blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
327
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
91
license_type
stringclasses
2 values
repo_name
stringlengths
5
134
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
46 values
visit_date
timestamp[us]date
2016-08-02 22:44:29
2023-09-06 08:39:28
revision_date
timestamp[us]date
1977-08-08 00:00:00
2023-09-05 12:13:49
committer_date
timestamp[us]date
1977-08-08 00:00:00
2023-09-05 12:13:49
github_id
int64
19.4k
671M
star_events_count
int64
0
40k
fork_events_count
int64
0
32.4k
gha_license_id
stringclasses
14 values
gha_event_created_at
timestamp[us]date
2012-06-21 16:39:19
2023-09-14 21:52:42
gha_created_at
timestamp[us]date
2008-05-25 01:21:32
2023-06-28 13:19:12
gha_language
stringclasses
60 values
src_encoding
stringclasses
24 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
9.18M
extension
stringclasses
20 values
filename
stringlengths
1
141
content
stringlengths
7
9.18M
9c1c93a016c5ad7461fd63c45276ddee22ff5720
c741b8b9982799de6406714257cbf20c6491ade7
/app.R
2b8e03b11cb394b7d6261fc07bdebf4f6e2e90f0
[]
no_license
moloscripts/KMPDC
f1d5ed4759c5049d4abb81d6db9dad7d869ceec1
954452a736a43da1fd3b68a8cf4ba4b954dd7414
refs/heads/main
2023-06-20T13:14:24.103385
2021-07-21T20:19:36
2021-07-21T20:19:36
388,144,754
0
0
null
null
null
null
UTF-8
R
false
false
10,102
r
app.R
# App developed my Data Cube Solutions # contactdatacube@gmail.com / molo.andrew@gmail.com # Data is reproducible # https://stackoverflow.com/questions/54914541/global-r-dont-start/66802176#66802176 library(easypackages) libraries("shiny","shinydashboard","tidyverse","lubridate", "plotly","Rcpp","shinyjs","rsconnect") # theme_set(theme_minimal()) # Visuals #### # Dataset medicalPractitioners <- read.csv("Data/MedicalPractitioners.csv") medicalPractitioners$RegDate <- dmy(medicalPractitioners$RegDate) medicalPractitioners <- medicalPractitioners %>% select(RegDate, SPECIALTY, SUB_SPECIALTY, Qualification.Count, TOWN) %>% rename( `Registration Date` = RegDate, Specialty = SPECIALTY, `Sub Specialty` = SUB_SPECIALTY, `Number of Qualifications` = Qualification.Count, Town = TOWN) %>% dplyr::mutate(Year = lubridate::year(`Registration Date`)) medicalPractitioners$`Year Range` = cut(medicalPractitioners$Year, c(1970, 1980, 1990, 2000, 2010, 2020, 2025)) levels(medicalPractitioners$`Year Range`) = c("1970-1980", "1981-1990", "1991-2000","2001-2010", "2011-2020","2021") medicalPractitioners$`Year Range` <- factor(medicalPractitioners$`Year Range`, ordered = T, levels = c("1970-1980", "1981-1990", "1991-2000","2001-2010", "2011-2020")) # Function for converting to Factors to_factor <- c("Specialty","Sub Specialty","Number of Qualifications","Town") for (col in to_factor) { medicalPractitioners[[col]] <- as.factor(as.character(medicalPractitioners[[col]])) } ## Plots #### ## Count of Medical Practitioners #### medicalPractitioners %>% group_by(`Year Range`) %>% summarise(count = n()) %>% ggplot(aes(`Year Range`, count)) + geom_line(aes(group = 1),color="#aa2b1d", size=1) + geom_point(size=4, color="#28527a") + labs(title = "Count of Medical Practitioners in Kenya", subtitle = "Data from 1978 to 2020", caption = "Source: medicalboard.co.ke", x="") + theme( plot.title = element_text(color = "#23689b", size = 20, face = "bold",hjust = 0.5), plot.subtitle = element_text(color = "#161d6f", size = 13, face = "bold",hjust = 0.5), plot.caption = element_text(color = "#0f1123", size = 10, face = "italic"), axis.text.x = element_text(face = "bold", size = 12), axis.text.y = element_text(face = "bold", size = 12) ) + geom_label(aes(label=count), nudge_x = 0.1, nudge_y = 0.2, size=5) #### MPQualificationsDF <- medicalPractitioners %>% group_by(`Year Range`, `Number of Qualifications`) %>% summarise(count = n()) %>% ggplot(aes(`Year Range`, count, group=`Number of Qualifications`)) + geom_line(aes(color=`Number of Qualifications`), size=1) + geom_point(aes(color=`Number of Qualifications`), size=5) + labs(title = "Count of Qualifications of Medical Practitioners", subtitle = "Data from 1978 to 2020", caption = "Source:https://medicalboard.co.ke/DashBoard.php ", x="") + theme( plot.title = element_text(color = "#23689b", size = 20, face = "bold",hjust = 0.5), plot.subtitle = element_text(color = "#161d6f", size = 13, face = "bold",hjust = 0.5), plot.caption = element_text(color = "#0f1123", size = 10, face = "italic"), axis.text.x = element_text(face = "bold", size = 12), axis.text.y = element_text(face = "bold", size = 12), legend.title = element_blank(), legend.position = "top" ) + geom_label(aes(label=count), nudge_x = 0.15, nudge_y = 4, size=4) ## Top Specialties in the last decade #### SpecialtiesDF <- medicalPractitioners %>% count(Specialty, sort = T) %>% filter(n>20) ggplot(SpecialtiesDF, aes(reorder(Specialty, n), n)) + geom_col(aes(fill=Specialty)) + coord_flip() + labs(title = "Top Specialties of Medical Practitioners", subtitle = "Data from 1978 to 2020", caption = "Source:https://medicalboard.co.ke/DashBoard.php ", x="", y="count") + theme( plot.title = element_text(color = "#23689b", size = 20, face = "bold",hjust = 0.5), plot.subtitle = element_text(color = "#161d6f", size = 13, face = "bold",hjust = 0.5), plot.caption = element_text(color = "#0f1123", size = 10, face = "italic"), axis.text.x = element_text(face = "bold", size = 12), axis.text.y = element_text(face = "bold", size = 12), legend.title = element_blank(), legend.position = "none" ) + geom_label(aes(label=n), nudge_x = 0.15, nudge_y = 0.9, size=4) # Shiny Dashboard Framework #### town <- unique(medicalPractitioners$Town) # Define UI for application that draws a histogram ui <- fluidPage( dashboardPage(skin = "yellow", dashboardHeader( title = "KMPDC Data Dashboard", titleWidth = 250 ), dashboardSidebar( sidebarMenu( sidebarSearchForm(textId = "Search", buttonId = "searchTown", label = "Search Town") ) ), dashboardBody( tags$head( tags$link(rel = "stylesheet", type = "text/css", href = "style.css") ), fluidRow( tabBox(width = 12, height = NULL, selected = "Count of Practitioners", tabPanel("Count of Practitioners", plotlyOutput("practitioners_count")), tabPanel("Number of Qualifications per Medical Practitioners", plotlyOutput("qualifications_count")), tabPanel("Top Specialties of Medical Practitioners", plotlyOutput("specialityCount")) ) ) ) # End of dashboardBody() ) # End of dashboardPage() ) server <- function(input, output) { filtered_data <- reactive({ medicalPractitioners %>% filter(Town %in% toupper(input$Search)) }) # Server Output - Count of Practitioners #### output$practitioners_count <- renderPlotly({ filter(medicalPractitioners, Town==toupper(input$Search)) %>% group_by(`Year Range`) %>% summarise(count = n()) %>% ggplot(aes(`Year Range`, count)) + geom_line(aes(group = 1),color="#E9896A", size=1) + geom_point(size=4, color="#00bfc4") + labs( subtitle = "Data from 1978 to 2020", caption = "Source: medicalboard.co.ke", x="") + theme( # plot.title = element_text(color = "#23689b", size = 13, face = "bold",hjust = 0.5), plot.subtitle = element_text(color = "#161d6f", size = 9, face = "bold",hjust = 0.5), plot.caption = element_text(color = "#0f1123", size = 10, face = "italic"), axis.text.x = element_text(face = "bold", size = 8), axis.text.y = element_text(face = "bold", size = 8) ) + geom_label(aes(label=count), nudge_x = 0.1, nudge_y = 0.2, size=5) + theme_minimal() }) # Server Output - Count of Qualifications #### output$qualifications_count <- renderPlotly({ filter(medicalPractitioners, Town==toupper(input$Search)) %>% group_by(`Year Range`, `Number of Qualifications`) %>% summarise(count = n()) %>% ggplot(aes(`Year Range`, count, group=`Number of Qualifications`)) + geom_line(aes(color=`Number of Qualifications`), size=1) + geom_point(aes(color=`Number of Qualifications`), size=3) + labs( subtitle = "Data from 1978 to 2020", caption = "Source:https://medicalboard.co.ke/DashBoard.php ", x="") + theme( # plot.title = element_text(color = "#23689b", size = 20, face = "bold",hjust = 0.5), plot.subtitle = element_text(color = "#161d6f", size = 13, face = "bold",hjust = 0.5), plot.caption = element_text(color = "#0f1123", size = 10, face = "italic"), axis.text.x = element_text(face = "bold", size = 8), axis.text.y = element_text(face = "bold", size = 8), legend.title = element_blank(), legend.position = "top" ) + geom_label(aes(label=count), nudge_x = 0.15, nudge_y = 4, size=2) + theme_minimal() }) # Server Output - Top Specialties #### output$specialityCount <- renderPlotly({ filter(medicalPractitioners, Town==toupper(input$Search)) %>% count(Specialty, sort = T) %>% filter(n>20) %>% ggplot(aes(reorder(Specialty, n), n)) + geom_col(aes(fill=Specialty)) + coord_flip() + labs( subtitle = "Data from 1978 to 2020", caption = "Source:https://medicalboard.co.ke/DashBoard.php ", x="", y="count") + theme( # plot.title = element_text(color = "#23689b", size = 20, face = "bold",hjust = 0.5), plot.subtitle = element_text(color = "#161d6f", size = 13, face = "bold",hjust = 0.5), plot.caption = element_text(color = "#0f1123", size = 10, face = "italic"), axis.text.x = element_text(face = "bold", size = 8), axis.text.y = element_text(face = "bold", size = 8), legend.title = element_blank(), legend.position = "none" ) + geom_label(aes(label=n), nudge_x = 0.15, nudge_y = 0.9, size=2) + theme_minimal() }) } # Run the application shinyApp(ui = ui, server = server)
6b16888e3ef2d4849a212550fb940df10461b779
29585dff702209dd446c0ab52ceea046c58e384e
/aroma.core/R/GLAD.EXTS.R
e65394bb7bf22e348abe58e8bb8ad03ea08097da
[]
no_license
ingted/R-Examples
825440ce468ce608c4d73e2af4c0a0213b81c0fe
d0917dbaf698cb8bc0789db0c3ab07453016eab9
refs/heads/master
2020-04-14T12:29:22.336088
2016-07-21T14:01:14
2016-07-21T14:01:14
null
0
0
null
null
null
null
UTF-8
R
false
false
6,566
r
GLAD.EXTS.R
setMethodS3("extractCopyNumberRegions", "profileCGH", function(object, ...) { # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Validate arguments # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - pv <- object$profileValues; # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Allocate result table # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Identify unique regions uRegions <- unique(pv$Region); nbrOfRegions <- length(uRegions); # Columns colClasses <- c(chromosome="character", start="integer", stop="integer", mean="double", nbrOfLoci="integer", call="character"); df <- dataFrame(colClasses, nrow=nbrOfRegions); # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Extract each region # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - for (rr in seq_along(uRegions)) { # Get the region ID region <- uRegions[rr]; # Get the first and last position of each region idx <- which(region == pv$Region); idx <- idx[c(1,length(idx))]; idx1 <- idx[1]; # Chromosome df[rr,"chromosome"] <- pv$Chromosome[idx1]; # (start, stop, length) df[rr,c("start", "stop")] <- as.integer(pv$PosBase[idx]); # Number of SNPs df[rr,"nbrOfLoci"] <- as.integer(diff(idx)+1); # Smoothing df[rr,"mean"] <- pv$Smoothing[idx1]; # Call df[rr,"call"] <- c("loss", "neutral", "gain")[pv$ZoneGNL[idx1]+2]; } CopyNumberRegions( chromosome=df$chromosome, start=df$start, stop=df$stop, mean=df$mean, count=df$nbrOfLoci, call=df$call ); }) # extractCopyNumberRegions() setMethodS3("extractRawCopyNumbers", "profileCGH", function(object, ...) { pv <- object$profileValues; chromosome <- unique(pv$Chromosome); chromosome <- Arguments$getIndex(chromosome); RawCopyNumbers(cn=pv$LogRatio, x=pv$PosBase, chromosome=chromosome); }) setMethodS3("drawCnRegions", "profileCGH", function(this, ...) { cnr <- extractCopyNumberRegions(this, ...); drawLevels(cnr, ...); }) # Patch for plotProfile() of class profileCGH so that 'ylim' argument works. # Added also par(cex=0.8) - see code. setMethodS3("drawCytoband", "profileCGH", function(fit, chromosome=NULL, cytobandLabels=TRUE, colCytoBand=c("white", "darkblue"), colCentro="red", unit=6, ...) { requireWithMemory("GLAD") || throw("Package not loaded: GLAD"); # data("cytoband") # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Validate arguments # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Argument 'fit': if (!"PosBase" %in% names(fit$profileValues)) throw("Argument 'fit' does not contain a 'PosBase' field."); # Argument 'chromosome': if (is.null(chromosome)) { chromosome <- unique(fit$profileValues$Chromosome); if (length(chromosome) > 1) { throw("Argument 'chromosome' must not be NULL if 'fit' contains more than one chromosome: ", paste(chromosome, collapse=", ")); } } if (length(chromosome) > 1) { throw("Argument 'chromosome' must not contain more than one chromosome: ", paste(chromosome, collapse=", ")); } xScale <- 1/(10^unit); # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Get chromosome lengths # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Load data # To please R CMD check on R v2.6.0 cytoband <- NULL; rm(list="cytoband"); data("cytoband", envir=sys.frame(sys.nframe())); # Package 'GLAD' genomeInfo <- aggregate(cytoband$End, by=list(Chromosome=cytoband$Chromosome, ChrNumeric=cytoband$ChrNumeric), FUN=max, na.rm=TRUE); names(genomeInfo) <- c("Chromosome", "ChrNumeric", "Length"); genomeInfo$Chromosome <- as.character(genomeInfo$Chromosome); genomeInfo$ChrNumeric <- as.integer(as.character(genomeInfo$ChrNumeric)); LabelChr <- data.frame(Chromosome=chromosome); LabelChr <- merge(LabelChr, genomeInfo[, c("ChrNumeric", "Length")], by.x="Chromosome", by.y="ChrNumeric", all.x=TRUE); LabelChr$Length <- 0; # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Get the cytoband details for the chromosome of interest # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - # Drop column 'Chromosome' ## Gives a NOTE in R CMD check R v2.6.0, which is nothing, but we'll ## use a workaround to get a clean result. /HB 2007-06-12 Chromosome <- NULL; rm(list="Chromosome"); # dummy cytobandNew <- subset(cytoband, select=-Chromosome); cytobandNew <- merge(LabelChr, cytobandNew, by.x="Chromosome", by.y="ChrNumeric"); # Rescale x positions according to units cytobandNew$Start <- xScale*cytobandNew$Start; cytobandNew$End <- xScale*cytobandNew$End; # Where should the cytoband be added and how wide should it be? usr <- par("usr"); dy <- diff(usr[3:4]); drawCytoband2(cytobandNew, chromosome=chromosome, labels=cytobandLabels, y=usr[4]+0.02*dy, height=0.03*dy, colCytoBand=colCytoBand, colCentro=colCentro); }, private=TRUE) # drawCytoband() ############################################################################ # HISTORY: # 2010-02-19 # o Moved drawCytoband2() to its own file, because it no longer requires # the GLAD package. # 2009-05-14 # o Moved extractRawCopyNumbers() for profileCGH from aroma.affymetrix. # o Moved extractCopyNumberRegions() for profileCGH from aroma.affymetrix. # 2009-05-10 # o Moved to aroma.core v1.0.6. Source files: profileCGH.drawCnRegions.R # and profileCGH.drawCytoband.R. # 2008-05-21 # o Now extractRawCopyNumbers() adds 'chromosome' to the returned object. # 2007-09-04 # o Now data("cytoband") is loaded to the local environment. # 2007-08-22 # o Update plotProfile2() to utilizes drawCnRegions(). # 2007-08-20 # o Added drawCnRegions(). # 2007-06-11 # o Added explicit call to GLAD::myPalette() to please R CMD check R v2.6.0. # 2007-01-03 # o Made the highlighting "arrow" for the centromere smaller. # 2006-12-20 # o It is now possible to specify 'xlim' as well as 'ylim'. # o Reimplemented, because the cytoband was not displayed correctly. ############################################################################
73f382bfbc2b6109f8325b9698b35265143d41f2
34228464eec9a4c0d741ff754691f39aae95b1a2
/TCGA_adeno/LP_Test_adeno.R
74ff9003709c9afa3a35e06a18b2a50a6812263f
[]
no_license
yingstat/MOAB
53dd05154dd42fc14c3defb8f80713e22690cee5
36aba9de4e5f462973ed15782bdbc1c5482304e6
refs/heads/master
2023-02-21T10:01:49.539590
2021-01-21T18:02:28
2021-01-21T18:02:28
null
0
0
null
null
null
null
UTF-8
R
false
false
3,555
r
LP_Test_adeno.R
source('MOAB_main/Benchmark_HD_LD.R') Raw=readRDS('TCGA_adeno/data/AllX') PointLab=readRDS('TCGA_adeno/data/nodelabs') ######### #tSNE ######## #read in data tEmbed=readRDS('TCGA_adeno/Embeddings/tSNE') kVals=c(10,25,50,75,100,200,300) kMat_tSNE=matrix(0,nrow=length(kVals),ncol=30) for(i in 1:length(kVals)){ print('k we are on') print(i) Res=Benchmark_HD_LD(tEmbed,Raw,PointLab,kVals[i],0) print(mean(Res)) kMat_tSNE[i,]=Res } rownames(kMat_tSNE)=kVals ####################### #UMAP ####################### tEmbed=readRDS('TCGA_adeno/Embeddings/UMAP') kVals=c(10,25,50,75,100,200,300) kMat_UMAP=matrix(0,nrow=length(kVals),ncol=30) for(i in 1:length(kVals)){ print('k we are on') print(i) Res=Benchmark_HD_LD(tEmbed,Raw,PointLab,kVals[i],0) print(mean(Res)) kMat_UMAP[i,]=Res } rownames(kMat_UMAP)=kVals #################### #Large Vis########### #################### tEmbed=readRDS('TCGA_adeno/Embeddings/LargeVis') kVals=c(10,25,50,75,100,200,300) #take transpose only for tEmbed tEmbed=t(tEmbed) kMat_LV=matrix(0,nrow=length(kVals),ncol=30) for(i in 1:length(kVals)){ print('k we are on') print(i) Res=Benchmark_HD_LD(tEmbed,Raw,PointLab,kVals[i],0) print(mean(Res)) kMat_LV[i,]=Res } rownames(kMat_LV)=kVals ############################# #PCA ############################## tEmbed=readRDS('TCGA_adeno/Embeddings/PCA') kVals=c(10,25,50,75,100,200,300) #take transpose only for tEmbed kMat_PCA=matrix(0,nrow=length(kVals),ncol=30) for(i in 1:length(kVals)){ print('k we are on') print(i) Res=Benchmark_HD_LD(tEmbed,Raw,PointLab,kVals[i],0) print(mean(Res)) kMat_PCA[i,]=Res } rownames(kMat_PCA)=kVals ###################### #TriMap######## ##################### print('on trimap') tEmbed=readRDS('TCGA_adeno/Embeddings/TriMap') kVals=c(10,25,50,75,100,200,300) #take transpose only for tEmbed kMat_TriMap=matrix(0,nrow=length(kVals),ncol=30) for(i in 1:length(kVals)){ print('k we are on') print(i) Res=Benchmark_HD_LD(tEmbed,Raw,PointLab,kVals[i],0) print(mean(Res)) kMat_TriMap[i,]=Res } rownames(kMat_TriMap)=kVals ############################## #Lamp ############################### print('on lamp') tEmbed=readRDS('TCGA_adeno/Embeddings/Lamp') kVals=c(10,25,50,75,100,200,300) #take transpose only for tEmbed kMat_Lamp=matrix(0,nrow=length(kVals),ncol=30) for(i in 1:length(kVals)){ print('k we are on') print(i) Res=Benchmark_HD_LD(tEmbed,Raw,PointLab,kVals[i],0) print(mean(Res)) kMat_Lamp[i,]=Res } rownames(kMat_Lamp)=kVals #collect the results library('ggplot2') library('reshape2') library('plyr') FullDF=rbind(rowMeans(kMat_tSNE),rowMeans(kMat_UMAP),rowMeans(kMat_LV),rowMeans(kMat_TriMap),rowMeans(kMat_PCA),rowMeans(kMat_Lamp)) rownames(FullDF)=c('tSNE','UMAP','LargeVis','TriMap','PCA','Lamp') #optional plotting #valVec=c('gray50','darkviolet','darkolivegreen3','deeppink1','deepskyblue4','darkorange2','darkgoldenrod','black','darkblue') #valVec=valVec[-c(5,7,9)] #FullDF=melt(FullDF) #names(FullDF)=c('Method','k','score') #p<-ggplot(DT3, aes(x=k, y=Score, group=Method)) + # geom_line(aes(color=Method),lwd=1.3)+ # geom_point(aes(color=Method),size=1.5)+scale_color_manual(values=valVec) #p=p+theme_minimal()+theme(text = element_text(size=22))+xlab('k (# of nearest neighbors)')+ylab('LP Score')+scale_color_manual(values = valVec)+ggtitle('') #p=p+theme_classic()+theme(axis.text.y = element_text(size=22),axis.text.x=element_text(size=22))+theme(legend.position='none') #p=p+theme(axis.title.y = element_text(size=22),axis.title.x=element_text(size=22)) #ggsave('~/adeno_LP.pdf',p,width=5,height=5)
db345b229e2d8744796de5d89ac5cf17a9c6c200
4e3ef191ae5415eb0655f6d9fe8349f1aa54e80c
/R/draw.gdp_comps.R
5d861c48a1f524c04b1aa8e9c4437a0245bb0fcf
[]
no_license
fernote7/BETS
2e5624a4a5210cdeb583cb664548989bfec7edb3
5ba58b5e1997f6f47cdba1a686d9a3a1b95624ad
refs/heads/master
2021-01-22T17:23:21.115413
2017-09-05T18:09:58
2017-09-05T18:09:58
86,753,812
1
0
null
null
null
null
UTF-8
R
false
false
2,907
r
draw.gdp_comps.R
#' @title Create a chart of the Base Interest Rate (SELIC) time series #' #' @description Creates a plot of series 4189 #' #' @return An image file is saved in the 'graphs' folder, under the BETS installation directory. #' @importFrom zoo as.Date as.yearqtr #' @importFrom forecast ma #' @importFrom utils read.csv #' @importFrom stats aggregate #' @import plotly #' @importFrom seasonal seas #' @author Talitha Speranza \email{talitha.speranza@fgv.br} draw.gdp_comps = function(){ gdp_comp = paste0(system.file(package="BETS"), "/mon_pib_comps.csv") data <- ts(read.csv2(gdp_comp, stringsAsFactors = F)[,-1],start = c(2000,1), frequency = 12) data <- aggregate(data) year2 = end(data)[1] year1 = end(data)[1]-1 data <- window(data, start = year1) data[,5] = data[,5] - data[,6] data = data[,c(-6,-1)] data = t(data) rownames(data) = c("Hous.<br>Exp.", "Gov.<br>Exp.","GFFK","NX") #s = apply(data[,-1], 1, function(x){sum(x)}) # cbind(data[,1],s) colors <- c('rgb(211,94,96)', 'rgb(128,133,133)', 'rgb(144,103,167)', 'rgb(171,104,87)', 'rgb(114,147,203)') a <- list( x = 0.18, y = 0.5, text = paste0("<b>", year1,"</b>"), xref = "paper", yref = "paper", showarrow = F, font = list(size = 18) ) b <- list( x = 0.82, y = 0.5, text = paste0("<b>", year2,"</b>"), xref = "paper", yref = "paper", showarrow = F, font = list(size = 18) ) m <- list( t = 50, pad = 1 ) p <- plot_ly(width = 700, height = 450) %>% add_pie(labels = rownames(data), values = data[,1], textposition = 'inside', textinfo = "label+percent", insidetextfont = list(color = '#FFFFFF', size = 16), marker = list(colors = colors, line = list(color = '#FFFFFF', width = 1)), showlegend = F, hole = 0.4, domain = list(x = c(0, 0.45), y = c(0, 1))) %>% add_pie(labels = rownames(data), values = data[,2], textposition = 'inside', textinfo = "label+percent", insidetextfont = list(color = '#FFFFFF', size = 16), marker = list(colors = colors, line = list(color = '#FFFFFF', width = 1)), showlegend = F, hole = 0.4, domain = list(x = c(0.55, 1), y = c(0, 1))) %>% layout(title = '<b>GDP COMPONENTS</b><br><span style = "font-size:17">Nominal Yearly GDP - GDP Monitor (FGV/IBRE)</span>', annotations = list(a,b), titlefont = list(size = 19), margin = m, xaxis = list(showgrid = FALSE, zeroline = FALSE, showticklabels = FALSE), yaxis = list(showgrid = FALSE, zeroline = FALSE, showticklabels = FALSE)) return(p) }
d2054922f6e8215c9f559022c5cc5663439864ef
6e41a0025ac0cbf86cc30c06f0ea74f7bc31c418
/man/trans.Rd
6c571416ec0cb9077e5606d83162e5eac2ff2da7
[]
no_license
MrLehna/HMM
87acad48a97c9ecf114a0acc087fb7b05a3e2084
6cb42f8aa98c8a0c6c325c51c150638fe6cc4a04
refs/heads/master
2020-03-25T15:39:59.234492
2018-08-07T14:31:25
2018-08-07T14:31:25
null
0
0
null
null
null
null
UTF-8
R
false
true
1,382
rd
trans.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Transformation.R \name{trans} \alias{trans} \title{Transformation function - DM} \usage{ trans(factor, m) } \arguments{ \item{factor}{see details} \item{m}{number of Likelihoods} } \value{ returns a matrix with the sigma,Gamma and theta matrix bound together (collumn wise) } \description{ Due to our single optimation problem we have to build constrains for Gamma and Sigma to fullfill the requirements of probabilties. } \details{ In the direct maximisation the nlme()- minimisation function can not directly implement the constrains of the parameter values. This function ensures that the the estimated parameters of the direct optimisation still fullfill their requirements. These are that the probabilities are between zero and one and that the rows of gamma (as well as sigma) sum up to one. For this transformation the probit model is used. Thus with the input factor containing the elements that determine Sigma and Gamma we need the following number of elements for each parameter: Sigma vector (1 x m) - (m-1) elements required Gamma matrix (m x m) - m(m-1) elements required Theta vector (1 x m) - m elements required By this defintion the input factor vector has to contain the elements for Sigma, Gamma and Theta in that order and has to have the dimension: (m+1)(m-1) + m }
936f4b5a92d96a11e2a0826faaf63b7aa4996175
402956c1f9adfd625ee01113c7eeb7ec745ff6e9
/exemple.R
981f278009043fb23408369876f6df6499620f44
[]
no_license
slevu/rapport_ehpad
83bed175e26c674bf036806cca4fc425bdcabaf2
f9938032aa7fe207f4ead57a13c91c4a3c86d148
refs/heads/main
2023-02-28T08:55:33.563882
2021-02-10T15:46:28
2021-02-10T15:46:28
337,700,131
0
0
null
null
null
null
UTF-8
R
false
false
2,033
r
exemple.R
## exemple rapports par région ## Stephane - 10/2/21 ##---- mock individual data ---- nregfr <- 18 ## france ndptfr <- 101 netab <- 4 k <- 3 # nb region region <- LETTERS[1:k] set.seed(123) { ndpt_par_region <- rpois(k, ndptfr/nregfr) reg <- rep(region, ndpt_par_region) dep <- paste0(reg, sequence(ndpt_par_region)) etab <- paste0("e",1:netab) ## all etab in all dpt c12 <- expand.grid(dep = dep, etab = etab, stringsAsFactors = FALSE) ## some dpt have missing etab type nr <- nrow(c12) c12 <- c12[- sample(1:nr, floor(nr/10)),] df0 <- data.frame( region = sub("[0-9]", "", c12[,"dep"]), c12, x = rpois(nrow(c12),3), y = sample(c(NA, 1:9),nrow(c12), replace = TRUE), stringsAsFactors = FALSE ) } saveRDS(df0, "mockdataset_ehpad.rds") ##---- summarize function ---- ftab <- function(df){ aggregate(df[, c("x","y")], list(typ_etab = df$etab), function(x) sum(x, na.rm = TRUE) ) } ##---- table France ----- tabfr <- ftab(df0) ##---- table regions ---- ltab <- lapply(setNames(unique(df0$region), unique(df0$region)), function(r){ ## by region dfr <- df0[df0$region == r,] tabr <- list(ftab(dfr)) names(tabr) <- r ## by dpt ltabd <- lapply(setNames(unique(dfr$dep), unique(dfr$dep)), function(d){ dfd <- dfr[dfr$dep == d,] tabd <- ftab(dfd) }) c(tabr, ltabd) }) # names(ltab) saveRDS(ltab, "ltab.rds") ##---- unit report ---- unit_report <- function(reg = "A", fmt = "html", verbose = FALSE){ OFN <- paste0(paste0(Sys.Date(), "_"), reg, ".", fmt) rmarkdown::render(input = "exemple_rapport.Rmd", output_format = paste0(fmt, "_document"), params = list(region = reg), encoding = "UTF-8", output_file = OFN, quiet = TRUE) if (verbose) print(paste("Output saved to", OFN)) } # unit_report(reg = "B", verbose = TRUE) # unit_report(fmt = "pdf") ##---- all reports ---- dummy <- lapply(names(ltab), unit_report)
84a4fde7a765d9ead5283ef1c16096341123f3ab
89fd142ff8c81c3740b175aec923e3caadac859a
/man/crear_subgrafo_inducido.Rd
2fa5d34154331f0a623b3de37b93c7b74afb5a4a
[]
no_license
guilleloro/Grafos
941420c277cba8068678cd29cacf909559be3026
fdf3c7d4d22b0f34eb5708b6500c6d0eeef36f20
refs/heads/master
2022-07-18T16:03:25.223685
2020-05-19T15:31:53
2020-05-19T15:31:53
265,262,325
0
0
null
null
null
null
ISO-8859-1
R
false
true
514
rd
crear_subgrafo_inducido.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Seguridad.R \name{crear_subgrafo_inducido} \alias{crear_subgrafo_inducido} \title{Subgrafo inducido.} \usage{ crear_subgrafo_inducido(grafo, lonMuestra) } \arguments{ \item{grafo}{grafo que se quiere muestrear .} \item{lonMuestra}{tamaño del conjunto inicial de vértices muestreados.} } \value{ subgrafo muestreado. } \description{ Función que crea una muestra de un grafo con la técnica de muestreo inducido. }
4a8304d05b48b7a2e89d872deff160da92556c03
3dfeddf016a3754b920c2bad2bf3287faad047c4
/man/getGitCommit.Rd
3fc06ef244ca36d74297d1116b2eadb2291817f2
[]
no_license
acguidoum/Rpolyhedra
459592b06fbcafff61776fce588fa1d1f1429bdc
19a80f920fcc511e8d37811ad1827796de722ae9
refs/heads/master
2020-03-28T07:01:52.547368
2018-07-10T16:16:38
2018-07-10T16:16:38
null
0
0
null
null
null
null
UTF-8
R
false
true
296
rd
getGitCommit.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/db-lib.R \name{getGitCommit} \alias{getGitCommit} \title{getGitCommit get the last git commit sha} \usage{ getGitCommit() } \value{ String with git commit sha } \description{ getGitCommit get the last git commit sha }
bbf7ee7aa920ef8462672f8aef9d1a87c49ea5de
5867e13f269018253bd376566b04d33d9e1dab3c
/raster_classwork_1.R
679ddb9d7a14b8ff7f5b17cf2c995d7a78094ec3
[]
no_license
manidhill0n/Maninder_eagles
af0caa0d566819138cf02ce6d1079e338d954387
b1a09cb425a8777f229f0cac1eb8f38af7d34f7f
refs/heads/master
2020-12-24T07:05:28.757772
2019-06-19T09:47:10
2019-06-19T09:47:10
73,380,119
1
0
null
null
null
null
UTF-8
R
false
false
376
r
raster_classwork_1.R
#dataframe to raster install.packages("raster") length(df$measure1) library(raster) r2<-raster(nrows=100,ncols=100) r2 r2[]<-df$measure2[1:1000] plot(r2) r2 r1<-raster(nrows=100,ncols=100) r1 r1[]<-df$measure2[1:1000] plot(r1) r1 r12<-stack(r1,r2) r12 plot(r12[[1]]) r12[[1]] r12$new<-r12[[1]]*r12[[2]]^2 r12 rset<-raster(nrows=30,ncols=30) rset df12<-r12[] head(df12)
eacd297580b7ffd7cf72231cc30dca4ae689aecd
c0bcd0b5f2d1abd72de5e775aedebfd407a1a4a3
/recommeder-system-getting-started/content-based-algorithm/functions.R
1a3e529f87c508ce75bd7b9bc937d79c5cbce17c
[]
no_license
zembrzuski/machine-learning-andrewng
707421b12aef715ae8121666b68d1c6f459f0b29
520fc38e83468865ec158026a10c73bdfb015dc7
refs/heads/master
2021-01-10T01:42:46.852296
2015-12-08T18:36:41
2015-12-08T18:36:41
45,475,686
1
0
null
null
null
null
UTF-8
R
false
false
1,577
r
functions.R
# it works addBiasColumn <- function(X) { cbind(rep(1, nrow(X)), X) } addZeroColumn <- function(X) { cbind(rep(0, nrow(X)), X) } # it works costFunction <- function(X, thetas, y, rating) { prediction <- X %*% t(thetas) errorMatrix <- (prediction - y)^2 * rating 1/2 * sum(errorMatrix) } # it works gradient <- function(X, thetas, y, rating) { prediction <- X %*% t(thetas) t(((prediction - y) * rating)) %*% X } # trying regularization now costFunctionWithRegularization <- function(X, thetas, y, rating, lambda) { prediction <- X %*% t(thetas) errorMatrix <- (prediction - y)^2 * rating regularization <- sum(thetas[,-1]^2) 1/2 * sum(errorMatrix) + lambda/2*regularization } gradientWithRegularization <- function(X, thetas, y, rating, lambda) { prediction <- X %*% t(thetas) algo <- t(((prediction - y) * rating)) %*% X algo + lambda * addZeroColumn(thetas[,-1]) } # no regularization gradientDescent <- function(X, thetas, y, rating, alfa, nIter) { m <- nrow(X) cost <- rep(NA, nIter) for(i in 1:nIter) { cost[i] <- costFunction(X, thetas, y, rating) thetas <- thetas - alfa * gradient(X, thetas, y, rating) } plot(cost) print(cost[nIter]) thetas } gradientDescentWithRegularization <- function(X, thetas, y, rating, alfa, nIter, lambda) { m <- nrow(X) cost <- rep(NA, nIter) for(i in 1:nIter) { cost[i] <- costFunction(X, thetas, y, rating) thetas <- thetas - alfa * gradientWithRegularization(X, thetas, y, rating, lambda) } plot(cost) print(cost[nIter]) thetas }
83f825ccce66f249b5daae5996c9349be935a2c6
bbc167551a93d2a6d7ea43f00fc901ff967a8c62
/man/load.exp.GEO.Rd
824ed0b5d6c3d31b6cedcf76fad653ee53a0b097
[ "Apache-2.0" ]
permissive
jyyulab/NetBID
0c4c212cddd0180b96506e741350e6b7cfcacfce
86d62097eda88a6185b494491efdd8b49902e0c3
refs/heads/master
2023-04-30T04:16:40.752026
2023-02-28T02:57:04
2023-02-28T02:57:04
118,371,500
34
10
Apache-2.0
2022-08-23T13:44:58
2018-01-21T20:33:57
R
UTF-8
R
false
true
1,559
rd
load.exp.GEO.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pipeline_functions.R \name{load.exp.GEO} \alias{load.exp.GEO} \title{Download Gene Expression Series From GEO Database with Platform Specified} \usage{ load.exp.GEO( out.dir = NULL, GSE = NULL, GPL = NULL, getGPL = TRUE, update = FALSE ) } \arguments{ \item{out.dir}{character, the file path used to save the GSE RData. If the data already exsits, it will be loaded from this path.} \item{GSE}{character, the GEO Series Accession ID.} \item{GPL}{character, the GEO Platform Accession ID.} \item{getGPL}{logical, if TRUE, the corresponding GPL file will be downloaded. Default is TRUE.} \item{update}{logical, if TRUE, the previous stored Gene ExpressionSet RData will be updated. Default is FALSE} } \value{ Return an ExpressionSet class object. } \description{ \code{load.exp.GEO} downloads user assigned Gene Expression Series (GSE file) along with its Platform from GEO dataset. It returns an ExpressionSet class object and saves it as RData. If the GSE RData already exists, it will be loaded directly. It also allows users to update the Gene Expression Series RData saved before. } \examples{ \dontrun{ # Download the GSE116028 which performed on GPL6480 platform # from GEO and save it to the current directory # Assign this ExpressionSet object to net_eset net_eset <- load.exp.GEO(out.dir='./', GSE='GSE116028', GPL='GPL6480', getGPL=TRUE, update=FALSE) } }
b044bd92d43866936200f6ebb03c612c327370c9
0b02833c0833f945d379408ab2c9c77afe9a0216
/AUC Final.R
7189154bbd83ac8e7e706144fb4375497f582c49
[]
no_license
Karagul/Regression-with-Mortgage-Data
393287644d8636dc8464887cc28e04b45de699c2
2bff880466c3813c62bf3360382d14fe14197a07
refs/heads/master
2020-06-14T02:58:36.477350
2018-11-14T22:18:33
2018-11-14T22:18:33
null
0
0
null
null
null
null
UTF-8
R
false
false
741
r
AUC Final.R
glm.out <- c(glm11.out, glm12.out, glm13.out, glm14.out, glm15.out) yp1 <- predict(glm11.out, propt1, type="response") yp2 <- predict(glm12.out, propt2, type="response") yp3 <- predict(glm13.out, scoret2, type="response") yp4 <- predict(glm14.out, scoret3, type="response") yp5 <- predict(glm15.out, scoret4, type="response") yp <- c(yp1, yp2, yp3, yp4, yp5) #yp <- predict(glm.out, testing2_D2, type="response") roc <- function(y, s) { yav <- rep(tapply(y, s, mean), table(s)) rocx <- cumsum(yav) rocy <- cumsum(1 - yav) area <- sum(yav * (rocy - 0.5 * (1 - yav))) x1 <- c(0, rocx)/sum(y) y1 <- c(0, rocy)/sum(1 - y) auc <- area/(sum(y) * sum(1 - y)) print(auc) plot(x1,y1,"l") } roc(testing2_D2$def_in_24_months_F, yp)
fe6859c93fd14a8f76e962e88243965c49953870
b5bc79574cf46cd80962d101fdb3189b054f7e50
/plot3.R
8f15049543b9707e7c68b52295f1b1fb919a1bdd
[]
no_license
zakia5/EDA
7ccc25cbe44eb1055407179375f51859eaeb804d
c601bc64e78b80f7505c2ddba2b5bc7521ab3a89
refs/heads/master
2021-01-10T00:58:44.068044
2016-01-29T18:08:00
2016-01-29T18:08:00
50,677,820
0
0
null
null
null
null
UTF-8
R
false
false
953
r
plot3.R
library(data.table) ## reading data inputFile <- "household_power_consumption.txt" data <- read.table(inputFile, header=TRUE, sep=";", stringsAsFactors=FALSE, dec=".",na.strings='?') work_data <- data[data$Date %in% c("1/2/2007","2/2/2007") ,] # assign to variables datetime <- strptime(paste(work_data$Date, work_data$Time, sep=" "), "%d/%m/%Y %H:%M:%S") subMetering1 <- as.numeric(work_data$Sub_metering_1) subMetering2 <- as.numeric(work_data$Sub_metering_2) subMetering3 <- as.numeric(work_data$Sub_metering_3) # open device png(filename='plot3.png',width=480,height=480,units='px') ##plot data plot(datetime, subMetering1, type="l", ylab="Energy sub metering", xlab="") lines(datetime, subMetering2, type="l", col="red") lines(datetime, subMetering3, type="l", col="blue") # add legend legend("topright", c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3"), lty='solid', col=c("black", "red", "blue"),bty = "n") # close device x<-dev.off()
e3501653150517302c0231d19884ee37e14ea741
43666c1680c3b982c3db9b0de759bb1f380f899f
/UN/UN.R
8b05951a577ea4b989b66c37b9f934d47cf97118
[]
no_license
RobHarrand/datadotworld
4490c24ab8c69d2b01c2ea4bb61e3ad25e6b0f9b
8ced56e2fb28a64f87d1501c9f35dc7c619a1048
refs/heads/master
2020-03-11T08:03:13.721701
2018-04-17T08:42:39
2018-04-17T08:42:39
129,873,592
0
0
null
null
null
null
UTF-8
R
false
false
2,238
r
UN.R
library(plotly) GDI = read.csv('GDI_tidied.csv', stringsAsFactors = T, header = T) HDI = read.csv('HDI_tidied.csv', stringsAsFactors = T, header = T) MPI = read.csv('MPI_tidied.csv', stringsAsFactors = T, header = T) MPI$Population_in_MDP_k = gsub(",", ".", MPI$Population_in_MDP_k) MPI$Population_in_MDP_k = as.numeric(MPI$Population_in_MDP_k) all = merge(GDI, HDI, by.x = 'Country', by.y = 'Country') all = merge(all, MPI, by.x = 'Country', by.y = 'Country', all.x = T) all$Year_of_survey = gsub("/$|M|D|N|P", "", as.character(all$MPI_year_and_survey)) all$Year_of_survey = as.factor(all$Year_of_survey) Sys.setenv("plotly_username"="robh") Sys.setenv("plotly_api_key"="ILTpvNQjVCzCgH99TgYW") p = plot_ly(x = all$Human_Development_Index, y = all$MPI_index, alpha= 0.70, mode = "markers", type = "scatter", showlegend = F, color = all$Country, size = I(sqrt(all$Population_in_MDP_k)*2), hoverinfo = "text", text = paste(toupper(all$Country), "</br>Human Development Index: ", all$Human_Development_Index, "</br>Multi-dimensional Poverty Index: ", all$MPI_index, "</br>Life expectency at birth: ", all$Life_expectancy_at_birth, "</br>Population in Multidimensional Poverty (thousands): ", all$Population_in_MDP_k, "</br>MPI Year of survey: ", all$Year_of_survey)) %>% layout(title ="HDI vs MPI", annotations = list(text = paste("Point size proportional to </br> Population in Multi-dimensional Poverty </br> (thousands)"), x = 0.7, y = 0.5, showarrow = F, font = list(size = 12, color = 'white')), titlefont = t, plot_bgcolor='black', xaxis = list(title = "Human Development Index", titlefont = t), yaxis = list(title = "Multi-dimensional Poverty Index", titlefont = t)) plotly_POST(p, sharing = 'public') p
a1f4660ee057a58e5d1ffa8846e70dd451e0bf50
5adc0dfe6cae8f90cc20cd149bf03852b0396e34
/tests/testthat/test_calculation_nutrient.R
761e1e0e80dbc218368bc3099471ac949b810ad9
[ "MIT" ]
permissive
AGROFIMS/ragrofims
43664011980affa495c949586bde192d08d4b48e
bc560a62c19c30bbc75615a19a4b9f8a235f7ddf
refs/heads/master
2023-02-21T08:49:34.989861
2021-01-20T16:22:48
2021-01-20T16:22:48
277,626,238
0
1
null
null
null
null
UTF-8
R
false
false
2,935
r
test_calculation_nutrient.R
library(ragapi) library(ragrofims) context("test of calculation nutrient in products") test_that("Test Calculation of Nutrient Pipeline with empty table API v0291", { out <- get_agrofims_fertproducts(expsiteId= 6, format = "data.frame", serverURL = "https://research.cip.cgiar.org/agrofims/api/dev", version = "/0291/r" ) fertilizer <- get_fertproducts_crop(fertproducts = out, crop = "Field") fertilizer <- calc_nutamount(fertilizer) testthat::expect_equal(ncol(fertilizer), 0) testthat::expect_equal(nrow(fertilizer), 0) }) test_that("Test calculation of nutrient amount - Empty table with API v0291", { out <- get_agrofims_fertproducts(expsiteId= 6, format = "data.frame", serverURL = "https://research.cip.cgiar.org/agrofims/api/dev", version = "/0291/r" ) fertilizer <- calc_nutamount(fertilizer = out) testthat::expect_equal(ncol(fertilizer), 0) testthat::expect_equal(nrow(fertilizer), 0) }) test_that("Test calculation of nutrient amount - with Other Crop- ID=8 - API v0291", { out <- get_agrofims_fertproducts(expsiteId=8, format = "data.frame", serverURL = "https://research.cip.cgiar.org/agrofims/api/dev", version = "/0291/r" ) fertilizer <- ragrofims::get_fertproducts_crop(out, crop = "omar benites") fertilizer <- calc_nutamount(fertilizer = fertilizer) testthat::expect_equal(ncol(fertilizer), 17) testthat::expect_equal(nrow(fertilizer), 3) }) test_that("Test calculation of nutrient amount - fertilizer product - Crop Barley ID=18 - API v0291", { out <- get_agrofims_fertproducts(expsiteId=18, format = "data.frame", serverURL = "https://research.cip.cgiar.org/agrofims/api/dev", version = "/0291/r" ) fertilizer <- get_fertproducts_crop(fertproducts = out, crop = "Cassava") fertilizer <- calc_nutamount(fertilizer = fertilizer) testthat::expect_equal(ncol(fertilizer), 17) testthat::expect_equal(nrow(fertilizer), 2) }) test_that("Test calculation of nutrient amount - with no products - ID=9 - API v0291", { out <- get_agrofims_fertproducts(expsiteId=9, format = "data.frame", serverURL = "https://research.cip.cgiar.org/agrofims/api/dev", version = "/0291/r" ) fertilizer <- calc_nutamount(fertilizer = out) testthat::expect_equal(ncol(fertilizer), 17) testthat::expect_equal(nrow(fertilizer), 4) })
875032b0f221c34d2a6d807115c8283ef2b2ba1a
98b8bb57f4f1b632f99cd01237ae8b116b939e9f
/Basic and Statistics in R.R
4db4e5672a951b14855dfe99080245cfc5796c24
[]
no_license
UD125/Basic-and-Statistics-in-R
404a1af2096f6469053e0889d3e2c3ddfd08a94f
0e08f517c3b970a8d433acee7c47d53c19aca56e
refs/heads/master
2021-07-13T22:48:03.859694
2017-10-14T11:49:52
2017-10-14T11:49:52
106,922,140
0
0
null
null
null
null
UTF-8
R
false
false
10,087
r
Basic and Statistics in R.R
