can be greater than 1 to represent multiple independent variables. For #' multivariate distributions this cannot be smaller than 2. #' #' @details Most of these distributions have non-uniform probability densities, #' however the distributions \code{flat} and \code{free} do not. These can #' therefore be used as parameters in likelihood (rather than Bayesian) #' inference. #' #' The discrete probability distributions (\code{bernoulli}, \code{binomial}, #' \code{negative_binomial}, \code{poisson}) can be used as likelihoods, but #' not as unknown variables. #' #' Wherever possible, the parameterisation of these distributions matches the #' those in the \code{stats} package. E.g. for the parameterisation of #' \code{negative_binomial()}, see \code{\link{dnbinom}}. #' #' @examples #' #' # a fixed distribution, e.g. for a prior #' mu = normal(0, 1) #' #' # an unconstrained, positive parameter sigma #' log_sigma = free() #' sigma = exp(log_sigma) #' #' # a hierarchical distribution #' theta = normal(mu, lognormal(0, 1)) #' #' # a vector of 3 variables drawn from the same hierarchical distribution #' thetas = normal(mu, sigma, dim = 3) #' #' # a matrix of 12 variables drawn from the same hierarchical distribution #' thetas = normal(mu, sigma, dim = c(3, 4)) #' #' # a constrained variable with no density (e.g. for a constrained likelihood model) #' theta = flat(c(1, 5)) #' #' # a multivariate normal variable, with correlation between two elements #' Sig <- diag(4) #' Sig[3, 4] <- Sig[4, 3] <- 0.6 #' theta = multivariate_normal(rep(mu, 4), Sig, dim = 4) #' #' # a Wishart variable with the same covariance parameter #' theta = wishart(df = 5, Sigma = Sig, dim = 4) NULL #' @rdname greta-distributions #' @export normal <- function (mean, sd, dim = NULL) ga(normal_distribution$new(mean, sd, dim)) #' @rdname greta-distributions #' @export lognormal <- function (meanlog, sdlog, dim = NULL) ga(lognormal_distribution$new(meanlog, sdlog, dim)) #' @rdname greta-distributions #' @export bernoulli <- function (prob, dim = NULL) ga(bernoulli_distribution$new(prob, dim)) #' @rdname greta-distributions #' @export binomial <- function (size, prob, dim = NULL) ga(binomial_distribution$new(size, prob, dim)) #' @rdname greta-distributions #' @export negative_binomial <- function (size, prob, dim = NULL) ga(negative_binomial_distribution$new(size, prob, dim)) #' @rdname greta-distributions #' @export poisson <- function (lambda, dim = NULL) ga(poisson_distribution$new(lambda, dim)) #' @rdname greta-distributions #' @export gamma <- function (shape, rate, dim = NULL) ga(gamma_distribution$new(shape, rate, dim)) #' @rdname greta-distributions #' @export exponential <- function (rate, dim = NULL) ga(exponential_distribution$new(rate, dim)) #' @rdname greta-distributions #' @export student <- function (df, ncp, dim = NULL) ga(student_distribution$new(df, ncp, dim)) #' @rdname greta-distributions #' @export beta <- function (shape1, shape2, dim = NULL) ga(beta_distribution$new(shape1, shape2, dim)) #' @rdname greta-distributions #' @export free <- function (dim = 1) ga(free_distribution$new(dim)) #' @rdname greta-distributions #' @export flat <- function (range, dim = 1) { if (is.greta_array(range)) stop ('range must be fixed, and cannot be another greta array') if (!(is.vector(range) && length(range) == 2 && is.numeric(range) && range[1] < range[2])) { stop ('range must be a length 2 numeric vector in ascending order') } ga(flat_distribution$new(lower = range[1], upper = range[2], dim = dim)) } #' @rdname greta-distributions #' @export multivariate_normal <- function (mean, Sigma, dim) ga(multivariate_normal_distribution$new(mean, Sigma, dim)) #' @rdname greta-distributions #' @export wishart <- function (df, Sigma, dim) ga(wishart_distribution$new(df, Sigma, dim))
fe7c72b46691dbc28ceb0408374f6b325a0330a2
b2f61fde194bfcb362b2266da124138efd27d867
/code/dcnf-ankit-optimized/Results/QBFLIB-2018/E1/Experiments/Wintersteiger/RankingFunctions/rankfunc39_signed_32/rankfunc39_signed_32.R
4e3785e8fb841422477867282dffbb522a165911
[]
no_license
arey0pushpa/dcnf-autarky
e95fddba85c035e8b229f5fe9ac540b692a4d5c0
a6c9a52236af11d7f7e165a4b25b32c538da1c98
refs/heads/master
2021-06-09T00:56:32.937250
2021-02-19T15:15:23
2021-02-19T15:15:23
136,440,042
0
0
null
null
null
null
UTF-8
R
false
false
835
r
rankfunc39_signed_32.R
c DCNF-Autarky [version 0.0.1]. c Copyright (c) 2018-2019 Swansea University. c c Input Clause Count: 7401 c Performing E1-Autarky iteration. c Remaining clauses count after E-Reduction: 7383 c c Performing E1-Autarky iteration. c Remaining clauses count after E-Reduction: 7383 c c Input Parameter (command line, file): c input filename QBFLIB/Wintersteiger/RankingFunctions/rankfunc39_signed_32.qdimacs c output filename /tmp/dcnfAutarky.dimacs c autarky level 1 c conformity level 0 c encoding type 2 c no.of var 2892 c no.of clauses 7401 c no.of taut cls 0 c c Output Parameters: c remaining no.of clauses 7383 c c QBFLIB/Wintersteiger/RankingFunctions/rankfunc39_signed_32.qdimacs 2892 7401 E1 [605 606 769 770 1159 1160 1225 1226 1782 1783 1976 1977 2170 2171 2364 2365 2558 2559] 0 320 2552 7383 RED
17b8609592345a64d455705ccfeb88bdb347b4d5
51f891721c5ad00748780d3bf5df9018c7537277
/other/R/server.R
17474d2e7b009d1421855f27bef48ad3db723d5e
[]
no_license
rmutalik/VisualAnalytics
a6e573db02260f86bdb7972e5f2c67ac4a9b43de
ed1a1ffd71cf57004f9f1a76e8b8bf8000eed78a
refs/heads/master
2022-11-27T09:02:20.005811
2020-08-04T02:29:33
2020-08-04T02:29:33
276,780,236
0
0
null
null
null
null
UTF-8
R
false
false
364
r
server.R
server <- function(input, output, session) { output$plot <- renderLeaflet({ leaflet() %>% addTiles() %>% setView(-30, 30, zoom = 2) }) output$map <- renderPlotly({ plot_geo(geo_ports, lat = ~lat, lon = ~lng) %>% add_markers( text = ~paste(paste("Slaves: ", n_slaves_arrived)), hoverinfo = "text" ) }) }
334fd0bf63295a58764acc2929ff247b0a64e65b
f663a843dcd66b1d4e15bfe6b9a6f618a169c3f7
/fluoro/R/helper_functs.R
c27e23af7ef32e9b24c17eb351615db755d6483c
[ "MIT" ]
permissive
rhlee12/Fluoro-Package
44556f53aaf7a455aa9229138b11367143e90903
07d6f88df2a56ad9220d12de96ee53b9e2cfedae
refs/heads/master
2021-03-30T17:56:33.852014
2018-05-30T22:18:51
2018-05-30T22:18:51
118,687,653
0
0
null
null
null
null
UTF-8
R
false
false
3,147
r
helper_functs.R
gen.seq=function(raw.eem){ em=as.numeric(raw.eem[3:length(raw.eem[,1]), 1]) # HEADER IS NEEEDED ex=as.numeric(raw.eem[1, 2:length(raw.eem)]) # HEADER IS NEEEDED return(list(em=em,ex=ex)) } raman.correct=function(raman){ raman.begin=as.numeric(raman[3,1]) #raman start wavelenth raman.end=as.numeric(raman[length(raman[,1]),1]) # raman end wavelength no.head.raman=raman[3:length(raman[,1]),] #trim.raman=as.numeric(raman[-c(1,2),]) #USE FULL SCAN? trim.raman=data.frame(no.head.raman[which(as.numeric(no.head.raman[,1])>=370),]) #pegged at a start of 370 nm for(i in 1:length(trim.raman)){ trim.raman[,i]=as.numeric(trim.raman[,i]) } r.sum=0 for( i in 1:(length(trim.raman[,1])-1)){ #This integrates from RamanBegin to RamanEnd. y0 = as.numeric(trim.raman[i, 3]) y1 = as.numeric(trim.raman[i+1, 3]) dx = as.numeric(trim.raman[i+1, 1]) - as.numeric(trim.raman[i, 1]) r.sum = r.sum + dx * (y0 + y1)/2; } base.rect=(trim.raman[1,3]+trim.raman[length(trim.raman[,1])-1,1])/2*(trim.raman[length(trim.raman[,1])-1,1]-trim.raman[1,1]) raman.area=r.sum-base.rect return(raman.area) } # Normailize the blank to the raman (F4 only) # Takes a blank file and raman.area, the output of raman.correct blank.raman.norm=function(blank, raman.area){ trim.blank=blank[3:length(blank[,1]), 2:length(blank)] for(i in 1:length(trim.blank)){ trim.blank[,i]=as.numeric(trim.blank[,i]) } blank.normal.raman=trim.blank/raman.area return(blank.normal.raman) } ifc=function(raw.eem, corrected.trim.uv){ seq=fluoro:::gen.seq(raw.eem) ex.abs=corrected.trim.uv[corrected.trim.uv[,1] %in% seq$ex,2] em.abs=corrected.trim.uv[corrected.trim.uv[,1] %in% seq$em,2] #empty data frame IFC=data.frame(matrix(data=NA, nrow=length(seq$em), ncol = length(seq$ex))) for(ex in 1:length(ex.abs)){ for(em in 1:length(em.abs)){ IFC[em, ex]=em.abs[em]+ex.abs[ex] } } return(IFC) } ##Emission Excitation Correction for F2/F3 EEM-like objects em.ex.corr=function(eem, em.corr.file, ex.corr.file){ em.corr = as.numeric(unlist(readxl::read_excel(em.corr.file, col_names = F))) #Emission Correction ex.corr = as.numeric(unlist(readxl::read_excel(ex.corr.file, col_names = F))) #Excitation Correction Y=diag(em.corr) X=diag(ex.corr) int.eem=t(as.matrix(eem) %*% X) # Make sure all this squares w/ Matlab code corr.eem=data.frame(t(int.eem %*% Y)) # Make sure all this squares w/ Matlab code ic.eem=corr.eem %>% `colnames<-`(value=colnames(eem)) %>% `rownames<-`(value=rownames(eem)) return(ic.eem) } mask.300=function(eem.dir){ eems=list.files(path = eem.dir, pattern = "_c.csv", recursive = T, full.names = T) #find all corrected files load.eems=lapply(eems, fluoro::read.corr.eem) sub.300=function(x){ x["300","300"]=((x["300", "290"]+x["300", "310"])/2) return(x) } fixed.eems=lapply(load.eems, sub.300) for(i in 1:length(fixed.eems)){ write.csv(fixed.eems[[i]], file = eems[i], row.names = T) } }
98e1380143aae6609fb8837e1a0e51d3f5f4f318
697e3ac9cbe9010ed9b50f356a2cddf5ed8cc8a0
/R/vreq_classic_methods.R
e64c75562690afe93db1db17eda9d15ccb5b54cf
[]
no_license
reumandc/tsvr
4c2b2b0c9bbbb191ae55058648da87589bc25e01
f8f7a72d4f8ba40e881e78a1a2fb53791d227d21
refs/heads/master
2021-06-01T14:27:34.757125
2021-01-08T17:09:11
2021-01-08T17:09:11
132,662,500
1
1
null
null
null
null
UTF-8
R
false
false
2,609
r
vreq_classic_methods.R
#' Basic methods for the \code{vreq_classic} class #' #' Set, get, summary, and print methods for the \code{vreq_classic} class. #' #' @param object,x,obj An object of class \code{vreq_classic} #' @param newval A new value, for the \code{set_*} methods #' @param ... Not currently used. Included for argument consistency #' with existing generics. #' #' @return \code{summary.vreq_classic} produces a summary of a \code{vreq_classic} object. #' A \code{print.vreq_classic} method is also available. For \code{vreq_classic} objects, #' \code{set_*} and \code{get_*} methods are available for all slots (see #' the documentation for \code{vreq_classic} for a list). The \code{set_*} methods #' just throw an error, to prevent breaking the consistency between the #' slots of a \code{vreq_classic} object. #' #' @author Daniel Reuman, \email{reuman@@ku.edu} #' #' @references #' Peterson (1975) Stability of species and of community for the benthos of two lagoons. Ecology 56, 958-965. #' #' @seealso \code{\link{vreq_classic}} #' #' @examples #' X<-matrix(runif(10*100),10,100) #' res<-vreq_classic(X) #' print(res) #' summary(res) #' #' @name vreq_classic_methods NULL #> NULL #' @rdname vreq_classic_methods #' @export summary.vreq_classic<-function(object,...) { res<-list(class="vreq_classic", com=get_com(object), comnull=get_comnull(object), vr=get_vr(object)) #a summary_tsvr object inherits from the list class, but has its own print method class(res)<-c("summary_tsvr","list") return(res) } #' @rdname vreq_classic_methods #' @export print.vreq_classic<-function(x,...) { cat(paste0("Object of class vreq_classic:\n CVcom2: ",get_com(x),"\n CVcomip2: ",get_comnull(x),"\n classic vr: ",get_vr(x))) } #' @rdname vreq_classic_methods #' @export set_com.vreq_classic<-function(obj,newval) { stop("Error in set_com: vreq_classic slots should not be changed individually") } #' @rdname vreq_classic_methods #' @export set_comnull.vreq_classic<-function(obj,newval) { stop("Error in set_comnull: vreq_classic slots should not be changed individually") } #' @rdname vreq_classic_methods #' @export set_vr.vreq_classic<-function(obj,newval) { stop("Error in set_vr: vreq_classic slots should not be changed individually") } #' @rdname vreq_classic_methods #' @export get_com.vreq_classic<-function(obj) { return(obj$com) } #' @rdname vreq_classic_methods #' @export get_comnull.vreq_classic<-function(obj) { return(obj$comnull) } #' @rdname vreq_classic_methods #' @export get_vr.vreq_classic<-function(obj) { return(obj$vr) }
f58c4397653f21c4808387d9a0b1e3b0c1657cf8
eaa977b7723a7ea9d54f0d2fff0a250b702445d1
/tools/analysisTools.r
efe0a0a9a5544f1bd5594b72f721d3b840801d76
[ "BSD-3-Clause" ]
permissive
hyunjimoon/laplace_manuscript
894e5620870814b9bb43ddaeabac5001428b6716
f0e967a38d8562e3d1d2b646dfcc0387c0912ace
refs/heads/master
2022-11-07T08:51:59.245244
2020-04-28T21:22:44
2020-04-28T21:22:44
275,398,155
0
0
BSD-3-Clause
2020-06-27T15:17:43
2020-06-27T15:17:42
null
UTF-8
R
false
false
4,527
r
analysisTools.r
######################################################################### ## Tools to analyze results from the cluster select_lambda <- function(parm, quant, n_select) { p <- ncol(parm) n <- nrow(parm) quantile_parm <- rep(NA, p) for (i in 1:p) quantile_parm[i] <- sort(parm[, i])[quant * n] selected <- sort(quantile_parm, decreasing = T)[1:n_select] which(quantile_parm %in% selected) } construct_plot_data <- function(parm, nIter, nChains, names) { iteration <- rep(1:nIter, nChains) chain <- rep(1:nChains, each = nIter) posterior.sample <- data.frame(parm, iteration, as.factor(chain)) # names(posterior.sample) <- c(paste0("log_lambda[", index, "]"), "iteration", "chain") names(posterior.sample) <- names posterior.sample <- posterior.sample %>% gather(key = parameter, value = value, -chain, -iteration) } trace_plot <- function(posterior.sample) { trace.plot <- ggplot(data = posterior.sample, aes(x = iteration, y = value, color = chain)) + geom_line() + theme_bw() + facet_wrap(~ parameter) print(trace.plot) } density_hist <- function(posterior.sample, bins = 30) { density.plot <- ggplot(data = posterior.sample, aes(x = value, color = chain, fill = chain)) + geom_histogram(alpha = 0.25, position = "identity", bins = bins) + theme_bw() + facet_wrap(~ parameter) + theme(text = element_text(size = 15)) print(density.plot) } quant_select_plot <- function(parm, quant, threshold = 3.5) { index <- 1:ncol(parm) parm_quant <- apply(parm, 2, quantile, quant) ggplot(data = data.frame(index = index, parm_quant = parm_quant), aes(x = index, y = parm_quant)) + geom_point(size = 0.25) + geom_text(aes(label = ifelse(parm_quant > threshold, index, '')), hjust = 0, vjust = 0) + theme_bw() + theme(text = element_text(size = 18)) } quant_select_plot2 <- function(parm1, parm2, quant, threshold = 3.5, alpha = 0.05, x = 0.95, y = 0.8, index_offset = 0) { index <- c(1:ncol(parm1), 1:ncol(parm2)) + index_offset parm_quant <- c(apply(parm1, 2, quantile, quant), apply(parm2, 2, quantile, quant)) method <- c(rep("(full) HMC", ncol(parm1)), rep("HMC + Laplace", ncol(parm2))) ggplot(data = data.frame(index = index, parm_quant = parm_quant, method = method), aes(x = index, y = parm_quant, color = method)) + geom_text(aes(label = ifelse(parm_quant > threshold, index, '')), hjust = 0, vjust = 0) + geom_point(size = 0.25, alpha = alpha) + theme_bw() + theme( legend.position = c(x, y), legend.justification = c("right", "top"), legend.box.just = "right", legend.margin = margin(6, 6, 6, 6), text = element_text(size = 15) ) + xlab("covariate index") + ylab("90th quantile") } summary_table <- function(log_lambda, tau, caux, index) { standard_post <- data.frame(log_lambda, tau, caux) names(standard_post) <- c(paste0("log_lambda[", index, "]"), "tau", "caux") standard_post <- as_draws(standard_post) draw_summary <- summarise_draws(standard_post) time <- time <- sum(colSums(get_elapsed_time(stanfit))) + sum(colSums(get_elapsed_time(stanfit2))) draw_summary$eff_bulk <- draw_summary$ess_bulk / time draw_summary$eff_tail <- draw_summary$ess_tail / time draw_summary } sample_comparison_plot <- function(plot_data) { ggplot(data = plot_data) + geom_histogram(aes(x = value, fill = method), alpha = 0.5, color = "black", bins = 30, position = "identity") + theme_bw() + facet_wrap(~key, scale = "free", ncol = 1, labeller = "label_parsed") + theme( legend.title = element_blank(), legend.position = c(1, 0.79), legend.justification = c("right", "top"), legend.box.just = "right", legend.margin = margin(6, 6, 6, 6), text = element_text(size = 18) ) } eff_comparison_plot <- function(plot_data, x = 0.95, y = 0.98) { ggplot(data = plot_data, aes(x = parameter, y = eff, fill = method)) + geom_bar(stat = "identity", width = 0.3, alpha = 0.8, position = "dodge") + # facet_wrap(~ parameter, scale = "free", nrow = 1) + theme_bw() + theme(text = element_text(size = 10)) + coord_flip() + ylab("ESS / s") + xlab(" ") + theme( legend.position = c(x, y), legend.justification = c("right", "top"), legend.box.just = "right", legend.margin = margin(6, 6, 6, 6) ) }
e9f780038ed35a03c7e13d0a03c0887d1ed9dfec
5cdbcc53194772da16c7af453dd6ebb6e108c4b1
/metrics/report/report_dockerfile/test.R
8c9dabe01e588d2ed3abe2e18215e89b77ddb72b
[ "Apache-2.0" ]
permissive
clearlinux/cloud-native-setup
591b2ba543db9bb76f19fc4d2e28d535490d0f83
9e3697308ee3555aec1b6ee44cd5fb7ecc026946
refs/heads/master
2023-06-08T15:55:00.573561
2022-09-21T16:49:34
2022-11-15T21:39:32
160,404,934
60
82
Apache-2.0
2022-09-21T16:57:42
2018-12-04T18:58:55
Shell
UTF-8
R
false
false
190
r
test.R
suppressMessages(library(jsonlite)) # to load the data. options(digits=22) x=fromJSON('{"ns": 1567002188374607769}') print(x) print(fromJSON('{"ns": 1567002188374607769}'), digits=22)
70ac8ccd49c776155d9a2e73701ab110b9f894f5
ffdea92d4315e4363dd4ae673a1a6adf82a761b5
/data/genthat_extracted_code/ssdtools/examples/is.fitdists.Rd.R
80abb0c2489d40a8424e752f52372b7a6584fd1c
[]
no_license
surayaaramli/typeRrh
d257ac8905c49123f4ccd4e377ee3dfc84d1636c
66e6996f31961bc8b9aafe1a6a6098327b66bf71
refs/heads/master
2023-05-05T04:05:31.617869
2019-04-25T22:10:06
2019-04-25T22:10:06
null
0
0
null
null
null
null
UTF-8
R
false
false
161
r
is.fitdists.Rd.R
library(ssdtools) ### Name: is.fitdists ### Title: Is fitdists ### Aliases: is.fitdists ### ** Examples is.fitdists(boron_lnorm) is.fitdists(boron_dists)
c9b2108344fba1718729ca31d29d6c6cc63439de
ecf1aa864dfc40840f5b0c98965f7d55875e135f
/MODULES/ESTIMATE/areasPlot.R
491c4c25067039e56beaba5dd3e4a9bc1672b246
[]
no_license
VeenDuco/shinyforcmdstan
78b03ec5cd2378ab594ab1a7552a655f70ca3462
74da0751f7958d08a969d05c17d168e91a2ecd18
refs/heads/main
2023-02-09T22:56:25.189305
2021-01-04T19:16:23
2021-01-04T19:16:23
325,535,205
0
0
null
null
null
null
UTF-8
R
false
false
5,657
r
areasPlot.R
areasPlotUI <- function(id){ ns <- NS(id) tagList( wellPanel( fluidRow( column(width = 6, selectizeInput( inputId = ns("diagnostic_param"), label = h5("Parameter"), multiple = TRUE, choices = .make_param_list_with_groups(sso), selected = if(length(sso@param_names) > 9) sso@param_names[1:10] else sso@param_names ) ), column(width = 4), column(width = 2, align = "right") ), fluidRow( align = "right", plotOptionsUI(ns("options")) ) ), plotOutput(ns("plot1")), checkboxInput(ns("showCaption"), "Show Caption", value = TRUE), hidden( uiOutput(ns("caption")) ), hr(), # checkboxInput(ns("report"), "Include in report?") downloadButton(ns('downloadPlot'), 'Download Plot', class = "downloadReport"), downloadButton(ns('downloadRDS'), 'Download RDS', class = "downloadReport") ) } areasPlot <- function(input, output, session){ visualOptions <- callModule(plotOptions, "options", estimatePlots = TRUE, intervalOptions = TRUE, areasOptions = TRUE) param <- debounce(reactive(unique(.update_params_with_groups(params = input$diagnostic_param, all_param_names = sso@param_names))), 500) include <- reactive(input$report) observe({ toggle("caption", condition = input$showCaption) }) plotOut <- function(parameters, plotType){ validate( need(length(parameters) > 0, "Select at least one parameter.") ) if(plotType == "Areas"){ out <- mcmc_areas( sso@posterior_sample[(1 + sso@n_warmup) : sso@n_iter, , ], pars = parameters, point_est = tolower(visualOptions()$point_est), prob = visualOptions()$inner_ci / 100, prob_outer = visualOptions()$outer_ci / 100, area_method = visualOptions()$areas_type ) } if(plotType == "Ridges"){ out <- mcmc_areas_ridges( sso@posterior_sample[(1 + sso@n_warmup) : sso@n_iter, , ], pars = parameters, prob = visualOptions()$inner_ci / 100, prob_outer = visualOptions()$outer_ci / 100 ) } out } output$plot1 <- renderPlot({ save_old_theme <- bayesplot_theme_get() color_scheme_set(visualOptions()$color) bayesplot_theme_set(eval(parse(text = select_theme(visualOptions()$theme)))) out <- plotOut(parameters = param(), plotType = visualOptions()$areas_ridges) bayesplot_theme_set(save_old_theme) out }) captionOut <- function(parameters){ # HTML(paste0(if(length(parameters) == 1) {"This is an area plot of <i>"} else {"These are area plots of <i>"}, # paste(parameters[1:(length(parameters)-1)], collapse = ", "), # if(length(parameters) > 1) {"</i> and <i>"}, # if(length(parameters) > 1) {parameters[length(parameters)]},"</i>", ".", # " The outer edges denote the ", visualOptions()$outer_ci, "% credibility interval.", # " The inner edges denote the ", visualOptions()$inner_ci, "% credibility interval.", # if(visualOptions()$point_est != "None") {paste0(" The point estimate denotes the posterior ", # tolower(visualOptions()$point_est), ".")} # )) HTML(paste0("This is an area plot. The outer edges denote the ", visualOptions()$outer_ci, "% posterior uncertainty interval (credible interval).", " The inner edges denote the ", visualOptions()$inner_ci, "% interval.", if(visualOptions()$point_est != "None") {paste0(" The point estimate is the posterior ", tolower(visualOptions()$point_est), ".")})) } output$caption <- renderUI({ captionOut(parameters = param()) }) output$downloadPlot <- downloadHandler( filename = 'areasPlot.pdf', content = function(file) { # ggsave(file, gridExtra::arrangeGrob(grobs = downloadSelection())) pdf(file) save_old_theme <- bayesplot_theme_get() color_scheme_set(visualOptions()$color) bayesplot_theme_set(eval(parse(text = select_theme(visualOptions()$theme)))) out <- plotOut(parameters = param(), plotType = visualOptions()$areas_ridges) bayesplot_theme_set(save_old_theme) print(out) dev.off() }) output$downloadRDS <- downloadHandler( filename = 'areasPlot.rds', content = function(file) { save_old_theme <- bayesplot_theme_get() color_scheme_set(visualOptions()$color) bayesplot_theme_set(eval(parse(text = select_theme(visualOptions()$theme)))) out <- plotOut(parameters = param(), plotType = visualOptions()$areas_ridges) bayesplot_theme_set(save_old_theme) saveRDS(out, file) }) return(reactive({ if(include() == TRUE){ # customized plot options return without setting the options for the other plots save_old_theme <- bayesplot_theme_get() color_scheme_set(visualOptions()$color) bayesplot_theme_set(eval(parse(text = select_theme(visualOptions()$theme)))) out <- list(plot = plotOut(parameters = param(), plotType = visualOptions()$areas_ridges), caption = captionOut(parameters = param())) bayesplot_theme_set(save_old_theme) out } else { NULL } })) }
165fe120eeabeab0d68bbec1649a45a5e9c4c315
9531bf05292a40e21835d3e63de124846635fdd0
/dataScience_sujet2.4.R
2ba2189f0f2255f59b30c643efd0445aa53272be
[]
no_license
florinePrat/Projet-data-science
865eb8f6ec1a1bd0fac765a2f0f9216ea12c53a9
888edcc16f1ffb24b8a9651829295ff1fdd2b95b
refs/heads/main
2023-02-16T20:49:31.293057
2021-01-11T15:17:02
2021-01-11T15:17:02
315,313,576
0
0
null
null
null
null
ISO-8859-1
R
false
false
1,665
r
dataScience_sujet2.4.R
# Title : Projet data science # Objective : TODO # Created by: Florine | Timi | Axel # Created on: 23/11/2020 ##### test with CSV dfGlobal <- read.csv2("C:/Users/Axel/Desktop/projetDS/Projet-data-science-main/BddBruteConfinement.csv", header = TRUE, encoding = 'UTF-8') ## Get the stucture of dataframe str(df) ## Get the summary of dataframe summary(df) ### head head(df) ## Question à enlever : 1/2/3/(4)/5/6/(7)/8/9/(11)/12//21/(22)/[23-27]/[28-32]/[43-47]/[54-58]/[59-63]/([64-68])/74/86/88/(123)/(124)/136/137/138 library(FactoMineR) library(missMDA) dfColImpact<-read.csv2("C:/Users/Axel/Desktop/projetDS/df_Colonnes_Impactantes.csv", header = TRUE, encoding = 'UTF-8') dfComplet <- imputeFAMD(dfColImpact,ncp=2) res <- FAMD(dfColImpact,tab.disj=dfComplet$tab.disj) #AFC pour savoir quelles sont les colonnes qui impactent le plus la #tableauKhiTotal[i] contient le retour du test du khi 2 entre la classe et la colonne i dfQuali<-read.csv2("C:/Users/Axel/Desktop/projetDS/df_Qualitatives.csv", header = TRUE, encoding = 'UTF-8', check.names = FALSE) classe<-dfQuali[,1] tableauKhiTotal <- c() tableauContingence <- c() for (i in 2:ncol(dfQuali)) { tableauContingence[[i-1]]<-table(classe,dfQuali[,i]) tableauKhiTotal[[i-1]]<-chisq.test(tableauContingence[[i-1]]) } #On affiche le numéro et le nom des colonnes dont le test du chi 2 renvoie une p value < 5% for(i in 1:70){ if(tableauKhiTotal[[i]][["p.value"]]<0.05){ print(paste(i,paste(colnames(dfQuali[i+1]),tableauKhiTotal[[i]][["p.value"]],sep=" ; p-value : " ),sep=". ")) } } res<-CA(tableauContingence[[32]]) plot(res)
da5e1778d02cb60c8df49ec30336a1ad851ff8df
941bcfc6469da42eec98fd10ad1f3da4236ec697
/man/track_bearing.Rd
ea6f83467fd7f9912547444aeff8480ca7824abd
[]
no_license
cran/traipse
29c3fd65e98f65049da98b1d878512bfdd93940f
01635fd40512f2144e1ce712e0f5912143214e49
refs/heads/master
2022-10-22T02:59:19.828085
2022-10-10T06:40:02
2022-10-10T06:40:02
236,953,410
0
0
null
null
null
null
UTF-8
R
false
true
1,045
rd
track_bearing.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/track_bearing.R \name{track_bearing} \alias{track_bearing} \title{Track bearing} \usage{ track_bearing(x, y) } \arguments{ \item{x}{longitude} \item{y}{latitude} } \value{ a numeric vector of absolute bearing in degrees, see Details } \description{ Calculate sequential bearing on longitude, latitude input vectors. The unit of bearing is degrees. } \details{ By convention the last value is set to \code{NA} missing value, because the bearing applies to the segment extending from the current location. To use this on multiple track ids, use a grouped data frame with tidyverse code like \code{data \%>\% group_by(id) \%>\% mutate(turn = track_bearing(lon, lat))}. Absolute bearing is relative to North (0), and proceeds clockwise positive and anti-clockwise negative \verb{N = 0, E = 90, S = +/-180, W = -90}. The last value will be \code{NA} as the bearing is relative to the first point of each segment. } \examples{ track_bearing(trips0$x, trips0$y)[1:10] }
29460efddd88558f396e14b091654ceef27fc3cb
5a698b4cf5e86426da354a51c5c1582a99b1450a
/man/print.occdat.Rd
41ad15ba9ceba4b8c79516869f552031f0fa51a7
[ "MIT" ]
permissive
jarioksa/spocc
721edf2bc0bf5070fcca5dcbea5bb2c558bab5f1
1f18a697abdd3d634a1b10e180b9bbab68bcc197
refs/heads/master
2021-01-15T20:08:46.390092
2014-09-10T20:44:51
2014-09-10T20:44:51
null
0
0
null
null
null
null
UTF-8
R
false
false
600
rd
print.occdat.Rd
% Generated by roxygen2 (4.0.1): do not edit by hand \name{print.occdat} \alias{print.occdat} \title{Print brief summary of occ function output} \usage{ \method{print}{occdat}(x, ...) } \arguments{ \item{x}{Input...} \item{...}{Ignored.} } \description{ Print brief summary of occ function output } \examples{ \dontrun{ spnames <- c('Accipiter striatus', 'Setophaga caerulescens', 'Spinus tristis') out <- occ(query = spnames, from = 'gbif', gbifopts = list(hasCoordinate=TRUE)) print(out) out # gives the same thing # you can still drill down into the data easily out$gbif$meta out$gbif$data } }
3bfa6e22f5054283363e8c352720616459912c7b
c5a08892d45ce23f54771eafe379ed843363f27e
/man/changejoint.Rd
08a26f057a59ebf4dcb37af471d1e2594a83fa5d
[]
no_license
cran/StratigrapheR
9a995ea399e97a449bb94a5c8bb239935b108da0
aff0937f9ee8d0976fc67a46768b32379cf0274b
refs/heads/master
2023-07-26T21:02:30.211546
2023-07-05T23:14:06
2023-07-05T23:14:06
163,700,147
0
0
null
null
null
null
UTF-8
R
false
true
1,448
rd
changejoint.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/changejoint.R \name{changejoint} \alias{changejoint} \title{Change the dimensions of bedding joints} \usage{ changejoint( joint, yinv = F, xinv = F, yleft = NA, yright = NA, ymin = NA, ymax = NA, xmin = NA, xmax = NA ) } \arguments{ \item{joint}{the bedding joint to be modified} \item{yinv, xinv}{whether to inverse the plotting for x and y values (T or F)} \item{yleft, yright}{the depth/height/time value for the extreme point at the right or left of the joint (yleft overruns yright, which overruns ymin and ymax)} \item{ymin, ymax}{the extreme values for the y axis (in case of conflict with yleft and/or yright, defaults to the smallest exaggeration)} \item{xmin, xmax}{the extreme values for the x axis} } \description{ Change the dimensions of bedding joints } \examples{ # Create an initial litholog ---- l <- c(-2,-1,0,1,2) r <- c(-1,0,1,2,3) h <- c(4,3,4,3,4) i <- c("B1","B2","B3","B4","B5") log <- litholog(l, r, h, i) # Get a custom bedding joint to specific dimensions using changejoint() ---- liq <- changejoint(oufti99$liquefaction, yleft = 0, ymax = 0.3, xmin = 1, xmax = 2) nlog <- weldlog(log, dt = 0, seg = list(liq = liq), j = c("liq")) # Plots for visualisation ---- plot.new() plot.window(xlim = c(0,5), ylim = c(-2,3)) axis(1) axis(2) multigons(nlog$i, nlog$xy, nlog$dt) }
bccd1ad9a488c7e4849d956dc13861ffb9ad3112
42fd9b059f4ee5e9a0c043d8813db9b240f53ba0
/tests/testthat/test-fpShapesGp.R
288fe5521cd584d60e2ed85db10a37de4350f717
[]
no_license
X-FLOWERRR/forestplot
85db51ccdafcb4a0eccd43276ffd9ad7b02ad0cc
b0b25f2c5db6f7ba68de759d7ea275ea0d2886ac
refs/heads/master
2023-07-15T13:57:25.991719
2021-08-25T20:01:16
2021-08-25T20:01:16
null
0
0
null
null
null
null
UTF-8
R
false
false
1,553
r
test-fpShapesGp.R
library('testthat') context('fpShapesGp') test_that("Check fpShapesGp can be used as shapes_gp parameter", { expect_silent( forestplot(labeltext = cbind(Author=c("Smith et al","Smooth et al", "al et al")), mean=cbind(1:3, 1.5:3.5), lower=cbind(0:2, 0.5:2.5), upper=cbind(4:6,5.5:7.5), is.summary=c(FALSE,TRUE,FALSE),grid=TRUE,new_page=TRUE, xticks=c(1,2,3,4,5), col=fpColors(box="blue",lines="pink", summary="orange", zero="yellow", text="gray", axes="green", hrz_lines="violet"), hrzl_lines=list(gpar(col="blue",lwd=2),gpar(col="black",lwd=2),gpar(col="blue",lwd=2),gpar(col="black",lwd=2)), shapes_gp=fpShapesGp( default=gpar(lineend="square", linejoin="mitre", lwd=3), lines=list(gpar(lineend="square", linejoin="mitre", lwd=10, col=rgb(0,0.7,0), lty="dotted"), gpar(lineend="square", linejoin="mitre", lwd=5, col=rgb(0,0.9,0.9), lty="dotted"), gpar(lwd=8),gpar(lwd=7), gpar(lwd=6),gpar(lwd=1) ), vertices=gpar(lty="dotted"), box=list(gpar(fill="orange", col="red"), gpar(fill="red", col="orange")), summary=list(gpar(fill="violet", col="gray", lwd=10), gpar(fill="orange", col="gray", lwd=10)), axes=gpar(col="yellow",lwd=10), hrz_lines=gpar(col="red",lwd=10, lty="dashed"), zero=gpar(col="violet",lwd=10,lty="dashed"), grid=list(gpar(col="blue",lty="dotted",lwd=7), gpar(col="red",lty="dotted",lwd=5), gpar(col="orange",lty="dotted",lwd=3), gpar(col="orange",lty="dotted",lwd=2), gpar(col="orange",lty="dotted",lwd=1)) ), fn.ci_sum=fpDrawBarCI, fn.ci_norm=fpDrawPointCI, vertices=TRUE ) ) })
cb8fc58f14f4f13c25639e4d70aa38a72538d491
34a991f4b3ecbfcb5b55bf3f6be91b20646863dd
/man/digits.Rd
41fdb2fe46cbe9c20309a9f026a75d22e2d5724d
[]
no_license
cran/RnavGraphImageData
fb0cfc9b922c6715ba0f318ad566ad8864a6caeb
efebb5f84ba4820f62e5d87ceb991d28c9b3756b
refs/heads/master
2020-05-17T12:14:59.706496
2018-05-15T20:09:03
2018-05-15T20:09:03
17,693,370
0
0
null
null
null
null
UTF-8
R
false
false
318
rd
digits.Rd
\name{digits} \docType{data} \alias{digits} \title{USPS Handwritten Digits} \description{ 8-bit 16x16 grayscale images of "0" through "9"; 1100 examples of each class. } \usage{digits} \format{Data frame with one image per column.} \source{\url{http://www.cs.nyu.edu/~roweis/data.html}} \keyword{datasets}
1bedc93e2ffa79540cf597276909a4e4d1ffa3f5
930a64ae51ba9c4052bcd2b6d4392ff70f98bde8
/UniPennState_GeneralizedLinearModels/TwoWayTable/VitaminC_high.R
8e64e9886305144e64824ddab738d719f169f516
[]
no_license
statisticallyfit/RStatistics
1e9f59a1ebef597d4c73f3cf10bed5170126d83b
93915cc141c4cb2b465d301d44695b8ce0ad35f8
refs/heads/master
2020-06-26T02:29:51.113577
2019-10-18T18:00:14
2019-10-18T18:00:14
74,606,344
0
0
null
null
null
null
UTF-8
R
false
false
3,716
r
VitaminC_high.R
source('/datascience/projects/statisticallyfit/github/learningstatistics/RStatistics/StatsFormulas.R') ski <- matrix(c(310, 170, 1090, 1220), ncol=2, dimnames=list(Treatment=c("Placebo", "VitaminC"), Cold=c("Cold", "NoCold"))) ski # Percentage of Row and Col and of Total observations in each cell ## SAME FOR HIGH, LOW, AND MEDIUM data files percentage <- 100 * ski / sum(ski) rowSums <- rowSums(ski); rowSums rowPercentage <- 100 * rbind(ski[1,] / rowSums[1], ski[2,] / rowSums[2]) colSums <- colSums(ski); colSums colPercentage <- 100 * cbind(ski[,1]/colSums[1], ski[,2]/colSums[2]) percentage rowPercentage colPercentage # Chi-Squared test of Independence with Yates continuity correction result <- chisq.test(ski); result result$observed result$expected result$residuals # Chi-Squared test of Independence WITHOUT Yates continuity correction result <- chisq.test(ski, correct=FALSE); result result$observed result$expected result$residuals # Likelihood-Ratio Test likelihoodRatioTest(ski) # Column 1 Risk Estimates rowSums colSums # placebo_cold / placebo = 31 / 140 = 0.2214 risk1.col1 <- ski[1,1] / rowSums[1]; risk1.col1 <- unname(risk1.col1) risk1.col1 # vitC_cold / vitC = 17 / 139 = 0.1223 risk2.col1 <- ski[2,1] / rowSums[2]; risk2.col1 <- unname(risk2.col1) risk2.col1 rho1 <- risk1.col1 / risk2.col1; rho1 <- unname(rho1) rho1 # placebo and vitC _ COLD / total total1 <- colSums[1] / sum(rowSums); total1 <- unname(total1) total1 # 17/139 - 31/140 diff1 <- risk2.col1 - risk1.col1; diff1 # difference of proportions cold <- rbind(risk1.col1, risk2.col1, total1, diff1) colnames(cold) <- "Cold" cold # Confidence interval of difference in proportions of column 1 (cold) SE_diff1 <- sqrt(risk1.col1 * (1 - risk1.col1) / unname(rowSums[1]) + risk2.col1 * (1 - risk2.col1) / unname(rowSums[2])) SE_diff1 z.crit <- qnorm(0.975); z.crit CI_diff1 <- cbind(diff1 - z.crit * SE_diff1, diff1 + z.crit*SE_diff1); CI_diff1 # Column 2 risk estimates (No Cold) # placebo_nocold / placebo = 109/140 risk1.col2 <- ski[1,2] / rowSums[1]; risk1.col2 <- unname(risk1.col2) risk1.col2 # vitC_nocold / vitC = 122/139 risk2.col2 <- ski[2,2] / rowSums[2]; risk2.col2 <- unname(risk2.col2) risk2.col2 # nocold / total = 231 / 279 total2 <- colSums[2] / sum(colSums); total2 <- unname(total2) total2 #122/139 - 109/140 diff2 <- risk2.col2 - risk1.col2; diff2 noCold <- rbind(risk1.col2, risk2.col2, total2, diff2) colnames(noCold) <- "NoCold" noCold # Confidence interval for difference of proportions for col 2 (no cold) SE_diff2 <- sqrt(risk1.col2*(1-risk1.col2)/unname(rowSums[1]) + risk2.col2*(1-risk2.col2)/unname(rowSums[2])) SE_diff2 CI_diff2 <- cbind(diff2 - z.crit*SE_diff2, diff2 + z.crit*SE_diff2); CI_diff2 # Estimate of odds of the two rows odds1 <- risk2.col1 / risk1.col1; odds1 # 17/139 / 31/140 odds2 <- risk2.col2 / risk1.col2; odds2 # 122/139 / 109/140 # Odds Ratio - cold to no cold oddsRatio.cold.none <- odds1 / odds2; oddsRatio.cold.none # Confidence Interval of odds ratio log_CI <- cbind(log(oddsRatio.cold.none) - z.crit*sqrt(sum(1/ski)), log(oddsRatio.cold.none) + z.crit*sqrt(sum(1/ski))) log_CI oddsRatio.cold.none_CI <- exp(log_CI); oddsRatio.cold.none_CI ################################################################################## # Using the vcd package library(vcd) # to get deviance, pearson chi, and others assocstats(ski) likelihoodRatioTest(ski) chisq.test(ski, correct = FALSE) # odds ratio, confint oddsratio(ski, log=FALSE) lor <- oddsratio(ski); lor confint(lor) # CI on log scale exp(confint(lor)) # CI on basic scale
489467328a20eae0ec7119bd108f55bf0ed0a88d
8ea8dd82beb390c5ae59d32acaf854067e2f310a
/tests/testthat/test-4-execution.R
77979a6442b79e11b8091f10a08365f8019f31bd
[ "MIT" ]
permissive
hongooi73/AzureDSVM
91d9f69e8ad30f8d589f49f734422a5d8496e319
3553b5581dd640513a37101bb71a8170498f1809
refs/heads/master
2021-07-06T12:24:35.772109
2017-10-02T17:00:31
2017-10-02T17:00:31
null
0
0
null
null
null
null
UTF-8
R
false
false
4,617
r
test-4-execution.R
# test remote execution on a Linux DSVM with specified computing context. if(interactive()) library("testthat") library(AzureSMR) settingsfile <- getOption("AzureSMR.config") config <- read.AzureSMR.config() timestamp <- format(Sys.time(), format="%y%m%d%H%M") context("Remote execution") asc <- createAzureContext() with(config, setAzureContext(asc, tenantID=tenantID, clientID=clientID, authKey=authKey) ) azureAuthenticate(asc) # create a new resource group. resourceGroup_name <- paste0("AzureDSVMtest_", timestamp) location <- "southeastasia" res <- azureCreateResourceGroup(asc, location=location, resourceGroup=resourceGroup_name) dsvm_size <- "Standard_D1_v2" dsvm_name <- paste0("dsvm", paste(sample(letters, 3), collapse="")) dsvm_password <- "AzureDSVM_test123" dsvm_username <- "dsvmuser" message("Remote execution is via SSH which relies on public key cryptograph. The test presumes that there is a private key in the user /home/.ssh/ directory. A public key is derived from that private key by using SSH for authentication purpose.") # pubkey key extraction. dsvm_pubkey <- pubkey_gen() # code to execute. code <- "x <- seq(1, 500); y <- x * rnorm(length(x), 0, 0.1); print(y)" temp_script <- tempfile("AzureDSVM_test_execute_", fileext=".R") temp_script <- gsub("\\\\", "/", temp_script) file.create(temp_script) writeLines(code, temp_script) context("- Remote execution on a single Linux DSVM.") test_that("remote execution on a single Linux DSVM", { deployDSVM(asc, resource.group=resourceGroup_name, location=location, hostname=dsvm_name, username=dsvm_username, size=dsvm_size, authen="Key", pubkey=dsvm_pubkey, mode="Sync") res <- executeScript(asc, resource.group=resourceGroup_name, hostname=dsvm_name, remote=paste(dsvm_name, location, "cloudapp.azure.com", sep="."), username=dsvm_username, script=temp_script, compute.context="localSequential") expect_true(res) res <- executeScript(asc, resource.group=resourceGroup_name, hostname=dsvm_name, remote=paste(dsvm_name, location, "cloudapp.azure.com", sep="."), username=dsvm_username, script=temp_script, compute.context="localParallel") expect_true(res) operateDSVM(asc, resource.group=resourceGroup_name, hostname=dsvm_name, operation="Delete") }) context("- Remote execution on a cluster of Linux DSVMs.") test_that("remote execution on a cluster of Linux DSVMs", { message("Remote execution is via SSH which relies on public key cryptograph. The test presumes that there is a private key in the user /home/.ssh/ directory. A public key is derived from that private key by using SSH for authentication purpose.") deployDSVMCluster(asc, resource.group=resourceGroup_name, location=location, hostname=dsvm_name, username=dsvm_username, size=dsvm_size, authen="Key", pubkey=dsvm_pubkey, count=3) dsvms <- azureListVM(asc, resourceGroup=resourceGroup_name, location=location) dsvm_names <- dsvms$name dsvm_fqdns <- paste(dsvm_names, location, "cloudapp.azure.com", sep=".") res <- executeScript(asc, resource.group=resourceGroup_name, hostname=dsvm_names, remote=dsvm_fqdns[1], master=dsvm_fqdns[1], slaves=dsvm_fqdns[-1], username=dsvm_username, script=temp_script, compute.context="clusterParallel") expect_true(res) }) azureDeleteResourceGroup(asc, resourceGroup = resourceGroup_name)
eb661256ca930ee65b532b3018d090f0533c665c
a47ce30f5112b01d5ab3e790a1b51c910f3cf1c3
/B_analysts_sources_github/jeroen/rgdal/sp_gdal.R
6023bb3916c746d58eac8e8a5c58dd4df98d858a
[]
no_license
Irbis3/crantasticScrapper
6b6d7596344115343cfd934d3902b85fbfdd7295
7ec91721565ae7c9e2d0e098598ed86e29375567
refs/heads/master
2020-03-09T04:03:51.955742
2018-04-16T09:41:39
2018-04-16T09:41:39
128,578,890
5
0
null
null
null
null
UTF-8
R
false
false
21,199
r
sp_gdal.R