Name <- c("a","b","c","d","e","f","g","h","i","j") Age <- c(22,43,12,17,29,5,51,56,9,44) Sex <- c("M","F","M","M","M","F","F","M","F","F") data1 <- data.frame(Name,Age,Sex,stringsAsFactors = FALSE) data1 data1$Sex <- as.factor(data1$Sex) str(data1) which.min(data1$Age) which.max(data1$Age) cumsum(data1$Age) cumprod(data1$Age) prod(data1$Age) x <- seq(1,100) above10 <- function(x){ a<- x>10 x[a] } above10(x) x1 <- seq(1,1000) above50 <- function(x1){ b <- x1>50 x1[b] } above50(x1) above50(x) #functions above <- function(x,n){ Use<- x>n x[Use] } above(x,80) above(x1,600) y1 <- seq(1,1000) above60 <- function(x1,y1){ b <- x1>50 c <- y1>60 x1[b] y1[c] return(c(b,c)) } above60(x1,y1) #Simple Function A <- function(x,y){ x+y } A(2,3) #Complex Function A1 <- function(x,y){ z1 <- x+y z2 <- 2*x+y z3 <- x+2*y z4 <- x^2+y^2 return(c(z1,z2,z3,z4)) } A1(2,3) ans <- A1(2,3) A1 <- function(x,y){ z1 <- x+y z2 <- 2*x+y z3 <- x+2*y z4 <- x^2+y^2 print(c(z1,z2,z3,z4)) } #Control Structers in R #For Loop & Nested for loops #While loop #Repeatloop #Statistics in R for(i in 1:100){ print(i) } #1 x <- c("a","b","c","d","e") x for(letters in x){ print(letters) } #Print the first four letters of x for(i in 1:4){ print(x[i]) } #Print the years from 2000 to 2020 through for loop print(paste("The year is",2010)) for(i in 2000:2020){ print(paste("The year is",i)) } #or Year <- seq(2000,2020) for(i in Year){ print(paste("The year is",i)) } #Print the years from 2000 to 2020 through for loop , if they are only leap years for(i in Year){ if(i%%4){next} print(paste("The Leap year is",i)) } #--------------------------------------Nested For Loops----------------------------- z <- matrix(1:16,4,4) seq_len(nrow(z)) #Extracting the elements of matrix through Nested for loop for(i in seq_len(nrow(z))) { for(j in seq_len(ncol(z))) print(z[i,j]) } for(i in 1:5){ for(j in 1:2) print(i*j) } #---------------------------------While Loop------------------------------- #While loop begins with testing a condition. #If it is true then they execute the loop body #Once the loop body is executed , #the condition is tested again and so forth. count <- 0 while(count < 10) {print(count) count <- count + 1 } ## While loop can potentially results in infinite loop if not written ##properly. So we should use with care y <- 0 i <- 100 while(i <= 200) { i = i+(i*.085) y = y+1 print(i) print(y) } 192.0604+192.0604*0.085 #After this loop condition ends #----------------------------------------Repeat Loop----------------------------- ##Repeat loop initiates an infinite loop,these are noy commonly used in ##statistical applications but they do have their uses. The only way to exit ## a repeat loop is to call (break) i <- 2 repeat { print(i) i = i + 1 if(i > 4) break } ## If (break) is ommitted it will be an infinite loop #-----------------------------Statistics in R--------------------------------- install.packages(nortest) library(nortest) #T - test ClassA = c(18,22,21,17,20,17,23,20,22,21) ClassB = c(16,20,14,21,20,18,13,15,17,21) length(ClassA) length(ClassB) mean(ClassA) mean(ClassB) median(ClassA) median(ClassB) boxplot(ClassA,ClassB) summary(ClassA) summary(ClassB) #----------Two-tailed T-test------------- #HO: There is no difference between the means #H1: The mean of two groups are not the same t.test(ClassA,ClassB) #We reject null H0 as pvalue = 0.03798 #When P-value is less then 0.05 we reject H0 at 95% confidence interval #Confidence Level :90% , p-value: 0.1 #Confidence Level :95% , p-value: 0.05 #Confidence Level :99% , p-value: 0.01 #Confidence Level :99.9% , p-value: 0.001 #----------One-tailed T-test---------- ##H0 : There is no difference ##H1 : The difference is less then 0 # Mean of ClassA is less than ClassB t.test(ClassA,ClassB,alternative = "less",var.equal = T) ##H0 : The difference is less then 0 ##H1 : The difference is greater then 0 t.test(ClassA,ClassB,alternative = "greater",var.equal = T) #-----------------------Analysis of Variance (ANOVA)---------------- smoke <- c(38,42,14,41,41,16,36,39,18,32,36,15,28,33,17) income <- c(1,1,1,2,2,2,3,3,3,4,4,4,5,5,5) age <- c(1,2,3,1,2,3,1,2,3,1,2,3,1,2,3) data4 <- data.frame(smoke,income,age) ##Here we want to test whether the score of smoke is different across ##categories of income or age #Test with age var fit <- aov(smoke ~ age , data = data4) summary(fit) #Test with income var fit <- aov(smoke ~ income , data = data4) summary(fit) ##To Test #Categorical - Continous Variables we use ANOVA #Categorical - Categorical Variables we use Chi-square #Continous -Continous Variables we use Correlation #---------------------------Chi-square Test of Independence--------------- ##When both variables are categorical in nature ##Two random variables x and y are called Independent ##If the probability distribution of one variable is not affected by the presence of the another. library(MASS) sur <- survey head(survey) dim(sur) levels(sur$Smoke) levels(sur$Exer) tbl = table(sur$Smoke,sur$Exer)#Contingency Table of Smoke and Exerc tbl #Test the hypothesis whether the student smoking habit is independent of their #exercise level at .05 level of significance chisq.test(tbl) #Since , p-value is >.05 hence we fail to reject H0 : Smoking habit is independent #of their Exercise level #---------------------------------Normality Test------------------------------ install.packages("nortest",dependencies = TRUE) library(nortest) head(mtcars) hist(mtcars$mpg) barplot(mtcars$mpg) ##Superimpose a Normal Curve x <- mtcars$mpg m <- median(x) x m std <- sqrt(var(x)) std hist(x,density = 20,breaks = 20,prob = TRUE, xlab = "x-variable", ylim = c(0,0.15),main = "Normal curve over histogram") curve(dnorm(x,mean = m,sd=std),col="darkblue",lwd=2,add = TRUE) ad.test(x) #---------------Treatment of Missing Values :Example with substituting with the mean of the series A <- data.frame(a=1:10,b=11:20) A[A$b<14,"b"]=NA A A1<-A as.data.frame(colSums(is.na(A))) #Imputing the values with mean value of the series A1[is.na(A1$b),"b"] = mean(A1$b,na.rm = T) A1 #Imputing the values with median value of the series A1[is.na(A1$b),"b"] = mean(A1$b,na.rm = T) A1 #------------------SQL in R using package SQLDF----------------------- Name <- c("a","b","c","d","e","f","g","h","i","j") Age <- c(22,43,12,17,29,5,51,56,9,44) Sex <- c("M","M","F","M","M","M","F","M","F","M") data1 <- data.frame(Name,Age,Sex,stringsAsFactors = FALSE) data1 summary(data1) data1$Sex <- as.factor(data1$Sex) install.packages("sqldf",dependencies = TRUE) library(sqldf) #-----Selecting all the variables----- S1 <- sqldf("select * from data1") # * - refers to all var in the dataset S1 #-----Selecting Variables based on Names-- S2 <- sqldf("select Name, Age from data1") S2 #------Creating Alias Names from the column---- S3 <- sqldf("select name as Full_name, age as Total_age from data1") S3 #------------Subsetting Data with Condition---- S4 <- sqldf("select * from data1 where Age > 20") #where condition S4 #------------Subsetting Data with AND condition----- S5 <- sqldf('select * from data1 where Age > 20 AND Sex == "M" ') S5 #------------Subsetting Data with OR condition------ S6 <- sqldf("select * from data1 where Age > 20 OR Sex == 'F'") S6 #-----------Create new column with condition------ S7 <- sqldf('select *, Age+10 as Age_new, Age-avg(Age) as Age_old from data1') S7 #-----------Create a new column with condition---- S8 <- sqldf('select *, Age+10 as Age_new, Age-10 as Age_old from data1') S8 #-----------Descriptive Stat in SQL------ S9 <- sqldf('select min(age) as min_age, max(age) as max_age, avg(age) as avg_age, count(age) as count_age, sum(age) as sum_age from data1') S9 #-----------Descriptive Stat in SQL - segregated by sex ---- S10 <- sqldf('select Sex, min(age) as min_age, max(age) as max_age, avg(age) as avg_age, count(age) as count_age, sum(age) as sum_age from data1 group by Sex') S10 #--------Descriptive Stat in SQL - segregated by sex - descending sorted by sex S11 <- sqldf('select Sex, min(age) as min_age, max(age) as max_age, avg(age) as avg_age, count(age) as count_age, sum(age) as sum_age from data1 group by Sex order by Sex desc') S11 #---------Else if statement----- S12 <- sqldf("select *, case when Age <= 20 then 'A' when Age > 20 AND Age <= 40 then 'B' else 'C' end classify from data1 order by classify desc") S12 S13 <- sqldf("select *, case when Name == 'b' then 'Correct' else 'Incorrect' end new from data1") S13 #----------Filtering Data------- S14 <- sqldf('select * from data1 where Age< 40 and Sex == "M"') S14 #-------- Always use "having" with group by and on summary stat #where command does'nt work on aggregated columns, we use 'Having' #in that columns. #Usage of Having statement S15 <- sqldf("select Sex,Age, max(age) as max_age, min(age) as min_age from data1 group by Sex having max_age - min_age >5") S15 #---------Inserting a new field-------- S16 <- sqldf("select *, square(age) sqr_age, sqrt(age) sqrt_age from data1") S16 #--------Exporting data to csv------- write.csv(S16,"SQLinR.csv") getwd() S17 <- sqldf("select * from data1 where Age in (29,51,56)") S17 S18 <- sqldf("select * from data1 where Name in ('a','d','e','h')") S18
274b013d1fbd0705a3be1eb94ebe2a4d4c218494
0fc75bfea69ffe1908941c4d1f2a9f6e7b0056c0
/nomsplit.R
a4eeacdfa4c8a3de44f468f3a16127e64b655b34
[]
no_license
citizen-monitoring/citizen-monitoring.github.io
1100f3abb2c9555e5870c2e63331b731e45ac4bc
2ae7a1c8e8af216c66ff75c82dd60efac91f7d00
refs/heads/master
2021-01-10T13:43:06.225014
2016-02-04T00:54:41
2016-02-04T00:54:41
49,733,098
0
2
null
2016-01-18T04:15:48
2016-01-15T17:10:20
R
UTF-8
R
false
false
1,087
r
nomsplit.R
# Split an input data set based on whether the respondant was nominated or not # Function: nomsplit nomsplit = function(x){ library(tidyr) nomYes = filter(x, x$Nominated == "yes") # separate nominated respondents nomNo = filter(x, x$Nominated == "no") # separate non-nominated respondents final = list(nomYes, nomNo) # creates a list with the two outputs (Y set and N set) return(final) # returns the list of 2 objects, with Y nominations being [[1]] and N being [[2]] } # Program to run the function and separate the "yes" and "no" outputs. testnom = nomsplit(ugandasms) # run the function nomsplit, save to a variable "testnom" which will be a list of 2 # The function has returned a list of 2 objects. Now we need to separate those objects into separate tables. The double brackets allow us to do this. # There's probably a cleaner way to do this within the function that I don't know. nomYes = testnom[[1]] # separate out the "yes" object from the list, save to a new object nomNo = testnom[[2]] # separate out the "no" object from the list, save to a new object
fbcf067c0f36727d95984b299b6cd65ef63215e9
d3b774668f6e577cefdeea4dd2be1326ee4b5aee
/man/checkarg_file_name.Rd
832136b4b89db4a7a0111d6aaa72b8ca75a25d09
[ "MIT" ]
permissive
ropensci/qualtRics
50e68a3dd3f184ee14f19126bd7783b4b9bd61d1
c721563fa2fcb734c1ad9c4d8ccd80bbefbed15d
refs/heads/main
2023-08-31T01:00:05.366989
2023-06-23T18:55:13
2023-06-23T18:55:13
70,817,337
188
64
NOASSERTION
2023-09-07T19:38:56
2016-10-13T14:51:26
R
UTF-8
R
false
true
325
rd
checkarg_file_name.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/checks.R \name{checkarg_file_name} \alias{checkarg_file_name} \title{Check if survey file specified in file_name exists} \usage{ checkarg_file_name(file_name) } \description{ Check if survey file specified in file_name exists } \keyword{internal}
680600f0f42c6e655331ab89a3e53aadd92e6859
6a28ba69be875841ddc9e71ca6af5956110efcb2
/Introductory_Statistics_by_Douglas_S_Shafer_And_Zhiyi_Zhang/CH2/EX2.10/Ex2_10.R
7f0e8f16493d9951bc1f62d2da98dd52759add96
[]
permissive
FOSSEE/R_TBC_Uploads
1ea929010b46babb1842b3efe0ed34be0deea3c0
8ab94daf80307aee399c246682cb79ccf6e9c282
refs/heads/master
2023-04-15T04:36:13.331525
2023-03-15T18:39:42
2023-03-15T18:39:42
212,745,783
0
3
MIT
2019-10-04T06:57:33
2019-10-04T05:57:19
null
UTF-8
R
false
false
210
r
Ex2_10.R
#Page 58 dataset_1<-c(40,38,42,40,39,39,43,40,39,40) dataset_2<-c(46,37,40,33,42,36,40,47,34,45) findrange=function(v){ range=max(v)-min(v) print(range) } findrange(dataset_1) findrange(dataset_2)
bc6ce74dea21f7c3f999ceb5318b4897c716e4fe
eeb4249594b67f0564e8563ab83ecf641ef3ed8f
/man/seq_scan_sim.Rd
ee5579c7d0cf69b0caf4fdd97a969714bdcf3b43
[]
no_license
cran/smerc
6e81aaa86f2405364f2368079a07f949317848fc
aab00112b726a9392395b1937f3f92e1bbd3cb3e
refs/heads/master
2023-07-23T05:53:39.316070
2023-07-15T19:30:02
2023-07-15T20:30:28
48,088,790
0
0
null
null
null
null
UTF-8
R
false
true
3,016
rd
seq_scan_sim.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/seq_scan_sim.R \name{seq_scan_sim} \alias{seq_scan_sim} \title{Perform scan test on simulated data sequentially} \usage{ seq_scan_sim( nsim = 1, nn, ty, ex, type = "poisson", ein = NULL, eout = NULL, tpop = NULL, popin = NULL, popout = NULL, cl = NULL, simdist = "multinomial", pop = NULL, min.cases = 0, ldup = NULL, lseq_zones ) } \arguments{ \item{nsim}{A positive integer indicating the number of simulations to perform.} \item{nn}{A list of nearest neighbors produced by \code{\link{nnpop}}.} \item{ty}{The total number of cases in the study area.} \item{ex}{The expected number of cases for each region. The default is calculated under the constant risk hypothesis.} \item{type}{The type of scan statistic to compute. The default is \code{"poisson"}. The other choice is \code{"binomial"}.} \item{ein}{The expected number of cases in the zone. Conventionally, this is the estimated overall disease risk across the study area, multiplied by the total population size of the zone.} \item{eout}{The expected number of cases outside the zone. This should be \code{ty - ein} and is computed automatically if not provided.} \item{tpop}{The total population in the study area.} \item{popin}{The total population in the zone.} \item{popout}{The population outside the zone. This should be \code{tpop - popin} and is computed automatically if not provided.} \item{cl}{ A cluster object created by \code{\link{makeCluster}}, or an integer to indicate number of child-processes (integer values are ignored on Windows) for parallel evaluations (see Details on performance). It can also be \code{"future"} to use a future backend (see Details), \code{NULL} (default) refers to sequential evaluation. } \item{simdist}{Character string indicating the simulation distribution. The default is \code{"multinomial"}, which conditions on the total number of cases observed. The other options are \code{"poisson"} and \code{"binomial"}} \item{pop}{The population size associated with each region.} \item{min.cases}{The minimum number of cases required for a cluster. The default is 2.} \item{ldup}{A logical vector indicating positions of duplicated zones. Not intended for user use.} \item{lseq_zones}{A list of logical vectors specifying the sequence of relevant zones based on ubpop constraints} } \value{ A list with the maximum statistic for each population upperbound for each simulated data set. Each element will have a vector of maximums for each simulated data set corresponding to the sequence of ubpop values. The list will have \code{nsim} elements. } \description{ \code{seq_scan_sim} efficiently performs \code{\link{scan.test}} on a simulated data set. The function is meant to be used internally by the \code{\link{optimal_ubpop}} function in the smerc package. } \keyword{internal}
5d320757e2c7398ec0593c8627583b1bea9a2eca
66e04f24259a07363ad8da7cd47872f75abbaea0
/Intro to SQL for Data Science/Chapter 1-Selecting columns/4.R
aa1ebe9d241bae23967c97eba30f40a54c97c1ca
[ "MIT" ]
permissive
artileda/Datacamp-Data-Scientist-with-R-2019
19d64729a691880228f5a18994ad7b58d3e7b40e
a8b3f8f64cc5756add7ec5cae0e332101cb00bd9
refs/heads/master
2022-02-24T04:18:28.860980
2019-08-28T04:35:32
2019-08-28T04:35:32
325,043,594
1
0
null
null
null
null
UTF-8
R
false
false
495
r
4.R
# Onboarding | Bullet Exercises # Another new feature we're introducing is the bullet exercise, which allows you to easily practice a new concept through repetition. Check it out below! # # Instructions 1/3 # 35 XP # 1 # Submit the query in the editor! Don't worry, you'll learn how it works soon. SELECT 'SQL' AS result; #Now change 'SQL' to 'SQL is' and click Submit! SELECT 'SQL is' AS result; #Finally, change 'SQL is' to 'SQL is cool!' and click Submit! SELECT 'SQL is cool!' AS result;
f8e5419b174e5248488e7864d40d9864ad99ca0f
7492f6d8c4b9f2504ecd35003072a27f2b39d5ff
/project3.r
adf0075bb2ed3fb7e29d18c620ce213387c7d399
[]
no_license
linleiwen/Credit-Card-Fraud-Detection
4d172e107acd9432bd869af07b80829e8339782d
831ceea64ff95fda7face32a9c9d5b89372b5a66
refs/heads/master
2021-05-14T00:44:03.975457
2018-01-17T15:15:25
2018-01-17T15:15:25
116,546,088
0
0
null
null
null
null
UTF-8
R
false
false
6,699
r
project3.r
library(randomForest) library(caret) library(ROCR) library(DMwR)# SMOTE more positive cases library(data.table) library(zoo) library(parallel) library(ggplot2) library(dplyr) detectCores() df <- fread("creditcard.csv") #### Exploratory analysis prop.table(table(df$Class)) summary(df) sum(is.na(df)) ##check na set.seed(1003) ggplot(df, aes(x=V3)) + geom_density(aes(group=Class, colour=Class, fill=Class), alpha=0.3) #### Data pre-processing ## 'normalize' the data transform_columns <- c("V","Amount") transformed_column <- df[ ,grepl(paste(transform_columns, collapse = "|"),names(df)),with = FALSE] transformed_column_processed <- predict(preProcess(transformed_column, method = c("BoxCox","scale")),transformed_column) df_new <- data.table(cbind(transformed_column_processed,Class = df$Class)) df_new[,Class:=as.factor(Class)] set.seed(1003) #### split into Training and Test dataset training_index <- createDataPartition(df_new$Class, p=0.7,list=FALSE) training <- df_new[training_index,] test<- df_new[-training_index,] ####smote '''table(training$Class) training <- SMOTE(Class ~ ., training, perc.over = 57600, perc.under=100) ## inflate "1" by x percentage, reduce "0" as y percentage prop.table(table(training$Class)) table(training$Class) ''' ### Logistic regression logit <- glm(Class ~ ., data = training, family = "binomial") logit_pred <- predict(logit, test, type = "response") logit_prediction <- prediction(logit_pred,test$Class) logit_recall <- performance(logit_prediction,"prec","rec") ##precision vs recall logit_roc <- performance(logit_prediction,"tpr","fpr") ## TP rate vs NP rate logit_auc <- performance(logit_prediction,"auc") ##kernel SVM library(e1071) ksvm.model = svm(formula = Class ~ ., data = training, type = 'C-classification', ## for classification kernel = 'radial',probability=TRUE) ## Gaussian not linear KSVM_pred = predict(ksvm.model, test, probability=TRUE) KSVM_prediction = prediction(attr(KSVM_pred,"probabilities")[,2],test$Class) KSVM_recall <- performance(KSVM_prediction,"prec","rec") ##precision vs recall KSVM_roc <- performance(KSVM_prediction,"tpr","fpr") ## TP rate vs FP rate KSVM_auc <- performance(KSVM_prediction,"auc") ### Random forest rf.model <- randomForest(Class ~ ., data = training,ntree = 200, nodesize = 20) rf_pred <- predict(rf.model, test,type="prob") rf_prediction <- prediction(rf_pred[,2],test$Class) rf_recall <- performance(rf_prediction,"prec","rec") rf_roc <- performance(rf_prediction,"tpr","fpr") rf_auc <- performance(rf_prediction,"auc") ### Bagging Trees ctrl <- trainControl(method = "cv", number = 10) tb_model <- train(Class ~ ., data = training, method = "treebag", trControl = ctrl) tb_pred <- predict(tb_model$finalModel, test, type = "prob") tb_prediction <- prediction(tb_pred[,2],test$Class) tb_recall <- performance(logit_prediction,"prec","rec") tb_roc <- performance(logit_prediction,"tpr","fpr") tb_auc <- performance(logit_prediction,"auc") ## xgboost library(dplyr) library(xgboost) training[,Class:=as.integer(Class)-1] test[,Class:=as.integer(Class)-1] classifier = xgboost(data = as.matrix(training[,-30]), label = training$Class, nrounds = 100) ## as.matrix: xgboost only accept matrix;nrounds: train iteration # Predicting the Test set results xgb_pred = predict(classifier, newdata = as.matrix(test[,-30])) xgb_prediction <- prediction(xgb_pred,test$Class) xgb_recall <- performance(xgb_prediction,"prec","rec") ##precision vs recall xgb_roc <- performance(xgb_prediction,"tpr","fpr") ## TP rate vs NP rate xgb_auc <- performance(xgb_prediction,"auc") ##plot result plot(logit_recall,col='pink') plot(rf_recall, add = TRUE, col = 'red') plot(tb_recall, add = TRUE, col = 'green') plot(xgb_recall, add = TRUE, col = 'black') plot(KSVM_recall, add = TRUE, col = 'blue') #### Functions to calculate 'area under the pr curve' auprc <- function(pr_curve) { x <- as.numeric(unlist(pr_curve@x.values)) y <- as.numeric(unlist(pr_curve@y.values)) y[is.nan(y)] <- 1 id <- order(x) result <- sum(diff(x[id])*rollmean(y[id],2)) return(result) } auprc_results <- data.frame(logit=auprc(logit_recall) , rf = auprc(rf_recall) , tb = auprc(tb_recall) , xgb = auprc(xgb_recall) ,KSVM = auprc(KSVM_recall) ) non_smote_aucpre = auprc_results #smote_aucpre = auprc_results non_smote_aucpre aucroc_results <- data.frame(logit=as.numeric(attr(logit_auc,"y.values")) , rf = as.numeric(attr(rf_auc,"y.values")) , tb = as.numeric(attr(tb_auc,"y.values")) , xgb = as.numeric(attr(xgb_auc,"y.values")) ,KSVM = as.numeric(attr(KSVM_auc,"y.values")) ) #non_smote_aucroc = aucroc_results smote_aucroc = aucroc_results temp = t(data.frame(rbind(non_smote_aucpre,smote_aucpre,non_smote_aucroc,smote_aucroc),row.names = c("non_smote_aucpre","smote_aucpre","non_smote_aucroc","smote_aucroc"))) temp = melt(temp,varnames = c("model","type")) ggplot(data = temp, aes(x = type, y = value, colour = model, group = model))+geom_line(size = 1) ##ggplot plot ROC and precision and recall curve ### Logistic regression sscurves1 <- evalmod(scores = logit_pred, labels = test$Class) autoplot(sscurves1) ##kernel SVM sscurves2 <- evalmod(scores = attr(KSVM_pred,"probabilities")[,2], labels = test$Class) autoplot(sscurves2) ##rf sscurves3 <- evalmod(scores = rf_pred[,2], labels = test$Class) autoplot(sscurves3) ##tb sscurves4 <- evalmod(scores = tb_pred[,2], labels = test$Class) autoplot(sscurves4) ##xgboost sscurves5 <- evalmod(scores = xgb_pred, labels = test$Class) autoplot(sscurves5) x = list(scores = list(list(logit_pred,attr(KSVM_pred,"probabilities")[,2],rf_pred[,2],tb_pred[,2],xgb_pred)),labels = test$Class, modnames = c("random","poor_er","good_er","excel","excel"), dsids = c(1,1,1,1,1)) mdat <- mmdata(x[["scores"]], x["labels"],modnames = c("Logistic regression ","kernel SVM ","random forest","tree baging","xgboost")) ## Generate an mscurve object that contains ROC and Precision-Recall curves mscurves <- evalmod(mdat) ## ROC and Precision-Recall curves autoplot(mscurves) sum(rf_pred[,2]>=0.00172) cm = table(test$Class, rf_pred[,2]>=0.05) cm/sum(cm) (cm[1,1]+cm[2,2])/sum(cm) sum(test$Class)/sum(cm) save.image("project3.Rdata") #load("project3.Rdata")
24127f85cca60791a831b3bf45e68b6b7143e062
280fae7f01002ddc95c0e7ec617740a58752403d
/R/readCPEAT.R
e784900ff2c67f0c8334916fdbb9a5da4850c74e
[ "BSD-2-Clause" ]
permissive
ktoddbrown/soilDataR
87bb4ed675959f3fbd75024dd7b014e1966148dd
44ab9e6ac00e49ea0106508de8ead356d9e39fa5
refs/heads/master
2021-04-30T07:27:34.349030
2018-11-09T20:07:20
2018-11-09T20:07:20
92,432,342
3
11
null
null
null
null
UTF-8
R
false
false
9,398
r
readCPEAT.R
#' CPEAT project reads #' #' This reads in the specified records of the CPEAT project. Currently under development, not all #' the metadata is parsed #' #' @param dataDir identify the download directory #' #' @return a list of data frames, the first data frame with the meta data and #' a second data frame with the records #' @export #' readCPEAT <- function(dataDir, workLocal = FALSE){ downloadDOI <- read.csv(text=gsub(' ', '', gsub(' core ', '_c', 'URL,Author,Site_core,orgFile,extra https://doi.org/10.1594/PANGAEA.890471,Garneau,Aero,Aero.csv, https://doi.org/10.1594/PANGAEA.890528,Yu,Altay core 1,Altay.csv, https://doi.org/10.1594/PANGAEA.890198,Nichols,Bear core 1,Bear.csv, https://doi.org/10.1594/PANGAEA.890472,Charman,Burnt Village core 1,Burnt_Village.csv, https://doi.org/10.1594/PANGAEA.890473,Lavoie,Covey Hill,Covey_Hill. csv, https://doi.org/10.1594/PANGAEA.890474,MacDonald,D127 core 1,D127.csv, https://doi.org/10.1594/PANGAEA.890475,MacDonald,E110 core 1,E110.csv, https://doi.org/10.1594/PANGAEA.890345,Sannel,Ennadai core 1,Ennadai.csv, https://doi.org/10.1594/PANGAEA.890529,Anderson,Glen Carron core 1,Glen_Carron.csv, https://doi.org/10.1594/PANGAEA.890530,Anderson,Glen Torridon core 1,Glen_Torridon.csv, https://doi.org/10.1594/PANGAEA.890346,Yu,Goldeye fen,Goldeye.csv, https://doi.org/10.1594/PANGAEA.890397,Packalen,HL02,HL02.csv, https://doi.org/10.1594/PANGAEA.890531,Large,Hongyuan core HYLK1,Hongyuan.csv, https://doi.org/10.1594/PANGAEA.890199,Jones,Horse Trail core 1,Horse_Trail.csv, https://doi.org/10.1594/PANGAEA.890398,Holmquist,JBL1,JBL1.csv, https://doi.org/10.1594/PANGAEA.890399,Holmquist,JBL2,JBL2.csv, https://doi.org/10.1594/PANGAEA.890400,Holmquist,JBL3,JBL3.csv, https://doi.org/10.1594/PANGAEA.890401,Holmquist,JBL4,JBL4.csv, https://doi.org/10.1594/PANGAEA.890402,Holmquist,JBL5,JBL5.csv, https://doi.org/10.1594/PANGAEA.890403,Holmquist,JBL7,JBL7.csv, https://doi.org/10.1594/PANGAEA.890404,Holmquist,JBL8,JBL8.csv, https://doi.org/10.1594/PANGAEA.890405,Camill,Joey core 12,Joey.csv, https://doi.org/10.1594/PANGAEA.890406,Camill,Joey core 15,Joey.csv, https://doi.org/10.1594/PANGAEA.890407,Camill,Joey core 17,Joey.csv, https://doi.org/10.1594/PANGAEA.890408,Camill,Joey core 2,Joey.csv, https://doi.org/10.1594/PANGAEA.890409,Camill,Joey core 5,Joey.csv, https://doi.org/10.1594/PANGAEA.890410,Camill,Joey core 7,Joey.csv, https://doi.org/10.1594/PANGAEA.890532,Loisel,KAM core C1,KAM12-C1.csv, https://doi.org/10.1594/PANGAEA.890533,Bochicchio,KAM core C4,KAM12-C4.csv, https://doi.org/10.1594/PANGAEA.890200,Yu,Kenai Gasfield,Kenai_Gasfield.csv, https://doi.org/10.1594/PANGAEA.890411,Packalen,KJ2-3,KJ2-3.csv, https://doi.org/10.1594/PANGAEA.890412,Lamarre,KUJU,KUJU.csv, https://doi.org/10.1594/PANGAEA.890527,Borren,Kvartal core Zh0,86-Kvartal.csv, https://doi.org/10.1594/PANGAEA.890413,Garneau,La Grande core L2T2C2-2,La_Grande2.csv, https://doi.org/10.1594/PANGAEA.890414,Garneau,La Grande core L3T1C2,La_Grande3.csv, https://doi.org/10.1594/PANGAEA.890476,van Bellen,Lac Le Caron ,Lac_Le_Caron.csv, https://doi.org/10.1594/PANGAEA.890415,Camill,Lake 396 core 3,Lake396.csv, https://doi.org/10.1594/PANGAEA.890416,Camill,Lake 785 core 4,Lake785.csv, https://doi.org/10.1594/PANGAEA.890477,Magnan,Lebel core 1,Lebel.csv, https://doi.org/10.1594/PANGAEA.890478,Mathijssen,Lompolojankka core 1,Lompolojankka.csv, https://doi.org/10.1594/PANGAEA.890347,Yu,Mariana core 1,Mariana.csv, https://doi.org/10.1594/PANGAEA.890348,Yu,Mariana core 2,Mariana.csv, https://doi.org/10.1594/PANGAEA.890349,Yu,Mariana core 3,Mariana.csv, https://doi.org/10.1594/PANGAEA.890350,Robinson,Martin core 1,Martin.csv, https://doi.org/10.1594/PANGAEA.890479,van Bellen,Mosaik core Central,Mosaik.csv, https://doi.org/10.1594/PANGAEA.890201,Yu,No Name Creek,No_Name_Creek.csv, https://doi.org/10.1594/PANGAEA.890186,Yu,Nuikluk core 10-1,Nuikluk.csv, https://doi.org/10.1594/PANGAEA.890202,Yu,Nuikluk core 10-2,Nuikluk.csv, https://doi.org/10.1594/PANGAEA.890203,Tarnocai,NW-BG core 10,NW-BG.csv, https://doi.org/10.1594/PANGAEA.890204,Tarnocai,NW-BG core 2,NW-BG.csv, https://doi.org/10.1594/PANGAEA.890205,Tarnocai,NW-BG core 3,NW-BG.csv, https://doi.org/10.1594/PANGAEA.890206,Tarnocai,NW-BG core 8,NW-BG.csv, https://doi.org/10.1594/PANGAEA.890480,Garneau,Ours core 1,Ours.csv, https://doi.org/10.1594/PANGAEA.890481,Garneau,Ours core 4,Ours.csv, https://doi.org/10.1594/PANGAEA.890482,Garneau,Ours core 5,Ours.csv, https://doi.org/10.1594/PANGAEA.890351,Yu,Patuanak core 1,Patuanak.csv, https://doi.org/10.1594/PANGAEA.890208,Loisel,Petersville,Petersville.csv, https://doi.org/10.1594/PANGAEA.890534,Charman,Petite Bog core 1,Petite_Bog.csv, https://doi.org/10.1594/PANGAEA.890483,Magnan,Plaine core 1,Plaine.csv, https://doi.org/10.1594/PANGAEA.890484,Oksanen,Rogovaya core 2,Rogovaya.csv, https://doi.org/10.1594/PANGAEA.890485,Oksanen,Rogovaya core 3,Rogovaya.csv, https://doi.org/10.1594/PANGAEA.890486,Makila,Saarisuo core B800,Saarisuo.csv, https://doi.org/10.1594/PANGAEA.890352,Sannel,Selwyn Lake,Selwyn.csv, https://doi.org/10.1594/PANGAEA.890417,Camill,Shuttle core 2,Shuttle.csv, https://doi.org/10.1594/PANGAEA.890535,MacDonald,SIB06 core 1,SIB06.csv, https://doi.org/10.1594/PANGAEA.890487,Charman,Sidney core 1,Sidney.csv, https://doi.org/10.1594/PANGAEA.890488,Mathijssen,Siikavena core 1,Siikavena.csv, https://doi.org/10.1594/PANGAEA.890353,Kuhry,Slave Lake ,Slave.csv, https://doi.org/10.1594/PANGAEA.890489,van Bellen,Sterne,Sterne.csv, https://doi.org/10.1594/PANGAEA.890490,Kokfelt,Stordalen,Stordalen.csv, https://doi.org/10.1594/PANGAEA.890354,Yu,Sundance core 2,Sundance.csv, https://doi.org/10.1594/PANGAEA.890355,Yu,Sundance core 3,Sundance.csv, https://doi.org/10.1594/PANGAEA.889936,Jones,Swanson Fen,Swanson.csv, https://doi.org/10.1594/PANGAEA.890356,Tarnocai,T1 core 1,T1.csv, https://doi.org/10.1594/PANGAEA.890418,Camill,Unit core 4,Unit.csv, https://doi.org/10.1594/PANGAEA.890357,Yu,Upper Pinto,Upper_Pinto.csv, https://doi.org/10.1594/PANGAEA.890536,Oksanen,Usinsk core USI1,Usinsk.csv, https://doi.org/10.1594/PANGAEA.890358,Yu,Utikuma core 1,Utikuma.csv, https://doi.org/10.1594/PANGAEA.890537,MacDonald,V34 core 1,V34.csv, https://doi.org/10.1594/PANGAEA.890538,Borren,Vasyugan core V21,Vasyugan.csv, https://doi.org/10.1594/PANGAEA.890539,Bunbury,VC04-06 core 1,VC04-06.csv, https://doi.org/10.1594/PANGAEA.890540,Zhao,Zoige core 1,Zoige.csv,')), stringsAsFactors = FALSE) %>% dplyr::select(-extra) %>% dplyr::mutate(downloadURL = glue::trim(paste(gsub('doi.org', 'doi.pangaea.de', URL), '?format=textfile', sep='')), localFile = file.path(dataDir, paste0(Site_core, '.tab'))) if(any(!file.exists(downloadDOI$localFile)) & !workLocal){ #print(downloadDOI$localFile[!file.exists(downloadDOI$localFile)]) download.file(downloadDOI$downloadURL[!file.exists(downloadDOI$localFile)], downloadDOI$localFile[!file.exists(downloadDOI$localFile)]) } if(workLocal){ downloadDOI <- downloadDOI %>% filter(file.exists(localFile)) } allData <- plyr::ddply(downloadDOI, c('Site_core'), function(xx){ #print(xx$localFile) readText <- read_file(xx$localFile) #header <- regmatches(readText, regexpr('/\\* .*\n\\*/', readText)) return(read_tsv(gsub('/\\* .*\n\\*/\n', '', readText))) }) allheader <- plyr::ddply(downloadDOI, c('Site_core'), function(xx){ #print(xx$localFile) readText <- read_file(xx$localFile) header <- regmatches(readText, regexpr('/\\* .*\n\\*/', readText)) ans <- unlist(strsplit(x=header, split='\n.+:\t', perl=TRUE)) ans <- ans[-1] #pop off the header names(ans) <- gsub('\\n|\\t|:', '', unlist(regmatches(header, gregexpr('\n.+:\t', header, per=TRUE)))) return(as.data.frame(as.list(ans))) }) metaData <- allheader %>% dplyr::mutate(Size = as.numeric(gsub(' data points\n\\*/', '', Size))) %>% dplyr::mutate_at(vars(License), as.factor) %>% tidyr::separate(Coverage, c('lat_lab', 'lat', 'lon_lab', 'lon', 'min_depth_lab', 'min_depth', 'max_depth_lab', 'max_depth'), sep='(: )|( \\* )|(\n\t)') %>% #dplyr::select(-lat_lab, -lon_lab, -min_depth_lab, -max_depth_lab) %>% dplyr::mutate(min_depth = gsub(' m$', '', min_depth), max_depth = gsub(' m$', '', max_depth)) %>% dplyr::mutate_at(vars(min_depth, max_depth, lat, lon), as.numeric) %>% dplyr::group_by_all() #TODO this needs to be parsed # %>% # do((function(xx){ # #print(xx$Event.s.) # xxtemp <- gsub('COMMENT:','', as.character(xx$Event.s.)) # #xxtemp <- gsub('Details.+:', '', xxtemp, perl = TRUE) # xxtemp <- strsplit(unlist(strsplit(as.character(xxtemp), '( \\* )|(; )|( : )|(, )')), ': ') # xxtemp[[1]] <- c('name', xxtemp[[1]][1]) # xxtemp <- lapply(xxtemp, function(yy){ # if(length(yy) > 2){return(yy[length(yy)-1:0])} else {return(yy)}}) # # xxtemp2 <- t(as.data.frame(xxtemp)) # xxtemp3 <- data.frame(as.list(setNames(xxtemp2[,2], xxtemp2[,1]))) # print(xxtemp3) # return(xxtemp3) # })(.)) return(list(site=metaData, sample=allData, files=downloadDOI)) #tester <- pangaear::pg_data('10.1594/PANGAEA.890471') }
5dbbff784f4c7b5b340c7aee86345b4366c759aa
5db2138d26423f514ac44162f52dfae296697f96
/bubble.gsadf and Copula.r
5638be37fc474cdd95bb9b3efc848c2f9b2b5674
[]
no_license
hpompom/financal-bubble
94f4764a94537420745afec68e9fc3fe03353f10
692a8c46d3746f86167e1b32033b668e2adfd7fa
refs/heads/master
2020-07-09T15:20:07.650556
2019-08-28T07:26:45
2019-08-28T07:26:45
204,008,670
3
0
null
null
null
null
UTF-8
R
false
false
18,453
r
bubble.gsadf and Copula.r
library(readxl) library(ggplot2) library(exuber) library(MultipleBubbles) library(forecast) library(fBasics) library(VineCopula) library(rugarch) library(FinTS) library(urca) library(TSA) library(xts) library(pastecs) library(tseries) library(FinTS) library(car) library(lmtest) library(PerformanceAnalytics)#加载包 par(family='STKaiti') # 改字体, 否则不显示中文 chart.Correlation(re, histogram=TRUE) chart.Correlation(adf, histogram=TRUE) #### set.seed(1000)##设定种子 #### logre<-function(a){ re<-c()##对数收益率 for(i in 1:(length(a)-1)){ re<-c(re,log(a[i+1]/a[i])) } return(re) } #### tj<-function(a){ mean1<-mean(a) sd1<-sd(a) kur1<- kurtosis(a) ske1<- skewness(a) sha1 <- shapiro.test(a)$p.value gg <- data.frame(mean1,sd1,kur1,ske1,sha1) return(gg) } ##### ##### jmall <- read_excel("~/Desktop/桌面/建模/数据/亚太指数.xlsx", sheet = "剔除后", col_types = c("date", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric"))#载入数据 jmall<-as.data.frame(jmall) jmallnotime<-jmall[,-1]#去除日期列 ################################### rbre<-logre(jmall[,2]);hgre<-logre(jmall[,3]);xgre<-logre(jmall[,4]);ydre<-logre(jmall[,5]);shre<-logre(jmall[,6]);szre<-logre(jmall[,7]) mlre<-logre(jmall[,8]);flbre<-logre(jmall[,9]);tgre <- logre(jmall[,10]);ynnre<-logre(jmall[,11]);xjpre <- logre(jmall[,12]);ynre <- logre(jmall[,13]) ################################### jmadf<-radf(jmallnotime,lag=1)#bsadf jmcv<-mc_cv(length(jmallnotime[,1]),minw = 64)#关键值 autoplot(jmadf,cv=jmcv,select = TRUE)#画图 saveadf<-data.frame(jmadf$bsadf,jmcv$bsadf_cv[(1:872),2],jmall[(66:length(jmall[,1])),1]) write.table(saveadf,file = "~/desktop/saveadf.csv",sep=",") ##描述性统计 re<-data.frame(rbre,hgre,xgre,ydre,szre,shre,mlre,flbre,tgre,ynnre,xjpre,ynre) boxre<-data.frame(收益率=c(rbre,hgre,xgre,ydre,shre,szre,mlre,flbre,tgre,ynnre,xjpre,ynre),class=c(rep("日经225",times=length(rbre)) ,rep("韩国综指",times=length(rbre)),rep("恒生指数",times=length(rbre)),rep("孟买30",times=length(rbre)),rep("深圳成指",times=length(rbre)) ,rep("上证指数",times=length(rbre)),rep("吉隆坡指数",times=length(rbre)),rep("马尼拉指数",times=length(rbre)),rep("泰国指数",times=length(rbre)) ,rep("雅加达指数",times=length(rbre)),rep("新加坡STI",times=length(rbre)),rep("胡志明指数",times=length(rbre)))) adf<-data.frame(rbadf,hgadf,xgadf,ydadf,shadf,szadf,mladf,flbadf,tgadf,ynnadf,xjpadf,ynadf) colnames(adf)<-c("日经225bsadf","韩国综指bsadf","恒生指数bsadf","孟买30bsadf","深证成指bsadf" ,"上证指数bsadf","吉隆坡指数bsadf","马尼拉指数bsadf","泰国综指bsadf" ,"雅加达指数bsadf","新加坡STIbsadf","胡志明指数bsadf") #箱线图 names(boxre)<-c("收益率","地区") boxre$地区<-factor(boxre$地区) ggplot(data=boxre,aes(x=地区,y=收益率))+ theme(text = element_text(family = 'STKaiti'))+ geom_boxplot() ###提取数据 rbadf<-jmadf$bsadf[,1] hgadf<-jmadf$bsadf[,2] xgadf<-jmadf$bsadf[,3] ydadf<-jmadf$bsadf[,4] shadf<-jmadf$bsadf[,5] szadf<-jmadf$bsadf[,6] mladf<-jmadf$bsadf[,7] flbadf<-jmadf$bsadf[,8] tgadf<-jmadf$bsadf[,9] ynnadf<-jmadf$bsadf[,10] xjpadf<-jmadf$bsadf[,11] ynadf<-jmadf$bsadf[,12] boxadf<-data.frame(收益率=c(rbadf,hgadf,xgadf,ydadf,shadf,szadf,mladf,flbadf,tgadf,ynnadf,xjpadf,ynadf),class=c(rep("日经225",times=length(rbadf)) ,rep("韩国综指",times=length(rbadf)),rep("恒生指数",times=length(rbadf)),rep("孟买30",times=length(rbadf)),rep("深圳成指",times=length(rbadf)) ,rep("上证指数",times=length(rbadf)),rep("吉隆坡指数",times=length(rbadf)),rep("马尼拉指数",times=length(rbadf)),rep("泰国指数",times=length(rbadf)) ,rep("雅加达指数",times=length(rbadf)),rep("新加坡STI",times=length(rbadf)),rep("胡志明指数",times=length(rbadf)))) adf<-data.frame(rbadf,hgadf,xgadf,ydadf,shadf,szadf,mladf,flbadf,tgadf,ynnadf,xjpadf,ynadf) colnames(re)<-c("日经225","韩国综指","恒生指数","孟买30","深圳成指","上证指数","吉隆坡指数","马尼拉指数","泰国指数","雅加达指数","新加坡STI","胡志明指数" ) colnames(adf)<-c("日经225bsadf","韩国综指bsadf","恒生指数bsadf","孟买30bsadf","上证指数bsadf" ,"深圳成指bsadf","吉隆坡指数bsadf","马尼拉指数bsadf","泰国综指bsadf" ,"雅加达指数bsadf","新加坡STIbsadf","胡志明指数bsadf") #箱线图 names(boxadf)<-c("指数BSADF","地区") boxadf$地区<-factor(boxadf$地区) ggplot(data=boxadf,aes(x=地区,y=指数BSADF))+ theme(text = element_text(family = 'STKaiti'))+ geom_boxplot() ## names(boxadf)<-c("指数BSADF","地区") boxadf$地区<-factor(boxadf$地区) ggplot(data=boxadf,aes(x=地区,y=指数BSADF))+ theme(text = element_text(family = 'STKaiti'))+ geom_boxplot() #ARCH效应检验 #BSADF ArchTest(rbadf) ArchTest(hgadf) ArchTest(xgadf) ArchTest(ydadf) ArchTest(shadf) ArchTest(szadf) ### #收益率平稳性检验 summary(ur.df(rbre,type = c("trend"))) summary(ur.df(hgre,type = c("trend"))) summary(ur.df(ydre,type = c("trend"))) summary(ur.df(xgre,type = c("trend"))) summary(ur.df(shre,type = c("trend"))) summary(ur.df(szre,type = c("trend"))) summary(ur.df(mlre,type = c("trend"))) summary(ur.df(flbre,type = c("trend"))) summary(ur.df(tgre,type = c("trend"))) summary(ur.df(ynnre,type = c("trend"))) summary(ur.df(ynre,type = c("trend"))) summary(ur.df(xjpre,type = c("trend"))) ###收益率acf,pacf acf(rbre) pacf(rbre) acf(hgre) pacf(hgre) acf(xgre) pacf(xgre) acf(ydre) pacf(ydre) acf(shre) pacf(shre) acf(szre) pacf(szre) acf(shre) pacf(shre) acf(mlre) pacf(mlre) acf(mlre) pacf(mlre) acf(flbre) pacf(flbre) acf(tgre) pacf(tgre) acf(ynnre) pacf(ynnre) acf(ynre) pacf(ynre) acf(xjpre) pacf(xjpre) ###拟合均值-方差 ########################均值-方差-分布 gjr_sstd0_1.spec = ugarchspec(variance.model = list(model="gjrGARCH", garchOrder=c(1,1)), mean.model = list(armaOrder=c(0,1)), distribution.model = "sstd" ) gjr_sstd0_3.spec = ugarchspec(variance.model = list(model="gjrGARCH", garchOrder=c(1,1)), mean.model = list(armaOrder=c(0,3)), distribution.model = "sstd" ) gjr_sstd2_2.spec = ugarchspec(variance.model = list(model="gjrGARCH", garchOrder=c(1,1)), mean.model = list(armaOrder=c(2,2)), distribution.model = "sstd" ) gjr_sstd3_1.spec = ugarchspec(variance.model = list(model="gjrGARCH", garchOrder=c(1,1)), mean.model = list(armaOrder=c(3,1)), distribution.model = "sstd" ) gjr_sstd1_0.spec = ugarchspec(variance.model = list(model="gjrGARCH", garchOrder=c(1,1)), mean.model = list(armaOrder=c(1,0)), distribution.model = "sstd" ) gjr_sstd0_2.spec = ugarchspec(variance.model = list(model="gjrGARCH", garchOrder=c(1,1)), mean.model = list(armaOrder=c(0,2)), distribution.model = "sstd" ) gjr_sstd1_2.spec = ugarchspec(variance.model = list(model="gjrGARCH", garchOrder=c(1,1)), mean.model = list(armaOrder=c(1,2)), distribution.model = "sstd" ) gjr_sstd1_1.spec = ugarchspec(variance.model = list(model="gjrGARCH", garchOrder=c(1,1)), mean.model = list(armaOrder=c(1,1)), distribution.model = "sstd" ) gjr_sstd6_0.spec = ugarchspec(variance.model = list(model="gjrGARCH", garchOrder=c(1,1)), mean.model = list(armaOrder=c(6,0)), distribution.model = "sstd" ) ##均值-波动建模 ################################################################## arma_gjr_rbre<-ugarchfit(spec=gjr_sstd3_1.spec,data = rbre)#日本 arma_gjr_hgre<-ugarchfit(spec=gjr_sstd0_1.spec,data = hgre)#韩国 arma_gjr_xgre<-ugarchfit(spec=gjr_sstd0_1.spec,data = xgre)#香港 arma_gjr_ydre<-ugarchfit(spec=gjr_sstd0_3.spec,data = ydre)#印度 arma_gjr_shre<-ugarchfit(spec=gjr_sstd0_1.spec,data = shre)#上海 arma_gjr_szre<-ugarchfit(spec=gjr_sstd2_2.spec,data = szre)#深圳 arma_gjr_mlre<-ugarchfit(spec=gjr_sstd1_0.spec,data = mlre)#马来西亚 arma_gjr_flbre<-ugarchfit(spec=gjr_sstd0_2.spec,data = flbre)#菲律宾 arma_gjr_tgre<-ugarchfit(spec=gjr_sstd2_2.spec,data = tgre)#泰国 arma_gjr_ynnre<-ugarchfit(spec=gjr_sstd1_2.spec,data = ynnre)#印度尼西亚 arma_gjr_ynre<-ugarchfit(spec=gjr_sstd2_2.spec,data = ynre)#越南 arma_gjr_xjpre<-ugarchfit(spec=gjr_sstd6_0.spec,data = xjpre)#新加坡 ################################################################## residualall<-data.frame(residual_rbre,residual_hgre, residual_xgre,residual_ydre, residual_shre,residual_szre, residual_mlre,residual_flbre, residual_tgre,residual_ynnre, residual_ynre,residual_xjpre) #########################arch效应检验######################################## apply(residualall, 2, ArchTest) ################################################################### #标准化残差 residual_rbre<-residuals(arma_gjr_rbre,standardize=TRUE) residual_hgre<-residuals(arma_gjr_hgre,standardize=TRUE) residual_xgre<-residuals(arma_gjr_xgre,standardize=TRUE) residual_ydre<-residuals(arma_gjr_ydre,standardize=TRUE) residual_shre<-residuals(arma_gjr_shre,standardize=TRUE) residual_szre<-residuals(arma_gjr_szre,standardize=TRUE) residual_mlre<-residuals(arma_gjr_mlre,standardize=TRUE) residual_flbre<-residuals(arma_gjr_flbre,standardize=TRUE) residual_tgre<-residuals(arma_gjr_tgre,standardize=TRUE) residual_ynnre<-residuals(arma_gjr_ynnre,standardize=TRUE) residual_ynre<-residuals(arma_gjr_ynre,standardize=TRUE) residual_xjpre<-residuals(arma_gjr_xjpre,standardize=TRUE) ##数据处理 residual_rbre<-data.frame(residual_rbre)[,1] residual_hgre<-data.frame(residual_hgre)[,1] residual_xgre<-data.frame(residual_xgre)[,1] residual_ydre<-data.frame(residual_ydre)[,1] residual_shre<-data.frame(residual_shre)[,1] residual_szre<-data.frame(residual_szre)[,1] residual_mlre<-data.frame(residual_mlre)[,1] residual_flbre<-data.frame(residual_flbre)[,1] residual_ynnre<-data.frame(residual_ynnre)[,1] residual_ynre<-data.frame(residual_ynre)[,1] residual_xjpre<-data.frame(residual_xjpre)[,1] residual_tgre<-data.frame(residual_tgre)[,1] #####残差序列与0-1分布的检测 