GDALinfo <- function(fname, silent=FALSE, returnRAT=FALSE, returnCategoryNames=FALSE, returnStats=TRUE, returnColorTable=FALSE, OVERRIDE_PROJ_DATUM_WITH_TOWGS84=NULL, returnScaleOffset=TRUE, allowedDrivers=NULL, options=NULL) { if (nchar(fname) == 0) stop("empty file name") x <- GDAL.open(fname, silent=silent, allowedDrivers=allowedDrivers, options=options) d <- dim(x)[1:2] dr <- getDriverName(getDriver(x)) # p4s <- .Call("RGDAL_GetProjectionRef", x, PACKAGE="rgdal") p4s <- getProjectionRef(x, OVERRIDE_PROJ_DATUM_WITH_TOWGS84=OVERRIDE_PROJ_DATUM_WITH_TOWGS84) if (nchar(p4s) == 0) p4s <- as.character(NA) gt <- .Call('RGDAL_GetGeoTransform', x, PACKAGE="rgdal") if (attr(gt, "CE_Failure") && !silent) warning("GeoTransform values not available") nbands <- .Call('RGDAL_GetRasterCount', x, PACKAGE="rgdal") mdata <- .Call('RGDAL_GetMetadata', x, NULL, PACKAGE="rgdal") subdsmdata <- .Call('RGDAL_GetMetadata', x, "SUBDATASETS", PACKAGE="rgdal") if (nbands < 1) { # warning("no bands in dataset") df <- NULL } else { band <- 1:nbands GDType <- character(nbands) hasNoDataValues <- logical(nbands) NoDataValues <- numeric(nbands) blockSize1 <- integer(nbands) blockSize2 <- integer(nbands) if (returnStats) { Bmin <- rep(as.numeric(NA), nbands) Bmax <- rep(as.numeric(NA), nbands) Bmn <- rep(as.numeric(NA), nbands) Bsd <- rep(as.numeric(NA), nbands) } # Pix <- character(nbands) if (returnRAT) RATlist <- vector(mode="list", length=nbands) if (returnCategoryNames) CATlist <- vector(mode="list", length=nbands) if (returnColorTable) colTabs <- vector(mode="list", length=nbands) #RH 4feb2013 if (returnScaleOffset) { scaleOffset <- matrix(0, ncol=2, nrow=nbands) colnames(scaleOffset) <- c('scale', 'offset') } for (i in seq(along = band)) { raster <- getRasterBand(x, band[i]) GDType[i] <- .GDALDataTypes[(.Call("RGDAL_GetBandType", raster, PACKAGE="rgdal"))+1] bs <- getRasterBlockSize(raster) blockSize1[i] <- bs[1] blockSize2[i] <- bs[2] if (returnStats) { statsi <- .Call("RGDAL_GetBandStatistics", raster, silent, PACKAGE="rgdal") if (is.null(statsi)) { Bmin[i] <- .Call("RGDAL_GetBandMinimum", raster, PACKAGE="rgdal") Bmax[i] <- .Call("RGDAL_GetBandMaximum", raster, PACKAGE="rgdal") } else { Bmin[i] <- statsi[1] Bmax[i] <- statsi[2] Bmn[i] <- statsi[3] Bsd[i] <- statsi[4] } } if (returnRAT) { RATi <- .Call("RGDAL_GetRAT", raster, PACKAGE="rgdal") if (!is.null(RATi)) RATlist[[i]] <- RATi } if (returnCategoryNames) { CATi <- .Call("RGDAL_GetCategoryNames", raster, PACKAGE="rgdal") if (!is.null(CATi)) CATlist[[i]] <- CATi } if (returnColorTable) { colTabs[[i]] <- getBandColorTable(raster) } #RH 4feb2013 if (returnScaleOffset) { scaleOffset[i,1] <- .Call('RGDAL_GetScale', raster, PACKAGE="rgdal") scaleOffset[i,2] <- .Call('RGDAL_GetOffset', raster, PACKAGE="rgdal") } NDV <- .Call("RGDAL_GetBandNoDataValue", raster, PACKAGE="rgdal") if (is.null(NDV)) { hasNoDataValues[i] <- FALSE } else { hasNoDataValues[i] <- TRUE NoDataValues[i] <- NDV[1] } # Pix[i] <- .Call("RGDAL_GetBandMetadataItem", # raster, "PIXELTYPE", "IMAGE_STRUCTURE", PACKAGE="rgdal") } df <- data.frame(GDType=GDType, hasNoDataValue=hasNoDataValues, NoDataValue=NoDataValues, blockSize1=blockSize1, blockSize2=blockSize2) if (returnStats) df <- cbind(df, data.frame(Bmin=Bmin, Bmax=Bmax, Bmean=Bmn, Bsd=Bsd)) } GDAL.close(x) # res <- c(rows=d[1], columns=d[2], bands=nbands, ll.x=gt[1], ll.y=gt[4], # res.x=abs(gt[2]), res.y=abs(gt[6]), oblique.x=abs(gt[3]), # oblique.y=abs(gt[5])) ### Modified: MDSumner 22 November 2008 cellsize = abs(c(gt[2], gt[6])) ysign <- sign(gt[6]) offset.y <- ifelse(ysign < 0, gt[4] + ysign * d[1] * abs(cellsize[2]), gt[4] + abs(cellsize[2])) res <- c(rows = d[1], columns = d[2], bands = nbands, ll.x = gt[1], ll.y = offset.y, res.x = abs(gt[2]), res.y = abs(gt[6]), oblique.x = abs(gt[3]), oblique.y = abs(gt[5])) #### end modification attr(res, "ysign") <- ysign attr(res, "driver") <- dr attr(res, "projection") <- p4s attr(res, "file") <- fname attr(res, "df") <- df attr(res, "sdf") <- returnStats attr(res, "mdata") <- mdata attr(res, "subdsmdata") <- subdsmdata if (returnRAT) attr(res, "RATlist") <- RATlist if (returnCategoryNames) attr(res, "CATlist") <- CATlist if (returnColorTable) attr(res, "ColorTables") <- colTabs #RH 4feb2013 if (returnScaleOffset) attr(res, "ScaleOffset") <- scaleOffset class(res) <- "GDALobj" res } print.GDALobj <- function(x, ...) { cat("rows ", x[1], "\n") cat("columns ", x[2], "\n") cat("bands ", x[3], "\n") cat("lower left origin.x ", x[4], "\n") cat("lower left origin.y ", x[5], "\n") cat("res.x ", x[6], "\n") cat("res.y ", x[7], "\n") cat("ysign ", attr(x, "ysign"), "\n") cat("oblique.x ", x[8], "\n") cat("oblique.y ", x[9], "\n") cat("driver ", attr(x, "driver"), "\n") cat("projection ", paste(strwrap(attr(x, "projection")), collapse="\n"), "\n") cat("file ", attr(x, "file"), "\n") if (!is.null(attr(x, "df"))) { cat("apparent band summary:\n") print(attr(x, "df")[,1:5]) } if (attr(x, "sdf")) { cat("apparent band statistics:\n") print(attr(x, "df")[,6:9]) } if (!is.null(attr(x, "ScaleOffset"))) { somat <- attr(x, "ScaleOffset") rws <- which(somat[,1] != 1 | somat[,2] != 0) if (any(rws)) { cat("ScaleOffset:\n") rownames(somat) <- paste("band", 1:nrow(somat), sep="") print(somat[rws,]) } } if (!is.null(attr(x, "mdata"))) { cat("Metadata:\n") cv <- attr(x, "mdata") for (i in 1:length(cv)) cat(cv[i], "\n") } if (!is.null(attr(x, "subdsmdata"))) { cat("Subdatasets:\n") cv <- attr(x, "subdsmdata") for (i in 1:length(cv)) cat(cv[i], "\n") } if (!is.null(attr(x, "RATlist"))) { RATs <- attr(x, "RATlist") nRAT <- length(RATs) if (nRAT == 1 ) cat("Raster attribute table:\n") else cat("Raster attribute tables (", nRAT, "):\n", sep="") for (i in 1:nRAT) { if (i > 1) cat("----------------------\n") RAT <- RATs[[i]] print(as.data.frame(RAT)) cat(paste(" types:", paste(attr(RAT, "GFT_type"), collapse=", ")), "\n") cat(paste(" usages:", paste(attr(RAT, "GFT_usage"), collapse=", ")), "\n") } } if (!is.null(attr(x, "CATlist"))) { CATs <- attr(x, "CATlist") nCAT <- length(CATs) cat("Category names:\n") print(CATs) } if (!is.null(attr(x, "ColorTables")) && length(attr(x, "ColorTables")) > 0) cat("Colour tables returned for bands:", paste(which(sapply(attr(x, "ColorTables"), function(x) !is.null(x))), collapse=" "), "\n") invisible(x) } asGDALROD_SGDF <- function(from) { x <- from d = dim(x) half.cell <- c(0.5,0.5) offset <- c(0,0) output.dim <- d[1:2] # p4s <- .Call("RGDAL_GetProjectionRef", x, PACKAGE="rgdal") p4s <- getProjectionRef(x, OVERRIDE_PROJ_DATUM_WITH_TOWGS84=NULL) if (nchar(p4s) == 0) p4s <- as.character(NA) gt = .Call('RGDAL_GetGeoTransform', x, PACKAGE="rgdal") if (attr(gt, "CE_Failure")) warning("GeoTransform values not available") if (any(gt[c(3,5)] != 0.0)) stop("Diagonal grid not permitted") data = getRasterData(x, list_out=TRUE) cellsize = abs(c(gt[2],gt[6])) ysign <- sign(gt[6]) co.x <- gt[1] + (offset[2] + half.cell[2]) * cellsize[1] co.y <- ifelse(ysign < 0, gt[4] + (ysign*((output.dim[1] + offset[1]) + (ysign*half.cell[1]))) * abs(cellsize[2]), gt[4] + (ysign*((offset[1]) + (ysign*half.cell[1]))) * abs(cellsize[2])) cellcentre.offset <- c(x=co.x, y=co.y) grid = GridTopology(cellcentre.offset, cellsize, rev(output.dim)) # if (length(d) == 2L) # df = list(band1 = as.vector(data)) # else { # df <- vector(mode="list", length=d[3]) # df[[1]] <- as.vector(data[,,1, drop = FALSE]) # for (band in 2:d[3]) # df[[band]] <- as.vector(data[,,band, drop = FALSE]) # names(df) = paste("band", 1:d[3], sep="") # } return(SpatialGridDataFrame(grid = grid, data = as.data.frame(data), proj4string=CRS(p4s))) # data = data.frame(df), proj4string=CRS(p4s))) } setAs("GDALReadOnlyDataset", "SpatialGridDataFrame", asGDALROD_SGDF) asSGDF_GROD <- function(x, offset, region.dim, output.dim, p4s=NULL, ..., half.cell=c(0.5,0.5), OVERRIDE_PROJ_DATUM_WITH_TOWGS84=NULL) { if (!extends(class(x), "GDALReadOnlyDataset")) stop("x must be or extend a GDALReadOnlyDataset") d = dim(x) if (missing(offset)) offset <- c(0,0) if (missing(region.dim)) region.dim <- dim(x)[1:2] odim_flag <- NULL if (!missing(output.dim)) odim_flag <- TRUE else { output.dim <- region.dim odim_flag <- FALSE } # suggestion by Paul Hiemstra 070817 if (is.null(p4s)) # p4s <- .Call("RGDAL_GetProjectionRef", x, PACKAGE="rgdal") p4s <- getProjectionRef(x, OVERRIDE_PROJ_DATUM_WITH_TOWGS84=OVERRIDE_PROJ_DATUM_WITH_TOWGS84) if (nchar(p4s) == 0) p4s <- as.character(NA) gt = .Call('RGDAL_GetGeoTransform', x, PACKAGE="rgdal") if (attr(gt, "CE_Failure")) warning("GeoTransform values not available") if (any(gt[c(3,5)] != 0.0)) stop("Diagonal grid not permitted") data = getRasterData(x, offset=offset, region.dim=region.dim, output.dim=output.dim, ..., list_out=TRUE) if (!odim_flag) cellsize = abs(c(gt[2],gt[6])) else { icellsize = abs(c(gt[2],gt[6])) span <- icellsize * rev(d) cellsize <- span / rev(output.dim) } ysign <- sign(gt[6]) co.x <- gt[1] + (offset[2] + half.cell[2]) * cellsize[1] co.y <- ifelse(ysign < 0, gt[4] + (ysign*((output.dim[1] + offset[1]) + (ysign*half.cell[1]))) * abs(cellsize[2]), gt[4] + (ysign*((offset[1]) + (ysign*half.cell[1]))) * abs(cellsize[2])) cellcentre.offset <- c(x=co.x, y=co.y) grid = GridTopology(cellcentre.offset, cellsize, rev(output.dim)) # if (length(d) == 2L) # df = list(band1 = as.vector(data)) # else { # df <- vector(mode="list", length=d[3]) # df[[1]] <- as.vector(data[,,1, drop = FALSE]) # for (band in 2:d[3]) # df[[band]] <- as.vector(data[,,band, drop = FALSE]) # names(df) = paste("band", 1:d[3], sep="") # } # df1 <- data.frame(df) df1 <- as.data.frame(data) data = SpatialGridDataFrame(grid = grid, data = df1, proj4string=CRS(p4s)) return(data) } readGDAL = function(fname, offset, region.dim, output.dim, band, p4s=NULL, ..., half.cell=c(0.5,0.5), silent = FALSE, OVERRIDE_PROJ_DATUM_WITH_TOWGS84=NULL, allowedDrivers=NULL, options=NULL) { if (nchar(fname) == 0) stop("empty file name") x = GDAL.open(fname, silent=silent, allowedDrivers=allowedDrivers, options=options) d = dim(x) if (missing(offset)) offset <- c(0,0) if (missing(region.dim)) region.dim <- dim(x)[1:2] # rows=nx, cols=ny # else d <- region.dim odim_flag <- NULL if (missing(band)) band <- NULL else { if (length(band) > 1L) d[3] <- length(band) else d <- d[1:2] } # bug report Mike Sumner 070522 if (!missing(output.dim)) odim_flag <- TRUE else { output.dim <- region.dim odim_flag <- FALSE } if (!silent) { cat(paste(fname, "has GDAL driver", getDriverName(getDriver(x)),"\n")) cat(paste("and has", d[1], "rows and", d[2], "columns\n")) } # suggestion by Paul Hiemstra 070817 if (is.null(p4s)) # p4s <- .Call("RGDAL_GetProjectionRef", x, PACKAGE="rgdal") p4s <- getProjectionRef(x, OVERRIDE_PROJ_DATUM_WITH_TOWGS84=OVERRIDE_PROJ_DATUM_WITH_TOWGS84) if (nchar(p4s) == 0) p4s <- as.character(NA) gt = .Call('RGDAL_GetGeoTransform', x, PACKAGE="rgdal") if (attr(gt, "CE_Failure")) warning("GeoTransform values not available") # [1] 178400 40 0 334000 0 -40 opSilent <- get("silent", envir=.RGDAL_CACHE) assign("silent", silent, envir=.RGDAL_CACHE) if (any(gt[c(3,5)] != 0.0)) { data = getRasterTable(x, band=band, offset=offset, region.dim=region.dim, ...) GDAL.close(x) coordinates(data) = c(1,2) proj4string(data) = CRS(p4s) } else { # cellsize = abs(c(gt[2],gt[6])) if (!odim_flag) cellsize = abs(c(gt[2],gt[6])) else { icellsize = abs(c(gt[2],gt[6])) # bug report Jose M. Blanco Moreno 091004 span <- icellsize * rev(region.dim) # bug report Mike Sumner 070215 cellsize <- span / rev(output.dim) } ysign <- sign(gt[6]) if (ysign > 0) warning("Y axis resolution positive, examine data for flipping") # cells.dim = c(d[1], d[2]) # c(d[2],d[1]) # bug report Jose M. Blanco Moreno 091004 co.x <- gt[1] + ((offset[2]/(cellsize[1]/abs(gt[2]))) + half.cell[2]) * cellsize[1] co.y <- ifelse(ysign < 0, gt[4] + (ysign*((output.dim[1] + # bug report Jose M. Blanco Moreno 091004 (offset[1]/(cellsize[2]/abs(gt[6]))) + (ysign*half.cell[1])))) * abs(cellsize[2]), gt[4] + (ysign*((offset[1]) + (ysign*half.cell[1]))) * abs(cellsize[2])) cellcentre.offset <- c(x=co.x, y=co.y) # cellcentre.offset = c(x = gt[1] + 0.5 * cellsize[1], # y = gt[4] - (d[2] - 0.5) * abs(cellsize[2])) grid = GridTopology(cellcentre.offset, cellsize, rev(output.dim)) # rev(region.dim)) data = getRasterData(x, band=band, offset=offset, region.dim=region.dim, output.dim=output.dim, ..., list_out=TRUE) GDAL.close(x) # if (length(d) == 2L) # df = list(band1 = as.vector(data)) # else { # df <- vector(mode="list", length=d[3]) # df[[1]] <- as.vector(data[,,1, drop = FALSE]) # for (band in 2:d[3]) # df[[band]] <- as.vector(data[,,band, drop = FALSE]) # df = as.data.frame(df) # names(df) = paste("band", 1:d[3], sep="") # } data = SpatialGridDataFrame(grid = grid, data = as.data.frame(data), proj4string=CRS(p4s)) } assign("silent", opSilent, envir=.RGDAL_CACHE) return(data) } writeGDAL = function(dataset, fname, drivername = "GTiff", type = "Float32", mvFlag = NA, options=NULL, copy_drivername = "GTiff", setStatistics=FALSE, colorTables=NULL, catNames=NULL) { if (nchar(fname) == 0) stop("empty file name") x <- gdalDrivers() copy_only <- as.character(x[!x$create & x$copy, 1]) if (drivername %in% copy_only) { tds.create <- create2GDAL(dataset=dataset, drivername=copy_drivername, type=type, mvFlag=mvFlag, fname=NULL, setStatistics=setStatistics, colorTables=colorTables, catNames=catNames) tds.copy <- copyDataset(tds.create, driver=drivername, fname=fname) GDAL.close(tds.create) saveDataset(tds.copy, fname, options=options) # RSB 120921 GDAL.close(tds.copy) } else { tds.out <- create2GDAL(dataset=dataset, drivername=drivername, type=type, mvFlag=mvFlag, options=options, fname=fname, setStatistics=setStatistics, colorTables=colorTables, catNames=catNames) saveDataset(tds.out, fname, options=options) # RSB 120921 GDAL.close(tds.out) } # RSB 081030 GDAL.close cleanup # tmp.obj <- saveDataset(tds.out, fname, options=options) # GDAL.close(tmp.obj) invisible(fname) } create2GDAL = function(dataset, drivername = "GTiff", type = "Float32", mvFlag = NA, options=NULL, fname=NULL, setStatistics=FALSE, colorTables=NULL, catNames=NULL) { stopifnot(gridded(dataset)) fullgrid(dataset) = TRUE if (is.na(match(type, .GDALDataTypes))) stop(paste("Invalid type:", type, "not in:", paste(.GDALDataTypes, collapse="\n"))) # mvFlag issues Robert Hijmans 101109 if (is.na(mvFlag)) { if (type %in% c('Byte', 'UInt16', 'Int16')) warning(paste("mvFlag=NA unsuitable for type", type)) } # d.dim = dim(as.matrix(dataset[1])) RSB 081106 gp = gridparameters(dataset) cellsize = gp$cellsize offset = gp$cellcentre.offset dims = gp$cells.dim d.drv = new("GDALDriver", drivername) nbands = length(names(slot(dataset, "data"))) if (!is.null(options) && !is.character(options)) stop("options not character") tds.out = new("GDALTransientDataset", driver = d.drv, rows = dims[2], cols = dims[1], bands = nbands, type = type, options = options, fname = fname, handle = NULL) gt = c(offset[1] - 0.5 * cellsize[1], cellsize[1], 0.0, offset[2] + (dims[2] -0.5) * cellsize[2], 0.0, -cellsize[2]) .Call("RGDAL_SetGeoTransform", tds.out, gt, PACKAGE = "rgdal") p4s <- proj4string(dataset) if (!is.na(p4s) && nchar(p4s) > 0) { .Call("RGDAL_SetProject", tds.out, p4s, PACKAGE = "rgdal") } else { if (getDriverName(getDriver(tds.out)) == "RST") stop("RST files must have a valid coordinate reference system") } if (!is.null(colorTables)) { stopifnot(is.list(colorTables)) stopifnot(length(colorTables) == nbands) if (type != "Byte") { # colorTables <- NULL warning("colorTables valid for Byte type only in some drivers") } } if (!is.null(catNames)) { stopifnot(is.list(catNames)) stopifnot(length(catNames) == nbands) } for (i in 1:nbands) { band = as.matrix(dataset[i]) if (!is.numeric(band)) stop("Numeric bands required") if (setStatistics) { statistics <- range(c(band), na.rm=TRUE) statistics <- c(statistics, mean(c(band), na.rm=TRUE)) statistics <- c(statistics, sd(c(band), na.rm=TRUE)) } if (!is.na(mvFlag)) band[is.na(band)] = mvFlag putRasterData(tds.out, band, i) tds.out_b <- getRasterBand(dataset=tds.out, band=i) if (!is.na(mvFlag)) { .Call("RGDAL_SetNoDataValue", tds.out_b, as.double(mvFlag), PACKAGE = "rgdal") } if (setStatistics) { .gd_SetStatistics(tds.out_b, as.double(statistics)) } if (!is.null(colorTables)) { icT <- colorTables[[i]] if (!is.null(icT)) { .gd_SetRasterColorTable(tds.out_b, icT) } } if (!is.null(catNames)) { icN <- catNames[[i]] if (!is.null(icN)) { .gd_SetCategoryNames(tds.out_b, icN) } } } tds.out } gdalDrivers <- function() getGDALDriverNames() toSigned <- function(x, base) { if (any(x < 0)) stop("already signed") if (storage.mode(x) != "integer") stop("band not integer") b_2 <- (2^(base-1)-1) b <- 2^base x[x > b_2] <- x[x > b_2] - b as.integer(x) } toUnSigned <- function(x, base) { if (all(x >= 0)) stop("already unsigned") if (storage.mode(x) != "integer") stop("band not integer") b <- 2^base x[x < 0] <- x[x < 0] + b as.integer(x) } "GDALSpatialRef" <- function(fname, silent=FALSE, OVERRIDE_PROJ_DATUM_WITH_TOWGS84=NULL, allowedDrivers=NULL, options=NULL) { if (nchar(fname) == 0) stop("empty file name") x <- GDAL.open(fname, silent=silent, allowedDrivers=allowedDrivers, options=options) # p4s <- .Call("RGDAL_GetProjectionRef", x, PACKAGE="rgdal") p4s <- getProjectionRef(x, OVERRIDE_PROJ_DATUM_WITH_TOWGS84=OVERRIDE_PROJ_DATUM_WITH_TOWGS84) GDAL.close(x) p4s }
a03e53f1d3f7152397d0d1ada1deda17800253d8
ffdea92d4315e4363dd4ae673a1a6adf82a761b5
/data/genthat_extracted_code/pracma/examples/flipdim.Rd.R
cdfc1a6f53df2b5dafb42b88473ab4b8d99d3f07
[]
no_license
surayaaramli/typeRrh
d257ac8905c49123f4ccd4e377ee3dfc84d1636c
66e6996f31961bc8b9aafe1a6a6098327b66bf71
refs/heads/master
2023-05-05T04:05:31.617869
2019-04-25T22:10:06
2019-04-25T22:10:06
null
0
0
null
null
null
null
UTF-8
R
false
false
280
r
flipdim.Rd.R
library(pracma) ### Name: flipdim ### Title: Matrix Flipping (Matlab Style) ### Aliases: flipdim flipud fliplr circshift ### Keywords: manip ### ** Examples a <- matrix(1:12, nrow=3, ncol=4, byrow=TRUE) flipud(a) fliplr(a) circshift(a, c(1, -1)) v <- 1:10 circshift(v, 5)
28627916f3878743df6fb3e175e80f9b172dd09a
14553970249fcf633c25e13d84259ad608220233
/man/logregtree.Rd
6c57bc5e64e5662520565175ef3ccf16a1ad09f2
[]
no_license
cran/LogicReg
c1d0cbd785af6cf95a73a796f561d60fdd872a73
73bb7739987b1884d21f976d7e534cef6cebb8e4
refs/heads/master
2023-08-30T21:07:25.420747
2023-08-08T23:10:10
2023-08-09T01:42:24
17,691,856
0
0
null
null
null
null
UTF-8
R
false
false
4,444
rd
logregtree.Rd
\name{logregtree} \alias{logregtree} \title{Format of class logregtree} \description{This help file contains a description of the format of class logregtree. } \usage{logregtree()} \value{ An object of class logregtree is typically a substructure of an object of the class \code{logregmodel}. It will typically be the result of using the fitting function \code{logreg}. An object of class logictree has the following components: \item{whichtree}{the sequence number of the current tree within the model.} \item{coef}{the coefficients of this tree.} \item{trees}{a matrix (data.frame) with five columns; see below for the format.}} \details{ When storing trees, we number the location of the nodes using the following scheme (this is an example for a tree with at most 8 \emph{terminal} nodes, but the generalization should be obvious): \tabular{ccccccccccccccc}{ \tab \tab \tab \tab \tab \tab \tab 1\tab \tab \tab \tab \tab \tab \tab \cr \tab \tab \tab 2\tab \tab \tab \tab \tab \tab \tab \tab 3\tab \tab \tab \cr \tab 4\tab \tab \tab \tab 5\tab \tab \tab \tab 6\tab \tab \tab \tab 7\tab \cr 8\tab \tab 9\tab \tab 10\tab \tab 11\tab \tab 12\tab \tab 13\tab \tab 14\tab \tab 15\cr } Each node may or may not be present in the current tree. If it is present, it can contain an operator (``and'' or ``or''), in which case it has to child nodes, or it can contain a variable, in which case the node is a terminal node. It is also possible that the node does not exist (as the user only specifies the maximum tree size, not the tree size that is actually fitted). Output files have one line for each node. Each line contains 5 numbers: \enumerate{ \item the node number. \item does this node contain an ``and'' (1), an ``or'' (2), a variable (3), or is the node empty (0). \item if the node contains a variable, which one is it; e.g. if this number is 3 the node contains X3. \item if the node contains a variable, does it contain the regular variable (0) or its complement (1) \item is the node empty (0) or not (1) (this information is redundant with the second number)} \bold{Example} \tabular{ccccccccccccccc}{ \tab \tab \tab \tab \tab \tab \tab AND\tab \tab \tab \tab \tab \tab \tab \cr \tab \tab \tab \tab \tab \tab \tab \tab \tab \tab \tab \tab \tab \tab \cr \tab \tab \tab \tab \tab \tab \tab \tab \tab \tab \tab \tab \tab \tab \cr \tab \tab \tab OR\tab \tab \tab \tab \tab \tab \tab OR\tab \tab \tab \tab \cr \tab \tab \tab \tab \tab \tab \tab \tab \tab \tab \tab \tab \tab \tab \cr \tab \tab \tab \tab \tab \tab \tab \tab \tab \tab \tab \tab \tab \tab \cr \tab OR\tab \tab \tab \tab OR\tab \tab \tab \tab X20\tab \tab \tab \tab OR\tab \cr \tab \tab \tab \tab \tab \tab \tab \tab \tab \tab \tab \tab \tab \tab \cr X17\tab \tab X12\tab \tab X3\tab \tab X13c\tab \tab \tab \tab \tab \tab X2\tab \tab X1\cr } is represented as \tabular{rrrrr}{ 1 \tab 1 \tab 0 \tab 0 \tab 1\cr 2 \tab 2 \tab 0 \tab 0 \tab 1\cr 3 \tab 2 \tab 0 \tab 0 \tab 1\cr 4 \tab 2 \tab 0 \tab 0 \tab 1\cr 5 \tab 2 \tab 0 \tab 0 \tab 1\cr 6 \tab 3 \tab 20 \tab 0 \tab 1\cr 7 \tab 2 \tab 0 \tab 0 \tab 1\cr 8 \tab 3 \tab 17 \tab 0 \tab 1\cr 9 \tab 3 \tab 12 \tab 0 \tab 1\cr 10 \tab 3 \tab 3 \tab 0 \tab 1\cr 11 \tab 3 \tab 13 \tab 1 \tab 1\cr 12 \tab 0 \tab 0 \tab 0 \tab 0\cr 13 \tab 0 \tab 0 \tab 0 \tab 0\cr 14 \tab 3 \tab 2 \tab 0 \tab 1\cr 15 \tab 3 \tab 1 \tab 0 \tab 1\cr } } \references{ Ruczinski I, Kooperberg C, LeBlanc ML (2003). Logic Regression, \emph{Journal of Computational and Graphical Statistics}, \bold{12}, 475-511. Ruczinski I, Kooperberg C, LeBlanc ML (2002). Logic Regression - methods and software. \emph{Proceedings of the MSRI workshop on Nonlinear Estimation and Classification} (Eds: D. Denison, M. Hansen, C. Holmes, B. Mallick, B. Yu), Springer: New York, 333-344. Selected chapters from the dissertation of Ingo Ruczinski, available from \url{https://research.fredhutch.org/content/dam/stripe/kooperberg/ingophd-logic.pdf}} \author{ Ingo Ruczinski \email{[email protected]} and Charles Kooperberg \email{[email protected]}. } \seealso{ \code{\link{logreg}}, \code{\link{plot.logregtree}}, \code{\link{print.logregtree}}, \code{\link{logregmodel}} } \examples{ logregtree() # displays this help file help(logregtree) # equivalent } \keyword{logic} \keyword{methods} \keyword{nonparametric} \keyword{tree}
ae79ba080d7bbdcd43364754d4f0461901c080e1
5f82d1bc22e4ef72a63c58852a2d035e124f1a37
/tests/testthat/test_last_n.R
5675633bcb39362f933bce31771597594992b26d
[]
no_license
cran/bupaR
75608804ef045f678821740aaff123991d5d36b5
ef020af22301e7aa8c82d62e4d01dd5aebaea99e
refs/heads/master
2023-04-20T17:49:49.645967
2023-04-02T21:00:06
2023-04-02T21:00:06
86,215,725
0
3
null
null
null
null
UTF-8
R
false
false
2,932
r
test_last_n.R
#### eventlog #### test_that("test last_n on eventlog", { load("./testdata/patients.rda") last <- patients %>% last_n(n = 2) instances <- patients %>% filter(!!activity_instance_id_(.) %in% c("11", "12")) %>% nrow() expect_s3_class(last, "eventlog") expect_equal(dim(last), c(instances, ncol(patients))) expect_equal(colnames(last), colnames(patients)) # `last` should contain last 2 activity instances expect_equal(last[[activity_instance_id(last)]], c("12", "11")) # Ensure that last 2 activity instances are completely present in `last` expect_equal(instances, 2) }) test_that("test last_n on grouped_eventlog", { load("./testdata/patients_grouped.rda") last <- patients_grouped %>% last_n(n = 2) instances <- patients_grouped %>% filter(!!activity_instance_id_(.) %in% c("5", "6", "10", "11", "12")) %>% nrow() expect_s3_class(last, "grouped_eventlog") # Events: 3 (John Doe) + 3 (Jane Doe) + 1 (George Doe) expect_equal(dim(last), c(instances, ncol(patients_grouped))) expect_equal(colnames(last), colnames(patients_grouped)) # `last` should contain last 2 activity instances, per group (patient) expect_equal(last[[activity_instance_id(last)]], c("12","10", "10", "11", "5","5","6")) # Ensure that last 2 activity instances per group (patient) are completely present in `last` expect_equal(instances, 7) }) #### activitylog #### test_that("test last_n on activitylog", { load("./testdata/patients_act.rda") last <- patients_act %>% last_n(n = 3) # complete is always present and last event per activity instance, so this works too ordered <- patients_act %>% arrange(.data[["complete"]]) %>% tail(n = 3) expect_s3_class(last, "activitylog") expect_equal(dim(last), c(3, ncol(patients_act))) expect_equal(colnames(last), colnames(patients_act)) # `last` should equal to the last 3 rows of `patients_act`, except for the 7th column (.order) expect_equal(last[, -7], ordered[, -7]) }) test_that("test last_n on grouped_activitylog", { load("./testdata/patients_act_grouped.rda") skip("TODO: rewrite ordered fails") last <- patients_act_grouped %>% last_n(n = 3) # complete is always present and last event per activity instance, so this works too ordered <- patients_act_grouped %>% slice_max(order_by = .data[["complete"]], n = 3) %>% arrange(.data[["complete"]]) expect_s3_class(last, "grouped_activitylog") # Activities: 3 (John Doe) + 3 (Jane Doe) + 1 (George Doe) expect_equal(dim(last), c(7, ncol(patients_act_grouped))) expect_equal(colnames(last), colnames(patients_act_grouped)) # `last` should equal to the last 3 rows per group of `patients_act_grouped`, except for the 7th column (.order) expect_equal(tibble::as_tibble(last[, -7]), tibble::as_tibble(ordered[, -7])) })
6826dc0135ec978abb9fe3f1c40872739b97c7fa
646f4be0623653e8e9cf4d701a15fa318eda9824
/tests/testthat/test-recently-added.R
13dab52667c5345fd069898086ee6a5463aca9e3
[ "MIT" ]
permissive
jemus42/tauturri
dc24b37136cd88c97ad79babf38c71b2043b84a0
2f23895985d962f18b1d9ea3977fefdfbca714f0
refs/heads/master
2022-09-24T09:02:36.203045
2022-09-18T16:44:40
2022-09-18T16:44:40
121,064,812
1
0
null
null
null
null
UTF-8
R
false
false
259
r
test-recently-added.R
context("test-recently-added.R") test_that("get_recently_added works", { count <- 5 res <- get_recently_added(count = count) expect_is(res, "tbl") expect_length(res, 42) expect_equal(nrow(res), count) expect_error(get_recently_added("", "")) })
4880cc79284c1f24f2477ad6f06e8217e45b5325
d741d22e89b3c036276cc75378f25ab4d5df2f67
/code/exploration.R
7370d1b69f1b4610fc54020d6fef86b7b2c90211
[]
no_license
andyhoegh/NCAA
f58e98602d434ec98c7304f69d224ceddf88863c
4d110fdd45fa029cea3edf59a53521293f92bb34
refs/heads/master
2021-01-01T16:49:43.200349
2015-01-07T18:04:43
2015-01-07T18:04:43
16,755,168
0
0
null
null
null
null
UTF-8
R
false
false
1,822
r
exploration.R
source("scoring_code.R") # This gets the win rate for all teams over all given seasons id = 501:856 nteams = length(id) regular_season_results = read.csv("~/regular_season_results.csv") nwins = numeric(length(id)) nlosses = numeric(length(id)) for(i in 1:nteams){ nwins[i] = sum(regular_season_results$wteam == id[i]) nlosses[i] = sum(regular_season_results$lteam == id[i]) } propwins = nwins / (nwins + nlosses) propwins[is.nan(propwins)] = .5 id_propwins = data.frame(id, propwins) # This is a naive predictor. The probability a team wins a matchup is its win % divided by its win % + its opponent's predict.years <-c('N','O','P','Q','R') tourney_results <- read.csv('C:\\Users\\Ian\\Desktop\\Research\\NCAA\\data\\tourney_results.csv') tourney_results.tmp <- tourney_results[!(tourney_results$daynum %in% c(134,135)),] # exclude play in tourney_results_predyears <- tourney_results[tourney_results$season %in% predict.years,] all_matchups <- NULL for (k in 1:length(predict.years)){ active.year <- tourney_results_predyears[tourney_results_predyears$season == predict.years[k] ,] teams <- sort(unique(c(active.year$wteam,active.year$lteam))) for (i in 1:(length(teams)-1)){ for (j in (i+1):length(teams)){ all_matchups <- c(all_matchups, paste(predict.years[k],teams[i],teams[j],sep='_')) } } } pred = numeric(length(all_matchups)) for(i in 1:length(all_matchups)){ team1 = as.numeric(strsplit(all_matchups[i], "_")[[1]][2]) team2 = as.numeric(strsplit(all_matchups[i], "_")[[1]][3]) prop1 = id_propwins[id_propwins$id == team1, 2] prop2 = id_propwins[id_propwins$id == team2, 2] pred = prop2 / (prop1 + prop2) } sample.submission <- data.frame(all_matchups,pred) colnames(sample.submission) = c('id','pred') Score.NCAA(tourney_results,predict.years,sample.submission)
79066c87346372b53ae19826e9ba73275d8d8d94
528f00fe5ccc8d13132caf0e38cfe362b0ae20e4
/R function/pml.R
9bacdbe691b13c3f1cdf718d8f2cadb13a2bc861
[]
no_license
MingchenInSZ/practicalmachinelearning
72c805e6d7e90e60699c988cc380e65a14985da4
a14227e5fc060ceae7b227545adacb44c8116a6c
refs/heads/master
2016-09-06T10:35:19.836091
2014-06-22T15:46:39
2014-06-22T15:46:39
null
0
0
null
null
null
null
UTF-8
R
false
false
1,262
r
pml.R
pml<-function() { library(caret) curdir<-getwd() trainfile<-paste(curdir,"/pml-training.csv",sep="") testfile<-paste(curdir,"/pml-testing.csv",sep="") training <-read.table(trainfile,header=T,sep=",") testing <- read.table(testfile,header=T,sep=",") rs<-c() rsc<-c() for(name in names(training)) { r<-c() for(var in as.list(training[name])) { r<-append(r,as.numeric(nchar(as.character(var)))) } rs<-append(rs,sum(r==0)) rsc<-append(rsc,sum(is.na(training[name]))) } inds<-c() for(i in 1:length(rs)) { if(rs[i]>19622*0.7) { inds<-append(inds,i) } } indsc<-c() for(i in 1:length(rsc)) { if(rsc[i]>19622*0.7) { indsc<-append(indsc,i) } } lost_ind<-union(inds,indsc)# the most lost record column index lost_ind<-append(lost_ind,c(1:3)) training<-subset(training,select=-lost_ind) testing<-subset(testing,select=-lost_ind) c_v<-createDataPartition(training$classe,p=0.3,list=F) traindata<-training[-c_v,] cross_valid<-training[c_v,] fit<-train(classe~.,data=traindata,method="gbm") pred<-predict(fit,newdata=cross_valid) print(sum(pred==cross_valid$classe)/dim(cross_valid)[1]) p_test<-predict(fit,newdata=testing) p_test }
0527d29e945830bcabc7cf8d5cf473d82d2f2fb4
2b66528ea70115d88464fb90179365542e7313be
/auc_functions.R
a55280e7538767abcfad27cc6ce21fbaede9e4f8
[]
no_license
pavanjuturu/Numerai
bd92f5a82fd60a75e8b1629f9089eb78672429af
0b66770d83838b78767376c23703eab4c0f76ad5
refs/heads/master
2020-05-22T19:04:50.872296
2016-02-10T20:50:53
2016-02-10T20:50:53
null
0
0
null
null
null
null
UTF-8
R
false
false
737
r
auc_functions.R
auc <- function(outcome, proba){ outcome <- as.vector(outcome) proba <- as.vector(proba) N <- length(proba) N_pos <- sum(outcome) df <- data.frame(out = outcome, prob = proba) df <- df[order(-df$prob),] df$above <- (1:N) - cumsum(df$out) return( 1- sum( df$above * df$out ) / (N_pos * (N-N_pos) ) ) } ##function for auc.gbm <- function(actual, dtrain) { preds <- as.vector(getinfo(dtrain, "label")) outcome <- as.vector(actual) N <- length(preds) N_pos <- sum(outcome) df <- data.frame(out = outcome, prob = preds) df <- df[order(-df$prob),] df$above <- (1:N) - cumsum(df$out) auc <- ( 1- sum( df$above * df$out ) / (N_pos * (N-N_pos) ) ) return(list(metric = "AUC", value = auc)) }
905ef0f1d9699be896f50e88046c9530a11bae8e
b0670f8484d05498938b7a9770318857e2de5527
/plot2.R
1aaa317cf318b485874ea4930fdc1ec9a6d6cef5
[]
no_license
akolchin/ExData_Plotting1
eeaa36befc6a7ffda584e0e38a16eaa90608beb8
b0a24c30d0834533ca576ca3d288331621444e73
refs/heads/master
2021-01-18T02:52:33.055350
2014-05-10T12:37:59
2014-05-10T12:37:59
19,465,353
0
1
null
null
null
null
UTF-8
R
false
false
948
r
plot2.R
plot2 <- function() { ## load and unzip fileUrl <- "https://d396qusza40orc.cloudfront.net/exdata%2Fdata%2Fhousehold_power_consumption.zip" download.file(fileUrl, destfile="data.zip") unzip("data.zip") ## load and prepare datas data <- read.table("household_power_consumption.txt", header=TRUE, sep=";", dec = ".", na.strings="?", stringsAsFactors=FALSE) ## subset to just two target days in February, 2007 data <- data[data$Date == "1/2/2007" | data$Date == "2/2/2007", ] ## add datetime column data$datetime <- strptime(paste(data$Date, data$Time), format="%d/%m/%Y %T") ## open PNG and plot png(filename="plot2.png", width=480, height=480, units="px") plot(x=data$datetime, y=data$Global_active_power, type="l", xlab="", ylab="Global Active Power (kilowatts)") dev.off() }
cb172ae89877e4ae97a8ea122391f1e9a651ae3c
3d1ec18944e584c2f00e2b9902dcaaccb79c8c41
/R/qmosaic.R
41bbf2660192c9bfa8dd6d89177e75a28e74a107
[]
no_license
tudou2015/cranvas
a84ffebf61fac235959cefb8acbd4c7bdb0d7d58
af082a2a1cb09d42ca95c0021f8046df5054240f
refs/heads/master
2020-06-10T18:52:07.441557
2015-03-13T17:03:09
2015-03-13T17:03:09
null
0
0
null
null
null
null
UTF-8
R
false
false
20,862
r
qmosaic.R
constructCondition <- function (hdata) { library(reshape2) library(plyr) hdata$ID <- 1:nrow(hdata) res.melt <- melt(hdata,id.var="ID") res.melt$cond <- with(res.melt, sprintf("(%s == '%s')", variable, value)) NAs <- which(is.na(res.melt$value)) res.melt$cond[NAs] <- sprintf("is.na(%s)", res.melt$variable[NAs]) condis <- ddply(res.melt, .(ID), summarize, condi = paste("(", paste(cond, collapse=" & "), ")")) paste(condis$condi, collapse="|") } paste_formula <- function(form) { # form has pieces wt, marg and cond # output is character - needs to be converted to formula afterwards wtStr <- "" if (length(form$wt) > 0) wtStr <- form$wt[1] margStr <- "1" if (length(form$marg) > 0) margStr <- paste(form$marg,collapse="+") condStr <- "" if (length(form$cond) > 0) condStr <- paste("|", paste(form$cond, collapse="+")) formstring <- paste(wtStr,"~", margStr, condStr) return(formstring) } find_x_label <- function(form, divider) { parsed <- productplots::parse_product_formula(form) vars <- c(parsed$marg, parsed$cond) xlabs <- rev(vars[grep("h",divider)]) paste(xlabs,"", collapse="+ ") } find_y_label <- function(form, divider) { parsed <- productplots::parse_product_formula(form) vars <- c(parsed$marg, parsed$cond) ylabs <- rev(vars[grep("v",divider)]) paste(ylabs,"", collapse="+ ") } settitle <- function(form) { # browser() if (!is.null(form)) paste_formula(productplots::parse_product_formula(form)) } extractVars <- function(form) { setdiff(unlist(parse_product_formula(form)), "1") } ##' Mosaic plot. ##' Create a mosaicplot using a formula (as described in prodplot) ##' ##' Interactive elements for mosaic plots are arrow keys for navigating through the mosaic hierarchy: ##' arrow up reduces complexity of the mosaic by one variable, arrow down increases the complexity by one, if possible. ##' Arrow left and right rotate a previously included variable into the last split position. ##' Conditioning/Unconditioning is done with keys 'C' and 'U' ##' Keys 'B' and 'S" switch to bar and spine representation, respectively ##' Key 'R' rotates the last split variable between horizontal and vertical display. ##' ##' @param data a mutaframe which is typically built upon a data frame ##' along with several row attributes ##' @param formula a formula to describe order in which variables go into the mosaicplot. The first variables are the ones visually most important, i.e. Y ~ X1 + X2 + X3 first splits according to X3, then according to X2, then according to X1 ##' @param divider structure of the split in each direction. Choices are "hbar", "vbar" for horizontal/vertical barcharts, "hspine", "vspine" for horizontal/vertical spineplots. ##' @param cascade parameter for prodplot in package productplots ##' @param scale_max parameter for prodplot in package productplots ##' @param na.rm handling of missing values, defaults to FALSE ##' @param subset parameter for prodplot - ##' @param colour fill colour of rectangles - only used if colour is not used in the data ##' @param main parameter for prodplot ##' @param ... ##' @return NULL ##' @author Heike Hofmann ##' @export ##' @example inst/examples/qmosaic-ex.R qmosaic <- function(data, formula, divider = productplots::mosaic(), cascade = 0, scale_max = TRUE, na.rm = FALSE, subset=NULL, colour="grey30", main=NULL, ...) { data = check_data(data) b = brush(data) b$select.only = TRUE; b$draw.brush = FALSE # a selection brush z = as.list(match.call()[-1]) s = attr(data, 'Scales') var = extractVars(z$formula) redoHiliting <- FALSE redoColor <- FALSE meta = Mosaic.meta$new(var=var, form = as.formula(z$formula), origForm=as.formula(z$formula), xlim=c(0,1), ylim=c(0,1), alpha = 1, inactiveVar=NULL, inactiveDivider=NULL, active = TRUE, main=settitle(z$formula), ylab="", xlab="", main=main) if(is.null(divider)) divider = mosaic() if (!is.character(divider)) { form = parse_product_formula(z$formula) splits = c(form$marg, form$cond) divider = divider(length(splits)) } meta$divider = divider meta$origDivider = meta$divider recalcColor = function() { redoColor <<-FALSE idx = visible(data) if (sum(idx) > 0) { df <- data.frame(data[idx,]) form <- parse_product_formula(meta$form) df$wt <- 1 if (length(form$wt) == 1) df$wt <- df[,form$wt] var <- unlist(c(form$marg, form$cond)) cols <- ddply(df, var, function(x) { dc <- xtabs(wt~.color, data=x, exclude=NULL)/sum(x$wt) dc[is.nan(dc)] <- 0 dc }) require(reshape2) cm <- melt(cols, id.var=var) names(cm) <- gsub("variable", ".color",names(cm)) names(cm) <- gsub("value", "cval",names(cm)) colID <- grep(".color", names(meta$mdata)) if (length(colID) >0) meta$mdata <- meta$mdata[-colID] meta$cdata <- merge(meta$mdata, cm, by=var) ## set order of the colors here # browser() meta$cdata$cid <- as.numeric(meta$cdata$.color) meta$cdata <- ddply(meta$cdata, var, transform, cval=cumsum(cval[order(cid)]), .color=.color[order(cid)]) } else { meta$cdata <- meta$mdata meta$cid <- as.numeric(meta$cdata$.color) meta$cdata$cval <- 0 } split <- meta$divider[1] if (length(grep("v", split))>0) split <- "hspine" else split <- "vspine" if (split =="vspine") { meta$cdata$t = with(meta$cdata, b + (t-b)*cval) meta$cdata <- ddply(meta$cdata, var, transform, b = c(b[1], t[-length(t)])) } else { meta$cdata$r = with(meta$cdata, l + (r-l)*cval) meta$cdata <- ddply(meta$cdata, var, transform, l = c(l[1], r[-length(r)])) } } recalcHiliting = function() { redoHiliting <<-FALSE idx = visible(data) if (sum(idx) > 0) { df <- data.frame(data[idx,]) form <- parse_product_formula(meta$form) df$wt <- 1 if (length(form$wt) == 1) df$wt <- df[,form$wt] var <- unlist(c(form$marg, form$cond)) hils <- ddply(df, var, summarize, hilited = sum(wt[.brushed])/sum(wt)) hils$hilited[is.nan(hils$hilited)] <- 0 hilID <- grep("hilited", names(meta$mdata)) if (length(hilID) >0) meta$mdata <- meta$mdata[-hilID] meta$hdata <- merge(meta$mdata, hils, by=var) } else { meta$hdata <- meta$mdata meta$hdata$hilited <- 0 } split <- meta$divider[1] if (length(grep("v", split))>0) split <- "hspine" else split <- "vspine" if (split =="vspine") { meta$hdata$t = with(meta$hdata, b + (t-b)*hilited) } else meta$hdata$r = with(meta$hdata, l + (r-l)*hilited) } setylab <- function() { parsed <- parse_product_formula(meta$form) vars <- c(parsed$marg, parsed$cond) yvars <- rev(vars[grep("v",meta$divider)]) meta$yat = seq(0,1, length=5) meta$ylabels = round(seq(0,1, length=5),2) if (length(yvars)>=1) { yvar <- yvars[1] df <- subset(meta$mdata, l==0) at <- ddply(df, yvar, summarize, yat=(min(b)+max(t))/2) meta$yat = at$yat meta$ylabels = at[,1] } } setxlab <- function() { parsed <- parse_product_formula(meta$form) vars <- c(parsed$marg, parsed$cond) xvars <- rev(vars[grep("h",meta$divider)]) meta$xat = seq(0,1, length=5) meta$xlabels = round(seq(0,1, length=5), 2) if (length(xvars)>=1) { xvar <- xvars[1] # browser() df <- subset(meta$mdata, b==0) at <- ddply(df, xvar, summarize, xat=(min(l)+max(r))/2) meta$xat = at$xat meta$xlabels = at[,1] } } recalc = function() { idx = visible(data) df <- data.frame(data[idx,]) mdata <- prodcalc(df, meta$form, meta$divider, cascade, scale_max, na.rm = na.rm) meta$mdata <- subset(mdata, level==max(mdata$level), drop=FALSE) meta$xlab <- find_x_label(meta$form, meta$divider) meta$ylab <- find_y_label(meta$form, meta$divider) setxlab() setylab() recalcColor() recalcHiliting() } compute_coords = function() { meta$limits = extend_ranges(cbind(meta$xlim, meta$ylim)) meta$minor = "xy" recalc() } compute_coords() recalcColor() removeSplit = function() { form = parse_product_formula(meta$form) if (length(form$marg) > 1) { meta$inactiveVar <- c(form$marg[1], meta$inactiveVar) meta$inactiveDivider <- c(meta$divider[1], meta$inactiveDivider) form$marg <- form$marg[-1] meta$divider <- meta$divider[-1] } else return() # if (length(form$marg) == 1) { # if (form$marg[1] == "1") return() # else { # meta$inactiveVar <- c(form$marg[1], meta$inactiveVar) # form$marg[1] = "1" # } # # } meta$form <- as.formula(paste_formula(form)) recalc() layer.main$invalidateIndex() qupdate(layer.main) } addSplit = function() { form = parse_product_formula(meta$form) if(length(meta$inactiveVar) < 1) return() if ((length(form$marg) == 0) | (form$marg[1] == "1")) { form$marg[1] <- meta$inactiveVar[1] meta$inactiveVar <- meta$inactiveVar[-1] } else { form$marg <- c( meta$inactiveVar[1], form$marg) meta$inactiveVar <- meta$inactiveVar[-1] lastSplit <- length(form$marg) meta$divider <- c(meta$inactiveDivider[1], meta$divider) meta$inactiveDivider = meta$inactiveDivider[-1] } meta$form <- as.formula(paste_formula(form)) recalc() layer.main$invalidateIndex() qupdate(layer.main) } rotateLeft = function() { form = parse_product_formula(meta$form) if(length(meta$inactiveVar) < 1) return() if ((length(form$marg) == 0) | (form$marg[1] == "1")) { form$marg[1] <- meta$inactiveVar[1] meta$inactiveVar <- meta$inactiveVar[-1] } else { save <- form$marg[1] form$marg[1] <- meta$inactiveVar[1] meta$inactiveVar <- c(meta$inactiveVar[-1], save) } meta$form <- as.formula(paste_formula(form)) recalc() layer.main$invalidateIndex() qupdate(layer.main) } rotateRight = function() { form = parse_product_formula(meta$form) if(length(meta$inactiveVar) < 1) return() if ((length(form$marg) == 0) | (form$marg[1] == "1")) { form$marg[1] <- meta$inactiveVar[1] meta$inactiveVar <- meta$inactiveVar[-1] } else { save <- form$marg[1] lastInactive <- length(meta$inactiveVar) form$marg[1] <- meta$inactiveVar[lastInactive] meta$inactiveVar <- c(save, meta$inactiveVar[-lastInactive]) } meta$form <- as.formula(paste_formula(form)) recalc() layer.main$invalidateIndex() qupdate(layer.main) } rotateSplit = function() { if (length(grep("v", meta$divider[1])) > 0) meta$divider[1] <- gsub("v", "h", meta$divider[1]) else meta$divider[1] <- gsub("h", "v", meta$divider[1]) recalc() layer.main$invalidateIndex() qupdate(layer.main) } unconditionVar = function() { form = parse_product_formula(meta$form) if (length(form$cond) < 1) return() # take last conditioning variable and move in as first split form$marg <- c(form$marg, form$cond[1]) form$cond <- form$cond[-1] meta$form <- as.formula(paste_formula(form)) recalc() layer.main$invalidateIndex() qupdate(layer.main) } conditionVar = function() { form = parse_product_formula(meta$form) if (length(form$marg) < 1) return() # take fist split and condition on it firstSplit <- length(form$marg) form$cond <- c(form$marg[firstSplit], form$cond) form$marg <- form$marg[-firstSplit] meta$form <- as.formula(paste_formula(form)) recalc() layer.main$invalidateIndex() qupdate(layer.main) } meta$brush.size = c(1, -1) * apply(meta$limits, 2, diff) / 15 main_draw = function(layer, painter) { if (redoColor) recalcColor() color <- "grey30" with(meta$mdata, qdrawRect(painter,l,b,r,t, fill="white", stroke=color)) with(meta$cdata, qdrawRect(painter,l,b,r,t, fill=as.character(.color), stroke=as.character(.color))) zeroes <- subset(meta$mdata, .wt==0, drop=FALSE) if (nrow(zeroes) > 0) { qdrawCircle(painter, zeroes$l, zeroes$b, r = 3, stroke = color, fill = "white") } } brush_draw = function(layer, painter) { if (redoHiliting) recalcHiliting() color <- b$color with(meta$hdata, qdrawRect(painter,l,b,r,t, fill=color, stroke=color)) draw_brush(layer, painter, data, meta) } brush_mouse_press = function(layer, event) { common_mouse_press(layer, event, data, meta) } brush_mouse_move = function(layer, event) { rect = qrect(update_brush_size(meta, event)) hits = layer$locate(rect) hits <- hits[hits < nrow(meta$mdata)] if (length(hits)) { ## rectangles are drawn in the same order as in mdata # print(hits) form <- parse_product_formula(meta$form) var <- unlist(c(form$marg, form$cond)) selected <- meta$mdata[hits+1, var, drop=FALSE] condstr = constructCondition(selected) hits = with(data.frame(data), which(eval(parse(text=condstr)))) } selected(data) = mode_selection(selected(data), hits, mode = b$mode) common_mouse_move(layer, event, data, meta) } brush_mouse_release = function(layer, event) { brush_mouse_move(layer, event) common_mouse_release(layer, event, data, meta) } key_press = function(layer, event) { common_key_press(layer, event, data, meta) key <- event$key() if (key == Qt$Qt$Key_Up) { # arrow up removeSplit() } if (key == Qt$Qt$Key_Down) { # arrow down addSplit() } if (key == Qt$Qt$Key_Right) { # arrow right rotateRight() } if (key == Qt$Qt$Key_Left) { # arrow right rotateLeft() } if (key == Qt$Qt$Key_R) { # 'r' or 'R' for 'rotate' rotateSplit() } if (key == Qt$Qt$Key_U) { # 'u' or 'U' for 'uncondition' unconditionVar() } if (key == Qt$Qt$Key_C) { # 'c' or 'C' for 'condition' conditionVar() } if (key == Qt$Qt$Key_B) { # 'b' or 'B' for 'spine to Bar' firstletter <- substr(meta$divider[1],1,1) meta$divider[1] <- sprintf("%sbar", firstletter) recalc() layer.main$invalidateIndex() qupdate(layer.main) } if (key == Qt$Qt$Key_S) { # 's' or 'S' for 'bar to Spine' firstletter <- substr(meta$divider[1],1,1) meta$divider[1] <- sprintf("%sspine", firstletter) recalc() layer.main$invalidateIndex(); qupdate(layer.main) } } key_release = function(layer, event) { common_key_release(layer, event, data, meta) } identify_hover = function(layer, event) { if (!b$identify) return() b$cursor = 2L meta$pos = as.numeric(event$pos()) meta$identified = layer$locate(identify_rect(meta)) qupdate(layer.identify) } identify_draw = function(layer, painter) { if (!b$identify || !length(idx <- meta$identified)) return() idx <- idx[idx <= nrow(meta$mdata)] if (length(idx) == 0) return() idx = idx + 1 form <- parse_product_formula(meta$form) var <- rev(unlist(c(form$marg, form$cond))) for(i in var) meta$mdata[,i] <- as.character(meta$mdata[,i]) id <- paste(var, meta$mdata[idx, var], sep=": ", collapse="\n") sumwt <- sum(meta$mdata[, ".wt"]) ivals <- paste(sprintf("\ncount: %s\nproportion: %.2f%%", meta$mdata[idx, ".wt"], meta$mdata[idx, ".wt"]/sumwt*100), collapse="\n") meta$identify.labels = paste(id, ivals, collapse="") draw_identify(layer, painter, data, meta) qdrawRect(painter, meta$mdata$l[idx], meta$mdata$b[idx], meta$mdata$r[idx], meta$mdata$t[idx], stroke = b$color, fill = NA) } scene = qscene() layer.root = qlayer(scene) layer.main = qlayer(paintFun = main_draw, mousePressFun = brush_mouse_press, mouseReleaseFun = brush_mouse_release, mouseMoveFun = brush_mouse_move, hoverMoveFun = identify_hover, keyPressFun = key_press, keyReleaseFun = key_release, focusInFun = function(layer, event) { common_focus_in(layer, event, data, meta) }, focusOutFun = function(layer, event) { common_focus_out(layer, event, data, meta) }, limits = qrect(meta$limits)) layer.brush = qlayer(paintFun = brush_draw, limits = qrect(meta$limits)) layer.identify = qlayer(paintFun = identify_draw, limits = qrect(meta$limits)) layer.title = qmtext(meta = meta, side = 3) layer.xlab = qmtext(meta = meta, side = 1) layer.ylab = qmtext(meta = meta, side = 2) layer.xaxis = qaxis(meta = meta, side = 1) layer.yaxis = qaxis(meta = meta, side = 2) layer.grid = qgrid(meta = meta) layer.keys = key_layer(meta) layer.root[0, 2] = layer.title layer.root[2, 2] = layer.xaxis layer.root[3, 2] = layer.xlab layer.root[1, 1] = layer.yaxis layer.root[1, 0] = layer.ylab layer.root[1, 2] = layer.grid layer.root[1, 2] = layer.main layer.root[1, 2] = layer.brush layer.root[1, 2] = layer.keys layer.root[1, 2] = layer.identify layer.root[1, 3] = qlayer() set_layout = function() { fix_dimension(layer.root, row = list(id = c(0, 2, 3), value = c(prefer_height(meta$main), prefer_height(meta$xlabels), prefer_height(meta$xlab))), column = list(id = c(1, 0, 3), value = c(prefer_width(meta$ylabels), prefer_width(meta$ylab, FALSE), 10))) } set_layout() meta$mainChanged$connect(set_layout) meta$xlabChanged$connect(set_layout); meta$ylabChanged$connect(set_layout) meta$xlabelsChanged$connect(set_layout); meta$ylabelsChanged$connect(set_layout) view = qplotView(scene = scene) view$setWindowTitle(sprintf('Mosaic plot: %s', meta$main)) meta$xlabChanged$connect(setxlab) meta$ylabChanged$connect(setylab) meta$formChanged$connect(function() { meta$main = settitle(meta$form) view$setWindowTitle(sprintf('Mosaic plot: %s', meta$main)) }) d.idx = add_listener(data, function(i, j) { switch(j, .brushed = { redoHiliting <<-TRUE; qupdate(layer.main)}, .color = { redoColor <<-TRUE; qupdate(layer.main) }, { compute_coords(); redoHiliting<<- TRUE redoColor <<- TRUE; flip_coords() layer.main$invalidateIndex() qupdate(layer.grid); qupdate(layer.xaxis); qupdate(layer.yaxis) qupdate(layer.main) }) }) qconnect(layer.main, 'destroyed', function(x) { ## b$colorChanged$disconnect(b.idx) remove_listener(data, d.idx) }) b$cursorChanged$connect(function() { set_cursor(view, b$cursor) }) sync_limits(meta, layer.main, layer.brush, layer.identify) meta$manual.brush = function(pos) { brush_mouse_move(layer = layer.main, event = list(pos = function() pos)) } attr(view, 'meta') = meta view } Mosaic.meta = setRefClass("Mosaic_meta", contains = "CommonMeta", fields = properties(list( var = 'character', form='formula', divider='character', origForm='formula', origDivider='character', inactiveVar='character', inactiveDivider='character', mdata='data.frame', hdata='data.frame', cdata='data.frame' )))