ks.test(residual_rbre,runif(1000)) ks.test(residual_hgre,runif(1000)) ks.test(residual_xgre,runif(1000)) ks.test(residual_ydre,runif(1000)) ks.test(residual_shre,runif(1000)) ks.test(residual_szre,runif(1000)) ks.test(residual_mlre,runif(1000)) ks.test(residual_flbre,runif(1000)) ks.test(residual_ynnre,runif(1000)) ks.test(residual_ynre,runif(1000)) ks.test(residual_xjpre,runif(1000)) ######概率积分变换后的残差序列;0-1分布的检测 ####概率积分变化 residual_rbre_01<-pobs(residual_rbre)#1日本 residual_hgre_01<-pobs(residual_hgre)#2韩国 residual_xgre_01<-pobs(residual_xgre)#3香港 residual_ydre_01<-pobs(residual_ydre)#4印度 residual_shre_01<-pobs(residual_shre)#5上海 residual_szre_01<-pobs(residual_szre)#6深圳 residual_mlre_01<-pobs(residual_mlre)#7马来西亚 residual_flbre_01<-pobs(residual_flbre)#8菲律宾 residual_tgre_01<-pobs(residual_tgre)#9泰国 residual_ynnre_01<-pobs(residual_ynnre)#10印尼 residual_ynre_01<-pobs(residual_ynre)#11越南 residual_xjpre_01<-pobs(residual_xjpre)#12新加坡 ########检验0-1分布 ks.test(residual_rbre_01,runif(1000)) ks.test(residual_hgre_01,runif(1000)) ks.test(residual_xgre_01,runif(1000)) ks.test(residual_ydre_01,runif(1000)) ks.test(residual_shre_01,runif(1000)) ks.test(residual_szre_01,runif(1000)) ks.test(residual_mlre_01,runif(1000)) ks.test(residual_flbre_01,runif(1000)) ks.test(residual_tgre_01,runif(1000)) ks.test(residual_ynnre_01,runif(1000)) ks.test(residual_ynre_01,runif(1000)) ks.test(residual_xjpre_01,runif(1000)) ######收益率copula拟合 recopula<-data.frame(residual_rbre_01,residual_hgre_01, residual_xgre_01,residual_ydre_01, residual_shre_01,residual_szre_01, residual_mlre_01,residual_flbre_01, residual_tgre_01,residual_ynnre_01, residual_ynre_01,residual_xjpre_01) RVM_re<-RVineStructureSelect(recopula,familyset = NA,type=0,progress = TRUE) plot(RVM_re) ######bsadf copula拟合 ###### acf(rbadf) pacf(rbadf) acf(hgadf) pacf(hgadf) acf(xgadf) pacf(xgadf) acf(ydadf) pacf(ydadf) acf(shadf) pacf(shadf) acf(szadf) pacf(szadf) acf(mladf) pacf(mladf) acf(flbadf) pacf(flbadf) acf(tgadf) pacf(tgadf) acf(ynnadf) pacf(ynnadf) acf(ynadf) pacf(ynadf) acf(xjpadf) pacf(xjpadf) ####ar(1) arma_rbadf<-arma(rbadf,order = c(1,0)) arma_hgadf<-arma(hgadf,order = c(1,0)) arma_xgadf<-arma(xgadf,order = c(1,0)) arma_ydadf<-arma(ydadf,order = c(1,0)) arma_shadf<-arma(shadf,order = c(1,0)) arma_szadf<-arma(szadf,order = c(1,0)) arma_mladf<-arma(mladf,order = c(1,0)) arma_xjpadf<-arma(xjpadf,order = c(1,0)) arma_ynnadf<-arma(ynnadf,order = c(1,0)) arma_ynadf<-arma(ynadf,order = c(1,0)) arma_tgadf<-arma(tgadf,order = c(1,0)) arma_flbadf<-arma(flbadf,order = c(1,0)) ##### ##ARCH效应检验 ArchTest(residuals(arma_rbadf)) ArchTest(residuals(arma_hgadf)) ArchTest(residuals(arma_xgadf)) ArchTest(residuals(arma_ydadf)) ArchTest(residuals(arma_shadf)) ArchTest(residuals(arma_szadf)) ArchTest(residuals(arma_mladf)) ArchTest(residuals(arma_ynnadf)) ArchTest(residuals(arma_ynadf)) ArchTest(residuals(arma_tgadf)) ArchTest(residuals(arma_xjpadf)) ArchTest(residuals(arma_flbadf)) ####存在ARCH效应,即存在异方差 #由于gjr-garch在gamma=0时会退化至garch,所以我们选择gjr-garch建模 gjr_t.spec<-ugarchspec(variance.model = list(model="gjrGARCH", garchOrder=c(1,1)), mean.model = list(armaOrder=c(1,0)), distribution.model = "std" ) ###分别使用了norm,std,ged后选择t ar_gjr_rbadf<-ugarchfit(spec=gjr_t.spec,data=rbadf) ar_gjr_hgadf<-ugarchfit(spec=gjr_t.spec,data=hgadf) ar_gjr_xgadf<-ugarchfit(spec=gjr_t.spec,data=xgadf) ar_gjr_ydadf<-ugarchfit(spec=gjr_t.spec,data=ydadf) ar_gjr_shadf<-ugarchfit(spec=gjr_t.spec,data=shadf) ar_gjr_szadf<-ugarchfit(spec=gjr_t.spec,data=szadf) ar_gjr_mladf<-ugarchfit(spec=gjr_t.spec,data=mladf) ar_gjr_tgadf<-ugarchfit(spec=gjr_t.spec,data=tgadf) ar_gjr_ynnadf<-ugarchfit(spec=gjr_t.spec,data=ynnadf) ar_gjr_ynadf<-ugarchfit(spec=gjr_t.spec,data=ynadf) ar_gjr_xjpadf<-ugarchfit(spec=gjr_t.spec,data=xjpadf) ar_gjr_flbadf<-ugarchfit(spec=gjr_t.spec,data=flbadf) ####标准残差 #标准化残差 residual_rbadf<-residuals(ar_gjr_rbadf,standardize=TRUE) residual_hgadf<-residuals(ar_gjr_hgadf,standardize=TRUE) residual_xgadf<-residuals(ar_gjr_xgadf,standardize=TRUE) residual_ydadf<-residuals(ar_gjr_ydadf,standardize=TRUE) residual_shadf<-residuals(ar_gjr_shadf,standardize=TRUE) residual_szadf<-residuals(ar_gjr_szadf,standardize=TRUE) residual_mladf<-residuals(ar_gjr_mladf,standardize=TRUE) residual_tgadf<-residuals(ar_gjr_tgadf,standardize=TRUE) residual_ynnadf<-residuals(ar_gjr_ynnadf,standardize=TRUE) residual_ynadf<-residuals(ar_gjr_ynadf,standardize=TRUE) residual_xjpadf<-residuals(ar_gjr_xjpadf,standardize=TRUE) residual_flbadf<-residuals(ar_gjr_flbadf,standardize=TRUE) ##数据处理 residual_rbadf<-data.frame(residual_rbadf)[,1] residual_hgadf<-data.frame(residual_hgadf)[,1] residual_xgadf<-data.frame(residual_xgadf)[,1] residual_ydadf<-data.frame(residual_ydadf)[,1] residual_shadf<-data.frame(residual_shadf)[,1] residual_szadf<-data.frame(residual_szadf)[,1] residual_tgadf<-data.frame(residual_tgadf)[,1] residual_xjpadf<-data.frame(residual_xjpadf)[,1] residual_ynadf<-data.frame(residual_ynadf)[,1] residual_ynnadf<-data.frame(residual_ynnadf)[,1] residual_mladf<-data.frame(residual_mladf)[,1] residual_flbadf<-data.frame(residual_flbadf)[,1] ############ install.packages("mFilter") ####概率积分变换 rbadf_01<-pobs(residual_rbadf)#1日本 hgadf_01<-pobs(residual_hgadf)#2韩国 xgadf_01<-pobs(residual_xgadf)#3香港 ydadf_01<-pobs(residual_ydadf)#4印度 shadf_01<-pobs(residual_shadf)#5上海 szadf_01<-pobs(residual_szadf)#6深圳 mladf_01<-pobs(residual_mladf)#7马来西亚 flbadf_01<-pobs(residual_flbadf)#8菲律宾 tgadf_01<-pobs(residual_tgadf)#9泰国 ynnadf_01<-pobs(residual_ynnadf)#10印尼 ynadf_01<-pobs(residual_ynadf)#11越南 xjpadf_01<-pobs(residual_xjpadf)#12新加坡 ##k-s检验 ks.test(rbadf_01,runif(1000)) ks.test(hgadf_01,runif(1000)) ks.test(xgadf_01,runif(1000)) ks.test(ydadf_01,runif(1000)) ks.test(shadf_01,runif(1000)) ks.test(szadf_01,runif(1000)) ks.test(mladf_01,runif(1000)) ks.test(flbadf_01,runif(1000)) ks.test(tgadf_01,runif(1000)) ks.test(ynnadf_01,runif(1000)) ks.test(ynadf_01,runif(1000)) ks.test(xjpadf_01,runif(1000)) ######adf-copula拟合 adfcopula<-data.frame(rbadf_01,hgadf_01, xgadf_01,ydadf_01, shadf_01,szadf_01, mladf_01,flbadf_01, tgadf_01,ynnadf_01, ynadf_01,xjpadf_01) adf<-data.frame(rbadf,hgadf,xgadf,ydadf,shadf,szadf,mladf,flbadf,tgadf,ynnadf,ynadf,xjpadf) adf0_1<-apply(adf,2,pobs) ks<-function(a){ ks.test(a,runif(10000)) } apply(adf0_1, 2, ks) ### RVM_adf<-RVineStructureSelect(adf0_1,familyset = NA,type=0,progress = TRUE)
253df967031156270df9eaa381f994db6c7f0165
9da1a7d2f925c855ea096e8d334cb3960e168feb
/man/process_reads-function.Rd
6a80200d32be4f0a6cda7a0845417d03b5e6c57c
[]
no_license
rpolicastro/gostripes
6f31621da63fd9930fb55cd5be7e841a1235661a
285c58efaf8a298dc05f36d7a7a31844258d1859
refs/heads/master
2020-12-21T05:01:31.697569
2020-12-10T19:09:13
2020-12-10T19:09:13
236,315,120
3
1
null
2020-12-10T19:09:15
2020-01-26T13:21:52
R
UTF-8
R
false
true
2,151
rd
process_reads-function.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fastq_processing.R \name{process_reads} \alias{process_reads} \title{Process Reads} \usage{ process_reads(go_obj, outdir, contamination_fasta, cores = 1) } \arguments{ \item{go_obj}{gostripes object} \item{outdir}{output directory for filtered and trimmed reads} \item{contamination_fasta}{fasta file containing contaminants to remove, such as rRNA} \item{cores}{Number of CPU core/threads to use} } \value{ gostripes object and processed fastq files } \description{ This function will perform quality control and the appropriate processing steps for STRIPE-seq data. First, proper R1 read structure is checked by looking for 'NNNNNNNNTATAGGG'. This corresponds to the 8 base UMI, the spacer (TATA), and the ribo-Gs (GGG) used for template switching. Second, UMI-tools is used to trim and stash the 8 base UMI into the FASTQ read name. Third, the remaining spacer and ribo-Gs are trimmed. Finally, TagDust2 is used to remove any contaminant reads, such as rRNA. } \details{ There will be several output files generated in the specified \strong{outdir}. 'stashed_*' FASTQ files are create after the UMI is added to the read name. 'trimmed_*' FASTQ files have the spacer and ribo-Gs trimmed off. 'decon_*' FASTQ files have the contaminants removed, and are the files used in read alignment. The \strong{contamination_fasta} file must be a properly formatted FASTA file. It is recommended for this file to contain at least rRNA reads, as they tend to be the most common and confounding contaminant. Try to limit the number of contaminants as a large number of entries may cause slow performance on this step. } \examples{ R1_fastq <- system.file("extdata", "S288C_R1.fastq", package = "gostripes") R2_fastq <- system.file("extdata", "S288C_R2.fastq", package = "gostripes") rRNA <- system.file("extdata", "Sc_rRNA.fasta", package = "gostripes") sample_sheet <- tibble::tibble( "sample_name" = "stripeseq", "replicate_ID" = 1, "R1_read" = R1_fastq, "R2_read" = R2_fastq ) go_object <- gostripes(sample_sheet) \%>\% process_reads("./scratch/cleaned_fastq", rRNA) }
085e01728c333201ab89d0056e16e9df67da76c8
ebab6c7b1d1192822a4d7a32262c8d716180e33d
/plot1.R
8e0b12557675954d41f291cca1c88b4608d72d9e
[]
no_license
lgy-hz/Exploratory-Data-Analysis-Project-1
5d719e4ef29d9a45696fc403f24c8333436651df
98eaddf07047fd37444887e1655cb87757c0dfbb
refs/heads/master
2016-09-03T01:38:18.688467
2015-08-09T07:51:55
2015-08-09T07:51:55
40,429,454
0
0
null
null
null
null
UTF-8
R
false
false
482
r
plot1.R
file<- "https://d396qusza40orc.cloudfront.net/exdata%2Fdata%2Fhousehold_power_consumption.zip" download.file(file, destfile= "data.zip",method="curl") unzip("data.zip") a<- read.table("household_power_consumption.txt",header=TRUE,sep=";",na.strings= "?",stringsAsFactors = FALSE) b<-a[a$Date== "1/2/2007",] b<-rbind(b,a[a$Date== "2/2/2007",]) png("plot1.png",width = 480, height = 480) with(b,hist(Global_active_power,col="red",main= "Global Active Power")) dev.off()
189fd823843d943c1e9f6de1b2e2e8b646644542
6f0e911ea8753d23bc8fbdfe15758768586838fa
/R/normalize_functions.R
cbaec715185aed26dd4adf0d8e527e44cf0bfc62
[]
no_license
kdaily/MEMA
0223092dd491eea7383b374a11dfb15ee43a7893
7d22734de9caf673406576d2a5e63810996011e9
refs/heads/master
2020-04-13T11:40:19.329909
2015-08-02T21:57:06
2015-08-02T21:57:06
42,480,633
0
0
null
2015-09-14T22:28:18
2015-09-14T22:28:17
R
UTF-8
R
false
false
3,058
r
normalize_functions.R
#Normalization functions for processing MEMAs #' Normalize the proliferation ratio signal to the collagen 1 values #' @param x a dataframe or datatable with columns names ProliferatioRatio #' and ShortName. ShortName must include at least one entry of COL1 or COL I. #' @return The input dataframe of datatable with a normedProliferation column that has the ProliferationRatio values divided by the median collagen #' 1 proliferation value #' @export normProfToCol1 <- function(x){ col1Median <- median(x$ProliferationRatio[x$ShortName %in% c("COL1", "COL I")],na.rm = TRUE) normedProliferation <- x$ProliferationRatio/col1Median } #' Normalize to a base MEP #' #' Normalizes one channel of values for all MEPs in a multi-well plate to one #' base MEP. #' #' @param DT A \code{data.table} that includes a numeric value column to be #' normalized, a \code{ECMpAnnotID} column that has the printed ECM names and a #' \code{Growth.Factors} or \code{LigandAnnotID}column that has the growth factor names. #' @param value The name of the column of values to be normalized #' @param baseECM A regular expression for the name or names of the printed ECM(s) to be normalized against #' @param baseGF A regular expression for the name or names of the soluble growth factors to be normalized against #' @return A numeric vector of the normalized values #' #' @section Details: \code{normWellsWithinPlate} normalizes the value column of #' all MEPs by dividing the median value of the replicates of the MEP that #' is the pairing of baseECM with baseGF. #' @export normWellsWithinPlate <- function(DT, value, baseECM, baseGF) { if(!c("ECMpAnnotID") %in% colnames(DT)) stop(paste("DT must contain a ECMpAnnotID column.")) if(!c(value) %in% colnames(DT)) stop(paste("DT must contain a", value, "column.")) if("LigandAnnotID" %in% colnames(DT)){ valueMedian <- median(unlist(DT[(grepl(baseECM, DT$ECMpAnnotID) & grepl(baseGF,DT$LigandAnnotID)),value, with=FALSE]), na.rm = TRUE) } else if (c("Growth.Factors") %in% colnames(DT)) { valueMedian <- median(unlist(DT[(grepl(baseECM, DT$ECMpAnnotID) & grepl(baseGF,DT$Growth.Factors)),value, with=FALSE]), na.rm = TRUE) } else stop (paste("DT must contain a Growth.Factors or LigandAnnotID column.")) normedValues <- DT[,value,with=FALSE]/valueMedian return(normedValues) } #' Create a median normalized loess model of an array #' #'@param data A dataframe with ArrayRow, ArrayColumn and signal intensity columns #'@param value The column name of the signal intensity column #'@param span The span value passed to loess. Values between 0 and 1 determine the #'proportion of the population to be included in the loess neighborhood. #'@return a vector of median normalized loess values of the signal #'@export loessModel <- function(data, value, span){ dataModel <- loess(as.formula(paste0(value," ~ ArrayRow+ArrayColumn")), data,span=span) dataPredicted <- predict(dataModel) predictedMedian <- median(dataPredicted, na.rm = TRUE) dataNormed <- dataPredicted/predictedMedian }
56d45b71505c634e5ea4d68973b7414a15356a6d
f9099901637a813dfb3d39ed8f9dc06dddb1e8f5
/R/00_testing.R
620fbb019937209f4bc9e512b52a7d081691d1e5
[]
no_license
jessdiallo/testing
8f4a1c72983103ca154269defc256cac53479e9f
e28e8aabeda236e777809504a2de86129fb3c778
refs/heads/main
2023-02-25T20:32:57.994338
2021-01-23T20:09:16
2021-01-23T20:09:16
328,758,949
0
0
null
null
null
null
UTF-8
R
false
false
95
r
00_testing.R
# this is a test script ## addition 1 + 2 ## multiplication 1 * 2 ## subtraction 1 - 2
3ae5cd551484b56d72dc14363053071759ae384b
08d26deb861c447fa86dc7f4d58ac2b17e1905d3
/cachematrix.R
2adbcdbc38629c22b8f147459298c886b527c533
[]
no_license
youngokkim/ProgrammingAssignment2
e06e4290a7e8076fc84eafd2f28ed9582e7b5a1b
5cf57df0c3f21edef6682d7e39779ef92c8cddee
refs/heads/master
2021-01-01T19:08:12.705885
2017-07-28T03:45:34
2017-07-28T03:45:34
98,514,334
0
0
null
2017-07-27T08:47:58
2017-07-27T08:47:58
null
UTF-8
R
false
false
1,699
r
cachematrix.R
## Assignments Part2 for R-Programming Week3 ## @written by Youngok Kim, joylife052@gmail.com ## makeCacheMatrix creates a special "matrix", which is really a list containing ## a function to ## 1. set the value of the matrix ## 2. get the value of the matrix ## 3. set the value of the inverse matrix ## 4. get the value of the inverse matrix makeCacheMatrix <- function(x = matrix()) { m <- NULL set <- function(y) { x <<- y m <<- NULL } get <- function() x setsolve <- function(inv) m <<- solve getsolve <- function() m list(set = set, get = get, setsolve = setsolve, getsolve = getsolve) } ## cacheSolve calculates the inverse matrix of the special "matrix" created ## with the makeCacheMatrix() function. However, it first checks to see if the ## inverse matrix has already been calculated. If so, it gets the inverse matrix ## from the cache and skips the computation. Otherwise, it checks data is square ## matrix and inverse exists. if so, it calcualtes the inverse matrix of data ## and sets the value of the inverse matrix in the cache via the setsolve() ## function. cacheSolve <- function(x, ...) { ## Return a matrix that is the inverse of 'x' m <- x$getsolve() if(!is.null(m)) { message("getting cached data") return(m) } data <- x$get() if(nrow(data) == ncol(data)) { # check square matrix, or not if(det(data) != 0) { # if exist inverse matrix m <- solve(data, ...) x$setsolve(m) } else{ message("does not exist inverse matrix") } } else { message("not square matrix") } m }
47826e56f8b3eb1babc15aa1e0417de58afc436e
aafb44d8881e86da345ee0438f73e200b840a778
/R/select.sample.group.R
abc58650a1cccdfeb7e76307dd19bad586486c5e
[]
no_license
cran/RPPanalyzer
57738f8309a4b42115bc7119eaf5936f6dd72c47
7c6bfda1bfd4989a8afffed015f18f64a696c489
refs/heads/master
2023-08-31T15:52:38.080682
2023-08-28T12:30:02
2023-08-28T13:30:37
17,682,834
1
0
null
null
null
null
UTF-8
R
false
false
1,584
r
select.sample.group.R
#' #' The function selects subgroups of samples based on different parameters which are listed in the sampledescription #' @param params: a list of sampledescription column names and associated values #' @combine: logical value indicating if the union (combine is TRUE) or the intersect (combine is FALSE) should be considered. The default value is FALSE. #' `select.sample.group` <- function(x,params=list(tissue=c("T", "N")), combine=F) { # check if every params are column names of the sampledescription if(!all(names(params) %in% colnames(x[[4]]))) { stop("Following parameters are not contained in the sampledescription: ", paste(names(params)[!(names(params) %in% colnames(x[[4]]))],collapse=" "), "\n") } # create an initial index vector depending if the # the boolean indices should be combined (logical OR) or intersect (logical AND) if(combine) { dat.lines <- rep(F, nrow(x[[4]])) } else { dat.lines <- rep(T, nrow(x[[4]])) } # iterate over all given column names for (p in names(params)) { temp.lines <- x[[4]][,p] %in% params[[p]] if (combine) { dat.lines <- dat.lines | temp.lines } else { dat.lines <- dat.lines & temp.lines } } # use th index vector to filter the matrix with the expression values and the variances x[[1]] <- x[[1]][dat.lines,] x[[2]] <- x[[2]][dat.lines,] x[[4]] <- x[[4]][dat.lines,] # return the filtered matrix return(x) }
c1a27d93d500658159f10b4509dfc5033ea1e132
7be81350dd4f0e33d675ba5ac316cf96774a6fed
/clasesGustavo/TareasHogar/Tarea20210917/111_rpart_default.r
424eecb89d6a78c6f60b1c63a68eba1a59af00b0
[]
no_license
gerbeldo/labo2021
aa3ccb20501099de6ca3bb5f05afdddc1fa63764
97796e15fd77ab2b19fcd731f42378980ad659d7
refs/heads/master
2023-08-21T15:53:31.767994
2021-10-20T14:46:53
2021-10-20T14:46:53
400,648,848
1
1
null
null
null
null
UTF-8
R
false
false
963
r
111_rpart_default.r
#limpio la memoria rm(list=ls()) #remove all objects gc() #garbage collection #Arbol elemental con libreria rpart require("data.table") require("rpart") setwd("~/buckets/b1/") #Establezco el Working Directory #cargo los datos de 202011 que es donde voy a ENTRENAR el modelo dtrain <- fread("./datasetsOri/paquete_premium_202011.csv") #genero el modelo modeloA <- rpart("clase_ternaria ~ .", data= dtrain, xval= 0, cp= -1 ) #aplico el modeloA a los datos de 202101 dapply <- fread("./datasetsOri/paquete_premium_202101.csv") prediccionA <- predict( modeloA, dapply , type = "prob") dapply[ , prob_baja2 := prediccionA[, "BAJA+2"] ] dapply[ , Predicted := as.numeric(prob_baja2 > 0.025) ] entregaA <- dapply[ , list( numero_de_cliente, Predicted) ] fwrite( entregaA, file="./kaggle/111_rpart_default.csv", sep="," ) #ahora debo subir la prediccion a Kaggle y ver como me fue
a554cc0b8a4549b693a7c1f1ab94cd95fd690b7e
ec5db8e0e525c5198b59a14ac0c7ac00864fde28
/scripts/R-scripts/basic_smooth-norm.R
b3e723b70a004cdecb2b834ac5197f16e2c1bad6
[]
no_license
ChromatinCardiff/DanielPassProcessingPipelines
bdc1a02f6ec0fb99387db85574cdeefe7c247525
c3b02255a69f81c888f5cba14fb1b031ce99dc2e
refs/heads/master
2021-06-02T15:13:18.958935
2020-01-29T01:07:27
2020-01-29T01:07:27
32,514,237
1
1
null
null
null
null
UTF-8
R
false
false
531
r
basic_smooth-norm.R
library(ggplot2) library(zoo) require(scales) library(plyr) x <- read.table("~/Projects/ALD/ALD_histogram.txt", header=FALSE) summary(x) fn <- function(x) x/sum(x) ### Normalise column V3 x.nor <- ddply(x, "V1", transform, V3norm=fn(V3)) ### SMOOTHING x$av <- ave(x.nor$V3norm, x.nor$V1, FUN= function(x) rollmean(x, k=30, fill=NA)) x$lav <-log10(x$av) summary(x) p <- ggplot(data=x, aes(V2, lav, colour=V1)) p + geom_line() + scale_x_continuous(breaks = pretty_breaks(n=12)) + scale_colour_brewer(palette="Dark2")
d8d45b6184c293666345f9476004e74c9cf0b52b
9c57c741b59f615f7c786da87338402eca05f8e6
/2-Absent_bones.R
77810f6d3137d72ae23cd27277efc68400858778
[ "MIT" ]
permissive
AgneseLan/ontogeny-asymmetry-dolphin
4861b193346bdd793c112b00230c5616cafcc55d
db9e69d4cef5de94aba15b422eee38dae300307f
refs/heads/main
2023-04-06T20:11:37.967266
2022-07-19T16:29:28
2022-07-19T16:29:28
451,504,009
0
0
null
null
null
null
UTF-8
R
false
false
7,315
r
2-Absent_bones.R
#===========================================================# # # # CURVES AND POINTS ANALYSES - ODONTOCETE FAMILIES # # # #===========================================================# #CH.2 - Assigning coordinates to landmarks of absent bones #Code adapted from Ellen Coombs #LOAD LIBRARIES ---- #always do this first!! library(tidyverse) library(Morpho) library(geomorph) library(Rvcg) library(paleomorph) library(EMMLi) library(qgraph) library(ape) library(geiger) library(abind) library("devtools") library(SURGE) library(magick) #ABSENT BONES ---- #Add the data for absent bones for specific species #Both curves and fixed LMs ###SET WD to root from console!! --> #Import LMs list - curves listed in curve_table LM_table <- read_csv("Data/LMs.csv") #Import sets of absent curves and LMs and open file to check what bones have absent data absent_curves <- read.csv("Data/absent_curves.csv") absent_LMs <- read.csv("Data/absent_LMs.csv") View(absent_curves) View(absent_LMs) ##Absent curves #Look for bones with absent curves in curve list - column names # colnames(absent_curves) curve_nasal_l <- my_curves$Curves[which(curve_table$bone%in%c("nasal_l"))]%>%unlist(.)%>%unique(.)%>%sort(.) curve_nasal_r <- my_curves$Curves[which(curve_table$bone%in%c("nasal_r"))]%>%unlist(.)%>%unique(.)%>%sort(.) curve_interparietal <- my_curves$Curves[which(curve_table$bone%in%c("interparietal"))]%>%unlist(.)%>%unique(.)%>%sort(.) curve_basioccipital_ll <- my_curves$Curves[which(curve_table$bone%in%c("basioccipital_ll"))]%>%unlist(.)%>%unique(.)%>%sort(.) curve_basioccipital_lr <- my_curves$Curves[which(curve_table$bone%in%c("basioccipital_lr"))]%>%unlist(.)%>%unique(.)%>%sort(.) #Create new object for absent curves absentcurve <- slidedlms absentcurve[curve_nasal_l,,4] #specimen number on the end, test if it worked - check specimen number form absent_curves file #Loop to substitute coordinates for semilandmarks in absent bone curves #Put first landmark of curve in matrix for each bone #Left nasal for (i in 1:nrow(absent_curves)){ if( !is.na(absent_curves$nasal_l[i])) absentcurve[curve_nasal_l,c(1:3),i] <- matrix(absentcurve[6,c(1:3),i], nrow = length(curve_nasal_l), ncol=3, byrow=TRUE) } #Right nasal for (i in 1:nrow(absent_curves)){ if( !is.na(absent_curves$nasal_r[i])) absentcurve[curve_nasal_r,c(1:3),i] <- matrix(absentcurve[15,c(1:3),i], nrow = length(curve_nasal_r), ncol=3, byrow=TRUE) } #Interparietal for (i in 1:nrow(absent_curves)){ if( !is.na(absent_curves$interparietal[i])) absentcurve[curve_interparietal,c(1:3),i] <- matrix(absentcurve[57,c(1:3),i], nrow = length(curve_interparietal), ncol=3, byrow=TRUE) } #Basioccipital lateral left for (i in 1:nrow(absent_curves)){ if( !is.na(absent_curves$basioccipital_ll[i])) absentcurve[curve_basioccipital_ll,c(1:3),i] <- matrix(absentcurve[56,c(1:3),i], nrow = length(curve_basioccipital_ll), ncol=3, byrow=TRUE) } #Basioccipital lateral right for (i in 1:nrow(absent_curves)){ if( !is.na(absent_curves$basioccipital_lr[i])) absentcurve[curve_basioccipital_lr,c(1:3),i] <- matrix(absentcurve[54,c(1:3),i], nrow = length(curve_basioccipital_lr), ncol=3, byrow=TRUE) } absentcurve[curve_nasal_l,,4] #check if it worked with specimen number with missing curve ##Absent LMs #Look for absent bones first # colnames(absent_LMs) LMs_nasal_l <- LM_table$lm[which(LM_table$bone%in%c("nasal_l"))] LMs_nasal_r <- LM_table$lm[which(LM_table$bone%in%c("nasal_r"))] LMs_interparietal <- LM_table$lm[which(LM_table$bone%in%c("interparietal"))] #Create new object for absent LMs absentLM <- absentcurve absentLM[LMs_nasal_l,,4] #specimen number on the end, test if it worked - check specimen number form absent_LMs file #Loop to substitute coordinates for landmarks in absent bones #Left nasal for (i in 1:nrow(absent_LMs)){ if( !is.na(absent_LMs$nasal_l[i])) absentLM[LMs_nasal_l,c(1:3),i] <- matrix(absentLM[6,c(1:3),i], nrow = length(LMs_nasal_l), ncol=3, byrow=TRUE) #number (40) here is the LM that is missing } #Right nasal for (i in 1:nrow(absent_LMs)){ if( !is.na(absent_LMs$nasal_r[i])) absentLM[LMs_nasal_r,c(1:3),i] <- matrix(absentLM[15,c(1:3),i], nrow = length(LMs_nasal_r), ncol=3, byrow=TRUE) } #Interparietal for (i in 1:nrow(absent_LMs)){ if( !is.na(absent_LMs$interparietal[i])) absentLM[LMs_interparietal,c(1:3),i] <- matrix(absentLM[57,c(1:3),i], nrow = length(LMs_interparietal), ncol=3, byrow=TRUE) } absentLM[LMs_nasal_l,,4] #specimen number on the end, test if it worked - check specimen number form absent_LMs file absentLM[curve_nasal_l,,4] #check curves still ok #Create new object for analyses with all missing data, include only shape data final_dataset <- absentLM #Check plotting of absent bones #Look up number for specimens with absent bones in absent_curves and absent_LMs ###SET WD to ply from console!! --> #Plot checkLM(final_dataset, path="", pt.size = 15, suffix=".ply", render = "s", begin = 50, point = "p") #List of points and curves for different bones - useful for plots nasals <- c(LMs_nasal_l, LMs_nasal_r, curve_nasal_l, curve_nasal_r) supraoccipital <- c(LM_table$lm[which(LM_table$bone%in%c("supraoccipital"))], my_curves$Curves[which(curve_table$bone%in%c("supraoccipital"))]) %>% unlist(.)%>%unique(.)%>%sort(.) basioccipital <- c(LM_table$lm[which(LM_table$bone%in%c("basioccipital", "basioccipital_lr", "basioccipital_ll"))], my_curves$Curves[which(curve_table$bone%in%c("basioccipital", "basioccipital_ll", "basioccipital_lr"))]) %>% unlist(.)%>%unique(.)%>%sort(.) maxilla <- c(LM_table$lm[which(LM_table$bone%in%c("maxilla"))], my_curves$Curves[which(curve_table$bone%in%c("maxilla"))]) %>% unlist(.)%>%unique(.)%>%sort(.) premaxilla <- c(LM_table$lm[which(LM_table$bone%in%c("premaxilla"))], my_curves$Curves[which(curve_table$bone%in%c("premaxilla"))]) %>% unlist(.)%>%unique(.)%>%sort(.) condyles <- c(LM_table$lm[which(LM_table$bone%in%c("condyle"))], my_curves$Curves[which(curve_table$bone%in%c("condyle"))])%>% unlist(.)%>%unique(.)%>%sort(.) orbit <- c(LM_table$lm[which(LM_table$bone%in%c("frontal", "jugal"))], my_curves$Curves[which(curve_table$bone%in%c("frontal"))]) %>% unlist(.)%>%unique(.)%>%sort(.) squamosal <- c(LM_table$lm[which(LM_table$bone%in%c("squamosal"))], my_curves$Curves[which(curve_table$bone%in%c("squamosal"))]) %>% unlist(.)%>%unique(.)%>%sort(.) palatine <- c(LM_table$lm[which(LM_table$bone%in%c("palatine"))], my_curves$Curves[which(curve_table$bone%in%c("palatine"))]) %>% unlist(.)%>%unique(.)%>%sort(.) interparietal <- c(LMs_interparietal, curve_interparietal) exoccipital <- c(LM_table$lm[which(LM_table$bone%in%c("exoccipital"))], my_curves$Curves[which(curve_table$bone%in%c("exoccipital"))]) %>% unlist(.)%>%unique(.)%>%sort(.) #Check spheres3d(final_dataset[nasals,,30], radius=1, color = "red") spheres3d(final_dataset[-nasals,,30], radius=1, color = "grey") #Save coordinates to file save(final_dataset, file = "~/final_dataset.RData") ###### #Next - ch. 3 - GPA and PCA
80a82b1c55b4c6addda7ac380ad450f177622cdb
ed370813a204a903d8c5f951e50c89080a30f725
/tests/test-all.R
7c9528a7ee70de84d5aa92448f5140a6247239e1
[]
no_license
jayemerson/STV
f174b56529596d02c77ccaf85533a833da0d97d3
32940b4e746ded9e69f5f9d35233555337f76e63
refs/heads/master
2021-07-18T10:39:34.498545
2021-02-01T00:12:06
2021-02-01T00:12:06
91,092,742
3
5
null
2018-02-17T23:03:11
2017-05-12T13:09:50
R
UTF-8
R
false
false
36
r
test-all.R
library(testthat) test_check("STV")
8c4362b8c3bf1d0b43f7e04794292ff3c76e3bdd
2b7696de761986e7c295da36201f06fca701f059
/man/hs5_hs2.Rd
2b3b1adcc8b1646d5b1710b9cc4c8e9acd8d91f5
[]
no_license
cran/concordance
130b5cadccfce9cc5ef98432fc2f938c75eebd93
b8d1e592399f05941ce24a4afd96007b8dae0ec5
refs/heads/master
2021-05-04T11:23:30.586684
2020-04-24T15:10:08
2020-04-24T15:10:08
49,413,285
0
1
null
null
null
null
UTF-8
R
false
true
648
rd
hs5_hs2.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/data.R \docType{data} \name{hs5_hs2} \alias{hs5_hs2} \title{HS5-HS2 Concordance} \format{ A data frame with 5388 rows and 6 variables: \describe{ \item{HS5_6d}{6-digit HS5 Code} \item{HS5_4d}{4-digit HS5 Code} \item{HS5_2d}{2-digit HS5 Code} \item{HS2_6d}{6-digit HS2 Code} \item{HS2_4d}{4-digit HS2 Code} \item{HS2_2d}{2-digit HS2 Code} } } \source{ \url{https://unstats.un.org/unsd/trade/classifications/correspondence-tables.asp} } \usage{ hs5_hs2 } \description{ A dataset containing concordances between HS5 and HS2 classification. } \keyword{datasets}
83bd07beffaecda944fb316fc2f057bd5c1b44d4
808e37074a3652ea10ae384f4747bd9b2e3607fd
/man/df_cea_psa.Rd
1e92c421062e28217d4895134d055f7c17b63c96
[ "MIT" ]
permissive
fthielen/ce16_modelling_course
248a9eab42d32009e9b417a0fe44e339bf410717
62bb04618abfd5ff603b128885b68cda8dc52d9d
refs/heads/master
2023-05-05T17:17:50.542522
2021-05-17T10:03:49
2021-05-17T10:03:49
368,138,798
1
0
null
null
null
null
UTF-8
R
false
true
801
rd
df_cea_psa.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/data_cea_psa.R \docType{data} \name{df_cea_psa} \alias{df_cea_psa} \title{Cost-effectiveness results from probabilistic analysis} \format{A \code{data.frame} with with 2 rows, ane per strategy and 5 variables: \describe{ \item{Strategy}{Strategy name} \item{Cost}{Cost per strategy} \item{Effect}{QALYs per strategy} \item{Inc_Cost}{Incremental cost} \item{Inc_Effect}{Incremental QALYs} \item{ICER}{Incremental cost-effectivenes ratio (ICER)} \item{Status}{Domination status. ND, not dominated (i.e., on the cost-effectivenes efficiency frontier); D, strongly dominated; d, dominated by extension} }} \usage{ df_cea_psa } \description{ A dataset with cost and effectiveness outputs for each strategy. } \keyword{datasets}
024032019b326a61867393dc582a10fac9d45dc0
eb3d7cbbb4ded421fa211384f5ee1df251646577
/R/geos-misc.R
62fa966af2a6543f896bc3934f49c6a4585ebdb2
[]
no_license
SymbolixAU/geom
f2ab70e698881079ec5c09ac7c6ee7d74420bf87
45a913ddb3942807635547ce471a08d0e5f3af62
refs/heads/master
2021-05-19T19:02:29.902255
2020-04-01T04:52:55
2020-04-01T04:52:55
252,074,507
0
0
null
2020-04-01T04:46:56
2020-04-01T04:46:55
null
UTF-8
R
false
false
837
r
geos-misc.R
#' Area, length, and distance #' #' @inheritParams geos_intersection #' #' @return #' - [geos_area()] computes areas for polygons, or returns 0 otherwise. #' - [geos_length()] computes the length of the boundary for polygons, or the length #' of the line for linestrings. #' - [geos_distance()] returns the smallest possible distance between the two #' geometries. #' #' @export #' #' @examples #' geos_area(geo_wkt("POLYGON ((0 0, 10 0, 0 10, 0 0))")) #' geos_length(geo_wkt("POLYGON ((0 0, 10 0, 0 10, 0 0))")) #' geos_distance( #' geo_wkt("POLYGON ((0 0, 10 0, 0 10, 0 0))"), #' geo_wkt("POINT (10 10)") #' ) #' geos_area <- function(x) { cpp_area(x) } #' @rdname geos_area #' @export geos_length <- function(x) { cpp_length(x) } #' @rdname geos_area #' @export geos_distance <- function(x, y) { cpp_distance(x, y) }
aa053186bde1c6e149a3a02c9305dae93c13dcfa
28dcec41c7bf186f4ecee1ec5a20903c8839b65d
/NOBUILD/Sandbox/segall.R
fc845ddd59c939b1f0e91be0c7e2332c76c65502
[]
no_license
abarbour/deform
f0cc416521fd5984636a86f23c5381962d9f2238
0a54d77b8d19d8efb8e944fe2e107aab0c6eb830
refs/heads/master
2022-03-20T06:36:41.132055
2022-02-07T21:57:23
2022-02-07T21:57:23
25,497,729
3
1
null
null
null
null
UTF-8
R
false
false
3,859
r
segall.R
library(kook) library(plyr) library(TeachingDemos) library(deform) .x. <- sort(unique(c(-7:-3, seq(-3.90,3.90,by=0.15), 3:7))) su <- surface_displacement(.x.*1e3, C.=1e13, z_src=0.7e3) sut <- with(su, Tilt(x, z=uz)) sue <- with(su, Uniaxial_extension(x, X=ux)) F1 <- function(){ plot(c(NA,diff(ux)/diff(x),NA) ~ c(NA,x), su, type="s") abline(v=0,h=0,col="grey") } F1() F2 <- function(){ plot(uz ~ x, su, col=NA, ylim=c(-1,1)*20, xlim=c(-1,1)*7*1e3) abline(v=0,h=0,col="grey") lines(uz ~ x, su, type="l", pch=16, cex=1, lwd=2, col="grey") text(2e3, -5, expression(U[Z])) lines(ux ~ x, su, type="l", pch=16, col="blue", cex=1, lwd=2) text(0, 6, expression(U[X]), col="blue", pos=2) points(uxz.mag ~ x, su, col="red", pch=16, cex=0.6) text(-3e3, 8, expression(abs(U[XZ])), col="red") suppressWarnings(my.symbols(x=su$x, y=su$uxz.mag, ms.arrows, adj=0, col="red", inches=0.8, add=TRUE, angle=su$uxz.ang*pi/180)) lines(ztilt*1e2 ~ x, sut, type="h", lwd=5, col="lightgreen") text(-1.1e3, 2, expression("Tilt" == 2%*%dU[Z]/dx), col="dark green", pos=2) lines(ztilt*1e2 ~ x, sut, lwd=3,col="dark green") lines(dXdx*1e2 ~ x, sue, type="h", lwd=4, col="grey60") text(5e2, 2, expression(E[ee] == dU[X]/dx), pos=4) lines(dXdx*1e2 ~ x, sue, lwd=3) } F2() # Figs 7,8 mxx <- 50 .x.km. <- sort(unique(c((-1*mxx):-3, seq(-2.90,2.90,by=0.1), 3:mxx))) .z.km. <- sort(unique(c(seq(0,3,by=0.25),seq(3,12,by=0.75)))) yr <- 365*86400 .time. <- seq(2,10,by=2)*10*yr .Vdot. <- 2e6/yr # volume rate m^3/yr to m^3/s .D. <- 1e3 # depth of burial .L. <- 10e3 # length (Vdot/L is the average rate of fluid extraction per unit length) .B. <- 0.6 # Skemptons coeff .c. <- 0.1 # hydraulic diffusivity m^2/s .Sources.x. <- 1e3*c(0) .TwoSources.x. <- 1e3*c(0,20) # for mass computation .t. <- 100 # thickness .phi. <- 0.2 #porosity # for pressure computation .mu. <- 5.6 #GPa -- shear modulus # single source zz2 <- timevarying_surface_displacement(.x.km.*1e3, .time., .Vdot., .B., .L., .D., .c., Pt.Sources.x=.Sources.x.) F3 <- function(){ #matplot(.time./yr, t(zz2)*1e3, type="l", main="Subsidence, mm, Segall 1985, Fig 8B") matplot(.x.km., zz2*1e3, type="l", col="black", main="Subsidence, mm, Segall 1985, Fig 8B", sub=Sys.time()) } try(F3()) # multiple sources zz2 <- timevarying_surface_displacement(.x.km.*1e3, .time., c(1,0.5)*.Vdot., .B., .L., .D., .c., Pt.Sources.x=.TwoSources.x.) try(F3()) zz2t <- apply(zz2, 2, function(.z.) matrix(Tilt(.x.km.*1e3, z=.z.)$ztilt)) F3t <- function(){ #matplot(.time./yr, t(zz2t), type="l") matplot(.x.km., zz2t*1e6, type="l", col="black", main="Tilt") } try(F3t()) zz3 <- timevarying_fluidmass(.x.km.*1e3, .time., .Vdot., .L., .t., .c., phi.=.phi.) F4 <- function(){ #matplot(.time./yr, t(zz3)*1e2, type="l") matplot(.x.km., zz3*1e2, type="l", col="black", main="t.v. Fluid mass change") } try(F4()) redo <- FALSE if (!exists("zzp") | redo) zzp <- timevarying_porepressure(.x.km.*1e3, .z.km.*1e3, .time., .Vdot.*c(1,2), .B., .L., .D., .c., .t., .mu., Pt.Sources.x=.TwoSources.x.) F5 <- function(do.log=FALSE){ #matplot(.time./yr, t(zz3)*1e2, type="l") X<- zzp[,,length(.time.)] if (do.log) X <- log10(abs(X)) matplot(x=.x.km., X, col=NA, main="t.v. Pore pressure") aaply(zzp, 3, .fun = function(X) { if (do.log) X <- log10(abs(X)) matplot(x=.x.km., X, type="l", add=TRUE) return("x") }) invisible() } #try(F5()) F5c <- function(){ layout(matrix(seq_len(dim(zzp)[3]), nrow=1)) aaply(zzp, 3, .fun = function(X) { image(x=.x.km., y=.z.km., X, ylim=c(6,0), col = brewerRamp()) contour(x=.x.km., y=.z.km., X, ylim=c(6,0), add = TRUE) abline(v=.TwoSources.x./1e3, col="grey", lwd=2) abline(h=(.D.+c(-1*.t.,.t.)/2)/1e3, col="grey", lwd=2) return("x") }) invisible() layout(matrix(1)) } try(F5c())
6b103889658aef26588ee3c6cb8c946b905a1476
89491fef8c724a2500434f220780f3300017ff38
/inst/pruebas/demoIRIS.R
60083c2badbbcd44d18d6d65fa3e0c8340f5b1c3
[]
no_license
cran/FKBL
ccafa5c7acbc14abad415b641d7d3e29004a658b
ec6c9300a8c01950db07ff57a93940b98936ed48
refs/heads/master
2016-09-05T20:16:08.923166
2007-03-31T00:00:00
2007-03-31T00:00:00
null
0
0
null
null
null
null
UTF-8
R
false
false
101
r
demoIRIS.R
source("script.R") IRIS=read.table("../data/IRIS.tab") #data(IRIS) salida<-EXPERIMENT(IRIS) salida$e
ebcc8cb2ac23f50564310136e7043b632f2e8da7
571e295f9ad4ca5762f9ca05bbc4a51b29e97d7b
/STRING/stringSERVER.R
81f89329fb11db9e4fe4427e1f65586fcc375701
[]
no_license
estayless/comparison-matrices-admin
8a2aab4086692d87dae26d2e4974786cd937fcae
d5531054f7f16f98863e4c1b2caed176fea84d67
refs/heads/master
2023-02-15T08:58:42.416078
2020-12-30T10:18:15
2020-12-30T10:18:15
325,518,749
0
0
null
null
null
null
UTF-8
R
false
false
1,212
r
stringSERVER.R
# linksDetailed<-reactive({ # req(input$linksDetailed) # df<-read.delim(input$linksDetailed$datapath, header = TRUE, sep = "") # print(df) # }) # #SERA LA TRADUCCION CON PROTEIN INFO # proteinInfo<-reactive({ # req(input$proteinInfo) # df<-read.delim(input$proteinInfo$datapath, header = TRUE, sep = "\t") # print(df) # }) executeStringPopulation<-observeEvent(input$exeStringPop,{ # out<-tryCatch({stringPopulation(input$userSTRING, input$passwordSTRING, linksDetailed(), proteinInfo(), martData="hsapiens_gene_ensembl")}, # error = function(err) { # errorCatch$val<-as.character(err) # message("Error: Authentication failed.") # }, # finally = invalidateLater(1)) print(input$linksDetailed) print(input$proteinInfo) showModal(modalDialog("Reading files", footer=NULL)) linksDetailed<-read.delim(as.character(input$linksDetailed$datapath), header = TRUE, sep = "") proteinInfo<-read.delim(as.character(input$proteinInfo$datapath), header = TRUE, sep = "\t") removeModal() stringPopulation(input$userSTRING, input$passwordSTRING, linksDetailed, proteinInfo, martData="hsapiens_gene_ensembl") })
fddb2c08fb24e9c8d505e0ac4bcb8d5f7f978e27
2764167b5743be62adadc491ec7dfde210e0703d
/man/BASICTOPOMAP.Rd
e2f32e9e2b91429b7cf2f9d6aa9e187942a42c0d
[]
no_license
cran/GEOmap
528a4cbe293211d324405037eb280b415e65f62e
0149894022496cee8237868b0bb693d00ef01e41
refs/heads/master
2023-08-18T14:47:52.021469
2023-08-13T12:40:21
2023-08-13T13:30:31
17,713,753
0
0
null
null
null
null
UTF-8
R
false
false
3,013
rd
BASICTOPOMAP.Rd
\name{BASICTOPOMAP} \alias{BASICTOPOMAP} %- Also NEED an '\alias' for EACH other topic documented here. \title{Basic Topogrpahy Map} \description{ Basic Topogrpahy Map } \usage{ BASICTOPOMAP(xo, yo, DOIMG, DOCONT, UZ, AZ, IZ, perim, PLAT, PLON, PROJ = PROJ, pnts = NULL, GRIDcol = NULL) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{xo}{vector of x-coordinates} \item{yo}{vector of y-coordinates} \item{DOIMG}{logical, add image} \item{DOCONT}{logical, add contours} \item{UZ}{matrix of image values under sea level} \item{AZ}{matrix of image values above sea level} \item{IZ}{matrix of image values} \item{perim}{perimeter vectors} \item{PLAT}{latitudes for tic-marks} \item{PLON}{longitude for tic-marks} \item{PROJ}{projection list} \item{pnts}{points to add to plot} \item{GRIDcol}{color for grid} } \details{ Image is processed prior to calling } \value{ Graphical Side effects } \author{Jonathan M. Lees<jonathan.lees.edu>} \seealso{DOTOPOMAPI, GEOTOPO} \examples{ \dontrun{ library(geomapdata) library(MBA) ## for interpolation ####### set up topo data data(fujitopo) ##### set up map data data('japmap', package='geomapdata' ) ### target region PLOC= list(LON=c(138.3152, 139.0214), LAT=c(35.09047, 35.57324)) PLOC$x =PLOC$LON PLOC$y =PLOC$LAT #### set up projection PROJ = setPROJ(type=2, LAT0=mean(PLOC$y) , LON0=mean(PLOC$x) ) ########## select data from the topo data internal to the target topotemp = list(lon=fujitopo$lon, lat= fujitopo$lat, z=fujitopo$z) #### project target A = GLOB.XY(PLOC$LAT , PLOC$LON , PROJ) ####### select topo selectionflag = topotemp$lat>+PLOC$LAT[1] & topotemp$lat<=PLOC$LAT[2] & topotemp$lon>+PLOC$LON[1] & topotemp$lon<=PLOC$LON[2] ### project topo data B = GLOB.XY( topotemp$lat[selectionflag] ,topotemp$lon[selectionflag] , PROJ) ### set up out put matrix: ### xo = seq(from=range(A$x)[1], to=range(A$x)[2], length=200) ### yo = seq(from=range(A$y)[1], to=range(A$y)[2], length=200) ####### interpolation using akima ### IZ = interp(x=B$x , y=B$y, z=topotemp$z[selectionflag] , xo=xo, yo=yo) DF = cbind(x=B$x , y=B$y , z=topotemp$z[selectionflag]) IZ = mba.surf(DF, 200, 200, extend=TRUE)$xyz.est xo = IZ[[1]] yo = IZ[[2]] ### image(IZ) ####### underwater section UZ = IZ$z UZ[IZ$z>=0] = NA #### above sea level AZ = IZ$z AZ[IZ$z<=-.01] = NA #### create perimeter: perim= getGEOperim(PLOC$LON, PLOC$LAT, PROJ, 50) ### lats for tic marks: PLAT = pretty(PLOC$LAT) PLAT = c(min(PLOC$LAT), PLAT[PLAT>min(PLOC$LAT) & PLAT<max(PLOC$LAT)],max(PLOC$LAT)) PLON = pretty(PLOC$LON) ### main program: DOIMG = TRUE DOCONT = TRUE PNTS = NULL BASICTOPOMAP(xo, yo , DOIMG, DOCONT, UZ, AZ, IZ, perim, PLAT, PLON, PROJ=PROJ, pnts=NULL, GRIDcol=NULL) ### add in the map information plotGEOmapXY(japmap, LIM=c(PLOC$LON[1], PLOC$LAT[1],PLOC$LON[2], PLOC$LAT[2]) , PROJ=PROJ, add=TRUE ) } } \keyword{misc}
c1e817433dc4b5f53b73a3c4dfdec1e07cf8a61d
161747aed56bfc7fbd17b87c60c25291ef12a579
/CRAN_meta_analysis/server.R
f3c7fafec7aad03a5ffcadda6e79aaecd3ec2c47
[]
no_license
juschu321/CRAN_meta
62f3dc210eecd1684c2cb4d11531ff0bdcfca65f
333375a95cd6606e16fc06b0c03b78516fc090ed
refs/heads/master
2020-06-02T22:43:02.452187