8eb13bbe65be0e8944964e1a88e4e0c8fda85d73
a6253060e42e9bb8393f2dae6a0ecf395c873c19
/R_scripts_and_data/fig3.R
96ce676783b77b7f435458089e2eaef80e8bddcf
[]
no_license
idopen/asymmetry_and_ageing
25af63061553b484a3167c523cda443c08fb1026
9e1001366a0f638f5d1cd899a79e931d80a1e13f
refs/heads/master
2022-11-27T10:22:59.807279
2020-08-03T12:02:11
2020-08-03T12:02:11
284,663,122
0
0
null
null
null
null
UTF-8
R
false
false
12,231
r
fig3.R
## figure 2: ## panel of plots ## A: dynamics r=1 ## B: dynamics r=0 ## C: damage r=0,1 library(tidyverse) library(cowplot) library(mgcv) ## fig2A: dynamics for m0=1 ## read data (dynamics) dA <- read.table("evol_m0_1.txt",header = F) names(dA) <- c("generation","popsize","age","rep0","rep1","rpr0", "rpr1","har0","har1","tra0","tra1","dam0","dam1","res0","res1", paste0("v0_",0:15),paste0("v1_",0:15)) dA <- mutate(dA, for0 = 1-rep0-rpr0, for1 = 1-rep1-rpr1) dA2 <- with(dA, data.frame(y = c(for0,for1,rpr0,rpr1,rep0,rep1))) dA2$cycle <- rep(dA$generation,6) dA2$trait <- factor(rep(c("forage","repair","repro"), each = 2*nrow(dA))) dA2$cell <- factor(rep(c(2,1),each=nrow(dA),times=3)) my_font_size <- 16 fig2A <- ggplot(dA2) + theme_cowplot(my_font_size) + geom_line(aes(x=cycle, y=y, lty=cell, color=trait), size = 1.5) + scale_x_continuous(expand = c(0,0), limits = c(0,10000), breaks = seq(0,10000,2500)) + scale_y_continuous(expand = c(0,0), limits = c(0,1), breaks = seq(0,1,0.5)) + scale_color_manual(values = c("darkgreen","brown","orange")) + scale_linetype_manual(values = c(1,2)) + labs(x = "\nTime", y = "Allocation", lty = "Cell type:", color = "Trait:") + background_grid(major = "xy", minor = "y") + #theme(legend.position = "top") + theme(axis.text.x = element_blank()) + theme(axis.title.x = element_blank()) + ggtitle(" r = 1") fig2A ## fig2B: m0 = 0 ## read data (dynamics) dB <- read.table("evol_m0_0.txt",header = F) names(dB) <- c("generation","popsize","age","rep0","rep1","rpr0", "rpr1","har0","har1","tra0","tra1","dam0","dam1","res0","res1", paste0("v0_",0:15),paste0("v1_",0:15)) dB <- mutate(dB, for0 = 1-rep0-rpr0, for1 = 1-rep1-rpr1) dB2 <- with(dB, data.frame(y = c(for0,for1,rpr0,rpr1,rep0,rep1))) dB2$cycle <- rep(dB$generation,6) dB2$trait <- factor(rep(c("forage","repair","repro"), each = 2*nrow(dB))) dB2$cell <- factor(rep(c(1,2),each=nrow(dB),times=3)) fig2B <- ggplot(dB2) + theme_cowplot(my_font_size) + geom_line(aes(x=cycle, y=y, lty=cell, color=trait), size = 1.5) + scale_x_continuous(expand = c(0,0), limits = c(0,10000), breaks = seq(0,10000,2500)) + scale_y_continuous(expand = c(0,0), limits = c(0,1), breaks = seq(0,1,0.5)) + scale_color_manual(values = c("darkgreen","brown","orange")) + scale_linetype_manual(values = c(1,2)) + labs(x = "\nTime", y = "Allocation", lty = "Cell type:", color = "Trait:") + background_grid(major = "xy", minor = "y") + # theme(legend.position = "top") + theme(axis.text.x = element_blank()) + theme(axis.text.y = element_blank()) + theme(axis.title.y = element_blank()) + theme(axis.title.x = element_blank()) + ggtitle(" r = 0") fig2B ## fig2C: resources + damage ## damage multiplier: dm <- 10 damage_color <- "#d96125" dC <- with(dA, data.frame(y = c(res0,res1,dm*dam0,dm*dam1))) dC$cycle <- rep(dA$generation,4) dC$trait <- factor(rep(c("resources","damage"), each = 2*nrow(dA))) dC$cell <- factor(rep(c(2,1),each=nrow(dA),times=2)) fig2C <- ggplot(dC) + theme_cowplot(my_font_size) + geom_line(aes(x=cycle, y=y, lty=cell, color=trait), size = 1.5) + scale_x_continuous(expand = c(0,0), limits = c(0,10000), breaks = seq(0,10000,2500)) + scale_y_continuous(expand = c(0,0), limits = c(0,8), breaks = seq(0,8,2)) + scale_color_manual(values = c(damage_color,"blue")) + scale_linetype_manual(values = c(1,2), ) + labs(x = "Time", y = "Amount", lty = "Cell type:", color = "Trait:") + background_grid(major = "xy", minor = "y") + theme(axis.text.x = element_blank()) + theme(axis.title.y = element_text(margin = margin(t=0, r=15, b=0, l=0))) + guides(linetype = FALSE) fig2C ## fig2C: resources + damage ## damage multiplier: dD <- with(dB, data.frame(y = c(res0,res1,dm*dam0,dm*dam1))) dD$cycle <- rep(dB$generation,4) dD$trait <- factor(rep(c("resources","damage"), each = 2*nrow(dB))) dD$cell <- factor(rep(c(1,2),each=nrow(dB),times=2)) fig2D <- ggplot(dD) + theme_cowplot(my_font_size) + geom_line(aes(x=cycle, y=y, lty=cell, color=trait), size = 1.5) + scale_x_continuous(expand = c(0,0), limits = c(0,10000), breaks = seq(0,10000,2500)) + scale_y_continuous(expand = c(0,0), limits = c(0,8), breaks = seq(0,8,2)) + scale_color_manual(values = c(damage_color,"blue")) + scale_linetype_manual(values = c(1,2), ) + labs(x = "Time", lty = "Cell type:", color = "Trait:") + background_grid(major = "xy", minor = "y") + theme(axis.text.x = element_blank()) + theme(axis.title.y = element_blank()) + theme(axis.text.y = element_blank()) + guides(linetype = FALSE) fig2D ## Grid: prow1 <- plot_grid( fig2A + theme(legend.position="none"), fig2B + theme(legend.position="none"), align = 'vh', labels = c("A", "B"), label_size = 18, hjust = -1, nrow = 1 ) legend1 <- get_legend( # create some space to the left of the legend fig2A + theme(legend.box.margin = margin(0, 0, 0, 12)) + theme(legend.key.width=unit(1.5,"cm")) ) prow2 <- plot_grid( fig2C + theme(legend.position="none"), fig2D + theme(legend.position="none"), align = 'vh', labels = c("C", "D"), label_size = 18, hjust = -1, nrow = 1 ) legend2 <- get_legend( # create some space to the left of the legend fig2C + theme(legend.box.margin = margin(0, 0, 0, 12)) + theme(legend.key.width=unit(1.5,"cm")) ) plot_grid(prow1, legend1, prow2, legend2, nrow = 2, axis = "l", align = "v", rel_widths = c(3, .6, 3, .6)) ################## ## fig1A: no tern because can't combine with cowplot :-( d_time <- d3 %>% filter(cycle <= 1000) fig1A <- ggplot(d_time) + theme_cowplot(my_font_size) + geom_line(aes(x=cycle, y=y, lty=cell, color=trait), size = 1.5) + scale_x_continuous(expand = c(0,0), limits = c(0,1000), breaks = seq(0,1000,250)) + scale_y_continuous(expand = c(0,0), limits = c(0,1), breaks = seq(0,1,0.5)) + scale_color_manual(values = c("darkgreen","brown","orange")) + scale_linetype_manual(values = c(1,3)) + labs(x = "\nTime", y = "Allocation") + background_grid(major = "xy", minor = "y") + theme(legend.position = "right") + theme(axis.text.x = element_blank()) fig1A ## fig 1B: age distribution age_fill <- "#a887ab" fig1B <- ggplot(d,aes(age)) + theme_cowplot(my_font_size) + geom_histogram(aes(y=..density..), binwidth = 1, fill = age_fill, color = "black") + scale_x_continuous(expand = c(0,0), limits = c(0,15), breaks = seq(1,13,2)) + labs(x = "Age", y = "Distribution\n") + background_grid(major = "xy", minor = "y") + theme(axis.text.y = element_blank()) fig1B ## fig1C: damage distribution damage_fill <- "#d96125" fig1C <- ggplot(d,aes(dam0)) + theme_cowplot(my_font_size) + geom_histogram(aes(y=..density..), binwidth = 0.2, fill = damage_fill, color = "black") + scale_x_continuous(expand = c(0,0), limits = c(0,6), breaks = 0:6) + labs(x = "Damage", y = "Distribution\n") + background_grid(major = "xy", minor = "y") + theme(axis.text.y = element_blank()) fig1C ## fig1D: freq deleterious alleles vs. damage V <- d[,14:29] V_means <- apply(V,2,mean) damage_vals <- seq(0.5*6/15,6+0.5*6/15,length.out = 16) d_1D <- data.frame(damage_int=1:16,freq=V_means) my_del_col <- "#d92567" fig1D <- ggplot(d_1D,aes(damage_int,freq)) + theme_cowplot(my_font_size) + geom_point(size = 3.5, color = my_del_col) + scale_x_continuous(expand = c(0,0), limits = c(0.5,16.5), breaks = seq(1,15,2)) + scale_y_continuous(expand = c(0,0), limits = c(0,1), breaks = seq(0,1,0.5)) + labs(x = "Damage interval", y = "Mutant frequency") + background_grid(major = "xy", minor = "y") fig1D ## fig1E d_dam <- d %>% group_by(age) %>% summarise(y = median(dam0), ymin = quantile(dam0,0.2), ymax = quantile(dam0,0.8)) d_dam <- d_dam %>% filter(age <= 15) fig1E <- ggplot(d_dam,aes(age,y)) + theme_cowplot(my_font_size) + geom_point(size = 3.5, color = damage_fill) + geom_errorbar(aes(ymin=ymin,ymax=ymax), width=0, color = damage_fill) + scale_x_continuous(expand = c(0,0), limits = c(0.5,15.5), breaks = seq(1,15,2)) + scale_y_continuous(expand = c(0,0), limits = c(0,4), breaks = seq(0,4,1)) + labs(x = "Age", y = "Damage") + background_grid(major = "xy", minor = "y") fig1E ## fig1F: mortality vs. age d_mort <- d %>% group_by(age) %>% summarise(y = mean(dead)) d_mort <- d_mort %>% filter(age <= 15) d_gam <- d %>% filter(age <= 15) m1 <- gam(dead ~ s(age), family = binomial, data = d_gam) gam.check(m1) d.pred <- data.frame(age=seq(1,15,0.1)) fitted <- predict(m1,newdata = d.pred, type = "response", se.fit = T) d.pred <- d.pred %>% mutate(y = fitted$fit, ymin = y-1.96*fitted$se.fit, ymax = y+1.96*fitted$se.fit) fig1F <- ggplot(d_mort,aes(age,y)) + theme_cowplot(my_font_size) + geom_point(size = 3.5, color = my_del_col) + geom_line(data = d.pred, color = my_del_col, size = 1.3) + geom_ribbon(data = d.pred, aes(ymin=ymin,ymax=ymax), alpha = 0.3) + scale_x_continuous(expand = c(0,0), limits = c(0.5,15.5), breaks = seq(1,15,2)) + scale_y_continuous(expand = c(0,0), limits = c(0,0.06), breaks = seq(0,0.06,0.02)) + labs(x = "Age", y = "Mortality") + background_grid(major = "xy", minor = "y") fig1F ## Grid: plot_grid(fig1A, fig1B, fig1C, fig1D, fig1E, fig1F, labels = c('A','B','C','D','E','F'), label_size = 18, ncol = 3) ########################################################## ## fig1A: ternary library(ggtern) d2 <- read.table("evol_sym.txt",header = F) names(d2) <- c("generation","popsize","age","rep0","rep1","rpr0", "rpr1","har0","har1","tra0","tra1","dam0","dam1","res0","res1", paste0("v0_",0:15),paste0("v1_",0:15)) d3 <- with(d2, data.frame(generation=rep(generation,2), reproduction=c(rep0,rep1), repair=c(rpr0,rpr1), foraging=c(1-rep0-rpr0,1-rep1-rpr1), cell=as.factor(rep(c(1,2),each=nrow(d2))))) ## smooth curve d4 <- d3 %>% filter(generation < 2000) dT <- data.frame(foraging=c(0.333,0.0),repair=c(0.333,0.333),reproduction=c(0.333,0.666), cell=as.factor(c(1,1))) dR <- data.frame(foraging=c(0.333,0.666),repair=c(0.333,0.0),reproduction=c(0.333,0.333), cell=as.factor(c(1,1))) dL <- data.frame(foraging=c(0.333,0.333),repair=c(0.333,0.666),reproduction=c(0.333,0.0), cell=as.factor(c(1,1))) fig1A <- ggtern(d4,aes(x=foraging,y=repair,z=reproduction,color=cell)) + geom_line(data=dT,color="black",lty=2) + geom_line(data=dR,color="black",lty=2) + geom_line(data=dL,color="black",lty=2) + geom_point(size=0.7,alpha=0.4) + #geom_line(alpha=0.4,lwd=0.7) + labs(x="",xarrow="Foraging %", y="",yarrow="Repair %", z="",zarrow="Reproduction %") + theme_bw(base_size = 20) + theme_showsecondary() + theme_showarrows() + theme(legend.position=c(0.0,0.7), legend.justification=c(-0.1,1)) fig1A ######################################
5150f285b87a634e8568c5070aeadd4f726fe1d3
4a2f9a190e08ce4f60156c5b56094ab48c5fa295
/Simple Linear Regression/emp_data.R
05d0b361158b5c9426b4842d8cc14899d0100afd
[]
no_license
Tusharbagul/Machine-Learning-With-R
2b5faa76b195895d084f8452dc76b428d6d9cd58
99c935e63d12463cc2861d4417fb0cb9a5eeb0bf
refs/heads/master
2022-12-01T15:02:13.666455
2020-08-13T12:27:52
2020-08-13T12:27:52
null
0
0
null
null
null
null
UTF-8
R
false
false
1,025
r
emp_data.R
#Read Data emp <- read.csv('C:/Users/Tushar Bagul/Desktop/Data_Science/Assignments/simpleLinearregression/emp_data.csv') colnames(emp) #correlation matrix cor(emp) #Regression model and summary model1 <- lm(Churn_out_rate~Salary_hike, data = emp) summary(model1) #New Data Frame With New Data churn_rate = data.frame(Salary_hike=c(1600)) #Predict For The New Data churn = predict(model1, churn_rate) churn #Predict For Weight Variable From Historical Data pred <- predict(model1) pred #Prepare A New Data Frame With Pred And Error newdata<-data.frame(emp,pred,"Error"= emp$Churn_out_rate - pred) newdata #Transforming input using square function model2 <- lm(Churn_out_rate~Salary_hike + I(Salary_hike^2), data=emp) summary(model2) #predicting using model2 pred2 <-predict(model2) pred2 #Prepare new df with pred2 and error newdata2 <- data.frame(emp, pred2, "Error"=emp$Churn_out_rate - pred2) newdata2 #plots plot(emp, pch=16, col="blue") plot(model2, pch=16, col="blue")
8bc19fe3f8a99bd83f9be71a0bd14c6e48f415b0
185eb75246acc598d15d43a6a487ef2ee0b3d231
/R/mousebrain.org/preprocess-loom.R
8948b3747b4f6d508965a62fabea083da09d213c
[]
no_license
suzannejin/SCT-MoA
4cd295da2252475d482905bbdfffa48aa9ca4c2d
bfd455479d94db92d30153b763d06f5732879606
refs/heads/master
2023-05-30T01:18:39.043455
2019-02-25T18:20:10
2019-02-25T18:20:10
362,417,400
0
0
null
2021-04-28T09:50:38
2021-04-28T09:50:37
null
UTF-8
R
false
false
1,505
r
preprocess-loom.R
# Preprocess loom files. setwd("~/git/SCT-MoA") options(stringsAsFactors = F) # usage: preprocess-loom.R <input_dir> <output_dir> args = commandArgs(trailingOnly = T) if (length(args) < 2) stop("must provide input and output directories") input_dir = args[1] output_dir = args[2] if (!dir.exists(input_dir)) stop("input directory does not exist") if (!dir.exists(output_dir)) dir.create(output_dir, recursive = T) # read protein-coding genes coding = read.delim("data/ensembl/protein_coding_genes.txt.gz") # process files one at a time files = list.files(input_dir, pattern = "*.csv.gz", full.names = T) for (file in files) { message("processing ", basename(file), " ...") # read data dat = read.csv(file, check.names = F) # filter empty genes genes = dat[[1]] expr = t(dat[, -1]) colnames(expr) = genes expr = expr[rowSums(expr) > 0, colSums(expr) > 0] # filter to protein-coding genes expr = expr[, colnames(expr) %in% coding$gene] # filter to the top 5,000 genes present = colSums(expr > 0) ranks = rank(present, ties.method = 'random') keep = ranks > ncol(expr) - 5e3 expr = expr[, keep] # write clean_name = chartr(' /', '__', gsub("\\.gz", "", basename(file))) output_file = file.path(output_dir, clean_name) write.table(expr, output_file, quote = F, sep = "\t", row.names = T) system(paste("gzip --force", output_file)) message(" wrote file ", basename(file), " with ", nrow(expr), " cells and ", ncol(expr), " genes") }
934464cf4438e8090390a3798e889665d6f17072
7f141116154eed50968bddd35c9a47b7194e9b88
/R/richness_objective_bayes.R
b5e3ebfe2915c215c8a600a43b8b9fae583bc869
[]
no_license
adw96/breakaway
36a9d2416db21172f7623c1810d2c6c7271785ed
d81b1799f9b224113a58026199a849c2ec147524
refs/heads/main
2022-12-22T06:20:56.466849
2022-11-22T22:35:57
2022-11-22T22:35:57
62,469,870
65
22
null
2022-11-22T22:35:58
2016-07-02T21:10:56
R
UTF-8
R
false
false
36,028
r
richness_objective_bayes.R
#' Objective Bayes species richness estimate with the Negative Binomial model #' #' @param data TODO(Kathryn) #' @param output TODO(Kathryn) #' @param plot TODO(Kathryn) #' @param answers TODO(Kathryn) #' @param tau TODO(Kathryn) #' @param burn.in TODO(Kathryn) #' @param iterations TODO(Kathryn) #' @param Metropolis.stdev.N TODO(Kathryn) #' @param Metropolis.start.T1 TODO(Kathryn) #' @param Metropolis.stdev.T1 TODO(Kathryn) #' @param Metropolis.start.T2 TODO(Kathryn) #' @param Metropolis.stdev.T2 TODO(Kathryn) #' @param bars TODO(Kathryn) #' #' @return A list of results, including \item{est}{the median of estimates of N}, \item{ci}{a confidence interval for N}, #' \item{mean}{the mean of estimates of N}, \item{semeanest}{the standard error of mean estimates}, #' \item{dic}{the DIC of the model}, \item{fits}{fitted values}, and \item{diagnostics}{model diagonstics}. #' #' @importFrom stats acf #' @importFrom graphics hist par plot #' #' @export objective_bayes_negbin <- function(data, output=TRUE, plot=TRUE, answers=FALSE, tau=10, burn.in=1000, iterations=5000, Metropolis.stdev.N=100, Metropolis.start.T1=-0.8, Metropolis.stdev.T1=0.01, Metropolis.start.T2=0.8, Metropolis.stdev.T2=0.01, bars=5) { data <- check_format(data) fullfreqdata <- data if (tau > max(data[,1])) { tau <- max(data[,1]) } # calculate summary statistics on full data w<-sum(fullfreqdata[,2]) n<-sum(fullfreqdata[,1]*fullfreqdata[,2]) # subset data up to tau freqdata<-fullfreqdata[1:tau,] # calculate summary statistics on data up to tau w.tau<-sum(freqdata[,2]) n.tau<-sum(freqdata[,1]*freqdata[,2]) # calculate NP estimate of n0 NP.est.n0<-w.tau/(1-freqdata[1,2]/n.tau)-w.tau ### Step 3: calculate posterior ## initialization iterations<-iterations+burn.in N<-rep(0,iterations) T1T2<-matrix(rep(c(Metropolis.start.T1,Metropolis.start.T2),each=iterations),ncol=2) # to track acceptance rate of T1T2 a1<-0 # to track acceptance rate of N a2<-0 # starting value based on nonparametric estimate of n0 N[1]<-ceiling(NP.est.n0)+w.tau # storage for deviance replicates D.post<-rep(0,iterations) for (i in 2:iterations){ # print every 500th iteration number if (i %in% seq(0,iterations-burn.in,by=500)) {message(paste("starting iteration ",i," of ",iterations,sep=""))} ## sample from p(T1T2|N,x) ## propose value T1T2 from a bivariate normal dist.; make sure T1T2.new > {-1,0} repeat { T1T2.new <- rmvnorm(1, c(T1T2[i-1,1],T1T2[i-1,2]), matrix(c(Metropolis.stdev.T1,0,0,Metropolis.stdev.T2),nrow=2)) if(T1T2.new[1]>(-1) & T1T2.new[2]>0) break } # calculate log of acceptance ratio logr1<-(-1)*log(T1T2.new[1]^2+2*T1T2.new[1]+2)-log(1+T1T2.new[2]^2)+n.tau*log(T1T2.new[2])- (N[i-1]*(1+T1T2.new[1])+n.tau)*log(1+T1T2.new[1]+T1T2.new[2])+ N[i-1]*(1+T1T2.new[1])*log(1+T1T2.new[1])+ sum(freqdata[,2]*lgamma(1+T1T2.new[1]+freqdata[,1]))- w.tau*lgamma(1+T1T2.new[1])+log(T1T2[i-1,1]^2+2*T1T2[i-1,1]+2)+ log(1+T1T2[i-1,2]^2)-n.tau*log(T1T2[i-1,2])+ (N[i-1]*(1+T1T2[i-1,1])+n.tau)*log(1+T1T2[i-1,1]+T1T2[i-1,2])- N[i-1]*(1+T1T2[i-1,1])*log(1+T1T2[i-1,1])- sum(freqdata[,2]*lgamma(1+T1T2[i-1,1]+freqdata[,1]))+ w.tau*lgamma(1+T1T2[i-1,1]) # calculate acceptance ratio r1<-exp(logr1) # accept or reject propsed value if (runif(1) < min(r1,1)) { T1T2[i,]<-T1T2.new a1<-a1+1 } else { T1T2[i,]<-T1T2[i-1,] } ## sample from p(N|A,G,x) ## make sure N.new >=w.tau repeat { N.new<-rnbinom(1,mu=N[i-1],size=Metropolis.stdev.N) if(N.new>w.tau-1) break } ## calculate log(N.new!/(N.new-w.tau)!) N3.new<-rep(0,w.tau) for (j in 0:(w.tau-1)){ N3.new[j+1]<-log(N.new-j) } N2.new<-sum(N3.new) ## calculate log(N[i-1]!/(N[i-1]-w.tau)!) N3<-rep(0,w.tau) for (j in 0:(w.tau-1)){ N3[j+1]<-log(N[i-1]-j) } N2<-sum(N3) # calculate log of acceptance ratio logr2<-(-1/2)*log(N.new)+N2.new+N.new*(1+T1T2[i,1])*log((1+T1T2[i,1])/(1+T1T2[i,1]+T1T2[i,2]))+ log(dnbinom(N[i-1],mu=N.new,size=Metropolis.stdev.N))+ (1/2)*log(N[i-1])-N2- N[i-1]*(1+T1T2[i,1])*log((1+T1T2[i,1])/(1+T1T2[i,1]+T1T2[i,2]))- log(dnbinom(N.new,mu=N[i-1],size=Metropolis.stdev.N)) # calculate acceptance ratio r2<-exp(logr2) # accept or reject propsed value if (runif(1)<min(r2,1)) {N[i]<-N.new ; a2<-a2+1} else {N[i]<-N[i-1]} ## calculate deviance from current sample # calculate log(N[i]!/(N[i]-w.tau)!) N3.curr<-rep(0,w.tau) for (j in 0:(w.tau-1)){ N3.curr[j+1]<-log(N[i]-j) } N2.curr<-sum(N3.curr) # calculate deviance D.post[i]<-(-2)*(N2.curr+n.tau*log(T1T2[i,2])-(N[i]*(1+T1T2[i,1])+n.tau)*log(1+T1T2[i,1]+T1T2[i,2])+N[i]*(1+T1T2[i,1])*log(1+T1T2[i,1])+sum(freqdata[,2]*lgamma(1+T1T2[i,1]+freqdata[,1]))-w.tau*lgamma(1+T1T2[i,1])-sum(lfactorial(freqdata[,2]))-sum(freqdata[,2]*lgamma(freqdata[,1]+1))) } ### Step 4: model diagnostics ## 1) deviance at posterior mean mean.T1<-mean(T1T2[(burn.in+1):iterations,1]) mean.T2<-mean(T1T2[(burn.in+1):iterations,2]) mean.N<-mean(N[(burn.in+1):iterations]) ## calculate log(mean.N!/(mean.N-w.tau)!) N3.mean<-rep(0,w.tau) for (j in 0:(w.tau-1)){ N3.mean[j+1]<-log(mean.N-j) } N2.mean<-sum(N3.mean) loglik.post.mean<-N2.mean+n.tau*log(mean.T2)-(mean.N*(1+mean.T1)+n.tau)*log(1+mean.T1+mean.T2)+mean.N*(1+mean.T1)*log(1+mean.T1)+sum(freqdata[,2]*lgamma(1+mean.T1+freqdata[,1]))-w.tau*lgamma(1+mean.T1)-sum(lfactorial(freqdata[,2]))-sum(freqdata[,2]*lgamma(freqdata[,1]+1)) D.mean<-(-2)*loglik.post.mean ## 2) posterior mean and median deviances mean.D<-mean(D.post[(burn.in+1):iterations]) median.D<-quantile(D.post[(burn.in+1):iterations],probs=.5,names=F) ## 3) model complexity p.D<-mean.D-D.mean ## 4) Deviance information criterion DIC<-2*p.D+D.mean ### Step 5: fitted values based on medians of the marginal posteriors median.T1<-quantile(T1T2[(burn.in+1):iterations,1],probs=.5,names=F) median.T2<-quantile(T1T2[(burn.in+1):iterations,2],probs=.5,names=F) median.N<-quantile(N[(burn.in+1):iterations],probs=.5,names=F) fits<-rep(0,tau) for (k in 1:tau){ fits[k]<-(median.N)*dnbinom(k,size=median.T1+1,prob=(median.T1+1)/(median.T1+median.T2+1)) } fitted.values<-data.frame(cbind(j=seq(1,tau),fits,count=freqdata[,2])) ### Step 6: estimate thinning to reduce correlated posterior samples lags<-acf(N[(burn.in+1):iterations],type="correlation",main="Autocorr plot",ylab="ACF",xlab="Lag", plot=F) lag.thin<-suppressWarnings(min(which(lags$acf<0.1))) if (lag.thin==Inf) {lag.thin<-paste(">",length(lags$lag),sep="") } ### Step 7: results hist.points<-hist(N[(burn.in+1):iterations]+w-w.tau,breaks=seq(w,max(N)+w-w.tau+1)-0.5, plot = FALSE) results<-data.frame(w=w, n=n, NP.est.N=NP.est.n0+w, tau=tau, w.tau=w.tau, n.tau=n.tau, iterations=iterations-burn.in, burn.in=burn.in, acceptance.rate.T1T2=a1/iterations, acceptance.rate.N=a2/iterations, lag=lag.thin, mode.N=hist.points$mids[which.max(hist.points$density)], mean.N=mean(N[(burn.in+1):iterations])+w-w.tau, median.N=quantile(N[(burn.in+1):iterations]+w-w.tau,probs=.5,names=F), LCI.N=quantile(N[(burn.in+1):iterations]+w-w.tau,probs=.025,names=F), UCI.N=quantile(N[(burn.in+1):iterations]+w-w.tau,probs=.975,names=F), stddev.N=sd((N[(burn.in+1):iterations]+w-w.tau)), mean.D=mean.D, median.D=median.D, DIC ) final_results <- list() final_results$est <- results$median.N final_results$ci <- c("lower 95%"=results$LCI.N, "upper 95%"=results$UCI.N) final_results$mean <- results$mean.N final_results$semeanest <- results$stddev.N final_results$dic <- DIC final_results$fits <- fitted.values final_results$diagnostics<-c("acceptance rate N"=results$acceptance.rate.N, "acceptance rate T1T2"=results$acceptance.rate.T1T2, "lag"=results$lag) if (output) { # output results and fitted values print(final_results) } if (plot) { oldpar <- par(no.readonly = TRUE) on.exit(par(oldpar)) par(mfrow=c(1,2)) ## posterior histogram hist(N[(burn.in+1):iterations]+w-w.tau, main="Posterior distribution",xlab="Total Number of Species", col='purple',freq=F,ylab="Density") # make trace plot plot((burn.in+1):iterations,N[(burn.in+1):iterations]+w-w.tau,type="l",xlab="Iteration Number",ylab="Total Number of Species", main="Trace plot") } if (answers) { return(final_results) } } #' Objective Bayes species richness estimate with the Poisson model #' #' @param data TODO(Kathryn) #' @param output TODO(Kathryn) #' @param plot TODO(Kathryn) #' @param answers TODO(Kathryn) #' @param tau TODO(Kathryn) #' @param burn.in TODO(Kathryn) #' @param iterations TODO(Kathryn) #' @param Metropolis.stdev.N TODO(Kathryn) #' @param Metropolis.start.lambda TODO(Kathryn) #' @param Metropolis.stdev.lambda TODO(Kathryn) #' @param bars TODO(Kathryn) #' #' @return A list of results, including \item{est}{the median of estimates of N}, \item{ci}{a confidence interval for N}, #' \item{mean}{the mean of estimates of N}, \item{semeanest}{the standard error of mean estimates}, #' \item{dic}{the DIC of the model}, \item{fits}{fitted values}, and \item{diagnostics}{model diagonstics}. #' #' @importFrom graphics hist par plot #' #' @export objective_bayes_poisson <- function(data, output=TRUE, plot=TRUE, answers=FALSE, tau=10, burn.in=100, iterations=2500, Metropolis.stdev.N=75, Metropolis.start.lambda=1, Metropolis.stdev.lambda=0.3, bars=5) { data <- check_format(data) fullfreqdata <- data if (tau > max(data[,1])) { tau <- max(data[,1]) } # calculate summary statistics on full data w<-sum(fullfreqdata[,2]) n<-sum(fullfreqdata[,1]*fullfreqdata[,2]) # subset data up to tau freqdata<-fullfreqdata[1:tau,] # calculate summary statistics on data up to tau w.tau<-sum(freqdata[,2]) n.tau<-sum(freqdata[,1]*freqdata[,2]) # calculate NP estimate of n0 NP.est.n0<-w.tau/(1-freqdata[1,2]/n.tau)-w.tau ### Step 3: calculate posterior ## initialization iterations<-iterations+burn.in N<-rep(0,iterations) L<-c(Metropolis.start.lambda,rep(1,iterations-1)) # to track acceptance rate of lambda a1<-0 # to track acceptance rate of N a2<-0 # starting value based on nonparametric estimate of n0 N[1]<-ceiling(NP.est.n0)+w.tau # storage for deviance replicates D.post<-rep(0,iterations) for (i in 2:iterations){ # print every 500th iteration number if (i %in% seq(0,iterations-burn.in,by=500)) {message(paste("starting iteration ",i," of ",iterations,sep=""))} ## sample from p(lambda|x,C) # propose value for lambda L.new<-abs(rnorm(1,mean=L[i-1],sd=Metropolis.stdev.lambda)) # calculate log of acceptance ratio logr1<-(n.tau-1/2)*log(L.new)-L.new*N[i-1]-(n.tau-1/2)*log(L[i-1])+L[i-1]*N[i-1] # calculate acceptance ratio r1<-exp(logr1) # accept or reject propsed value if (runif(1)<min(r1,1)) {L[i]<-L.new ; a1<-a1+1} else {L[i]<-L[i-1]} ## sample from p(N|lambda,x) ## make sure N.new >=w.tau repeat { N.new<-rnbinom(1,mu=N[i-1],size=Metropolis.stdev.N) if(N.new>w.tau-1) break } ## calculate log(N.new!/(N.new-w.tau)!) N3.new<-rep(0,w.tau) N3.new[1:w.tau]<-log(N.new-0:(w.tau-1)) N2.new<-sum(N3.new) ## calculate log(N[i-1]!/(N[i-1]-w.tau)!) N3<-rep(0,w.tau) N3[1:w.tau]<-log(N[i-1]- 0:(w.tau-1)) N2<-sum(N3) # calculate log of acceptance ratio logr2<-(N2.new-(1/2)*log(N.new)-N.new*L[i])-(N2-(1/2)*log(N[i-1])-N[i-1]*L[i])+(log(dnbinom(N[i-1],mu=N.new,size=Metropolis.stdev.N)))-(log(dnbinom(N.new,mu=N[i-1],size=Metropolis.stdev.N))) # calculate acceptance ratio r2<-exp(logr2) # accept or reject propsed value if (runif(1)<min(r2,1)) {N[i]<-N.new ; a2<-a2+1} else {N[i]<-N[i-1]} ## calculate deviance from current sample # calculate log(N[i]!/(N[i]-w.tau)!) N3.curr<-rep(0,w.tau) for (j in 0:(w.tau-1)){ N3.curr[1:w.tau]<-log(N[i]-0:(w.tau-1)) } N2.curr<-sum(N3.curr) # calculate deviance D.post[i]<-(-2)*(N2.curr-sum(lfactorial(freqdata[,2]))-L[i]*(N[i])-sum(freqdata[,2]*log(factorial(freqdata[,1])))+n.tau*log(L[i])) } ### Step 4: model diagnostics ## 1) deviance at posterior mean mean.L<-mean(L[(burn.in+1):iterations]) mean.N<-mean(N[(burn.in+1):iterations]) ## calculate log(mean.N!/(mean.N-w.tau)!) N3.mean<-rep(0,w.tau) N3.mean[1:w.tau]<-log(mean.N-0:(w.tau-1)) N2.mean<-sum(N3.mean) loglik.post.mean<-N2.mean-sum(lfactorial(freqdata[,2]))-mean.L*mean.N+n.tau*log(mean.L)-sum(freqdata[,2]*lfactorial(freqdata[,1])) D.mean<-(-2)*loglik.post.mean ## 2) posterior mean and median deviances mean.D<-mean(D.post[(burn.in+1):iterations]) median.D<-quantile(D.post[(burn.in+1):iterations],probs=.5, names=F) ## 3) model complexity p.D<-mean.D-D.mean ## 4) Deviance information criterion DIC<-2*p.D+D.mean ### Step 5: fitted values based on medians of the marginal posteriors median.L<-quantile(L[(burn.in+1):iterations],probs=.5,names=F) median.N<-quantile(N[(burn.in+1):iterations],probs=.5,names=F) fits<-rep(0,tau) fits[1:tau]<-(median.N)*dpois(1:tau,median.L) fitted.values<-data.frame(cbind(j=seq(1,tau),fits,count=freqdata[,2])) ### Step 6: estimate thinning to reduce correlated posterior samples lags<-acf(N[(burn.in+1):iterations],type="correlation",main="Autocorr plot",ylab="ACF",xlab="Lag", plot=F) lag.thin<-suppressWarnings(min(which(lags$acf<0.1))) if (lag.thin==Inf) {lag.thin<-paste(">",length(lags$lag),sep="") } ### Step 7: results hist.points<-hist(N[(burn.in+1):iterations]+w-w.tau,breaks=seq(w,max(N)+w-w.tau+1)-0.5, plot = FALSE) results<-data.frame(w=w, n=n, NP.est.N=NP.est.n0+w, tau=tau, w.tau=w.tau, n.tau=n.tau, iterations=iterations-burn.in, burn.in=burn.in, acceptance.rate.lambda=a1/iterations, acceptance.rate.N=a2/iterations, lag=lag.thin, mode.N=hist.points$mids[which.max(hist.points$density)], mean.N=mean(N[(burn.in+1):iterations])+w-w.tau, median.N=quantile(N[(burn.in+1):iterations]+w-w.tau,probs=.5,names=F), LCI.N=quantile(N[(burn.in+1):iterations]+w-w.tau,probs=.025,names=F), UCI.N=quantile(N[(burn.in+1):iterations]+w-w.tau,probs=.975,names=F), stddev.N=sd((N[(burn.in+1):iterations]+w-w.tau)), mean.D=mean.D, median.D=median.D, DIC) final_results <- list() final_results$est <- results$median.N final_results$ci <- c("lower 95%"=results$LCI.N, "upper 95%"=results$UCI.N) final_results$mean <- results$mean.N final_results$semeanest <- results$stddev.N final_results$dic <- DIC final_results$fits <- fitted.values final_results$diagnostics<-c("acceptance rate N"=results$acceptance.rate.N, "acceptance rate lambda"=results$acceptance.rate.lambda, "lag"=results$lag) if (output) { # output results and fitted values print(final_results) } if (plot) { oldpar <- par(no.readonly = TRUE) on.exit(par(oldpar)) par(mfrow=c(1,2)) ## posterior histogram hist(N[(burn.in+1):iterations]+w-w.tau, main="Posterior distribution",xlab="Total Number of Species", col='purple',freq=F,ylab="Density") # make trace plot plot((burn.in+1):iterations,N[(burn.in+1):iterations]+w-w.tau,type="l",xlab="Iteration Number",ylab="Total Number of Species", main="Trace plot") } if (answers) { return(final_results) } } #' Objective Bayes species richness estimate with the mixed-geometric model #' #' @param data TODO(Kathryn) #' @param output TODO(Kathryn) #' @param plot TODO(Kathryn) #' @param answers TODO(Kathryn) #' @param tau TODO(Kathryn) #' @param burn.in TODO(Kathryn) #' @param iterations TODO(Kathryn) #' @param Metropolis.stdev.N TODO(Kathryn) #' @param Metropolis.start.T1 TODO(Kathryn) #' @param Metropolis.stdev.T1 TODO(Kathryn) #' @param Metropolis.start.T2 TODO(Kathryn) #' @param Metropolis.stdev.T2 TODO(Kathryn) #' @param bars TODO(Kathryn) #' #' @return A list of results, including \item{est}{the median of estimates of N}, \item{ci}{a confidence interval for N}, #' \item{mean}{the mean of estimates of N}, \item{semeanest}{the standard error of mean estimates}, #' \item{dic}{the DIC of the model}, \item{fits}{fitted values}, and \item{diagnostics}{model diagonstics}. #' #' @importFrom graphics hist par plot #' #' @export objective_bayes_mixedgeo <- function(data, output=TRUE, plot=TRUE, answers=FALSE, tau=10, burn.in=100, iterations=2500, Metropolis.stdev.N=100, Metropolis.start.T1=1, Metropolis.stdev.T1=2, Metropolis.start.T2=3, Metropolis.stdev.T2=2, bars=3) { data <- check_format(data) fullfreqdata <- data if (tau > max(data[,1])) { tau <- max(data[,1]) } # calculate summary statistics on full data w<-sum(fullfreqdata[,2]) n<-sum(fullfreqdata[,1]*fullfreqdata[,2]) # subset data up to tau freqdata<-fullfreqdata[1:tau,] # calculate summary statistics on data up to tau w.tau<-sum(freqdata[,2]) n.tau<-sum(freqdata[,1]*freqdata[,2]) # calculate NP estimate of n0 NP.est.n0<-w.tau/(1-freqdata[1,2]/n.tau)-w.tau ### Step 3: calculate posterior ## initialization iterations<-iterations+burn.in A<-rep(0,iterations) T1<-rep(0,iterations) T2<-rep(0,iterations) N<-rep(0,iterations) # to track acceptance rate of N a1<-0 # starting value, nonparametric estimate of n0 N[1]<-ceiling(NP.est.n0)+w.tau # starting value, MLE of T1 T1[1]<-Metropolis.start.T1 # starting value, MLE of T2 T2[1]<-Metropolis.start.T2 A[1]<-0.5 # storage for deviance replicates D.post<-rep(0,iterations) for (i in 2:iterations){ # print every 500th iteration number if (i %in% seq(0,iterations-burn.in,by=500)) {message(paste("starting iteration ",i," of ",iterations,sep=""))} ## sample from p(Z|A,T1,T2,X,N) ## create a new vector of length N[i-1] Z<-rep(0,length=N[i-1]) ## create a full data vector X<-c(rep(0,N[i-1]-w.tau),rep(freqdata[,1],times=freqdata[,2])) ## sample random bernoulli with appropriate success prob for each Z[k]; do not allow for Z all zeros or ones for (k in 1:N[i-1]){ Z[k]<-rbinom(1,1,prob=A[i-1]*(1/(1+T1[i-1]))*(T1[i-1]/(1+T1[i-1]))^X[k]/((A[i-1]*(1/(1+T1[i-1]))*(T1[i-1]/(1+T1[i-1]))^X[k])+((1-A[i-1]) *(1/(1+T2[i-1]))*(T2[i-1]/(1+T2[i-1]))^X[k]))) } ## sample from p(A|Z,T1,T2,X,N) ## sample from beta dist A[i]<-rbeta(1,shape1=sum(Z)+1,shape2=N[i-1]-sum(Z)+1) ## sample from p(T1|A,Z,T2,X,N) and p(T2|A,Z,T1,X,N) repeat{ ## sample T1/(1+T1) and T2/(1+T2) from beta dists T1.trans<-rbeta(1,shape1=sum(X*Z)+0.5,shape2=sum(Z)+0.5) T2.trans<-rbeta(1,shape1=sum(X)-sum(X*Z)+0.5,shape2=N[i-1]-sum(Z)+0.5) ## back transform to T1 and T2 T1[i]<-T1.trans/(1-T1.trans) T2[i]<-T2.trans/(1-T2.trans) ## keep T1<T2 if(T1[i]<T2[i]) break } ## sample from p(N|A,T1,T2,Z,X) ## make sure N.new >=w.tau repeat { N.new<-rnbinom(1,mu=N[i-1],size=Metropolis.stdev.N) if(N.new>w.tau-1) break } ## calculate log(N.new!/(N.new-w.tau)!) N3.new<-rep(0,w.tau) for (j in 0:(w.tau-1)){ N3.new[j+1]<-log(N.new-j) } N2.new<-sum(N3.new) ## calculate log(N[i-1]!/(N[i-1]-w.tau)!) N3<-rep(0,w.tau) for (j in 0:(w.tau-1)){ N3[j+1]<-log(N[i-1]-j) } N2<-sum(N3) ## calculate log of acceptance ratio logr1<-(-1/2)*log(N.new)+N2.new+N.new*log(A[i]*(1/(1+T1[i]))+(1-A[i])*(1/(1+T2[i])))+(1/2)*log(N[i-1])-N2-N[i-1]*log(A[i]*(1/(1+T1[i]))+(1-A[i])*(1/(1+T2[i])))+log(dnbinom(N[i-1],mu=N.new,size=Metropolis.stdev.N))-log(dnbinom(N.new,mu=N[i-1],size=Metropolis.stdev.N)) ## calculate acceptance ratio r1<-exp(logr1) ## accept or reject the proposed value if (runif(1)<min(r1,1)) {N[i]<-N.new ; a1<-a1+1} else {N[i]<-N[i-1]} ## calculate deviance from current sample ## calculate log(N[i]!/(N[i]-w.tau)!) N3.curr<-rep(0,w.tau) for (j in 0:(w.tau-1)){ N3.curr[j+1]<-log(N[i]-j) } N2.curr<-sum(N3.curr) # calculate deviance D.post[i]<-(-2)*(N2.curr+(N[i]-w.tau)*log(A[i]*(1/(1+T1[i]))+(1-A[i])*(1/(1+T2[i])))+sum(freqdata[,2]*log(A[i]*(1/(1+T1[i]))*(T1[i]/(1+T1[i]))^freqdata[,1]+(1-A[i])*(1/(1+T2[i]))*(T2[i]/(1+T2[i]))^freqdata[,1]))-sum(lfactorial(freqdata[,2]))) } ### Step 4: model diagnostics ## 1) deviance at posterior mean mean.A<-mean(A[(burn.in+1):iterations]) mean.T1<-mean(T1[(burn.in+1):iterations]) mean.T2<-mean(T2[(burn.in+1):iterations]) mean.N<-mean(N[(burn.in+1):iterations]) ## calculate log(mean.N!