2019-07-16T15:40:55
2019-07-16T15:40:55
191,332,470
0
0
null
null
null
null
UTF-8
R
false
false
1,298
r
server.R
library(shiny) library(shinydashboard) library(ggplot2) library(plotly) server <- function(input, output, session) { aggreggated_timeseries_data <- reactive({ selected_ctvs <- input$ctvs_select selected_packages <- input$packages_select date_slider <- input$year selected_from <- input$year[1] selected_to <- input$year[2] filtered_data <- filter_timeseries_data( selected_from = selected_from, selected_to = selected_to, selected_packages = selected_packages, selected_ctv = selected_ctvs ) aggregated_data <- aggregate_timeseries_data(filtered_data = filtered_data) aggregated_data }) selected_ctvs <- reactive({ selected_ctvs <- input$ctvs_select selected_ctvs }) output$ctvs_select <- renderText({ selected_ctvs() }) output$plot <- renderPlot({ data = aggreggated_timeseries_data() ggplot(data) + geom_line(aes (month, total, color= data$ctv)) + scale_x_date( date_breaks = "1 year", date_minor_breaks = "1 month", date_labels = "%Y - %m" ) }) output$value <- renderPrint({ input$checkboxGroup }) }
590ca89e0c65c4f9e7998882b5e03bf20b31e600
3998d54ca79a8382685426844d7c22d4fbb4429a
/setup_400m_aquifer_tube_model_domain/codes/ert_inland_bc.R
570f58157006c78d164143cb3a339bcdbbbbc78e
[]
no_license
xuehangsong/dense_array
5bbe30275a647536e880d7751e2f67b9c2c2c78d
2a7584bc8e945fa8bd251a47048bb43fa96166b5
refs/heads/master
2021-07-16T02:33:44.584572
2020-09-19T17:58:02
2020-09-19T17:58:02
212,211,677
0
0
null
null
null
null
UTF-8
R
false
false
9,115
r
ert_inland_bc.R
## #This file is used for calculating transient boundary conditions ## #using universal kriging ###cov_model_sets = c('gaussian','wave','exponential','spherical') ###drift_sets = c(0,1) rm(list=ls()) library(geoR) library(rhdf5) source("codes/ert_parameters.R") H5close() options(geoR.messages=FALSE) input_folder = 'data/headdata4krige_Plume_2009_2017/' output_folder = "ert_model/" initial.h5 = "H_Initial_ERT.h5" BC.h5 = "H_BC_ERT.h5" ## for grids grid.x = 1.0 grid.y = 1.0 grid.nx = diff(range_x)/grid.x grid.ny = diff(range_y)/grid.y pred.grid.south = expand.grid(seq(range_x[1]+grid.x/2,range_x[2],grid.x),range_y[1]+grid.y/2) # for South boundary pred.grid.north = expand.grid(seq(range_x[1]+grid.x/2,range_x[2],grid.x),range_y[2]-grid.y/2) # for North boundary pred.grid.east = expand.grid(range_x[1]+grid.x/2,seq(range_y[1]+grid.y/2,range_y[2],grid.y)) # for East boundary pred.grid.west = expand.grid(range_x[2]-grid.x/2,seq(range_y[1]+grid.y/2,range_y[2],grid.y)) # for West boundary pred.grid.domain = expand.grid(seq(range_x[1]+grid.x/2,range_x[2],grid.x), seq(range_y[1]+grid.y/2,range_y[2],grid.y)) colnames(pred.grid.south)=c('x','y') colnames(pred.grid.north)=c('x','y') colnames(pred.grid.east)=c('x','y') colnames(pred.grid.west)=c('x','y') colnames(pred.grid.domain)=c('x','y') ## time information start.time = as.POSIXct("2015-01-01 00:00:00",tz="GMT",format="%Y-%m-%d %H:%M:%S") end.time = as.POSIXct("2017-07-01 00:00:00",tz="GMT",format="%Y-%m-%d %H:%M:%S") dt = 3600 ##secs times = seq(start.time,end.time,dt) ntime = length(times) time.id = seq(0,ntime-1,dt/3600) ##hourly boundary origin.time = as.POSIXct("2008-12-31 23:00:00",tz="GMT",format="%Y-%m-%d %H:%M:%S") ## BC.south = array(NA,c(ntime,grid.nx)) ## BC.north = array(NA,c(ntime,grid.nx)) ## BC.east = array(NA,c(ntime,grid.ny)) ## BC.west = array(NA,c(ntime,grid.ny)) BC.south = c() BC.north = c() BC.east = c() BC.west = c() avail.time.id = c() for (itime in 1:ntime) { print(times[itime]) index = paste(as.character(difftime(times[itime],origin.time,tz="GMT",units="hours")), "_",format(times[itime],"%d_%b_%Y_%H_%M_%S"),sep="") data = read.table(paste(input_folder,'time',index,'.dat',sep=''),header=F,na.strings = "NaN") if (!all(is.na(data[,3]))) { avail.time.id = c(avail.time.id,time.id[itime]) ### The x/y column is swaped. ### The reason is the data file from Huiying is also reversed (why?) data[,c(1,2,3)] = data[,c(2,1,3)] colnames(data) = c('x','y','z') data = as.geodata(data) ##This bins and esimator.type is defined by Xingyuan if (nrow(data$coords)>27) { bin1 = variog(data,uvec=c(0,50,100,seq(150,210,30),250,300),trend='cte',bin.cloud=T,estimator.type='modulus') } else { bin1 = variog(data,uvec=c(0,100,seq(150,210,30),250,300),trend='cte',bin.cloud=T,estimator.type='modulus') } initial.values <- expand.grid(max(bin1$v),seq(300)) wls = variofit(bin1,ini = initial.values,fix.nugget=T,nugget = 0.00001,fix.kappa=F,cov.model='exponential') ##check the varigram if (itime %% 1000 == 1) { jpeg(filename=paste('figures/Semivariance Time = ',format(times[itime],"%Y-%m-%d %H:%M:%S"),".jpg",sep=''), width=5,height=5,units="in",quality=100,res=300) plot(bin1,main = paste('Time = ',format(times[itime],"%Y-%m-%d %H:%M:%S"),sep=''),col='red', pch = 19, cex = 1, lty = "solid", lwd = 2) text(bin1$u,bin1$v,labels=bin1$n, cex= 0.7,pos = 2) lines(wls) dev.off() } ## Generate boundary and initial condition kc.south = krige.conv(data, loc = pred.grid.south, krige = krige.control(obj.m=wls,type.krige='OK',trend.d='cte',trend.l='cte')) kc.north = krige.conv(data, loc = pred.grid.north, krige = krige.control(obj.m=wls,type.krige='OK',trend.d='cte',trend.l='cte')) kc.east = krige.conv(data, loc = pred.grid.east, krige = krige.control(obj.m=wls,type.krige='OK',trend.d='cte',trend.l='cte')) kc.west = krige.conv(data, loc = pred.grid.west, krige = krige.control(obj.m=wls,type.krige='OK',trend.d='cte',trend.l='cte')) BC.south = rbind(BC.south,kc.south$predict) BC.north = rbind(BC.north,kc.north$predict) BC.east = rbind(BC.east,kc.east$predict) BC.west = rbind(BC.west,kc.west$predict) if (itime==1) { kc.domain = krige.conv(data, loc = pred.grid.domain, krige = krige.control(obj.m=wls,type.krige='OK',trend.d='cte',trend.l='cte')) h.initial = as.vector(kc.domain$predict) dim(h.initial) = c(grid.nx,grid.ny) } } } time.id = avail.time.id ##Generate the initial condition hdf5 file for the domain. if (file.exists(paste(output_folder,initial.h5,sep=''))) { file.remove(paste(output_folder,initial.h5,sep='')) } h5createFile(paste(output_folder,initial.h5,sep='')) h5createGroup(paste(output_folder,initial.h5,sep=''),'Initial_Head') h5write(t(h.initial),paste(output_folder,initial.h5,sep=''), 'Initial_Head/Data',level=0) fid = H5Fopen(paste(output_folder,initial.h5,sep='')) h5g = H5Gopen(fid,'/Initial_Head') h5writeAttribute(attr = 1.0, h5obj = h5g, name = 'Cell Centered') h5writeAttribute.character(attr = "XY", h5obj = h5g, name = 'Dimension') h5writeAttribute(attr = c(grid.x,grid.y), h5obj = h5g, name = 'Discretization') h5writeAttribute(attr = 500.0, h5obj = h5g, name = 'Max Buffer Size') h5writeAttribute(attr = c(range_x[1],range_y[1]), h5obj = h5g, name = 'Origin') H5Gclose(h5g) H5Fclose(fid) ##Generate the BC hdf5 file. if (file.exists(paste(output_folder,BC.h5,sep=''))) { file.remove(paste(output_folder,BC.h5,sep='')) } h5createFile(paste(output_folder,BC.h5,sep='')) ### write data h5createGroup(paste(output_folder,BC.h5,sep=''),'BC_South') h5write(time.id,paste(output_folder,BC.h5,sep=''),'BC_South/Times',level=0) h5write(BC.south,paste(output_folder,BC.h5,sep=''),'BC_South/Data',level=0) h5createGroup(paste(output_folder,BC.h5,sep=''),'BC_North') h5write(time.id,paste(output_folder,BC.h5,sep=''),'BC_North/Times',level=0) h5write(BC.north,paste(output_folder,BC.h5,sep=''),'BC_North/Data',level=0) h5createGroup(paste(output_folder,BC.h5,sep=''),'BC_East') h5write(time.id,paste(output_folder,BC.h5,sep=''),'BC_East/Times',level=0) h5write(BC.east,paste(output_folder,BC.h5,sep=''),'BC_East/Data',level=0) h5createGroup(paste(output_folder,BC.h5,sep=''),'BC_West') h5write(time.id,paste(output_folder,BC.h5,sep=''),'BC_West/Times',level=0) h5write(BC.west,paste(output_folder,BC.h5,sep=''),'BC_West/Data',level=0) ### write attribute fid = H5Fopen(paste(output_folder,BC.h5,sep='')) h5g.south = H5Gopen(fid,'/BC_South') h5g.north = H5Gopen(fid,'/BC_North') h5g.east = H5Gopen(fid,'/BC_East') h5g.west = H5Gopen(fid,'/BC_West') h5writeAttribute(attr = 1.0, h5obj = h5g.south, name = 'Cell Centered') h5writeAttribute(attr = 'X', h5obj = h5g.south, name = 'Dimension') h5writeAttribute(attr = grid.x, h5obj = h5g.south, name = 'Discretization') h5writeAttribute(attr = 200.0, h5obj = h5g.south, name = 'Max Buffer Size') h5writeAttribute(attr = range_x[1], h5obj = h5g.south, name = 'Origin') h5writeAttribute(attr = 'h', h5obj = h5g.south, name = 'Time Units') h5writeAttribute(attr = 1.0, h5obj = h5g.south, name = 'Transient') h5writeAttribute(attr = 1.0, h5obj = h5g.north, name = 'Cell Centered') h5writeAttribute(attr = 'X', h5obj = h5g.north, name = 'Dimension') h5writeAttribute(attr = grid.x, h5obj = h5g.north, name = 'Discretization') h5writeAttribute(attr = 200.0, h5obj = h5g.north, name = 'Max Buffer Size') h5writeAttribute(attr = range_x[1], h5obj = h5g.north, name = 'Origin') h5writeAttribute(attr = 'h', h5obj = h5g.north, name = 'Time Units') h5writeAttribute(attr = 1.0, h5obj = h5g.north, name = 'Transient') h5writeAttribute(attr = 1.0, h5obj = h5g.east, name = 'Cell Centered') h5writeAttribute(attr = 'Y', h5obj = h5g.east, name = 'Dimension') h5writeAttribute(attr = grid.y, h5obj = h5g.east, name = 'Discretization') h5writeAttribute(attr = 200.0, h5obj = h5g.east, name = 'Max Buffer Size') h5writeAttribute(attr = range_y[1], h5obj = h5g.east, name = 'Origin') h5writeAttribute(attr = 'h', h5obj = h5g.east, name = 'Time Units') h5writeAttribute(attr = 1.0, h5obj = h5g.east, name = 'Transient') h5writeAttribute(attr = 1.0, h5obj = h5g.west, name = 'Cell Centered') h5writeAttribute(attr = 'Y', h5obj = h5g.west, name = 'Dimension') h5writeAttribute(attr = grid.y, h5obj = h5g.west, name = 'Discretization') h5writeAttribute(attr = 200.0, h5obj = h5g.west, name = 'Max Buffer Size') h5writeAttribute(attr = range_y[1], h5obj = h5g.west, name = 'Origin') h5writeAttribute(attr = 'h', h5obj = h5g.west, name = 'Time Units') h5writeAttribute(attr = 1.0, h5obj = h5g.west, name = 'Transient') H5Gclose(h5g.south) H5Gclose(h5g.north) H5Gclose(h5g.east) H5Gclose(h5g.west) H5Fclose(fid) save(list=ls(),file="results/ert.bc.r")
dab6ffbad1231225544f313bce1e417cf7bee723
921ef582b7c321e6cb94dd7f0a5b2404f0410c22
/B1/Frequencies.Crosstabs.Descriptives_v2.R
3e120c0946cebed52033957097c2d728be8d6455
[]
no_license
thomasns2/rmodules
c7e12dc0682acfa3b6d093a5c40e30e503ea7e90
b4ac3ca0806cdaadc3c12399b48d5f11009b563e
refs/heads/main
2023-04-30T23:14:26.105167
2021-05-06T19:19:36
2021-05-06T19:19:36
360,587,142
1
0
null
null
null
null
UTF-8
R
false
false
18,099
r
Frequencies.Crosstabs.Descriptives_v2.R
######################################################### ######################################################### #iii. Frequencies, Crosstabs and Descriptives ######################################################### ######################################################### getwd() # this function can be used to find your current working directory #this is where R is looking to find files #this directory contains the data we will work with setwd("/Users/thomasns/Documents/0DevInternship/Modules/Modules") ######################################################### ######################################################### #reading in data #https://www.cdc.gov/nchs/nhis/2019nhis.htm #the data can be downloaded from the link above #the downloaded file should be saved in the directory specified above in setwd() ######################################################### #################################################### df<-read.table("adult19.csv", #the dataset file in the current working directory sep=",", #the character that separates values in the file (a comma here, because the file is csv) header=TRUE) #does the file have column names as the first row? #Descriptions of the 3 variables we will use in this demonstration are provided below #################################################### #WEARGLSS_A #Wear glasses/contact lenses #1 Yes #2 No #7 Refused #8 Not Ascertained #9 Don't Know #VISIONDF_A #Do you have difficulty seeing, even when wearing glasses or contact lenses? #1 No difficulty #2 Some difficulty #3 A lot of difficulty #4 Cannot do at all #7 Refused #8 Not Ascertained #9 Don't Know #HEARAID_A #Use hearing aid #1 Yes #2 No #7 Refused #8 Not Ascertained #9 Don't Know #HEARINGDF_A #Do you have difficulty hearing even when using your hearing aid(s)? #1 No difficulty #2 Some difficulty #3 A lot of difficulty #4 Cannot do at all #7 Refused #8 Not Ascertained #9 Don't Know #First, we subset our 4 variables of interest df2 <- df[,c("WEARGLSS_A", "VISIONDF_A", "HEARAID_A", "HEARINGDF_A")] #################################################### #1. table(), describe(), and count() #################################################### #Here we will examine three basic functions for exploring your data ######################################################### #table() #table() can be used to create a frequency distribution of a single column #this may be familiar, as we have used table() in earlier modules as well #be sure to use the "exclude=NULL" operator to include missing values in the frequency distribution table(df2$WEARGLSS_A, exclude=NULL) table(df2$VISIONDF_A, exclude=NULL) table(df2$HEARAID_A, exclude=NULL) table(df2$HEARINGDF_A, exclude=NULL) #we can also save the output of table as a data.frame for later use #column 1 of the table will list values, column 2 lists frequencies WEARGLSS_A_Table<-data.frame(table(df2$WEARGLSS_A, exclude=NULL)) #referring to the coding scheme above, we see that these variables include missing values under the codes 7,8, and 9 #we set these to NA and then check the frequency distributions again df2$WEARGLSS_A[df2$WEARGLSS_A>=7] <- NA df2$VISIONDF_A[df2$VISIONDF_A>=7] <- NA df2$HEARAID_A[df2$HEARAID_A>=7] <- NA df2$HEARINGDF_A[df2$HEARINGDF_A>=7] <- NA #Note that the missing codes are now grouped under NA table(df2$WEARGLSS_A, exclude=NULL) table(df2$VISIONDF_A, exclude=NULL) table(df2$HEARAID_A, exclude=NULL) table(df2$HEARINGDF_A, exclude=NULL) #we can use table() with two variables to generate a crosstab or crosstabulation of two variables #crosstabs are useful for examining the overlap between the categories of two variables #significance tests of the differences between the number of people in each cell will be discussed in a later module #values of WEARGLSS_A are positioned on the y axis of the table #values of VISIONDF_A are positioned on the x axis of the table #the number of subjects overlapping under each combination of categories is shown in the body of the table table(df2$WEARGLSS_A, df2$VISIONDF_A, exclude=NULL) #for example 17450 subjects wear glasses (WEARGLSS_A==1) and do not have difficulty seeing with glasses (VISIONDF_A==1) #values of HEARAID_A are positioned on the y axis of the table #values of HEARINGDF_A are positioned on the x axis of the table #the number of subjects overlapping under each combination of categories is shown in the body of the table table(df2$HEARAID_A, df2$HEARINGDF_A, exclude=NULL) #for example 734 subjects use a hearing aid (HEARAID_A==1) and do not have hearing with a hearing aid (HEARINGDF_A==1) #Sometimes it is useful to save the frequencies from table() for the purposes of creating a plot #If a table() object is saved as a data.frame, it will display values of the variable in one column and the associated frequencies in another WEARGLSS_A_Table<-data.frame(table(df2$WEARGLSS_A, exclude=NULL)) WEARGLSS_A_Table#the values of WEARGLSS_A are in column 1, the associated frequencies are in column 2 #Frequencies associated with combinations of values can also be saved in this format by creating a data.frame from crosstabs WEARGLSS_A_by_WEARGLSS_A_Table<-data.frame(table(df2$WEARGLSS_A, df2$VISIONDF_A, exclude=NULL)) WEARGLSS_A_by_WEARGLSS_A_Table#Values of WEARGLSS_A are in column 1, values of VISIONDF_A are in column 2, the associated frequencies are in column 3 ######################################################### #count() #count() from the plyr package produces similar output as data.frame(table()) #however, count() is written to be more efficient that table() in some cases #it is recommended to use this format if constructing tables to display conditional overlap between many variables #remove the hashtag and run the line below only once #install.packages("plyr", dependencies = TRUE)#install plyr and the packages that it depends on library(plyr)#load plyr WEARGLSS_A_by_WEARGLSS_A_Table2<-count(df2, #where the variables are stored vars=c("WEARGLSS_A", "VISIONDF_A")#the variables to pull from df2 )#close the command #count() also produces output that is labeled better than data.frame(table()) and excludes combinations where the frequency is 0 #see below WEARGLSS_A_by_WEARGLSS_A_Table WEARGLSS_A_by_WEARGLSS_A_Table2 #this procedure also works for tables of a single variable WEARGLSS_A_Table2<-count(df2, vars=c("WEARGLSS_A")) WEARGLSS_A_Table2 #we will return to these tables later when generating data visualizations #for now, we will keep the output of count() and delete the output of data.frame(table()) rm(WEARGLSS_A_by_WEARGLSS_A_Table) rm(WEARGLSS_A_Table) ######################################################### #install.packages("psych", dependencies = TRUE)#install psych and the packages that it depends on library(psych)#load psych #describe() #describe() from the psych package can be used to calculate descriptive statistics for many variables at once #describe() will generate descriptive statistics for any variable, it is recommended to be cautious to use this function for numeric, rather than categorical, variables #by default, describe will output mean, sd, median, trimmed mean, median absolute deviation from the median, minimum, maximum, skew, kurtosis, and standard error describe(df2)#generate descriptives for the variables in df2 #note that WEARGLSS_A and HEARAID_A are binary and should be excluded from calculation of descriptive statistics #VISIONDF_A and HEARINGDF_A are ordinal, but for the purposes of this demonstration we will treat them as continuous variables DescriptivesTable<-describe(df2[,c("VISIONDF_A", "HEARINGDF_A")]) DescriptivesTable#describe() automatically generates output in data.frame form #columns from the descriptives table can be extracted using the brackets operator DescriptivesTable<-DescriptivesTable[,c("n", "mean", "sd")] DescriptivesTable #################################################### #2. sjPlot and stargazer packages for creating and exporting tables and plots #################################################### #sjPlot is a convenient package for creating nicely formatted tables and plots #sjPlot relies on ggplot2 to perform its functions, and so we will install that here as well #sjPlot functions are designed with very specific kinds of tables or plots in mind #there is limited flexibility with this workflow, but the functions are more user-friendly than some alternatives #remove the hashtag and run this only once #install.packages(c("sjPlot", "ggplot2"), dependencies = T) # library(sjPlot) library(ggplot2) ######################################################### #tab_stackfrq() can be used to generate frequency tables for multiple variables that have the same response options #frequency table for variables with the same response options APA_freqTable<-tab_stackfrq(df2[,c("VISIONDF_A", "HEARINGDF_A")], #identify the variables to be tabelled var.labels = c("Vision Difficulty", "Hearing Difficulty"), #provide labels for the tables value.labels = c("No difficulty","Some difficulty","A lot of difficulty","Cannot do at all"), #provide labels for the values of the variables show.n=TRUE)#show N, in addition to percentage APA_freqTable#the table is shown in the "Viewer" window in the bottom right corner #if we add the "file=" argument, we can export the table out of R as an html file #the file can be opened with a word processor like Word APA_freqTable<-tab_stackfrq(df2[,c("VISIONDF_A", "HEARINGDF_A")], #identify the variables to be tabelled var.labels = c("Vision Difficulty", "Hearing Difficulty"), #provide labels for the tables value.labels = c("No difficulty","Some difficulty","A lot of difficulty","Cannot do at all"), #provide labels for the values of the variables show.n=TRUE,#show N, in addition to percentage file="APA_freqTable.doc")#a file name for the exported table object, to be opened with a word processor like Word ######################################################### #sjPlot is also a convenient package for creating data visualizations #there are many functions to quickly generate plots #plot_frq() can be used to produce bar charts #sjPlot uses the package ggplot2 to create visualizations, which we will discuss further in the next section #generate a histogram of HEARINGDF_A BarPlot<-plot_frq(df2$HEARINGDF_A, title="Hearing Difficulty", #the title of the plot type="bar", #the type of plot. other options include "bar", "dot", "histogram", "line", "density", "boxplot", "violin" axis.title = "Category",#the axis title axis.labels = c("No difficulty","Some difficulty","A lot of difficulty","Cannot do at all"))#the labels of the values of HEARINGDF BarPlot#entering the plot object into the console will display it in the Plots tab in the lower right corner #the bar plot can be exported by calling a graphics function #TIFF files are lossless, meaning that they do not compress the image but maintain the highest image quality. This results in the larger file size. #Journals will often request TIFF files. PNG and JPG are other options that will result in smaller file size, but lower image quality. tiff("BarPlot1.tiff", width = 2250, height = 2550, units = 'px', res = 300)# TIFF image device is initialized for export to the current working directory. The width, height, units, and res argument can be adjusted to produce plots of varying size and resolution. These specifications match the journal Drug and Alcohol Dependence, but other journals may require other specifications. BarPlot #Once the image device is initialized, printing the plot with send the plot to the image device. dev.off()#close out the device with the dev.off() function. #tab_stackfrq() and plot_frq() are just two examples of sjPlot functions #often, there will be a function designed to match the table or plot you are looking for #more information about these functions and the sjPlot package as a whole can be obtained using the following commands ?sjPlot ?plot_frq ?tab_stackfrq ?plot_model() ######################################################### #stargazer #stargazer is a more flexible package for producing tables #any data.frame object can be converted into an APA format table using stargazer #remove the hashtag and run this only once #install.packages("stargazer", dependencies=TRUE) # library(stargazer) stargazer(DescriptivesTable, #the object to create a table from type="html", #html format to export into a Word document summary=FALSE, #export the data.frame as-is. There are a variety of summary functions that can also be performed instead out="DescriptivesTable.doc")#the output file #open DescriptivesTable.doc in your working directory to see the table #################################################### #3. Introduction to ggplot2 for visualizing data #################################################### #sjPlot generates plots by calling the package ggplot2 #using ggplot2 directly allows for more flexibility in plot generation #ggplot uses the following general structure to form commands #ggplot(DATA, aes(AESTHETICS)) + GEOMETRY_FUNCTION() #DATA is the data to plot. ggplot2 generally works better with summaries of your data than the raw data itself #AESTHETICS are used to map the x axis, y axis, and legend of your plot #GEOMETRY_FUCTION determines the kind of plot that ggplot will generate. There are different geometry functions for different plots ######################################################### #first, we will generate a bar plot that is similar to the one we generated with sjPlot #first, create a summary of your data to use as input HEARINGDF_A_Frequencies<-count(df2$HEARINGDF_A) HEARINGDF_A_Frequencies #if you want to include the missing values, this value must be changed from NA or ggplot will remove the row HEARINGDF_A_Frequencies[5,1] <- "Missing" #Change row 5 column 1 from NA to "Missing" HEARINGDF_A_Frequencies ######################################################### #A basic bar plot ggplot(HEARINGDF_A_Frequencies, #the data to plot aes(x=x, y=freq))+ #plot column "x" on the x axis and column "freq" on the y axis geom_bar(stat="identity") #use a bar plot and plot the data without transformation or aggregation #raw data can be supplied to ggplot2 if stat="identity" is changed to stat="bin" and the argument for the y axis in aes() is removed #most ggplot2 functions work easier with summary data though, so for the sake of illustration all plots will be generated from summaries ######################################################### #adding labels and colors to the bar plot #this defines a new object "apatheme" that contains a series of options to generate a plot in APA format #run these commands and add this to any plot #from https://stackoverflow.com/questions/60591014/r-add-tweaks-to-interaction-plot-with-ggplot apatheme<-theme_bw()+ theme(panel.grid.major=element_blank(), panel.grid.minor=element_blank(), panel.border=element_blank(), axis.line=element_line(), text=element_text(family='Times'), legend.title=element_blank()) #ggplot2 indexes colors with numeric codes #below is a sequence of color codes that are colorblind friendly, recommended for use in publications #http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/#a-colorblind-friendly-palette cbPalette <- c("#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7","#E69F00", "#999999") #to plot labels instead of numeric codes on the x axis, we edit the data that we are plotting #first, convert numeric values to text labels HEARINGDF_A_Frequencies[1, "x"] <- "No difficulty" #row 1, column x HEARINGDF_A_Frequencies[2, "x"] <- "Some difficulty" #row 2, column x HEARINGDF_A_Frequencies[3, "x"] <- "A lot of difficulty" #row 3, #column x HEARINGDF_A_Frequencies[4, "x"] <- "Cannot do at all" #row 4, column x #next, convert the x column to a factor. #By default, ggplot2 would reorder the bars in the plot by alphabetical order if it were a character vector. #To keep an order that aligns with the labels numeric value, specify the levels of the factor in the desired order HEARINGDF_A_Frequencies$x<-factor(HEARINGDF_A_Frequencies$x, levels=c("No difficulty","Some difficulty","A lot of difficulty","Cannot do at all", "Missing")) #other options can be defined in the call to ggplot() BarPlot2<-ggplot(HEARINGDF_A_Frequencies, #the data to plot aes(x=x, y=freq, fill=x))+ #plot column "x" on the x axis and column "freq" on the y axis, fill color of bars by levels of x geom_bar(stat="identity")+#use a bar plot and plot the data without transformation or aggregation ggtitle("Frequency Distribution")+ #main title xlab("Difficulty Hearing")+ #x axis label ylab("Frequency")+#y axis label scale_fill_manual(values=cbPalette)+#use cbPalette to define colors associated with the levels of x apatheme #apatheme options, from above BarPlot2 tiff("BarPlot2.tiff", width = 2250, height = 2550, units = 'px', res = 300)# TIFF image device is initialized for export to the current working directory. The width, height, units, and res argument can be adjusted to produce plots of varying size and resolution. These specifications match the journal Drug and Alcohol Dependence, but other journals may require other specifications. BarPlot2 #Once the image device is initialized, printing the plot with send the plot to the image device. dev.off()#close out the device with the dev.off() function. #a quick guide to many different options in ggplot can be found here #https://rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf #citations for the packages used in this module can be retrieved below citation("plyr") citation("psych") citation("sjPlot") citation("ggplot2") citation("stargazer")
5a04e0f2ad9dbbbad78646220dd240286cd7efb8
b2f61fde194bfcb362b2266da124138efd27d867
/code/dcnf-ankit-optimized/Results/QBFLIB-2018/E1+A1/Database/Biere/Counter/counter_r_2/counter_r_2.R
896d630ebae53be24e9f8581ec11f61ca07bee5f
[]
no_license
arey0pushpa/dcnf-autarky
e95fddba85c035e8b229f5fe9ac540b692a4d5c0
a6c9a52236af11d7f7e165a4b25b32c538da1c98
refs/heads/master
2021-06-09T00:56:32.937250
2021-02-19T15:15:23
2021-02-19T15:15:23
136,440,042
0
0
null
null
null
null
UTF-8
R
false
false
59
r
counter_r_2.R
985b9ea304afe4abc21bc75835226c81 counter_r_2.qdimacs 50 121
8607016166762af87859ac357ced6ecc2d3e59a5
1de64141140b62134beffb82aa9602baeea0e35e
/presentations_reveal/muses_material_survey/rust_survey/assets/likert.R
a0fcb31677a47886a01783a07f3d66a3684238ca
[ "MIT" ]
permissive
bgaster/bgaster.github.io
ea9f5d0333714a798e902d0d4c4b4b935f69c72a
bb6376df51c431b9ee813f1df9970058231ce6e6
refs/heads/master
2022-12-10T02:45:54.980203
2021-03-03T09:48:54
2021-03-03T09:48:54
194,642,249
0
0
null
2022-12-07T21:53:57
2019-07-01T09:28:33
JavaScript
UTF-8
R
false
false
3,807
r
likert.R
# Exaxmple visualization script for Muses Material Survey Likert data # The actual graphs we want to produce will vary, depending on what we want to show # for a given presentation of the data. # # Benedict R. Gaster library(ggplot2) library(dplyr) library(sqldf) library(ggpubr) # Load Likert CSV files, appending all to a single table likert_files = list.files("/Users/br-gaster/dev/bgaster.github.io/muses_material_survey/rust_survey/assets/data/likert/", pattern="*.csv") survey <- do.call(rbind,lapply( likert_files, function(f) { read.csv( paste("/Users/br-gaster/dev/bgaster.github.io/muses_material_survey/rust_survey/assets/data/likert",f, sep="/"), sep = ",", row.names=NULL) })) # Select the fields we care about for resulting plot survey <- survey[,c("Category", "Gesture", "Material","Feeling","Answer")] colnames(survey) <- c("category", "gesture", "material", "feeling", "answer") # define the colors on the Likert scale, using the Muses color palatte myColors <- c("#605fa4","#d989bc","#f5e5c1","#f3b73b","#dd4921","black") # TAP gesture plot tap_agg_table <- sqldf::sqldf( paste("select gesture, material, category, feeling, SUM(answer) as total from survey", "where material=1 and gesture='Tap'", "group by material, feeling, category", sep = " ")) tap_summarized_table <- tap_agg_table %>% group_by(material) %>% mutate(countT= sum(total)) %>% group_by(category, add=TRUE) %>% mutate(per=round(100*total/countT,2)) tap_summarized_table$category <- relevel(tap_summarized_table$category,"Strongly Disagree") tap_summarized_table$category <- relevel(tap_summarized_table$category,"Disagree") tap_summarized_table$category <- relevel(tap_summarized_table$category,"Neutral") tap_summarized_table$category <- relevel(tap_summarized_table$category,"Agree") tap_summarized_table$category <- relevel(tap_summarized_table$category,"Strongly Agree") # Press gesture plot tap_2_agg_table <- sqldf::sqldf( paste("select gesture, material, category, feeling, SUM(answer) as total from survey", "where material=2 and gesture='Tap'", "group by material, feeling, category", sep = " ")) tap_2_summarized_table <- tap_2_agg_table %>% group_by(material) %>% mutate(countT= sum(total)) %>% group_by(category, add=TRUE) %>% mutate(per=round(100*total/countT,2)) tap_2_summarized_table$category <- relevel(tap_2_summarized_table$category,"Strongly Disagree") tap_2_summarized_table$category <- relevel(tap_2_summarized_table$category,"Disagree") tap_2_summarized_table$category <- relevel(tap_2_summarized_table$category,"Neutral") tap_2_summarized_table$category <- relevel(tap_2_summarized_table$category,"Agree") tap_2_summarized_table$category <- relevel(tap_2_summarized_table$category,"Strongly Agree") #actual plot creation tap_1_plot <- ggplot(data = tap_summarized_table, aes(x =feeling , y = per, fill = category)) +geom_bar(stat="identity", width = 0.7) +scale_fill_manual (values=myColors) +coord_flip() + ylab("") + xlab("") +theme(axis.text=element_text(size=12),axis.title=element_text(size=14,face="bold")) +ggtitle("Tap Gesture") +theme(plot.title = element_text(size = 20, face = "bold",hjust = 0.5)) tap_2_plot <- ggplot(data = tap_2_summarized_table, aes(x =feeling , y = per, fill = category)) +geom_bar(stat="identity", width = 0.7) +scale_fill_manual (values=myColors) +coord_flip() + ylab("Percentage") + xlab("") +theme(axis.text=element_text(size=12),axis.title=element_text(size=14,face="bold")) +ggtitle("") +theme(plot.title = element_text(size = 20, face = "bold",hjust = 0.5)) ggarrange(tap_1_plot, tap_2_plot, labels = c("Material 1", "Material 2"), ncol = 1, nrow = 2) # save plot to PDF ggsave(file = "survey_likert_output.pdf")
2aeea9b269fe447927e97d63bbf0af1c34a0532b
bc504192da5aa37ccf2c40464942c3d5c56193d7
/HW4s2020.R
7b86833d257d64ddada4aec3c611c9d03ca147a3
[]
no_license
danniecuiuc/frm
6125daab1ddb6ceb7f50b6f1a9f99437238102ce
12d632bad3283188378ee3f4623bc3b2382165c6
refs/heads/master
2022-10-19T13:55:07.987734
2020-06-08T14:58:32
2020-06-08T14:58:32
269,361,255
0
0
null
null
null
null
UTF-8
R
false
false
4,323
r
HW4s2020.R
# Solution to Fin 567 Homework 4 spring 2020 Questions 1 and 2 # Does not include solution to Question 3 because that does not require R # library(fOptions) #needed to compute option values library(MASS) #needed to simulate multivariate Normal rvs library(mvtnorm) #needed to simulate multivariate t rvs # Question 1 Monte Carlo VaR and ES using the Normal distribution # We will first need to use the binomial model to compute the value of the portfolio ABCcall0 <- CRRBinomialTreeOption(TypeFlag = "ca", S=101.17, X=100, Time = 21/252, r=0.01, b=0.01, sigma=0.45, n=21, title = NULL, description = NULL)@price ABCput0 <- CRRBinomialTreeOption(TypeFlag = "pa", S=101.17, X=100, Time = 21/252, r=0.01, b=0.01, sigma=0.45, n=21, title = NULL, description = NULL)@price DEFcall0 <- CRRBinomialTreeOption(TypeFlag = "ca", S=148.97, X=150, Time = 21/252, r=0.01, b=0.01, sigma=0.37, n=21, title = NULL, description = NULL)@price DEFput0 <- CRRBinomialTreeOption(TypeFlag = "pa", S=148.97, X=150, Time = 21/252, r=0.01, b=0.01, sigma=0.37, n=21, title = NULL, description = NULL)@price V0 <- -60*100*ABCcall0-60*100*ABCput0 - 40*100*DEFcall0 - 40*100*DEFput0 # (a) Compute the 5% MC VaR set.seed(137) mu = c(0.0005, 0.0004) cov <- matrix(c(0.028^2,0.028*0.023*0.4,0.028*0.023*0.4,0.023^2), nrow=2, ncol=2) n = 10000 returns = mvrnorm(n, mu = mu, Sigma = cov) S <- matrix(rep(0,2*n), nrow= n, ncol = 2) S[1:n,1]= 101.17*exp(returns[1:n,1]) S[1:n,2]= 148.97*exp(returns[1:n,2]) ABCcall=rep(0,n) ABCput=rep(0,n) DEFcall=rep(0,n) DEFput=rep(0,n) V <- rep(0,n) # in the loop below, note that the remaining time to expiration is 20 days for(i in 1:n){ ABCcall[i] <- CRRBinomialTreeOption(TypeFlag = "ca", S=S[i,1], X=100, Time = 20/252, r=0.01, b=0.01, sigma=0.45, n=20, title = NULL, description = NULL)@price ABCput[i] <- CRRBinomialTreeOption(TypeFlag = "pa", S=S[i,1], X=100, Time = 20/252, r=0.01, b=0.01, sigma=0.45, n=20, title = NULL, description = NULL)@price DEFcall[i] <- CRRBinomialTreeOption(TypeFlag = "ca", S=S[i,2], X=150, Time = 20/252, r=0.01, b=0.01, sigma=0.37, n=20, title = NULL, description = NULL)@price DEFput[i] <- CRRBinomialTreeOption(TypeFlag = "pa", S=S[i,2], X=150, Time = 20/252, r=0.01, b=0.01, sigma=0.37, n=20, title = NULL, description = NULL)@price } V <- -60*100*ABCcall-60*100*ABCput - 40*100*DEFcall - 40*100*DEFput PLQ1 = V - V0 MCVaRQ1 <- - quantile(PLQ1, 0.05) # (b) Compute the expected shortfall ESQ1 = -mean(PLQ1[PLQ1<=(-MCVaRQ1)]) #Question 2 # Monte Carlo VaR and expected shortfall using bivariate t distribution # (a) Compute the 5% MC VaR mu = c(0.0005, 0.0004) cov <- matrix(c(0.028^2,0.028*0.023*0.4,0.028*0.023*0.4,0.023^2), nrow=2, ncol=2) nu = 4 scale = ((nu-2)/nu)*cov #scale matrix input to mvrt() is smaller than cov matrix n = 10000 returns = rmvt(n, sigma = scale, df = nu, delta = mu) # parameter sigma is the scale matrix S <- matrix(rep(0,2*n), nrow= n, ncol = 2) S[1:n,1]= 101.17*exp(returns[1:n,1]) S[1:n,2]= 148.97*exp(returns[1:n,2]) ABCcall=rep(0,n) ABCput=rep(0,n) DEFcall=rep(0,n) DEFput=rep(0,n) V <- rep(0,n) for(i in 1:n){ ABCcall[i] <- CRRBinomialTreeOption(TypeFlag = "ca", S=S[i,1], X=100, Time = 20/252, r=0.01, b=0.01, sigma=0.45, n=20, title = NULL, description = NULL)@price ABCput[i] <- CRRBinomialTreeOption(TypeFlag = "pa", S=S[i,1], X=100, Time = 20/252, r=0.01, b=0.01, sigma=0.45, n=20, title = NULL, description = NULL)@price DEFcall[i] <- CRRBinomialTreeOption(TypeFlag = "ca", S=S[i,2], X=150, Time = 20/252, r=0.01, b=0.01, sigma=0.37, n=20, title = NULL, description = NULL)@price DEFput[i] <- CRRBinomialTreeOption(TypeFlag = "pa", S=S[i,2], X=150, Time = 20/252, r=0.01, b=0.01, sigma=0.37, n=20, title = NULL, description = NULL)@price } V <- -60*100*ABCcall-60*100*ABCput - 40*100*DEFcall - 40*100*DEFput PLQ2 = V - V0 MCVaRQ2 <- - quantile(PLQ2, 0.05) # (b) Compute the expected shortfall ESQ2 = -mean(PLQ2[PLQ2<=(-MCVaRQ2)])
6d06454bdeeea8a52c50f80db830861da4df3134
249afaa1ffe3d3b27906548ee468c95718276591
/R/BioGeoBias_bias_correction.R
56a6da01cdb79c58baa633ba0c5fec500918189a
[ "MIT" ]
permissive
JanLauGe/BioGeoBias
01c6409d8ff3b4d3b1d12398e3debf05856ff775
e07b2ddd54b4c1a24766d4d82bfb8379d6503fcf
refs/heads/master
2021-01-11T17:02:50.097840
2018-10-20T21:30:01
2018-10-20T21:30:01
69,507,338
6
0
null
null
null
null
UTF-8
R
false
false
6,114
r
BioGeoBias_bias_correction.R
#' @title Bias Correction #' @description Choose bias correction approach and generate bias correction data #' @param species_name (character) a valid taxon name, presumably a species name. #' @param target_rank (character) a taxon rank for the target group (optional). #' @param kingdom (character) the kingdom of the species. Can be supplied to #' avoid possible confusion when matching names. Should be one of c('animalia', #' 'plantae','archaea','bacteria','fungi','protozoa','viruses') (optional). #' @param lonMin minimum longitude of a rectancular bounding box restricting the #' search for species occurrences of the target group (optional). #' @param lonMax maximum longitude of a rectancular bounding box restricting the #' search for species occurrences of the target group (optional). #' @param latMin minimum latitude of a rectancular bounding box restricting the #' search for species occurrences of the target group (optional). #' @param latMax maximum latitude of a rectancular bounding box restricting the #' search for species occurrences of the target group (optional). #' @author Jan Laurens Geffert, \email{laurensgeffert@@gmail.com} #' @details This function takes a species name and a rank, and returns a #' dataset suitable for bias correction by invoking #' \code{create_target_group_background_data} or #' \code{create_bias_grid}, depending on the number of species occurrence #' records available for the species and the spatial extent of the selection. #' @keywords GBIF, sampling bias, SDM #' @export bias_correction <- function( species_name, target_rank = rgbif::taxrank(), kingdom = c(NULL, 'animalia', 'plantae', 'archaea', 'bacteria', 'fungi', 'protozoa', 'viruses'), lonMin = NULL, lonMax = NULL, latMin = NULL, latMax = NULL, breaks = NULL, nbreaks = NULL, limit = 200000){ # check valid variable values for the function if(length(target_rank) > 1){ # If no target rank is given, use class as default message('\nNo valid target rank supplied, using "class"...\n') target_rank <- 'class' } if(class(target_rank) != 'character'){ # If invalid target rank is given, stop with error stop('value supplied to argument "target_rank" is not a character. Try rgbif::taxrank() to get a summary of valid inputs for this argument') } target_rank = match.arg(target_rank) if(class(species_name) != 'character'){ stop('value supplied to argument "species_name" is not a character. This should be the latin binomial of the species you want to model') } if(!is.null(kingdom)){ kingdom = match.arg(kingdom) } for(v in c(lonMin, lonMax, latMin, latMax)){ if(!is.numeric(v) & !is.integer(v) & !is.null(v)){ stop('values supplied to arguments lonMin, lonMax, latMin, latMax are not numeric. These should be numerical values giving the minimum and maximum longitute and latitude for the extent of the occurrence search.') } } # If min & max coordinates are supplied, use spatial filter latFilter <- ifelse(!is.null(latMin) & !is.null(latMax), TRUE, FALSE) lonFilter <- ifelse(!is.null(lonMin) & !is.null(lonMax), TRUE, FALSE) # GBIF name query -------------------------------------------------------------- # Get name key of the target group from gbif backbone taxonomy. # kingdom is used if supplied, but ignored otherwise message('\nChecking GBFI for target group taxon key...\n') NameData <- name_backbone( name = species_name, kingdom = kingdom) # Check if name_backbone returned a valid result if(NameData$matchType == 'NONE') stop('No valid taxon key for the target species. Are you sure you provied a valid latin binomial name?') # Check if name_backbone name matching confidence is 95% else if(NameData$confidence < 95){ warning('Name matching confidence was less than 95%. Please make sure that the matched taxon is the one you want.') message(paste0( 'Name matched with ', NameData$confidence, ' confidence \n' ))} # Check if name_backbone returned a valid taxon key for target group if(is.null(NameData[paste0(target_rank ,'Key')][[1]])){ stop('No valid taxon key for the target group. Perhaps you should try a different rank?') } # Get the taxon key of the target group Key <- NameData[paste0(target_rank ,'Key')] # Print information about the matched species message(paste0( 'Name matched to:\n ', NameData$scientificName, ', Taxon key: ', NameData$usageKey)) # Print information about the matched target group message(paste0( 'Target group selected:\n ', target_rank, ' ', NameData[target_rank], ', Taxon key: ', Key), '\n') # Get the number of occurrences in the target group Count <- occ_count( taxonKey = Key, georeferenced = TRUE) ifelse(Count > 200000, useMap <- TRUE, useMap <- FALSE) if(useMap == FALSE){ # Use target group background ============================================== message('Less than 200,000 records, using primary species occurrence data...\nIf you prefer to get a bias grid from the GBIF map API, use the function create_bias_grid.\n') out <- occ_search( taxonKey = Key, return = 'data', limit = limit, decimalLatitude = ifelse( latFilter, paste(latMin,latMax,sep=','), paste('-90','90',sep=',')), decimalLongitude = ifelse( lonFilter, paste(lonMin,lonMax,sep=','), paste('-180','180',sep=',')), hasCoordinate = TRUE, hasGeospatialIssue = FALSE) }else if(useMap == TRUE){ # Use map api ============================================================== message('\nMore than 200,000 records, using map API for aggregated data...\nIf you prefer to use occurrence records, use function create_target_group_background_data.\n') out <- create_bias_grid( taxonkey = as.numeric(Key), lonMin = NULL, lonMax = NULL, latMin = NULL, latMax = NULL, nbreaks = nbreaks, breaks = breaks) } return(out) }
e18dd8452366516366e10d5f0d6af4115f731dc8
a0f93433c57753c4dab79805c57b3cb0031b8304
/man/plot_rand_KLD.Rd
d36bb388818c05bbbf6602e3aa4e2168c3bee970
[ "MIT" ]
permissive
alexisvdb/singleCellHaystack
9dcc59288d3ba2c34bdfc906d45317d6d885f25d
c705b95cd2bf01575df938574864c54ba78714d3
refs/heads/master
2023-08-16T02:58:48.850113
2023-08-05T14:05:46
2023-08-05T14:05:46
170,470,927
71
8
NOASSERTION
2022-10-21T07:09:12
2019-02-13T08:35:23
R
UTF-8
R
false
true
742
rd
plot_rand_KLD.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/debug.R \name{plot_rand_KLD} \alias{plot_rand_KLD} \title{plot_rand_KLD} \usage{ plot_rand_KLD(x, n = 12, log = TRUE, tail = FALSE) } \arguments{ \item{x}{haystack result.} \item{n}{number of genes from randomization set to plot.} \item{log}{whether to use log of KLD.} \item{tail}{whether the genes are chosen from the tail of randomized genes.} } \description{ Plots the distribution of randomized KLD for each of the genes, together with the mean and standard deviation, the 0.95 quantile and the 0.95 quantile from a normal distribution with mean and standard deviations from the distribution of KLDs. The logCV is indicated in the subtitle of each plot. }
3a783bf040292bf4517f97c09ac54a69ac0bfc1e
f02a605c4f0aa4f79723639a60cdae6556d2aa80
/lecciones/fundamentos.R
09cca2f022ff97a1e9bdea690189c83a2eae6eb8
[]
no_license
manununhez/datascience-course
4c7c086d1190a3c4265b4ff731621ff49216ae98
b45d0ad6a3ee4b1593a697686dfcc2a53ccdc579
refs/heads/master
2021-05-08T02:45:24.374062
2018-02-01T02:35:46
2018-02-01T02:35:46
108,132,058
0
0
null
2017-10-24T13:39:09
2017-10-24T13:39:09
null
UTF-8
R
false
false
12,260
r
fundamentos.R
v = c() #creamos vector nu = c(0.5, 0.6) #vector l1 = c(FALSE, FALSE, TRUE) l2 = c(T, F) ch = c('a') it = 9:29 co = c(1+0i,2+4i) v = vector('numeric', length = 10) #otra forma para crear vectores. Vector de 10 columnas llenas de cero (1x10) v[1] = 5 v #auto-impresion print (v) #impresion explicita y = c(1.7, 'a') #character y #tanto 1.7 y a son caracteres -> "1.7" y "a". Siempre debe tener el mismo tipo, entonces R convierte a caracteres y = c(FALSE, 2) #numeric y #convirtio a numerico. 1, 2. Son numericos, no tienen comillas. FALSE = 0, TRUE = 1 y = c('a', TRUE)#convierte el logico a caracter. R no sabe a que valor corresponde 'a'. y #### #coecion o conversion explicita ##### x = 0:6 class(x) #con class averiguamos la clase de un objeto x = as.numeric(x) x = as.character(x) x = as.logical(x) # todo lo mayor a cero, es TRUE. FALSE = 0 #matrices m = matrix(1:6 , nrow = 2, ncol = 3) #la matriz en R se crea por COLUMNAS!!! m[1,] m[,2] x = 1:3 y = 10:12 z = cbind(x,y) #se acopla por columna z = rbind(x,y) #se acopla por fila #listas x = list(1,"a", TRUE, 1 + 4i) #crea un array de arrays(de una dimension), donde cada subarray tiene el elemento de tipos distintos x[1] #accedemos al primer vector x[[1]]#accedemos al primer elemento del primer vector #factor x = factor(c('yes','yes','no','yes','no')) table(x) #cuantas ocurrencias de cada categoria x = factor(c('yes','yes','no','yes','no'), levels = c('yes','no')) #variable ordinal (con orden) x = c(1,2,NA,10,3) is.na(x) x = factor(x) #Data Frame #No es lo mismo que matriz, porque puede tener valores de distintos tipos. La matriz tiene todo de un solo tipo. Nombre de las columnas y registros, solo data frame #TABLAS x = data.frame(c1=c(1:5), c2=c(T, T, F, F, T), c3=c('a','b','c','d','e')) nrow(x) #numero de filas del dataframe ncol(x) #numero de columnas names(x) #nombre de las columnas del data frame #IF x = 2 y = 0 if(x > 3){ y = 10 }else{ y = 50 } if(x == 2){ print('Este valor es 2') } #for x = data.frame(c1 = 4:6, c2 = 18:20) for(i in seq_len(nrow(x))){ #imprimimos todos los elementos del data frame (por fila) print(x[i,'c1']) #imprimos el valor de la primera columna (nombre) print(x[i,2]) #imprimimos el valor de la segunda columna (numero) } for(i in seq_len(ncol(x))){ #imprimimos todos los elementos del data frame (por columna) print(x[1, i]) #imprimos el valor de la primera fila (nombre) print(x[2,i]) #imprimimos el valor de la segunda fila (numero) } ########11-21-17 #apply x = data.frame(c1 = 1:3, c2 = 10:12); x apply(x, 2, median) # apply(<objeto>, <fila (1) o columna (2)>, <funcion>) #funciones con apply mult = function(x, c) { return (x*c) } apply(x, 2, mult, 5) # apply(<objeto>, <fila (1) o columna (2)>, <funcion>, <parametro>) area_circulo = function(r) { return (3.14*r^2) } area_circulo = function(r,p) { return (p*r^2) } sapply(x[,'c1'], area_circulo) #solo los elementos de la primera columna #Files management data = read.csv(file = '../proyecto/data/becal-cobertura.csv', header = T, stringsAsFactors = F) write.csv(x, 'leccion4.csv', row.names=F) #Graphics library(datasets) #datasets in R autos = mtcars hist(autos$mpg, col='green', main='Distribuci?n de las millas por gal?n', + xlab='Millas x gal?n', ylab='Frecuencia') #en este ejemplo, la distribucion no es normal, es decir, los autos en este dataset consumen relativamente poco combustible boxplot(autos$hp, col='red', main='Distribuci?n de caballos de fuerza', ylab='Caballos de fuerza') #si la barra dentro del rectangulo rojo esta en el medio, la distribucion es normal. En este ejemplo no es normal. barplot(table(autos$am), col='green', xlab='Tipo de transmisi?n', main='Nro. de veh?culos por tipo de transmisi?n') #table(autos$am) cuenta la frecuencia de los tipos automaticos o no. plot(presidents$start, ylab = 'Porcentage de aprobaci?n (%)', xlab='A?o', main = 'Aprobaci?n (1er cuatrimestre) Presidentes de EEUU') plot(autos$mpg, autos$wt, col='blue', xlab='Millas por gal?n', ylab='Peso (libras)', main='Relaci?n entre peso del veh?culo y millas recorridas por gal?n') #los vehiculos mas pesados, consumen mas combustible #Particion x = data.frame('var1'=sample(1:3),'var2'=sample(6:8),'var3'=sample(11:13)) #sample toma los valores dentro del rango definido, pero no utiliza siempre el mismo orden #select data frame: (specific value, range, vector, logic expresions) x[x$var1 < 5 & x$var2 > 10,] #and x[x$var1 < 5 | x$var2 > 10,] #or x[x$apellido == 'gonzalez',] #equal #ordenamiento sort(x$var1) #ascendente sort(x$var2, decreasing = T) #descendente #BECAL becal = read.csv(file = '../proyecto/data/becal2017.csv', header = T, stringsAsFactors = F, fileEncoding = "utf-8") becal_c = read.csv(file = '../proyecto/data/becal-cobertura.csv', header = T, stringsAsFactors = F, fileEncoding = "utf-8", strip.white = TRUE) becal[1:5,'Sexo'] #seleccionar el sexo de los primeros 5 registros tolower(becal[,'Sexo'])[1:5] #convertir en minuscula los valores de la columna sexo, y solo mostrar como resultado los primeros 5 resultados becal$Sexo = tolower(becal[,'Sexo']) #asignar forma 1 becal[,'Sexo'] = tolower(becal[,'Sexo']) #asignar forma 2 becal[1:2,'Fecha.firma.de.Contrato'] as.character(becal[1:5,'Fecha firma de Contrato']) strsplit(as.character(becal[1:5,'Fecha firma de Contrato']), '/') strsplit(becal[1:2,'Fecha firma de Contrato'],"/") str(becal[1:2,'Fecha firma de Contrato']) becal[1:2,'C.I.'] gsub(',', '', becal[,'C.I.'])[1:2] # eliminar (o remplazar por vacio) las comas del texto c?dula becal$C.I. <- gsub(',', '', becal[,'C.I.']) becal[1:2,'Fecha.firma.de.Contrato'] strsplit(becal[1:2,'Fecha.firma.de.Contrato'], '/') # divir el texto de fecha utilizando la barra como separ becal[1:2,'C.I.'] gsub(',', '', becal[,'C.I.'])[1:2] # eliminar (o remplazar por vacio) las comas del texto c?dula becal_c[c(1,210,843),'Total.General'] grep('???',becal_c[c(1,210,211, 843),'Total.General']) # buscar la presenciar de caracter euro grepl('???',becal_c[c(1,210,843),'Total.General']) # buscar la presenciar de caracter euro library(stringr) becal[1:2,'Condici?n'] str_trim(becal[1:2,'Condici?n']) # eliminar espacios vac?o al inicio y final del texto str_trim(becal_c[c(1,210,843),'Total.General']) # eliminar espacios vac?o al inicio y final del texto # (NO FUNCIONA ACA porQUE STR_TRIM SOLO TE ELIMINA LOS ESPACIoS REDUNDANTES AL COMIENZO Y AL FINAL. SE deberia hacer una expresion regular para quitar los espacios en medio) becal_c[1,'Universidad.de.Destino'] nchar(becal_c[1,'Universidad.de.Destino']) # contar el n?mero de caracteres del texto substr(becal_c[1,'Universidad.de.Destino'],16,20) # extraer parte del texto becal_c[1,c(5,6)] paste0(becal_c[1,5],' (',becal_c[1,6],')') #merge becal$C.I.<- str_trim(gsub(',', '', becal[,'C.I.'])) #quitar comas becal$C.I.<- str_trim(gsub('\\.', '', becal[,'C.I.'])) #quitar puntos becal_c$C.I.<- str_trim(gsub(',', '', becal_c[,'C.I.'])) #quitar comas becal_c$C.I.<- str_trim(gsub('\\.', '', becal_c[,'C.I.'])) #quitar puntos ambos_becal = merge(becal, becal_c, by.x="C.I.", by.y="C.I.", all.y=TRUE) #all.y porque los que estan en bacal2017 no todos recibieron la beca. En becal_cobertura si recibieron las becas. #VERIFICAR -- EL MERGE SOLO TIENE 907 filas x 44 columnas #Dplyr library(dplyr) select(becal, C.I., Sexo, Edad) #Select columns head(select(becal, C.I., Sexo, Edad)) # head sirve para mostrar las primeras n filas del dataframe dataset_filtrado = filter(becal, Sexo=='Femenino') dataset_ordenado = arrange(becal, Edad) dataset_ordenado_desc = arrange(becal, desc(Edad)) head(select(dataset_ordenado, C.I., Sexo, Edad)) #rename becal_renombrado = rename(becal, ci = C.I., sexo = Sexo, edad = Edad) head(select(dataset_ordenado_desc, C.I., Sexo, Edad)) #mutate becal_gs = mutate(becal_c, total_gs=5500*convertir_totalgeneral(Total.General)) head(select(becal_gs, Total.General, total_gs), 5) #5/12/17 analisis exploratorio hist(as.numeric(becal17$edad), main=paste("Distribución de becarios por edad (n=",nrow(becal17),")"), ylab="Frecuencia", xlab="Edad", col = "red") hist(as.numeric(becal17$edad), main=paste("Distribución de becarios por edad (n=",nrow(becal17),")"), ylab="Frecuencia", xlab="Edad", col = "red", xlim = c(20, 40)) summary(as.numeric(becal17$edad)) #min, max, media, mean quantile(as.numeric(becal17$edad)) #para variables numericas quantile(as.numeric(becal17$edad), probs = c(0.40, 0.65, 0.90)) #valores especificos de quantiles quantile(as.numeric(becal17$edad), probs = c(0.40, 0.65, 0.90), na.rm = TRUE) #na.rm elimina NA boxplot(as.numeric(becal17$edad), col='red', main='Distribución de edad de becarios', ylab='Edad') var(becal17$edad) #varianza para variables numericas sd(becal17$edad)#standard deviation para variables numericas table(becal17$sexo) #para variables categoricas barplot(table(becal17$universidaddedestino), main=paste("Becarios por rango de ranking de universidad (n=",nrow(becal17),")"), ylab="Total", xlab="Rango de ranking", col="blue", las = 2) #limpieza del grafico ## becal_limpio = subset(becal17, categoriauni != "sin dato") # elimina los registros "sin dato" dis_categoriauni = table(droplevels(as.factor(becal_limpio$categoriauni))) categoria_ordenadas = sort(dis_categoriauni, decreasing = T) # ordena las categorias de mayor a menor barplot(categoria_ordenadas, main=paste("Becarios por rango de ranking de universidad (n=", nrow(becal_limpio),")"), ylab="Total", xlab="Rango de ranking", col="blue") library(stringi) library(dplyr) library(stringr) source('utils.R') becal17$paisdedestino = limpiar_nombres(becal17$paisdedestino) dis_pais_destino = table(droplevels(as.factor(becal17$paisdedestino))) categoria_ordenadas = sort(dis_pais_destino, decreasing = T) # ordena las categorias de mayor a menor barplot(categoria_ordenadas, main=paste("Becarios por rango de ranking de universidad (n=", nrow(becal17),")"), ylab="Total", xlab="Rango de ranking", col="blue", las = 2) ### Scatter Plots, grafico de puntos - Relaciones entre dos variables numericas!!!! plot(becal_completo$mesesdeduraciondeestudios, becal_completo$totalgralusd, ylab="Costo Total en USD", xlab="Duración Estudio en Meses", main="Meses de Duración por Costo de Estudio") #promedios condicionales - PARA SOLUCIONAR OVERPLOTTING groupo_meses = group_by(becal_completo, mesesdeduraciondeestudios) total_x_gm = summarize(groupo_meses, total_mean = mean(totalgralusd)) plot(total_x_gm$mesesdeduraciondeestudios, total_x_gm$total_mean, ylab="Costo Total Promedio en USD", xlab="Duración Estudio en Meses", main="Meses de Duración por Costo de Estudio") #Relaciones entre dos variables: cateogircas y numericas:::: BOXplots #correlaciones becal_sin_na = filter(becal_completo, totalgralusd != 'NA') # elimino los valores ausentes cor(as.numeric(becal_sin_na$mesesdeduraciondeestudios), becal_sin_na$totalgralusd) #estas dos variables estan fuermente relaciones. #Mientras mas largo el estudio, es mas costoso. #Pero no se puede decir que es una relacion de causalidad, pueden haber mas factores. #Correlacion no implica causalidad. hh <- t(VADeaths)[, 5:1] mybarcol <- "gray20" mp <- barplot(hh, beside = TRUE, col = c("lightblue", "mistyrose", "lightcyan", "lavender"), legend = colnames(VADeaths), ylim = c(0,100), main = "Death Rates in Virginia", font.main = 4, sub = "Faked upper 2*sigma error bars", col.sub = mybarcol, cex.names = 1.5) #segments(mp, hh, mp, hh + 2*sqrt(1000*hh/100), col = mybarcol, lwd = 1.5) #stopifnot(dim(mp) == dim(hh)) # corresponding matrices mtext(side = 1, at = colMeans(mp), line = -5, text = paste("Mean", formatC(hh)), col = "red")
8390fcb5303920ace34e31f54011266499c3c150
5f4e127bf2a52486df01088384d7c5926cfa277e
/man/resumo_cba_por_iniciativa.Rd
f21243d0e26e7353bf28a32b34b475b49559949a
[]
no_license
pedroliman/oshcba
0b4ac93c2135e85b71dde834b6eb313980b98db9
01ef42e96a7089fc6f4f35912e825a484b017208
refs/heads/master
2020-02-26T15:04:57.043923
2018-08-01T00:48:22
2018-08-01T00:48:22
94,784,015
0
1
null
2017-07-17T20:52:06
2017-06-19T14:12:00
R
UTF-8
R
false
true
433
rd
resumo_cba_por_iniciativa.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/analise.R \name{resumo_cba_por_iniciativa} \alias{resumo_cba_por_iniciativa} \title{resumo_cbr_por_iniciativa} \usage{ resumo_cba_por_iniciativa(resultados_cbr) } \arguments{ \item{resultados_cbr}{data.frame com resultados por iniciativa (na coluna Cenario.y)} } \value{ tiblle com estatísticas por iniciativa } \description{ resumo_cbr_por_iniciativa }
017517016731fd9b79c673a76f87bc5ac481b0ff
7f459c973e6ea48343f7e7a935429ffd646ef4da
/plot1.R
cecf1625ab53665e4e507dcedeed7d01db8becbf
[]
no_license
cvscastejon/Plotting-Graphs
eedf9c6daa58578283092a411611fd4900e96c52
ef5c5f02d6c7eed41675d737a649cc9c31b12c46
refs/heads/master
2021-05-26T16:25:54.661921
2020-04-08T16:21:00
2020-04-08T16:21:00
254,136,507
0
0
null
null
null
null
UTF-8
R
false
false
989
r
plot1.R
#date manipulaton done using lubridate package library(lubridate) #dataset reads entire table household <- read.table("household_power_consumption.txt", sep = ";", header = TRUE, colClasses = c("character", "character", "numeric", "numeric", "numeric", "numeric", "numeric", "numeric"), na.strings = "?") #columns date and time are converted to Date class household$Date <- dmy(household$Date) household$Time <- hms(household$Time) #subsetting to February First and Second of 2007 household <- household[(household$Date == ymd("2007-02-01") | household$Date == ymd("2007-02-02")),] #open png device with required size png("Plot1.png",width = 480, height = 480, units = "px") #Generate histogram on specified device hist(household$Global_active_power, xlab = "Global Active Power (kilowatts)", col = "red", main = "Global Active Power") #Close device dev.off()
2d09ee54adc1a8c74ae0fef39c0a6f77f625b8b0
9deb3a3350deecbff27dde00f3831116d2861d04
/Scripts/analyser_resultat.R
784746058188e8097437a171c275cfb036f52ae7
[]
no_license
LucasNoga/Workspace-R
8e55674712af47e7af78dc4208cd6d7be56bfcae
dce2f79dd4ecf075d4dafea3844b7a1371f1c804
refs/heads/master
2020-12-29T23:39:36.673353
2020-02-06T21:18:42
2020-02-06T21:18:42
238,780,108
0
0
null
null
null
null
UTF-8
R
false
false
377
r
analyser_resultat.R
# Mise à jour de votre espace de travail comme d'habitude setwd("D:/Dev/R") # On charge la variable que l'on avait précédemment enregistrée load("Data/resultat.RData") # Et on y applique un nouveau traitement nouveau_resultat <- (resultat + 3)^4 nouveau_resultat <- sqrt(nouveau_resultat) print(paste("Le nouveau résultat est: ", nouveau_resultat, sep=""))
1106fb9d5e698a01a4265f85b62021d5e7442520
6520309a6cd2aed30f642fd61a88227e442f835d
/klay_longer_shot_prior.R
160303e07b1e7d7663895419cd82a034a5a07299
[]
no_license
bhc3/hothand
efaebb8f35ec2727c50467e61304eff0d5df217e
a0df13f1ccffbb1bf2e67f2dca29065bd07a8316
refs/heads/master
2016-08-11T21:14:05.651531
2015-10-29T20:12:36
2015-10-29T20:12:36
45,071,005
0
0
null
null
null
null
UTF-8
R
false
false
795
r
klay_longer_shot_prior.R
## Create vector of Klay's prior shot, for use in analyzing whether the result ## of one shot influences the next shot. This function will be applied to longer ## shots (i.e. eliminating 'short' ones). It considers two factors in ## determining the prior shot. (1) Is it the start of a new game? If so, the ## prior shot is NA. (2) Is it the first longer shot after a short shot? If so, ## the prior shot is NA. klay_prior_shot <- function(game_id, shot_no, shot_history) { n = length(shot_history) klay_prev_shot <- rep(NA, n) for(i in 2:n) { if(game_id[i] != game_id[i-1]) { klay_prev_shot[i] <- NA } else if(shot_no[i] - shot_no[i-1] != 1) { klay_prev_shot[i] <- NA } else { klay_prev_shot[i] <- shot_history[i-1] } } return(klay_prev_shot) }
66a11eaa1d0bcba28ca4595814f777cbc38f6314
c6c0881ca260a793a70f5814ab6993c61dc2401c
/unweighted_prs/run_PRS.R
12f06b988bf98ce2b1f6c3c6e86a9ca5cbb7828d
[]
no_license
luyin-z/PRS_Height_Admixed_Populations
5fe1c1bef372b3c64bfd143397709c7529a2705a
bf04ba884fd16e5e8c0685ccfbc86ed72d02c7f2
refs/heads/master
2023-03-16T17:05:56.658896
2020-09-18T16:58:04
2020-09-18T16:58:04
null
0
0
null
null
null
null
UTF-8
R
false
false
1,584
r
run_PRS.R
#!/usr/bin/env Rscript args = commandArgs(trailingOnly=TRUE) #************************************** #* CALCULATE POLYGENIC SCORES ** #************************************** source('~/height_prediction/scripts/PolygenicScore_v2.R') library("optparse") library(data.table) library(dplyr) library(biomaRt) library(parallel) #args<-c("LD_prun","LD_250000_0.01_0.5") cat(args) options(scipen=999) #options(digits=10) home='~/height_prediction/' hei<-readRDS(file=paste0(home, args[1], '/', args[2],'/output/hei_', args[3], '_v2.Rds')) lapply(1:22, function(X) hei[[X]][,b:=ifelse(b>0, 1, ifelse(b<0, -1,0))]) #this line is crucial for the unweighted PRS. Everything else is the same as with the weighted one. cat('checkpoint 3\n') PGS<-vector('list',22) names(PGS)<-c(1:22) for (CR in 1:22){ print(paste0("Chromosome is ", CR)) try(PolScore2(CHR=CR, panel=args[1], panel2=args[2], tag=args[3]))-> PGS[[CR]] cat(paste0(CR, ' done\n')) } samps<-names(PGS[[1]]) #sum PGS across chromosomes. PGS2<-vector('list', length(samps)) names(PGS2)<-samps for (S in samps){ sum(PGS[[1]][[S]],PGS[[2]][[S]],PGS[[3]][[S]],PGS[[4]][[S]],PGS[[5]][[S]],PGS[[6]][[S]],PGS[[7]][[S]],PGS[[8]][[S]],PGS[[9]][[S]],PGS[[10]][[S]],PGS[[11]][[S]],PGS[[12]][[S]],PGS[[13]][[S]],PGS[[14]][[S]],PGS[[15]][[S]],PGS[[16]][[S]],PGS[[17]][[S]],PGS[[18]][[S]],PGS[[19]][[S]],PGS[[20]][[S]],PGS[[21]][[S]],PGS[[22]][[S]])->PGS2[[S]] cat(paste0(S, ' done\n')) } saveRDS(PGS2, file=paste0(home, 'unweighted_prs/output/PGS_', args[2], '_', args[3], '.Rds')) #TheEnd
c2eab11ba0acd1b8efda74a4435bba06fddb3013
1ec7a5d283eab88a9cceffecf61ad06569cc92c2
/publication_data/CompareListeria.R
64cbdd24f530412f100afa00117b7fc531e03f2c
[]
no_license
alexsweeten/snacc
1facba386900323d15de9f1532b863dd8d8b5c7a
8207466655535bcb0aa72b4983508b98f429356f
refs/heads/master
2022-03-05T01:54:10.318998
2019-11-12T03:02:24
2019-11-12T03:02:24
149,658,052
0
1
null
null
null
null
UTF-8
R
false
false
6,351
r
CompareListeria.R
require(ape) require(phangorn) require(treespace) publication_trees<- readRDS("publication_trees.rds") # reference tree obtained from https://github.com/johnlees/which_tree/blob/master/tree_compare.R listeria_realtr <- midpoint(read.tree(paste(sep="/","benchmark_trees/RealTree_Listeria.nwk"))) listeria_realtr$edge.length <- listeria_realtr$edge.length*0.01 # correct for scaling introduced by ALF listeria_samples <- sort(listeria_realtr$tip.label) # Draw trees from distance matrices temp = read.csv("listeria_distances/mash_listeria_distances.csv", sep=",") listeria_mash.matrix <- as.matrix(temp, header=TRUE) dimnames(listeria_mash.matrix) = list(listeria_samples, listeria_samples) temp = read.csv("listeria_distances/listeria_snacc_lzma.csv", sep=",") listeria_snacc_lzma.matrix <- as.matrix(temp) dimnames(listeria_snacc_lzma.matrix) = list(listeria_samples, listeria_samples) temp = read.csv("listeria_distances/listeria_snacc_lzma_reverse.csv", sep=",") listeria_snacc_lzma_reverse.matrix <- as.matrix(temp) dimnames(listeria_snacc_lzma_reverse.matrix) = list(listeria_samples, listeria_samples) temp = read.csv("listeria_distances/listeria_snacc_lz4.csv", sep=",") listeria_snacc_lz4.matrix <- as.matrix(temp) dimnames(listeria_snacc_lz4.matrix) = list(listeria_samples, listeria_samples) temp = read.csv("listeria_distances/listeria_snacc_bzip2.csv", sep=",") listeria_snacc_bzip2.matrix <- as.matrix(temp) dimnames(listeria_snacc_bzip2.matrix) = list(listeria_samples, listeria_samples) temp = read.csv("listeria_distances/listeria_snacc_gzip.csv", sep=",") listeria_snacc_gzip.matrix <- as.matrix(temp) dimnames(listeria_snacc_gzip.matrix) = list(listeria_samples, listeria_samples) temp = read.csv("listeria_distances/listeria_snacc_zlib.csv", sep=",") listeria_snacc_zlib.matrix <- as.matrix(temp) dimnames(listeria_snacc_zlib.matrix) = list(listeria_samples, listeria_samples) listeria_andi_bionj <- publication_trees[["BIONJ + andi dist"]] temp = read.csv("listeria_distances/poppunk_listeria_13.csv", sep=",") listeria_poppunk13.matrix <- as.matrix(temp) dimnames(listeria_poppunk13.matrix) = list(listeria_samples, listeria_samples) temp = read.csv("listeria_distances/poppunk_listeria_17.csv", sep=",") listeria_poppunk17.matrix <- as.matrix(temp) dimnames(listeria_poppunk17.matrix) = list(listeria_samples, listeria_samples) temp = read.csv("listeria_distances/poppunk_listeria_21.csv", sep=",") listeria_poppunk21.matrix <- as.matrix(temp) dimnames(listeria_poppunk21.matrix) = list(listeria_samples, listeria_samples) temp = read.csv("listeria_distances/poppunk_listeria_25.csv", sep=",") listeria_poppunk25.matrix <- as.matrix(temp) dimnames(listeria_poppunk25.matrix) = list(listeria_samples, listeria_samples) temp = read.csv("listeria_distances/poppunk_listeria_29.csv", sep=",") listeria_poppunk29.matrix <- as.matrix(temp) dimnames(listeria_poppunk29.matrix) = list(listeria_samples, listeria_samples) listeria_mash_bionj <- midpoint(bionj(listeria_mash.matrix)) listeria_mash_upgma <- midpoint(upgma(listeria_mash.matrix)) listeria_snacc_lzma_bionj <- midpoint(bionj(listeria_snacc_lzma.matrix)) listeria_snacc_lzma_upgma <- midpoint(upgma(listeria_snacc_lzma.matrix)) listeria_snacc_lzma_reverse_bionj <- midpoint(bionj(listeria_snacc_lzma_reverse.matrix)) listeria_snacc_lzma_reverse_upgma <- midpoint(upgma(listeria_snacc_lzma_reverse.matrix)) listeria_snacc_lz4_bionj <- midpoint(bionj(listeria_snacc_lz4.matrix)) listeria_snacc_lz4_upgma <- midpoint(upgma(listeria_snacc_lz4.matrix)) listeria_snacc_bzip2_bionj <- midpoint(bionj(listeria_snacc_bzip2.matrix)) listeria_snacc_bzip2_upgma <- midpoint(upgma(listeria_snacc_bzip2.matrix)) listeria_snacc_gzip_bionj <- midpoint(bionj(listeria_snacc_gzip.matrix)) listeria_snacc_gzip_upgma <- midpoint(upgma(listeria_snacc_gzip.matrix)) listeria_snacc_zlib_bionj <- midpoint(bionj(listeria_snacc_zlib.matrix)) listeria_snacc_zlib_upgma <- midpoint(upgma(listeria_snacc_zlib.matrix)) listeria_poppunk13_bionj <- midpoint(bionj(listeria_poppunk13.matrix)) listeria_poppunk13_upgma <- midpoint(upgma(listeria_poppunk13.matrix)) listeria_poppunk17_bionj <- midpoint(bionj(listeria_poppunk17.matrix)) listeria_poppunk17_upgma <- midpoint(upgma(listeria_poppunk17.matrix)) listeria_poppunk21_bionj <- midpoint(bionj(listeria_poppunk21.matrix)) listeria_poppunk21_upgma <- midpoint(upgma(listeria_poppunk21.matrix)) listeria_poppunk25_bionj <- midpoint(bionj(listeria_poppunk25.matrix)) listeria_poppunk25_upgma <- midpoint(upgma(listeria_poppunk25.matrix)) listeria_poppunk29_bionj <- midpoint(bionj(listeria_poppunk29.matrix)) listeria_poppunk29_upgma <- midpoint(upgma(listeria_poppunk29.matrix)) #Create identity vectors test_listeria <- diag(listeria_snacc_bzip2.matrix) listeria_bzip2_identity <- mean(test_listeria) test_listeria <- diag(listeria_snacc_gzip.matrix) listeria_gzip_identity <- mean(test_listeria) test_listeria <- diag(listeria_snacc_lz4.matrix) listeria_lz4_indentity <- mean(test_listeria) test_listeria <- diag(listeria_snacc_lzma.matrix) listeria_lzma_identity <- mean(test_listeria) test_listeria <- diag(listeria_snacc_zlib.matrix) listeria_zlib_identity <- mean(test_listeria) #Create correlation matrix matrix_list_listeria <- list(mash = dist(listeria_mash.matrix), bzip2 = dist(listeria_snacc_bzip2.matrix), gzip = dist(listeria_snacc_gzip.matrix), lz4 = dist(listeria_snacc_lz4.matrix), lzma = dist(listeria_snacc_lzma.matrix), zlib = dist(listeria_snacc_zlib.matrix)) temp <- c() for(x in matrix_list_listeria){ for(y in matrix_list_listeria){ z <- mantel.rtest(x,y,nrepet=100) temp <- c(temp, z) } } correlation_lis.matrix <- matrix( temp, nrow=6, ncol=6 ) row.names(correlation_lis.matrix) <- names(matrix_list_listeria) colnames(correlation_lis.matrix) <- names(matrix_list_listeria) #plot correlation matrix test <- corrplot(correlation_lis.matrix, type = "lower", order = "hclust", tl.col = "black", tl.srt = 35, insig="p-value", sig.level = -1) plot(test) #test <- cophylo(listeria_realtr, listeria_snacc_lzma_bionj, fsize=0.7) #plot(test, fsize=0.5)
253d240ca34ecdf70de35208ccb7536841137138
584167605daffbc5d5046f43a34030f12185d815
/man/get_info.Rd
b679b5a6bad998f3d137bbb569ae3aebe95fdb94
[]
no_license
ibarraespinosa/openmpf
1be34733f095b4313588c94ed293af1548af9c27
c55939295f7642ee0063d141111a197b2997c803
refs/heads/master
2021-02-19T10:40:59.087134
2020-03-06T21:31:09
2020-03-06T21:31:09
245,305,220
0
0
null
null
null
null
UTF-8
R
false
true
229
rd
get_info.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/get_env_info.R \name{get_info} \alias{get_info} \title{get info} \usage{ get_info() } \description{ \code{\link{get_info}} displays environment info }
2f944d5bfe7b18bfa13a64cc2b92be8b35127487
c59ded81315e5651b49437d0be06ea66e4d10f5f
/R/retrieve_aop_data.R
35ee4d886987d547288f1deab52549407740cedb
[ "MIT" ]
permissive
vscholl/neonVegWrangleR
7870d4e5b6ff56b8ae51763d2fe5c3f492032cb3
e2bf156d07fbc3cbe8d2685adbc484d78540b949
refs/heads/master
2021-09-08T23:27:55.657138
2021-09-03T15:28:35
2021-09-03T15:28:35
215,654,953
1
2
null
2021-09-03T15:28:36
2019-10-16T22:22:27
R
UTF-8
R
false
false
2,781
r
retrieve_aop_data.R
#' download AOP data where vst data exists for specified year and site #' #' #' @inheritParams str_detect #' @return A list of dataframe #' @export #' @examples from_inventory_to_shp() #' @importFrom magrittr "%>%" #' @import neonUtilities, tidyverse, readr #' retrieve_aop_data <- function(data, year = 2019, products = c(#"DP3.30010.001" # lidar-derived DTM, DSM "DP3.30006.001" # hyperspectral reflectance #,"DP3.30025.001" # lidar-derived slope, aspect #,"DP3.30015.001" # canopy height model #,"DP1.30003.001" # lidar point cloud )){ library(tidyverse) library(parallel) library(reticulate) library(neonUtilities) options(scipen = 999) # extract information needed to get AOP tiles coords_for_tiles <- data %>% dplyr::select(plotID, siteID, utmZone, plotEasting, plotNorthing, year) colnames(coords_for_tiles)[4:5] <- c("easting", "northing") # collect years per plot per date #year = substr(year, 1, 4) #coords_for_tiles <- cbind.data.frame(coords_for_tiles, year) # get tiles dimensions coords_for_tiles$easting <- as.integer(coords_for_tiles$easting / 1000) * 1000 coords_for_tiles$northing <- as.integer(coords_for_tiles$northing / 1000) * 1000 # get list of tiles with vegetation structure tiles <- coords_for_tiles[-1] %>% unique tiles <- tiles[complete.cases(tiles),] # convert CHEQ into STEI (only the latter on the portal) which_cheq = tiles$Easting > 500000 & tiles$siteID == "STEI" tiles[which_cheq, "siteID"] <- "CHEQ" tiles <- tiles %>% unique # loop through tiles and data products: default is topographic and RS data for(ii in 1:nrow(tiles)){ for(prd in products){ tryCatch({ #elevation neonUtilities::byTileAOP(prd, site = tiles[ii, "siteID"], year = tiles[ii, "year"], tiles[ii, "easting"], tiles[ii,"northing"], buffer = 0, check.size = F, savepath = paste("/orange/ewhite/s.marconi/AOP_Chapter3/", prd, "/", sep = "")) }, error = function(e) { print(paste("site",tiles[ii,"siteID"], "could not be fully downloaded! Error in retrieving:", prd, "for year", tiles[ii,"year"], ". error returned:", e)) }) } } }
7c9ff1dc1f763ce6daa8bb72cb525c77c2cf8866
912b0a1ed246b67ecb114401cdebe9ae3f359e31
/Homework1_2/Homework1_2.R
034f5f77148db92a3e48ad3a6f1a251915516576
[]
no_license
josemprb/IntelligentDataAnalysis
5da84b7a10c38dda26d3296119103cac2aa50000
f168475e3ea85c511f9aaa4b9bef81a2f598063d
refs/heads/main
2023-07-19T13:29:04.936479
2021-08-30T12:42:30
2021-08-30T12:42:30
401,339,141
0
0
null
null
null
null
UTF-8
R
false
false
5,986
r
Homework1_2.R
setwd("C:/DATOS/MasterEIT/EntryYear/1Semester/IntelligentDataAnalysis/Labs/HomeDir") # Importing data set cars=read.table("cars-PCA.txt") colnames(cars)=c("mpg","cylinders","engine_displacement","horsepower", "weight","acceleration","model_year","origin","car_name") ##### # 1.2.1 ### a) Choose a quantitative variable and explore its distribution in terms of # descriptive measures of center, dispersion, skewness and kurtosis. Is a normal # model a plausible one for its distribution? If the answer is no, can you think # of a transformation of the variable that improves normality. Are there any # outliers? ### b) Choose two quantitative variables and describe its joint bivariate # distribution. Does it seem to be Normal? Are there any outliers? ### c) Choose a subset of 4 or 5 quantitative variables and explore linear # relationships through: # --> R matrix of pairwise correlations # --> Matrix of partial correlations # --> Coefficient of determination (function r2multv() we define in R) # --> The determinant of R (correlation matrix) as an overall measure of #linear relationships. # --> An eigenanalysis of matrix R, looking for really small eigenvalues. ##### # 1.2.2 Permutation test install.packages("devtools") install.packages("ggpubr") library("devtools") library("ggpubr") library("dplyr") # We first load the data contained in RestaurantTips.rda load("RestaurantTips.rda") ### A) ## A1) Choose variables Bill and PctTip to analyse their linear dependency through Pearson's # correlation coefficient. Just looking at the scatterplot, it is hard to tell whether this # coefficient is significantly different from zero (check this!). cor.test(RestaurantTips$Bill, RestaurantTips$PctTip, method= "pearson") ggscatter(RestaurantTips, x = "Bill", y = "PctTip", add = "reg.line", conf.int = TRUE, cor.coef = TRUE, cor.method = "pearson", xlab = "Total Bill", ylab = "Percentage of Tip") # The correlation coefficient is 0.14, different from 0. This means that correlation between # Bill and PctTip is different from 0. Therefore, there's a linear relationship between the # amount paid as bill, and the tip % that people gives after knowing such bill. This is also # verified when p-value is bigger than significance value (0.05). ## A2) Conduct a permutation test to test the null hypothesis that the correlation coefficient # is 0 vs the alternative that it is different from 0. Run R = 10000 simulations. # We follow the guide given to do the permutation test. First of all, we compute the observed # correlation between the variables Bill and PctTip. Ptest_Tips <- select(RestaurantTips, Bill, PctTip) r_obs = cor(RestaurantTips$Bill, RestaurantTips$PctTip) # r_obs = 0.135 # Then we set number of permutations up to R = 10000 and use set.seed command. R = 10000 set.seed(1) # Second and third steps, permute Bill's among PctTip's, and do it 10000. Then, # calculate r correlation value between both variables. It is stored in r array. for (i in 1:R) { Tip_Rep <- data.frame("PctTip" = RestaurantTips$PctTip, "Bill" = sample(RestaurantTips$Bill,157,TRUE)) r_aux = cor(Tip_Rep) r[i] = r_aux[1,2] aux[i] <- ifelse(r[i]>r_obs,1,0) } p_value_A = sum(aux)/R # We import ggplot2 library and plot a bar plot that differentiates # bills and percentage of tip's given. RestaurantTips$PctTip_Aux <- cut(RestaurantTips$PctTip, c(0,10,20,30,40)) RestaurantTips$Bill_Aux <- cut(RestaurantTips$Bill, c(0,15,30,45,60,75)) table(RestaurantTips$PctTip_Aux) table(RestaurantTips$Bill_Aux) ggplot(RestaurantTips, aes(x = PctTip_Aux, y=..prop.., fill = Bill_Aux, group=Bill_Aux)) + geom_bar(position=position_dodge()) + xlab("% of Tips") + ylab("Total Count") + labs(fill = "Total Bill") ### B) Repeat the analysis deleting the values for three customers that left a tip greater than # 30% of the bill. These generous customers seem to be outliers. ## B1) Repeat the correlation test, with its scatterplot. # Include the filter TipsFiltered <- filter(RestaurantTips, PctTip < 30) cor.test(TipsFiltered$Bill, TipsFiltered$PctTip, method= "pearson") ggscatter(TipsFiltered, x = "Bill", y = "PctTip", add = "reg.line", conf.int = TRUE, cor.coef = TRUE, cor.method = "pearson", xlab = "Total Bill", ylab = "Percentage of Tip") # When plotting, we realyse that those three values were outliers as distribution keeps the # same without them. Correlation between variables increase as outliers usually decrease this value. # Also, p-value decreases but still is below 0.05, so we select the null hypothesis (H0). ## B2) Conduct again the permutation test, without the outliers. # We follow the guide given to do the permutation test. First of all, we compute the observed # correlation between the variables Bill and PctTip. Ptest_Tips <- select(TipsFiltered, Bill, PctTip) r_obs = cor(TipsFiltered$Bill, TipsFiltered$PctTip) # r_obs = 0.2198 R = 10000 set.seed(1) # Second and third steps, permute Bill's among PctTip's, and do it 10000. Then, # calculate r correlation value between both variables. It is stored in r array. for (i in 1:R) { Tip_Rep_B <- data.frame("PctTip" = TipsFiltered$PctTip, "Bill" = sample(TipsFiltered$Bill,154,TRUE)) r_aux = cor(Tip_Rep_B) r[i] = r_aux[1,2] aux[i] <- ifelse(r[i]>r_obs,1,0) } # Compute the p-value p_value_B = sum(aux)/R TipsFiltered$PctTip_Aux <- cut(TipsFiltered$PctTip, c(0,10,20,30)) TipsFiltered$Bill_Aux <- cut(TipsFiltered$Bill, c(0,15,30,45,60,75)) table(TipsFiltered$PctTip_Aux) table(TipsFiltered$Bill_Aux) ggplot(TipsFiltered, aes(x = PctTip_Aux, y=..prop.., fill = Bill_Aux, group=Bill_Aux)) + geom_bar(position=position_dodge()) + xlab("% of Tips") + ylab("Total Count") + labs(fill = "Total Bill")
ef4a12cdd37519d9f96cb2a68893ef097e64468a
e9a5a9e952a9ccac535efe64b96cc730b844677b
/man/setRowHeight-methods.Rd
bb4f3eedaaf007da7b8885e13ba55d20699097e9
[]
no_license
miraisolutions/xlconnect
323c22258439616a4d4e0d66ddc62204094196c9
ae73bfd5a368484abc36638e302b167bce79049e
refs/heads/master
2023-09-04T05:27:42.744196
2023-08-30T07:10:44
2023-08-30T07:10:44
8,108,907
114
35
null
2023-08-30T07:10:46
2013-02-09T11:17:42
R
UTF-8
R
false
false
1,566
rd
setRowHeight-methods.Rd
\name{setRowHeight-methods} \docType{methods} \alias{setRowHeight} \alias{setRowHeight-methods} \alias{setRowHeight,workbook,character-method} \alias{setRowHeight,workbook,numeric-method} \title{Setting the height of a row in a worksheet} \description{ Sets the height of a row in a worksheet. } \usage{ \S4method{setRowHeight}{workbook,character}(object,sheet,row,height) \S4method{setRowHeight}{workbook,numeric}(object,sheet,row,height) } \arguments{ \item{object}{The \code{\linkS4class{workbook}} to use} \item{sheet}{The name or index of the sheet to edit} \item{row}{The index of the row to resize} \item{height}{The height in points. If \code{height < 0} (default: -1), the row will be sized to the sheet's default row height.} } \details{ Note that the arguments \code{sheet}, \code{row} and \code{height} are vectorized. As such the row height of multiple rows (potentially on different worksheets) can be set with one method call. } \author{ Martin Studer\cr Mirai Solutions GmbH \url{https://mirai-solutions.ch} } \seealso{ \code{\linkS4class{workbook}}, \code{\link[=setColumnWidth-methods]{setColumnWidth}} } \examples{ \dontrun{ # mtcars xlsx file from demoFiles subfolder of package XLConnect mtcarsFile <- system.file("demoFiles/mtcars.xlsx", package = "XLConnect") # Load workbook wb <- loadWorkbook(mtcarsFile) # Sets the row height of the 1st row on sheet 'mtcars' # to 20 points setRowHeight(wb, sheet = "mtcars", row = 1, height = 20) } } \keyword{methods} \keyword{utilities}
fa373cb51dbc58bef621228731ef59ba6d05014d
7e6fb336d601caafe06cc417c988e5674ac50fb0
/IsoriX/inst/NEWS.Rd
bcbea37180e2f21e3cae05081c1f4a09a1ddcf60
[]
no_license
courtiol/IsoriX
a5da2b3d4aa87408a3a4e3c2f4ea832d6ed5a777
f85641cd7741b6bd004fa0443af67d50d8dbd199
refs/heads/master
2023-02-10T09:55:32.368822
2023-01-13T01:44:35
2023-01-13T01:44:35
68,238,793
12
6
null
2023-01-13T01:44:36
2016-09-14T20:00:46
R
UTF-8
R
false
false
15,332
rd
NEWS.Rd