/(mean.N-w.tau)!) N3.mean<-rep(0,w.tau) for (j in 0:(w.tau-1)){ N3.mean[j+1]<-log(mean.N-j) } N2.mean<-sum(N3.mean) loglik.post.mean<-N2.curr+(mean.N-w.tau)*log(mean.A*(1/(1+mean.T1))+(1-mean.A)*(1/(1+mean.T2)))+sum(freqdata[,2]*log(mean.A*(1/(1+mean.T1))*(mean.T1/(1+mean.T1))^freqdata[,1]+(1-mean.A)*(1/(1+mean.T2))*(mean.T2/(1+mean.T2))^freqdata[,1]))-sum(lfactorial(freqdata[,2])) D.mean<-(-2)*loglik.post.mean ## 2) posterior mean and median deviances mean.D<-mean(D.post[(burn.in+1):iterations]) median.D<-quantile(D.post[(burn.in+1):iterations],probs=.5,names=F) ## 3) model complexity p.D<-mean.D-D.mean ## 4) Deviance information criterion DIC<-2*p.D+D.mean ### Step 5: fitted values based on medians of the marginal posteriors median.A<-quantile(A[(burn.in+1):iterations],probs=.5,names=F) median.T1<-quantile(T1[(burn.in+1):iterations],probs=.5,names=F) median.T2<-quantile(T2[(burn.in+1):iterations],probs=.5,names=F) median.N<-quantile(N[(burn.in+1):iterations],probs=.5,names=F) fits<-rep(0,tau) for (k in 1:tau){ fits[k]<-(median.N)*(median.A*dgeom(k,prob=1/(1+median.T1))+(1-median.A)*dgeom(k,prob=1/(1+median.T2))) } fitted.values<-data.frame(cbind(j=seq(1,tau),fits,count=freqdata[,2])) ### Step 6: estimate thinning to reduce correlated posterior samples lags<-acf(N[(burn.in+1):iterations],type="correlation",main="Autocorr plot",ylab="ACF",xlab="Lag", plot=F) lag.thin<-suppressWarnings(min(which(lags$acf<0.1))) if (lag.thin==Inf) {lag.thin<-paste(">",length(lags$lag),sep="") } ### Step 7: results hist.points<-hist(N[(burn.in+1):iterations]+w-w.tau,breaks=seq(w,max(N)+w-w.tau+1)-0.5, plot = FALSE) results<-data.frame(w=w, n=n, NP.est.N=NP.est.n0+w, tau=tau, w.tau=w.tau, n.tau=n.tau, iterations=iterations-burn.in, burn.in=burn.in, acceptance.rate.T1T2=1, acceptance.rate.N=a1/iterations, lag=lag.thin, mode.N=hist.points$mids[which.max(hist.points$density)], mean.N=mean(N[(burn.in+1):iterations])+w-w.tau, median.N=quantile(N[(burn.in+1):iterations]+w-w.tau,probs=.5,names=F), LCI.N=quantile(N[(burn.in+1):iterations]+w-w.tau,probs=.025,names=F), UCI.N=quantile(N[(burn.in+1):iterations]+w-w.tau,probs=.975,names=F), stddev.N=sd((N[(burn.in+1):iterations]+w-w.tau)), mean.D=mean.D, median.D=median.D, DIC ) final_results <- list() final_results$est <- results$median.N final_results$ci <- c("lower 95%"=results$LCI.N, "upper 95%"=results$UCI.N) final_results$mean <- results$mean.N final_results$semeanest <- results$stddev.N final_results$dic <- DIC final_results$fits <- fitted.values final_results$diagnostics<-c("acceptance rate N"=results$acceptance.rate.N, "acceptance rate T1T2"=results$acceptance.rate.T1T2, "lag"=results$lag) if (output) { # output results and fitted values print(final_results) } if (plot) { oldpar <- par(no.readonly = TRUE) on.exit(par(oldpar)) par(mfrow=c(1,2)) ## posterior histogram hist(N[(burn.in+1):iterations]+w-w.tau, main="Posterior distribution",xlab="Total Number of Species", col='purple',freq=F,ylab="Density") # make trace plot plot((burn.in+1):iterations,N[(burn.in+1):iterations]+w-w.tau,type="l",xlab="Iteration Number",ylab="Total Number of Species", main="Trace plot") } if (answers) { return(final_results) } } #' Estimate species richness with an objective Bayes method using a geometric model #' #' @param data TODO(Kathryn)(Kathryn) #' @param output TODO(Kathryn)(Kathryn) #' @param plot TODO(Kathryn)(Kathryn) #' @param answers TODO(Kathryn)(Kathryn) #' @param tau TODO(Kathryn) #' @param burn.in TODO(Kathryn) #' @param iterations TODO(Kathryn) #' @param Metropolis.stdev.N TODO(Kathryn) #' @param Metropolis.start.theta TODO(Kathryn) #' @param Metropolis.stdev.theta TODO(Kathryn) #' #' @return A list of results, including \item{est}{the median of estimates of N}, \item{ci}{a confidence interval for N}, #' \item{mean}{the mean of estimates of N}, \item{semeanest}{the standard error of mean estimates}, #' \item{dic}{the DIC of the model}, \item{fits}{fitted values}, and \item{diagnostics}{model diagonstics}. #' #' @importFrom graphics hist par plot #' #' @export objective_bayes_geometric <- function(data, output=TRUE, plot=TRUE, answers=FALSE, tau=10, burn.in=100, iterations=2500, Metropolis.stdev.N=75, Metropolis.start.theta=1, Metropolis.stdev.theta=0.3) { data <- check_format(data) if (tau > max(data[,1])) { tau <- max(data[,1]) } fullfreqdata <- data # calculate NP estimate of n0 w<-sum(fullfreqdata[,2]) n<-sum(fullfreqdata[,1]*fullfreqdata[,2]) # subset data below tau freqdata<-fullfreqdata[1:tau,] # calculate summary statistics and MLE estimate of n0 and C w.tau<-sum(freqdata[,2]) n.tau<-sum(freqdata[,1]*freqdata[,2]) R.hat<-(n.tau/w.tau-1) MLE.est.n0<-w.tau/R.hat MLE.est.N<-MLE.est.n0+w ### Step 3: calculate posterior ## initialization iterations <- iterations+burn.in N<-rep(0,iterations) R<-c(Metropolis.start.theta,rep(1,iterations-1)) # to track acceptance rate of theta a1<-0 # to track acceptance rate of N a2<-0 # starting value based on MLE of C N[1]<-ceiling(MLE.est.N) D.post<-rep(0,iterations) for (i in 2:iterations){ ## sample from p(theta|C,x) # propose value for theta R.new <- abs(rnorm(1, mean=R[i-1], sd=Metropolis.stdev.theta)) # calculate log of acceptance ratio logr1 <- (-N[i-1]-n.tau-1/2) * log(1+R.new) + (n.tau-1/2)*log(R.new) - (-N[i-1]-n.tau-1/2) * log(1+R[i-1]) - (n.tau-1/2)*log(R[i-1]) # calculate acceptance ratio r1<-exp(logr1) # accept or reject propsed value if (runif(1)<min(r1,1)) { R[i]<-R.new ; a1<-a1+1 } else { R[i]<-R[i-1] } ## sample from p(C|theta,x) ## make sure N.new >=w.tau repeat { N.new<-rnbinom(1,mu=N[i-1],size=Metropolis.stdev.N) if(N.new>w.tau-1) break } ## calculate log(N.new!/(N.new-w.tau)!) N3.new<-rep(0,w.tau) for (j in 0:(w.tau-1)){ N3.new[j+1]<-log(N.new-j) } N2.new<-sum(N3.new) ## calculate log(N[i-1]!/(N[i-1]-w.tau)!) N3<-rep(0,w.tau) for (j in 0:(w.tau-1)){ N3[j+1]<-log(N[i-1]-j) } N2<-sum(N3) # calculate log of acceptance ratio logr2<-(N2.new-(1/2)*log(N.new)-N.new*log(1+R[i]))-(N2-(1/2)*log(N[i-1])-N[i-1]*log(1+R[i]))+(log(dnbinom(N[i-1],mu=N.new,size=Metropolis.stdev.N)))-(log(dnbinom(N.new,mu=N[i-1],size=Metropolis.stdev.N))) # calculate acceptance ratio r2<-exp(logr2) # accept or reject propsed value if (runif(1)<min(r2,1)) { N[i]<-N.new ; a2<-a2+1 } else { N[i]<-N[i-1] } ## calculate deviance from current sample # calculate log(N[i]!/(N[i]-w.tau)!) N3.curr<-rep(0,w.tau) for (j in 0:(w.tau-1)){ N3.curr[j+1]<-log(N[i]-j) } N2.curr<-sum(N3.curr) # calculate deviance D.post[i]<-(-2)*(N2.curr-sum(log(factorial(freqdata[,2])))+n.tau*log(R[i])+(-N[i]-n.tau)*log(1+R[i])) } ### Step 4: model diagnostics ## 1) deviance at posterior mean mean.R<-mean(R[(burn.in+1):iterations]) mean.N<-mean(N[(burn.in+1):iterations]) ## calculate log(mean.N!/(mean.N-w.tau)!) N3.mean<-rep(0,w.tau) for (j in 0:(w.tau-1)){ N3.mean[j+1]<-log(mean.N-j) } N2.mean<-sum(N3.mean) loglik.post.mean<-N2.mean-sum(log(factorial(freqdata[,2])))+n.tau*log(mean.R)-(mean.N+n.tau)*log(1+mean.R) D.mean<-(-2)*loglik.post.mean ## 2) posterior mean and median deviances mean.D<-mean(D.post[(burn.in+1):iterations]) median.D<-quantile(D.post[(burn.in+1):iterations],probs=.5,names=F) ## 3) model complexity p.D<-mean.D-D.mean ## 4) Deviance information criterion DIC<-2*p.D+D.mean ### Step 5: fitted values based on medians of the marginal posteriors median.R<-quantile(R[(burn.in+1):iterations],probs=.5,names=F) median.N<-quantile(N[(burn.in+1):iterations],probs=.5,names=F) fits<-rep(0,tau) for (k in 1:tau){ fits[k]<-(median.N)*dexp(k,1/(1+median.R)) } fitted.values<-data.frame(cbind(j=seq(1,tau),fits,count=freqdata[,2])) ### Step 6: results hist.points<-hist(N[(burn.in+1):iterations]+w-w.tau,breaks=seq(w,max(N)+w-w.tau+1)-0.5, plot = plot) results<-data.frame(w=w, n=n, MLE.est.C=MLE.est.N, tau=tau, w.tau=w.tau, n.tau=n.tau, iterations=iterations, burn.in=burn.in, acceptance.rate.theta=a1/iterations, acceptance.rate.N=a2/iterations, mode.C=hist.points$mids[which.max(hist.points$density)], mean.C=mean(N[(burn.in+1):iterations])+w-w.tau, median.C=quantile(N[(burn.in+1):iterations]+w-w.tau,probs=.5,names=F), LCI.C=quantile(N[(burn.in+1):iterations]+w-w.tau,probs=.025,names=F), UCI.C=quantile(N[(burn.in+1):iterations]+w-w.tau,probs=.975,names=F), stddev.C=sqrt(var((N[(burn.in+1):iterations]+w-w.tau))), mean.D=mean.D, median.D=median.D, DIC ) final_results <- list() final_results$results <- t(results) final_results$fits <- fitted.values if (output) { # output results and fitted values print(final_results) } if (plot) { oldpar <- par(no.readonly = TRUE) on.exit(par(oldpar)) par(mfrow=c(2,2)) # trace plot for C # first thin values of C if there are more than 10,000 iterations # must be a divisor of (iterations-burn.in) iterations.trace<-min(10000,iterations-burn.in) N.thin<-rep(0,iterations.trace) for (k in 1:iterations.trace){ N.thin[k]<-N[k*((iterations-burn.in)/iterations.trace)] } # make trace plot plot(1:iterations.trace,N.thin,xlab="Iteration Number",ylab="Total Number of Species", main="Trace plot") # autocorrelation plot for C acf(N[(burn.in+1):iterations],type="correlation",main="Autocorr plot",ylab="ACF",xlab="Lag") # histogram of C with a bar for each discrete value hist(N[(burn.in+1):iterations]+w-w.tau,breaks=seq(w,max(N[ (burn.in+1):iterations])+w-w.tau+1)-0.5,main="Posterior distribution",xlab="Total Number of Species", col='purple',freq=F,ylab="Density") } if (answers) { return(final_results) } } rmvnorm <- function (n, mean = rep(0, nrow(sigma)), sigma = diag(length(mean)), method = c("eigen", "svd", "chol"), pre0.9_9994 = FALSE) { if (!isSymmetric(sigma, tol = sqrt(.Machine$double.eps), check.attributes = FALSE)) { stop("sigma must be a symmetric matrix") } if (length(mean) != nrow(sigma)) stop("mean and sigma have non-conforming size") method <- match.arg(method) R <- if (method == "eigen") { ev <- eigen(sigma, symmetric = TRUE) if (!all(ev$values >= -sqrt(.Machine$double.eps) * abs(ev$values[1]))) { warning("sigma is numerically not positive semidefinite") } t(ev$vectors %*% (t(ev$vectors) * sqrt(pmax(ev$values, 0)))) } else if (method == "svd") { s. <- svd(sigma) if (!all(s.$d >= -sqrt(.Machine$double.eps) * abs(s.$d[1]))) { warning("sigma is numerically not positive semidefinite") } t(s.$v %*% (t(s.$u) * sqrt(pmax(s.$d, 0)))) } else if (method == "chol") { R <- chol(sigma, pivot = TRUE) R[, order(attr(R, "pivot"))] } retval <- matrix(rnorm(n * ncol(sigma)), nrow = n, byrow = !pre0.9_9994) %*% R retval <- sweep(retval, 2, mean, "+") colnames(retval) <- names(mean) retval }
a75795d0f97520cf6dddd622b5beff2aadbf2110
1b7a6d3cb7abe17ffbee71262cf3771f98a1323c
/MoreConcepts.R
859f2cefc587cabb42e3419551f4e89dde3f417f
[]
no_license
johnpilbeam/r-datasci-work
33057f9d9d9987011b150619306093dcb86e9d42
9ee0fe2a10ecc58f6079752a8f80c2cd1cc3c9fb
refs/heads/master
2020-04-26T04:06:06.302690
2019-03-28T16:20:06
2019-03-28T16:20:06
173,290,055
0
0
null
null
null
null
UTF-8
R
false
false
3,239
r
MoreConcepts.R
# Download each of the data sets for 2006, 2007, 2008 df1 <- read.csv("~/Documents/r-datasci/2006.csv") df2 <- read.csv("~/Documents/r-datasci/2007.csv") df3 <- read.csv("~/Documents/r-datasci/2008.csv") myDF <- rbind(df1,df2,df3) dim(myDF) rm(df1,df2,df3) head(myDF) tail(myDF) unique(myDF$Year) # Quiz #17 - Answer: 686993 sum(myDF$Origin == "LAX") # 4.3: Efficiently Storing Origin-to-Destination Flight Paths myTable <- table(list(myDF$Origin, myDF$Dest)) head(myTable) # My Table has 315 rows and 321 columns dim(myTable) # How many entries are zeros? 94849! sum(myTable == 0) # How many entries are not zeros? 6266! sum(myTable != 0) myNewTable <- table(paste(myDF$Origin, myDF$Dest)) length(myNewTable) # sum(myDF$Origin == "IND", myDF$Origin == "ORD") # Q2Table <- table(list(myDF$Origin == "BOS", myDF$Origin == "DEN")) plot(myNewTable) dotchart(myNewTable) dotchart(sort(myNewTable)) plot(myTable["IND",]) dotchart(myTable["IND",]) # Save flight data into a vector v <- myTable["IND",] # 4.5: Visualizing Flight Paths # Dot chart plot of flights from IND to airports that have at least one flight dotchart(sort(v[v != 0])) # IND destinations with at least 4000 flights dotchart(sort(v[v > 4000])) MyV <- myTable["JFK",] dotchart(sort(MyV[MyV > 5000])) # 4.6 Incorporating Auxiliary Data about Airports # Importing data about the airports airportsDF <- read.csv("~/Documents/r-datasci/airports.csv") dim(airportsDF) head(airportsDF$iata) airportsDF[airportsDF$iata == "IND",] # 4.7: Incorporating Auxiliary Data about Airports # Store airport, city and state of Airports in a vector w <- paste(airportsDF$airport, airportsDF$city, airportsDF$state, sep=", ") head(w) tail(w) names(w) <- airportsDF$iata w[c("IND", "ORD", "MDW")] w["CMH"] w["Chicago"] # Quiz #19 sum(airportsDF$city == "Chicago", na.rm = T) # 4.9 Revising Visualizations of Flight Paths v[v > 4000] names(v[v > 4000]) w["ORD"] myVec <- v[v > 4000] names(myVec) <- w[names(v[v > 4000])] myVec dotchart(myVec) dotchart(sort(myVec)) # 4.10 Identifying Airports with Commercial Flights head(airportsDF) table(airportsDF$state) subset(airportsDF, state == "IN") indyairports <- subset(airportsDF, state == "IN") # we can make a table that shows all of the flight counts # (as origins) for all airports in the full data set # from 2006 to 2008 (not just Indiana airports) table(myDF$Origin) table(myDF$Origin)["IND"] table(myDF$Origin)["ORD"] # These are the 3-letter airport codes for the airports in Indiana as.character(indyairports$iata) table(myDF$Origin)[as.character(indyairports$iata)] v <- table(myDF$Origin)[as.character(indyairports$iata)] v[!is.na(v)] names(v[!is.na(v)]) subset(airportsDF, iata %in% names(v[!is.na(v)])) # 4.12 Creating and Applying Functions Built by the Learner mystate <- "IN" myairports <- subset(airportsDF, state == mystate) myairports table(myDF$Origin)[as.character(myairports$iata)] activeairports <- function(mystate) { myairports <- subset(airportsDF, state == mystate) v <- table(myDF$Origin)[as.character(myairports$iata)] subset(airportsDF, iata %in% names(v[!is.na(v)])) } activeairports("IN") activeairports("IL") activeairports("CA") sapply(state.abb,function(x) dim(activeairports(x))[1])
e5de1c105a78728c5ac16947c204cfad7a42bc22
ffdea92d4315e4363dd4ae673a1a6adf82a761b5
/data/genthat_extracted_code/banter/examples/addBanterDetector.Rd.R
d2119eca247fcc64fd1760276faf4fa7a9011f0a
[]
no_license
surayaaramli/typeRrh
d257ac8905c49123f4ccd4e377ee3dfc84d1636c
66e6996f31961bc8b9aafe1a6a6098327b66bf71
refs/heads/master
2023-05-05T04:05:31.617869
2019-04-25T22:10:06
2019-04-25T22:10:06
null
0
0
null
null
null
null
UTF-8
R
false
false
552
r
addBanterDetector.Rd.R
library(banter) ### Name: addBanterDetector ### Title: Add a BANTER Detector Model ### Aliases: addBanterDetector removeBanterDetector ### ** Examples data(train.data) # initialize BANTER model with event data bant.mdl <- initBanterModel(train.data$events) # add the 'bp' (burst pulse) detector model bant.mdl <- addBanterDetector( x = bant.mdl, data = train.data$detectors$bp, name = "bp", ntree = 50, sampsize = 1, num.cores = 1 ) bant.mdl # remove the 'bp' detector model bant.mdl <- removeBanterDetector(bant.mdl, "bp") bant.mdl
bde4c56c8368ffab5ba2b7bc32778a18d58a1093
6f56fdd53e87575377b95b95280f21fe215cab0d
/man/create_empty_rtweet_tbl.Rd
8e20cc93919bbc71ee125b8725783d4e63bbfe2d
[ "MIT" ]
permissive
urswilke/rtweettree
ab9603adb1801cf622789d3eef820b83e199dbbf
cfabadf5b38d2946f917b71fa6d499cf3d70108b
refs/heads/master
2023-08-11T14:22:24.597334
2021-10-07T23:58:12
2021-10-07T23:58:12
284,338,760
6
0
NOASSERTION
2021-10-02T19:14:58
2020-08-01T21:06:18
R
UTF-8
R
false
true
446
rd
create_empty_rtweet_tbl.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{create_empty_rtweet_tbl} \alias{create_empty_rtweet_tbl} \title{Create an empty rtweet tibble} \usage{ create_empty_rtweet_tbl() } \value{ An empty tibble with columns of the type that, e.g. rtweet::lookup_statuses() produces } \description{ Create an empty rtweet tibble } \examples{ df <- rtweettree:::create_empty_rtweet_tbl() df } \keyword{internal}
9086f2b3fc56092ae632f5718e503c6905654f52
af31c9e40581eb197adc156f5524a0d2bdc22b78
/plot3.R
33de91bde7b181ad5116bfb3a6261fd5c5070a22
[]
no_license
sammarten/ExData_Plotting1
fbd27570684e3d7f23b74e5e64627793e9631691
75fbed27ea33bf982638a348ed9fd9df843205e8
refs/heads/master
2021-01-21T00:48:06.177217
2014-08-08T23:06:06
2014-08-08T23:06:06
null
0
0
null
null
null
null
UTF-8
R
false
false
1,213
r
plot3.R
# Assumption that "household_power_consumption.txt" is in working directory data <- read.csv("household_power_consumption.txt", sep=";", stringsAsFactors=FALSE, colClasses=c("character", "character", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric"), na.strings=c("?")) # Pull out values for Feb 1-2, 2007 data <- subset(data, Date == "1/2/2007" | Date == "2/2/2007") # Concatenate Date and Time column with a space in-between # Convert Date column to be of type POSIXlt data$Date <- strptime(paste(data$Date, data$Time, sep=" "), format="%d/%m/%Y %T") # Create png file and plot stair step graph png(filename="plot3.png", bg="transparent") plot(data$Date, data$Sub_metering_1, type="s", xlab="", ylab="Energy sub metering") # Add additional data to the plot points(data$Date, data$Sub_metering_2, type="s", col="red") points(data$Date, data$Sub_metering_3, type="s", col="blue") # Add legend legend("topright", col=c("black", "red", "blue"), legend=c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3"), lty=c(1,1)) dev.off()
e1e1e64bf5b07d9f0c5e9e01ec8b8b0dfb955d4e
332eb3e452b905363ffa89745d772f43e658a1cd
/R/msgfParTda.R
ed21d434e03e8ddbac4cef0dfc70a4641f610958
[]
no_license
thomasp85/MSGFplus-release
cff4dc347d3b260a16ee9236bd3397b909078f1f
f3dd2a93ff0cc05aabb7dc0cdacdf12a1e3d5d59
refs/heads/master
2016-08-04T20:24:37.233950
2015-02-03T08:52:12
2015-02-03T08:52:12
25,248,232
0
1
null
null
null
null
UTF-8
R
false
false
1,747
r
msgfParTda.R
#' A class handling use of target-decoy approach for FDR estimation #' #' This class defines whether to use target-decoy approach and provides methods #' to get correct system call parameters. #' #' @slot tda A boolean defining whether to use tda or not #' #' @examples #' tda <- msgfParTda(TRUE) #' #' @family msgfParClasses #' setClass( Class='msgfParTda', representation=representation( tda='logical' ), validity=function(object){ if(length(object@tda) == 1){ return(TRUE) } else { return('tda can only be of length 1') } }, prototype=prototype( tda=as.logical(NA) ) ) #' @describeIn msgfParTda Short summary of msgfParTda object #' #' @param object An msgfParTda object #' setMethod( 'show', 'msgfParTda', function(object){ if(length(object) == 0){ cat('An empty msgfParTda object\n') } else { cat(object@tda, '\n') } } ) #' @describeIn msgfParTda Report the length of an msgfParTda object #' #' @param x An msgfParTda object #' #' @return For length() An integer. #' setMethod( 'length', 'msgfParTda', function(x){ if(is.na(x@tda)){ 0 } else { 1 } } ) #' @describeIn msgfParTda Get \code{\link[base]{system}} compliant function call #' #' @return For getMSGFpar() A string. #' setMethod( 'getMSGFpar', 'msgfParTda', function(object){ if(length(object) == 0){ '' } else if(object@tda){ '-tda 1' } else { '-tda 0' } } ) #' @rdname msgfParTda-class #' #' @param value A boolean defining whether to use tda or not #' #' @return For msgfParTda() An msgfParTda object. #' #' @export #' msgfParTda <- function(value){ if(missing(value)){ new(Class='msgfParTda') } else { new(Class='msgfParTda', tda=value) } }
c7e2ea0e6c1948bba0f812a0dd39cd2890224fe7
caad99a2eb7e431beefb3a04c2a31350e64951c7
/decision tree.R
5c46fdcc14e2fc696ae8540687d446f7277c667b
[]
no_license
tonyk7440/kaggle_titanic_dataset
48ec388eb0cc036576350b209565b710bad522d8
4c5c72635cfc4362c067ce2d89cf8d3688d29ea5
refs/heads/master
2021-01-10T01:55:52.196467
2016-02-01T21:11:43
2016-02-01T21:11:43
50,435,308
0
0
null
null
null
null
UTF-8
R
false
false
1,070
r
decision tree.R
#Decision Trees # train and test set are still loaded in str(train) str(test) library(rpart) # Build the decision tree my_tree_two <- rpart(Survived ~ Pclass + Sex + Age + SibSp + Parch + Fare + Embarked, data = train, method ="class") # Visualize the decision tree using plot() and text() plot(my_tree_two) text(my_tree_two) # Load in the packages to create a fancified version of your tree library(rattle) library(rpart.plot) library(RColorBrewer) # Time to plot your fancy tree fancyRpartPlot(my_tree_two) #Predict & submit to kaggle # Make your prediction using the test set my_prediction <- predict(my_tree_two, test, type = "class") # Create a data frame with two columns: PassengerId & Survived. Survived contains your predictions my_solution <- data.frame(PassengerId = test$PassengerId, Survived = my_prediction) # Check that your data frame has 418 entries nrow(my_solution) # Write your solution to a csv file with the name my_solution.csv write.csv(my_solution, file="my_solution.csv" , row.names=FALSE)
e1e0b08f7f9afde79b56b450ac1ef5ef29278a7f
4c699cae4a32824d90d3363302838c5e4db101c9
/06_Regressao_com_R/03-FeatureSelection.R
896ca026789c8762a25ab4417019cd9bd9c397c9
[ "MIT" ]
permissive
janes/BigData_Analytics_com_R
470fa6d758351a5fc6006933eb5f4e3f05c0a187
431c76b326e155715c60ae6bd8ffe7f248cd558a
refs/heads/master
2020-04-27T19:39:10.436271
2019-02-06T11:29:36
2019-02-06T11:29:36
null
0
0
null
null
null
null
UTF-8
R
false
false
1,181
r
03-FeatureSelection.R
# Feature Selection # ... cont do script 02 dim(bikes) any(is.na(bikes)) # Criando um modelo para identificar os atributos com maior importancia para o modelo preditivo require(randomForest) # Avaliando a importanci de todas as variaveis modelo <- randomForest(cnt ~ ., data = bikes, ntree = 100, nodesize = 10, importance = TRUE) # Removendo variaveis colineares modelo <- randomForest(cnt ~ . - count - mnth - hr - workingday - isWorking - dayWeek - xforHr - workTime - holiday - windspeed - monthCount - weathersit, data = bikes, ntree = 100, nodesize = 10, importance = TRUE) # Plotando as variaveis por grau de importancia varImpPlot(modelo) #Granvando o resultado df_saida <- bikes[, c("cnt", rownames(modelo$importance))] df_saida
046245c4e30e7d8d803206a1035eaaeed725b1f7
ea1c371421755474c644854cfec37962d9be468e
/scripts/code1.r
e6d638d0484d6126dd424ed969f5b2b753ef5711
[]
no_license
verm0nter21/testgit
f835b8ee1a4d2478f07c5684ddfbd273e3a0a2db
f9babcb53fa81ec5c5ca335fb0ed3ef9793c8083
refs/heads/master
2020-03-21T23:07:27.675802
2018-06-29T15:56:06
2018-06-29T15:56:06
139,167,636
0
0
null
null
null
null
UTF-8
R
false
false
85
r
code1.r
# this is not really an R script but it is a comment # this is version 1, the master
f53feba589776c8a79ade80fdeefcbb9c6412117
e9b8841424aff6f0a47f61d3a7f64796c8b1e4b4
/Rscripts/getESCCfitGenes.R
7ff74b054404445221691849ae285d1c64b132ec
[]
no_license
2waybene/MustARD
e0b3361c59d1262b331ff06d09f244bb732f2b8a
e856eff2945f873a32ba09c8e666caeef8d1e769
refs/heads/master
2021-07-15T17:24:20.772322
2021-02-22T21:29:43
2021-02-22T21:29:43
240,051,670
0
0
null
null
null
null
UTF-8
R
false
false
662
r
getESCCfitGenes.R
setwd("X:/project2020/MustARD/learningFromBigWigs/Behan_nature_CRISPR-Cas9/") ESCC.cell.lines <- read.csv("esophagus_CellLines.csv") fit.genes <- read.csv("fitness_genes_all.csv") dim(fit.genes) ESCC <- ESCC.cell.lines$CMP_id[ ESCC.cell.lines$CancerType %in% "Esophageal Squamous Cell Carcinoma"] length(which(colnames (fit.genes) %in% ESCC)) #19, missing "SIDM00249" ESCC[-which(ESCC %in% colnames (fit.genes))] #[1] SIDM00249 ESCC.fit.genes <- fit.genes[, (which(colnames (fit.genes) %in% ESCC))] dim(ESCC.fit.genes) apply (ESCC.fit.genes[,-1], SUM) ESCC.genes <- ESCC.fit.genes[,1][which(rowSums (ESCC.fit.genes[,-1]) == 18)]
5522b004505b1317d03309e91b74af5c2eb96a06
ffdea92d4315e4363dd4ae673a1a6adf82a761b5
/data/genthat_extracted_code/mason/examples/polish.Rd.R
1e31e7a68a00cbb0f72ae46920b961e08c683ad0
[]
no_license
surayaaramli/typeRrh
d257ac8905c49123f4ccd4e377ee3dfc84d1636c
66e6996f31961bc8b9aafe1a6a6098327b66bf71
refs/heads/master
2023-05-05T04:05:31.617869
2019-04-25T22:10:06
2019-04-25T22:10:06
null
0
0
null
null
null
null
UTF-8
R
false
false
698
r
polish.Rd.R
library(mason) ### Name: polish ### Title: Do some final polishing of the scrubbed mason analysis data. ### Aliases: polish polish_renaming polish_filter ### polish_transform_estimates polish_adjust_pvalue ### ** Examples library(magrittr) ds <- swiss %>% design('glm') %>% add_settings() %>% add_variables('yvar', c('Fertility', 'Education')) %>% add_variables('xvar', c('Agriculture', 'Catholic')) %>% add_variables('covariates', 'Examination') %>% construct() %>% scrub() polish_renaming(ds, function(x) gsub('Education', 'Schooling', x)) polish_filter(ds, 'Xterm', 'term') polish_adjust_pvalue(ds)[c('p.value', 'adj.p.value')] polish_transform_estimates(ds, function(x) exp(x))
47023a1e30559af42bee9cd4e02e95454dc07dd6
9f727ce9fded2d1082f8473bf9c353c4dc524eca
/partsm/man/acf.ext1.Rd
52336da6db3b445faadc96a13fa7155f19ec50ec
[]
no_license
MatthieuStigler/partsm
7043eabf882eecda2cef25ef3de92af4d06f7d02
f342e1966083b6f5d7ce520af0395eab1d4a6a54
refs/heads/master
2021-05-16T02:57:35.563197
2020-11-25T03:48:30
2020-11-25T03:48:30
18,262,949
3
0
null
null
null
null
UTF-8
R
false
false
2,738
rd
acf.ext1.Rd
\name{acf.ext1} \alias{acf.ext1} \title{Autocorrelation function for several transformations of the original data} \description{ This function is based on the \link[stats]{acf} function and extends it by allowing for some transformations of the data before computing the autocovariance or autocorrelation function. } \usage{ acf.ext1 (wts, transf.type, perdiff.coeffs, type, lag.max, showcat, plot) } \arguments{ \item{wts}{a univariate time series object. } \item{transf.type}{a character string indicating what transformation should be applied to the data. Allowed values are "orig", "fdiff", "sdiff", "fsdiff", "fdiffsd", "perdiff", and ""perdiffsd. See details. } \item{perdiff.coeffs}{a vector with the estimates coefficients for the periodic difference filter. This argument is only required when the periodic difference transformation must be applied to the data. See details. } \item{type}{a character string giving the type of acf to be computed. Allowed values are "correlation", "covariance" or "partial". } \item{lag.max}{maximum number of lags at which to calculate the acf. } \item{showcat}{a logical. If TRUE, the results are printed in detail. If FALSE, the results are stored as a list object. } \item{plot}{a logical. If TRUE, a plot of the acf is showed. } } \details{The implemented transformations are the following: \itemize{ \item "orig": Original series. \item "fdiff": First differences of the original series. \item "sdiff": Seasonal differences of the original series. \item "fsdiff": Fisrt and seasonal differences of the original series. \item "fdiffsd": Residuals of the first differences on four seasonal dummy variables. \item "perdiff": Periodic differences of the original series. \item "perdiffsd": Residuals of the periodic differences on four seasonal dummy variables. } } \seealso{ \code{\link[stats]{acf}}. } \value{ Lags at which the acf is computed, estimates of the acf, and p-values for the significance of the acf at each lag. } \author{Javier Lopez-de-Lacalle \email{[email protected]}.} \examples{ ## Logarithms of the Real GNP in Germany data("gergnp") lgergnp <- log(gergnp, base=exp(1)) out <- acf.ext1(wts=lgergnp, transf.type="orig", type="correlation", lag.max=12, showcat=TRUE, plot=FALSE) out <- acf.ext1(wts=lgergnp, transf.type="perdiffsd", perdiff.coeff = c(1.004, 0.981, 1.047, 0.969), type="correlation", lag.max=12, showcat=TRUE, plot=FALSE) } \keyword{misc}
503e746356e1b743942863575fe1ea12ea40f51e
aaf8222e2e7c1ca3480092387472ed539e79985a
/man/SplitAuthor.Rd
56620539822c62ac42c710a2fd55a2f0e93db4c9
[]
no_license
M3SOulu/MozillaApacheDataset-Rpackage
57e7028f2d2ee9a6a672a9775f20bf40af9e4f4a
3644dbd266325309be4bfdf1ac926ae8859ebd19
refs/heads/master
2022-06-23T11:56:58.580415
2022-06-20T11:03:39
2022-06-20T11:03:39
238,914,906
0
0
null
null
null
null
UTF-8
R
false
true
339
rd
SplitAuthor.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/identities.R \name{SplitAuthor} \alias{SplitAuthor} \title{Split author} \usage{ SplitAuthor(author.key) } \arguments{ \item{author.key}{The author fields.} } \value{ A list of splitted authors. } \description{ Split Git author fields based on various regex. }
8d981cf091b46aeca9032202901c856e5fdbf1d7
2d34708b03cdf802018f17d0ba150df6772b6897
/googlesheetsv4.auto/man/BatchUpdateValuesRequest.Rd
09788ea44a689dcc9ff123dd8e9ac34a6448b3cc
[ "MIT" ]
permissive
GVersteeg/autoGoogleAPI
8b3dda19fae2f012e11b3a18a330a4d0da474921
f4850822230ef2f5552c9a5f42e397d9ae027a18
refs/heads/master
2020-09-28T20:20:58.023495
2017-03-05T19:50:39
2017-03-05T19:50:39
null
0
0
null
null
null
null
UTF-8
R
false
true
1,052
rd
BatchUpdateValuesRequest.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/sheets_objects.R \name{BatchUpdateValuesRequest} \alias{BatchUpdateValuesRequest} \title{BatchUpdateValuesRequest Object} \usage{ BatchUpdateValuesRequest(valueInputOption = NULL, data = NULL, responseDateTimeRenderOption = NULL, responseValueRenderOption = NULL, includeValuesInResponse = NULL) } \arguments{ \item{valueInputOption}{How the input data should be interpreted} \item{data}{The new values to apply to the spreadsheet} \item{responseDateTimeRenderOption}{Determines how dates, times, and durations in the response should be} \item{responseValueRenderOption}{Determines how values in the response should be rendered} \item{includeValuesInResponse}{Determines if the update response should include the values} } \value{ BatchUpdateValuesRequest object } \description{ BatchUpdateValuesRequest Object } \details{ Autogenerated via \code{\link[googleAuthR]{gar_create_api_objects}} The request for updating more than one range of values in a spreadsheet. }
2d99b0143c6c337080dd742409052f4446ec03df
c6683226b4317a677e43475b31a743b7ad273410
/LML_Tidy_Helpers.R
7c5385159399d155bc2a3ec6cfc406c9f13b420f
[]
no_license
henwood-dev/logmylife
a3f754ad41f61c27d9fc977cb86eb018198c356b
425f75b78c2bc3a69f1aff1320aec3373f30184b
refs/heads/master
2020-03-29T23:28:50.285911
2020-03-21T01:32:15
2020-03-21T01:32:15
125,543,473
0
0
null
null
null
null
UTF-8
R
false
false
13,487
r
LML_Tidy_Helpers.R
library(sjlabelled) library(splitstackshape) library(data.table) library(doParallel) library(parallel) library(iterators) library(foreach) library(haven) library(tidyverse) library(bit64) select <- dplyr::select write_prompt_responses <- function(data_dirname, wockets_dirname, manual_dirname = NULL, skip_manual = TRUE){ #ids <- read_delim(paste(data_dirname,"file_ids.txt",sep = "/"), delim = ",", col_names = "id") prompt_response_files <- read_file_list(data_dirname,wockets_dirname,"surveys","lml_com$","Prompts.csv$", hour_filter = FALSE) raw_prompts <- lapply(prompt_response_files,read_ema, data_dirname = data_dirname, suffix_dirname = wockets_dirname) if(!skip_manual){ manual_prompt_response_files <- read_file_list(data_dirname,manual_dirname,"surveys","lml_com$","Prompts.csv$", hour_filter = FALSE) manual_raw_prompts <- lapply(manual_prompt_response_files,read_ema, data_dirname = data_dirname, suffix_dirname = manual_dirname) } prompt_responses <- raw_prompts[[1]] for(i in 2:length(raw_prompts)){ prompt_responses <- bind_rows(prompt_responses,raw_prompts[[i]]) } if(!skip_manual){ manual_prompt_responses <- manual_raw_prompts[[1]] for(i in 2:length(manual_raw_prompts)){ manual_prompt_responses <- bind_rows(manual_prompt_responses,manual_raw_prompts[[i]]) } merge_responses <- anti_join(manual_prompt_responses,prompt_responses, by = c("system_file","TimeStampPrompted")) pre_filtered_prompts <- bind_rows(prompt_responses,merge_responses) } else { pre_filtered_prompts <- prompt_responses } write_csv(pre_filtered_prompts,paste(data_dirname,"prompt_responses.csv", sep = "/")) return(pre_filtered_ema) } pipe_print <- function(data_to_pass, string_to_print){ print(string_to_print) return(data_to_pass) } stata_varcheck_setnames <- function(dataset){ longvars <- c("longvars") for(i in 1:ncol(dataset)){ if(str_length(names(dataset[i])) > 32) { longvars <- append(longvars,names(dataset[i])) } } longvars[1] <- NA return(longvars) } simplify_sni_id <- function(sni_id){ remove_spaces <- gsub(" ","",sni_id) remove_periods <- gsub("\\.","",remove_spaces) remove_quote <- gsub("'","",remove_periods) make_lower <- tolower(remove_quote) return(make_lower) } write_master_logs <- function(data_dirname, wockets_dirname, manual_dirname = NULL, skip_manual = TRUE, master_filter = "master"){ masterlog_files <- read_file_list(data_dirname,wockets_dirname,"logs","lml_com$",paste0(master_filter,".log.csv$")) pre_master_log <- rbindlist(lapply(masterlog_files,skip_fread, data_dirname = data_dirname, suffix_dirname = wockets_dirname), fill = TRUE) if(!skip_manual){ manual_masterlog_files <- read_file_list(data_dirname,manual_dirname,"logs","lml_com$","master.log.csv$") manual_master_log <- rbindlist(lapply(manual_masterlog_files,skip_fread, data_dirname = data_dirname, suffix_dirname = manual_dirname), fill = TRUE) # Switching to Data.Table Paradigm for Fast Master Processing merge_manual <- anti_join(manual_master_log,pre_master_log, by = c("file_id","V1")) raw_master_log <- bind_rows(pre_master_log,merge_manual) } else { raw_master_log <- as.data.table(pre_master_log) } raw_master_log[, V2:= NULL] write_csv(raw_master_log,paste0(data_dirname,"/",master_filter,"_logs.csv")) return(raw_master_log) } write_gps_logs <- function(data_dirname, wockets_dirname, manual_dirname = NULL, skip_manual = TRUE){ gps_files <- read_file_list(data_dirname,wockets_dirname,"data/","lml_com$","GPS.csv$") pre_raw_gps_log <- rbindlist(lapply(gps_files,skip_fread, data_dirname = data_dirname, suffix_dirname = wockets_dirname), fill = TRUE) if(!skip_manual){ manual_gps_files <- read_file_list(data_dirname,manual_dirname,"data","lml_com$","GPS.csv$") manual_raw_gps_log <- rbindlist(lapply(manual_gps_files,skip_fread, data_dirname = data_dirname, suffix_dirname = manual_dirname), fill = TRUE) # Switching to Data.Table Paradigm for Fast GPS Processing merge_manual <- anti_join(manual_raw_gps_log,pre_raw_gps_log, by = c("file_id","V1")) raw_gps_log <- bind_rows(pre_raw_gps_log,merge_manual) } else { raw_gps_log <- pre_raw_gps_log } write_csv(raw_gps_log,paste(data_dirname,"gps_logs.csv", sep = "/")) return(raw_gps_log) } write_daily_responses <- function(data_dirname, wockets_dirname, manual_dirname = NULL, skip_manual = TRUE){ dailylog_response_files <- read_file_list(data_dirname,wockets_dirname,"surveys","lml_com$","PromptResponses_Dailylog.csv$", hour_filter = FALSE) raw_dailylog <- lapply(dailylog_response_files,read_ema, data_dirname = data_dirname, suffix_dirname = wockets_dirname) if(!skip_manual){ manual_dailylog_response_files <- read_file_list(data_dirname,manual_dirname,"surveys","lml_com$","PromptResponses_Dailylog.csv$", hour_filter = FALSE) manual_raw_dailylog <- lapply(manual_dailylog_response_files,read_ema, data_dirname = data_dirname, suffix_dirname = manual_dirname) } dailylog_responses <- raw_dailylog[[1]] for(i in 2:length(raw_dailylog)){ dailylog_responses <- bind_rows(dailylog_responses,raw_dailylog[[i]]) } if(!skip_manual){ manual_dailylog_responses <- manual_raw_dailylog[[1]] for(i in 2:length(manual_raw_dailylog)){ manual_dailylog_responses <- bind_rows(manual_dailylog_responses,manual_raw_dailylog[[i]]) } merge_responses <- anti_join(manual_dailylog_responses,dailylog_responses, by = c("system_file","PromptTime")) pre_filtered_dailylog <- bind_rows(dailylog_responses,merge_responses) } else { pre_filtered_dailylog <- dailylog_responses } write_csv(pre_filtered_dailylog,paste(data_dirname,"daily_responses.csv", sep = "/")) return(pre_filtered_dailylog) } write_ema_responses <- function(data_dirname, wockets_dirname, id_varstub, filename_varstub, manual_dirname = NULL, skip_manual = TRUE, prepend_surveys = ""){ #ids <- read_delim(paste(data_dirname,"file_ids.txt",sep = "/"), delim = ",", col_names = "id") ema_response_files <- read_file_list(data_dirname,wockets_dirname,paste(prepend_surveys,"surveys",sep = "/"),id_varstub,filename_varstub, hour_filter = FALSE) raw_ema <- lapply(ema_response_files,read_ema, data_dirname = data_dirname, suffix_dirname = wockets_dirname) if(!skip_manual){ manual_ema_response_files <- read_file_list(data_dirname,manual_dirname,paste(prepend_surveys,"surveys",sep = "/"),id_varstub, filename_varstub, hour_filter = FALSE) manual_raw_ema <- lapply(manual_ema_response_files,read_ema, data_dirname = data_dirname, suffix_dirname = manual_dirname) } ema_responses <- raw_ema[[1]] for(i in 2:length(raw_ema)){ ema_responses <- bind_rows(ema_responses,raw_ema[[i]]) } if(!skip_manual){ manual_ema_responses <- manual_raw_ema[[1]] for(i in 2:length(manual_raw_ema)){ manual_ema_responses <- bind_rows(manual_ema_responses,manual_raw_ema[[i]]) } merge_responses <- anti_join(manual_ema_responses,ema_responses, by = c("system_file","PromptTime")) pre_filtered_ema <- bind_rows(ema_responses,merge_responses) } else { pre_filtered_ema <- ema_responses } write_csv(pre_filtered_ema,paste(data_dirname,"ema_responses.csv", sep = "/")) return(pre_filtered_ema) } prebind_data <- function(filtered_data, variable_prefix, name_keys = "", name_value_pairs = "", return_name_columns = FALSE, separator = ",|"){ if(sum(!is.na(filtered_data %>% select(!!variable_prefix))>0)){ filtered_newvars <- cSplit_e(filtered_data, variable_prefix,type = "character", fill = 0, sep = separator) names(filtered_newvars) <- enc2native(names(filtered_newvars)) selected_data <- filtered_newvars %>% mutate_at(vars(starts_with(paste0(variable_prefix,"_"))),funs(ifelse(is.na(eval(parse(text = variable_prefix))),NA,.))) %>% select(starts_with(paste0(variable_prefix,"_"))) if(return_name_columns){ return(names(selected_data)) } names(selected_data) <- name_keys[names(selected_data)] new_return <- generate_missing_column(selected_data,get_labels(name_keys)) return_data <- new_return %>% set_label(unlist(name_value_pairs)) } else { new_return <- generate_missing_column(filtered_data,get_labels(name_keys)) return_data <- new_return %>% select(starts_with(paste0(variable_prefix,"_"))) %>% set_label(unlist(name_value_pairs)) } return(return_data) } generate_missing_column <- function(data_name, column_names){ return_data_name <- data_name for(i in column_names){ if(!(i %in% names(return_data_name))){ return_data_name <- mutate(return_data_name, !!i := NA) } } return(return_data_name) } read_file_list <- function(data_dirname, midpoint_dirname = NULL, end_dirname = NULL, id_filter = "*", file_filter, hour_filter = TRUE, recursive = TRUE){ if(!is.null(midpoint_dirname) & !is.null(end_dirname)){ data_files <- dir(paste(data_dirname,midpoint_dirname, sep = "/"),pattern = id_filter) data_dirs <- paste(data_dirname,midpoint_dirname,data_files, sep = "/") date_files <- dir(paste(data_dirs,end_dirname, sep = "/"), full.names = TRUE) if(hour_filter){ date_files <- dir(date_files, full.names = TRUE) } return_files <- list.files(date_files,pattern = file_filter, full.names = TRUE, include.dirs = FALSE, recursive = recursive) } else { return_files <- list.files(data_dirname,pattern = file_filter, full.names = TRUE, include.dirs = FALSE, recursive = recursive) } return(return_files) } read_gps <- function(data_dirname,wockets_dirname,manual_dirname, skip_manual = FALSE, fast_mode = FALSE){ if(!fast_mode){ gps_files <- read_file_list(data_dirname,wockets_dirname,"data/","lml_com$","GPS.csv$") pre_raw_gps_log <- rbindlist(lapply(gps_files,skip_fread, data_dirname = data_dirname, suffix_dirname = wockets_dirname), fill = TRUE) if(!skip_manual){ manual_gps_files <- read_file_list(data_dirname,manual_dirname,"data","lml_com$","GPS.csv$") manual_raw_gps_log <- rbindlist(lapply(manual_gps_files,skip_fread, data_dirname = data_dirname, suffix_dirname = manual_dirname), fill = TRUE) # Switching to Data.Table Paradigm for Fast GPS Processing merge_manual <- anti_join(manual_raw_gps_log,pre_raw_gps_log, by = c("file_id","V1")) raw_gps_log <- bind_rows(pre_raw_gps_log,merge_manual) } else { raw_gps_log <- pre_raw_gps_log } } else{ raw_gps_log <- fread(paste(data_dirname,"gps_logs.csv",sep = "/"), colClasses = rep("chr",7)) } names(raw_gps_log) <- c("a","b","c","d","e","f","file_id") raw_gps_log[, log_time := as.POSIXct(a, tz = "America/Los_Angeles", format = "%Y-%m-%d %H:%M:%S", origin = "1970-01-01")] raw_gps_log[, measure_time := as.POSIXct(b, tz = "America/Los_Angeles", format = "%Y-%m-%d %H:%M:%S", origin = "1970-01-01")] raw_gps_log[is.na(log_time), log_time := as.POSIXct(as.numeric(a)/1000, tz = "America/Los_Angeles", origin = "1970-01-01")] raw_gps_log[is.na(measure_time), measure_time := as.POSIXct(as.numeric(b)/1000, tz = "America/Los_Angeles", origin = "1970-01-01")] raw_gps_log[, time_diff := log_time - measure_time] raw_gps_log[, latitude := as.numeric(c)] raw_gps_log[, longitude := as.numeric(d)] raw_gps_log[, accuracy := as.numeric(e)] raw_gps_log[, c("a","b","c","d","e","f") := NULL] raw_gps_log[, gps_time_valid := as.integer(time_diff <= 300)] raw_gps_log[, gps_accuracy_valid := as.integer(accuracy <= 100)] raw_gps_log[, fulltime := measure_time] return(raw_gps_log) } skip_fread <- function(file, data_dirname, suffix_dirname, supply_header = FALSE){ if(file.size(file) > 0){ try({ return_csv <- fread(file, colClasses = 'character', encoding = "UTF-8", header = supply_header) idstringlength <- str_length(paste(data_dirname,suffix_dirname,"", sep = "/")) id <- str_sub(file,idstringlength+4,idstringlength+7) return_csv[, file_id := id] new_return_csv <- return_csv[!is.na(V2)] if(nrow(new_return_csv)>0){ return(new_return_csv) } else { return(NULL) } }) return(NULL) } else {return(NULL)} } read_sni <- function(sni_stata_filename) { sni_data <- read_dta(sni_stata_filename) %>% select(SNI_PID,starts_with("SNI_ID_")) %>% rename( subject_id = 1, sni1 = 2, sni2 = 3, sni3 = 4, sni4 = 5, sni5 = 6 ) %>% mutate_all(funs(tolower)) %>% mutate_all(funs(str_replace(.,"\\.",""))) %>% mutate_all(funs(str_replace(.," ",""))) %>% mutate_all(funs(str_replace(.,"\\.",""))) %>% filter(!is.na(subject_id)) return(sni_data) } read_ema <- function(file_to_read, data_dirname, suffix_dirname){ discard <- 1 return_ema_file <- as.tibble(data.frame(discard)) try({ file_cols <- ncol(read_csv(file_to_read)) return_ema_file <- read_csv(file_to_read, col_types = str_flatten(rep("c",file_cols))) idstringlength <- str_length(paste(data_dirname,suffix_dirname,"", sep = "/")) id <- str_sub(file_to_read,idstringlength+4,idstringlength+7) return_ema_file$system_file <- id return_ema_file$discard <- NULL return(return_ema_file) }, silent = TRUE) return(NULL) }
cf083925135c08c0f0c28a61528b2c8597fe7215
1f96642b72c65546393c7fe9d201f52737885c02
/Rexam/lab11.R
440186f19b1d2eeff1b982976fe0273bdd60550a
[]
no_license
kdragonkorea/R-data-analysis
3051881bcc9984e20092ba65feda712b7aa76427
0625fea1d1b4842ed6d7554e5a6aaf20d2b4d43a
refs/heads/master
2023-03-23T00:24:06.549611
2021-03-15T00:14:10
2021-03-15T00:14:10
341,584,046
0
0
null
null
null
null
UTF-8
R
false
false
1,533
r
lab11.R
library(RSelenium) remDr <- remoteDriver(remoteServerAddr = "localhost" , port = 4445, browserName = "chrome") remDr$open() remDr$navigate("http://gs25.gsretail.com/gscvs/ko/products/event-goods") goodsname <- NULL; goodsprice <- NULL; nextpage <- NULL # 첫 페이지에서 2+1 메뉴로 이동 two_to_one <- remDr$findElement(using='css selector', "div > ul > li:nth-child(2) > span") two_to_one$clickElement() # 2+1의 메뉴에서 모든 페이지 정보 가져오기 repeat { name <- remDr$findElements(using='css selector','div > div:nth-child(5) > ul > li > div > p.tit') name <- sapply(name,function(x){x$getElementText()}) goodsname <- c(goodsname, unlist(name)) print(length(goodsname)) price <- remDr$findElements(using='css selector','div > div:nth-child(5) > ul > li > div > p.price > span') price <- sapply(price,function(x){x$getElementText()}) goodsprice <- c(goodsprice, unlist(price)) print(length(goodsprice)) # nextpage <- remDr$findElement(using='css selector', 'div.cnt_section.mt50 > div > div > div:nth-child(5) > div > a.next') # 마지막 페이지에서 페이지 이동 멈추기 nextpage <- remDr$findElement(using='css selector', 'div.cnt_section.mt50 > div > div > div:nth-child(5) > div > a.next') if(nextpage$getElementAttribute("onclick") != 'goodsPageController.moveControl(1)'){ break; } nextpage$clickElement() Sys.sleep(3) } gs25_twotoone <- data.frame(goodsname, goodsprice) View(gs25_twotoone) write.csv(gs25_twotoone, "output/gs25_twotoone.csv")
249778eced85499440f2f50c681c8a7de099b64b
bed0fbea3a7dce73838418e15e2516b1a16a490b
/man/linspace.Rd
2ddc848c72b3c3519e30ccd3e7b2f9415385435d
[]
no_license
bgreenwell/ramify
af5fc93c73844869ab5de44d0dd126496e8e4b79
7dbadcb773f6d9b7e910e97bc57b2d17b4df7927
refs/heads/master
2021-01-17T04:11:44.564375
2017-01-04T13:02:16
2017-01-04T13:02:16
31,129,928
1
0
null
null
null
null
UTF-8
R
false
true
652
rd
linspace.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/convenience.R \name{linspace} \alias{linspace} \title{Linearly-spaced Elements} \usage{ linspace(a, b, n = 50) } \arguments{ \item{a}{The starting value of the sequence.} \item{b}{The final value of the sequence.} \item{n}{The number of samples to generate. Default is 50.} } \value{ A vector of linearly-spaced elements. } \description{ Construct a vector of \code{n} linearly-spaced elements from \code{a} to \code{b}. } \examples{ linspace(0, 1) linspace(1, 5, 5) linspace(1+2i, 10+10i, 8) logspace(0, pi, 10) } \seealso{ \code{\link{logspace}}, \code{\link{seq}}. }
bfdde574377bea7707e59a7a6e90e8efedc4f5c6
715f2721c5f9c69876c75957694cef3ceea86e0e
/man/tsa.Rd
130852006e1b149f8dd94f7414be84ff8e44f0ae
[ "Apache-2.0" ]
permissive
YongLuo007/bcmaps
f59a35edc8a5dd63c1be8aa90db5b6323b28aad4
bf71d9f0f9ab8292f68e0852f655a37982e59eab
refs/heads/master
2021-05-05T11:38:28.271150
2020-01-20T19:00:23
2020-01-20T19:00:23
118,187,826
0
1
null
2018-01-19T22:55:03
2018-01-19T22:55:03
null
UTF-8
R
false
true
1,069
rd
tsa.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/download_data.R \name{tsa} \alias{tsa} \title{British Columbia Timber Supply Areas and TSA Blocks} \format{An \code{sf} or \code{Spatial} polygons object with B.C.'s Timber Supply Areas and TSA Blocks} \source{ Original data from the \href{https://catalogue.data.gov.bc.ca/dataset/8daa29da-d7f4-401c-83ae-d962e3a28980}{B.C. Data Catalogue}, under the \href{https://www2.gov.bc.ca/gov/content?id=A519A56BC2BF44E4A008B33FCF527F61}{Open Government Licence - British Columbia}. } \usage{ tsa(class = c("sf", "sp"), ...) } \arguments{ \item{class}{class of object to import; one of \code{"sf"} (default) or \code{"sp"}.} \item{...}{arguments passed on to \link{get_big_data}} } \description{ The spatial representation for a Timber Supply Area or TSA Supply Block: A Timber Supply Area is the primary unit for allowable annual cut (AAC) determination. A TSA Supply Block is a designated area within the TSA where the Ministry approves the allowable annual cuts. } \details{ Updated 2017-11-03 }
22e7bbc03ba9b976607ab22a467d5504223ba012
8dc79304ecd803c5a9bce0dd62e4b25d4523649d
/man/getFunctionEnvelopeCat.Rd
c45c53b92fcc29dcf35f3a2d5489789ce2b79211
[]
no_license
jonotuke/catenary
2fb519be7ef9cafcee1255902971f12de383c81d
f2e64e4dabe69af8b74fae028ff179f72efae4b5
refs/heads/master
2020-04-02T04:05:23.024278
2018-05-04T07:47:44
2018-05-04T07:47:44
60,389,251
0
0
null
null
null
null
UTF-8
R
false
true
889
rd
getFunctionEnvelopeCat.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/getFunctionEnvelopeCat.R \name{getFunctionEnvelopeCat} \alias{getFunctionEnvelopeCat} \title{Function to return function envelope for catenary} \usage{ getFunctionEnvelopeCat(data, R = 1000, initial, x) } \arguments{ \item{data}{data frame with columns \code{x} and \code{y}} \item{initial}{vector of starting values (c1,c2,lambda)} } \value{ data frame with x, lwr and upr } \description{ Use bootstrap to get bands of possible fits to data using catenary } \note{ February 12 2013 } \examples{ x <- runif(100,-2,2) y <- f(x=x,c1=1,c2=2,lambda=3) + rnorm(100) df <- data.frame(x=x,y=y) plot(y~x,data=df,pch=16,cex=0.5) bounds <- getFunctionEnvelopeCat(data=df,initial=c(1,2,3),x=seq(-2,2,l=100)) lines(bounds$x,bounds$lwr) lines(bounds$x,bounds$upr) } \author{ Jono Tuke, Matthew Roughan } \keyword{internal}
b9dc257fb85e457f6c4cac9ee769bcddda46250d
cb5d3ff3ab8e30c7c14215d1d3a64a05d82b02c3
/plot3.R
7d868db40c5a60123473a659461b48328c9e7ccb
[]
no_license
dwaynedreakford/ExData_Plotting1
d2abc89062ad48c43dc83dab2f98b02631aca104
fe382136aa5467e3a26a2f4b04242b14fe648121
refs/heads/master
2021-01-11T03:05:58.774256
2016-10-17T06:08:59
2016-10-17T06:08:59
71,093,291
0
0
null
2016-10-17T02:34:56
2016-10-17T02:34:55
null
UTF-8
R
false
false
1,724
r
plot3.R
makePlot3 <- function() { # Read the dataset powerData <- read.delim("household_power_consumption.txt", sep = ";", na.strings = "?", colClasses = "character") # Filter the observations for the dates "2007-02-01" and "2007-02-02" powerData["DateTime"] <- strptime(paste(powerData$Date, powerData$Time), format="%d/%m/%Y %H:%M:%S") powerData$Date <- as.Date(powerData$Date, format="%d/%m/%Y") powerData <- subset(powerData, powerData$Date==as.Date("2007-02-01") | powerData$Date==as.Date("2007-02-02")) # Convert the numeric variables powerData$Global_active_power <- as.numeric(powerData$Global_active_power) powerData$Global_reactive_power <- as.numeric(powerData$Global_reactive_power) powerData$Voltage <- as.numeric(powerData$Voltage) powerData$Global_intensity <- as.numeric(powerData$Global_intensity) powerData$Sub_metering_1 <- as.numeric(powerData$Sub_metering_1) powerData$Sub_metering_2 <- as.numeric(powerData$Sub_metering_2) powerData$Sub_metering_3 <- as.numeric(powerData$Sub_metering_3) # Create a date-time (POSIXlt) vector from the Date and Time variables dateTime <- strptime(paste(as.character.Date(powerData$Date), powerData$Time), format="%Y-%m-%d %H:%M:%S") # Create the plot png(filename = "plot3.png") plot(dateTime, powerData$Sub_metering_1, type="n", ylab = "Energy sub metering", xlab = "") lines(dateTime, powerData$Sub_metering_1) lines(dateTime, powerData$Sub_metering_2, col = "red") lines(dateTime, powerData$Sub_metering_3, col = "blue") legend("topright", legend = c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3"), col = c("black", "red", "blue")) dev.off() }
351be250c035122edcb0eafeb362b4a417676fe8
7b7a28198b4948db5ce5040ed6ded340cda2d1cb
/R/DNbuilder-lm.R
b9e636b22ce28457a2ef18482bfd6ac536a1e57a
[]
no_license
amirjll/DynNom-V4.1.1
5061dcdb7ed27addd20c704ce54be74d7167bbb1
8c7afbd08321241cc5c41905d666489b6059ddd4
refs/heads/master
2020-03-23T22:24:24.185296
2018-07-24T14:56:10
2018-07-24T14:56:10
142,168,957
0
0
null
null
null
null
UTF-8
R
false
false
10,323
r
DNbuilder-lm.R
DNbuilder.lm <- function(model, data, clevel = 0.95, m.summary = c("raw", "formatted"), covariate = c("slider", "numeric")) { if (length(dim(data)) > 2 & sum(class(data)=="data.frame")==0) stop("Error in data format: dataframe format required") if (attr(model$terms, "dataClasses")[[1]] == "logical") stop("Error in model syntax: logical form for response not supported") if (tail(names(attr(model$terms,"dataClasses")), n = 1) == "(weights)") { n.terms <- length(attr(model$terms,"dataClasses")) attr(model$terms,"dataClasses") <- attr(model$terms,"dataClasses")[1:n.terms - 1] } for(i in 1:length(names(attr(model$terms, "dataClasses")))) { com1 <- numeric(length(names(data))) for(j in 1:length(names(data))) { if (names(attr(model$terms, "dataClasses"))[i] == names(data)[j]) com1[j] = 1 } if (sum(com1) == 0) stop("Error in model syntax: some of model's terms do not match to variables' name in dataset") } covariate <- match.arg(covariate) m.summary <- match.arg(m.summary) wdir <- getwd() app.dir <- paste(wdir, "DynNomapp", sep="/") message(paste("creating new directory: ", app.dir, sep="")) dir.create(app.dir) setwd(app.dir) message(paste("Export dataset: ", app.dir, "/dataset.rds", sep="")) saveRDS(data, "dataset.rds") ################################# y <- model$model[[1]] mterms <- attr(model$terms, 'dataClasses') n.mterms <- names(mterms) xlevels <- model$xlevels df <- model$df.residual model.call <- paste('Linear Regression:', model$call[2], sep = ' ') plot.title <- paste(clevel * 100, '% ', 'Confidence Interval for Response', sep = '') if(tail(n.mterms,n=1)=="(weights)"){ callm = paste(paste(model$call)[1],"(",paste(model$call)[2],", ","data = data",", ","weights = ", paste(model$call)[length(paste(model$call))] ,")", sep="") } else{ callm = paste(paste(model$call)[1],"(",paste(model$call)[2],", ","data = data",")", sep="") } if (m.summary == 'raw'){ m.print <- paste("summary(model)", sep="") } else{ m.print <- paste("stargazer(model, type = 'text', omit.stat = c('LL', 'ser', 'f'), ci = TRUE, ci.level = ",clevel,", single.row = TRUE, title = '",model.call,"')", sep="") } datname <- paste(substitute(data)) if(length(datname) > 1){ datname <- datname[1] cat("\n Warning messages: The data frame name might be incorrect due to its complicated structure. You need to edit the following line in global script to calling your data correctly data <- ....", "\n") } #### global.R generator GLOBAL=paste("library(ggplot2) library(shiny) library(plotly) library(stargazer) library(compare) ################################################################## #### You may need to edit the following lines #### if data or the model are not defined correctly ################################################################## data <- readRDS('dataset.rds') model <- ",callm," m.summary <- '",m.summary,"' covariate <- '", covariate,"' ", sep="") #### server.R generator SERVER=paste("input.data <- NULL old.d <- NULL xlevels <- model$xlevels mterms <- attr(model$terms, 'dataClasses') n.mterms <- names(mterms) server = function(input, output){ q <- observe({ if (input$quit == 1) stopApp() }) limits0 <- c(",suppressWarnings(mean(as.numeric(y)) - 3 * sd(y)),", ",suppressWarnings(mean(as.numeric(y)) + 3 * sd(y)),") limits <- reactive({ if (as.numeric(input$limits) == 1) {limits <- c(input$lxlim, input$uxlim)} else {limits <- limits0} }) neededVar <- n.mterms data <- data[, neededVar] input.data <<- data[1, ] input.data[1, ] <<- NA b <- 1 i.factor <- NULL i.numeric <- NULL for (j in 2:length(mterms)) { for (i in 1:length(data)) { if (n.mterms[j] == names(data)[i]) { if (mterms[[j]] == 'factor' | mterms[[j]] == 'ordered' | mterms[[j]] == 'logical') { i.factor <- rbind(i.factor, c(n.mterms[j], j, i, b)) (break)() } if (mterms[[j]] == 'numeric') { i.numeric <- rbind(i.numeric, c(n.mterms[j], j, i)) b <- b + 1 (break)() } } } } nn <- nrow(i.numeric) if (is.null(nn)) { nn <- 0 } nf <- nrow(i.factor) if (is.null(nf)) { nf <- 0 } if (nf > 0) { output$manySliders.f <- renderUI({ slide.bars <- list(lapply(1:nf, function(j) { selectInput(paste('factor', j, sep = ''), names(mterms[as.numeric(i.factor[j, 2])]), xlevels[[as.numeric(i.factor[j, 2]) - as.numeric(i.factor[j, 4])]], multiple = FALSE) })) do.call(tagList, slide.bars) }) } if (nn > 0) { output$manySliders.n <- renderUI({ if (covariate == 'slider') { slide.bars <- list(lapply(1:nn, function(j) { sliderInput(paste('numeric', j, sep = ''), names(mterms[as.numeric(i.numeric[j, 2])]), min = floor(min(na.omit(data[, as.numeric(i.numeric[j, 3])]))), max = ceiling(max(na.omit(data[, as.numeric(i.numeric[j, 3])]))), value = mean(na.omit(data[, as.numeric(i.numeric[j, 3])]))) })) } if (covariate == 'numeric') { slide.bars <- list(lapply(1:nn, function(j) { numericInput(paste('numeric', j, sep = ''), names(mterms[as.numeric(i.numeric[j, 2])]), value = round(mean(na.omit(data[, as.numeric(i.numeric[j, 3])])))) })) } do.call(tagList, slide.bars) }) } a <- 0 new.d <- reactive({ input$add if (nf > 0) { input.f <- vector('list', nf) for (i in 1:nf) { input.f[[i]] <- isolate({ input[[paste('factor', i, sep = '')]] }) names(input.f)[i] <- i.factor[i, 1] } } if (nn > 0) { input.n <- vector('list', nn) for (i in 1:nn) { input.n[[i]] <- isolate({ input[[paste('numeric', i, sep = '')]] }) names(input.n)[i] <- i.numeric[i, 1] } } if (nn == 0) { out <- data.frame(do.call('cbind', input.f)) } if (nf == 0) { out <- data.frame(do.call('cbind', input.n)) } if (nf > 0 & nn > 0) { out <- data.frame(do.call('cbind', input.f), do.call('cbind', input.n)) } if (a == 0) { wher <- match(names(out), names(input.data)[-1]) out <- out[wher] input.data <<- rbind(input.data[-1], out) } if (a > 0) { wher <- match(names(out), names(input.data)) out <- out[wher] if (isTRUE(compare(old.d, out)) == FALSE) {input.data <<- rbind(input.data, out)}} a <<- a + 1 out }) p1 <- NULL old.d <- NULL data2 <- reactive({ if (input$add == 0) return(NULL) if (input$add > 0) { if (isTRUE(compare(old.d, new.d())) == FALSE) { OUT <- isolate({ pred <- predict(model, newdata = new.d(), conf.int = ",clevel,", se.fit = TRUE) lwb <- pred$fit - (",qt(1 - (1 - clevel)/2, df)," * pred$se.fit) upb <- pred$fit + (",qt(1 - (1 - clevel)/2, df)," * pred$se.fit) d.p <- data.frame(Prediction = pred$fit, Lower.bound = lwb, Upper.bound = upb) old.d <<- new.d() data.p <- cbind(d.p, counter = 1) p1 <<- rbind(p1, data.p) p1$count <- seq(1, dim(p1)[1]) p1 }) } else { p1$count <- seq(1, dim(p1)[1]) OUT <- p1 } } OUT }) output$plot <- renderPlotly({ if (input$add == 0) return(NULL) if (is.null(new.d())) return(NULL) if (is.na(input$lxlim) | is.na(input$uxlim)) { lim <- limits0 } else { lim <- limits() } PredictNO <- 0:(sum(data2()$counter) - 1) in.d <- data.frame(input.data[-1,]) xx=matrix(paste(names(in.d), ': ',t(in.d), sep=''), ncol=dim(in.d)[1]) Covariates=apply(xx,2,paste,collapse='<br />') yli <- c(0 - 0.5, 10 + 0.5) if (dim(input.data)[1] > 11) yli <- c(dim(input.data)[1] - 11.5, dim(input.data)[1] - 0.5) p <- ggplot(data = data2(), aes(x = Prediction, y = PredictNO, text = Covariates, label = Prediction, label2 = Lower.bound, label3=Upper.bound)) + geom_point(size = 2, colour = data2()$count, shape = 15) + ylim(yli[1], yli[2]) + coord_cartesian(xlim = lim) + geom_errorbarh(xmax = data2()$Upper.bound, xmin = data2()$Lower.bound, size = 1.45, height = 0.4, colour = data2()$count) + labs(title = '",plot.title,"', x = 'Response Variable', y = NULL) + theme_bw() + theme(axis.text.y = element_blank(), text = element_text(face = 'bold', size = 10)) gp=ggplotly(p, tooltip = c('text','label','label2','label3')) gp}) output$data.pred <- renderPrint({ if (input$add > 0) { if (nrow(data2() > 0)) { if (dim(input.data)[2] == 1) { in.d <- data.frame(input.data[-1, ]) names(in.d) <- ",n.mterms[2]," data.p <- cbind(in.d, data2()[1:3]) } if (dim(input.data)[2] > 1) { data.p <- cbind(input.data[-1, ], data2()[1:3]) }} stargazer(data.p, summary = FALSE, type = 'text') } }) output$summary <- renderPrint({ ",m.print," }) } ", sep = "") #### ui.R generator UI=paste("ui = bootstrapPage(fluidPage( titlePanel('Dynamic Nomogram'), sidebarLayout(sidebarPanel(uiOutput('manySliders.f'), uiOutput('manySliders.n'), checkboxInput('limits', 'Set x-axis ranges'), conditionalPanel(condition = 'input.limits == true', numericInput('uxlim', 'x-axis lower', NA), numericInput('lxlim', 'x-axis upper', NA)), actionButton('add', 'Predict'), br(), br(), helpText('Press Quit to exit the application'), actionButton('quit', 'Quit') ), mainPanel(tabsetPanel(id = 'tabs', tabPanel('Graphical Summary', plotlyOutput('plot')), tabPanel('Numerical Summary', verbatimTextOutput('data.pred')), tabPanel('Model Summary', verbatimTextOutput('summary')) )))) )", sep = "") output=list(ui=UI, server=SERVER, global=GLOBAL) text <- paste("This guide will describe how to deploy a shiny application using scripts generated by DNbuilder: 1. Run the shiny app by setting your working directory to the DynNomapp folder, and then run: shiny::runApp() If you are using the RStudio IDE, you can also run it by clicking the Run App button in the editor toolbar after open one of the R scripts. 2. You may want to modify the codes to apply all the necessary changes. Run again to confirm that your application works perfectly. 3. Deploy the application by either clicking on the Publish button in the top right corner of the running app, or use the generated files and deploy it on your server if you host any. You can find a full guide of how to deploy an application on shinyapp.io server here: http://docs.rstudio.com/shinyapps.io/getting-started.html#deploying-applications", sep="") message(paste("writing file: ", app.dir, "/README.txt", sep="")) writeLines(text, "README.txt") message(paste("writing file: ", app.dir, "/ui.R", sep="")) writeLines(output$ui, "ui.R") message(paste("writing file: ", app.dir, "/server.R", sep="")) writeLines(output$server, "server.R") message(paste("writing file: ", app.dir, "/global.R", sep="")) writeLines(output$global, "global.R") setwd(wdir) }
46c881b22f0647f5c701e3b32071fd55e01a1c13
dc359f8017e0d3d8b89585b012d6ddfa92d0336e
/R/make_csv.R
3ed9fc414bc0cb6d422e339bb10e5490b1f7f2b9
[]
no_license
fmichonneau/impatiens
ab50245429f1c87b6e8791d99750e20faa1dc158
d48d31d5fb6143ffcc770c92459575297a509f24
refs/heads/master
2021-03-16T08:29:46.843419
2015-05-28T19:10:54
2015-05-28T19:10:54
26,188,539
0
0
null
null
null
null
UTF-8
R
false
false
691
r
make_csv.R
check_file <- function(file, verbose) { if (!file.exists(file)) { stop(file, " wasn't created.") } else { if (verbose) message(file, " succesfully created.") } } create_dir <- function(file, verbose) { if (!file.exists(dirname(file))) { if (verbose) { message("Create: ", dirname(file)) } dir.create(dirname(file), recursive = TRUE) } } make_csv <- function(obj, file, ..., verbose = TRUE) { on.exit(check_file(file, verbose = verbose)) create_dir(file = file, verbose = verbose) if (verbose) { message("Creating csv file: ", file) } write.csv(obj, file = file, row.names = FALSE, ...) }
5c4be76e277d1200ec689dd164f4e8e41fdfbf94
b2cb3b4ad1b581a59448552b0d0911e6a58c3dae
/chapter3_simulations/code/generate_prior_predictive_distributions.R
4122008f09c7bd2dcdffb5b5a1aba08e853e529f
[ "MIT" ]
permissive
vasishth/RetrievalModels
1c3c6a9b915cdae7073c7895653cdf089cb6f693
40eb268da11cd3adb7287ec32435cfc32c7de724
refs/heads/master
2022-01-01T11:49:06.842924
2021-12-16T10:11:43
2021-12-16T10:11:43
242,512,415
1
0
null
null
null
null
UTF-8
R
false
false
2,825
r
generate_prior_predictive_distributions.R
library(dplyr) library(tidyr) library(ggplot2) source("interACT.R") rmsd <- function (obs, pred) { sqrt(mean((obs - pred)^2, na.rm = TRUE)) } compute_int_means <- function(d){ int <- select(filter(d, Distractor=="Match"), -Condition, -Distractor) dim(int) int$int <- filter(d, Distractor=="Match")$latency - filter(d, Distractor=="Mismatch")$latency # # means <- group_by(int, Set, Target, lf, ans, mas, mp, rth, bll, lp, ldp, blc, dbl, ndistr) %>% summarise(Effect=mean(int), SE=sd(int)/sqrt(length(int))) %>% ungroup() %>% mutate(lower=Effect-SE, upper=Effect+SE) # means means <- group_by(int, Set, Target, lf, ans, mas, mp, rth, bll, psc, pic, qcf, qco, cuesim, tprom, dprom, lp, ldp, blc, dbl, ndistr, cueweighting) %>% summarise(Effect=mean(int), SE=sd(int)/sqrt(length(int)), Sji_neg=sum(Sji_neg)) %>% ungroup() %>% mutate(lower=Effect-SE, upper=Effect+SE) means } convert2log <- function(x){ ifelse(x>=1, log(x), ifelse(x<=-1, -log(abs(x)), 0)) } convert2log10 <- function(x){ x <- ifelse(x>-1 & x<1, 0, x) x <- ifelse(x<=-1, -log10(abs(x)), x) x <- ifelse(x>=1, log10(abs(x)), x) } ## this function does the work of estimating effect sizes: iterate_lf <- function(values){ maxset <- 0 means <- NULL for(v in values){ lf <<- v pmatr <- create_param_matrix(model_4cond, 1000) results <- run(pmatr) means2 <- compute_int_means(results) means2$Set <- means2$Set+maxset means <- bind_rows(means, means2) } means } ## we set the parameters: reset_params() psc <<- 0 qcf <<- 0 cuesim <<- -1 bll <<- 0.5 #mp <<- seq(0,3,1) #mp <<- seq(0.15,.35,0.1) ## default in Engelmann et al 2019 Cog Sci paper mp <<- 0.15 #mas <<- seq(1,2,0.5) ## default in Engelmann et al 2019 Cog Sci paper mas <<- 1.5 #mas<<-sort(rnorm(50,mean=1.5,sd=0.25)) #hist(mas) #ans <<- seq(0.1,0.3,.1) # default in Engelmann et al 2019 Cog Sci paper ans <<- 0.2 ##rth <<- seq(-2,-1,.5) # default in Engelmann et al 2019 Cog Sci paper rth <<- -1.5 # dbl <<- seq(-2,2,1) dbl <<- 0 #cueweighting <<- seq(1,2,by=0.5) cueweighting <<- 1 ## must be estimated latency_factor <<- seq(0.1,0.5,.1) #latency_factor <<- sort(abs(rnorm(100,mean=0.3,sd=0.1))) ## for Engelmann Vasishth book: # simulations using cuewt 1 means <- iterate_lf(latency_factor) lv05pspaceEVcuewt1 <- means save(lv05pspaceEVcuewt1, file="lv05pspaceEVcuewt1.Rd") # simulations using cuewt 2 cueweighting <<- 2 means <- iterate_lf(latency_factor) lv05pspaceEVcuewt2 <- means save(lv05pspaceEVcuewt2, file="lv05pspaceEVcuewt2.Rd") # simulations using cuewt 4 cueweighting <<- 4 means <- iterate_lf(latency_factor) lv05pspaceEVcuewt4 <- means save(lv05pspaceEVcuewt4, file="lv05pspaceEVcuewt4.Rd") system("cp lv05pspaceEVcuewt* ../data/") with(means,tapply(Effect,Target,mean)) ## figures continued in c02SCCPVasishthEngelmann.Rnw
f40441b5e7e797a77326d675c1c114aec6e09584
154f590295a74e1ca8cdde49ecbb9cbb0992147e
/man/cv.Rd
f2133c31d4cb0fea71e295bf80d907e6917a4b7e
[ "LicenseRef-scancode-warranty-disclaimer", "LicenseRef-scancode-public-domain-disclaimer", "CC0-1.0" ]
permissive
klingerf2/EflowStats
2e57df72e154581de2df3d5de3ebd94c3da0dedf
73891ea7da73a274227212a2ca829084149a2906
refs/heads/master
2017-12-07T10:47:25.943426
2016-12-28T20:52:42
2016-12-28T20:52:42
null
0
0
null
null
null
null
UTF-8
R
false
true
522
rd
cv.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/cv.R \name{cv} \alias{cv} \title{Function to return the coefficient of variation for a given data series} \usage{ cv(x) } \arguments{ \item{x}{data frame containing value data for the chosen timeseries} } \value{ cv coefficient of variation for the given data frame } \description{ This function accepts a data frame containing daily data and returns the coefficient of variation } \examples{ qfiletempf<-sampleData cv(qfiletempf$discharge) }
73a31bc41376ae3769ecfc570edb030cb98f4b7b
8a081c8fb7584d2ecd3dd68479923d8dbf0345e1
/Generate_InputFiles.R
8fcdbf0f540bfd7200541cd7c0926c8254532c93
[]
no_license
lfuess/TagSeqMS
a895d140475f8b6b8e7cf027ab18389c2cd4d61c
6da10a68f3d92047ba7b36e6d09a908bc6da6492
refs/heads/master
2022-09-07T06:13:12.101637
2020-06-03T21:30:21
2020-06-03T21:30:21
257,366,869
0
0
null
null
null
null
UTF-8
R
false
false
2,141
r
Generate_InputFiles.R
##This script will be used to prepare data for DESEQ2## library(dplyr) library(janitor) library(data.table) initialdata = read.csv("Masterdata_TagSeq_SDH_23July2018.csv", check.names= FALSE) dim(initialdata); names(initialdata); ##Now to select the data we want## data = as.data.frame(initialdata[c(2,4,27:28,30:31,34,54)]); names(data) dim(data) head(data) ##input the list of samples you are using## ##we use a file hand currated which lists all the samples that passed sequencing and assembly## samples = read.csv("Good_Samples.csv", check.names = FALSE) names(samples) dim(samples) ##and combine the files to reduce down to just the good samples## merged=merge(samples, data, by.x = "Sample", by.y = "sample_ID") dim(merged) ##should have 408 lines remaining## ##Select everything but F1s GBC=merged[merged[,3] == "GBC",] RBC=merged[merged[,3] == "RBC",] F2=merged[merged[,3] == "F2",] final=rbind(GBC,RBC,F2) dim(final) ##should be 393## ##order## final1=final[order(final$Sample),] ##change NAs in sex to Unkown## levels <- levels(final1$Sex) levels[length(levels) + 1] <- "U" final1$Sex <- factor(final1$Sex, levels = levels) final1[c("Sex")][is.na(final1[c("Sex")])] <- "U" ##remove rows with NAs## final = final1[complete.cases(final1), ] ##write out the experimental design file## write.csv(final, file = "ExpDesign.csv", row.names=FALSE) ##last step is to refine our read count matrix## ##get a list of new good samples (samples which didn't have NAs for any of our model factors)## gs = final[,c(1:2)] ##merge that with your read count matrix, to get a read count matrix with only good samples and no F1s## reads = as.data.frame(t(read.csv("allcounts.csv", check.names = FALSE))) reads[1:10,1:10] ##fix names## reads = reads %>% row_to_names(row_number = 1) reads = setDT(reads, keep.rownames = TRUE)[] ##merge## merged=merge(reads, gs, by.x = "rn", by.y = "Sample") merged=merged[,c(1:25846)] ##write it out## finalcounts=as.data.frame(t(merged)) finalcounts[1:10,1:10] finalcounts = finalcounts %>% row_to_names(row_number = 1) write.csv(finalcounts, "allcounts_final.csv")
afe0e04e34439c975a8f9ffbe731d5f7ac08424a
9053fe0a4613ceb51475071215358acffc4c4976
/assignment1/R_Python_Session/a.r
4a134f5d714fa1a0b8db973a5800fc6123b5c946
[]
no_license
arunv3rma/CS-725
fbf1c38a6a1ab15276eae487a137ba72ffb27d3c
171d879041eb02a43fafc9a19982776f8199b412
refs/heads/master
2021-06-04T07:19:02.966467
2016-10-25T20:11:05
2016-10-25T20:11:05
69,154,112
0
0
null
null
null
null
UTF-8
R
false
false
3,317
r
a.r
############################################################################### ##Part-1 setwd("/home/raju/Downloads/kaggle") train <- read.csv("~/Downloads/kaggle/train.csv") test <- read.csv("~/Downloads/kaggle/test.csv") str(train) head(train,100) t1<-train[1:100,] t2<-train[100:891,] str(t1) str(t2) train <- t2 View(train) table(train$Survived) prop.table(table(train$Survived)) table(train$Age) summary(train$Age) ##Checking the structure str(test) ##Adding a Column test$Survived <- rep(0,418) ##Checking the frequency of values in a column in a table table(test$Survived) str(test) test$k <- rep(0) str(test) table(test$Survived) ##dropping a column test$k<-NULL str(test) ##extracting columns from table to be output use data.frame submit <- data.frame(PassengerId = test$PassengerId, Survived = test$Survived) ##writing to csv file write.csv(submit, file = "result.csv") ############################################################################### ##Part-2 prop.table(table(train$Sex, train$Survived)) #checking proportions in the table prop.table(table(train$Sex, train$Survived),1) ##adding cnditions test$Survived[test$Sex == 'female'] <- 1 table(test$Survived) train$child<-rep(0) train$child[train$Age<18]<-1 prop.table(table(train$child)) test$child<-rep(0) test$child[test$Age<18]<-1 prop.table(table(test$child)) ##aggregate aggregate(Survived ~ child + Sex, data=train, FUN=sum) aggregate(Survived ~ child + Sex, data=train, FUN=length) aggregate(Survived ~ child + Sex, data=train, FUN=function(x) {sum(x)/length(x)}) train$familysize<-train$child+train$SibSp+1 str(train) train$Fare2 <- '30+' train$Fare2[train$Fare < 30 & train$Fare >= 20] <- '20-30' train$Fare2[train$Fare < 20 & train$Fare >= 10] <- '10-20' train$Fare2[train$Fare < 10] <- '<10' prop.table(table(train$Fare2)) prop.table(table(train$Fare2,train$Survived),1) str(test) test$Fare2 <- '30+' test$Fare2[test$Fare < 30 & test$Fare >= 20] <- '20-30' test$Fare2[test$Fare < 20 & test$Fare >= 10] <- '10-20' test$Fare2[test$Fare < 10] <- '<10' aggregate(Survived ~ Fare2 + Sex + child, data=train, FUN=function(x) {sum(x)/length(x)}) ############################################################################### ##Fitting Models ## Initial fit1<-lm(Survived ~ Sex,data=train) summary(fit1) coefficients(fit1) # model coefficients #confint(fit, level=0.95) # CIs for model parameters fitted(fit1) # predicted values residuals(fit1) # residuals sum(residuals(fit1)) #anova(fit1) # anova table #vcov(fit1) # covariance matrix for model parameters ## With child and Fare and Sex fit <- lm(Survived ~ Fare2 + Sex + child, data=train) summary(fit) coefficients(fit) # model coefficients #confint(fit, level=0.95) # CIs for model parameters fitted(fit) # predicted values residuals(fit) # residuals sum(residuals(fit)) anova(fit) # anova table vcov(fit) # covariance matrix for model parameters #influence(fit) # regression diagnostics test$Survived1<-round(predict(fit1,test)) test$Survived<-round(predict(fit,test)) submit1 <- data.frame(PassengerId = test$PassengerId, Survived = test$Survived1) ##writing to csv file write.csv(submit1, file = "result1.csv") submit <- data.frame(PassengerId = test$PassengerId, Survived = test$Survived) ##writing to csv file write.csv(submit, file = "result.csv") ##Plots
e155298e813aa55785553a57a8a638a81969b3c0
eb2a963e50d6954cdc73a4d0d6ab9a5dcfa35008
/jules/ASMap/man/exmap.Rd
0cfe2d9a949f100ad3d06c819b2674bdcae7e40a
[ "CC-BY-3.0" ]
permissive
dpastoor/R-workshop
e02a3e27ef40fb780d6ac210c1e8d0c49c5eb7f6
41f5b8257cf532128d934216bdd32c2dedcdaac1
refs/heads/master
2021-01-24T03:08:14.742841
2014-07-11T00:17:02
2014-07-11T00:17:02
21,742,907
0
1
null
null
null
null
UTF-8
R
false
false
895
rd
exmap.Rd
\name{exmap} \alias{exmap} \docType{data} \title{Genotypic marker data for a doubled haploid wheat population in R/qtl format} \description{Linkage map marker data for a doubled haploid population in the form of a constructed R/qtl object. } \usage{data(exmap)} \format{This data relates to a linkage map of 599 markers genotyped on 218 individuals. The linkage map consists of 23 linkage groups spanning the whole genome. Map distances have been estimated using \code{read.cross} with the \code{"kosambi"} mapping function. The data object has been originally constructed with MultiPoint and curated with MapManager and R/qtl. The data is in R/qtl format with a class structure \code{c("bc","cross")}. See \code{read.cross} documentation for more details on the format of this object. } \examples{ data(exmap, package = "ASMap") } \keyword{datasets}
49f005a6581c89c56d85b6cbc19a603b86b9af97
269e5ad7a6255e2de06a3512858b6a1151992eaa
/R/Align.Concat.R
74c6234bc3df4db8d47b4e94925cf2c5d40f6162
[]
no_license
dvdeme/regPhylo
0c3b158283e9a7eaa72f7d8597e65eb2a4b478a0
56017f10b5ac7c2f54972572739b509175360a6f
refs/heads/master
2023-06-13T02:42:38.686275
2023-05-26T10:07:29
2023-05-26T10:07:29
165,783,636
5
1
null
2020-06-12T04:45:59
2019-01-15T04:10:34
R
UTF-8
R
false
false
12,903
r
Align.Concat.R
#' @title Concatenate alignments from different gene regions into a supermatrix at the species level #' @description This function concatenates the alignments from different gene regions into a #' single supermatrix in nexus and fasta formats, at the species level. The function also allows the #' inclusion of species without DNA sequences, if necessary (for instance, to then use BEAST to resolve #' polytomies). #' @return This function returns: 1) the alignments from different gene regions #' in nexus format '.nex', including taxa that do not have DNA sequence #' information (nucleotides replace by '-') (all these files can be loaded separately #' into BEAST); 2) a concatenation (a supermatrix) of all the sequences of #' the different gene regions in nexus and fasta format; 3) a partition file in #' txt format 'Partitions_Concat.txt' including the partitions of the different gene regions in the #' concatenated file (this file is designed to be RAxML compatible, see RAxML manual #' v8.2, https://sco.h-its.org/exelixis/resource/download/NewManual.pdf); #' 4) a conversion table 'convtab.txt' betwen the gene region names used in the partition file and the #' true name of the gene region. #' @param input the path to the folder storing the alignments (alignments have to be in #' fasta format with the '.fas' extension) #' @param Sp.List.NoDNA an optional vector of the species without DNA sequences that should be included #' in the alignment, or the option can be NULL, in which case the function automatically creates a complete #' species list of all the species present in the different alignments. #' @param outputConcat Name of the supermatrix (can include the path as well). #' #' @examples # Run the function to build a supermatrix #' \dontrun{ #' #' # To run the example, copy the input alignment files #' # provided by the package to a temporary directory created in the #' # current working directory. #' src.dir = system.file("extdata/multi.align/ForConcat", package = "regPhylo") #' dir.create("TempDir.ForConcat") #' # Set up the path of the TempDir folder. #' dest.dir = paste(getwd(), "/TempDir.ForConcat", sep="") #' file.names <- dir(src.dir) #' # Copy all the files stored in regPhylo/extdata/multi.align/ForConcat" #' # into a temporary folder. #' sapply(file.names, function(x) { #' file.copy(from = paste(src.dir, x, sep = "/"), #' to = paste(dest.dir, x, sep = "/"), #' overwrite = FALSE) }) #' #' # Run the function to build the supermatrix. #' Align.Concat(input = "TempDir.ForConcat", Sp.List = NULL, outputConcat = NULL) #' #' #' # Import the supermatrix in R #' require(ape) #' Supermatrix = read.dna("TempDir.ForConcat/Concat.fas", format = "fasta") #' #' # Create another temporary file to build a supermatrix including species without DNA. #' dir.create("TempDir.ForConcat2") #' file.names <- dir("TempDir.ForConcat") #' # select only the .fas alignment #' file.names <- file.names[grep(".fas", file.names)] #' # remove the Concat.fas alignment just created above. #' file.names <- file.names[-grep("Concat.fas", file.names)] #' sapply(file.names, function(x) { #' file.copy(from = paste("TempDir.ForConcat", x, sep = "/"), #' to = paste("TempDir.ForConcat2", x, sep = "/"), #' overwrite = FALSE) }) #' #' #' # Run the function to build a supermatrix including two species without DNA. #' Align.Concat(input = "TempDir.ForConcat2", #' Sp.List = c("Titi_titi", "Toto_toto"), #' outputConcat = "TempDir.ForConcat2/Concat_2spNoDNA") #' #' # Import the supermatrix into R. #' Supermatrix2SpNoDNA = read.dna("TempDir.ForConcat2/Concat_2spNoDNA.fas", #' format = "fasta") #' #' #' # To remove the files created while running the example do the following: #' unlink("TempDir.ForConcat", recursive = TRUE) #' unlink("TempDir.ForConcat2", recursive = TRUE) #' #' } #' #' @export Align.Concat Align.Concat = function(input = NULL, Sp.List.NoDNA = NULL, outputConcat = NULL) { listAli = paste(input, list.files(input), sep = "/") listAl = listAli[grep(".fas", listAli)] if(length(listAl) < length(listAli)) { stop(paste("Other files in non fasta format using '.fas' extension are present in the input folder, only '.fas' alignment files must be present.")) } AlignList = list(1:length(listAl)) SeqName = vector() DFmat = matrix(NA, ncol = 3)[-1, ] i = 1 for (i in 1:length(listAl)) { AlignList[[i]] = seqinr::read.fasta(listAl[i], as.string = TRUE) # Store the alignments in a list. SeqT = vector() k = 1 for (k in 1:length(AlignList[[i]])) SeqT = c(SeqT, gsub(" ", "", AlignList[[i]][[k]][1], fixed = TRUE)) DFmat = rbind(DFmat, cbind(Alignment = rep(i, length(SeqT)), Seq.Name = labels(AlignList[[i]]), Sequences = SeqT)) # Extract the sequence names, the sequences and the numbers of the alignment. } # End for i. Seq.Name.cor = gsub("_R_", "", DFmat[, 2], fixed = TRUE) # Remove the '_R_' pattern when the sequences have been reversed complemented. Seq.Name.cor = gsub(".", "", Seq.Name.cor, fixed = TRUE) # Remove the '.', in the sequence name. Seq.Name.cor = gsub("?", "", Seq.Name.cor, fixed = TRUE) # Remove the '?', in the sequence name. Seq.Name.cor = gsub("-", "", Seq.Name.cor, fixed = TRUE) # Remove the '-', in the sequence name. Seq.Name.cor = gsub("_sp_", "_sp", Seq.Name.cor, fixed = TRUE) # Remove the '_' between sp and the letter or number defining a species not yet assigned a binomial species name. Seq.Name.cor = gsub("_nsp_", "_nsp", Seq.Name.cor, fixed = TRUE) # Remove the '_' between nsp and the letter or number defining a new species not yet assigned a binomial species name. a = strsplit(Seq.Name.cor, "_", fixed = T) # Split the sequence name using '_' to extract the genus and species name. a1 = lapply(a, function(x) x[1]) a2 = lapply(a, function(x) unlist(strsplit(x[2], "|", fixed = T))[1]) Sp.Name = unlist(lapply(seq(1, length(a1)), function(x) paste(a1[x], "_", a2[x], sep = ""))) # Extract the species name as the first two elements of each item in the list. Sp.Name.list = unique(Sp.Name) # The species list present in the different alignments # Include the option to also provide additional species without DNA. if (is.null(Sp.List.NoDNA)) { Sp.DF = as.data.frame(cbind(Sp.Name = Sp.Name.list, PresenceOverall = rep(1, length(Sp.Name.list)))) } else { Sp.List.NoDNA = gsub(" ", "_", Sp.List.NoDNA, fixed = TRUE) # Remove the spaces in the species names, for additional species without DNA. Sp.List.NoDNA = gsub(".", "", Sp.List.NoDNA, fixed = TRUE) # Same syntax correction for the sequence name. Sp.List.NoDNA = gsub("?", "", Sp.List.NoDNA, fixed = TRUE) Sp.List.NoDNA = gsub("-", "", Sp.List.NoDNA, fixed = TRUE) Sp.List.NoDNA = gsub("_sp_", "_sp", Sp.List.NoDNA, fixed = TRUE) Sp.List.NoDNA = gsub("_nsp_", "_nsp", Sp.List.NoDNA, fixed = TRUE) Sp.DF = as.data.frame(cbind(Sp.Name = c(Sp.Name.list, Sp.List.NoDNA), PresenceOverall = rep(1, length(c(Sp.Name.list, Sp.List.NoDNA))))) } # Large table storing all the sequences for all the alignments of interest. DFmat2 = as.data.frame(cbind(Alignment = DFmat[, 1], Sp.Name = Sp.Name, Seq.Name.cor, Sequences = DFmat[, 3])) # include the species name for each sequence. # Prepare the nexus extension of the file names. listAl.nexus = gsub(".fas", ".nex", listAl, fixed = TRUE) # Prepare the supermatrix. SuperMat = matrix(NA, ncol = 1)[-1, ] # Create an alignment with all the species when considering all the alignments # together. i = 1 for (i in 1:length(unique(DFmat2[, 1]))) { DFtemp = DFmat2[which(DFmat2[, 1] == i), ] # Select the alignment AlignTemp = merge(Sp.DF, DFtemp, by.x = 1, by.y = 2, all.x = TRUE) AlignTemp = as.matrix(AlignTemp) # Convert into a matrix # Test is mutliple sequences per species are present in the alignment if(dim(AlignTemp)[1]>dim(Sp.DF)[1]) { stop(paste("The alignment ", listAl[i], " certainly contains multiple sequences for the same species: to be concatenated at the species level, only one sequence per species per alignment must be provided!")) } AlignTemp[which(is.na(AlignTemp[, 4]) == "TRUE"), 5] <- paste(rep("-", nchar(as.character(DFtemp[1, 4]))), collapse = "") # Replace the empty sequence by a long string of '----' AlignTemp[which(is.na(AlignTemp[, 4]) == "TRUE"), 4] = as.character(AlignTemp[which(is.na(AlignTemp[, 4]) == "TRUE"), 1]) # Replace the sequence name of the empty sequence by the species name. # Feed the supermatrix. SuperMat = cbind(SuperMat, AlignTemp[, 5]) # Create a nexus file including those empty sequences. NBChar = nchar(as.character(AlignTemp[1, 5])) cat(file = listAl.nexus[i], "#NEXUS", "\n", "\n", "BEGIN DATA;", "\n", "\t", paste("DIMENSIONS NTAX=", dim(AlignTemp)[1], sep = ""), paste(" NCHAR=", NBChar, ";", sep = ""), sep = "", append = TRUE) cat(file = listAl.nexus[i], "\n", "\t", "FORMAT DATATYPE=DNA GAP=-;", "\n", "MATRIX", "\n", sep = "", append = T) utils::write.table(AlignTemp[, c(4, 5)], file = listAl.nexus[i], sep = "\t", append = TRUE, col.names = FALSE, row.names = FALSE, quote = FALSE) cat(file = listAl.nexus[i], "\t", ";", "\n", "END;", sep = "", append = TRUE) } ## End for i # Create a large supermatrix. concat = vector() i = 1 for (i in 1:dim(SuperMat)[1]) { concat = c(concat, paste(SuperMat[i, ], collapse = "")) # Concatenate the different alignments in one long sequence. } SuperMatDF = cbind(sort(as.character(Sp.DF[, 1])), concat) # Add the species name for all the sequences, and order the sequences alphabetically to match the species names in the supermatrix. # Create the nexus file for the supermatrix. NBChar = nchar(as.character(concat[1])) b = unlist(strsplit(listAl.nexus[1], "/", fixed = TRUE)) # ConcatName = paste(paste(b[-length(b)], collapse = "/"), "Concat.nex", sep = "/") # If the option outputConcat is null, the name of the concat will be "Concat" if(is.null(outputConcat)){ ConcatName = paste(paste(b[-length(b)], collapse = "/"), "Concat.nex", sep = "/") } else { ConcatName = paste(outputConcat, ".nex", sep="") } cat(file = ConcatName, "#NEXUS", "\n", "\n", "BEGIN DATA;", "\n", "\t", paste("DIMENSIONS NTAX=", dim(SuperMatDF)[1], sep = ""), paste(" NCHAR=", NBChar, ";", sep = ""), sep = "", append = TRUE) cat(file = ConcatName, "\n", "\t", "FORMAT DATATYPE=DNA GAP=-;", "\n", "MATRIX", "\n", sep = "", append = TRUE) utils::write.table(SuperMatDF, file = ConcatName, sep = "\t", append = TRUE, col.names = FALSE, row.names = FALSE, quote = FALSE) cat(file = ConcatName, "\t", ";", "\n", "END;", sep = "", append = TRUE) # Create a fasta file for the supermatrix. Seq.name.seq = paste(paste(">", SuperMatDF[, 1], sep = ""), SuperMatDF[, 2], sep = "+++") FastaAlign = unlist(strsplit(Seq.name.seq, "+++", fixed = TRUE)) if(is.null(outputConcat)){ ConcatName = paste(paste(b[-length(b)], collapse = "/"), "Concat.fas", sep = "/") } else { ConcatName = paste(outputConcat, ".fas", sep="") } write(FastaAlign, file = ConcatName) # write the alignemnt GeneName=gsub(".fas", "", unlist(lapply(strsplit(listAl, "_"), function(x) x[length(x)])), fixed=TRUE) # Create a partition file for RAxML identifying the beginning and the end of each # gene region. genelength = vector() i = 1 for (i in 1:dim(SuperMat)[2]) { genelength = c(genelength, nchar(as.character(SuperMat[1, i]))) } LimSup = cumsum(genelength) # Upper limit of the gene region. liminf = c(1, LimSup[-length(LimSup)] + 1) # Lower limit of the gene region. # Print the partition file (compatible with RAxML), and a conversion table providing information between the code of the gene region used by # PartitionFinder2 and the true name of the gene region. convtab=matrix(NA, ncol=2)[-1,] i = 1 for (i in 1:dim(SuperMat)[2]) { cat(file = paste(paste(b[-length(b)], collapse = "/"), "Partitions_Concat.txt", sep = "/"), "DNA, gene", i, " = ", liminf[i], "-", LimSup[i], "\n", sep = "", append = TRUE) convtab = rbind(convtab, c(paste("gene", i, sep = ""), GeneName[i])) } colnames(convtab) = c("Name.PartitionFinder2", "Common.Gene.Name") utils::write.table(convtab, file=paste(input, "/convtab.txt", sep=""), sep="\t", row.names=FALSE) return(convtab) } # End of the function.