\name{NEWS} \title{IsoriX News} \encoding{UTF-8} \section{version 1.0}{ \subsection{Upcoming features planned for future releases}{ \itemize{ \item (version 1.0 does not exist yet) \item feature requests can be defined and watched here: \url{https://github.com/courtiol/IsoriX/issues} } } } \section{version 0.9}{ \subsection{Solved BUGS}{ \itemize{ \item the previous released introduced an error in how the variance of the assignment test is computed in the absence of calibration (with important consequence in terms of assignments). This is now fixed (#151). } } \subsection{Minor change}{ \itemize{ \item the base package 'colourspace' is now suggested to avoid a note in R CMD check. } } } \section{version 0.8.3}{ \subsection{New features}{ \itemize{ \item the function `calibfit()` gains an argument method that allows for selecting one of four calibration methods ("wild", "lab", "desk", "desk_inverse"). This allows for users to use 1) calibration samples associated with unknown environmental isotopic values, 2) calibration samples associated with known environmental isotopic values, or 3 & 4) the intercept and slope of a calibration relationship computed by others (e.g. values found in a paper). Note: the desk* methods allow for the consideration of a fractionaction factor too (i.e. slope = 0). See \code{calibfit} for details. (#20 & #142) \item the function `getelev()` has been completely rewriten so as to rely on the package **elevatr** to download elevation data. You should check `?getelev` for learning how to use the new version of the function, but we retained the core principle of the previous function so that old workflow will only require minor adjustements. The new version still saves a *.tif file on the disk, albeit uing a different file name to avoid (data) confusion. (#140 & #107) \item the function `isofind()` gains an argument `neglect_covPredCalib` that allows for the computation of a covariance term that was so far neglected in IsoriX. See `?isofind` for details. (#143) \item the function `prepraster()` gains an argument `values_to_zero` to turn a range of elevation values to zeros (nullify negative elevation values by default). This is particular useful because the new version of `get_elev()` download an elevation raster that includes bathymetry. \item new internal function `.invert_reg()` to invert regression (used for method "desk_inverse" in `calibfit()`) } } \subsection{Minor change}{ \itemize{ \item when calling `plot()` on an object created with `calibfit()`, the plotting function now returns the fitted values and CI for users to be able to make alternative plots (#44) \item new argument `xlim` for the plotting function for calibration fits \item new argument `line` for customising how to plot the regression line in calibration fits \item the summary method for calibration fits now displays the residual variance \item `calibfit()` performs more check on extrapolation (#119) \item when using `plot()` on an object of class ISOFIT, the x-axis for the plot showing the Matern correlation should have a range more adequate irrespective when autocorrelation is strong over short distances (#134) \item documentation for `?plot()` now contains a description of what symbols mean in plots (#138) \item when calling `plot()` on an object created with `isofind()`, the plotting function now detects sample of size 1 and no longer displays "Group" in the title of the assignment plot even if `who` = "group" (#120) \item all functions accepting a `data.frame` as input should also now be compatible when provided with a `tibble` (#118) \item typos have been corrected (#130) \item default y-axis title changed to "Isotopic value in the environment" when plotting calibration fits to be flexible enough irrespective of the methods used in `calibfit()` } } \subsection{Geeky change}{ \itemize{ \item the argument `long_min`, `long_max`, `lat_min` & `lat_max` function `prepsources()` now have explicit default values and should no longer be missing. \item the version of spaMM required by IsoriX has changed to 3.13 so as to benefit from a new extractor we rely on for the computation of the 4th variance term during assignment (#143) \item the function depending on the package RandomFields are no longer available since that package has been (for now) retired by CRAN :-( \item IsoriX should now work with tibbles as inputs (#118) } } \subsection{Solved BUGS}{ \itemize{ \item the printing method for the object of class ISOSCAPE was somehow not exported and thus not used (unreported issue) \item plotting on a sphere ISOFIND objects did not work in some cases (#126) } } } \section{version 0.8.2}{ \subsection{New features}{ \itemize{ \item argument ylim for the plotting function for calibration fits \item it is now possible to calibrate data containing missing isotopic values \item it is now possible to assign data containing missing isotopic values } } \subsection{Geeky change}{ \itemize{ \item the SpatialPolygons CountryBorders and OceanMask have been rebuilt for possibly improving the compatibility with new sp & rgdal \item the website for WorlClim has now changed address, so links have been updated \item rgdal is now listed as a suggested package } } \subsection{Minor change}{ \itemize{ \item several weblinks had changed and have been updated \item all old defunct functions have been removed from the package } } } \section{version 0.8.1}{ \subsection{Solved BUGS}{ \itemize{ \item fix issue #113: the plotting function was not working for isoscapes not stored in memory due to a wrong use of the quantile function. Many thanks to Dr. Gary Roemer and Amy Withers for reporting it! } } } \section{version 0.8.1}{ \subsection{New features}{ \itemize{ \item the datasets used in Courtiol et al. 2019 are now provided \item many useful functions from raster, rasterVis, lattice... are now re-exported so they can be used without attaching those packages \item new option in plots that allows to map the isoscape onto a sphere \item a new dataset PrecipBrickDE containing monthly precipitation amounts for Germany \item an argument y_title for the plotting function for isoscapes to allow one to simply change the title \item arguments xlab and ylab for the plotting function for calibration fits \item new method points for plotting more than one calibration fit \item the plotting function for assignments can now show the location of the assignment samples } } \subsection{Major changes}{ \itemize{ \item the citations for the package have been updated! \item many objects have been renamed to prepare the release of the version 1.0 \item the vignettes have now been moved to a bookdown. To access the documentation you should now visit: \url{https://bookdown.org/content/782/} } } \subsection{Minor changes}{ \itemize{ \item all arguments 'bla.bla' have been renamed 'bla_bla' \item the plotting function for calibfit gains an argument "..." for more control \item a ploting method for rasterLayer has been included for conveniance \item the function relevate is now called prepraster \item the function prepdata is now called prepsources \item in several functions the argument elevation.raster has been renamed as raster \item in several functions the argument xxx.data has been renamed as data } } \subsection{Geeky changes}{ \itemize{ \item the file storing the internal functions is now called zzz.R \item the dontrun and donttest have been replaced by comments due to new R CMD check flags \item the function downloadfile is now exported \item large temporary objects are now deleted within isofind to limit memory usage \item the package is now being tested using testthat, but tests will be implemented in the future \item a lot of the internal code as been rewriten to comply more closely to the IsoriX coding style \item the list of suggested packages has been revised and rgdal removed as it caused (again) problems with Travis CI \item following a change in spaMM predict.HLfit, the prediction are now being made by chunck of 1000 points instead of 150. This should lead to a tiny gain in performance \item the function isoscape was performing predictions twice every 150 (or now 1000) locations, this was not influencing the isoscapes produced, but this has now been corrected \item the function prepraster now produces an raster stored in memory if it is possible. This should prevent bugs that appears when using loaded rasters that were previously saved (the temporary link to the hard drive location is no longer correct in this case). \item the function .objective_fn_calib has been moved within the function calibfit as it is not used elsewhere \item the function calibfit as been prepared for a possible activation of a random effect for species ID in the future. But whether it would make sense or not remains to be determined. \item the function .Fisher_method now directly computes the exponential of the log pv if only one value is provided. This leads to much faster assignment in the case of a single observation. } } \subsection{Solved BUGS}{ \itemize{ \item the plotting function for calibration fit was displaying CI based on variance instead of SD \item the function getprecip and prepcipitate were not handling paths manualy defined properly \item the plotting functions were crashing in case of no variation in the landscape \item the plotting functions were crashing when called on multiple-raster objects not stored 'inMemory' \item the plotting function for fitted model was not displaying one plot in RStudio when called on objects of class MULTIISOFIT } } } \section{version 0.7.1}{ \subsection{New features}{ \itemize{ \item this is a minor update necessary to maintain compatibility with spaMM 2.4 } } \subsection{Geeky changes}{ \itemize{ \item the syntax for the extraction of correlation terms of spaMM objects has changed } } } \section{version 0.7}{ \subsection{New features}{ \itemize{ \item the calibration step is now optional, allowing for users to use an isoscape directly fitted on tissues instead of precipitation water \item the function queryGNIP has been renamed and is now called prepdata, this function can also handle other datasets than GNIP \item the function relevate has been modified to make crop possible around the pacific meridian -180/180 (but several issues remain to handle extra plot layers automatically) } } \subsection{Geeky changes}{ \itemize{ \item an additional options as been added to prevent prompting during examples \item new internal function .converts_months_to_numbers } } } \section{version 0.6}{ \subsection{New features}{ \itemize{ \item the maximum duration of running time for examples can now be controlled using IsoriX.options(example_maxtime = XX) \item due to new GNIP policies, we no longer provide the GNIP dataset for the entire World, but only a subset containing data for Germany (users should thus compile their precipitatin data themselves from the 'wiser' plateform provided by GNIP; see vignette Workflow) \item it is now possible to control the colours and labels for the levels of isotopes or p-values in plots \item for plotting, it is no longer needed to load the ocean mask and country borders (it now happens automatically) \item the function relevate now allows for a cropping larger than the extent of the weather stations by means of the argument margin_pct \item it is now possible to create the so-called annual averaged precipitation isoscapes! \item queryGNIP can now split the dataset per month or year at each location during the aggregation \item new function prepcipitate to prepare the precipitation brick \item new function getprecip to download monthly precipitation rasters from WorldClim \item new function isomultifit fitting isoscapes per strata (month, year, or any "split") \item new function isomultiscape building isoscapes averaged across strata \item new function create_aliens simulating of organism data } } \subsection{Minor changes}{ \itemize{ \item the inputs for filtering data by month or year using queryGNIP have changed \item the default fixed effect structure for the mean model is isofit has changed } } \subsection{Geeky changes}{ \itemize{ \item the namespace is now generated with Roxygen2 \item the datasets are now 'lazy-loaded' \item new vignette for coding conventions \item changed some object names following our coding convention (more to come) } } } \section{version 0.5}{ \subsection{Solved BUGS}{ \itemize{ \item the package could not be detached and reloaded \item the citation was not correct \item the path in getelev was breaking in some cases \item the title of the assignment plot was missing when a single individual was plotted } } \subsection{New feature(s)}{ \itemize{ \item new vignette explaining how to export spatial objects to GIS \item the file GNIPdata has been updated and now contain 2014 data \item names of all functions and objects have been refactored to remove upper cases \item links to our GitHub directory have been added \item new function downloadfile to download non standard elevation raster or any other file \item function getelev can perform MD5 sum checks if the package 'tools' is installed \item function getelev can display additional information during download if verbose > 1 \item the column animalID in the assignment dataset can now handle names with spaces \item added Codecov to track test coverage for the package } } \subsection{Minor changes}{ \itemize{ \item the modification of the option set_ll_warn from the 'sp' package has been moved to onLoad (instead of onAttached) and the original state is now restored while unloading 'IsoriX' \item the Earth distance method has been moved to the package 'spaMM' \item function getelev lost its 'address' argument as downloadfile should now be used to download non-standard elevation rasters \item some typo fixed in documentation files \item RandomFields moved to suggest \item .Rd files for documentation are now generated with Roxygen2 \item queryGNIP is now provided with a single month argument specifying the months to select } } } \section{version 0.4-1}{ \subsection{New feature(s)}{ \itemize{ \item this was the first version of IsoriX submitted to CRAN } } }
2b2f91401c24ce03bdd83039a98678b3754516f3
d8f7bfbe482d98ead30ac58b9c7ae4c254e93579
/Modern Methods of Data Analysis/script9.R
a88ce0a9b28d50473616819d63832a510473e37d
[]
no_license
Leoberium/Rmisc
1aa29ab9883f319bdf6b684f78f738079869efee
7f48c97dd81ae3fcdcbeb364e69c588754b07946
refs/heads/master
2020-09-25T05:49:40.574778
2019-12-04T19:50:27
2019-12-04T19:50:27
225,931,702
0
0
null
null
null
null
UTF-8
R
false
false
7,411
r
script9.R
library(caret) library(doMC) library(glmnet) library(MASS) library(pROC) registerDoMC(8) load('training.RData') load('testing.RData') str(training) str(testing) load('pre2008Data.RData') load('year2008Data.RData') str(pre2008Data) str(year2008Data) fullSet <- names(training)[names(training) != "Class"] predCorr <- cor(training[, fullSet]) highCorr <- findCorrelation(predCorr, .99) fullSet <- fullSet[-highCorr] isNZV <- nearZeroVar(training[, fullSet], saveMetrics = TRUE, freqCut = floor(nrow(training)/5)) fullSet <- rownames(subset(isNZV, !nzv)) str(fullSet) reducedSet <- rownames(subset(isNZV, !nzv & freqRatio < floor(nrow(training)/50))) reducedSet <- reducedSet[(reducedSet!= "allPub") & (reducedSet != "numPeople") & (reducedSet != "Mar") & (reducedSet != "Sun") ] str(reducedSet) # Logistic Regression ctrl <- trainControl(summaryFunction = twoClassSummary, classProbs = TRUE, savePredictions = TRUE) set.seed(476) lrReduced <- train(training[, reducedSet], y = training$Class, method = "glm", metric = "ROC", trControl = ctrl) lrReduced head(lrReduced$pred) lrTestClasses <- predict(lrReduced, newdata = testing[, reducedSet]) lrTestProbs <- predict(lrReduced, newdata = testing[, reducedSet], type = "prob") confusionMatrix(data = lrTestClasses, reference = testing$Class, positive = "successful") reducedRoc <- roc(response = testing$Class, predictor = lrTestProbs$successful, levels = rev(levels(testing$Class))) plot(reducedRoc, legacy.axes = TRUE) auc(reducedRoc) modelstats <- c(0.908, 0.838, 0.783, 0.860) names(modelstats) <- c("AUC", "Accuracy", "Sensitivity", "Specificity") # confusionMatrix(data = lrReduced$pred$pred, # reference = lrReduced$pred$obs) # reducedRoc <- roc(response = lrReduced$pred$obs, # predictor = lrReduced$pred$successful, # levels = rev(levels(lrReduced$pred$obs))) # plot(reducedRoc, legacy.axes = TRUE) # auc(reducedRoc) # Linear Discriminant Analysis set.seed(476) ldaFit <- train(x = training[, reducedSet], y = training$Class, method = "lda", preProcess = c("center", "scale"), metric = "ROC", trControl = ctrl) ldaFit head(ldaFit$pred) ldaTestClasses <- predict(ldaFit, newdata = testing[, reducedSet]) ldaTestProbs <- predict(ldaFit, newdata = testing[, reducedSet], type = "prob") confusionMatrix(data = ldaTestClasses, reference = testing$Class, positive = "successful") reducedRoc2 <- roc(response = testing$Class, predictor = ldaTestProbs$successful, levels = rev(levels(testing$Class))) plot(reducedRoc2, legacy.axes = TRUE) auc(reducedRoc2) modelstats <- rbind(modelstats, c(0.921, 0.849, 0.825, 0.863)) rownames(modelstats) <- c("LR", "LDA") # Partial Least Squares Discriminant Analysis set.seed(476) plsFit <- train(x = training[, reducedSet], y = training$Class, method = "pls", tuneGrid = expand.grid(.ncomp = 1:10), preProcess = c("center", "scale"), metric = "ROC", trControl = ctrl) plsFit head(plsFit$pred) plsTestClasses <- predict(plsFit, newdata = testing[, reducedSet]) plsTestProbs <- predict(plsFit, newdata = testing[, reducedSet], type = "prob") confusionMatrix(data = plsTestClasses, reference = testing$Class, positive = "successful") reducedRoc3 <- roc(response = testing$Class, predictor = plsTestProbs$successful, levels = rev(levels(testing$Class))) plot(reducedRoc3, legacy.axes = TRUE) auc(reducedRoc3) modelstats <- rbind(modelstats, c(0.921, 0.849, 0.841, 0.854)) rownames(modelstats) <- c("LR", "LDA", "PLS") plot(plsFit) plsImpGrant <- varImp(plsFit, scale = TRUE) plot(plsImpGrant) # Penalized Models glmnGrid <- expand.grid(alpha = c(0, .1, .2, .4, .6, .8, 1), lambda = seq(.01, .2, length = 40)) glmnTuned <- train(training[, fullSet], y = training$Class, method = "glmnet", tuneGrid = glmnGrid, preProcess = c("center", "scale"), metric = "ROC", trControl = ctrl) plot(glmnTuned, plotType = "level") glmnTuned head(glmnTuned$pred) glmnTestClasses <- predict(glmnTuned, newdata = testing[, fullSet]) glmnTestProbs <- predict(glmnTuned, newdata = testing[, fullSet], type = "prob") confusionMatrix(data = glmnTestClasses, reference = testing$Class, positive = "successful") reducedRoc4 <- roc(response = testing$Class, predictor = glmnTestProbs$successful, levels = rev(levels(testing$Class))) plot(reducedRoc4, legacy.axes = TRUE) auc(reducedRoc4) modelstats <- rbind(modelstats, c(0.931, 0.857, 0.873, 0.848)) rownames(modelstats) <- c("LR", "LDA", "PLS", "GLMN") modelstats # Continuing with non-linear models # Mixture discriminant analysis load('mdaFit.RData') plot(mdaFit) mdaFit mdaTestClasses <- predict(mdaFit, newdata = testing[, fullSet]) mdaTestProbs <- predict(mdaFit, newdata = testing[, fullSet], type = "prob") confusionMatrix(data = mdaTestClasses, reference = testing$Class, positive = "successful") reducedRoc5 <- roc(response = testing$Class, predictor = mdaTestProbs$successful, levels = rev(levels(testing$Class))) plot(reducedRoc5, legacy.axes = TRUE) auc(reducedRoc5) modelstats <- rbind(modelstats, c(0.921, 0.849, 0.825, 0.863)) rownames(modelstats) <- c("LR", "LDA", "PLS", "GLMN", "MDA") modelstats # Neural network load('nnetFit.RData') plot(nnetFit) nnetFit nnetTestClasses <- predict(nnetFit, newdata = testing[, fullSet]) nnetTestProbs <- predict(nnetFit, newdata = testing[, fullSet], type = "prob") confusionMatrix(data = nnetTestClasses, reference = testing$Class, positive = "successful") reducedRoc6 <- roc(response = testing$Class, predictor = nnetTestProbs$successful, levels = rev(levels(testing$Class))) plot(reducedRoc6, legacy.axes = TRUE) auc(reducedRoc6) modelstats <- rbind(modelstats, c(0.919, 0.842, 0.820, 0.854)) rownames(modelstats) <- c("LR", "LDA", "PLS", "GLMN", "MDA", "NNET") modelstats # SVM load('svmRModel.RData') svmRModel # doesn't work further # KNN load('knnFit.RData') knnFit knnTestClasses <- predict(knnFit, newdata = testing[, fullSet]) knnTestProbs <- predict(knnFit, newdata = testing[, fullSet], type = "prob") confusionMatrix(data = knnTestClasses, reference = testing$Class, positive = "successful") reducedRoc7 <- roc(response = testing$Class, predictor = knnTestProbs$successful, levels = rev(levels(testing$Class))) plot(reducedRoc7, legacy.axes = TRUE) auc(reducedRoc7) modelstats <- rbind(modelstats, c(0.830, 0.697, 0.307, 0.921)) rownames(modelstats) <- c("LR", "LDA", "PLS", "GLMN", "MDA", "NNET", "KNN") modelstats # NaiveBayes load('nbPredictors.RData') load('nbTesting.RData') load('nbTraining.RData') load('nBayesFit.RData') nBayesFit
7cc84c72311362d961a5fc9c980fb685aafad1ab
a5f3268b700913ea94ae6ba21caa5144d234703a
/R/methods-sensNumber.R
4b6cea2950c964fc3da357d9d5057a2bbf142cfb
[]
no_license
saisaitian/PharmacoGx
d2e7d20e5fc8ae40c169b57c71fbe380d0841424
eeee68a021549bdfab23e85cdf57c15ae54a52cc
refs/heads/master
2023-01-24T14:31:16.963359
2020-11-23T18:16:15
2020-11-23T18:16:15
null
0
0
null
null
null
null
UTF-8
R
false
false
2,533
r
methods-sensNumber.R
#' sensNumber Getter #' #' Get the sensitivity numbers for a `PharmacoSet` object #' #' @describeIn PharmacoSet Return the summary of available sensitivity #' experiments #' #' @examples #' data(CCLEsmall) #' sensNumber(CCLEsmall) #' #' @param object A \code{PharmacoSet} #' @return A \code{data.frame} with the number of sensitivity experiments per #' drug and cell line #' #' #' @importFrom CoreGx sensNumber #' @importFrom methods callNextMethod #' #' @export setMethod(sensNumber, 'PharmacoSet', function(object){ callNextMethod(object=object) }) #' Return the number of times each row-column combination occurs in a LongTable #' #' Reconstruct the @sensitivity$n list data from a LongTable object. This allows #' backwards compatibility with the current accessors for the @sensitivity #' list object. #' #' @section WARNING: #' Because a LongTable has incomplete information about the rows #' and columns present in a CoreSet, this function is unable to zero #' pad missing rows and columns. This will need to be implemented in the #' sensNumber method for a class inheriting from the CoreSet. For example, #' in a `PharmacoGx::PharmacoSet`, `LongTable` rows are cells and columns #' are drugs. #' #' @param longTable A [`LongTable`] longTable object to rebuild the results #' of sensNumber for. #' #' @return [`matrix`] A row by column matrix containing a count for the number #' of times a row-column combination occurs in a LongTable object. #' #' @keywords internal #' @noRd .rebuildN <- function(longTable) { # Extract the information needed to reconstruct the sensitivityRaw array meta <- assay(longTable, 'experiment_metadata')[, .(rn, rowKey, colKey)] setkeyv(meta, c('rowKey', 'colKey')) rowData <- rowData(longTable, key=TRUE)[, .(cellid, drug_cell_rep, rowKey)] setkeyv(rowData, 'rowKey') colData <- colData(longTable, key=TRUE)[, .(drugid, drug_cell_rep, colKey)] setkeyv(colData, 'colKey') # join the tables into the original data num <- merge.data.table(meta, rowData, all=TRUE) setkeyv(num, 'colKey') num <- merge.data.table(num, colData, all=TRUE)[, .(cellid, drugid, drug_cell_rep.x)] num <- dcast(num, cellid ~ drugid, value.var='drug_cell_rep.x', fun.aggregate=max, fill=0) #num <- unique(num) rownames <- num$cellid num[, cellid := NULL] num <- as.matrix(num) rownames(num) <- rownames return(num) } ## TODO:: Make this a unit test ## all.equal(num[rownames(SN), colnames(SN)], SN)
0ae420e65994c01230d0d12f3b0b97999dcdd31f
1ca0218682294cf8d638022589fdac63456fe540
/Documents/BigDataCourse/Projects/Project 3-1/UCI HAR Dataset/Submitted files/run_analysis.R
7c662ef8ea4cbcc7dd73bc0bc2f6ef85507d5d6b
[]
no_license
Sausan/Tidy-Data
c32109cb50408c4422ecb6eb3f38461373e14b15
2774bfb21b3003ebb6c9a77de199e1f864fd853e
refs/heads/master
2021-01-15T17:07:07.946302
2015-03-22T16:17:43
2015-03-22T16:17:43
31,187,230
0
0
null
null
null
null
UTF-8
R
false
false
2,739
r
run_analysis.R
run_analysis <- function(){ library(dplyr) # 1- read the test data frames from the three files in the test folder test_subject <- read.table("test/subject_test.txt") X_test <- read.table("test/X_test.txt") Y_test <- read.table("test/Y_test.txt") # 2- read the features from the feature file in the main folder names_test <- read.table("features.txt") # 3- assign a header to the data in each data frame names(test_subject)<-c("subject_id") names(X_test) <- names_test[,2] names(Y_test) <- c("activity_label") # 4- generate the complete test_data test_data <- cbind(test_subject, Y_test, X_test) # 5- read the training data frames from the three files in the train folder train_subject <- read.table("train/subject_train.txt") X_train <- read.table("train/X_train.txt") Y_train <- read.table("train/Y_train.txt") # 6- read the features from the feature file in the main folder names_train <- read.table("features.txt") # 7- assign a header to the data in each data frame names(train_subject)<-c("subject_id") names(X_train) <- names_test[,2] names(Y_train) <- c("activity_label") # 8- generate the complete test_data train_data <- cbind(train_subject, Y_train, X_train) # 9- Merge the two data sets All_data <- rbind(test_data,train_data) # 10 - Extracts only the measurements on the mean and standard deviation for each measurement ## First remove the duplicates Col_names <- names(All_data) new_names<-make.names(Col_names, unique = TRUE, allow_ = FALSE) names(All_data)<-new_names # 11-Select the columns that have mean and standard Deviation only mean_data <- select(All_data, matches("subject.id"), matches("activity.label"),grep(".mean..",names(All_data)),grep(".std..",names(All_data))) #print (dim(mean_data)) #print (head(mean_data)) # 12 - Uses descriptive activity names to name the activities in the data set ## Read the activitiy names from the activity file activity_name <- read.table("activity_labels.txt") # 13- creat names to the descriptive activity variables names(activity_name)<-c("activity.label", "activity.Name") ## The dataset with descriptive activity names descriptive_data <- merge(mean_data,activity_name, all=TRUE) #14- creates a second, independent tidy data set with the average of each variable for each activity and each subject. tidy_data <- descriptive_data %>% group_by(subject.id, activity.label,activity.Name) %>% summarise_each(funs(mean)) print(names(tidy_data)) # Write the tidy data into a text file write.table(tidy_data, file = "tidy_data.txt",sep=",", qmethod = "double") print("Done!!") # return(head(All_data[1:3])) }
5fcfb359e04761668abfdcf1f6df4fbe792aa5b9
5ec06dab1409d790496ce082dacb321392b32fe9
/clients/r/generated/R/ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfo.r
7569edec2f0cff3e49653d1cde57af19c20da66a
[ "Apache-2.0" ]
permissive
shinesolutions/swagger-aem-osgi
e9d2385f44bee70e5bbdc0d577e99a9f2525266f
c2f6e076971d2592c1cbd3f70695c679e807396b
refs/heads/master
2022-10-29T13:07:40.422092
2021-04-09T07:46:03
2021-04-09T07:46:03
190,217,155
3
3
Apache-2.0
2022-10-05T03:26:20
2019-06-04T14:23:28
null
UTF-8
R
false
false
4,558
r
ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfo.r
# Adobe Experience Manager OSGI config (AEM) API # # Swagger AEM OSGI is an OpenAPI specification for Adobe Experience Manager (AEM) OSGI Configurations API # # OpenAPI spec version: 1.0.0-pre.0 # Contact: opensource@shinesolutions.com # Generated by: https://openapi-generator.tech #' ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfo Class #' #' @field pid #' @field title #' @field description #' @field properties #' #' @importFrom R6 R6Class #' @importFrom jsonlite fromJSON toJSON #' @export ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfo <- R6::R6Class( 'ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfo', public = list( `pid` = NULL, `title` = NULL, `description` = NULL, `properties` = NULL, initialize = function(`pid`, `title`, `description`, `properties`){ if (!missing(`pid`)) { stopifnot(is.character(`pid`), length(`pid`) == 1) self$`pid` <- `pid` } if (!missing(`title`)) { stopifnot(is.character(`title`), length(`title`) == 1) self$`title` <- `title` } if (!missing(`description`)) { stopifnot(is.character(`description`), length(`description`) == 1) self$`description` <- `description` } if (!missing(`properties`)) { stopifnot(R6::is.R6(`properties`)) self$`properties` <- `properties` } }, toJSON = function() { ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfoObject <- list() if (!is.null(self$`pid`)) { ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfoObject[['pid']] <- self$`pid` } if (!is.null(self$`title`)) { ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfoObject[['title']] <- self$`title` } if (!is.null(self$`description`)) { ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfoObject[['description']] <- self$`description` } if (!is.null(self$`properties`)) { ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfoObject[['properties']] <- self$`properties`$toJSON() } ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfoObject }, fromJSON = function(ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfoJson) { ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfoObject <- jsonlite::fromJSON(ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfoJson) if (!is.null(ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfoObject$`pid`)) { self$`pid` <- ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfoObject$`pid` } if (!is.null(ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfoObject$`title`)) { self$`title` <- ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfoObject$`title` } if (!is.null(ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfoObject$`description`)) { self$`description` <- ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfoObject$`description` } if (!is.null(ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfoObject$`properties`)) { propertiesObject <- ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckProperties$new() propertiesObject$fromJSON(jsonlite::toJSON(ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfoObject$properties, auto_unbox = TRUE)) self$`properties` <- propertiesObject } }, toJSONString = function() { sprintf( '{ "pid": %s, "title": %s, "description": %s, "properties": %s }', self$`pid`, self$`title`, self$`description`, self$`properties`$toJSON() ) }, fromJSONString = function(ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfoJson) { ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfoObject <- jsonlite::fromJSON(ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfoJson) self$`pid` <- ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfoObject$`pid` self$`title` <- ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfoObject$`title` self$`description` <- ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfoObject$`description` ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckPropertiesObject <- ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckProperties$new() self$`properties` <- ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckPropertiesObject$fromJSON(jsonlite::toJSON(ComAdobeGraniteQueriesImplHcQueryLimitsHealthCheckInfoObject$properties, auto_unbox = TRUE)) } ) )
dc1ce7d5364794b6ad14c062e30e2260c50ba645
94c16636d7d4c98c918fde5096cf3a4118c02415
/R/lincomb.R
76eecaaf6eb8d520d04ff4bb7208a5e016ca2d21
[]
no_license
RandiLGarcia/dyadr
66c87d6be3b3eb4e7bf37568dc43f6e037d34961
5d317dceb2e278887b9684e172bd79a0c12974af
refs/heads/master
2021-07-14T20:50:59.289227
2021-03-17T13:27:55
2021-03-17T13:27:55
61,908,363
17
14
null
2020-07-29T15:24:03
2016-06-24T19:43:21
R
UTF-8
R
false
false
1,330
r
lincomb.R
#' @name lincomb #' @title Tests of contrasts #' #' Test the sum (S), the average (A), or the difference (D) of two effects from the same model. #' #' #' @param outp is the model object. For exmaple, summary(mod). It can be a gls or lme object. #' @param v1 is the number of the first effect. #' @param v2 is the number of the second effect. #' @param fun is the comparison. Default fun = "D". Other options include "S" the sum, and "A" the average. #' @importFrom stats pnorm #' @details some additional details about these functions #' @export #' # lincomb <- function(outp,v1,v2,fun="D"){ outp = summary(outp) vval = matrix() if(class(outp)[2]=="gls"){ c1=as.numeric(outp$coefficients[v1]) c2=as.numeric(outp$coefficients[v2]) cccov =outp$varBeta[v2,v1] } if(class(outp)[2]=="lme"){ c1=as.numeric(outp$coefficients$fixed[v1]) c2=as.numeric(outp$coefficients$fixed[v2]) cccov =outp$varFix[v2,v1] } c1se=outp$tTable[v1,2] c2se=outp$tTable[v2,2] if(fun=="A")vval[1]=(c1+c2)/2 if(fun=="S")vval[1]=c1+c2 if(fun=="D")vval[1]=c1-c2 if(fun=="A")vval[2]=(c1se^2+c2se^2+2*cccov)/4 if(fun=="S")vval[2]=c1se^2+c2se^2+2*cccov if(fun=="D")vval[2]=c1se^2+c2se^2-2*cccov vval[2]=sqrt(vval[2]) vval[3] = 2-2*pnorm(abs(vval[1]/vval[2])) return(vval) }
7942b0244f0fb6f2bbb672ea126594a9adbeb448
7cccd60294728a159c0063cdda0798905ab03ecf
/SVM.R
0e86ba50b6281e743018fd02150b46cb1f52c244
[]
no_license
kalitiptur/mycode-R
fb70756b70f2ab02ac0a11bed0d6eec2729614d9
fb1a0d9a631806bbb822e8fd2ce33691b59ddbdd
refs/heads/master
2021-09-04T16:58:39.569352
2020-11-30T06:56:46
2020-11-30T06:56:46
191,102,554
0
0
null
null
null
null
UTF-8
R
false
false
301
r
SVM.R
library(e1071) set.seed(1) x = matrix(rnorm(20*2), ncol = 2) x y = c(rep(-1,10), rep(1, 10)) y x[y==1,]=x[y==1,] + 1 plot(x, col = (3-y)) dat = data.frame(x=x, y = as.factor(y)) head(dat) svmfit = svm(y~.,data = dat, kernel = "linear" , cost = 10,scale = FALSE ) plot(svmfit, dat)
fc51a2d4ce6ac46b5077c0d34abe07984272c565
feaf72289a4f75ddf283fd4319a69ba603931432
/Session8_TimeSeries_II/02_VSN.r
ec51df7773dc977ba5e5924ab2a67756c768a31b
[]
no_license
macomino/series-temporales
41523a74a1cfdcab9b96159f124a33dfa564d94d
aca4899ef3c006f44bec8def0fa897077d11afa0
refs/heads/master
2020-04-27T20:46:23.689077
2019-03-15T20:52:56
2019-03-15T20:52:56
174,670,280
0
0
null
null
null
null
UTF-8
R
false
false
3,576
r
02_VSN.r
autoplot(elec) BoxCox.lambda(elec) autoplot(BoxCox(elec, lambda = 0.26)) ############################################################ # DATA TRANSFORMATION ########################################################### # Ajustamos datos de series temporales porque en gral, datos mas limpios y claros # nos llevan a una mejor y más sencilla predicción. # Hay cuatro tipos de ajustes: # ajustes de calendario dframe <- cbind(Monthly = milk, DailyAverage = milk/monthdays(milk)) autoplot(dframe, facet=TRUE) + xlab("Years") + ylab("Pounds") + ggtitle("Milk production per cow") # ajustes de poblacion (per 100.000, per 10^6...) # ajustes por inflación # If zt denotes the price index and yt denotes the # original house price in year t, then xt=yt/zt∗z2000 # gives the adjusted house price at year 2000 dollar values. # transformaciones matemáticas # Al final, se trata de quiar todas las fuentes de variacion # conocidas con el fin de tener menos variabilidad que explicar # DATOS MAS CLAROS = PREDICCIONES MAS PRECISAS ###### NOTA: Predicciones sobre descomposiciones son mejores fit <- stl(elecequip, t.window=13, s.window="periodic") fit %>% seasadj() %>% naive() %>% autoplot() + ylab("New orders index") + ggtitle("ETS forecasts of seasonally adjusted data") fit %>% forecast(method='naive') %>% autoplot() + ylab("New orders index") + xlab("Year") elecequip %>% stlf(method='naive') %>% autoplot() + ylab("New orders index") + xlab("Year") seriesen <- ts(sin(c(0:50))) autoplot(seriesen) autoplot(snaive(seriesen,100)) autoplot(naive(seriesen,10)) autoplot(rwf(seriesen,10)) ################## VSN ################################### # use three variance stabilizating methods on souvenir data autoplot(ts(log(souvenir),start=1,frequency=12)) autoplot(ts(sqrt(souvenir),start=1,frequency=12)) autoplot(ts((souvenir)^1/3,start=1,frequency=12)) autoplot(ts(elec,start=1,frequency=12)) autoplot(ts(log(elec),start=1,frequency=12)) autoplot(ts(sqrt(elec),start=1,frequency=12)) autoplot(ts(elec^(1/3),start=1,frequency=12)) autoplot(BoxCox(elec,lambda = 1/3)) # BoxCox puede encontrar de manera automatica la # lambda que mejor estabilice los datos lambda=BoxCox.lambda(elec) autoplot(BoxCox(elec,lambda)) # la funcion de prediccion snaive busca lambda automáticamente fit<-snaive(elec,lambda=1/3) autoplot(fit,include=120) # Ejercicio 2: Busca lambda para el data set gas lambda=BoxCox.lambda(gas) fit<-snaive(gas,lambda=lambda) autoplot(fit,include=120) ################## Bias adjustment ######################### # Si se realiza el ajuste de una serie usando transformaciones de Box-Cox # la "back-transformation" de la media es la mediana en la escala original. # Esto puede ser un pb si por ejemplo queremos sumar territorios. # EN esos casos podemos preferir un ajuste del sesgo #Forecasts of egg prices using a random walk with drift applied #to the logged data (lambda=0) #Notice how the skewed forecast distribution pulls up the #point forecast when we use the bias adjustment. #Bias adjustment is not done by default in the forecast package. #If you want your forecasts to be means rather than medians, #use the argument biasadj=TRUE when you select your Box-Cox #transformation parameter. fc <- rwf(eggs, drift=TRUE, lambda=0, h=50, level=80) fc2 <- rwf(eggs, drift=TRUE, lambda=0, h=50, level=80, biasadj=TRUE) autoplot(eggs) + autolayer(fc, series="Simple back transformation") + autolayer(fc2, series="Bias adjusted", PI=FALSE) + guides(colour=guide_legend(title="Forecast"))
aa8ee58fe6d62dbc6e3ffb9598c96562748a6f76
8f536537be5bf214525ea11bb84c568c9fb82fe7
/R/gibbs_bin.R
8bed3b4ae34a5ce9f16b87c532cbaf56d442d751
[ "MIT" ]
permissive
yuliasidi/bin2mi
5fa742f72d21034c7def62bb30d078e63c18d2ff
51ec9b77d0afb0498ca59fbb91fd71e80479dede
refs/heads/master
2021-06-22T15:01:14.716873
2021-02-20T18:53:31
2021-02-20T18:53:31
197,215,389
0
0
NOASSERTION
2021-02-20T18:53:32
2019-07-16T15:00:09
R
UTF-8
R
false
false
1,007
r
gibbs_bin.R
#' @title Gibbs sampling for beta-binomial distribution #' @description performs Gibbs sampling for beta-binomial distribution #' @param dt tibble #' @param B numeric, Default: 1000, number of iterations #' @param y.m string, Default: 'y.m', column with incomplete binary data #' @return complete dataset after B iterations of Gibbs sampler #' @seealso #' \code{\link[stats]{Beta}},\code{\link[stats]{Binomial}} #' @rdname gibbs_bin #' @export #' @importFrom stats rbeta rbinom gibbs_bin <- function(dt, B = 1000, y.m = 'y.m'){ pstar <- vector('numeric',length = B) y.im <- gsub('\\.m','.im',y.m) for(i in 1:B){ if(i==1){ v <- dt[dt$r==0,y.m] pstar.old <- Inf }else{ v <- dt[[y.im]] } vec <- table(v) + 1 names(vec) <- c('fail','success') pstar[i] <- stats::rbeta(n = 1, shape1 = vec[['success']], shape2 = vec[['fail']]) dt[[y.im]] <- dt[[y.m]] dt[dt$r==1,y.im] <- stats::rbinom(sum(dt$r==1), 1, pstar[i]) } dt$pstar <- pstar[B] dt }
9c720c64b62595a83aa5c697bed1b2400303985b
c555c086b271eaca27472410f3aa5c97709958d9
/tests/testthat/dummy.R
7cbc62fdd8ac1009f548cddc3fdd00b897133d4b
[ "MIT" ]
permissive
filipezabala/embedr
c3e9e299bc1ed9a8e7f811a96c7e53b60fe53b73
64eee3d975392c20f2242c9663f607e3790a322e
refs/heads/master
2023-03-20T14:37:29.654223
2020-07-09T07:54:50
2020-07-09T07:54:50
null
0
0
null
null
null
null
UTF-8
R
false
false
72
r
dummy.R
# this file just exists for the sake of testing the is.local() function
51d15895ac285d3cc0e9a8992bb028f1f9e446ff
0e595bb86c1a6751c169a32383281ff233d27f40
/man/qtlSignTest.Rd
1c679c9d1cfa6db157b1214ea7507f673a96a313
[]
no_license
pinbo/qtlTools
bd4b5e684c7353eedacc5cf48aec3344a7caa5d2
96f6b61e255314f6a5a32e38105c160dc52c037a
refs/heads/master
2022-01-04T23:47:17.044866
2018-10-02T20:52:47
2018-10-02T20:52:47
null
0
0
null
null
null
null
UTF-8
R
false
true
942
rd
qtlSignTest.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/qtlSignTest.R \name{qtlSignTest} \alias{qtlSignTest} \title{Conduct the sign test for expression bias} \usage{ qtlSignTest(effect = NULL, trans.effect = NULL, verbose = T, ...) } \arguments{ \item{effect}{Signed cis-eQTL or allele-specific expression log2-fold change data} \item{trans.effect}{If effect is signed cis-eQTL effect, one can test the independence of cis and trans eQTL evolution. Here provide effect effect of trans QTL.} \item{verbose}{should results be printed to console?} \item{...}{Additional arguments to pass on to fisher.test / binom.test, such as null hypotheses.} \item{id}{label for output} } \value{ The results of a binomial test (or Fisher's exact test if trans.dir is specified). } \description{ \code{qtlSignTest} Uses the Fraser etc. sign test to assess neutral evolution for a set of expression phenotypes } \details{ See ... }
b81be94afecb4e84bc6af2db46dfe99b9f6e678f
4f094c97c55155204a7b56a6a316646d4868570c
/TSP.R
e585ff7fb484491bf7e37653d52d3e29f84e28d0
[]
no_license
Super-rookie-Py/DataRst04-TSF
9f050800bae38c022c1264bd41dca6a93f4bd504
12a5bb4e1760563142c10421056dbe0fe2d9b289
refs/heads/master
2022-08-12T20:00:40.753067
2020-05-20T14:26:56
2020-05-20T14:26:56
265,590,754
0
0
null
null
null
null
UTF-8
R
false
false
3,781
r
TSP.R