f1507a4bd6840fb41fc6b70b240e9d8c8f319b58
c673605e54dd80c63433796bed3e71e74a4409ca
/svd/svd_i.R
c128c385d10767fab222ce33600bb83f01473e35
[ "BSD-3-Clause" ]
permissive
hu17889/R_ALGO
fca739aa2fdb02077e81f02c1ec2506343f012bc
944010d874e027c20acfb218947735152c4421cf
refs/heads/master
2020-05-16T22:44:15.310226
2014-10-23T09:50:52
2014-10-23T09:50:52
null
0
0
null
null
null
null
UTF-8
R
false
false
1,252
r
svd_i.R
#!/usr/bin/env Rscript # 非完全增量学习算法,非稀疏矩阵 r = 4 # 隐式特征数 nr = 6 # 用户数 nc = 4 # 物品数 # 真实值矩阵 inputdata = matrix(c(5,5,0,5,5,0,3,4,3,4,0,3,0,0,5,3,5,4,4,5,5,4,5,5), nrow = nr, ncol = nc, byrow = TRUE) # 初始化分解矩阵 U = matrix(seq(1,24),nrow=r,ncol=nr) M = matrix(2,nrow=r,ncol=nc) # 初始化正则化系数与迭代步长 ku = 0.05 km = 0.05 u = 0.003 iter = 1 repeat { print(paste("---iter ",iter,"---")) iter = iter + 1 for(i in c(1:nr)) { # Ui的迭代差值矩阵 t = matrix(0,nrow=r,ncol=nc) for(j in c(1:nc)) { t[,j] = (inputdata[i,j] - t(U[,i]) %*% M[,j]) * M[,j] } du = rowSums(t) - ku * U[,i] U[,i] = U[,i] + u * du # M矩阵的迭代差值矩阵 dm = matrix(0,nrow=r,ncol=nc) for(j in c(1:nc)) { t = (inputdata[i,j] - t(U[,i]) %*% M[,j]) * U[,i] dm[,j] = t - km * M[,j] } M = M + u * dm } # 判断迭代结束 RMSE = sqrt(sum((inputdata - t(U)%*%M)^2)/(nr*nc)) if(is.infinite(RMSE)) break if(abs(RMSE)<0.01) break print("du:") print(du) print("dm:") print(dm) print("U:") print(U) print("M:") print(M) print("U*M:") print(t(U)%*%M) print(paste("RMSE:",RMSE)) }
beb20afdae7219906b561e105d7825065df88f0e
9aafde089eb3d8bba05aec912e61fbd9fb84bd49
/codeml_files/newick_trees_processed/5976_6/rinput.R
105728d07d81490d552f0ba75325d541e4bb9e35
[]
no_license
DaniBoo/cyanobacteria_project
6a816bb0ccf285842b61bfd3612c176f5877a1fb
be08ff723284b0c38f9c758d3e250c664bbfbf3b
refs/heads/master
2021-01-25T05:28:00.686474
2013-03-23T15:09:39
2013-03-23T15:09:39
null
0
0
null
null
null
null
UTF-8
R
false
false
135
r
rinput.R
library(ape) testtree <- read.tree("5976_6.txt") unrooted_tr <- unroot(testtree) write.tree(unrooted_tr, file="5976_6_unrooted.txt")
79c998eff8d20edab3c23a600fa7d9060b041bcd
2d8189185b86d69b097565649f18df45945717f5
/SLA Scripts/PApr 2007_SLA.R
20a277f697bef65c6cf6762adc1bea742fa50e54
[]
no_license
eherdter/r-work
e2b9035e6098c06983b198de3674e535cbc04458
8f429408d89d9b7dfe8146b1d3b22a65af5e2780
refs/heads/master
2021-01-16T18:27:47.789159
2015-03-18T17:18:33
2015-03-18T17:18:33
30,160,696
0
0
null
null
null
null
UTF-8
R
false
false
4,427
r
PApr 2007_SLA.R
library(maps) library(spam) library(fields) library(chron) library(ncdf) SSH_4_07 = open.ncdf("dt_global_allsat_msla_h_y2007_m04.nc") lats = get.var.ncdf(SSH_4_07, "lat") ## the latsU correspond to the sla lats and longs lons = get.var.ncdf(SSH_4_07, "lon") ###### for June 2006 #### # for stations 31, 10-40, PC1120, PC1140, WBSL1040- lats and longs are ~ 29.125(477), 271.124(1085) SSH_4_07_A =get.var.ncdf(SSH_4_07, "sla", start= c(1085,477,1), count=c(1,1,1)) # for stations 14, 4-40, BR0440 - lats and longs are ~ 28.1259(473), 275.625(1103) SSH_4_07_B = get.var.ncdf(SSH_4_07, "sla", start=c(1103, 473, 1), count= c(1,1,1)) # for stations 36, PC1320- lats and longs are ~ 28.625(475) , 269.375(1078) SSH_4_07_C = get.var.ncdf(SSH_4_07, "sla", start=c(1078, 475, 1), count= c(1,1,1)) # for stations 38, PC1340, lats and longs ~ 28.125(473) and 269.4155(1078) SSH_4_07_D = get.var.ncdf(SSH_4_07, "sla", start=c(1078, 473, 1), count= c(1,1,1)) # for station 58 ~ 475, 1073 SSH_4_07_E = get.var.ncdf(SSH_4_07, "sla", start=c(1073, 475, 1), count= c(1,1,1)) # for station BR3440, (472, 1103) SSH_4_07_F = get.var.ncdf(SSH_4_07, "sla", start=c(1103, 472, 1), count= c(1,1,1)) #for station PC0610 and PC0620, ~ (478, 1098) SSH_4_07_G = get.var.ncdf(SSH_4_07, "sla", start=c(1098, 478, 1), count= c(1,1,1)) # for PC1220, 33, 34, (476,1083) SSH_4_07_H = get.var.ncdf(SSH_4_07, "sla", start=c(1083, 476, 1), count= c(1,1,1)) #for PC1320, He265, 37 ~ (474, 1078) SSH_4_07_I = get.var.ncdf(SSH_4_07, "sla", start=c(1078, 474, 1), count= c(1,1,1)) # For PC1520 ~ (479, 1087) SSH_4_07_J = get.var.ncdf(SSH_4_07, "sla", start=c(1087, 479, 1), count= c(1,1,1)) #For PC81460 (479, 1091) SSH_4_07_K = get.var.ncdf(SSH_4_07, "sla", start=c(1091, 479, 1), count= c(1,1,1)) # For BOR0340 (471, 1104) SSH_4_07_L = get.var.ncdf(SSH_4_07, "sla", start=c(1104, 471, 1), count= c(1,1,1)) # for BR0320 (471, 1107) SSH_4_07_M = get.var.ncdf(SSH_4_07, "sla", start=c(1107, 471, 1), count= c(1,1,1)) #For 82 (472, 1102) SSH_4_07_N = get.var.ncdf(SSH_4_07, "sla", start=c(1102, 472, 1), count= c(1,1,1)) # For WB16150 (475, 1080) SSH_4_07_O = get.var.ncdf(SSH_4_07, "sla", start=c(1080, 475, 1), count= c(1,1,1)) For #51 (476, 1080) SSH_4_07_P = get.var.ncdf(SSH_4_07, "sla", start=c(1080, 476, 1), count= c(1,1,1)) # for 16 (476, 1100) SSH_4_07_Q = get.var.ncdf(SSH_4_07, "sla", start=c(1100, 476, 1), count= c(1,1,1)) # For 15 (476,1101) SSH_4_07_R = get.var.ncdf(SSH_4_07, "sla", start=c(1101, 476, 1), count= c(1,1,1)) #For 28 (477, 1086) SSH_4_07_S = get.var.ncdf(SSH_4_07, "sla", start=c(1086, 477, 1), count= c(1,1,1)) SSH_4_07_T = get.var.ncdf(SSH_4_07, "sla", start=c(1102, 477, 1), count= c(1,1,1)) #for Br 4/5 10 (477 1105) SSH_4_07_U = get.var.ncdf(SSH_4_07, "sla", start=c(1105, 477, 1), count= c(1,1,1)) # for 27, PC1020 (478, 1086) SSH_4_07_V = get.var.ncdf(SSH_4_07, "sla", start=c(1086, 478, 1), count= c(1,1,1)) # for PC1010 (479,1086) SSH_4_07_W = get.var.ncdf(SSH_4_07, "sla", start=c(1086, 479, 1), count= c(1,1,1)) # for PC0920 (479, 1088) SSH_4_07_X = get.var.ncdf(SSH_4_07, "sla", start=c(1088, 479, 1), count= c(1,1,1)) # For PC0910 (480, 1088) SSH_4_07_Y = get.var.ncdf(SSH_4_07, "sla", start=c(1088, 480, 1), count= c(1,1,1)) # for PC1420 (480,1091) SSH_4_07_Z = get.var.ncdf(SSH_4_07, "sla", start=c(1091, 480, 1), count= c(1,1,1)) # For WBSL840 (480, 1092) SSH_4_07_AA = get.var.ncdf(SSH_4_07, "sla", start=c(1092, 480, 1), count= c(1,1,1)) # for PC0720 (481, 1095) SSH_4_07_BB = get.var.ncdf(SSH_4_07, "sla", start=c(1095, 481, 1), count= c(1,1,1)) # for PC1510 (481, 1087) SSH_4_07_CC = get.var.ncdf(SSH_4_07, "sla", start=c(1087, 481, 1), count= c(1,1,1)) #for PC0710 (482, 1096) SSH_4_07_DD = get.var.ncdf(SSH_4_07, "sla", start=c(1096, 482, 1), count= c(1,1,1)) letters = c("A", "B", "C", "D","E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z", "AA", "BB", "CC", "DD") mat_4_07= c(SSH_4_07_A, SSH_4_07_B, SSH_4_07_C, SSH_4_07_D, SSH_4_07_E, SSH_4_07_F, SSH_4_07_G, SSH_4_07_H, SSH_4_07_I, SSH_4_07_J, SSH_4_07_K, SSH_4_07_L, SSH_4_07_M, SSH_4_07_N, SSH_4_07_O, SSH_4_07_P, SSH_4_07_Q, SSH_4_07_R, SSH_4_07_S, SSH_4_07_T, SSH_4_07_U, SSH_4_07_V, SSH_4_07_W, SSH_4_07_X, SSH_4_07_Y, SSH_4_07_Z, SSH_4_07_AA, SSH_4_07_BB, SSH_4_07_CC, SSH_4_07_DD) mat_4_07 <- data.frame(cbind(letters, mat_4_07))
56602d168e793500d254e414ed2a4afd1219dfc4
d6bd873a9b74236be1b016a496acaec69c0ee066
/man/modelList.Rd
c16827f6b8025781a23adf31c3660a2bcb3d4fd9
[]
no_license
BenRollert/ensembler
4bd6be615f83546f3cf67d2ecd3210bd5117b36a
cda6a8e12dcfb6b68750044d71e4806ac2da1acc
refs/heads/master
2020-07-14T10:20:56.287335
2015-05-22T22:12:35
2015-05-22T22:12:35
35,344,162
0
0
null
null
null
null
UTF-8
R
false
false
789
rd
modelList.Rd
% Generated by roxygen2 (4.1.0): do not edit by hand % Please edit documentation in R/model_func.R \name{modelList} \alias{modelList} \title{Create a list of caret train objects trained on multiple Domino instances.} \usage{ modelList(dataset, models) } \arguments{ \item{dataset}{A character string specifying the name of the dataset you are training the models on.} \item{models}{Character string vector specifying the names of the models you wish to load.} } \value{ a list of class "ensemble" containing caret train objects. } \description{ Assumes caret train objects are downloaded as .Rda files to a single machine. Loads Rda files and returns all caret models in a single list. } \examples{ models <- c("nnet", "rf", "gbm") modelList(dataset = "BreastCancer", models = models) }
bc634b4dd1fceb29146b38fde92cbda776f9a766
98c29220391a8fc864ba394536c6cde766dc8ecd
/standard_eqtl_calling/visualize_banovich_chrom_hmm_enrichment_analysis.R
105872cab79925b0d03cfe5be1fed09d64d78b46
[]
no_license
BennyStrobes/ipsc_cardiomyocyte_differentiation
175d2a86b07e6027a343b79376a07eba7941607a
6f6ac227df5f7ea2cc9e89563447d429aae2eeb5
refs/heads/master
2021-07-11T07:09:15.169745
2020-07-02T15:37:54
2020-07-02T15:37:54
156,638,838
3
0
null
null
null
null
UTF-8
R
false
false
9,105
r
visualize_banovich_chrom_hmm_enrichment_analysis.R
args = commandArgs(trailingOnly=TRUE) library(ggplot2) library(ggthemes) library(cowplot) library(reshape) load_in_odds_ratios <- function(file_name, adding_constant) { aa <- read.table(file_name,header=TRUE) real_overlaps <- as.numeric(aa$real_overlaps) + adding_constant real_misses <- as.numeric(aa$real_misses) + adding_constant perm_overlaps <- as.numeric(aa$perm_overlaps) + adding_constant perm_misses <- as.numeric(aa$perm_misses) + adding_constant odds_ratios <- (real_overlaps/real_misses)/(perm_overlaps/perm_misses) return(odds_ratios) } odds_ratio_cell_line_specific_boxplot <- function(ipsc_early_or, ipsc_late_or, cardio_early_or, cardio_late_or, ipsc_change_or, cardio_change_or, output_file, marker_type) { odds_ratios <- c() roadmap_cell_types <- c() dynamic_qtl_versions <- c() odds_ratios <- c(odds_ratios, ipsc_early_or) roadmap_cell_types <- c(roadmap_cell_types, rep("ipsc", length(ipsc_early_or))) dynamic_qtl_versions <- c(dynamic_qtl_versions, rep("early_qtl", length(ipsc_early_or))) odds_ratios <- c(odds_ratios, ipsc_late_or) roadmap_cell_types <- c(roadmap_cell_types, rep("ipsc", length(ipsc_late_or))) dynamic_qtl_versions <- c(dynamic_qtl_versions, rep("late_qtl", length(ipsc_late_or))) odds_ratios <- c(odds_ratios, cardio_early_or) roadmap_cell_types <- c(roadmap_cell_types, rep("heart", length(cardio_early_or))) dynamic_qtl_versions <- c(dynamic_qtl_versions, rep("early_qtl", length(cardio_early_or))) odds_ratios <- c(odds_ratios, cardio_late_or) roadmap_cell_types <- c(roadmap_cell_types, rep("heart", length(cardio_early_or))) dynamic_qtl_versions <- c(dynamic_qtl_versions, rep("late_qtl", length(cardio_late_or))) odds_ratios <- c(odds_ratios, ipsc_change_or) roadmap_cell_types <- c(roadmap_cell_types, rep("ipsc", length(ipsc_change_or))) dynamic_qtl_versions <- c(dynamic_qtl_versions, rep("change_qtl", length(ipsc_change_or))) odds_ratios <- c(odds_ratios, cardio_change_or) roadmap_cell_types <- c(roadmap_cell_types, rep("heart", length(cardio_change_or))) dynamic_qtl_versions <- c(dynamic_qtl_versions, rep("change_qtl", length(cardio_change_or))) df <- data.frame(odds_ratio=odds_ratios,roadmap_cell_type=factor(roadmap_cell_types,levels=c("ipsc","heart")), qtl_version=factor(dynamic_qtl_versions)) # PLOT boxplot <- ggplot(df, aes(x=roadmap_cell_type,y=odds_ratio,fill=qtl_version)) + geom_boxplot() + labs(x = "Roadmap Cell Type", y = "Odds Ratio", title= marker_type) boxplot <- boxplot + theme(text = element_text(size=18)) boxplot <- boxplot + geom_hline(yintercept = 1.0) boxplot <- boxplot boxplot <- boxplot ggsave(boxplot, file=output_file,width = 20,height=10.5,units="cm") } all_available_enrichments_boxplot <- function(cre, cell_lines, adding_constant, num_permutations, input_root, output_file, title) { odds_ratios <- c() roadmap_cell_types <- c() for (cell_line_counter in 1:length(cell_lines)) { cell_line <- cell_lines[cell_line_counter] input_file <- paste0(input_root, cell_line, "_cell_lines_", cre, "_", num_permutations, "_enrich.txt") or <- load_in_odds_ratios(input_file, adding_constant) odds_ratios <- c(odds_ratios, or) roadmap_cell_types <- c(roadmap_cell_types, rep(cell_line, length(or))) } df <- data.frame(odds_ratio=odds_ratios,roadmap_cell_type=factor(roadmap_cell_types,levels=c("all", "ipsc", "heart", "ipsc_only", "heart_only", "heart_and_ipsc"))) # PLOT boxplot <- ggplot(df, aes(x=roadmap_cell_type,y=odds_ratio)) + geom_boxplot() + labs(x = "Roadmap Cell Type", y = "Odds Ratio", title= title) boxplot <- boxplot + theme(text = element_text(size=18)) boxplot <- boxplot + geom_hline(yintercept = 1.0) boxplot <- boxplot boxplot <- boxplot ggsave(boxplot, file=output_file,width = 26,height=10.5,units="cm") } all_hits_enrichments_boxplot <- function(cre, cell_lines, hits_versions, adding_constant, num_permutations, input_root, output_file, marker_type) { odds_ratios <- c() roadmap_cell_types <- c() dynamic_qtl_versions <- c() for (cell_line_counter in 1:length(cell_lines)) { for (hits_version_counter in 1:length(hits_versions)) { cell_line <- cell_lines[cell_line_counter] hits_version <- hits_versions[hits_version_counter] input_file <- paste0(input_root, cre, "_", cell_line, "_cell_lines_", hits_version,"_hits_", num_permutations, "_",cluster_assignment, ".txt" ) or <- load_in_odds_ratios(input_file, adding_constant) odds_ratios <- c(odds_ratios, or) roadmap_cell_types <- c(roadmap_cell_types, rep(cell_line, length(or))) dynamic_qtl_versions <- c(dynamic_qtl_versions, rep(hits_version, length(or))) } } df <- data.frame(odds_ratio=odds_ratios,roadmap_cell_type=factor(roadmap_cell_types,levels=c("all", "ipsc", "heart", "ipsc_only", "heart_only", "heart_and_ipsc")), qtl_version=factor(dynamic_qtl_versions)) # PLOT boxplot <- ggplot(df, aes(x=roadmap_cell_type,y=odds_ratio,fill=qtl_version)) + geom_boxplot() + labs(x = "Roadmap Cell Type", y = "Odds Ratio", title= marker_type) boxplot <- boxplot + theme(text = element_text(size=18)) boxplot <- boxplot + geom_hline(yintercept = 1.0) boxplot <- boxplot + theme(legend.position="none") boxplot <- boxplot ggsave(boxplot, file=output_file,width = 26,height=10.5,units="cm") } only_all_enrichment_boxplot <- function(cell_line, adding_constant, num_permutations, input_root, output_file, title) { odds_ratios <- c() cre_version <- c() cre <- "promotor" input_file <- paste0(input_root, cell_line, "_cell_lines_", cre, "_", num_permutations, "_enrich.txt") or <- load_in_odds_ratios(input_file, adding_constant) odds_ratios <- c(odds_ratios, or) cre_version <- c(cre_version, rep(cre, length(or))) cre <- "enhancer" input_file <- paste0(input_root, cell_line, "_cell_lines_", cre, "_", num_permutations, "_enrich.txt") or <- load_in_odds_ratios(input_file, adding_constant) odds_ratios <- c(odds_ratios, or) cre_version <- c(cre_version, rep(cre, length(or))) df <- data.frame(odds_ratio=odds_ratios, cre_type=factor(cre_version)) # PLOT boxplot <- ggplot(df, aes(x=cre_type,y=odds_ratio,fill=cre_type)) + geom_boxplot() + labs(x = "CRE Type", y = "Odds Ratio",title=title) boxplot <- boxplot + theme(text = element_text(size=18)) boxplot <- boxplot + geom_hline(yintercept = 1.0) boxplot <- boxplot + theme(legend.position="none") boxplot <- boxplot ggsave(boxplot, file=output_file,width = 15,height=10.5,units="cm") } input_directory <- args[1] visualization_directory <- args[2] num_permutations <- args[3] cell_line <- "all" adding_constant <- 0 output_file <- paste0(visualization_directory, "banovich_ipsc_prom_enh_all_enrichments_num_perm_", num_permutations, "_odds_ratios.png") only_all_enrichment_boxplot(cell_line, adding_constant, num_permutations, paste0(input_directory, "banovich_ipsc_"), output_file, "banovich_ipsc") cell_line <- "all" adding_constant <- 0 output_file <- paste0(visualization_directory, "banovich_cm_prom_enh_all_enrichments_num_perm_", num_permutations, "_odds_ratios.png") only_all_enrichment_boxplot(cell_line, adding_constant, num_permutations, paste0(input_directory, "banovich_cm_"), output_file, "banovich_cm") cell_lines <- c("all", "ipsc", "heart", "ipsc_only", "heart_only", "heart_and_ipsc") adding_constant <- 1 ######################## # Promoter ######################## cre <- "promotor" output_file <- paste0(visualization_directory, "banovich_ipsc_",cre,"_num_perm_",num_permutations,"_odds_ratios.png") all_available_enrichments_boxplot(cre, cell_lines, adding_constant, num_permutations, paste0(input_directory, "banovich_ipsc_"), output_file, "banovich_ipsc promotor") ######################## # Enhancer ######################## cre <- "enhancer" output_file <- paste0(visualization_directory, "banovich_ipsc_",cre,"_num_perm_",num_permutations,"_odds_ratios.png") all_available_enrichments_boxplot(cre, cell_lines, adding_constant, num_permutations, paste0(input_directory, "banovich_ipsc_"), output_file, "banovich_ipsc enhancer") ######################## # Promoter ######################## cre <- "promotor" output_file <- paste0(visualization_directory, "banovich_cm_",cre,"_num_perm_",num_permutations,"_odds_ratios.png") all_available_enrichments_boxplot(cre, cell_lines, adding_constant, num_permutations, paste0(input_directory, "banovich_cm_"), output_file, "banovich_cm promotor") ######################## # Enhancer ######################## cre <- "enhancer" output_file <- paste0(visualization_directory, "banovich_cm_",cre,"_num_perm_",num_permutations,"_odds_ratios.png") all_available_enrichments_boxplot(cre, cell_lines, adding_constant, num_permutations, paste0(input_directory, "banovich_cm_"), output_file, "banovich_cm enhancer")
0617135564a1868fd5455e7e73ea8cd74f4a06f0
9e835c1f388bfbb3cdfbacf7a99ac54ba1215857
/PEGASUS/analysis code.R
d4c900b7fb555108838c2849dbe39e86ba78c5f5
[]
no_license
yizhenxu/Reinforcement-Learning
efcf1da09a13c8b623dfd34b61c6ee369f8ed9c4
9751e0dd8dfb01ba80513cad72e667e22bbc3ba1
refs/heads/master
2021-08-23T12:26:41.276211
2017-12-04T22:30:01
2017-12-04T22:30:01
113,102,399
0
0
null
null
null
null
UTF-8
R
false
false
3,028
r
analysis code.R
# change the probability of each direction to 0.225, so it is 0.9 prob for g(s,a,p) to use a library("Rcpp") library("RcppArmadillo") library("parallel") sourceCpp("~/codefoo.cpp") map = matrix(0,5,5) map[5,1] = 1 # start S map[1,5] = 2 # end G # 1up: i-1,j # 2left: i,j-1 # 3down: i+1,j # 4right: i,j+1 action.value = cbind(c(-1,0,1,0),c(0,-1,0,1)) # eachcat was 0.05 in the paper example, P(delta(s,a)) in g(s,a,p) would be 1 - eachcat*4 # location -> type of position #up, left, down, right #i0,j0, , --- 6 # ,j0,i6, --- 3 (S) # , ,i6,j6 --- 8 # , , , --- 0 ->5 #i0, , , --- 4 # ,j0, , --- 2 # , ,i6, --- 1 # , , ,j6 --- 7 #i0, , ,j6 --- 11 (G) # 1,2,3,4,5,6,7,8,11(G) position = function(s){ s.new = s + action.value type = sum(c(4,NA,1,NA,NA,2,NA,7)[s.new %in% c(0,6)]) if(type == 0) type = 5 return(type) } position.matrix = apply( expand.grid(1:5,1:5),1, position) position.matrix = matrix(position.matrix,nrow=5) # define policy class based on position # policy: position -> action 1,2,3,4 # each column corresponds to a position -- 8 positions policy.class = expand.grid(1:4,1:4,1:4,1:4,1:4,1:4,1:4,1:4) gamma = 0.99 H = 100 # number of time steps #mlist # number of simulated sample in each trial #policy.num = 65536 ##################################################### ###Train maxm = 30 eachcat = 0.05 tmp = simplify2array(policy.class) calc_all = function(mlist,eachcat){ plist = matrix(runif(mlist*H), ncol = H)# plist is k specific look = pertrial_c(gamma, plist, tmp, position.matrix, action.value, eachcat ) return(look) } calc_all_rand = function(mlist,eachcat){ plist = matrix(runif(mlist*65536*H), ncol = H)# plist is k specific look = pertrial_rand_c(gamma, plist, tmp, position.matrix, action.value, eachcat ) return(look) } set.seed(1) opt_pi = matrix(NA,nrow = maxm, ncol = 8) for(m in 1:maxm){ res = calc_all(m, eachcat) # 65536 x m VM = apply(res, 1, mean) opt_pi[m,] = tmp[which.max(VM),] } opt_pi_rand = matrix(NA,nrow = maxm, ncol = 8) for(m in 1:maxm){ res = calc_all_rand(m, eachcat) # 65536 x m VM = apply(res, 1, mean) opt_pi_rand[m,] = tmp[which.max(VM),] } # maxm x K K=10000 ptm <- proc.time() randmat = matrix(runif(2*H*maxm*K),ncol=H) opt_pi_mat = rbind(opt_pi, opt_pi_rand) eval = Test_c(K, gamma, opt_pi_mat, position.matrix, action.value, eachcat, randmat) meanPV = apply(eval, 1, mean) proc.time() - ptm save(meanPV,file = paste0("RLProj_K10000_TrainTest_seed1.RData")) setwd("C:\\Users\\Yizhen Xu\\Google Drive\\Desktop\\2015 summer\\Reinforcement learning in HIV\\Project\\project code") load("RLProj_K10000_TrainTest.RData") load("RLProj_K10000_TrainTest_seed1.RData") plot(1:30,meanPV[1:30],type = "o",ylim=c(min(meanPV),-7.5),xlab = "m", ylab="Mean Policy Value",main = "Figure 1b Replication (K=10,000)") lines(1:30,meanPV[31:60],type = "o",col="red") gamma =0.99 VH = function(E) -1*(1-gamma^E)/(1-gamma) abline(h=VH(8)) text(locator(), "red line: random p \n black line: PEGASUS")
29cbdc218e8f45ffcca5c662113aa38bf2fec367
7ca4419b9a542ec7cd796db8b9ccf2828eaec062
/man/Cytosine.Rd
689e0be2e80f3d57a6deb9e6989c2ab182da181b
[]
no_license
danielbraas/ShinyMetab
7d5f3688f3a2f3b5337d4c265104fd4f94ccf001
bd4767d912697f63a29324ec7a7ee981ff109f07
refs/heads/main
2023-02-05T02:59:48.169527
2020-12-29T05:47:58
2020-12-29T05:47:58
325,178,802
0
0
null
null
null
null
UTF-8
R
false
true
338
rd
Cytosine.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/data.R \docType{data} \name{Cytosine} \alias{Cytosine} \title{A character vector of cytosine-related compounds.} \format{ A character vector of length 9. } \usage{ Cytosine } \description{ A character vector of cytosine-related compounds. } \keyword{datasets}
d886387d2cb6f02eb5cfce33b90170158dff920e
6ebc3e12c3bfdd8c34b63c1da3cb10442cf70c3b
/R/commonplot.R
b66565ef47dee3116ab7b239855f427466ae1bcf
[]
no_license
epicentre-msf/rosm
6f8900fcfed4f29bf5a6c532e6c991cce9bc6040
8f417038ccc09d9b00020f673ec6a1ad99ea224a
refs/heads/master
2021-01-22T21:57:53.840997
2017-04-07T15:43:24
2017-04-07T15:43:24
null
0
0
null
null
null
null
UTF-8
R
false
false
1,250
r
commonplot.R
#functions used by both google and osm tile.cachedir <- function(type, cachedir=NULL) { if(is.null(cachedir)) { cachedir <- get_default_cachedir() } safename <- gsub("[^a-zA-z0-9]", "", type$name) folder <- file.path(cachedir, safename) created <- dir.create(folder, showWarnings=FALSE, recursive=TRUE) folder } tile.plotarray <- function(image, box) { graphics::rasterImage(image, box[1,1], box[2,1], box[1,2], box[2,2]) } tile.autozoom <- function(res=150, epsg=4326) { ext <- graphics::par("usr") midy <- mean(c(ext[3], ext[4])) rightmid <- .tolatlon(ext[2], midy, epsg) centermid <- .tolatlon(mean(c(ext[1], ext[2])), midy, epsg) leftmid <- .tolatlon(ext[1], midy, epsg) anglewidth1 <- rightmid[1] - centermid[1] if(anglewidth1 < 0) { anglewidth1 <- anglewidth1+360 } anglewidth2 <- rightmid[1] - centermid[1] if(anglewidth2 < 0) { anglewidth2 <- anglewidth2+360 } anglewidth <- anglewidth1+anglewidth2 #PROBLEMS WITH WIDE EXTENTS LIKE THE WORLD widthin <- graphics::grconvertX(ext[2], from="user", to="inches") - graphics::grconvertX(ext[1], from="user", to="inches") widthpx <- widthin * res zoom = log2((360.0 / anglewidth) * (widthpx / 256.0)) as.integer(floor(zoom)) }
8fb8e16577c0a926adc30279c9b2557b606d49e8
3f436064cd2299140e328117a2c0611281c9691e
/Chapter 2/0-setup.R
5edd89887efb619869e9d54ef50cab5cbd99305d
[]
no_license
ZhangWS/dissertation
deb9e7f7bd1fd945c0266c1db27073e02f93e7bb
be9761f1c0ed5d05e8c377438c9407eeffee3102
refs/heads/master
2020-03-19T15:35:50.447168
2019-02-05T23:54:53
2019-02-05T23:54:53
136,677,561
1
0
null
null
null
null
UTF-8
R
false
false
1,141
r
0-setup.R
################################## # CHAPTER ONE preliminary setup ################################## #Make sure you run this before embarking on analyses for Sections 1-3 library(foreign) library(dplyr) library(ggplot2) library(reshape2) library(DescTools) library(tidyr) library(lsr) #Read in initial data setwd(".") #make sure your data is in the same directory! d.data <- read.csv("20171120_dissertation_data.csv") attach(d.data) eng <- filter(d.data, Lang == 1) chn <- filter(d.data, Lang == 2) gain <- filter(d.data, Q1Form==1) loss <- filter(d.data, Q1Form==2) #Basic Data Ex nrow(d.data) #477 respondents table(Q52_Age) mean(Q52_Age, na.rm=T) #20.16 years sd(Q52_Age, na.rm=T) #1.51 years median(Q52_Age, na.rm=T) #20 table(Q53_Gender) #107 males, 364 females table(Q54_Education) #Language ability - MSM proficiency sum(!is.na(chn$Q58_Chinese_ability)) #224 mean(chn$Q58_Chinese_ability, na.rm=T) sd(chn$Q58_Chinese_ability, na.rm=T) #1.38 #English Proficiency sum(!is.na(eng$Q58_Chinese_ability)) #98 responses mean(eng$Q58_Chinese_ability, na.rm=T) #7.34 sd(eng$Q58_Chinese_ability, na.rm=T) #2.04#Questions analyzed:
e0f8dbe28bd54d2d06f9e19432c1706036e7da59
1291bf249bff01814610befd45c512580beb9f2f
/man/dyCandlestick.Rd
fc3fedfe6d32e3b7009ed66a5036a89aee3eba17
[]
no_license
pz10/dygraphs
058875bcb7126e1f5056564ae96b225a270d4fb2
a4e3553005a021fbf597b97ed5b9170f37bb611c
refs/heads/master
2021-01-19T14:28:08.771038
2017-03-19T14:37:07
2017-03-19T14:37:07
null
0
0
null
null
null
null
UTF-8
R
false
true
643
rd
dyCandlestick.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/candlestick.R \name{dyCandlestick} \alias{dyCandlestick} \title{Candlestick plotter for dygraph chart} \usage{ dyCandlestick(dygraph, compress = FALSE) } \arguments{ \item{dygraph}{Dygraph to draw chart on} \item{compress}{If true, compress data yearly, quarterly, monthly, weekly or daily according to overall amount of bars and/or current zoom level.} } \value{ Dygraph with specified candlestick plotter } \description{ Draw a candlestick chart. } \examples{ library(xts) data(sample_matrix) library(dygraphs) dygraph(sample_matrix) \%>\% dyCandlestick() }
9da201db0c28c1d76251f17233c8da93f5e8c019
fe254ef6be0bd316d41b6796ef28f1c9e1d5551e
/R/CubeCoord.R
d1af468de3d9c94e9bb315117f5e388284931de0
[]
no_license
matthias-da/robCompositions
89b26d1242b5370d78ceb5b99f3792f0b406289f
a8da6576a50b5bac4446310d7b0e7c109307ddd8
refs/heads/master
2023-09-02T15:49:40.315508
2023-08-23T12:54:36
2023-08-23T12:54:36
14,552,562
8
6
null
2019-12-12T15:20:57
2013-11-20T09:44:25
C++
UTF-8
R
false
false
22,497
r
CubeCoord.R
#' cubeCoord #' #' @name cubeCoord #' @rdname cubeCoord #' @importFrom tidyr unite #' @importFrom tidyr spread #' @importFrom graphics boxplot #' @title Coordinate representation of a compositional cube and of a sample of compositional cubes #' @aliases cubeCoord #' @aliases cubeCoordWrapper #' @importFrom tidyr unite #' @importFrom tidyr spread #' @author Kamila Facevicova #' @references Facevicova, K., Filzmoser, P. and K. Hron (2019) Compositional Cubes: Three-factorial Compositional Data. Under review. #' @description cubeCoord computes a system of orthonormal coordinates of a compositional cube. #' Computation of either pivot coordinates or a coordinate system based on the given SBP is possible. #' #' @param x a data frame containing variables representing row, column and slice factors of the respective compositional cube and variable with the values of the composition. #' @param row.factor name of the variable representing the row factor. Needs to be stated with the quotation marks. #' @param col.factor name of the variable representing the column factor. Needs to be stated with the quotation marks. #' @param slice.factor name of the variable representing the slice factor. Needs to be stated with the quotation marks. #' @param value name of the variable representing the values of the composition. Needs to be stated with the quotation marks. #' @param SBPr an \eqn{I-1\times I} array defining the sequential binary partition of the values of the row factor, where I is the number of the row factor levels. The values assigned in the given step to the + group are marked by 1, values from the - group by -1 and the rest by 0. If it is not provided, the pivot version of coordinates is constructed automatically. #' @param SBPc an \eqn{J-1\times J} array defining the sequential binary partition of the values of the column factor, where J is the number of the column factor levels. The values assigned in the given step to the + group are marked by 1, values from the - group by -1 and the rest by 0. If it is not provided, the pivot version of coordinates is constructed automatically. #' @param SBPs an \eqn{K-1\times K} array defining the sequential binary partition of the values of the slice factor, where K is the number of the slice factor levels. The values assigned in the given step to the + group are marked by 1, values from the - group by -1 and the rest by 0. If it is not provided, the pivot version of coordinates is constructed automatically. #' @param pivot logical, default is FALSE. If TRUE, or one of the SBPs is not defined, its pivot version is used. #' @param print.res logical, default is FALSE. If TRUE, the output is displayed in the Console. #' @details This transformation moves the IJK-part compositional cubes from the simplex into a (IJK-1)-dimensional real space isometrically with respect to its three-factorial nature. #' @keywords multivariate #' @export #' @seealso #' \code{\link{tabCoord}} #' \code{\link{tabCoordWrapper}} #' @return #' \item{Coordinates}{an array of orthonormal coordinates.} #' \item{Grap.rep}{graphical representation of the coordinates. #' Parts denoted by + form the groups in the numerator of the respective computational formula, #' parts - form the denominator and parts . are not involved in the given coordinate.} #' \item{Row.balances}{an array of row balances.} #' \item{Column.balances}{an array of column balances.} #' \item{Slice.balances}{an array of slice balances.} #' \item{Row.column.OR}{an array of row-column OR coordinates.} #' \item{Row.slice.OR}{an array of row-slice OR coordinates.} #' \item{Column.slice.OR}{an array of column-slice OR coordinates.} #' \item{Row.col.slice.OR}{an array of coordinates describing the mutual interaction between all three factors.} #' \item{Contrast.matrix}{contrast matrix.} #' \item{Log.ratios}{an array of pure log-ratios between groups of parts without the normalizing constant.} #' \item{Coda.cube}{cube form of the given composition.} #' \item{Bootstrap}{array of sample means, standard deviations and bootstrap confidence intervals.} #' \item{Cubes}{Cube form of the given compositions.} #' @examples #' ################### #' ### Coordinate representation of a CoDa Cube #' \dontrun{ #' ### example from Fa\v cevicov\'a (2019) #' data(employment2) #' CZE <- employment2[which(employment2$Country == 'CZE'), ] #' #' # pivot coordinates #' cubeCoord(CZE, "Sex", 'Contract', "Age", 'Value') #' #' # coordinates with given SBP #' #' r <- t(c(1,-1)) #' c <- t(c(1,-1)) #' s <- rbind(c(1,-1,-1), c(0,1,-1)) #' #' cubeCoord(CZE, "Sex", 'Contract', "Age", 'Value', r,c,s) #' } cubeCoord <- function(x, row.factor=NULL, col.factor=NULL, slice.factor=NULL, value=NULL, SBPr=NULL, SBPc=NULL, SBPs=NULL, pivot=FALSE, print.res=FALSE) { # Control and subsidiary parameters setting if(is.null(row.factor)) stop('Name of the row factor is not defined!') if(is.null(col.factor)) stop('Name of the column factor is not defined!') if(is.null(slice.factor)) stop('Name of the slice factor is not defined!') if(is.null(value)) stop('Name of the value variable is not defined!') x[,row.factor] <- as.factor(x[,row.factor]) x[,col.factor] <- as.factor(x[,col.factor]) x[,slice.factor] <- as.factor(x[,slice.factor]) I <- nlevels(x[,row.factor]) # number of row factor levels J <- nlevels(x[,col.factor]) # number of column factor levels K <- nlevels(x[,slice.factor]) # number of slice factor levels y <- x[,c(row.factor, col.factor, slice.factor, value)] x_vec <- y[order(y[,1], y[,2], y[,3]),4] # vectorized cube according to Facevicova19 if(!identical(as.numeric(table(x[,c(row.factor, col.factor)])),as.numeric(rep(K,I*J)))) stop('The CoDa Cube x is not defined properly, some values are missing!') if(!is.null(SBPr)&(nrow(SBPr)!= (I-1)||ncol(SBPr)!=I)) {warning('The row SBP is not defined properly, pivot coordinates are used!') SBPr <- NULL} if(!is.null(SBPc)&(nrow(SBPc)!= (J-1)||ncol(SBPc)!=J)) {warning('The column SBP is not defined properly, pivot coordinates are used!') SBPc <- NULL} if(!is.null(SBPs)&(nrow(SBPs)!= (K-1)||ncol(SBPs)!=K)) {warning('The slice SBP is not defined properly, pivot coordinates are used!') SBPs <- NULL} ### Definition of pivot SBP (if necessary) if(is.null(SBPr)||pivot==TRUE) { SBPr <- numeric() for(j in 1:(I-1)) { novy <- c(rep(0,j-1), 1, rep(-1, I-j)) SBPr <- rbind(SBPr, novy) } #print("SBP of row factor is not defined, its pivot version is used!") } rownames(SBPr) <- NULL if(is.null(SBPc)||pivot==TRUE) { SBPc <- numeric() for(j in 1:(J-1)) { novy <- c(rep(0,j-1), 1, rep(-1, J-j)) SBPc <- rbind(SBPc, novy) } #print("SBP of column factor is not defined, its pivot version is used!") } rownames(SBPc) <- NULL if(is.null(SBPs)||pivot==TRUE) { SBPs <- numeric() for(j in 1:(K-1)) { novy <- c(rep(0,j-1), 1, rep(-1, K-j)) SBPs <- rbind(SBPs, novy) } #print("SBP of slice factor is not defined, its pivot version is used!") } rownames(SBPs) <- NULL log_kontrasty <- function(x){ r <- length(which(x==1)) s <- length(which(x==-1)) koef1 <- sqrt((r*s)/(r+s))*(1/r) koef2 <- -sqrt((r*s)/(r+s))*(1/s) log_kontrast <- rep(0, length(x)) log_kontrast[which(x==1)] <- koef1 log_kontrast[which(x==-1)] <- koef2 return(log_kontrast) } norm_const_balance <- function(x){ #based on vector of contrasts r <- length(which(x>0)) s <- length(which(x<0)) koef <- sqrt((r*s)/(r+s)) return(koef) } norm_const_OR <- function(x){ #based on vector of contrasts kladne = table(x[which(x>0)]) celkem = length(which(x!=0)) if(dim(kladne)==2) koef=sqrt((kladne[1]*kladne[2])/celkem) else koef=sqrt((kladne*kladne/4)/celkem) names(koef) = NULL return(koef) } norm_const_ORR <- function(x,y,z){ #based on SBPr, SBPc, SBPs A = length(which(x>0))*length(which(y>0))*length(which(z>0)) H = length(which(x<0))*length(which(y<0))*length(which(z<0)) vse = length(which(x!=0))*length(which(y!=0))*length(which(z!=0)) koef=sqrt(A*H/vse) return(koef) } ### expansion of SBP to the whole table SBPr_cele <- matrix(SBPr[,rep(c(1:I), each=J*K)], ncol=I*J*K) SBPc_cele <- matrix(SBPc[,rep(rep(c(1:J), each=K), I)], ncol=I*J*K) SBPs_cele <- matrix(SBPs[,rep(c(1:K),I*J)], ncol=I*J*K) ### Generating vectors of: # balances LCr <- t(apply(SBPr_cele, 1, FUN=log_kontrasty)) LCc <- t(apply(SBPc_cele, 1, FUN=log_kontrasty)) LCs <- t(apply(SBPs_cele, 1, FUN=log_kontrasty)) # pairwise interaction coordinates OR_deleni_r_c <- NULL for(i in 1:(I-1)) { for(j in 1:(J-1)) { novy <- LCr[i,]*LCc[j,] OR_deleni_r_c <- rbind(OR_deleni_r_c, novy) } } rownames(OR_deleni_r_c) <- NULL OR_deleni_r_s <- NULL for(i in 1:(I-1)) { for(k in 1:(K-1)) { novy <- LCr[i,]*LCs[k,] OR_deleni_r_s <- rbind(OR_deleni_r_s, novy) } } rownames(OR_deleni_r_s) <- NULL OR_deleni_s_c <- NULL for(k in 1:(K-1)) { for(j in 1:(J-1)) { novy <- LCs[k,]*LCc[j,] OR_deleni_s_c <- rbind(OR_deleni_s_c, novy) } } rownames(OR_deleni_s_c) <- NULL # full interaction coordinates OR_deleni_r_c_s <- NULL norm.constants.ORR <- NULL for(i in 1:(I-1)) { for(j in 1:(J-1)) { for(k in 1:(K-1)) { novy <- LCr[i,]*LCc[j,]*LCs[k,] OR_deleni_r_c_s <- rbind(OR_deleni_r_c_s, novy) const.nova <- norm_const_ORR(SBPr[i,],SBPc[j,],SBPs[k,]) norm.constants.ORR <- c(norm.constants.ORR, const.nova) } } } rownames(OR_deleni_r_c_s) <- NULL OR_deleni <- rbind(OR_deleni_r_c, OR_deleni_r_s, OR_deleni_s_c, OR_deleni_r_c_s) ### matrix with generating vectors. Important for the back-transformation! normovani <- function(x){x/(norm(as.matrix(x), type="f"))} OR_contrasts <- t(apply(OR_deleni, 1, FUN=normovani)) contrasts <- rbind(LCr, LCc, LCs, OR_contrasts) coord.names <- c(paste('z', 1:(I-1), '^r', sep=''), paste('z', 1:(J-1), '^c', sep=''), paste('z', 1:(K-1), '^s', sep=''), paste('z', sort(outer(c(1:(I-1)),c(1:(J-1)), FUN=function(x,y)paste(x,y,sep=''))), '^rc', sep=''), paste('z', sort(outer(c(1:(I-1)),c(1:(K-1)), FUN=function(x,y)paste(x,y,sep=''))), '^rs', sep=''), paste('z', sort(outer(c(1:(J-1)),c(1:(K-1)), FUN=function(x,y)paste(x,y,sep=''))), '^cs', sep=''), paste('z', sort(outer(outer(c(1:(I-1)),c(1:(J-1)), FUN=function(x,y)paste(x,y,sep='')),c(1:(K-1)), FUN=function(x,y)paste(x,y,sep=''))), '^rcs', sep='')) rownames(contrasts) <- coord.names colnames(contrasts) <- c(paste('x', sort(outer(outer(c(1:(I)),c(1:(J)), FUN=function(x,y)paste(x,y,sep='')),c(1:(K)), FUN=function(x,y)paste(x,y,sep=''))), sep='')) ### Coordinates souradnice <- contrasts%*%log(x_vec) rownames(souradnice) <- coord.names ### Pure log-ratios between groups of parts (without normalizing constant) norm.constants.balance = apply(contrasts[1:(I+J+K-3), ], 1, norm_const_balance) norm.constants.OR = apply(contrasts[(I+J+K-2):(I*J+I*K+K*J-I-J-K), ], 1, norm_const_OR) # norm. constants for ORR coordinates were already computed with these coordinates norm.constants = c(norm.constants.balance, norm.constants.OR, norm.constants.ORR) log.ratios = souradnice/norm.constants ### Table form of the CoDa table tab0 <- unite(y, slice.factor, col.factor, col='col_slice') tab <- spread(tab0, 'col_slice', value)[,-1] colnames(tab) <- levels(as.factor(tab0[,'col_slice'])) rownames(tab) <- levels(tab0[,row.factor]) ### Graphical representation of groups within table: grap.rep <- list() permutation <- order(tab0[,1]) for(i in 1:nrow(contrasts)) { grap.r <- rep(".",ncol(contrasts)) grap.r[which(contrasts[i,]>0)] <- "+" grap.r[which(contrasts[i,]<0)] <- "-" grap.r <- data.frame(tab0[permutation,c(1,2)], grap.r) grap.r.tab <- spread(grap.r, 'col_slice', grap.r)[,-1] row.names(grap.r.tab) <- levels(tab0[,row.factor]) grap.rep[[i]] <- grap.r.tab } names(grap.rep) <- coord.names ### Result: if(print.res==TRUE) { print("Row balances:") print(souradnice[c(1:(I-1))]) print(grap.rep[c(1:(I-1))]) print("Column balances:") print(souradnice[c(I:(I+J-2))]) print(grap.rep[c(I:(I+J-2))]) print("Slice balances:") print(souradnice[c((I+J-1):(I+J+K-3))]) print(grap.rep[c((I+J-1):(I+J+K-3))]) print("Row and Column odds ratio coordinates:") print(souradnice[c((I+J+K-2):(I*J+K-2))]) print(grap.rep[c((I+J+K-2):(I*J+K-2))]) print("Row and Slice odds ratio coordinates:") print(souradnice[c((I*J+K-1):(I*J+I*K-I-1))]) print(grap.rep[c((I*J+K-1):(I*J+I*K-I-1))]) print("Column and Slice odds ratio coordinates:") print(souradnice[c((I*J+I*K-I):(I*J+I*K+K*J-I-J-K))]) print(grap.rep[c((I*J+I*K-I):(I*J+I*K+K*J-I-J-K))]) print("Row, Column and Slice odds ratio coordinates:") print(souradnice[c((I*J+I*K+K*J-I-J-K+1):(I*J*K-1))]) print(grap.rep[c((I*J+I*K+K*J-I-J-K+1):(I*J*K-1))]) } result <- list("Coordinates"=souradnice, "Grap.rep" = grap.rep, "Row.balances"=souradnice[c(1:(I-1)),1], "Column.balances"=souradnice[c(I:(I+J-2)),1], "Slice.balances"=souradnice[c((I+J-1):(I+J+K-3)),1], "Row.column.OR"=souradnice[c((I+J+K-2):(I*J+K-2)),1], "Row.slice.OR"=souradnice[c((I*J+K-1):(I*J+I*K-I-1)),1], "Column.slice.OR"=souradnice[c((I*J+I*K-I):(I*J+I*K+K*J-I-J-K)),1], "Row.col.slice.OR"=souradnice[c((I*J+I*K+K*J-I-J-K+1):(I*J*K-1)),1], 'Log.ratios'=log.ratios, "Contrast.matrix" = contrasts, 'Coda.cube'=tab) return(result) } #' @rdname cubeCoord #' @param X a data frame containing variables representing row, column and slice factors #' of the respective compositional cubes, variable with the values #' of the composition and variable distinguishing the observations. #' @param obs.ID name of the variable distinguishing the observations. Needs to be stated with the quotation marks. #' @param test logical, default is FALSE. If TRUE, the bootstrap analysis of coordinates is provided. #' @param n.boot number of bootstrap samples. #' @description Wrapper (cubeCoordWrapper): For each compositional cube in the sample cubeCoordWrapper computes #' a system of orthonormal coordinates and provide a simple descriptive analysis. #' Computation of either pivot coordinates or a coordinate system based on the #' given SBP is possible. #' @details Wrapper (cubeCoordWrapper): Each of n IJK-part compositional cubes from the sample is #' with respect to its three-factorial nature isometrically transformed #' from the simplex into a (IJK-1)-dimensional real space. #' Sample mean values and standard deviations are computed and using #' bootstrap an estimate of 95 \% confidence interval is given. #' @export #' @examples #' #' ################### #' ### Analysis of a sample of CoDa Cubes #' \dontrun{ #' ### example from Fa\v cevicov\'a (2019) #' data(employment2) #' ### Compositional tables approach, #' ### analysis of the relative structure. #' ### An example from Facevi\v cov\'a (2019) #' #' # pivot coordinates #' cubeCoordWrapper(employment2, 'Country', 'Sex', 'Contract', 'Age', 'Value', #' test=TRUE) #' #' # coordinates with given SBP (defined in the paper) #' #' r <- t(c(1,-1)) #' c <- t(c(1,-1)) #' s <- rbind(c(1,-1,-1), c(0,1,-1)) #' #' res <- cubeCoordWrapper(employment2, 'Country', 'Sex', 'Contract', #' "Age", 'Value', r,c,s, test=TRUE) #' #' ### Classical approach, #' ### generalized linear mixed effect model. #' #' library(lme4) #' employment2$y <- round(employment2$Value*1000) #' glmer(y~Sex*Age*Contract+(1|Country),data=employment2,family=poisson) #' #' ### other relations within cube (in the log-ratio form) #' ### e.g. ratio between women and man in the group FT, 15to24 #' ### and ratio between age groups 15to24 and 55plus #' #' # transformation matrix #' T <- rbind(c(1,rep(0,5), -1, rep(0,5)), c(rep(c(1/4,0,-1/4), 4))) #' T %*% t(res$Contrast.matrix) %*%res$Bootstrap[,1] #' } cubeCoordWrapper <- function(X, obs.ID=NULL, row.factor=NULL, col.factor=NULL, slice.factor=NULL, value=NULL, SBPr=NULL, SBPc=NULL, SBPs=NULL, pivot=FALSE, test=FALSE, n.boot=1000){ # Control and subsidiary parameters setting if(is.null(obs.ID)) stop('Name of the observation ID variable is not defined!') if(is.null(row.factor)) stop('Name of the row factor is not defined!') if(is.null(col.factor)) stop('Name of the column factor is not defined!') if(is.null(slice.factor)) stop('Name of the slice factor is not defined!') if(is.null(value)) stop('Name of the value variable is not defined!') X[,obs.ID] <- as.factor(X[,obs.ID]) X[,row.factor] <- as.factor(X[,row.factor]) X[,col.factor] <- as.factor(X[,col.factor]) X[,slice.factor] <- as.factor(X[,slice.factor]) N <- nlevels(X[,obs.ID]) I <- nlevels(X[,row.factor]) # number of row factor levels J <- nlevels(X[,col.factor]) # number of column factor levels K <- nlevels(X[,slice.factor]) # number of slice factor levels if(!identical(as.numeric(table(X[,c(row.factor,obs.ID)])),as.numeric(rep(J*K,(I*N))))) stop('The CoDa Cubes are not defined properly, some values are missing!') if(!identical(as.numeric(table(X[,c(col.factor,obs.ID)])),as.numeric(rep(I*K,(J*N))))) stop('The CoDa Cubes are not defined properly, some values are missing!') if(!is.null(SBPr)&(nrow(SBPr)!= (I-1)||ncol(SBPr)!=I)) {warning('The row SBP is not defined properly, pivot coordinates are used!') SBPr <- NULL} if(!is.null(SBPc)&(nrow(SBPc)!= (J-1)||ncol(SBPc)!=J)) {warning('The column SBP is not defined properly, pivot coordinates are used!') SBPc <- NULL} if(!is.null(SBPs)&(nrow(SBPs)!= (K-1)||ncol(SBPs)!=K)) {warning('The slice SBP is not defined properly, pivot coordinates are used!') SBPs <- NULL} Coordinates <- NULL Log.ratios <- NULL Row.balances <- NULL Column.balances <- NULL Slice.balances <- NULL Row.column.OR <- NULL Row.slice.OR <- NULL Column.slice.OR <- NULL Row.col.slice.OR <- NULL Tables <- array(NA, c(nlevels(X[,row.factor]), nlevels(X[,col.factor])*nlevels(X[,slice.factor]), N)) for(i in 1:N) { obs <- which(X[,obs.ID]==levels(X[,obs.ID])[i]) new <- cubeCoord(x=X[obs,], row.factor=row.factor, col.factor=col.factor, slice.factor=slice.factor, value=value, SBPr=SBPr, SBPc=SBPc, SBPs=SBPs, pivot=pivot, print.res=FALSE) Coordinates <- cbind(Coordinates, new$Coordinates) Log.ratios <- cbind(Log.ratios, new$Log.ratios) Row.balances <- cbind(Row.balances, new$Row.balances) Column.balances <- cbind(Column.balances, new$Column.balances) Slice.balances <- cbind(Slice.balances, new$Slice.balances) Row.column.OR <- cbind(Row.column.OR, new$Row.column.OR) Row.slice.OR <- cbind(Row.slice.OR, new$Row.slice.OR) Column.slice.OR <- cbind(Column.slice.OR, new$Column.slice.OR) Row.col.slice.OR <- cbind(Row.col.slice.OR, new$Row.col.slice.OR) Tables[,,i] <- as.matrix(new$Coda.cube) } Coordinates <- t(Coordinates) rownames(Coordinates) <- levels(X[,obs.ID]) colnames(Log.ratios) <- levels(X[,obs.ID]) colnames(Row.balances) <- levels(X[,obs.ID]) colnames(Column.balances) <- levels(X[,obs.ID]) colnames(Slice.balances) <- levels(X[,obs.ID]) colnames(Row.column.OR) <- levels(X[,obs.ID]) colnames(Row.slice.OR) <- levels(X[,obs.ID]) colnames(Column.slice.OR) <- levels(X[,obs.ID]) colnames(Row.col.slice.OR) <- levels(X[,obs.ID]) dimnames(Tables)[[1]] <- levels(X[,row.factor]) dimnames(Tables)[[2]] <- colnames(new$Grap.rep[[1]]) dimnames(Tables)[[3]] <- levels(X[,obs.ID]) res <- list('Coordinates'=Coordinates, 'Log.ratios'=t(Log.ratios), 'Row.balances'=t(Row.balances), 'Column.balances'=t(Column.balances), 'Slice.balances'=t(Slice.balances), 'Row.column.OR'=t(Row.column.OR), 'Row.slice.OR'=t(Row.slice.OR), 'Column.slice.OR'=t(Column.slice.OR), 'Row.col.slice.OR'=t(Row.col.slice.OR), 'Grap.rep'=new$Grap.rep, 'Contrast.matrix'=new$Contrast.matrix, 'Cubes'=Tables ) if(test==TRUE) { # sample characteristics mean <- apply(Coordinates, 2, mean) sd <- apply(Coordinates, 2, sd) #set.seed(123) I <- nlevels(X[,row.factor]) # number of row factor values J <- nlevels(X[,col.factor]) # number of column factor values K <- nlevels(X[,slice.factor]) # number of slice factor values # pocet opakovani bootstrapu opakovani <- n.boot xlab <- c(paste('z', 1:(I-1), '^r', sep=''), paste('z', 1:(J-1), '^c', sep=''), paste('z', 1:(K-1), '^s', sep=''), paste('z', sort(outer(c(1:(I-1)),c(1:(J-1)), FUN=function(x,y)paste(x,y,sep=''))), '^rc', sep=''), paste('z', sort(outer(c(1:(I-1)),c(1:(K-1)), FUN=function(x,y)paste(x,y,sep=''))), '^rs', sep=''), paste('z', sort(outer(c(1:(J-1)),c(1:(K-1)), FUN=function(x,y)paste(x,y,sep=''))), '^cs', sep=''), paste('z', sort(outer(outer(c(1:(I-1)),c(1:(J-1)), FUN=function(x,y)paste(x,y,sep='')),c(1:(K-1)), FUN=function(x,y)paste(x,y,sep=''))), '^rcs', sep='')) boxplot(Coordinates, notch=TRUE, names=xlab) abline(a=0, b=0, lty="dashed") means <- t(replicate(opakovani,apply(Coordinates[sample(N,replace=TRUE),],2,mean))) CIl <- apply(means,2,quantile,0.025) CIu <- apply(means,2,quantile,0.975) Bootstrap <- cbind(mean, sd, CIl, CIu) res <- list('Coordinates'=Coordinates, 'Log.ratios'=t(Log.ratios), 'Row.balances'=t(Row.balances), 'Column.balances'=t(Column.balances), 'Slice.balances'=t(Slice.balances), 'Row.column.OR'=t(Row.column.OR), 'Row.slice.OR'=t(Row.slice.OR), 'Column.slice.OR'=t(Column.slice.OR), 'Row.col.slice.OR'=t(Row.col.slice.OR), 'Grap.rep'=new$Grap.rep, 'Contrast.matrix'=new$Contrast.matrix, 'Cubes'=Tables, 'Bootstrap'=Bootstrap) } return(res) }
d8cef0c611b78ed8bcc99e3851080f9a5141daf3
2b5728585d67ad9f0210a21189459a1515faa72f
/R/fullFact.R
ea42c23f8f6e2b1f7ea8ad2ccba5ed27a4f1c21a
[]
no_license
Matherion/userfriendlyscience
9fb8dd5992dcc86b84ab81ca98d97b9b65cc5133
46acf718d692a42aeebdbe9a6e559a7a5cb50c77
refs/heads/master
2020-12-24T16:35:32.356423
2018-09-25T06:41:14
2018-09-25T06:41:14
49,939,242
15
9
null
2018-11-17T10:34:37
2016-01-19T08:50:54
R
UTF-8
R
false
false
1,324
r
fullFact.R
#' fullFact #' #' This function provides a userfriendly interface to a number of advanced #' factor analysis functions in the \code{\link{psych}} package. #' #' #' @param dat Datafile to analyse; if NULL, a pop-up is provided to select a #' file. #' @param items Which variables (items) to factor-analyse. If NULL, all are #' selected. #' @param rotate Which rotation to use (see \code{\link{psych}} package). #' @return The outcomes, which are printed to the screen unless assigned. #' @author Gjalt-Jorn Peters #' #' Maintainer: Gjalt-Jorn Peters <gjalt-jorn@@userfriendlyscience.com> #' @seealso \code{\link{fa.parallel}}, \code{\link{vss}} #' @keywords univariate #' @examples #' #' \dontrun{ #' ### Not run to save processing during package testing #' fullFact(attitude); #' } #' #' @export fullFact fullFact <- function(dat = NULL, items=NULL, rotate='oblimin') { res <- list(input = as.list(environment()), intermediate = list(), output = list()); if (is.null(dat)) { dat <- getData(); } if (is.null(items)) { items <- names(dat); } res$output$parallel <- fa.parallel(dat[, items]); res$output$vss <- vss(dat[, items], rotate=rotate); class(res) <- 'fullFact'; return(res); } print.fullFact <- function(x, ...) { print(x$output); }
79b0227f06ba17135b49df2df53ffe9cab2b34e9
3838084df843d65746fcdd9a7eb274cd2087aece
/Examples/tracking_debugg.R
1ed2bd42eca82ebbc815bfd7689b1b719b5303a2
[]
no_license
jie108/FOD_Needlets_codes
772b2ff5bbb537725dcafa2b5be8887d6a626ff9
76223d7598941ad1f8e7989715a26fb295ad56e5
refs/heads/master
2020-08-15T21:50:02.140122
2019-10-15T23:10:58
2019-10-15T23:10:58
215,412,811
0
0
null
null
null
null
UTF-8
R
false
false
11,025
r
tracking_debugg.R
rm(list=ls()) library(R.matlab) library(rgl) library(compositions) source("dwi_fit.R") source("dwi_track.R") path_load = '/Users/hao/Dropbox/stats_project/FOD_codes_simulation/Real_data/S110933/fitting/space_indexx108-123y124-139z37-42/' num_fib_cut = 4 temp = readMat(paste0(path_load,'for_tracking_cut',toString(num_fib_cut),'.mat')) v.obj = temp eig = -v.obj$vec loc = v.obj$loc tracks1 <- list() tracks2 <- list() all.pvox <- NULL all.pdir <- NULL all.pdis <- NULL all.ppdis <- NULL n.use.iind <- array(0, dim=length(v.obj$n.fiber2)) n.iinds <- array(0,dim=length(v.obj$n.fiber2)) lens <- array(0, dim=length(v.obj$n.fiber2)) braingrid = temp$braingrid xgrid.sp = temp$xgrid.sp ygrid.sp = temp$ygrid.sp zgrid.sp = temp$zgrid.sp map = temp$map rmap = temp$rmap n.fiber = temp$n.fiber n.fiber2 = temp$n.fiber2 max.line = 100 nproj = 2 thres.ang = 0.5235988 vorient=c(1,1,1) elim = T elim.thres = 1 for (iind in which(v.obj$n.fiber2>0)){ cat(iind,"\n") tracks1[[iind]] <- fiber.track(iind=iind, eig=v.obj$vec, loc=v.obj$loc, map=v.obj$map, rmap=v.obj$rmap, n.fiber=v.obj$n.fiber, xgrid.sp=xgrid.sp, ygrid.sp=ygrid.sp, zgrid.sp=zgrid.sp, braingrid=braingrid, max.line=max.line, nproj=nproj, thres.ang=thres.ang, vorient=vorient) tracks2[[iind]] <- fiber.track(iind=iind, eig=-v.obj$vec, loc=v.obj$loc, map=v.obj$map, rmap=v.obj$rmap, n.fiber=v.obj$n.fiber, xgrid.sp=xgrid.sp, braingrid=braingrid, ygrid.sp=ygrid.sp, zgrid.sp=zgrid.sp, max.line=max.line, nproj=nproj, thres.ang=thres.ang, vorient=vorient) #all.pvox <- c(all.pvox, tracks1[[iind]]$pvox, tracks2[[iind]]$pvox) #all.pdir <- rbind(all.pdir, tracks1[[iind]]$pdir, tracks2[[iind]]$pdir) #all.pdis <- c(all.pdis, tracks1[[iind]]$pdis, tracks2[[iind]]$pdis) #all.ppdis <- c(all.ppdis, tracks1[[iind]]$ppdis, tracks2[[iind]]$ppdis) n.use.iind[tracks1[[iind]]$iinds] <- n.use.iind[tracks1[[iind]]$iinds] + 1 n.use.iind[tracks2[[iind]]$iinds] <- n.use.iind[tracks2[[iind]]$iinds] + 1 n.use.iind[iind] <- n.use.iind[iind] - 1 n.iinds[iind] <- length(union(tracks1[[iind]]$iinds, tracks2[[iind]]$iinds)) lens[iind] <- get.fdis(tracks1[[iind]]$inloc) + get.fdis(tracks2[[iind]]$inloc) if (length(all.pdis)!=length(all.pvox)){ break } } #len.ord <- order(n.iinds, decreasing=T) len.ord <- order(lens, decreasing=T) if (max(lens[n.iinds<=1])> elim.thres){ cat("elim.thres is too small: it should be set at least", max(lens[n.iinds<=1]),"\n") } if (elim){ update.ind <- rep(T, length(v.obj$n.fiber2)) #update.ind[as.logical((v.obj$n.fiber2==0)+(n.use.iind<=elim.thres))] <- F #update.ind[as.logical((v.obj$n.fiber2==0)+(n.iinds<=elim.thres))] <- F update.ind[as.logical((v.obj$n.fiber2==0)+(lens<=elim.thres))] <- F nv.obj <- update.v.obj(v.obj, list(vec=v.obj$vec, update.ind=update.ind))$obj } else { nv.obj <- v.obj update.ind <- rep(T, length(v.obj$n.fiber2)) #update.ind[as.logical((v.obj$n.fiber2==0)+(n.iinds<=elim.thres))] <- F update.ind[as.logical((v.obj$n.fiber2==0)+(lens<=elim.thres))] <- F } sorted.iinds <- (1:length(v.obj$n.fiber2))[len.ord] sorted.update.ind <- update.ind[len.ord] ############################# ## v.track ############################# idx_fiber_track = which(v.obj$n.fiber2>0) iind = idx_fiber_track[1472] iind = 19 cat(iind,"\n") tracks1[[iind]] <- fiber.track(iind=iind, eig=v.obj$vec, loc=v.obj$loc, map=v.obj$map, rmap=v.obj$rmap, n.fiber=v.obj$n.fiber, xgrid.sp=xgrid.sp, ygrid.sp=ygrid.sp, zgrid.sp=zgrid.sp, braingrid=braingrid, max.line=max.line, nproj=nproj, thres.ang=thres.ang, vorient=vorient) tracks2[[iind]] <- fiber.track(iind=iind, eig=-v.obj$vec, loc=v.obj$loc, map=v.obj$map, rmap=v.obj$rmap, n.fiber=v.obj$n.fiber, xgrid.sp=xgrid.sp, ygrid.sp=ygrid.sp, zgrid.sp=zgrid.sp, braingrid=braingrid, max.line=max.line, nproj=nproj, thres.ang=thres.ang, vorient=vorient) ############################# ## fiber.track ############################# braindim <- dim(braingrid)[-1] nvox <- prod(braindim) dimens <- c(xgrid.sp, ygrid.sp, zgrid.sp) path.voxel <- array(dim=max.line) path.dir <- array(dim=c(max.line, 3)) path.in <- array(dim=c(max.line, 3)) path.change <- array(dim=max.line) path.iind <- array(dim=max.line) pass.vox <- NULL pass.dir <- NULL pass.dis <- NULL pass.pdis <- NULL # perpendicular distance iind = 19 # initialization path.voxel[1] <- map[iind] path.dir[1,] <- eig[iind,] path.in[1,] <- loc[iind,] path.change[1] <- T path.iind[1] <- iind ii <- 1 while ((ii<max.line)){ # if (T){ # cat(ii,"\n") # spheres3d(path.in[ii,], radius=0.002, col="red") # } # fio <- fiber.in.out(inc=path.in[ii,]-loc[path.iind[ii],], direct=path.dir[ii,], dimens=dimens) inc = path.in[ii,]-loc[path.iind[ii],] direct=path.dir[ii,] if (sum(dimens==0)){ stop("directions has zero component, not yet supported! Please modify fiber.in.out\n") } # compute the distance of the current fiber directon to each face of the current voxel tempdiff <- (round(cbind(dimens/2-inc,-inc-dimens/2),5)/direct) ## Hao: add round5 cbind(dimens/2-inc,-inc-dimens/2) tempdiff # Hao # tempdiff[tempdiff==Inf]=1e10 tempdiff[tempdiff==-Inf]=Inf # tempdiff[is.nan(tempdiff)]=1e10 # tempdiff[tempdiff==Inf]=1e10 # get which axis is the current fiber direction hitting face of the current voxel first # 1:x 2:y 3:z index1 <- which.min(diag(tempdiff[,2-(direct>=0)])) # Hao change direct>0 to direct>=0 # which direction it is hitting 1:positive 2:negative index <- c(index1, (2-(direct>0))[index1]) const <- tempdiff[index[1],index[2]] outc <- round(inc + const*direct,5) ## Hao: add round5 fio = list(outc=outc,index=as.vector(index)) path.in[ii+1,] <- fio$outc + loc[path.iind[ii],] # for previous pass.dis and pass.pdis, using the previous "change" if ((!path.change[ii])&&(n.fiber[path.voxel[ii]]>0)){ pass.pdis <- c(pass.pdis, dist.line(loc[path.iind[ii],], path.in[ii,], path.in[ii+1,])) pass.dis <- c(pass.dis, sqrt(sum((path.in[ii,]-path.in[ii+1,])^2))) } # determine which voxel it is going to next.vox <- get.out.vox(fio$index, path.voxel[ii], braindim=braindim, vorient=vorient) if (is.na(next.vox)){ break } # determine if we should stop pro.res <- project.proceed(inc0=path.in[ii+1,], vox0=next.vox, dir0=path.dir[ii,], loc, eig, rmap, n.fiber, braindim, dimens, nproj=nproj, thres.ang=thres.ang, vorient=vorient) change <- pro.res$first good <- pro.res$last if (!good){ break } # update voxel path.voxel[ii+1] <- next.vox # update dir, iind and change if (n.fiber[next.vox]<=1){ path.iind[ii+1] <- rmap[next.vox] path.change[ii+1] <- change if (change){ path.dir[ii+1,] <- eig[path.iind[ii+1],] } else { path.dir[ii+1,] <- path.dir[ii,] if (n.fiber[next.vox]==1){ pass.vox <- c(pass.vox,next.vox) pass.dir <- rbind(pass.dir, path.dir[ii,]) } } } else { # thresholding rule -> determine stop or not, and within the thresholding rule, choose the closest if (change){ # decide which directions tiind <- rmap[next.vox] chosen <- which.max(abs(eig[tiind+(0:(n.fiber[next.vox]-1)),]%*%path.dir[ii,])) path.iind[ii+1] <- tiind+chosen-1 path.dir[ii+1,] <- eig[path.iind[ii+1],] path.change[ii+1] <- T } else { path.iind[ii+1] <- rmap[next.vox] path.change[ii+1] <- F path.dir[ii+1,] <- path.dir[ii,] pass.vox <- c(pass.vox,next.vox) pass.dir <- rbind(pass.dir, path.dir[ii,]) } } # align directions path.dir[ii+1,] <- sign(sum(path.dir[ii+1,]*path.dir[ii,]))*path.dir[ii+1,] ii <- ii+1 } if (ii<max.line){ path.in <- path.in[1:(ii+1),] path.iind <- path.iind[1:ii] path.dir <- path.dir[1:ii,] path.change <- path.change[1:ii] } ############################# ## project.proceed ############################# vox0 = next.vox dir0=path.dir[ii,] first <- proceed(vox0, dir0, eig, rmap, n.fiber, thres.ang) ############################# ## proceed ############################# good <- T if (n.fiber[vox0]==0){ good <- F } else if (n.fiber[vox0]==1) { good <- acos(min(abs(eig[rmap[vox0],]%*%dir0),1))<thres.ang } else { good <- as.logical(sum(as.vector(acos(pmin(abs(eig[rmap[vox0]+(0:(n.fiber[vox0]-1)),]%*%dir0),1)))<thres.ang)) } ############################# ## fiber.in.out ############################# inc = path.in[ii,]-loc[path.iind[ii],] direct=path.dir[ii,] if (sum(dimens==0)){ stop("directions has zero component, not yet supported! Please modify fiber.in.out\n") } # compute the distance of the current fiber directon to each face of the current voxel tempdiff <- (cbind(dimens/2-inc,-inc-dimens/2)/direct) index1 <- which.min(diag(tempdiff[,2-(direct>=0)])) index <- c(index1, (2-(direct>0))[index1]) const <- tempdiff[index[1],index[2]] outc <- inc + const*direct return(list(outc=outc, index=as.vector(index))) ##### # compute the distance of the current fiber directon to each face of the current voxel tempdiff <- (cbind(dimens/2-inc,-inc-dimens/2)/direct) # Hao tempdiff[tempdiff==Inf]=1e10 tempdiff[tempdiff==-Inf]=-1e10 tempdiff[is.nan(tempdiff)]=1e10 tempdiff[tempdiff==Inf]=1e10 # get which axis is the current fiber direction hitting face of the current voxel first # 1:x 2:y 3:z index1 <- which.min(diag(tempdiff[,2-(direct>=0)])) # Hao change direct>0 to direct>=0 # which direction it is hitting 1:positive 2:negative index <- c(index1, (2-(direct>0))[index1]) const <- tempdiff[index[1],index[2]] outc <- inc + const*direct return(list(outc=outc, index=as.vector(index))) ############################# ## get.out.vox ############################# cvox = path.voxel[ii] cvoxindex <- as.vector(arrayInd(cvox, braindim)) if (index[2]==1){ # positive sides cvoxindex[index[1]] <- cvoxindex[index[1]] + vorient[index[1]] } else { # negative sides cvoxindex[index[1]] <- cvoxindex[index[1]] - vorient[index[1]] } if ((cvoxindex[index[1]]<1)||(cvoxindex[index[1]]>braindim[index[1]])){ return(NA) } else { return(ArrayIndex(braindim, cvoxindex[1], cvoxindex[2], cvoxindex[3])) } ######### eig_min = rep(0,dim(eig)[1]) for(iind in 1:dim(eig)[1]){ eig_min[iind] = min(abs(eig)) } min(abs(eig),na.rm=T)
2ff2ee23ad9f3b8c77ab3985fcfff6fceddce0b0
3a5ae60a34608840ef484a901b61a363b1167756
/vignettes/general_processing.R
c73797128ad456b1d9e694537df20b6442797cd8
[]
no_license
SWS-Methodology/hsfclmap
3da8ca59a1ceb90564ec70a448a6f0340ca86420
eb2bc552fcce321b3dd7bc8655b092bc7a428e1e
refs/heads/master
2021-01-17T17:35:59.484994
2016-12-19T17:47:53
2016-12-19T17:47:53
70,464,081
0
0
null
null
null
null
UTF-8
R
false
false
2,679
r
general_processing.R
library(magrittr) library(stringr) library(futile.logger) library(dplyr, warn.conflicts = FALSE) library(hsfclmap) cores <- parallel::detectCores(all.tests = TRUE) if(cores > 1) { library(foreach) library(doParallel) doParallel::registerDoParallel(cores = cores) } trade <- esdata13 tariffline <- FALSE reportdir <- file.path( tempdir(), "faoreports", format(Sys.time(), "%Y%m%d%H%M%S%Z")) stopifnot(!file.exists(reportdir)) dir.create(reportdir, recursive = TRUE) if(!tariffline) trade %<>% esdata2faoarea(loadgeonom()) else { m49faomap <- loaddatafromweb( "https://github.com/SWS-Methodology/faoswsTrade/blob/master/data/m49faomap.RData?raw=true") trade %<>% left_join(m49faomap, by = c("reporter" = "m49")) %>% select_(~-reporter, reporter = ~fao) } if(tariffline) trade %<>% mutate_(flow = ~recode(flow, '4' = 1L, '3' = 2L)) hsfclmap4 <- hsfclmap3 %>% filter(str_detect(fromcode, "^\\d+$"), str_detect(tocode, "^\\d+$")) %>% mutate(linkid = row_number()) trade %<>% do(hsInRange(.$hs, .$reporter, .$flow, hsfclmap4, parallel = cores > 1L)) layout.glimpse <- function(level, tbl, ...) dplyr::as.tbl(tbl) appender.glimpse <- function(tbl) tbl trade <- trade %>% # Mapping statistics group_by(id) %>% mutate_(multlink = ~length(unique(fcl)) > 1, nolink = ~any(is.na(fcl))) %>% ungroup() %>% arrange_(~area, ~flow, ~hsorig) trade %>% filter_(~nolink) %>% select_(~area, ~flow, hs = ~hsorig) %>% write.csv(file = file.path(reportdir, "nolinks.csv"), row.names = FALSE) trade %>% filter_(~multlink) %>% select_(~area, ~flow, hs = ~hsorig, ~fcl) %>% write.csv(file = file.path(reportdir, "multilinks.csv"), row.names = FALSE) flog.info("Reports in %s/", reportdir) trade %>% group_by_(~id) %>% summarize_(multlink = ~sum(any(multlink)), nolink = ~sum(any(nolink))) %>% summarize_(totalrecsmulti = ~sum(multlink), totalnolink = ~sum(nolink), propmulti = ~sum(multlink) / n(), propnolink = ~sum(nolink) / n()) %>% {flog.info("Multi and no link:", ., capture = TRUE)} # Remove ES reporters from TL esreporters <- unique(esdatafcl14$area) trade <- trade %>% filter(!area %in% esreporters) # Idea for split ranges x <- tibble::tribble( ~year, ~fcl, 1, 1, 2, 1, 3, 1, 4, 2, 5, 2, 6, 1, 7, 1) x %>% mutate(change = fcl != lag(fcl), change = ifelse(is.na(change), FALSE, change), change = cumsum(change))
df4673ad0c6156a5b48a3304388ac65fa4963a91
90df0cb421dc4221bfce0929054d8067a50af72a
/Rscripts/old_fig_scripts/fig_mixture_model_demo.R
860068e77338bdadd6b1802a9054e6f88b5328be
[ "MIT" ]
permissive
SlavovLab/DART-ID_2018
c1c7de6cd03690e70cf1c27a9bac92d977b96599
84e73bc66e9e9a64d848d06463255db92561bfb7
refs/heads/master
2020-04-13T03:21:46.341466
2019-05-15T05:47:18
2019-05-15T05:47:18
162,929,280
0
0
null
null
null
null
UTF-8
R
false
false
1,226
r
fig_mixture_model_demo.R
## mixture model demo ------ x <- seq(0,60,by=0.1) #y1 <- dlnorm(x, meanlog=4.663, sdlog=0.5089) y1 <- dnorm(x, mean=38, sd=17) y2 <- dnorm(x, mean=20, sd=1.78) #y3 <- dnorm(x, mean=80, sd=2.3) #y4 <- dnorm(x, mean=120, sd=2) #plot(x, y2, 'l', col='red') #lines(x,y1,'l', col='black') #p <- ggplot(data.frame(x,y1,y2,y3,y4)) + p <- ggplot(data.frame(x,y1,y2)) + geom_area(aes(x=x, y=y1), fill='red', alpha=0.3) + geom_path(aes(x=x, y=y1), color='red', size=0.4) + geom_area(aes(x=x, y=y2), fill='blue', alpha=0.3) + geom_path(aes(x=x, y=y2), color='blue', size=0.4) + #geom_path(aes(x=x, y=y3), color='blue', size=0.4) + #geom_path(aes(x=x, y=y4), color='blue', size=0.4) + scale_x_continuous(expand=c(0,0)) + scale_y_continuous(limits=c(0, 0.24), expand=c(0,0)) + labs(x='Retention Time', y='Density') + theme_bw() %+replace% theme( axis.ticks=element_blank(), axis.text=element_blank(), axis.title.x = element_text(family='Helvetica', size=6), axis.title.y = element_text(family='Helvetica', size=6, angle=90), panel.grid.minor=element_blank() #panel.grid=element_blank() ) ggsave('manuscript/Figs/mixture_model_demo.pdf', plot=p, 'pdf', width=4, height=2.5, units='cm')
f3a56af15a2c4e5f138c081c9f93eac1fcb80d28
4160ec1f770aa1124aeefe44cca5b97be3b368a5
/Cleaning_Featuring/Katz_Back-off_2.2.R
632d0144acfc8d0f9206bea5239f46c6f67891d5
[]
no_license
jordiac/Capstone_DSS
831e4f9c0081cbf5a0e569b2d7b393e04d718aed
a99f80b82de2994af5102b864a429a26b4426d0d
refs/heads/master
2020-12-30T16:42:17.682853
2017-07-22T13:57:06
2017-07-22T13:57:06
91,016,685
0
0
null
null
null
null
UTF-8
R
false
false
13,223
r
Katz_Back-off_2.2.R
## ------------------------------------------------------- ## Katz's Back-off implementation ## ------------------------------------------------------- ## ******************* Notes *************************** ## This implementation considers only 2-grams and 3-grams ## ----------------------------------------------------- ## Discount coefficients ## ----------------------------------------------------- discount <- function(TwoGram, ThreeGram){ ## input : the text input with 2 words : input[1:2] : 1col= 1st words; 2col=2nd word; ## d= (r+1)/r * (N_r+1)/N_r ## r: frequency of the gram ; Nr = number of times frequency "r" appears in the list ## -------------------- ## Treating 3 gram list ## -------------------- ## Tgram : list of 3grams containing the 2 words input (3rd col: freq) un <- unique(ThreeGram[,4]) if ((TRUE %in% is.na(un)) == TRUE){ print("There are frequencies = NA, please check your input 3-GRAM") stop() } ## Defining the discount values for each different frequency if (length(un) >0){ disc <- vector(mode="numeric", length = length(un)) nm <- min(length(un),6) ## If frequency is higher than 6-1=5 --> d=1 for (i in 1:length(un)){ if (un[i] < nm){ freq <- un[i] freq2 <- freq+1 Nfreq <- nrow(ThreeGram[ThreeGram[,4]==freq,]) Nfreq2 <- nrow(ThreeGram[ThreeGram[,4]==freq2,]) dis <- freq2 / freq * Nfreq2 / Nfreq if (dis ==0){dis<-1} disc[i] <- dis } else { dis <- 1 disc[i] <- dis } } } ## disc --> discount values for each unique frequency ma <- match(ThreeGram[,4], un) val <- NULL for (j in 1: nrow(ThreeGram)){ f <- disc[ma[j]] val <- c(val,f) } ThreeGram$disc <- round(val,3) # Add discount values to 3-gram data frame mm <- which(ThreeGram[,5] >1) if (length(mm)>0) {ThreeGram[mm,5] <- 1} # Maximizing to 1 ## -------------------- ## Treating 2-gram list ## -------------------- un <- unique(TwoGram[,3]) if ((TRUE %in% is.na(un)) == TRUE){ print("There are frequencies = NA, please check your input 2-GRAM") stop() } ## Defining the discount values for each different frequency if (length(un) >0){ disc <- vector(mode="numeric", length = length(un)) nm <- min(length(un),7) ## If frequency is higher than 7-1=6 --> d=1 for (i in 1:length(un)){ if (un[i] < (nm-1)){ freq <- un[i] freq2 <- freq+1 Nfreq <- nrow(TwoGram[TwoGram[,3]==freq,]) Nfreq2 <- nrow(TwoGram[TwoGram[,3]==freq2,]) dis <- freq2 / freq * Nfreq2 / Nfreq if (dis ==0){dis<-1} disc[i] <- dis } else { dis <- 1 disc[i] <- dis } } } ## disc --> discount values for each unique frequency ma <- match(TwoGram[,3], un) val <- NULL for (j in 1: nrow(TwoGram)){ f <- disc[ma[j]] val <- c(val,f) } TwoGram$disc <- round(val,3) # Add discount values to 3-gram data frame mm <- which(TwoGram[,4] >1) if (length(mm)>0) {TwoGram[mm,4] <- 1} # Maximizing to 1 return(list(TwoGram, ThreeGram)) } ## ----------------------------------------------------- ## Prediction algorithm ## ----------------------------------------------------- ## gets an input and return the 5 most probable words as output as per Katz Back-off method Katz_Backoff <- function(input){ load( file="bigram_fin.RData") ##bigram load( file="trigram_fin.RData") ##trigram load( file="quadgram_fin.RData") ##quadgram Nwords <- length(input) # Defining the input texts for each Ngram if (Nwords >2){ qtext <- input[(length(input)-2):length(input)] ##input for quadgram ttext <- input[(length(input)-1):length(input)] ##input for trigram btext <- input[length(input)] ##input for bigram } else if (Nwords==2){ ttext <- input[1:2] btext <- input[2] } else if (Nwords==1) { btext <- input[1] } output <- NULL ## Predicting if (Nwords >2){ qlist <- which(quadgram[,1] == qtext[1] & quadgram[,2] == qtext[2] & quadgram[,3] == qtext[3]) tlist <- which(trigram[,1] == ttext[1] & trigram[,2] == ttext[2]) blist <- which(bigram[,1] == btext[1]) ## 4-gram if (length(qlist) >0){ output4 <-quadgram[qlist,4:5] colnames(output4) <- c("Predic", "Freq") output <- rbind(output, output4) output$prob <- 1 ## We give prob=1 to all elements } ## 3-gram and 2-gram as per KATZ if (length(qlist)<5){ sel1 <- which(trigram[,1] %in% ttext[1] & trigram[,2] %in% ttext[2]) if (length(sel1) >0){ sel1 <- trigram[sel1,] sel2 <- which(sel1[,2] %in% ttext[2]) sel2 <- sel1[sel2,] ## Defining pbeta pbeta <- 1-(sum(sel2[,4]*sel2[,5]) / sum(sel2[,4])) ## Selecting bigram rows where the 1st word is equal to the last word usel <- which(bigram[,1] %in% ttext[2]) usel <- bigram[usel,] ## Removing those having word 2 = word 3 of the trigram rsel <- which(usel[,2] %in% sel2[,3]) usel <- usel[-rsel,] ## for each word left, we calculate its probability 2-gram usel$prob <- usel$Freq * usel$disc * pbeta /(sum(usel$Freq*usel$disc)) ## Calculate the probability for each 3-gram end word sel2$prob <- sel2$Freq * sel2$disc / sum(sel2$Freq * sel2$disc) ##Subseting each end word in bigram and trigram with its probability and sorting bisel <- data.frame(endword=usel$word2, prob=usel$prob, stringsAsFactors = FALSE) trisel <- data.frame(endword=sel2$word3, prob=sel2$prob, stringsAsFactors = FALSE) final <- rbind(bisel, trisel) yy <- order(final$prob, decreasing = TRUE) final <- final[yy,] output2 <- final[1:5,] output <- rbind(output,output2) } else { ## Applying bigram find <- which(bigram[,1] %in% btext[1]) if (length(find)>0){ bisel <- bigram[find,] output2 <- bisel[1:5,2:3] output <- rbind(output,output2) } } } }else if (Nwords ==2) { ## 3-gram and 2-gram as per KATZ sel1 <- which(trigram[,1] %in% ttext[1] & trigram[,2] %in% ttext[2]) if (length(sel1) >0){ sel1 <- trigram[sel1,] sel2 <- which(sel1[,2] %in% ttext[2]) sel2 <- sel1[sel2,] ## Defining pbeta pbeta <- 1-(sum(sel2[,4]*sel2[,5]) / sum(sel2[,4])) ## Selecting bigram rows where the 1st word is equal to the last word usel <- which(bigram[,1] %in% ttext[2]) usel <- bigram[usel,] ## Removing those having word 2 = word 3 of the trigram rsel <- which(usel[,2] %in% sel2[,3]) usel <- usel[-rsel,] ## for each word left, we calculate its probability 2-gram usel$prob <- usel$Freq * usel$disc * pbeta /(sum(usel$Freq*usel$disc)) ## Calculate the probability for each 3-gram end word sel2$prob <- sel2$Freq * sel2$disc / sum(sel2$Freq * sel2$disc) ##Subseting each end word in bigram and trigram with its probability and sorting bisel <- data.frame(endword=usel$word2, prob=usel$prob, stringsAsFactors = FALSE) trisel <- data.frame(endword=sel2$word3, prob=sel2$prob, stringsAsFactors = FALSE) final <- rbind(bisel, trisel) yy <- order(final$prob, decreasing = TRUE) final <- final[yy,] output2 <- final[1:5,] output <- rbind(output,output2) } else { ## Applying bigram find <- which(bigram[,1] %in% btext[1]) if (length(find)>0){ bisel <- bigram[find,] output2 <- bisel[1:5,2:3] output <- rbind(output,output2) } } } else if (Nwords==1){ blist <- which(bigram[,1] == btext[1]) if (length(blist) >0){ output <- rbind(output, bigram[blist,]) colnames(output) <- c("Predic", "Freq") num <- min(5, nrow(output)) output <- output[1:num,2:3] } } output <- output[1:5,] return(output) } source("./Clean_2.0.R") ##--------- Main prediction algorithm ---------------------------- predic_text <- function(input){ load(file="./unigram_fin.RData") input <- textClean(input) ## Cleaning the input data input <- unlist(strsplit(input, split= " ")) ## Splitting in different words condition <- 0 for (i in 1:(as.integer(length(input)/2)-1)){ condition <- 1 result <- Katz_Backoff(input) ## results from Katz prediction function if (is.null(result)==TRUE ){ ## if no results obtained from Katz, remove last word condition <- 0 input <- input[-c(length(input)-1,length(input)) ] ## Remove 2 last words if no results } if (condition == 1){ break() } } if(is.null(result)==FALSE & nrow(result)>1) {result <- data.frame(words=as.character(result[,1]))} if(is.null(result)==FALSE & nrow(result)==1) {result <- data.frame(words=as.character(result))} if(is.null(result)==TRUE) {result <- data.frame(words=as.character(unigram[,1]))} return(result) }
7a04a1c4d57be2bb2404019c38e7898be4539955
e248c9ff1d03ac10216bb9e86611491ec16c1fdd
/R/functions.R
46d09c59e833899cff67d448bb4fb69c68614dfb
[ "Apache-2.0" ]
permissive
lolow/ENGAGE-overshoot-impacts
25a1b56395c0a8198046d82c6ba4c815ca450d63
2bd2a81eae63e5dcf114b108842ded55a07df867
refs/heads/main
2023-04-07T14:16:59.671132
2021-11-09T08:28:12
2021-11-09T08:28:12
414,539,627
0
1
null
null
null
null
UTF-8
R
false
false
559
r
functions.R
source('R/data_ssp_db.R') source('R/data_engage_db.R') source('R/data_climate.R') source('R/impact.R') source('R/impact_bhm.R') source('R/impact_levels.R') source('R/impact_arnell.R') source('R/impact_slr.R') source('R/impact_tail.R') source('R/compute_net_benefits.R') source('R/compute_cmit.R') source('R/compute_admg.R') source("R/plot_temperature.R") source("R/plot_impact_physical.R") source("R/plot_cmit.R") source("R/plot_admg.R") source("R/plot_cba.R") source("R/plot_slr.R") source("R/plot_emi.R") source("R/plot_fig_paper.R") source('R/zzz.R')
e3a46fe90e94d385b403d2aed5fdda4ec970fd3b
8eccf1b9d13564b48d6936fc7e8878bca2a757f7
/Amazon reviews scraping.R
30db1823ee5ad5ac9810eab1c36ca55e40d36345
[]
no_license
MohitKedia/Web-Scraping
a9b2b37dec0cbf3ffd4b8005cba249960d405bc3
d4154faf1ffd09b72aeaee6156ca12cb10db3ab0
refs/heads/master
2020-03-10T04:48:24.023858
2018-07-09T13:40:12
2018-07-09T13:40:12
129,201,897
0
0
null
null
null
null
UTF-8
R
false
false
5,656
r
Amazon reviews scraping.R
library(rvest) install.packages("RCrawler") ############################## #NOKIA8_Reviews# #METHOD1# url <- "https://www.amazon.in/Nokia-8-Polished-Blue-64GB/product-reviews/B0714DP3BJ/ref=cm_cr_getr_d_show_all?showViewpoints=1&pageNumber=1&reviewerType=all_reviews" webpage <- read_html(url) reviews_data <- html_nodes(webpage, '.a-color-base') reviews <- html_text(reviews_data) description_data <- html_nodes(webpage, '.review-text') description <- html_text(description_data) buyer_data <- html_nodes(webpage, '.author') buyer <- html_text(buyer_data) Amazon_reviews_nokia <- data.frame(REVIEWS = reviews, DESCRIPTION = description, BUYER = buyer) View(Amazon_reviews_nokia) #METHOD2# library(rvest) library(purrr) url_base <- "https://www.amazon.in/Nokia-8-Polished-Blue-64GB/product-reviews/B0714DP3BJ/ref=cm_cr_getr_d_paging_btm_1?showViewpoints=1&pageNumber=%d&reviewerType=all_reviews&filterByStar=positive" map_df(1:32, function(i) { cat(".") pg <- read_html(sprintf(url_base, i)) data.frame(REVIEWS=html_text(html_nodes(pg, ".a-color-base")), DESCRIPTION=html_text(html_nodes(pg, ".review-text")), BUYER=html_text(html_nodes(pg, ".author")), stringsAsFactors=FALSE) }) -> Nokia8_Amazonreviews View(Nokia8_Amazonreviews) ################################## #Oneplus5T_Reviews# library(rvest) library(purrr) url_base <- "https://www.amazon.in/OnePlus-Midnight-Black-64GB-memory/product-reviews/B0756ZFXVB/ref=cm_cr_arp_d_viewopt_sr?showViewpoints=1&pageNumber=%d&filterByStar=five_star&formatType=all_formats" map_df(1:921, function(i) { cat(".") pg <- read_html(sprintf(url_base, i)) data.frame(RATING = 5, REVIEWS=html_text(html_nodes(pg, ".a-color-base")), DESCRIPTION=html_text(html_nodes(pg, ".review-text")), BUYER=html_text(html_nodes(pg, ".author")), DATE = html_text(html_nodes(pg, "#cm_cr-review_list .review-date")), PRODUCT = html_text(html_nodes(pg,".a-link-normal.a-color-secondary")), stringsAsFactors=FALSE) }) -> Oneplus5T_Amazonreviews_1 url_base <- "https://www.amazon.in/OnePlus-Midnight-Black-64GB-memory/product-reviews/B0756ZFXVB/ref=cm_cr_arp_d_viewopt_sr?showViewpoints=1&pageNumber=%d&filterByStar=four_star&formatType=all_formats" map_df(1:163, function(i){ cat("boom ") pg <- read_html(sprintf(url_base,i)) data.frame(RATING=4, REVIEWS=html_text(html_nodes(pg, ".a-color-base")), DESCRIPTION=html_text(html_nodes(pg, ".review-text")), BUYER=html_text(html_nodes(pg, ".author")), DATE = html_text(html_nodes(pg, "#cm_cr-review_list .review-date")), PRODUCT = html_text(html_nodes(pg,".a-link-normal.a-color-secondary")), stringsAsFactors=FALSE) }) -> Oneplus5T_Amazonreviews_2 url_base <- "https://www.amazon.in/OnePlus-Midnight-Black-64GB-memory/product-reviews/B0756ZFXVB/ref=cm_cr_arp_d_viewopt_sr?showViewpoints=1&pageNumber=%d&filterByStar=three_star&formatType=all_formats" map_df(1:35, function(i){ cat("boom ") pg <- read_html(sprintf(url_base,i)) data.frame(RATING=3, REVIEWS=html_text(html_nodes(pg, ".a-color-base")), DESCRIPTION=html_text(html_nodes(pg, ".review-text")), BUYER=html_text(html_nodes(pg, ".author")), DATE = html_text(html_nodes(pg, "#cm_cr-review_list .review-date")), PRODUCT = html_text(html_nodes(pg,".a-link-normal.a-color-secondary")), stringsAsFactors=FALSE) }) -> Oneplus5T_Amazonreviews_3 url_base <- "https://www.amazon.in/OnePlus-Midnight-Black-64GB-memory/product-reviews/B0756ZFXVB/ref=cm_cr_arp_d_viewopt_sr?showViewpoints=1&pageNumber=%d&filterByStar=two_star&formatType=all_formats" map_df(1:19, function(i){ cat("boom ") pg <- read_html(sprintf(url_base,i)) data.frame(RATING=2, REVIEWS=html_text(html_nodes(pg, ".a-color-base")), DESCRIPTION=html_text(html_nodes(pg, ".review-text")), BUYER=html_text(html_nodes(pg, ".author")), DATE = html_text(html_nodes(pg, "#cm_cr-review_list .review-date")), PRODUCT = html_text(html_nodes(pg,".a-link-normal.a-color-secondary")), stringsAsFactors=FALSE) }) -> Oneplus5T_Amazonreviews_4 url_base <- "https://www.amazon.in/OnePlus-Midnight-Black-64GB-memory/product-reviews/B0756ZFXVB/ref=cm_cr_arp_d_viewopt_sr?showViewpoints=1&pageNumber=%d&filterByStar=one_star&formatType=all_formats" map_df(1:65, function(i){ cat("boom ") pg <- read_html(sprintf(url_base, i)) data.frame(REVIEWS=html_text(html_nodes(pg, ".a-color-base")), DESCRIPTION=html_text(html_nodes(pg, ".review-text")), BUYER=html_text(html_nodes(pg, ".author")), DATE = html_text(html_nodes(pg, "#cm_cr-review_list .review-date")), PRODUCT = html_text(html_nodes(pg,".a-link-normal.a-color-secondary")), stringsAsFactors=FALSE) }) -> Oneplus5T_Amazonreviews_5 Oneplus5T_Amazonreviews_5 <- cbind(RATING=1,Oneplus5T_Amazonreviews_5) Oneplus5T_Amazonreviews <- rbind(Oneplus5T_Amazonreviews_1,Oneplus5T_Amazonreviews_2,Oneplus5T_Amazonreviews_3 ,Oneplus5T_Amazonreviews_4,Oneplus5T_Amazonreviews_5) View(Oneplus5T_Amazonreviews) library(xlsx) write.xlsx(Oneplus5T_Amazonreviews,file = "OnePlus5T Amazon Reviews.xlsx")
1125c9ecf1eb5c2d6f4b018c509ddf761ce7b2b4
4e77858f348a7081e6d9bc4fa5b0296bfa3b4291
/Assignment_1/assignment_1.R
484dd74e2718e2d7f1676509a7566bc22f888c09
[]
no_license
bazzim/Coding-2-web-scraping
8da2f278e5048e173e08683b7d09ddccafda3407
bb89715aeb0d2c11b6471028b4c14b7d0258bd1e
refs/heads/main
2023-01-18T18:07:38.268269
2020-11-22T20:19:08
2020-11-22T20:19:08
315,120,911
0
0
null
null
null
null
UTF-8
R
false
false
2,462
r
assignment_1.R
library(rvest) library(data.table) rm(list=ls()) # website of interest: https://www.sciencenews.org/ ## create a function which downloads information from a url to dataframe (from sciencenews.org) get_sciencenews_page <- function(my_url){ print(my_url) t <- read_html(my_url) boxes <- t %>% html_nodes('.post-item-river__content___2Ae_0') x <- boxes[[1]] boxes_dfs <- lapply(boxes, function(x){ tl <- list() tl[['title']] <- paste0( x %>% html_nodes('.post-item-river__title___J3spU') %>% html_text(), collapse = ' ') tl[['link']] <- paste0( x %>% html_nodes('.post-item-river__title___J3spU > a') %>% html_attr('href')) tl[['excerpt']] <- paste0( x %>% html_nodes('.post-item-river__excerpt___3ok6B') %>% html_text(), collapse = ' ') tl[[ 'date' ]] <- paste0( x %>% html_nodes('.published') %>% html_text()) tl[[ 'author' ]] <- paste0( x %>% html_nodes('.n') %>% html_text()) tl[[ 'topic' ]] <- paste0( x %>% html_nodes('.post-item-river__eyebrow___33ASW')%>% html_text()) return(tl) }) df <- rbindlist(boxes_dfs, fill = T) return(df) } # create a function which requires two arguments. First a keyword then a number of pages to download. get_searched_pages <- function(searchterm, pages_to_download) { # concat the search terms together according to url searchterm <- gsub(' ','+',searchterm) # create links if (pages_to_download == 1){ links_to_get <- paste0('https://www.sciencenews.org/?s=',searchterm) } else{ links_to_get <- c(paste0('https://www.sciencenews.org/?s=', searchterm), paste0('https://www.sciencenews.org/page/', 2:pages_to_download, '?s=', searchterm)) } ret_df <- rbindlist(lapply(links_to_get, get_sciencenews_page)) return(ret_df) } # testing function get_searched_pages df2 <- get_searched_pages('artificial intelligence',2) my_url <- "https://www.sciencenews.org/?s=machine+learning" # apply function 1 "get_sciencenews_page" df <- get_sciencenews_page(my_url) # save the outputs of get_sciencenews_page() to a csv file write.csv(df, 'sciencenews_output.csv') # save a single object to file saveRDS(df, "sciencenews_output.rds") # apply function 2 "get_searched_pages()" df2 <- get_searched_pages('machine learning',3) # save the outputs of get_searched_pages() to a csv file write.csv(df2, 'searched_pages_output.csv') # save a single object to file saveRDS(df2, "searched_pages_output.rds")
b1f8bdbcd39741a77a03898e41dfc3ae9fefc80f
85da7f67f9fd656b39f16a7cf0e63424636b706a
/ExData_Plotting1/plot4.R
10bec9d74cbdc970741150627911e2edc28b64e1
[]
no_license
pivezhandi/ExData_Plotting1
cfe011fd20734a06779d767f43ac0b37b21758e7
53c7857bb451ee7184d43851ad94e83dd54cd234
refs/heads/master
2021-01-25T03:50:00.394834
2015-09-13T22:35:14
2015-09-13T22:35:14
42,414,640
0
0
null
null
null
null
UTF-8
R
false
false
1,420
r
plot4.R
setwd(file.path("D:", "sbu", "RLearning", "exploratory data analysis","project1")) EPC <- read.csv("household_power_consumption.txt", header=T, sep=';', na.strings="?", nrows=2075259, check.names=F, stringsAsFactors=F, comment.char="", quote='\"') EPC$Date <- as.Date(EPC$Date, format="%d/%m/%Y") data <- subset(EPC, subset=( (Date <= "2007-02-02") & (Date >= "2007-02-01"))) rm(EPC) data$mixeddata <- as.POSIXct(paste(data$Date,data$Time)) par(mfrow = c( 2, 2), mar = c(4, 4, 2, 1), oma = c(0, 0, 2, 0)) with(data, { plot(Global_active_power~mixeddata, type="l", ylab="Global Active Power", xlab="") plot(Voltage~mixeddata, type="l", ylab="Voltage", xlab="datetime") plot(Sub_metering_1~mixeddata, type="l", ylab="Energy sub metering", xlab="") lines(Sub_metering_2~mixeddata,col='Red') lines(Sub_metering_3~mixeddata,col='Blue') legend("topright", col=c("black", "red", "blue"), lty=1, lwd=2,inset = .05, legend=c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3"),trace=T,bty = "n") plot(Global_reactive_power~mixeddata, type="l", ylab="Global_rective_power",xlab="datetime") }) dev.copy(png, file = "unnamed-chunk-5.png" ) ## Copy my plot to a PNG file dev.off() ## closing the PNG device!