### 2020/05/20 keonwoo Park ## Data Structure 2 ## 최단거리구하기 ####### Distance Table data_distance<-matrix(,nrow=5,ncol=5) data_distance[,]=Inf data_distance[1,2]=1 data_distance[1,3]=3 data_distance[1,5]=2 data_distance[2,1]=1 data_distance[2,3]=1 data_distance[3,2]=1 data_distance[3,1]=3 data_distance[3,4]=2 data_distance[4,3]=2 data_distance[4,5]=2 data_distance[5,1]=2 data_distance[5,4]=2 ### Shortest path(최단거리) data_distance_1<-NULL temp_distance<-data.frame(Origin=0,Destination=0,Distance=0) ## index table index_distance<-data.frame(Origin=1:5,Index=rep(0,time=5)) i1=0 pre_i=0 for(i in 1:5){ for(j in 1:5){ if(is.finite(data_distance[i,j])){ temp_distance$Origin=i temp_distance$Destination=j temp_distance$Distance<-data_distance[i,j] data_distance_1<-rbind(data_distance_1,temp_distance) ## index table i1=i1+1 if(pre_i!=i){ index_distance$Index[i]=i1 pre_i=i } } } } Random_Sequence<-function(x,k,rep=F){ n=length(x) if(rep==F){ for(i in 1:k){ j=floor(runif(1,min=i,max=(n+1))) temp_value=x[j] x[j]=x[i] x[i]=temp_value } }else{ x=x[floor(runif(k,min=1,max=(n+1)))] } return(x[1:k]) } Random_Sequence(1,2) ################################################################################## Random_Sequence_2<-function(d){ size_d=length(d) for(i in 1:(size_d-1)){ random_index = ceiling(i+runif(1)*(size_d+1-i)-1) temp_value=d[random_index] d[random_index]=d[i] d[i]=temp_value } return(d) } Selection_Sort_df<- function(d,col_num=1,decreasing=FALSE){ size_d <- length(d[,1]) if(decreasing == FALSE){ for(i1 in 1:(size_d-1)){ min_value = d[i1, col_num] min_index=i1 for(i2 in (i1+1):size_d){ if(d[i2,col_num]<min_value){ min_value=d[i2,col_num] min_index=i2 } } ### Swap tem_value = d[i1,] d[i1,] = d[min_index,] d[min_index,] = tem_value } }else{ for(i1 in 1:(size_d-1)){ max_value = d[i1,col_num] max_index=i1 for(i2 in (i1+1):size_d){ if(d[i2,col_num]>max_value){ max_value=d[i2,col_num] max_index=i2 } } ### Swap tem_value = d[i1,] d[i1,] = d[max_index,] d[max_index,] = tem_value } } return(d) } ### TSP n= 100 result<-data.frame(x1=rep(0,n),x2=rep(0,n),x3=rep(0,n), x4=rep(0,n), x5=rep(0,n), distance=rep(0,n)) for(i1 in 1:n){ Sequence=Random_Sequence_2(1:5) distance=0 for(i2 in 1:4){ distance=distance + data_distance[Sequence[i2],Sequence[i2+1]] } distance=distance + data_distance[Sequence[5],Sequence[1]] result[i1,1:5] =Sequence result$distance[i1]=distance } Selection_Sort_df(result,6) ### TSP set.seed(1234) x=runif(100,0,100) y=runif(100,0,100) data_distance<-matrix(nrow=100,ncol=100) for(i1 in 1:99){ for(i2 in (i1+1):100){ data_distance[i1,i2]=((x[i1]-x[i2])^2+(y[i1]-y[i2])^2)^(1/2) data_distance[i2,i1]=data_distance[i1,i2] } } data_distance summary(data_distance) ####################################### n= 100 result<-data.frame(x1=rep(0,n),x2=rep(0,n),x3=rep(0,n), x4=rep(0,n), x5=rep(0,n), distance=rep(0,n)) for(i1 in 1:n){ Sequence=Random_Sequence_2(1:5) distance=0 for(i2 in 1:4){ distance=distance + data_distance[Sequence[i2],Sequence[i2+1]] } distance=distance + data_distance[Sequence[5],Sequence[1]] result[i1,1:5] =Sequence result$distance[i1]=distance } Selection_Sort_df(result,6)
04dc3809fe443c6adacc2c4e2e26f02a3329fb7e
9a2e827e3c2a1e739a3222fbb2a30705d18a7a17
/Graphs Function.R
90d580f19fbb5760ca35c674b80c8a50cdde4ac9
[]
no_license
darshan2696/My-Codes
53192ce2873f01ca88f0b07e19109b9a7aaea7d6
d7548cd98c84bd7ac6e1d54a0551112188948559
refs/heads/master
2022-12-18T11:22:37.584467
2020-09-24T07:13:29
2020-09-24T07:13:29
281,865,386
0
0
null
null
null
null
UTF-8
R
false
false
2,500
r
Graphs Function.R
# A FUNCTION THAT EXPORTS GRAPHS #---------------------------------- View(cars) Graphs <- function(data,var= 1:ncol(data), direct= "",tresh=10) #feed your working directry path into direct { setwd(direct) for (i in var) #var is the number of choosen columns in the dataset, by default all columns will be taken { test = table(data[,i]) if(is.numeric(data[,i]) && length(test) > tresh/100*nrow(data)) #tresh is used to ensure that the categorical and numerical variables are classified correctly { png(paste(names(data)[i], ".png", sep="")) #NOTE this step par(mfrow=c(2,1)) #used to display 2 graphs in a single picture boxplot(data[,i], main = paste("Boxplot of", names(data)[i]), #boxplot ylab = names(data)[i], col = "maroon", border = "grey5", horizontal = T) hist(data[,i], main = paste("Histogram of", names(data)[i]), #histogram xlab = names(data)[i], ylab = "No. of Houses", col = "lightgreen", border=F) dev.off() #export } else { png(paste(names(data)[i], ".png", sep="")) par(mfrow=c(2,1)) barplot(table(data[,i]) , main = paste("Barplot of", names(data)[i]), #barplot ylab = names(data)[i], col = "maroon", border = "grey5" ) pie(table(data[,i]) , main = paste("Piechart of", names(data)[i]), #pie chart ylab = names(data)[i], col = "lightgreen") dev.off() } } } #Explanation: #------------- par(mfrow=c(2,1)) boxplot(cars[,2], main = paste("Boxplot of", names(data)[2]), #boxplot ylab = names(data)[2], col = "maroon", border = "grey5", horizontal = T) hist(cars[,2], main = paste("Histogram of", names(data)[2]), #histogram xlab = names(data)[2], ylab = "No. of Houses", col = "lightgreen", border=F) Graphs(cars,direct="C:\\Users\\ethic\\Desktop\\test") #example: #Graphs(cars,c(1,3,5,10,11)) #here, only the graphs relating to columns 1,2,5,10,11 will get eporting to you set #working directory
2faa169116d06052c162e0bbf7aecf7a65da8a2d
340f0cdacd7bd1994627cb34203915bd17d56186
/R/normalizer.R
7b1f23682080eb77faedc53c7b74b82a88c31be6
[]
no_license
PCRuniversum/chipPCR
af593b813f8c59d5027d8a118955666f0fff283e
b7c751a8716c814c63825d50007699dbfb7a22f4
refs/heads/master
2023-03-11T02:18:02.994570
2021-02-27T20:04:47
2021-02-27T20:04:47
19,281,268
2
3
null
2020-07-27T13:48:14
2014-04-29T15:22:30
R
UTF-8
R
false
false
903
r
normalizer.R
normalizer <- function(y, method.norm = "none", qnL = 0.03) { if (qnL <= 0.001 || qnL >= 0.999) stop("qnL must be within 0.001 and 0.999.") # Select a method for the normalization method.norm <- check.method(c("none", "luqn", "minm", "max", "zscore"), method.norm) # TODO Test meaningfulness of qnL switch(method.norm, none = do.call(function(y) y, c(list(y = y))), minm = do.call(function(y) (y - min(y)) / (max(y) - min(y)), c(list(y = y))), max = do.call(function(y) (y / max(y)), c(list(y = y))), luqn = do.call(function(y, qnL) (y - quantile(y, qnL)) / (quantile(y, 1 - qnL) - quantile(y, qnL)), c(list(y = y, qnL = qnL))), zscore = do.call(function(y) (y - mean(y)) / sd(y), c(list(y = y))) ) }
ae817912397b72fee42464a50f254c79852f04a7
1bc0fe0762e4ee96144c521211f7ddf4fec54be1
/code/2_2AllHabitatsNMDS.R
21396c29fb9c19f3d07f5374356695fda035985e
[]
no_license
melaniekamm/IthacaBees_BySeasonScale
6e66573e2895af02c45778a9a299003b8e425dc9
99080523594b658fa0f2e7e20aff0434f9c317c4
refs/heads/main
2023-06-23T21:47:15.470526
2023-06-15T21:08:12
2023-06-15T21:08:12
363,954,203
0
0
null
null
null
null
UTF-8
R
false
false
4,076
r
2_2AllHabitatsNMDS.R
library(dplyr) rm(list=ls()) if (!dir.exists('./figures')) { dir.create('./figures') dir.create('./figures/supplementary') dir.create('./figures/supplementary/NMDS_plants') } plant_rich <- read.csv('./data/Iverson_plant/allplants/richness_by_site.csv')%>% dplyr::mutate(Site= gsub(Site, pattern='Black_Diamond', replacement='Merwin')) cover_long <- read.csv('./data/Iverson_plant/plant_cover_by_species.csv') cover_long <- dplyr::filter(cover_long, !subplot %in% c('Plot A', 'Plot B', 'Plot C', 'D', 'E', 'No_canopy_trees')) cover_long <- dplyr::mutate(cover_long, Site = gsub(Site, pattern='Black_Diamond', replacement='Merwin', fixed=T)) %>% dplyr::mutate(site_plot = paste0(Site, "_", subplot), Genus_species = paste0(Genus, ".", species)) %>% dplyr::group_by(Genus_species, Genus, species, family, common, Site) %>% dplyr::summarise(mean_pct_cover = sum(pct_cover)) %>% dplyr::ungroup() %>% dplyr::mutate(family = as.character(family)) #add one missing family cover_long$family[cover_long$Genus == 'Cuscuta'] <- 'Convolvulaceae' #NMDS ordination on plant community data colors <- read.csv('./data/misc/habitat_colors.csv') %>% dplyr::mutate(color2 = rev(color)) #try a different package for ordination and plotting #devtools::install_github("MadsAlbertsen/ampvis2") library(ampvis2); library(ggplot2) #get species data in correct format speciessite <- dplyr::mutate(cover_long, rounded_cover = mean_pct_cover*10, Genus_species = as.factor(Genus_species), Site = as.factor(Site)) %>% dplyr::select(-common, -mean_pct_cover) %>% tidyr::spread(key=Site, value=rounded_cover) %>% replace(is.na(.), 0) %>% dplyr::rename(Family=family, Species= species, OTU=Genus_species) %>% dplyr::mutate(Kingdom = 'Plantae', Phylum = "A", Class= "B", Order="C") %>% dplyr::select(Kingdom, Phylum, Class, Order, Family, Genus, Species, dplyr::everything()) a <- speciessite[,1:7] b <- speciessite[,8:length(speciessite)] speciessite <- cbind(b,a) md <- dplyr::rename(plant_rich, SampleID=Site) ampdata <- amp_load(otutable = speciessite, metadata = md) t <- amp_ordinate(data=ampdata, type='NMDS', distmeasure='bray', transform='none', filter_species = 0, species_plot = F, species_label_taxonomy = 'OTU', sample_colorframe = 'habitat', sample_colorframe_label="habitat", sample_color_by='habitat', #sample_point_size=4, species_nlabels = 0, print_caption = T, detailed_output = T) t$plot + scale_color_manual(values= as.character(colors$color)) + scale_fill_manual(values= as.character(colors$color)) + guides(color=guide_legend(ncol=1)) + theme_classic() # ggsave(device='svg', filename='PlantComm_NMDS_AllHabitats.svg', path='./figures/supplementary/NMDS_plants', # width=7, height=6.25) tlab <- amp_ordinate(data=ampdata, type='NMDS', distmeasure='bray', transform='none', filter_species = 0, species_plot = T, species_label_taxonomy = 'OTU', sample_colorframe = 'habitat', #sample_colorframe_label="habitat", sample_color_by='habitat', #sample_point_size=4, species_nlabels = 25, print_caption = F, detailed_output = T) tlab$plot + scale_color_manual(values= as.character(colors$color)) + scale_fill_manual(values= as.character(colors$color)) + guides(color=guide_legend(ncol=1)) + theme_classic() # ggsave(device='svg', filename='PlantComm_NMDS_AllHabitats_SpeciesNames.svg', path='./figures/supplementary'/NMDS_plants, # width=7, height=6.25) # # axes <- dplyr::select(t$plot$data, SampleID, NMDS1, NMDS2) # write.csv(axes, './data/Iverson_plant/allplants/NMDS_Ordination_Axis_Loadings.csv')
5973c2630b60f0df54e48554d2e358810b034ef8
96895e3d650501bb3ebf4fa4bcbd4ccc8aed3999
/Part1Exercises/ICA/STAT3019ICA1/step 2 K-means.R
170d6b905c872465dd5d137f57738db1f4ad2cba
[]
no_license
linyina/Clustering-in-R
5570fad12c872296250d84b66d91df2785aa1888
c33a466fe421a2bb8808ac11dcbf94d365cb3a92
refs/heads/master
2020-03-22T11:46:06.990177
2018-08-14T08:50:34
2018-08-14T08:50:34
139,994,814
0
0
null
null
null
null
UTF-8
R
false
false
2,479
r
step 2 K-means.R
############################################ ##### Step 2: Kmeans clustering ##### ############################################ ## random try sdortmundk5<- kmeans(sdortmund, centers = 5, nstart = 100) pairs(sdortmund, col=sdortmundk5$cluster, pch=clusym[sdortmundk5$cluster]) sdortmundk5$centers ## the means (scaled) of each clusters in different factors ## Cluster cg1<- clusGap(dortmund,kmeans,20,B=100,d.power=2,spaceH0="scaledPCA",nstart=100) # 1??? plot(cg1) print(cg1, method = "firstSEmax") plot(1:20,cg1$Tab[,1],xlab="k",ylab="log S_k",type="l") points(1:20,cg1$Tab[,2],xlab="k",ylab="log S_k",type="l",lty=2) legend("topright",c("log S_k in data","E(log S_k) uniform"),lty=1:2) dev.copy(pdf,"clusgap logsk plots.pdf") dev.off() help(legend) #### scale sdortmund<- scale(dortmund) pairs(dortmund) cg2<-clusGap(sdortmund, kmeans, K.max = 20, B=100, d.power = 2, iter.max=20,spaceH0 = "original", nstart=100) plot(cg2) dev.copy(pdf, "clusgap_scaled plots.pdf") dev.off() print(cg2, method = "Tibs2001SEmax") print(cg2, method = "firstSEmax") plot(1:20,cg2$Tab[,1],xlab="k",ylab="log S_k",type="l", ylim=c(6,10)) points(1:20,cg2$Tab[,2],xlab="k",ylab="log S_k",type="l",lty=2) legend("topright",c("log S_k in data","E(log S_k) uniform"),lty=1:2) dev.copy(pdf, "clusgap_logSKplots_original_scaled") dev.off() cg3<- clusGap(sdortmund, kmeans, K.max = 20, B=100, d.power = 2, iter.max=20, spaceH0 = "scaledPCA", nstart=100) print(cg3, method="Tibs2001SEmax") print(cg3, method = "firstSEmax") # 3 unchanged plot(cg3) # values of gap dev.copy(pdf, "clusgap_scaled plots_scaledPCA.pdf") dev.off() plot(1:20,cg3$Tab[,1],xlab="k",ylab="log S_k",type="l", ylim=c(6,10)) points(1:20,cg3$Tab[,2],xlab="k",ylab="log S_k",type="l",lty=2) legend("topright",c("log S_k in data","E(log S_k) uniform"),lty=1:2) dev.copy(pdf, "clusgap_logSKplots_scaledPCA_scaled") dev.off() adjustedRandIndex(kmbundestag5$cluster,wbundestag5) ####### PAM dortmundp5 <- pam(dortmund, 5) help(pam) ####### Distances eusdortmund <- dist(sdortmund,method="euclidean") mansdortmund <- dist(sdortmund,method="manhattan") plot(eusdortmund, mansdortmund) olivecov <- cov(olive) molive <- as.matrix(olive) for (i in 1:572) mahalm[i,] <- mahalanobis(molive,molive[i,],olivecov) mahalm <- matrix(0,ncol=170,nrow=170) sdortmundcov<- cov(sdortmund) sdortmund1 <- as.matrix(sdortmund) for (i in 1:170) mahalm[i,] <- mahalanobis(sdortmund1, sdortmund1[i,], sdortmundcov) help("mahalanobis")
b9b90e6410d6e78e307b99f1f979becdfe31e42a
1b983bf2ce7086842e0aaa737bc553cf57dcab6a
/1_dataprocessing/patch1_2_1.R
ca3a8ae194db85c19bc680c3da72fc8b697fd495
[]
no_license
floatSDSDS/Yelp_Dataset_regionPredictor
22cc6a66480ee2fbea329c630777b7ccfa93fd82
7a1d8901a0fe603b0c0e6ff6af752fcf81958edf
refs/heads/master
2021-01-12T12:44:30.369839
2016-10-03T08:14:21
2016-10-03T08:14:21
69,851,476
0
0
null
null
null
null
UTF-8
R
false
false
1,829
r
patch1_2_1.R
i<-1; set_test<-list(); for (i in 1:25){ temp<-1; len<-length(test[[i]][2]$date); ##################################################test ########################################attribute ##################################wifi,noise wifi<-test[[i]][[3]]$Wi.Fi; temp[wifi=="paid"]<-0; temp[wifi=="free"]<-2; temp[is.na(temp)]<-1; wifi<-temp; noise<-test[[i]][[3]]$Noise.Level; temp[noise=="loud"]<-1; temp[noise=="quiet"]<-3; temp[noise=="very_loud"]<-0; temp[is.na(temp)]<-2; noise<-temp; ##################################parking ##################################price.range,stars,business_id price<-as.numeric(test[[i]][[3]]$Price.Range); price[is.na(price)]<-0; stars<-test[[i]][[3]]$stars; business_id<-test[[i]][[3]]$business_id; #################################### attributes<-data.frame(wifi,noise,price,stars,business_id); ########################################basic ##################################lon,lat,rev_c,stars,bs_id longitude<-as.vector(test[[i]][[4]]$longitude); longitude<-as.numeric(longitude); latitude<-as.vector(test[[i]][[4]]$latitude); latitude<-as.vector(latitude); stars_busi<-test[[i]][[4]]$stars; review_count<-test[[i]][[4]]$review_count; business_id<-test[[i]][[4]]$business_id; ##################################state,city state<-test[[i]][[4]]$state; city<-test[[i]][[4]]$city; basic<-data.frame(longitude,latitude,stars_busi, review_count,state,city,business_id); set_test$user_id[[i]]<-training[[i]][[1]]; set_test$basic[[i]]<-basic; set_test$attributes[[i]]<-attributes; } rm(attributes,basic,business_id,city,i,j,k,latitude,longitude,len,noise, price,review_count,stars_busi,stars,state,temp,wifi); rm(test,training);
e1401b70bcd63d75782f69e435e4aa984d6260d1
ffdea92d4315e4363dd4ae673a1a6adf82a761b5
/data/genthat_extracted_code/tsDyn/tests/lstar.R
8dc0832df91fcd76ed9f389043828949952d889e
[]
no_license
surayaaramli/typeRrh
d257ac8905c49123f4ccd4e377ee3dfc84d1636c
66e6996f31961bc8b9aafe1a6a6098327b66bf71
refs/heads/master
2023-05-05T04:05:31.617869
2019-04-25T22:10:06
2019-04-25T22:10:06
null
0
0
null
null
null
null
UTF-8
R
false
false
1,552
r
lstar.R
library(tsDyn) mod.lstar <- lstar(log10(lynx), m=2, mTh=c(0,1), control=list(maxit=3000)) mod.lstar deviance(mod.lstar) c(AIC(mod.lstar),BIC(mod.lstar)) mod.lstar2 <- lstar(log10(lynx), m=1, control=list(maxit=3000)) mod.lstar2 deviance(mod.lstar2) c(AIC(mod.lstar2),BIC(mod.lstar2)) ## include: none mod.lstar_noConst <- lstar(log10(lynx), m=2, control=list(maxit=1000), include="none") mod.lstar_noConst deviance(mod.lstar_noConst) c(AIC(mod.lstar_noConst),BIC(mod.lstar_noConst)) ## include: trend mod.lstar_trend <- lstar(log10(lynx), m=2, control=list(maxit=1000), include="trend") mod.lstar_trend deviance(mod.lstar_trend) c(AIC(mod.lstar_trend),BIC(mod.lstar_trend)) ## include: both mod.lstar_both <- lstar(log10(lynx), m=2, control=list(maxit=1000), include="both") mod.lstar_both deviance(mod.lstar_both) c(AIC(mod.lstar_both),BIC(mod.lstar_both)) ## grid attributes mod.lstar3 <- lstar(log10(lynx), m=2, control=list(maxit=3000), starting.control=list(gammaInt=c(1,1000), nTh=100)) mod.lstar3 deviance(mod.lstar3) c(AIC(mod.lstar3),BIC(mod.lstar3)) mod.lstar_ALL <- list(mod.lstar=mod.lstar, mod.lstar2=mod.lstar2, mod.lstar_noConst=mod.lstar_noConst,mod.lstar_trend=mod.lstar_trend, mod.lstar_both=mod.lstar_both,mod.lstar3=mod.lstar3) sapply(mod.lstar_ALL, function(x) c(AIC=AIC(x), BIC=BIC(x), deviance=deviance(x))) sapply(mod.lstar_ALL, function(x) tail(coef(x),4)) sapply(mod.lstar_ALL, function(x) tail(coef(x,hyperCo=FALSE),4)) sapply(mod.lstar_ALL, function(x) head(x$model,2))
7c259256a5857d97ced9c0d51e12468e3bd0bb53
cc3af520071dae6080c9abd70d08013eb769ec0a
/man/bootmatch.Rd
01719001540570c1816c7725fea7df86db103e24
[]
no_license
Libardo1/PSAgraphics2
432c8a6c68c42d703570fd8b710b1b4bb9c139a6
be41bd2f72b98fa976bab8e0446db8a86d27d10d
refs/heads/master
2021-01-18T07:33:35.032074
2013-10-25T18:50:56
2013-10-25T18:50:56
null
0
0
null
null
null
null
UTF-8
R
false
false
865
rd
bootmatch.Rd
\name{bootmatch} \alias{bootmatch} \title{Bootstrap treatment units for propensity score analysis} \usage{ bootmatch(Tr, Y, X, M = 100, ratio = 3, nstrata = 5, sample.size = (ratio * min(table(Tr))), ...) } \arguments{ \item{Tr}{numeric (0 or 1) or logical vector of treatment indicators.} \item{Y}{vector of outcome varaible.} \item{X}{matrix or data frame of covariates used to estimate the propensity scores.} \item{M}{number of bootstrap samples to generate.} \item{ratio}{the ratio of control units to sample relative to the treatment units.} \item{sample.size}{the size of each bootstrap sample of control units.} \item{nstrata}{number of strata to use.} \item{...}{other parameters passed to \code{\link{Match}} and \code{\link{psa.strata}}} } \description{ Bootstrap treatment units for propensity score analysis }
269e4d1bf3bd3efec9e93ccbba09182a6ef216fd
673d3cb2c9608d08f1ef65e7e72133783c441a96
/Tong_Anal/3 chfls.R
65498382236b31826b9105b453f4a3988320715e
[]
no_license
SilverwestKim/Univ
6db157d36317ab72d7b10ed4d015851d36c62273
6f9cc90c3500e60548ef70334ecbdd794fb95337
refs/heads/master
2021-05-02T02:29:18.693866
2018-11-07T14:39:54
2018-11-07T14:39:54
120,883,806
0
0
null
null
null
null
UHC
R
false
false
1,247
r
3 chfls.R
# 데이터 불러 오기 chfls<-read.csv("CHFLS.csv",header=T) str(chfls) table(chfls$R_happy) xtabs(~R_happy,data=chfls) barplot(table(chfls$R_happy)) # somewhat happy가 가장 많고 very happy가 # 그 다음으로 많다. 전체적으로 not too happy와 # very unhappy의 비율이 높지 않다. # 건강상태 vs. 행복정도 table(chfls$R_health) barplot(table(chfls$R_health)) # not good과 poor의 비율이 작으므로 전반적으로 # 건강상태가 나쁘지 않은 것으로 보인다. table<-table(chfls$R_health,chfls$R_happy) table prop.table(table) margin.table(table,margin=1) margin.table(table,margin=2) install.packages("gmodels") library(gmodels) CrossTable(table,prop.r=T,prop.c=F,prop.t=F,expected=F,prop.chisq=F) CrossTable(table,prop.r=T,prop.c=F,prop.t=F,expected=T,prop.chisq=T) mosaicplot(table) # 전체적으로 행복정도와 건강이 연관이 있어 보인다. # very happy인 경우 건강이 좋을수록 비율이 늘어나는 # 경향이 있는 반면, very unhappy의 경우 # 건강이 poor에서 빈도가 증가하는 것을 알 수 있다. CrossTable(chfls$R_health,chfls$R_happy) with(chfls,CrossTable(R_health,R_happy)) mosaicplot(with(chfls,table(R_region,R_happy)))
f63b1747fb2da238b3073956a23a8cb51b7891c4
ba9921f0c04b74a1136c3fea0430cca3961e28d9
/plot4.R
8e363f501af67b3cb5d6ced6bdf9a01355a56c45
[]
no_license
cmconklin/ExData_Plotting1
88d20115aad3cc7f7e42473fb53fc3e8f17e4957
d975eb615df6d96bb062f6d97c9b7403d123ab7a
refs/heads/master
2021-01-24T21:19:47.493095
2015-11-08T22:26:39
2015-11-08T22:26:39
45,774,653
0
0
null
2015-11-08T09:41:25
2015-11-08T09:41:24
null
UTF-8
R
false
false
4,496
r
plot4.R
## This R script will create Plot3 of he Assignment 1, ## Global Active Power usage between 2007-02-01 and 2007-02-02 ## The print statements provide a clue as to what steps are ## to be executed. ## ## The datafile must already exist in a relative directory "../data" ## ## To execute: > source("plot3.R") ## ## This is a single line graph with three variables plot1of4 = TRUE plot2of4 = TRUE plot3of4 = TRUE plot4of4 = TRUE #---------------------------------------------------------------------- # Setup 2 x 2 Plots #---------------------------------------------------------------------- print("Setup 2 x 2 Plots") par(mfrow = c(2,2)) #---------------------------------------------------------------------- # Setting up data #---------------------------------------------------------------------- print("*** Assignment-1, Plot4 ***") print("Setting data for plots") print(" Set the beginning and ending dates to filter data.") dateStart <- as.Date("2007-02-01", format = "%Y-%m-%d") dateEnd <- as.Date("2007-02-02", format = "%Y-%m-%d") print(" Reading Data File ...") dfHpcOrig <- read.csv2("../data/household_power_consumption.txt", sep = ";", as.is = TRUE) print(" Reading Data File - Done") print(" Make copy of original data to work with") dfHpc <- dfHpcOrig print(" Convert 2nd column - Time, to datetime stamp class.") dfHpc[[2]] <- strptime(paste(dfHpc$Date,dfHpc$Time), format = "%d/%m/%Y %H:%M:%S") print(" Convert 1st column - Date, to a date class.") dfHpc[[1]] <- as.Date(dfHpc$Date, format = "%d/%m/%Y") print(" Filter date for begin and ending dates") dfHpc <- dfHpc[which(dfHpc$Date >= dateStart & dfHpc$Date <= dateEnd), ] #str(dfHpc) print(" Convert Global_active_power to a number") suppressWarnings(dfHpc$Global_active_power <- as.numeric(dfHpc$Global_active_power)) print(" Convert Global_reactive_power to a number") suppressWarnings(dfHpc$Global_reactive_power <- as.numeric(dfHpc$Global_reactive_power)) print(" Convert Sub_Metering_x to a number") suppressWarnings(dfHpc$Sub_metering_1 <- as.numeric(dfHpc$Sub_metering_1)) suppressWarnings(dfHpc$Sub_metering_2 <- as.numeric(dfHpc$Sub_metering_2)) suppressWarnings(dfHpc$Sub_metering_3 <- as.numeric(dfHpc$Sub_metering_3)) #str(dfHpc) # str(dfHpc) # head(dfHpc, 3) #---------------------------------------------------------------------- # Plot 1 of 4: Global Active Power #---------------------------------------------------------------------- if (plot1of4 == TRUE) { print("Plot1: Global Active Power") print(" Global Active Power in black") plot(dfHpc$Time, dfHpc$Global_active_power, type="l", ylab = "Global Active Power", xlab = "", cex.lab=0.7) } #---------------------------------------------------------------------- # Plot 2 of 4: Voltage #---------------------------------------------------------------------- if (plot2of4 == TRUE) { print("Plot2: Voltage") print(" Plot Voltage in black") plot(dfHpc$Time, dfHpc$Voltage, type="l", ylab = "Voltage", xlab = "datetime", cex.lab=0.7) } #---------------------------------------------------------------------- # Plot 3 of 4: Sub Meter Usage #---------------------------------------------------------------------- if (plot3of4 == TRUE) { print("Plot3: Sub Meter Usage ...") print(" Plot Sub_Meter_1 in black") plot(dfHpc$Time, dfHpc$Sub_metering_1, type="l", ylab = "Energy sub metering", xlab = "", cex.lab=0.7) print(" Plot Sub_Meter_2 in red") points(dfHpc$Time, dfHpc$Sub_metering_2, type="l", col = "red") print(" Plot Sub_Meter_3 in blue") points(dfHpc$Time, dfHpc$Sub_metering_3, type="l", col = "blue") print(" Add Legend") legend("topright",c("Sub_metering_1","Sub_metering_2","Sub_metering_3"), col=c("black","red","blue"), bty="n", lwd=c(1,1,1), cex=0.7, y.intersp=0.7) } #---------------------------------------------------------------------- # Plot 4 of 4: Global Reactive Power #---------------------------------------------------------------------- if (plot4of4 == TRUE) { print("Plot4: Global Reactive Power") print(" Plot Global_reactive_Power in black") plot(dfHpc$Time, dfHpc$Global_reactive_power, type="l", ylab = "Global_reactive_power", xlab = "datetime", cex.lab=0.7) } #---------------------------------------------------------------------- # Create png file #---------------------------------------------------------------------- print("Creating Plot4.png file") dev.copy(png, file="plot4.png", width=480, height=480) dev.off()
1b66c967a195c71e47d65929cef141408cd1cbdf
3077edf6801a2a9b16b5627ef73f1187d6e8124f
/all_functions.R
891909711924494bb9f4bd9e86394de5ce91f7b1
[]
no_license
raypallavi/BNP-Computations
d301ca05ec6d9585c7cf364d2e8f643247c79017
5dfbd841514f8fe703d72f6a3e7fd17ad4369ded
refs/heads/master
2020-04-20T10:05:05.251677
2019-04-05T23:36:06
2019-04-05T23:36:06
168,781,139
2
3
null
null
null
null
UTF-8
R
false
false
12,766
r
all_functions.R
### All required functions for using ESS ### Functions related to Wood and Chan algorithm of drawing samples ### MH for sampling from \nu and \ell ### Covariance matrix and design matrix (using basis function) are also defined ### And all related and dependant functions are here ### Required libraries: library(fields) library(FastGP) ### Define design matrix ### ### The basis functions ### # For monotone function estimation: psi_j=function(x,my_knot,delta_N) { N=length(my_knot) k=rep(0,N) i=max(which(my_knot<=x)) if(i==1) { k[1]=x-0.5*(x^2)/delta_N k[2]=x-my_knot[2]*x/delta_N+0.5*x^2/delta_N } if(i==2) { k[1]=delta_N/2 k[2]=delta_N/2+(x-my_knot[2])*(1+my_knot[2]/delta_N)-0.5*(x^2-my_knot[2]^2)/delta_N k[3]=(x-my_knot[2])*(1-my_knot[3]/delta_N)+0.5*(x^2-my_knot[2]^2)/delta_N } if(i==N) { k[1]=delta_N/2 k[2:(N-1)]=delta_N k[N]=delta_N/2 } if(i!=1 && i!=2 && i!=N) { k[1]=delta_N/2 k[2:(i-1)]=delta_N k[i]=delta_N/2+(x-my_knot[i])*(1+my_knot[i]/delta_N)-0.5*(x^2-my_knot[i]^2)/delta_N k[i+1]=(x-my_knot[i])*(1-my_knot[i+1]/delta_N)+0.5*(x^2-my_knot[i]^2)/delta_N } return(k) } # For convex function estimation: phi_j=function(x,my_knot,delta_N) { N=length(my_knot) k=rep(0,N) if(x>=my_knot[1] && x<my_knot[2]) { k[1]=(x^2/2)-0.5*(x^3/3)/delta_N k[2]=0.5*(x^3/3)/delta_N } if(x>=my_knot[2] && x<my_knot[3]) { k[1]=(my_knot[2]^2/2)-0.5*(my_knot[2]^3/3)/delta_N+0.5*delta_N*(x-my_knot[2]) k[2]=my_knot[2]^3/(3*delta_N)+0.5*delta_N*(x-my_knot[2])+(x^2-my_knot[2]^2)-1.5*my_knot[2]*(x-my_knot[2])-0.5*(x^3/3)/delta_N k[3]=(1-my_knot[3]/delta_N)*(x^2/2-x*my_knot[2]+my_knot[2]^2/2)+0.5*(x^3/3-x*my_knot[2]^2+2*my_knot[2]^3/3)/delta_N } if(x>=my_knot[3] && x<my_knot[N]) { k[1]=(my_knot[2]^2/2)-0.5*(my_knot[2]^3/3)/delta_N+0.5*delta_N*(x-my_knot[2]) k[2]=my_knot[2]^3/(3*delta_N)+0.5*delta_N^2+my_knot[3]^2-2.5*my_knot[2]^2-0.5*(my_knot[3]^3/3)/delta_N+delta_N*(x-my_knot[3]) k[3]=(1-my_knot[3]/delta_N)*(my_knot[3]^2/2-my_knot[3]*my_knot[2]+my_knot[2]^2/2)+0.5*(my_knot[3]^3/3-my_knot[3]*my_knot[2]^2+2*my_knot[2]^3/3)/delta_N+delta_N*(x-my_knot[3]) if(N>4){ for(j in 4:(N-1)){ if(x<my_knot[j-1]) k[j]=0 if(x>=my_knot[j-1] && x<my_knot[j]) k[j]=(1-my_knot[j]/delta_N)*(0.5*(x^2-my_knot[j-1]^2)-my_knot[j-1]*(x-my_knot[j-1]))+0.5*((x^3/3-my_knot[j-1]^3/3)-my_knot[j-1]^2*(x-my_knot[j-1]))/delta_N if(x>=my_knot[j] && x<my_knot[j+1]) k[j]=(1-my_knot[j]/delta_N)*(0.5*(my_knot[j]^2-my_knot[j-1]^2)-my_knot[j-1]*(my_knot[j]-my_knot[j-1]))+0.5*((my_knot[j]^3/3-my_knot[j-1]^3/3)-my_knot[j-1]^2*(my_knot[j]-my_knot[j-1]))/delta_N+0.5*delta_N*(x-my_knot[j])+ (1+my_knot[j]/delta_N)*(0.5*(x^2-my_knot[j]^2)-my_knot[j]*(x-my_knot[j]))-0.5*((x^3/3-my_knot[j]^3/3)-my_knot[j]^2*(x-my_knot[j]))/delta_N if(x>=my_knot[j+1]) k[j]=(1-my_knot[j]/delta_N)*(0.5*(my_knot[j]^2-my_knot[j-1]^2)-my_knot[j-1]*(my_knot[j]-my_knot[j-1]))+0.5*((my_knot[j]^3/3-my_knot[j-1]^3/3)-my_knot[j-1]^2*(my_knot[j]-my_knot[j-1]))/delta_N+0.5*delta_N*(my_knot[j+1]-my_knot[j])+ (1+my_knot[j]/delta_N)*(0.5*(my_knot[j+1]^2-my_knot[j]^2)-my_knot[j]*(my_knot[j+1]-my_knot[j]))-0.5*((my_knot[j+1]^3/3-my_knot[j]^3/3)-my_knot[j]^2*(my_knot[j+1]-my_knot[j]))/delta_N+delta_N*(x-my_knot[j+1]) } } if(x>=my_knot[N-1] && x<my_knot[N]) k[N]=(1-my_knot[N]/delta_N)*(0.5*(x^2-my_knot[N-1]^2)-my_knot[N-1]*(x-my_knot[N-1]))+0.5*((x^3/3-my_knot[N-1]^3/3)-my_knot[N-1]^2*(x-my_knot[N-1]))/delta_N } if(x>=my_knot[N]) { k[1]=(my_knot[2]^2/2)-0.5*(my_knot[2]^3/3)/delta_N+0.5*delta_N*(x-my_knot[2]) k[2]=my_knot[2]^3/(3*delta_N)+0.5*delta_N^2+my_knot[3]^2-2.5*my_knot[2]^2-0.5*(my_knot[3]^3/3)/delta_N+delta_N*(x-my_knot[3]) k[3]=(1-my_knot[3]/delta_N)*(my_knot[3]^2/2-my_knot[3]*my_knot[2]+my_knot[2]^2/2)+0.5*(my_knot[3]^3/3-my_knot[3]*my_knot[2]^2+2*my_knot[2]^3/3)/delta_N+delta_N*(x-my_knot[3]) for(j in 4:(N-1)){ k[j]=(1-my_knot[j]/delta_N)*(0.5*(my_knot[j]^2-my_knot[j-1]^2)-my_knot[j-1]*(my_knot[j]-my_knot[j-1]))+0.5*((my_knot[j]^3/3-my_knot[j-1]^3/3)-my_knot[j-1]^2*(my_knot[j]-my_knot[j-1]))/delta_N+0.5*delta_N*(my_knot[j+1]-my_knot[j])+ (1+my_knot[j]/delta_N)*(0.5*(my_knot[j+1]^2-my_knot[j]^2)-my_knot[j]*(my_knot[j+1]-my_knot[j]))-0.5*((my_knot[j+1]^3/3-my_knot[j]^3/3)-my_knot[j]^2*(my_knot[j+1]-my_knot[j]))/delta_N+delta_N*(x-my_knot[j+1]) } k[N]=(1-my_knot[N]/delta_N)*(0.5*(my_knot[N]^2-my_knot[N-1]^2)-my_knot[N-1]*(my_knot[N]-my_knot[N-1]))+0.5*((my_knot[N]^3/3-my_knot[N-1]^3/3)-my_knot[N-1]^2*(my_knot[N]-my_knot[N-1]))/delta_N+0.5*delta_N*(x-my_knot[N]) } return(k) } ### Function to form design matrix: des.mat1=function(x,my_knot,delta_N){ # Function to form basis matrix for monotone constraint n=length(x) N=length(my_knot)-1 # design matrix \Psi(n X N+1) X=matrix(0,n,N+1) for(l in 1:n){ X[l,1:(N+1)]=psi_j(x[l],my_knot,delta_N) } return(X) } des.mat2=function(x,my_knot,delta_N){ # Function to form basis matrix for convex constraint n=length(x) N=length(my_knot)-1 # design matrix \Phi(n X N+1) X=matrix(0,n,N+1) for(l in 1:n){ X[l,1:(N+1)]=phi_j(x[l],my_knot,delta_N) } return(X) } ### Function to compute \xi_1 * x : xix=function(a,b){ return(a*b) } #Given a \nu (smoothness parameter of matern kernel) finding a value of # l (length-scale parameter) such that the correlation between the # maximum seperation is some small value, say 0.05 #Matern kernel with smoothness nu and length-scale l: MK = function(x, y ,l, nu){ ifelse(abs(x-y)>0, (sqrt(2*nu)*abs(x-y)/l)^nu/(2^(nu-1)*gamma(nu))*besselK(x=abs(x-y)*sqrt(2*nu)/l, nu=nu), 1.0) } # function for uniroot: fl=function(l,para){ #para[1]=x, para[2]=y and para[3]=nu of MK : Matern kernel function; #para[4]=pre-specified value of the correlation a=MK(para[1],para[2],l,para[3]) return(a-para[4]) } # function for estimating l: l_est=function(nu,range,val){ # nu : smoothness; range : c(min, max) of the range of variable # val : pre-specified value of the correlation between the maximum seperation para=c(range[1],range[2],nu,val) rl=uniroot(f=fl,interval = c(0.000001,100000),para) return(rl$root) } # Covariance matrix covmat=function(knot,nu,l){ return(MK(rdist(knot),0,l,nu)) } # Order of the circulant matrix: # minimum value of g and m so that G can be embedded into C min_g=function(knot){ N=length(knot) g=ceiling(log(2*N,2)) #m=2^g and m>=2(n-1) : Wood & Chan notation; #since we are going upto n and not stopping at (n-1), the condition is modified! return("g" = g) } # forming the circulant matrix: circulant=function(x){ n = length(x) mat = matrix(0, n, n) for (j in 1:n) { mat[j, ] <- c(x[-(1:(n+1-j))], x[1:(n+1-j)]) } return(mat) } # Function for forming the vector of circulant matrix: circ_vec=function(knot,g,nu,l,tausq){ delta_N=1/(length(knot)-1) m=2**g cj=integer() for(j in 1:m){ if(j<=(m/2)) cj[j]=(j-1)*delta_N else cj[j]=(m-(j-1))*delta_N } x=(tausq*MK(cj,0,l,nu)) return(x) } # Function for finding a g such that C is nnd: eig.eval=function(knot,g,nu,l,tausq){ vec=circ_vec(knot,g,nu,l,tausq) C=circulant(vec) ev=min(eigen(C)$values) return(list("vec" = vec, "min.eig.val" = ev)) } # Function for finding a g such that C is nnd: # without forming the circulant matrix and without computing eigen values: C.eval=function(knot,g,nu,l,tausq){ vec=circ_vec(knot,g,nu,l,tausq) val=fft(vec) # eigenvalues will be real as the circulant matrix formed by the # vector is by construction is symmetric! ev=min(Re(val)) return(list("vec" = vec, "min.eig.val" = ev)) } nnd_C=function(knot,g,nu,l,tausq){ C.vec=C.eval(knot,g,nu,l,tausq)$vec eval=C.eval(knot,g,nu,l,tausq)$min.eig.val if(eval>0) return(list("cj" = C.vec,"g" = g)) else{ g=g+1 nnd_C(knot,g,nu,l,tausq) } } # computing the eigen values of C using FFT: eigval=function(knot,nu,l,tausq){ g=min_g(knot) c.j=nnd_C(knot,g,nu,l,tausq)$cj lambda=Re(fft(c.j)) if(min(lambda)>0) return(lambda) else stop("nnd condition is NOT satisfied!!!") } ################################################################# ########## Samples drawn using Wood and Chan Algorithm ########## ################################################################# samp.WC=function(knot,nu,l,tausq){ N=length(knot) lambda=eigval(knot,nu,l,tausq) m=length(lambda) samp.vec=rep(0,N) a=rep(0,m) a[1]=sqrt(lambda[1])*rnorm(1)/sqrt(m) a[(m/2)+1]=sqrt(lambda[(m/2)+1])*rnorm(1)/sqrt(m) i=sqrt(as.complex(-1)) for(j in 2:(m/2)){ uj=rnorm(1); vj=rnorm(1) a[j]=(sqrt(lambda[j])*(uj + i*vj))/(sqrt(2*m)) a[m+2-j]=(sqrt(lambda[j])*(uj - i*vj))/(sqrt(2*m)) } samp=fft(a) samp.vec=Re(samp[1:N]) return(samp.vec) } ############################################# ########## Functions for using ESS ########## ############################################# ESS = function(beta,nu_ess,y,X,sigsq,eta){ thetamin = 0; thetamax = 2*pi; u = runif(1) logy = loglik(y,X,sigsq,eta,beta) + log(u); theta = runif(1,thetamin,thetamax); thetamin = theta - 2*pi; thetamax = theta; betaprime = beta*cos(theta) + nu_ess*sin(theta); while(loglik(y,X,sigsq,eta,betaprime) <= logy){ if(theta < 0) thetamin = theta else thetamax = theta theta = runif(1,thetamin,thetamax) betaprime = beta*cos(theta) + nu_ess*sin(theta) } return(betaprime) } ESS.dec = function(beta,nu_ess,y,X,sigsq,eta){ thetamin = 0; thetamax = 2*pi; u = runif(1) logy = loglik2(y,X,sigsq,eta,beta) + log(u); theta = runif(1,thetamin,thetamax); thetamin = theta - 2*pi; thetamax = theta; betaprime = beta*cos(theta) + nu_ess*sin(theta); while(loglik2(y,X,sigsq,eta,betaprime) <= logy){ if(theta < 0) thetamin = theta else thetamax = theta theta = runif(1,thetamin,thetamax) betaprime = beta*cos(theta) + nu_ess*sin(theta) } return(betaprime) } ## Defining the loglik function to be used in ESS: ## loglik calculates the log of the likelihood: loglik=function(y,X,sigsq,eta,beta){ mu=y-(X%*%beta) val=eta*sum(beta)-sum(log(1+exp(eta*beta)))-sum(mu^2)/(2*sigsq) return(val) } loglik2=function(y,X,sigsq,eta,beta){ mu=y-(X%*%beta) val=-sum(log(1+exp(eta*beta)))-sum(mu^2)/(2*sigsq) return(val) } ## MH algo for \nu of Matern kernel: (NOT USED IN THE MAIN CODE) nu.MH1 = function(nu.in,l.in,tau.in,xi.in,Kmat,knot,range.nu=c(0.5,1),sd.p=0.05){ nu.cand = exp(log(nu.in)+rnorm(1,0,sd.p)) l.cand = l_est(nu.cand,c(0,1),0.05) du = dunif(nu.cand,range.nu[1],range.nu[2]) if(du > 0){ Kcand = covmat(knot,nu.cand,l.cand) Linv = inv_chol(Kmat); Linv.cand = inv_chol(Kcand) r = exp(sum(log(diag(Linv.cand)))-sum(log(diag(Linv))))*(nu.cand/nu.in) t1 = sum((t(Linv.cand)%*%xi.in)^2); t2 = sum((t(Linv)%*%xi.in)^2) r = r*exp(-(t1 - t2)/(2*tau.in)) alpha = min(r,1) } else alpha = 0 u = runif(1) nu.out = (u < alpha)*nu.cand + (u >= alpha)*nu.in l.out = (u < alpha)*l.cand + (u >= alpha)*l.in cnt = as.numeric((abs(nu.out - nu.in) > 0)) return(list("nu" = nu.out,"l" = l.out,"count" = cnt)) } ## MH algo for \nu and \ell of Matern kernel: nu.MH2 = function(nu.in,l.in,tau.in,xi.in,knot,range.nu=c(0.5,1),range.l=c(0.1,1),sd.nu=0.05,sd.l=0.1){ Kmat = covmat(knot,nu.in,l.in) Linv = inv_chol(Kmat) nu.cand = exp(log(nu.in)+rnorm(1,0,sd.nu)) l.cand = exp(log(l.in)+rnorm(1,0,sd.l)) dnu = dunif(nu.cand,range.nu[1],range.nu[2]) dl = dunif(l.cand,range.l[1],range.l[2]) if(dnu > 0 && dl > 0){ Kcand = covmat(knot,nu.cand,l.cand) Linv.cand = inv_chol(Kcand) t1 = sum((t(Linv.cand)%*%xi.in)^2) t2 = sum((t(Linv)%*%xi.in)^2) r = exp(sum(log(diag(Linv.cand)))-sum(log(diag(Linv)))-((t1 - t2)/(2*tau.in)))*(nu.cand/nu.in)*(l.cand/l.in) alpha = min(r,1) } else{ alpha = 0 Linv.cand = Linv } u = runif(1) nu.out = (u < alpha)*nu.cand + (u >= alpha)*nu.in l.out = (u < alpha)*l.cand + (u >= alpha)*l.in cnt = (u < alpha)*1 + (u >= alpha)*0 L_inv = (u < alpha)*Linv.cand + (u >= alpha)*Linv return(list("nu" = nu.out,"l" = l.out,"count" = cnt,"L_inv"=L_inv)) }
3c1186d376b13fba6002c351796637939997e2cc
602c144363277f2efc062d78bce139dd7fb75480
/man/Inflacja.Rd
2cf9682ced1bf48af011306489300eb9c8f7d629
[]
no_license
mbojan/mbtools
637c6cfba11a63d7a052867d0afa211af00060ad
ed7680f0f9ae68ea12f6bca403f1b686f20e9687
refs/heads/master
2022-07-14T03:25:05.525650
2022-06-25T18:43:09
2022-06-25T18:43:09
29,505,211
0
0
null
null
null
null
UTF-8
R
false
true
1,442
rd
Inflacja.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Inflacja.R \docType{data} \name{Inflacja} \alias{Inflacja} \title{Monthly inflation rates in Poland} \format{ A data frame with 195 observations on the following 6 variables. \describe{ \item{year}{Year} \item{month}{Month} \item{infl1}{a time-series, inflation as compared to the same month of the previous year} \item{infl2}{a time-series, inflation as compared to the previous month} \item{infl3}{a time-series, inflation as compared to December of the previous year} \item{infl4}{a time-series, average inflation of the previous 12 months} } } \source{ (Polish) Central Statistical Office, http://www.stat.gov.pl } \description{ Data on monthly inflation rates in Poland since January 1989 up to March 2005. } \examples{ data(Inflacja) ### transform inflX variables into time-series objects Inflacja$infl1ts <- ts(Inflacja$infl1, start=c(1989,1), end=c(2005,3), freq=12) Inflacja$infl2ts <- ts(Inflacja$infl2, start=c(1989,1), end=c(2005,3), freq=12) Inflacja$infl3ts <- ts(Inflacja$infl3, start=c(1989,1), end=c(2005,3), freq=12) Inflacja$infl4ts <- ts(Inflacja$infl4, start=c(1989,1), end=c(2005,3), freq=12) ### plot some... plot( Inflacja$infl1ts, main="Inflation rates in Poland", ylab="Inflation") lines( Inflacja$infl4ts, lty=2 ) legend( 1995, 1200, legend=c("compared to year ago","average of last 12 months"), lty=1:2 ) } \keyword{datasets}
915a061c8b7170c1b94511f0a74a55a885364487
bc377a0484066010d16658f143ee40699c44a3f1
/run_analysis.R
9e474be3a41afe4aa44bc907e5159f9b80763c35
[]
no_license
wannabeDataScientist/clean_data_project
df45ba48dfd8936898e1b2a730fdf7103940609b
349c3092d8bc2c241872d3e7fa8fd32edf0285f1
refs/heads/master
2021-03-12T20:14:25.293931
2014-04-27T23:28:38
2014-04-27T23:28:38
null
0
0
null
null
null
null
UTF-8
R
false
false
2,952
r
run_analysis.R
# read sensor data sensor_data<-function(category) { # read the column names qfile_name <- file.path(".", paste("features", ".txt",sep="")) col_names <- read.table(qfile_name, header=FALSE, as.is=T, col.names=c("MeasureID", "MeasureName")) #read sensor data qfile_name <- file.path(category, paste("X_", category, ".txt",sep="")) data <- read.table(qfile_name, header=FALSE, col.names=col_names$MeasureName) # select the columns required req_col_names <- grep(".*mean\\(\\)|.*std\\(\\)", col_names$MeasureName) data<-data[,req_col_names] } add_column<-function(data,category) { # read the activitsensory data qfile_name <- file.path(category, paste("y_",category, ".txt",sep="")) activity_table <- read.table(qfile_name, header=FALSE, col.names=c("Activity_ID")) #read subject data qfile_name <- file.path(category, paste("subject_",category, ".txt",sep="")) subject_table <- read.table(qfile_name, header=FALSE, col.names=c("Subject_ID")) # append the activity id and subject id columns data$Activity_ID <- activity_table$Activity_ID data$Subject_ID <- subject_table$Subject_ID data } merge_data_set<-function() { data <- rbind(add_column(sensor_data("train"),"train"), add_column(sensor_data("test"),"test")) #cnames <- colnames(data) #cnames <- gsub("\\.+mean\\.+", cnames, replacement="Mean") #cnames <- gsub("\\.+std\\.+", cnames, replacement="Std") #colnames(data) <- cnames data } apply_descriptive_label <- function(data) { descriptive_labels <- read.table("activity_labels.txt", header=FALSE, as.is=TRUE, col.names=c("Activity_ID", "Activity_Name")) #descriptive_labels$Activity_Name <- as.factor(descriptive_labels$Activity_Name) data_descriptive <- merge(data, descriptive_labels) data_descriptive } create_aggregates<-function(data){ library(reshape2) # melt the dataset dimensions = c("Activity_ID", "Activity_Name", "Subject_ID") fact_vars = setdiff(colnames(data), dimensions) molten_data <- melt(data, id=dimensions, measure.vars=fact_vars) # recast dcast(molten_data, Activity_Name + Subject_ID ~ variable, mean) } #Wrapper function create_assignment_data_set<-function(tidy_file) { print("This routine assumes that the extracted files from the zip file \"getdata_projectfiles_UCI HAR Dataset\" are available in \"UCI HAR Dataset\" in the current directory in original structure.") print(" Source Data Archive:") print(" https://d396qusza40orc.cloudfront.net/getdata%2Fprojectfiles%2FUCI%20HAR%20Dataset.zip") print("Creating tidy dataset as tidy_data.csv...") tidy_data_set<-apply_descriptive_label(merge_data_set()) write.table(tidy_data_set,tidy_file) agg_data_set<-create_aggregates(tidy_data_set) write.table(agg_data_set,paste(tidy_file,"_agg",sep="")) } create_assignment_data_set("tidy_data.txt") print("Data Set created successfully.")