9717621be715bfc0c43746752df16c0f4fbd3f77
8e8abb1b8f31b1cad68e1e4534be0489555ad59e
/lovelyanalytics_kmeans_R.R
89a8230677770ceb71abf7cbbffa15bc458ed1b5
[]
no_license
mjvieille/lovelyanalytics-kmeans
8d29f5f3c825a45a3dadf21ec5ae2b1bf1da0a04
49fc526754b56cf6188ffcf41154635b632536d5
refs/heads/master
2021-01-17T07:38:51.436410
2017-03-05T09:34:48
2017-03-05T09:34:48
83,783,186
0
0
null
null
null
null
ISO-8859-1
R
false
false
390
r
lovelyanalytics_kmeans_R.R
#***** lovelyanalytics.com ***** #***** k-means ***** # Chargement des données data<-read_excel("~/lovelyanalytics/k-means/data/data.xlsx") # Algorithme k-means pour créer 3 clusters resultat_kmeans<- kmeans(data[,2:3],3) # Anciennete moyenne et panier moyen par cluster resultat_kmeans[2] #Visuel plot(data[,2:3], col=resultat_kmeans$cluster, pch=19)
40f83bfa8baf6d72ea6ac442aa5176a7947b80d7
c8b609bf58dab1a383bbea8b43a7bc2708adcb38
/man/circle_line_intersections.Rd
8bcae8c3d75d06e52181a7fe4b85371b31944bca
[]
no_license
holaanna/contactsimulator
ce788627c12323c4ab6b3aa902da26bf3e2e4cf5
8bcd3f01e0bbe5fb7328d9f6beb27eb907779bdd
refs/heads/master
2022-03-17T03:25:18.841897
2019-11-26T18:33:29
2019-11-26T18:33:29
111,702,061
0
0
null
null
null
null
UTF-8
R
false
true
1,590
rd
circle_line_intersections.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/RcppExports.R \name{circle_line_intersections} \alias{circle_line_intersections} \title{Generates a set of intersection points between the cirlce and the grid lines.} \usage{ circle_line_intersections(circle_x, circle_y, r, n_line, grid_lines) } \arguments{ \item{circle_x, circle_y}{The the euclidean coordinates of the center of the circle.} \item{r}{The radius of the given circle.} \item{n_line}{The number of grid lines.} \item{grid_lines}{A 6 columns data frame with columns names as coor_x_1, coor_y_1, coor_x_2, coor_y_2, orient_line. \describe{ \item{coor_x_1, coor_y_1}{Coordinates of the left end point of the grid line } \item{coor_x_2, coor_y_2}{Coordinates of the right end point of the grid line } \item{orient_line}{Line orientation} \enumerate{ \item indicates horizontal orientation \item indicates vetical orientation } \item{k_line}{Line numbering: bottom to top, then left to right} }} } \value{ It returns a three columns data frame containing x-coordinate, y-coordanate of the intersection of the circle with the grid, and the value of the angle betweem the x-axis and the line joining the center of the circle to the corresponding intersection point. } \description{ \code{circle_line_intersections} computes the intersections points of a given circle with the grid lines along with the angle formed with the x-axis. } \examples{ data(grid_line) attach(grid_line) circle_line_intersections(2022230,-3123109,10000,39,grid_line) detach(grid_line) }
2a8f73f7423e6d1c969c5dfe7ded2095b0c0e78c
a5b6e45f613c45691b9f8b9811791637fe40b378
/OldScripts/old_uORFome/DataBaseGetters.R
8a79aa9e7e3040a9c5c65674452573c48e3bb0d9
[]
no_license
Roleren/RCode
e0bb86ca02fc5c7eb66943be028d11982782799b
db8c65ee9d15b0576f1269fcce81915bb38b6b31
refs/heads/master
2023-01-08T16:04:34.751910
2020-11-12T16:44:42
2020-11-12T16:44:42
312,334,583
0
0
null
null
null
null
UTF-8
R
false
false
3,501
r
DataBaseGetters.R
#' Get orf names from the orf data-base #' #' This is the primary key for most tables in the data-base #' @param with.transcript a logical(F), should the transcript be included, this makes the #' list have duplicated orfs #' @param only.transcripts a logical(F), should only the transcript and not orfId be included #' @param asCharacter a logical(T), should it return as character or data.table(F) getORFNamesDB <- function(with.transcript = F, only.transcripts = F, asCharacter = T, uniques = F){ if (with.transcript) { if(uniques) { dt <- readTable("linkORFsToTxUnique") } else { dt <- readTable("linkORFsToTx") } if(only.transcripts){ if (asCharacter) { return(as.character(unlist(dt[, 2], use.names = F))) } return(dt[, 2]) } return(dt) } dt <-readTable("uniqueIDs") if (asCharacter) { dt <- as.character(unlist(dt, use.names = F)) } return(dt) } #' Takes two tables from the database and extracts the rows of toBeMatched #' that matches the txNames in referenced. #' Both must have a column called txNames #' @return the toBeMatched object matched by txNames matchByTranscript <- function(toBeMatched, referenced){ Indices <- data.table(txNames = toBeMatched$txNames, ind = 1:length(toBeMatched$txNames)) merged <- merge(Indices, data.table(txNames = referenced$txNames), by = "txNames", all.y = T, sort = F) return(toBeMatched[merged$ind, ]) } getIDColumns <- function(dt, allowNull = F){ nIDs <- 0 if (!is.numeric(dt[1,1][[1]])) { nIDs = nIDs + 1 if (!is.numeric(dt[1,2][[1]])) { nIDs = nIDs + 1 } } if(!nIDs){ if (allowNull) { return(NULL) } else { stop("No id columns found for dt") } } return(dt[, nIDs, with = FALSE]) } #' fix this to work on string tables removeIDColumns <- function(dt){ if (!is.numeric(dt[1,1][[1]])) { dt <- dt[, -1] if (!is.numeric(dt[1,1][[1]])) { dt <- dt[, -1] } } return(dt) } #' get the uorfs in the database #' @param withExons should the uorfs be splitted by exons #' @param withTranscripts should the uorfs have transcript information, #' warning, this will duplicate some uorfs. #' @return a GRangesList or data.table, if(F, F) getUorfsInDb <- function(withExons = T, withTranscripts = T, uniqueORFs = T) { if (withExons && withTranscripts) { if(uniqueORFs) { if (file.exists(p(dataBaseFolder, "/uniqueUorfsAsGRWithTx.rdata"))) { load(p(dataBaseFolder, "/uniqueUorfsAsGRWithTx.rdata")) return(grl) } else stop("unique uorfs with tx does not exists") } if(file.exists(p(dataBaseFolder, "/uoRFsAsGRAllWithTx.rdata"))) { load(p(dataBaseFolder, "/uoRFsAsGRAllWithTx.rdata")) return(grl) } else if(!tableNotExists("uorfsAsGRWithTx")) { grl <- readTable("uorfsAsGRWithTx", asGR = T) gr <- unlist(grl, use.names = F) names(gr) <- gsub("_[0-9]*", "", names(gr)) return(groupGRangesBy(gr, gr$names)) } stop("uORFs could not be found, check that they exist") } else if (!withExons) { return(readTable("uniqueIDs")) } else if (withExons && !withTranscripts) { if(uniqueORFs) { if (file.exists(p(dataBaseFolder, "/uniqueUorfsAsGR.rdata"))) { load(p(dataBaseFolder, "/uniqueUorfsAsGR.rdata")) return(grl) } } return(readTable("SplittedByExonsuniqueUORFs", asGR = T)) } else { stop("not supported way of getting uorfs") } }
ed75b474ac649b8e04bf4ae1a42114250d10b7f1
6b0acbabf78b41cb2bf79128ec0cc47a19704488
/assignment3&4bySaurabhBidwai.R
8048c52f317063f832edd28652f77f6931550a77
[]
no_license
wejay28/R_basics
edd757d973dbc37de1486afe17c4df7773eb30f2
a58d1d7de3fff2b2d74d22946c81b850ebd18f67
refs/heads/master
2021-06-14T12:54:43.279637
2017-05-21T06:46:14
2017-05-21T06:46:14
null
0
0
null
null
null
null
UTF-8
R
false
false
2,624
r
assignment3&4bySaurabhBidwai.R
#Q.1 print no from 1 to 5 using 'repeat' and 'break' f=1 repeat { print(f) f=f+1 if(f==6){ break() } } #Q.2 Identify the no. is positive or negative neg=function(a){ if(a>0){ print("PositiveNumber") } else if(a<0){ print("NegativeNumber") }else{ print("ZeroNumber") } } neg(10) neg(0) neg(-10) #Q.3 print the no from 1 to 10 by using while loop i=1 while(i<11){ print(i) i=i+1 } #Q.4 create the vector add the element of that vector and give its sum by using while loop a=c(1,2,3,4) w=length(a) sumw=0 while(w>0){ sumw=sumw+a[w] w=w-1 } print(sumw) #Q.5 create the vector add the element of that vector and give its sum by using for loop a=c(1:10) sumf=0 for(i in seq(1,length(a))){ sumf=sumf+a[i] } print(sumf) #Q.6 create the vector and count the no of even no in that vector a=c(1:10) flag=0 for(i in seq(1,length(a))){ if(a[i]%%2==0){ flag=flag+1 } } print(flag) #Q.7 find the factorial of no facto=function(z){ f=1 if(z<0){ print("no is negative") }else if(z==0){ return(1) }else{ for (i in seq(1,z)) { f=f*i } return(f) } } facto(-2) facto(0) facto(1) facto(3) facto(10) #Q.8 no is prime or not? prime_no=function(a){ if(a<0){ return("no is negative") }else if(a==1){ return("neither prime nor composite") } f=0 for(i in seq(2,a-1)){ if(a %% i ==0){ f=1 return("not prime") } } if(f==0){ print("prime") } } prime_no(-2) prime_no(20) prime_no(2) prime_no(1) prime_no(19) prime_no(9) #Q.9 find the factors of a no. fact=function(a){ if(a<0){ return("no is negative") }else if(a==0){ return("no is zero") }else{ for(i in seq(1,a)){ if(a %% i ==0){ print(i) } } } } fact(120) fact(10) fact(0) fact(-10) ################Assignment4###################### #Q.1 plot(1:10,1:10,type = "n") for (i in 1:10) { lines(c(i,i),c(1,20)) } for(j in 1:20){ lines(c(1,10),c(j,j)) } #Q.2 plot(1:10,1:10) for(i in 1:10){ for (j in 1:20) { points(i,j) } } #Q.3 plot(1:10,1:10) for(j in 1:20){ color=if(j%%2==0){"blue"}else{"red"} lines(c(1,10),c(j,j),col=color) } #Q.4 plot the sequence of red, blue and green lines plot(1:10,1:10) for(j in 1:20){ color=if(j%%3==0){"red"}else if(j%%3==1){"blue"}else if(j%%3==2){"green"} lines(c(1,10),c(j,j),col=color) }
019be191a59ff96209446bd77c37f6749875976d
cb45abba22cc632e19661516ad16d60793103495
/Talleres/Problema_FormulaCuadratica.r
dd64f8e2ac33d6ca719d4a6f956b3097c6f5eabe
[]
no_license
Estebanmc2912/An-lisis-Num-rico
b48ee29bbf79588697c88dbc16eb9a1db0be42cc
aa6658eefeb799e317181818199548d25f58b2b9
refs/heads/master
2020-06-23T13:38:39.838320
2019-11-12T01:46:35
2019-11-12T01:46:35
198,640,070
0
3
null
null
null
null
UTF-8
R
false
false
315
r
Problema_FormulaCuadratica.r
#Pablo Veintemilla & Esteban Moreno: #SIMULACION CUADRATICA ax2 + bx + c = 0. options(digits=8) a=3 b=9^12 c=-3 #Método suma x1=-(b+sqrt(b^2-4*a*c))/(2*a) #Fórmula racionalizada x2=-(2*c)/(b+sqrt(b^2-4*a*c)) cat("Solución \n") cat("Raíz 1: ",x1, " Raíz 2: ",x2,"\n")
393ae3009035dc7489263fcddef268b1bc3b4421
c830d7ecdd2739c356242a3141beb38960fc44e2
/R/freorder.R
10c6f6d714b25cc1ccf7529ec833d39fcce24941
[]
no_license
STAT545-UBC-hw-2018-19/hw07-janehuang1647
8812c99a7eba9b0fd576f2c42ece25cb828fd068
84749400b004c6f0cccb02b0c7c7d3f1650db13c
refs/heads/master
2020-04-05T09:11:51.538674
2018-11-13T20:54:22
2018-11-13T20:54:22
null
0
0
null
null
null
null
UTF-8
R
false
false
623
r
freorder.R
#' Reorder Levels of a Factor #' #' @param x a factor, an atomic vector. The vector is treated as a categorical variable whose levels will be reordered. #' #' @usage freorder(x) #' @return By default, the function will return the factor in the descending order. #' @export #' @examples #' @seealso \link{reorder} #' freorder(factor(c(1000,100,10)))\n #' freorder(factor(c("a","z","m"))) freorder <- function (x){ # use the factor_check to make sure we have a factor input factor_check(x) # then use the dplyr function to reorder the factor sortedfactor <- reorder(x,dplyr::desc(x)) return(sortedfactor) }
24c8067e2da1115d5e3759c1257fcbd88921c5b2
b31298d41ca6b8aaf52c01bf69ec6f9f577341bd
/creating_covariates_dataset.R
1c2815b1a3172b398359b6deaf5adc32b01d7b12
[]
no_license
nskaff/CORE
b3a73740c6b91b90fcd286ee95b780304cc6a101
494041528b0b24cafb2d242050979d700c9b20c5
refs/heads/master
2021-01-19T17:38:31.117378
2017-10-27T14:59:26
2017-10-27T14:59:26
101,078,656
0
0
null
null
null
null
UTF-8
R
false
false
3,554
r
creating_covariates_dataset.R
#creating a useful dataset for covariates library(dplyr) library(lubridate) library(tidyr) library(googlesheets) library(mapview) #loading in data with z-score my_sheets <- gs_ls() #Will have to authenticate Google here (in browser, very easy) core <- gs_title("z_score_data") #get whole document z_scores <- core %>% gs_read_csv(ws = "Sheet1") #work with individual worksheet z_scores$Lake.ID<-as.character(z_scores$Lake.ID) #loading data template core <- gs_title("Datatemplate_CORE_Variables") #get whole document md <- core %>% gs_read_csv(ws = "Sheet1") #work with individual worksheet temp_covs<-read.csv('data/coreTemps_Berkeley_9_19.csv', header=T) temp_covs$date<-as.Date(temp_covs$date) c3crop<-read.csv("data/core_LULC_C3crop.csv", header=T) c4crop<-read.csv("data/core_LULC_C4crop.csv", header=T) c3past<-read.csv("data/core_LULC_C3past.csv", header=T) c4past<-read.csv("data/core_LULC_C4past.csv", header=T) urban<-read.csv("data/core_LULC_Urban.csv", header=T) #taking the mean temperature anomoly by year temp_covs1<-aggregate(.~year(date),data=temp_covs, FUN=mean, na.action=na.pass) colnames(temp_covs1)[1]<-"year" temp_covs2<-temp_covs1[,c(-2)] #converting temperature to vertical format temp_covs3<-temp_covs2 %>% gather(key=year) colnames(temp_covs3)[2:3]<-c("Lake.ID", "mean_annual_temp_anomaly") temp_covs3$Lake.ID<-gsub("X","",temp_covs3$Lake.ID) #adding the LULC covariate data c3crop$year<-year(c3crop$date) c3crop<-c3crop[-1] c3crop1<-c3crop %>% gather(key=year) colnames(c3crop1)[2]<-"Lake.ID" colnames(c3crop1)[3]<-"%c3crop" c3crop1$Lake.ID<-gsub("X","",c3crop1$Lake.ID) covar_data<-full_join(temp_covs3,c3crop1,by=c("Lake.ID", "year") ) c4crop$year<-year(c4crop$date) c4crop<-c4crop[-1] c4crop1<-c4crop %>% gather(key=year) colnames(c4crop1)[2]<-"Lake.ID" colnames(c4crop1)[3]<-"%c4crop" c4crop1$Lake.ID<-gsub("X","",c4crop1$Lake.ID) covar_data<-full_join(covar_data,c4crop1,by=c("Lake.ID", "year") ) c3past$year<-year(c3past$date) c3past<-c3past[-1] c3past1<-c3past %>% gather(key=year) colnames(c3past1)[2]<-"Lake.ID" colnames(c3past1)[3]<-"%c3past" c3past1$Lake.ID<-gsub("X","",c3past1$Lake.ID) covar_data<-full_join(covar_data,c3past1,by=c("Lake.ID", "year") ) c4past$year<-year(c4past$date) c4past<-c4past[-1] c4past1<-c4past %>% gather(key=year) colnames(c4past1)[2]<-"Lake.ID" colnames(c4past1)[3]<-"%c4past" c4past1$Lake.ID<-gsub("X","",c4past1$Lake.ID) covar_data<-full_join(covar_data,c4past1,by=c("Lake.ID", "year") ) urban$year<-year(urban$date) urban<-urban[-1] urban1<-urban %>% gather(key=year) colnames(urban1)[2]<-"Lake.ID" colnames(urban1)[3]<-"%urban" urban1$Lake.ID<-gsub("X","",urban1$Lake.ID) covar_data<-full_join(covar_data,urban1,by=c("Lake.ID", "year") ) covar_data[,"%total_crop"]<-(covar_data$`%c3crop`+covar_data$`%c4crop`) covar_data[,"%total_past"]<-(covar_data$`%c3past`+covar_data$`%c4past`) z_scores$Lake.ID<-as.character(z_scores$Lake.ID) #adding z-score data covar_data<-full_join(covar_data, z_scores, by=c("year", "Lake.ID")) #removing years before 1850 and lakes without a Z score marked with X covar_data1<-covar_data[covar_data$year>=1850 & covar_data$Lake.ID %in% as.character(md$Lake.ID[md$'Included in model'=="y"]),] #adding in method, area, lat/long, elevation, md$Lake.ID<-as.character(md$Lake.ID) covar_data2<-full_join(covar_data1,md[,c(1,15,19,20,21,22)], by=c("Lake.ID")) #testing to see if all years included tapply(covar_data1$year, covar_data1$Lake.ID, function(x){length(x)}) write.csv(covar_data1, "data/covariates_data_10_27_17.csv", row.names=F)
f46802d5fd4d7c7aa6dab382107bc177309905d9
96380c781c896f2731e301c9fe17bbb1303b3344
/svm_analysis_final.R
d5c2b6c50bd1a98b0a80ecfb4288811324c8e530
[]
no_license
tborrman/DNA-rep
e5c6b955059d48dd5f8fd8dfee5db9ab300481bf
d0a311b82029de5537d377550b31cba5c66cb763
refs/heads/master
2020-04-22T10:15:38.496413
2017-10-18T00:21:51
2017-10-18T00:21:51
42,599,464
0
0
null
null
null
null
UTF-8
R
false
false
16,195
r
svm_analysis_final.R
# A script to analyze DNA replication origin data by support vector machines library("e1071"); library("ROCR"); # Set paths begPath <- "/Users/User/Research/DNArep"; wkDir <- paste(begPath, "/Data", sep=""); # Read in ori_data_1.6.txt full_ori_data <- read.table(paste(wkDir, "/ori_data_1.8.txt", sep=""), header=TRUE, sep="\t", comment.char=""); # Classify data as early or late defined by Scott Yang's parameter n from MIM model s.t. # early = n > median(n) # late = n <= median(n) # Get median n value full_n <- full_ori_data$yang_n median_n <- median(full_n, na.rm = TRUE); # Create class vector for labeling early and late origins class <- sapply(full_n, function(x) { if(is.na(x)) { return(NA); } else if(x > median_n) { return("early"); } else if(x <= median_n){ return("late"); } }); # Add classification to data ori_data_class <- cbind(full_ori_data, class); # Extract all data containing an n parameter ori_data_clean <- ori_data_class[-which(is.na(full_n)), ]; # Remove remaining origins in rDNA which skew ChIP-seq ori_data <- ori_data_clean[-which(ori_data_clean$ID == 534),]; # Give 0 to all NAs in rpd3 data ori_data[which(is.na(ori_data$knott_update_Rpd3_WT_diff)), "knott_update_Rpd3_WT_diff"] <- 0; # Use 2/3 of data as a training set for svm model # Remaining 1/3 of data will be the test set training_total <- round(nrow(ori_data)* (2/3)); training_indices <- sample(1:nrow(ori_data), training_total); test_indices <- setdiff(1:nrow(ori_data), training_indices); training_set <- ori_data[training_indices,]; test_set <- ori_data[test_indices,]; # Create svm model from training set using just macalpine replicate 2 ChIP seq functions <- c("linear", "polynomial", "radial", "sigmoid"); for (kern_funct in functions) { MCM_training <- training_set[c("macalpine_2_MCM_no_mult", "class")]; MCM_test <- test_set[c("macalpine_2_MCM_no_mult")]; svm_model <- svm(class~., data= MCM_training, kernel = kern_funct, cost = 1, type = "C-classification", probability = TRUE); summary(svm_model); predict_values <- predict(svm_model, MCM_test, probability = TRUE); # Confusion matrix confusion_matrix <- table(pred = predict_values, true = test_set$class); # Compute sensititivity = TP/ (TP + FN) and specificity = TN / (TN + FP) # such that Positive = early and Negative = late TP <- confusion_matrix["early", "early"]; FP <- confusion_matrix["early", "late"]; TN <- confusion_matrix["late", "late"]; FN <- confusion_matrix["late", "early"]; sensitivity <- TP / (TP + FN); specificity <- TN / (TN + FP); # Compute ROC curves ROC_pred <- prediction(attr(predict_values, "probabilities") [,"early"], test_set$class == "early" ); ROC_perf <- performance(ROC_pred, measure = "tpr", x.measure = "fpr"); #profilePath <- paste(begPath, "/plot.pdf", sep=""); #plot(ROC_perf,col="BLUE"); #dev.off(); ROC_AUC<-as.numeric(performance(ROC_pred, measure = "auc", x.measure = "cutoff")@ y.values); profilePath <- paste(begPath, "/Results/svm/1D/", kern_funct, "_svm_plot_1D.pdf", sep=""); pdf(profilePath, width=10, height=8); #plot(svm_model_2D, MCM_Ku_training); title = paste(" ROC Plot: AUC = ", round(ROC_AUC, digits = 2), sep = ""); plot(ROC_perf, col= "BLUE", main = title); dev.off(); } # Create svm model from training set using just ku data functions <- c("linear", "polynomial", "radial", "sigmoid"); for (kern_funct in functions) { Ku_training <- training_set[c("donaldson_WT_yku70_diff_plus3", "class")]; Ku_test <- test_set[c("donaldson_WT_yku70_diff_plus3")]; svm_model_ku_1 <- svm(class~., data= Ku_training, kernel = kern_funct, cost = 1, type = "C-classification", probability = TRUE); summary(svm_model_ku_1); predict_values_ku_1 <- predict(svm_model_ku_1, Ku_test, probability = TRUE); # Confusion matrix confusion_matrix_ku_1 <- table(pred = predict_values_ku_1, true = test_set$class); # Compute sensititivity = TP/ (TP + FN) and specificity = TN / (TN + FP) # such that Positive = early and Negative = late TP <- confusion_matrix_ku_1["early", "early"]; FP <- confusion_matrix_ku_1["early", "late"]; TN <- confusion_matrix_ku_1["late", "late"]; FN <- confusion_matrix_ku_1["late", "early"]; sensitivity_ku_1 <- TP / (TP + FN); specificity_ku_1 <- TN / (TN + FP); # Compute ROC curves ROC_pred_ku_1 <- prediction(attr(predict_values_ku_1, "probabilities") [,"early"], test_set$class == "early" ); ROC_perf_ku_1 <- performance(ROC_pred_ku_1, measure = "tpr", x.measure = "fpr"); #profilePath <- paste(begPath, "/plot.pdf", sep=""); #plot(ROC_perf,col="BLUE"); #dev.off(); ROC_AUC_ku_1 <-as.numeric(performance(ROC_pred_ku_1, measure = "auc", x.measure = "cutoff")@ y.values); profilePath <- paste(begPath, "/Results/svm/ku_1/", kern_funct, "_svm_plot_1D_ku.pdf", sep=""); pdf(profilePath, width=10, height=8); #plot(svm_model_2D, MCM_Ku_training); title = paste(" ROC Plot: AUC = ", round(ROC_AUC_ku_1, digits = 2), sep = ""); plot(ROC_perf_ku_1, col= "BLUE", main = title); dev.off(); } # Create svm model from training set using just rpd3 data functions <- c("linear", "polynomial", "radial", "sigmoid"); for (kern_funct in functions) { Rpd3_training <- training_set[c("knott_update_Rpd3_WT_diff", "class")]; Rpd3_test <- test_set[c("knott_update_Rpd3_WT_diff")]; svm_model_rpd3_1 <- svm(class~., data= Rpd3_training, kernel = kern_funct, cost = 1, type = "C-classification", probability = TRUE); summary(svm_model_rpd3_1); predict_values_rpd3_1 <- predict(svm_model_rpd3_1, Rpd3_test, probability = TRUE); # Confusion matrix confusion_matrix_rpd3_1 <- table(pred = predict_values_rpd3_1, true = test_set$class); # Compute sensititivity = TP/ (TP + FN) and specificity = TN / (TN + FP) # such that Positive = early and Negative = late TP <- confusion_matrix_rpd3_1["early", "early"]; FP <- confusion_matrix_rpd3_1["early", "late"]; TN <- confusion_matrix_rpd3_1["late", "late"]; FN <- confusion_matrix_rpd3_1["late", "early"]; sensitivity_rpd3_1 <- TP / (TP + FN); specificity_rpd3_1 <- TN / (TN + FP); # Compute ROC curves ROC_pred_rpd3_1 <- prediction(attr(predict_values_rpd3_1, "probabilities") [,"early"], test_set$class == "early" ); ROC_perf_rpd3_1 <- performance(ROC_pred_rpd3_1, measure = "tpr", x.measure = "fpr"); #profilePath <- paste(begPath, "/plot.pdf", sep=""); #plot(ROC_perf,col="BLUE"); #dev.off(); ROC_AUC_rpd3_1 <-as.numeric(performance(ROC_pred_rpd3_1, measure = "auc", x.measure = "cutoff")@ y.values); profilePath <- paste(begPath, "/Results/svm/rpd3_1/", kern_funct, "_svm_plot_1D_rpd3_1.pdf", sep=""); pdf(profilePath, width=10, height=8); #plot(svm_model_2D, MCM_Ku_training); title = paste(" ROC Plot: AUC = ", round(ROC_AUC_rpd3_1, digits = 2), sep = ""); plot(ROC_perf_rpd3_1, col= "BLUE", main = title); dev.off(); } # Let's add the ku mutant difference in Trep data and train again! functions <- c("linear", "polynomial", "radial", "sigmoid"); for (kern_funct in functions) { #MCM_col = 82; #Ku_col = 63; #class_col = 93; MCM_Ku_training <- training_set[c("macalpine_2_MCM_no_mult", "donaldson_WT_yku70_diff_plus3", "class")]; MCM_KU_test <- test_set[c("macalpine_2_MCM_no_mult", "donaldson_WT_yku70_diff_plus3")]; svm_model_2D <- svm(class~., data= MCM_Ku_training , kernel = kern_funct, cost = 1, type = "C-classification", probability = TRUE); summary(svm_model_2D); #plot(svm_model_2D, MCM_Ku_training); predict_values_2D <- predict(svm_model_2D, MCM_KU_test, probability = TRUE); # Confusion matrix confusion_matrix_2D <- table(pred = predict_values_2D, true = test_set$class); # Compute sensititivity = TP/ (TP + FN) and specificity = TN / (TN + FP) # such that Positive = early and Negative = late TP <- confusion_matrix_2D["early", "early"]; FP <- confusion_matrix_2D["early", "late"]; TN <- confusion_matrix_2D["late", "late"]; FN <- confusion_matrix_2D["late", "early"]; sensitivity_2D <- TP / (TP + FN); specificity_2D <- TN / (TN + FP); # Compute ROC curves ROC_pred_ku <- prediction(attr(predict_values_2D, "probabilities") [,"early"], test_set$class == "early" ); ROC_perf_ku <- performance(ROC_pred_ku, measure = "tpr", x.measure = "fpr"); #profilePath <- paste(begPath, "/plot.pdf", sep=""); #plot(ROC_perf,col="BLUE"); #dev.off(); ROC_AUC_ku<-as.numeric(performance(ROC_pred_ku, measure = "auc", x.measure = "cutoff")@ y.values); profilePath <- paste(begPath, "/Results/svm/ku/", kern_funct, "_svm_plot_2D_ku.pdf", sep=""); pdf(profilePath, width=10, height=8); plot(svm_model_2D, MCM_Ku_training); title = paste(" ROC Plot: AUC = ", round(ROC_AUC_ku, digits = 2), sep = ""); plot(ROC_perf_ku, col= "BLUE", main = title); dev.off(); } # Let's try rpd3 data alone and train again! functions <- c("linear", "polynomial", "radial", "sigmoid"); for (kern_funct in functions) { #MCM_col = 82; #Ku_col = 63; #class_col = 93; MCM_rpd3_training <- training_set[c("macalpine_2_MCM_no_mult", "knott_update_Rpd3_WT_diff", "class")]; MCM_rpd3_test <- test_set[c("macalpine_2_MCM_no_mult", "knott_update_Rpd3_WT_diff")]; svm_model_rpd3 <- svm(class~., data= MCM_rpd3_training , kernel = kern_funct, cost = 1, type = "C-classification", probability = TRUE); summary(svm_model_rpd3); #plot(svm_model_2D, MCM_Ku_training); predict_values_rpd3 <- predict(svm_model_rpd3, MCM_rpd3_test, probability = TRUE); # Confusion matrix confusion_matrix_rpd3 <- table(pred = predict_values_rpd3, true = test_set$class); # Compute sensititivity = TP/ (TP + FN) and specificity = TN / (TN + FP) # such that Positive = early and Negative = late TP <- confusion_matrix_rpd3["early", "early"]; FP <- confusion_matrix_rpd3["early", "late"]; TN <- confusion_matrix_rpd3["late", "late"]; FN <- confusion_matrix_rpd3["late", "early"]; sensitivity_rpd3 <- TP / (TP + FN); specificity_rpd3 <- TN / (TN + FP); # Compute ROC curves ROC_pred_rpd3 <- prediction(attr(predict_values_rpd3, "probabilities") [,"early"], test_set$class == "early" ); ROC_perf_rpd3 <- performance(ROC_pred_rpd3, measure = "tpr", x.measure = "fpr"); #profilePath <- paste(begPath, "/plot.pdf", sep=""); #plot(ROC_perf,col="BLUE"); #dev.off(); ROC_AUC_rpd3 <-as.numeric(performance(ROC_pred_rpd3, measure = "auc", x.measure = "cutoff")@ y.values); profilePath <- paste(begPath, "/Results/svm/rpd3/", kern_funct, "_svm_plot_2D_rpd3.pdf", sep=""); pdf(profilePath, width=10, height=8); plot(svm_model_rpd3, MCM_rpd3_training); title = paste(" ROC Plot: AUC = ", round(ROC_AUC_rpd3, digits = 2), sep = ""); plot(ROC_perf_rpd3, col= "BLUE", main = title); dev.off(); } # Let's add the Rpd3 dependent data and ku and train again! functions <- c("linear", "polynomial", "radial", "sigmoid"); for (kern_funct in functions) { #MCM_col = 82; #Ku_col = 63; #Rpd3_col = 92; #class_col = 93; MCM_Ku_rpd3_training <- training_set[c("macalpine_2_MCM_no_mult", "donaldson_WT_yku70_diff_plus3","knott_update_Rpd3_WT_diff", "class")]; MCM_KU_rpd3_test <- test_set[c("macalpine_2_MCM_no_mult", "donaldson_WT_yku70_diff_plus3","knott_update_Rpd3_WT_diff")]; svm_model_ku_rpd3 <- svm(class~., data= MCM_Ku_rpd3_training , kernel = kern_funct, cost = 1, type = "C-classification", probability = TRUE); summary(svm_model_ku_rpd3); #plot(svm_model_2D, MCM_Ku_training); predict_values_ku_rpd3 <- predict(svm_model_ku_rpd3, MCM_KU_rpd3_test, probability = TRUE); # Confusion matrix confusion_matrix_ku_rpd3 <- table(pred = predict_values_ku_rpd3, true = test_set$class); # Compute sensititivity = TP/ (TP + FN) and specificity = TN / (TN + FP) # such that Positive = early and Negative = late TP <- confusion_matrix_ku_rpd3["early", "early"]; FP <- confusion_matrix_ku_rpd3["early", "late"]; TN <- confusion_matrix_ku_rpd3["late", "late"]; FN <- confusion_matrix_ku_rpd3["late", "early"]; sensitivity_ku_rpd3 <- TP / (TP + FN); specificity_ku_rpd3 <- TN / (TN + FP); # Compute ROC curves ROC_pred_ku_rpd3 <- prediction(attr(predict_values_ku_rpd3, "probabilities") [,"early"], test_set$class == "early" ); ROC_perf_ku_rpd3 <- performance(ROC_pred_ku_rpd3, measure = "tpr", x.measure = "fpr"); #profilePath <- paste(begPath, "/plot.pdf", sep=""); #plot(ROC_perf,col="BLUE"); #dev.off(); ROC_AUC_ku_rpd3 <-as.numeric(performance(ROC_pred_ku_rpd3, measure = "auc", x.measure = "cutoff")@ y.values); profilePath <- paste(begPath, "/Results/svm/ku_rpd3/", kern_funct, "_svm_plot_ku_rpd3.pdf", sep=""); pdf(profilePath, width=10, height=8); plot(svm_model_ku_rpd3, MCM_Ku_rpd3_training, macalpine_2_MCM_no_mult ~ knott_update_Rpd3_WT_diff); title = paste(" ROC Plot: AUC = ", round(ROC_AUC_ku_rpd3, digits = 2), sep = ""); plot(ROC_perf_ku_rpd3, col= "BLUE", main = title); dev.off(); } # Let's add everything we got and train again! functions <- c("linear", "polynomial", "radial", "sigmoid"); for (kern_funct in functions) { #MCM_col = 82; #Ku_col = 63; #Rpd3_col = 92; #class_col = 93; MCM_8D_training <- training_set[c("macalpine_2_MCM_no_mult","dsSPD4a_MCM_no_mult", "dsSPD4b_1_MCM_no_mult", "dsSPD8a_MCM_no_mult", "dsSPD8b_MCM_no_mult", "macalpine_1_MCM_no_mult","donaldson_WT_yku70_diff_plus3","knott_update_Rpd3_WT_diff", "class")]; MCM_8D_test <- test_set[c("macalpine_2_MCM_no_mult", "dsSPD4a_MCM_no_mult", "dsSPD4b_1_MCM_no_mult", "dsSPD8a_MCM_no_mult", "dsSPD8b_MCM_no_mult", "macalpine_1_MCM_no_mult", "donaldson_WT_yku70_diff_plus3","knott_update_Rpd3_WT_diff")]; svm_model_8D <- svm(class~., data= MCM_8D_training , kernel = kern_funct, cost = 1, type = "C-classification", probability = TRUE); summary(svm_model_8D); #plot(svm_model_2D, MCM_Ku_training); predict_values_8D <- predict(svm_model_8D, MCM_8D_test, probability = TRUE); # Confusion matrix confusion_matrix_8D <- table(pred = predict_values_8D, true = test_set$class); # Compute sensititivity = TP/ (TP + FN) and specificity = TN / (TN + FP) # such that Positive = early and Negative = late TP <- confusion_matrix_8D["early", "early"]; FP <- confusion_matrix_8D["early", "late"]; TN <- confusion_matrix_8D["late", "late"]; FN <- confusion_matrix_8D["late", "early"]; sensitivity_8D <- TP / (TP + FN); specificity_8D <- TN / (TN + FP); # Compute ROC curves ROC_pred_8D <- prediction(attr(predict_values_8D, "probabilities") [,"early"], test_set$class == "early" ); ROC_perf_8D <- performance(ROC_pred_8D, measure = "tpr", x.measure = "fpr"); #profilePath <- paste(begPath, "/plot.pdf", sep=""); #plot(ROC_perf,col="BLUE"); #dev.off(); ROC_AUC_8D <-as.numeric(performance(ROC_pred_8D, measure = "auc", x.measure = "cutoff")@ y.values); profilePath <- paste(begPath, "/Results/svm/8D/", kern_funct, "_svm_plot_8D.pdf", sep=""); pdf(profilePath, width=10, height=8); plot(svm_model_8D, MCM_8D_training, macalpine_2_MCM_no_mult ~ knott_update_Rpd3_WT_diff); title = paste(" ROC Plot: AUC = ", round(ROC_AUC_8D, digits = 2), sep = ""); plot(ROC_perf_8D, col= "BLUE", main = title); dev.off(); }
64cc51a1ef8d48d11033c35dc7f7224035e74330
d373be2775975e19c92321809900453645663fc9
/R/landmarks.R
2cf2c3a128d84c3158d2e7252bf0aae51ce2b01c
[]
no_license
spencerbell/tigris
84b4f532d957fca402df375da30fcaa2ec7f4f6d
8779398dc2203ad917c7c78035c99ea92f237195
refs/heads/master
2021-01-19T13:04:07.240755
2017-04-12T14:17:41
2017-04-12T14:17:41
88,059,990
0
0
null
2017-04-12T14:16:50
2017-04-12T14:16:49
null
UTF-8
R
false
false
4,472
r
landmarks.R
#' Download the Military Installation National Shapefile into R #' #' Description from the US Census Bureau: "The Census Bureau includes landmarks #' such as military installations in the MAF/TIGER database for #' locating special features and to help enumerators during field operations. The Census Bureau adds #' landmark features to the database on an as-needed basis and does not attempt to ensure that all #' instances of a particular feature are included. For additional information about area landmarks, please #' see Section 3.12, Landmarks (Area and Point)." #' #' This file does not include the three point landmarks identified as military installation features in the #' MAF/TIGER database. These point landmarks are included in the point landmark shapefile. #' Although almost all military installations have assigned 8-character National Standard (GNIS) codes, the #' Census Bureau has not loaded most of this data into the MAF/TIGER database. The 2015 military #' shapefiles contain few values in the ANSICODE field. #' @param ... arguments to be passed to the underlying `load_tiger` function, which is not exported. #' Options include \code{refresh}, which specifies whether or not to re-download shapefiles #' (defaults to \code{FALSE}), and \code{year}, the year for which you'd like to download data #' (defaults to 2015). #' @seealso \url{http://www2.census.gov/geo/pdfs/maps-data/data/tiger/tgrshp2015/TGRSHP2015_TechDoc_Ch3.pdf} #' @export military <- function(...) { url <- "http://www2.census.gov/geo/tiger/TIGER2015/MIL/tl_2015_us_mil.zip" return(load_tiger(url, tigris_type = "military", ...)) } #' Download a point or area landmarks shapefile into R #' #' Description from the US Census Bureau: #' "The Census Bureau includes landmarks in the MAF/TIGER database (MTDB) for locating special features #' and to help enumerators during field operations. Some of the more common landmark types include area #' landmarks such as airports, cemeteries, parks, and educational facilities and point landmarks such as #' schools and churches." #' #' The Census Bureau adds landmark features to the database on an as-needed basis and makes no #' attempt to ensure that all instances of a particular feature were included. The absence of a landmark #' such as a hospital or prison does not mean that the living quarters associated with that landmark were #' excluded from the 2010 Census enumeration. The landmarks were not used as the basis for building or #' maintaining the address list used to conduct the 2010 Census. #' #' Area landmark and area water features can overlap; for example, a park or other special land-use feature #' may include a lake or pond. In this case, the polygon covered by the lake or pond belongs to a water #' feature and a park landmark feature. Other kinds of landmarks can overlap as well. Area landmarks can #' contain point landmarks, but these features are not linked in the TIGER/Line Shapefiles. #' #' Landmarks may be identified by a MAF/TIGER feature class code only and may not have a name. Each #' landmark has a unique area landmark identifier (AREAID) or point landmark identifier (POINTID) value. #' #' @seealso \url{http://www2.census.gov/geo/pdfs/maps-data/data/tiger/tgrshp2015/TGRSHP2015_TechDoc_Ch3.pdf} #' #' @param state The state for which you'd like to download the landmarks #' @param type Whether you would like to download point landmarks (\code{"point"}) or area landmarks (\code{"area"}). Defaults to \code{"point"}. #' @param ... arguments to be passed to the underlying `load_tiger` function, which is not exported. #' Options include \code{refresh}, which specifies whether or not to re-download shapefiles #' (defaults to \code{FALSE}), and \code{year}, the year for which you'd like to download data #' (defaults to 2015). #' @export landmarks <- function(state, type = "point", ...) { state <- validate_state(state) if (type == "area") { url <- paste0("http://www2.census.gov/geo/tiger/TIGER2015/AREALM/tl_2015_", state, "_arealm.zip") return(load_tiger(url, tigris_type = "area_landmark", ...)) } else if (type == "point") { url <- paste0("http://www2.census.gov/geo/tiger/TIGER2015/POINTLM/tl_2015_", state, "_pointlm.zip") return(load_tiger(url, tigris_type = "point_landmark", ...)) } else { stop('The argument supplied to type must be either "point" or "area"', call. = FALSE) } }
71a1fc393ad2dd6db4ef4e5c470b88d3c4f4a6ef
753e3ba2b9c0cf41ed6fc6fb1c6d583af7b017ed
/service/paws.servicecatalog/man/associate_service_action_with_provisioning_artifact.Rd
be3064ef5c4d3326864d452a6cf70f3c53b011e7
[ "Apache-2.0" ]
permissive
CR-Mercado/paws
9b3902370f752fe84d818c1cda9f4344d9e06a48
cabc7c3ab02a7a75fe1ac91f6fa256ce13d14983
refs/heads/master
2020-04-24T06:52:44.839393
2019-02-17T18:18:20
2019-02-17T18:18:20
null
0
0
null
null
null
null
UTF-8
R
false
true
1,230
rd
associate_service_action_with_provisioning_artifact.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/paws.servicecatalog_operations.R \name{associate_service_action_with_provisioning_artifact} \alias{associate_service_action_with_provisioning_artifact} \title{Associates a self-service action with a provisioning artifact} \usage{ associate_service_action_with_provisioning_artifact(ProductId, ProvisioningArtifactId, ServiceActionId, AcceptLanguage = NULL) } \arguments{ \item{ProductId}{[required] The product identifier. For example, \code{prod-abcdzk7xy33qa}.} \item{ProvisioningArtifactId}{[required] The identifier of the provisioning artifact. For example, \code{pa-4abcdjnxjj6ne}.} \item{ServiceActionId}{[required] The self-service action identifier. For example, \code{act-fs7abcd89wxyz}.} \item{AcceptLanguage}{The language code. \itemize{ \item \code{en} - English (default) \item \code{jp} - Japanese \item \code{zh} - Chinese }} } \description{ Associates a self-service action with a provisioning artifact. } \section{Accepted Parameters}{ \preformatted{associate_service_action_with_provisioning_artifact( ProductId = "string", ProvisioningArtifactId = "string", ServiceActionId = "string", AcceptLanguage = "string" ) } }