4568aeb75de73a37c452d997643e2e33277088b5
97c80ac45d43631596077983dd970a54490a0d57
/ui.R
c88f683232f0dd2dc85f24df88f8089a0bb6ad5c
[]
no_license
nurfitryah/suicide-rate
40838f88f6e0fb5a07deec58ec45c2b5e9a6629c
a204564577a595bd72ee6c307c998864bf010b0e
refs/heads/master
2022-12-12T19:13:43.989385
2020-09-15T11:15:11
2020-09-15T11:15:11
295,701,046
0
0
null
null
null
null
UTF-8
R
false
false
8,455
r
ui.R
options(shiny.maxRequestSize=200*1024^2) dashboardPage(title = "Suicide Rate", dashboardHeader(title = "Suicide Rate"), dashboardSidebar( sidebarMenu( menuItem( text = "Introduction", tabName = "intro", icon = icon("readme")), menuItem( text = "5 Country", tabName = "pie", icon = icon("chart-pie")), menuItem( text = "Age", tabName = "guyana", icon = icon("theater-masks")), menuItem( text = "Source", tabName = "source", icon = icon("bookmark"))) ), dashboardBody( tabItems( tabItem(tabName = "intro", align = "justify", h1(strong("Introduction : Suicide Rate in 2000, 2010, 2015, and 2016")), p(h4("As we know that Mental Illness is one of serious disease that could lead to suicide. In fact, 95% of people who commit suicide have a mental illness [2]. According to the CDC, suicide rates have increased by 30% since 1999. Nearly 45,000 lives were lost to suicide in 2016 alone.Comments or thoughts about suicide — also known as suicidal ideation — can begin small like, “I wish I wasn’t here” or “Nothing matters.” But over time, they can become more explicit and dangerous [3].")), p(h4("This dataset show age-standardized suicides rate on 183 countries in 2000, 2010, 2015, and 2016. Also this dataset provide suicide rate by age and gender in 2016. Chart below shows suicide rate in 2000, 2010, 2015, and 2016, categorized by sex/gender.")), br(), highchartOutput(outputId = "h_bar", height = "550px"), br(), h4("If you ever wonder how many suicide rate in each 183 country on 2000, 2010, 2015, and 2016, then you could select year on your left below and see what's happen to Map below."), br(), fluidRow( column(width = 3, selectInput( inputId = "Year", label = "Select Year", choices = unique(suicide_country$Year) )), column(width = 9, highchartOutput(outputId = "h_map", height = "650px")) )), tabItem(tabName = "pie", align = "center", h2(strong("5 Country with Highest and Lowest Suicide Rate in 2016")), br(), fluidRow( column(width = 6, highchartOutput(outputId = "h_pie1", height = "600px") ), column(width = 6, highchartOutput(outputId = "h_pie2", height = "600px") )), br(), p(h4("Chart above shows on information maximum of total population of a gender and an age. If you happened to curious which age or sex/gender on each 183 country that has highest or lowest Suicide Rate, Tab Age will shows numbers of Suicide Rate categorized by Sex/Gender and Age.")) ), tabItem(tabName = "guyana", align = "center", h2(strong("Suicide Rate by Age and Sex/Gender in 2016")), br(), selectInput( inputId = "Country", label = "Select Country", choices = unique(suicide_2016$Country)), highchartOutput(outputId = "h_heat", height = "550px"), br(), p(h4("As you can see from heatmap chart above, those 80 years and older have the highest suicide rate of any age group. As with most age groups, the majority of elders who kill themselves are male [4]. There are may factors that might contribute somebody or a person to commit suicide. For elderly, most of them feeling loneliness [4].But in a developing country such as Guyana, the factor or thoughs about suicide are like dominoes. Mental illness, access to lethal chemicals, alcohol misuse, interpersonal violence, family dysfunction and insufficient mental health resources as key factors that could lead someone have thoughs about or even do suicide[5].")), ), tabItem(tabName = "source", align = "justify", h2(strong("Source :")), h4("[1]", tags$a(href = "https://www.kaggle.com/twinkle0705/mental-health-and-suicide-rates", "Data"),""), br(), h4("[2]", tags$a(href = "https://www.medscape.com/answers/2013085-157663/what-is-the-role-of-mental-illness-in-the-development-of-suicidal-behaviors", "Source 2")," "), br(), h4("[3]", tags$a(href = "https://www.nami.org/About-Mental-Illness/Common-with-Mental-Illness/Risk-of-Suicide", "Source 3")," "), br(), h4("[4]", tags$a(href = "https://www.psychologytoday.com/us/blog/understanding-grief/202001/why-do-the-elderly-commit-suicide", "Source 4")," "), br(), h4("[5]", tags$a(href = "https://www.npr.org/sections/goatsandsoda/2018/06/29/622615518/trying-to-stop-suicide-guyana-aims-to-bring-down-its-high-rate", "Source 5")," ") ) )) )
07c1ebc8324fa11d02178a15718d6e68169ebefe
fb6bce8e6c5b983277274fcc41a08465f42ef6c2
/fragment_type_selection.R
2967482ba96e9082f0c00c44fd5924bfd04597dd
[]
no_license
Cantalapiedra/digestR
1a14eca70cd12b6a71e588f6f81dc2a42cf89ca1
f1e94ac6c18dfc445c664ba817fabc4eca64ed6d
refs/heads/master
2021-01-19T22:05:53.531751
2017-02-27T08:34:57
2017-02-27T08:34:57
82,571,478
0
0
null
null
null
null
UTF-8
R
false
false
1,212
r
fragment_type_selection.R
#!/usr/bin/env Rscript ## fragment_type_selection ## 2017 CPCantalapiedra library(data.table) # Read command line arguments args = commandArgs(trailingOnly=TRUE) if (length(args)==2) { frag_file = args[1] # bed file frag_types_file = args[2] } else { stop("At least one argument must be supplied (input file).n", call.=FALSE) } # Read fragment types file df_frag_types <- fread(frag_types_file, header=FALSE, verbose=FALSE, showProgress=FALSE, sep="\t") frag_types <- unlist(df_frag_types[,"V1"]) write.table(frag_types, stderr()) # Read bed file write(paste("Parsing bed file:", frag_file), stderr()) df_bed = fread(frag_file, header=TRUE, sep = "\t", verbose=FALSE, showProgress=FALSE) head_bed <- head(df_bed, file=stderr()) write.table(head_bed, file = stderr(), row.names = FALSE, quote = FALSE, sep = "\t") write(paste("Rows:", nrow(df_bed)), stderr()) ### Filter by frag type true_frag_types <- df_bed$fragtype %in% frag_types filtered <- df_bed[true_frag_types,]#mat_lengths[mat_lengths$len>=min_size && mat_lengths$len>=max_size,] write(paste("Final rows:", nrow(filtered)), stderr()) # output write.table(filtered, file = stdout(), row.names=FALSE, quote=FALSE, sep="\t") ## END
c23ba6eac660097befed27c7a8112cfab390e14a
9e62400e609e288f753254161299727f6b8c134e
/program/server_local.R
fa1bcf0ef9735bb9b049d6d924e611e9f9ef5f94
[]
no_license
MaximilianLombardo/kandinsky
16d11d1f9ea115557d74f9d18c286919cedfb497
acf6a76dc3ffdeed12f85107b48b056c060cbd3a
refs/heads/master
2023-07-16T00:43:58.302008
2021-08-22T22:23:53
2021-08-22T22:23:53
293,324,763
0
0
null
null
null
null
UTF-8
R
false
false
35,858
r
server_local.R
# ---------------------------------------- # -- PROGRAM server_local.R -- # ---------------------------------------- # USE: Session-specific variables and # functions for the main reactive # shiny server functionality. All # code in this file will be put into # the framework inside the call to # shinyServer(function(input, output, session) # in server.R # # NOTEs: # - All variables/functions here are # SESSION scoped and are ONLY # available to a single session and # not to the UI # # - For globally scoped session items # put var/fxns in server_global.R # # FRAMEWORK VARIABLES # input, output, session - Shiny # ss_userAction.Log - Reactive Logger S4 object # ---------------------------------------- # -- IMPORTS -- # -- VARIABLES -- #obj <- NULL userData <- reactiveValues() userData$object <- NULL userData$objectId <- 0 userData$modalOpen <- FALSE userData$filterList <- NULL userData$filteredObject <- NULL userSel <- reactiveValues() userSel$genes <- NULL userSel$scatterCluster <- "All" userSel$scatterPanelColumns <- NULL userSel$runScatterPlot <- FALSE userSel$violinPanelColumns <- NULL userSel$runViolinPlot <- FALSE userSel$addDotGenes <- NULL userSel$runDotPlot <- FALSE userSel$addHeatmapGenes <- NULL userSel$runHeatmap <- FALSE userSel$diffCluster1 <- NULL userSel$diffCluster2 <- NULL userSel$diffClusterCells1 <- NULL userSel$diffClusterCells2 <- NULL userSel$runDiffCalc <- FALSE # -- FUNCTIONS -- # disable_plots <- function() { # userSel$runScatterPlot <- FALSE # userSel$runViolinPlot <- FALSE # userSel$runDotPlot <- FALSE # userSel$runHeatmap <- FALSE # userSel$runDiffCalc <- FALSE # } filtered_data <- reactive({ result <- userData$object filters <- list() if (!is.null(result)) { # Check if filters available in input and that values have changed since last time input_names <- names(input) input_filters <- get_filter_input_Fields(input_names, isolate(userData$objectId)) if (!is.null(result$metadata) && !identical(input_filters, character(0))) { changed_fields <- NULL data_filtering <- FALSE # detect if there has been a change since the last time for (input_filter in input_filters) { filter_values <- input[[input_filter]] filter_name <- gsub(get_filter_prefix(isolate(userData$objectId)), "", input_filter) if (is.null(filter_values) || !identical(isolate(userData$filterList)[[filter_name]], filter_values)) { data_filtering <- TRUE changed_fields <- c(changed_fields, filter_name) } ({userData$filterList[[filter_name]] <- filter_values}) } # Filter the data if (data_filtering) { metadata <- result$metadata %>% mutate(id = seq(1, nrow(result$metadata))) for (field in changed_fields) { filter_values <- isolate(userData$filterList)[[field]] if (is.null(filter_values)) { metadata <- metadata[0,] break } metadata <- metadata %>% filter(as.vector(!!(rlang::sym(field))) %in% filter_values) } if (nrow(metadata) > 0) { filtered_rowids <- metadata %>% pull(id) } else { filtered_rowids <- c() } result$tsne <- get_filtered_cell_data(result$tsne, row_ids = filtered_rowids) result$clusters <- get_filtered_cell_data(result$clusters, row_ids = filtered_rowids) result$cells <- result$cells[filtered_rowids] # filter expression and detection data seurat_object <- result$seurat if (!is.null(filtered_rowids)) { assay_use <- seurat_object@active.assay seurat_object@assays[[assay_use]]@data <- seurat_object@assays[[assay_use]]@data[, filtered_rowids] seurat_object@active.ident <- droplevels(seurat_object@active.ident[filtered_rowids]) result$expression <- future({avg.ex.scale(seurat_object) %>% as.data.frame()}, stdout = FALSE) result$detection <- future({local_AverageDetectionRate(seurat_object) %>% as.data.frame()}, stdout = FALSE) #cleanup rm(seurat_object) } else { result$expression <- future({NULL}) result$detection <- future({NULL}) } # save filtered data and disable plots isolate(userData$filteredObject <- result) disable_plots() } # save filtered data if (!is.null(isolate(userData$filteredObject))) { result <- isolate(userData$filteredObject) } } } result }) # top10_genes <- reactive({ # get_top_genes_data(userData$object, "top10") # }) # # top30_genes <- reactive({ # get_top_genes_data(userData$object, "top30") # }) # # differentials_table_content <- reactive({ # c1 <- userSel$diffCluster1 # s1 <- userSel$diffClusterCells1 # c2 <- userSel$diffCluster2 # s2 <- userSel$diffClusterCells2 # # result <- NULL # if (userSel$runDiffCalc) { # result <- calculate_differentials(filtered_data(), c1, s1, c2, s2) # if (is.null(result)) { # createAlert(session, # "bodyAlert", # "zeroDiffOutputAlertID", # style = "warning", # content = paste("Differential Analysis resulted in no output for the current selections and logFC > ", # g_differential_logfc_threshold), # append = FALSE) # } # } # result # }) # # plot name reactives # base_filename <- reactive({ # current_time <- format(Sys.time(), "%Y.%m.%d_%H.%M") # paste0(current_time, "_SCV") # }) # # base_plot_filename <- reactive({ # paste0(base_filename(), "_", userData$object$meta$object_name) # }) # # overview_plot_filename <- reactive({ # paste0(base_plot_filename(), "_Overview") # }) # # scatter_plot_filename <- reactive({ # paste0(base_plot_filename(), "_Scatter") # }) # # violin_plot_filename <- reactive({ # paste0(base_plot_filename(), "_Violin") # }) # # dot_plot_filename <- reactive({ # paste0(base_plot_filename(), "_Dot") # }) # heatmap_filename <- reactive({ # paste0(base_plot_filename(), "_Heatmap") # }) # # differentials1_plot_filename <- reactive({ # paste0(base_plot_filename(), "_Differentials1") # }) # # differentials2_plot_filename <- reactive({ # paste0(base_plot_filename(), "_Differentials2") # }) # download filenames for tables # top10_DE_filename <- reactive({ # get_top_DE_download_filename(userData$object$meta$object_name, "_Top10DE_Genes") # }) # # top30_DE_filename <- reactive({ # get_top_DE_download_filename(userData$object$meta$object_name, "_Top30DE_Genes") # }) # # differentials_filename <- reactive({ # get_differentials_filename(userData$object$meta$object_name) # }) # -- MODULES -- # callModule(downloadableTable, "top10DE", ss_userAction.Log, # filenameroot = top10_DE_filename, # downloaddatafxns = list(csv = top10_genes, # tsv = top10_genes), # tabledata = top10_genes, # rownames = FALSE) # # callModule(downloadFile, "top30DE", ss_userAction.Log, # filenameroot = top30_DE_filename, # datafxns = c(csv = top30_genes, # tsv = top30_genes)) # # callModule(heatmap_downloadableTable, "differentialsTable", ss_userAction.Log, # filenameroot = differentials_filename, # downloaddatafxns = list(csv = differentials_table_content, # tsv = differentials_table_content), # tabledata = differentials_table_content, # rownames = FALSE) # ---------------------------------------- # -- SHINY SERVER CODE -- # ---------------------------------------- observeEvent(userData$object, { updateSelectizeInput(session, "genesSel", choices = userData$object$genes, selected = character(0), server = TRUE) updateSelectizeInput(session, "genesOnSel", choices = userData$object$genes, selected = character(0), server = TRUE) updateSelectizeInput(session, "genesOffSel", choices = userData$object$genes, selected = character(0), server = TRUE) }) observeEvent(c(userData$object, userData$filteredObject), { if (is.null(userData$filteredObject)) { data_object <- userData$object } else { data_object <- userData$filteredObject } cluster_options <- c("All", as.character(sort(unique(data_object$clusters$Cluster)))) updateSelectizeInput(session, "scatterClusterSel", choices = cluster_options, selected = "All", server = FALSE) for (item in c("differentialsCluster1Sel", "differentialsCluster2Sel")) { updateSelectizeInput(session, item, choices = cluster_options, selected = "", server = FALSE) } }) output$summaryTitle <- renderText({ paste("Summary:", userData$object$meta$title) }) output$filterOptions <- renderUI({ body <- NULL filter_list <- userData$object$filter_list if (length(names(filter_list)) > 0) { header_text <- "Select/Deselect the below options to change the cells included in the visualization data. All the dataset cells are included (checked) by default." body <- lapply(names(filter_list), FUN = function(name) { checkboxGroupInput(inputId = paste0(get_filter_prefix(userData$objectId), name), label = name, choices = filter_list[[name]], selected = filter_list[[name]], width = "80%") }) } else { header_text <- "No global filters were defined for this object by the object author" } list(tags$div(tags$br(), tags$h4("Global Filtering"), tags$p(style = "margin:10px;", header_text)), tags$div(id = "filtersDiv", body)) }) # Since the filterOptions is on the second (inactive) tab, it's not rendered automatically. # When switching to this tab, the plot will be rendered again though there is no change. Line below forces it to render. outputOptions(output, "filterOptions", suspendWhenHidden = FALSE) output$datasetSummary <- renderUI({ get_dataset_summary(userData$object) }) output$differentialsText <- renderUI({ diff_text <- NULL select_area_text <- "select cells on each chart." html_diff_string_start <- "<center><em>For cluster differential expression analysis select two different clusters.<br> For sub-cluster analysis choose the same cluster and then" if (!is.null(input$differentialsCluster1Sel) && !is.null(input$differentialsCluster2Sel) && (input$differentialsCluster1Sel == input$differentialsCluster2Sel)) { diff_text <- paste(html_diff_string_start, paste0("<b>", select_area_text, "</b>")) } else { diff_text <- paste(html_diff_string_start, select_area_text) } diff_text <- paste0(diff_text, "</em></center>") HTML(diff_text) }) output$differentialsTableTitle <- renderUI({ title <- "Differentials Between Selected Clusters" if (userSel$runDiffCalc) { if (userSel$diffCluster1 == userSel$diffCluster2) { title <- paste("Differentials Between Selected Cells in Cluster", userSel$diffCluster1) } else { title <- paste("Differentials Between Cluster", userSel$diffCluster1, "and Cluster", userSel$diffCluster2) } } tags$strong(title) }) output$differentialsTableAlternativeText <- renderUI({ result <- NULL diff_table_content <- differentials_table_content() if (is.null(diff_table_content) || nrow(diff_table_content) == 0) { result <- HTML("<center><em>Press the Calculate Differentials button to perform differential expression analysis on the selected clusters or sub-clusters.</em></center>") } result }) output$cxOverviewPlot <- renderCanvasXpress({ plot <- get_overview_plot(filtered_data(), overview_plot_filename()) if (is.null(plot)) { return(canvasXpress(destroy = TRUE)) } else { return(plot) } }) #SeuratPlot output$seuratVlnPlot <- renderPlot({ #plot <- makeVlnPlot(filtered_data()) #req(obj) plot <- makeVlnPlot(obj(), features = input$vlnFeatures, splits = input$vlnSplit) return(plot) }) output$seuratDimPlot <- renderPlot({ plot <- makeDimPlot(obj(), reduction = input$dimPlotReduction, groups = input$dimPlotGroups, splits = input$dimPlotSplits) plot <- plot + NoLegend() + NoAxes() plot <- plot + ggtitle(label = toupper(as.character(input$dimPlotReduction))) + theme(plot.title = element_text(hjust = 0.5)) return(plot) }) output$seuratFeaturePlot <- renderPlot({ plot <- makeFeaturePlot(obj(), features = input$featurePlotFeature, reduction = input$dimPlotReduction, splits = input$dimPlotSplits) plot <- lapply(plot, FUN = function(p){p + NoAxes()}) plot <- CombinePlots(plot) return(plot) }) # #labels output$DimPlotLabel <- renderText({ "Dim Plot Options" }) output$FeaturePlotLabel <- renderText({ "Feature Plot Options" }) #tables output$markerTable <- renderDataTable({ dt <- datatable(obj()@misc$markers, filter = "top", extensions = 'Buttons', options = list( dom = 'Blfrtip', buttons = c('copy', 'csv', 'excel', 'pdf', 'print') )) dt <- formatRound(dt, columns = c("p_val", "avg_logFC", "p_val_adj")) return(dt)#Not sure if I should round here }) #Chord Diagram output$chordDiagram <- renderPlot({ makeChordDiagram(obj(), input$clusterNumber) }) output$chordTable <- renderDataTable({ dt <- datatable(obj()@misc$signalling, filter = "top", extensions = 'Buttons', options = list( dom = 'Blfrtip', buttons = c('copy', 'csv', 'excel', 'pdf', 'print') )) }) output$UMAP3D <- renderPlotly({ makeUMAP3DPlot(obj()) }) output$hexSelectionPlot <- renderPlotly({ plot <- makeHexSelectionPlot(obj = obj(), reduction = input$hexSelectReduction, feature = input$hexSelectFeature, do.feature = input$hexFeatureBool) # plot <- makeScatterSelectionPlot(obj = obj(), # reduction = input$hexSelectReduction, # feature = input$hexSelectFeature, # do.feature = input$hexFeatureBool) #plotly::event_register(plot, 'plotly_selecting') return(plot) }) output$selected <- renderPrint({ #req(obj()) plotly::event_data("plotly_selected", source = "hexsource") #"this is sample text" }) #output$selectedCellsDimPlot <- <- renderPlot({ # makeSelectedCellsDimPlot(obj(), ) #}) ################################################### output$cxScatterPlot <- renderCanvasXpress({ plot <- NULL if (userSel$runScatterPlot && !is.null(input$genesSel)) { plot <- get_scatter_panel_plot(filtered_data(), userSel$genes, userSel$scatterCluster, scatter_plot_filename(), userSel$scatterPanelColumns) } if (is.null(plot)) { return(canvasXpress(destroy = TRUE)) } else { return(plot) } }) output$cxViolinPlot <- renderCanvasXpress({ plot <- NULL if (userSel$runViolinPlot && !is.null(input$genesSel)) { plot <- get_violin_panel_plot(filtered_data(), userSel$genes, violin_plot_filename(), userSel$violinPanelColumns) } if (is.null(plot)) { return(canvasXpress(destroy = TRUE)) } else { return(plot) } }) output$cxDotPlot <- renderUI({ gene_count <- 0 if (userSel$runDotPlot) { plot_result <- get_dot_plot(filtered_data(), input$genesSel, get_additional_genes(input$addDotGenes, top10_genes(), top30_genes()), input$addDotGenes, dot_plot_filename()) output$dotplot1 <- renderCanvasXpress({plot_result[[1]]}) gene_count <- plot_result[[2]] } else { output$dotplot1 <- renderCanvasXpress({canvasXpress(destroy = TRUE)}) } tagList( canvasXpressOutput("dotplot1", height = get_dynamic_plot_height(gene_count)) ) }) output$cxHeatmapPlot <- renderUI({ gene_count <- 0 if (userSel$runHeatmap) { plot_result <- get_heatmap_plot(filtered_data(), input$genesSel, get_additional_genes(input$addHeatmapGenes, top10_genes(), top30_genes()), input$addHeatmapGenes, heatmap_filename()) output$heatmap1 <- renderCanvasXpress({plot_result[[1]]}) gene_count <- plot_result[[2]] } else { output$heatmap1 <- renderCanvasXpress({canvasXpress(destroy = TRUE)}) } tagList( canvasXpressOutput("heatmap1", height = get_dynamic_plot_height(gene_count)) ) }) output$cxDifferentialsScatterPlot1 <- renderCanvasXpress({ if (!is.null(input$differentialsCluster1Sel) && input$differentialsCluster1Sel != "") { get_differential_scatter_plot(isolate(filtered_data()), input$differentialsCluster1Sel, paste("Cluster", input$differentialsCluster1Sel), "cxDifferentialsSelected1", differentials1_plot_filename()) } else { return(canvasXpress(destroy = TRUE)) } }) output$cxDifferentialsScatterPlot2 <- renderCanvasXpress({ if (!is.null(input$differentialsCluster2Sel) && input$differentialsCluster2Sel != "") { get_differential_scatter_plot(isolate(filtered_data()), input$differentialsCluster2Sel, paste("Cluster", input$differentialsCluster2Sel), "cxDifferentialsSelected2", differentials2_plot_filename()) } else { return(canvasXpress(destroy = TRUE)) } }) # observe inputs observeEvent(input$top10Genes, { if (input$top10Genes) { updateCheckboxInput(session, "top30Genes", value = FALSE) } }) observeEvent(input$top30Genes, { if (input$top30Genes) { updateCheckboxInput(session, "top10Genes", value = FALSE) } }) observeEvent(c(input$differentialsCluster1Sel, input$differentialsCluster2Sel), { if (input$differentialsCluster1Sel != "" && input$differentialsCluster2Sel != "") { enable("diffCalculateBtn") } else { disable("diffCalculateBtn") } }) # blank out plots when options have changed observeEvent(input$genesSel, { userSel$runScatterPlot <- FALSE userSel$runViolinPlot <- FALSE userSel$runDotPlot <- FALSE userSel$runHeatmap <- FALSE }) observeEvent(input$scatterClusterSel, { if (input$scatterClusterSel != userSel$scatterCluster) { userSel$runScatterPlot <- FALSE } }) observeEvent(input$scatterPanelPlotColumns, { if (!is.null(userSel$genes) && userSel$genes != "") { check_result <- check_panel_plot_columns(userSel$genes, input$scatterPanelPlotColumns) if (!check_result[[1]] || (check_result[[1]]) && check_result[[2]] != userSel$scatterPanelColumns) { userSel$runScatterPlot <- FALSE } } }) observeEvent(input$violinPanelPlotColumns, { if (userSel$runViolinPlot) { check_result <- check_panel_plot_columns(userSel$genes, input$violinPanelPlotColumns) if (!check_result[[1]] || (check_result[[1]]) && check_result[[2]] != userSel$violinPanelColumns) { userSel$runViolinPlot <- FALSE } } }) observeEvent(input$addDotGenes, { if (userSel$runDotPlot) { if (input$addDotGenes != userSel$addDotGenes) { userSel$runDotPlot <- FALSE } } }) observeEvent(input$addHeatmapGenes, { if (userSel$runHeatmap) { if (input$addHeatmapGenes != userSel$addHeatmapGenes) { userSel$runHeatmap <- FALSE } } }) observeEvent(c(input$differentialsCluster1Sel, input$differentialsCluster2Sel), { if (userSel$runDiffCalc) { userSel$runDiffCalc <- FALSE } }) observeEvent(c(input$cxDifferentialsSelected1, input$cxDifferentialsSelected2), { if ((input$differentialsCluster1Sel == input$differentialsCluster2Sel) && userSel$runDiffCalc) { userSel$runDiffCalc <- FALSE } }) # File to be uploaded has been chosen by user observeEvent(input$fileChosen, { if ((input$fileChosen / (1024*1024)) > 10) { toggleModal(session, "loading_modal", toggle = "open") userData$modalOpen <- TRUE } }) # File modal closed by user observeEvent(input$fileModalClosed, { userData$modalOpen <- FALSE }) ############################# #Update the data object being loaded obj <- reactive({ readRDS(input$objectInput$datapath) }) #Update the different control ui based on the new object #vln qc observeEvent(input$objectInput, { updateSelectizeInput(session, "vlnFeatures", choices = colnames(obj()@meta.data), selected = c("nCount_RNA")) }) #vln qc observeEvent(input$objectInput, { updateSelectizeInput(session, "vlnSplit", choices = colnames(obj()@meta.data), selected = c("orig.ident")) }) #Dimplot observeEvent(input$objectInput, { updateSelectizeInput(session, "dimPlotReduction", choices = names(obj()@reductions), selected = c("tsne")) }) observeEvent(input$objectInput, { updateSelectizeInput(session, "dimPlotGroup", choices = colnames(obj()@meta.data), selected = c("seurat_clusters")) }) observeEvent(input$objectInput, { updateSelectizeInput(session, "dimPlotSplit", choices = colnames(obj()@meta.data)) }) #FeaturePlot observeEvent(input$objectInput, { updateSelectizeInput(session, "featurePlotFeature", choices = rownames(obj()[["RNA"]]@counts),#Change to handle other slots later selected = VariableFeatures(obj())[1], server = TRUE) }) observeEvent(input$objectInput, { updateSelectizeInput(session, "featurePlotSlot", choices = names(obj()@assays),#Change to handle other slots later selected = c("RNA")) }) #Chord Diagram observeEvent(input$objectInput, { updateSelectizeInput(session, "clusterNumber", choices = levels(obj()@active.ident)) }) #Hex Selection Plot observeEvent(input$objectInput, { updateSelectizeInput(session, "hexSelectReduction", choices = names(obj()@reductions), selected = names(obj()@reductions[1])) }) observeEvent(input$objectInput, { updateSelectizeInput(session, inputId = "hexSelectFeature", choices = rownames(obj()[["RNA"]]@counts), selected = '', server = TRUE) }) # File upload has finished # observeEvent(input$fileInputDialog, { # input_file <- input$fileInputDialog # obj <- readRDS(input_file)### # return(obj) # if (!is.null(input_file)) { # load_data_result <- load_data(input_file) # #return(load_data_result)#Just Returning the Seurat object # error_messages <- load_data_result[["errors"]] # if (is.null(error_messages)) { # userData$objectId <- userData$objectId + 1 # userData$object <- load_data_result[["object"]] # userData$filteredObject <- NULL # disable_plots() # } # # if (userData$modalOpen) { # toggleModal(session, "loading_modal", toggle = "close") # userData$modalOpen <- FALSE # } # # if (!is.null(error_messages)) { # output$loading_error_message <- renderText({get_file_dialog_error_message(input_file, error_messages)}) # toggleModal(session, "file_error_modal", toggle = "open") # } # } # }) # About app link clicked observeEvent(input$about_link, { session$sendCustomMessage("openTitleInfoBox", runif(1)) }) # Scatter Plot Button Pushed observeEvent(input$scatterPlotBtn, { #clear out old alerts and plots try({ closeAlert(session, "invalidScatterInputAlertID") userSel$runScatterPlot <- FALSE }) # check input invalidInputMessages <- list() if (is.null(input$genesSel) || input$genesSel == "") { userSel$genes <- NULL } else { userSel$genes <- input$genesSel } if (is.null(userSel$genes)) { invalidInputMessages <- append(invalidInputMessages, "No Genes selected in Chart Options.") } if (is.null(input$scatterClusterSel) || input$scatterClusterSel == "") { userSel$scatterCluster <- NULL invalidInputMessages <- append(invalidInputMessages, "No Cluster selected.") } else { userSel$scatterCluster <- input$scatterClusterSel } if (is.null(input$scatterPanelPlotColumns) || input$scatterPanelPlotColumns == "") { userSel$scatterPanelColumns <- NULL invalidInputMessages <- append(invalidInputMessages, "No Panel Plot Columns selected.") } else { check_result <- check_panel_plot_columns(userSel$genes, input$scatterPanelPlotColumns) if (check_result[[1]]) { userSel$scatterPanelColumns <- check_result[[2]] } else { userSel$scatterPanelColumns <- 0 updateTextInput(session, "scatterPanelPlotColumns", value = "auto") } } if (length(invalidInputMessages) > 0) { createAlert(session, "bodyAlert", "invalidScatterInputAlertID", style = "warning", content = paste(invalidInputMessages, collapse = "<br>"), append = FALSE) } else { # trigger plots userSel$runScatterPlot <- TRUE } }) # Violin Plot Button Pushed observeEvent(input$violinPlotBtn, { #clear out old alerts and plots try({ closeAlert(session, "invalidViolinInputAlertID") userSel$runViolinPlot <- FALSE }) # check input invalidInputMessages <- list() if (is.null(input$genesSel) || input$genesSel == "") { userSel$genes <- NULL } else { userSel$genes <- input$genesSel } if (is.null(userSel$genes)) { invalidInputMessages <- append(invalidInputMessages, "No Genes selected in Chart Options.") } if (is.null(input$violinPanelPlotColumns) || input$violinPanelPlotColumns == "") { userSel$violinPanelColumns <- NULL invalidInputMessages <- append(invalidInputMessages, "No Panel Plot Columns selected.") } else { check_result <- check_panel_plot_columns(userSel$genes, input$violinPanelPlotColumns) if (check_result[[1]]) { userSel$violinPanelColumns <- check_result[[2]] } else { userSel$violinPanelColumns <- 0 updateTextInput(session, "violinPanelPlotColumns", value = "auto") } } if (length(invalidInputMessages) > 0) { createAlert(session, "bodyAlert", "invalidViolinInputAlertID", style = "warning", content = paste(invalidInputMessages, collapse = "<br>"), append = FALSE) } else { # trigger plots userSel$runViolinPlot <- TRUE } }) # Dot Plot Button Pushed observeEvent(input$dotPlotBtn, { #clear out old alerts and plots try({ closeAlert(session, "invalidDotInputAlertID") userSel$runDotPlot <- FALSE }) # check input invalidInputMessages <- list() if (is.null(input$genesSel) && input$addDotGenes == "off") { userSel$addDotGenes <- NULL invalidInputMessages <- append(invalidInputMessages, "No Genes selected in Chart Options.") } else { userSel$addDotGenes <- input$addDotGenes } if (length(invalidInputMessages) > 0) { createAlert(session, "bodyAlert", "invalidDotInputAlertID", style = "warning", content = paste(invalidInputMessages, collapse = "<br>"), append = FALSE) } else { # trigger plots userSel$runDotPlot <- TRUE } }) # Heatmap Plot Button Pushed observeEvent(input$heatmapPlotBtn, { #clear out old alerts and plots try({ closeAlert(session, "invalidHeatmapInputAlertID") userSel$runHeatmap <- FALSE }) # check input invalidInputMessages <- list() if (is.null(input$genesSel) && input$addHeatmapGenes == "off") { userSel$addHeatmapGenes <- NULL invalidInputMessages <- append(invalidInputMessages, "No Genes selected in Chart Options.") } else { userSel$addHeatmapGenes <- input$addHeatmapGenes } if (length(invalidInputMessages) > 0) { createAlert(session, "bodyAlert", "invalidHeatmapInputAlertID", style = "warning", content = paste(invalidInputMessages, collapse = "<br>"), append = FALSE) } else { # trigger plots userSel$runHeatmap <- TRUE } }) # Differential Button Pushed observeEvent(input$diffCalculateBtn, { #clear out old alerts and plots try({ closeAlert(session, "invalidDiffInputAlertID") closeAlert(session, "zeroDiffOutputAlertID") }) userSel$runDiffCalc <- FALSE userSel$diffCluster1 <- NULL userSel$diffCluster2 <- NULL userSel$diffClusterCells1 <- NULL userSel$diffClusterCells2 <- NULL # check input invalidInputMessages <- list() if (is.null(input$differentialsCluster1Sel) || input$differentialsCluster1Sel == "" || is.null(input$differentialsCluster2Sel) || input$differentialsCluster2Sel == "") { invalidInputMessages <- append(invalidInputMessages, "Both Cluster 1 and Cluster 2 must be selected.") } else { userSel$diffCluster1 <- input$differentialsCluster1Sel userSel$diffCluster2 <- input$differentialsCluster2Sel # Combination of All and cluster X not possible if ((userSel$diffCluster1 == "All" && userSel$diffCluster2 != "All") || (userSel$diffCluster1 != "All" && userSel$diffCluster2 == "All")) { cluster <- setdiff(c(userSel$diffCluster1, userSel$diffCluster2), "All") message <- paste("Differential analysis between All and Cluster", cluster, "is not available.", " If you wish to perform sub-cluster analysis on the entire dataset choose All for both plots and select cells on each plot to compute the differentials.") invalidInputMessages <- append(invalidInputMessages, message) } else if (userSel$diffCluster1 == userSel$diffCluster2) { # Checks if the same cluster selected if (is.null(input$cxDifferentialsSelected1) || length(input$cxDifferentialsSelected1) < 1 || is.null(input$cxDifferentialsSelected2) || length(input$cxDifferentialsSelected2) < 1) { message <- paste("Cells on both plots must be selected to perform differential sub-cluster analysis.") invalidInputMessages <- append(invalidInputMessages, message) } else if (all(input$cxDifferentialsSelected1 %in% input$cxDifferentialsSelected2) && all(input$cxDifferentialsSelected2 %in% input$cxDifferentialsSelected1)) { message <- paste("The same cells are selected on both plots. To perform differential sub-cluster analysis there must be a difference in the cells selected.") invalidInputMessages <- append(invalidInputMessages, message) } else { t1 <- input$cxDifferentialsSelected1 t2 <- input$cxDifferentialsSelected2 userSel$diffClusterCells1 <- input$cxDifferentialsSelected1 userSel$diffClusterCells2 <- input$cxDifferentialsSelected2 } } } if (length(invalidInputMessages) > 0) { createAlert(session, "bodyAlert", "invalidDiffInputAlertID", style = "warning", content = paste(invalidInputMessages, collapse = "<br>"), append = FALSE) } else { userSel$runDiffCalc <- TRUE } })
fe4f60a286894f3fa6697ab56e924380ab554931
d2e16353b0f1f431907f8794dde9024147c1c9de
/test script.R
d1bf71f1bc9922e74acbb65ab9b5d11c470f4dd6
[]
no_license
SteBrinke/Exp-R-Sschijf
d3e2c8d036865528be894cefe7a15b182f7506f5
a1b598a15af8658781a3cf3392e7e0b1f0d0cbb5
refs/heads/master
2020-04-23T20:37:17.894924
2019-02-19T10:24:14
2019-02-19T10:24:14
171,446,777
0
0
null
null
null
null
UTF-8
R
false
false
48
r
test script.R
#test script x <- 1:10 y <- mean(x) z <- var(x)
02a9622cd2b1bc11ef8b79d56aed1b8896531410
226e31ed001c66cd60b70ee3a452d47d11ec9f69
/Fraser_et_al_FigureS10.R
82f816ba618a30125c95560b64f51605e49ca6ba
[]
no_license
mfraser3/ZNRF3_2021
bb2fdee09b68df052271b9271c23bc23060b1b2c
1eacd557f6b032c73137f556ad9f67dac6d9958b
refs/heads/main
2023-04-18T14:10:48.115586
2021-08-20T21:08:12
2021-08-20T21:08:12
398,320,558
2
1
null
null
null
null
UTF-8
R
false
false
9,025
r
Fraser_et_al_FigureS10.R
# FRASER ET AL - FIGURE S10 # ## LOAD LIBRARIES #### library(tidyverse) library(survival) library(survminer) ## LOAD AND TIDY DATA - CPCG #### CPCG_ZNRF3_OUTCOME_ADJUSTED_PGA <- readRDS("/Users/michaelfraser/OneDrive/Work/Manuscripts/2020/ZNRF3/FINAL/Nature Cancer/Data and Code/CPCGENE.OUTCOME.ADJUSTED.PGA.rds") x <- CPCG_ZNRF3_OUTCOME_ADJUSTED_PGA$ZNRF3.RNA y <- CPCG_ZNRF3_OUTCOME_ADJUSTED_PGA$XBP1.RNA # SPEARMAN TEST - CPCG #### cor.test(x, y, alternative = "two.sided", method = "spearman") # SCATTERPLOT - CPCG #### ZNRF3.XBP1.RNA <- ggplot(data = CPCG_ZNRF3_OUTCOME_ADJUSTED_PGA, aes(x = ZNRF3.RNA, y = XBP1.RNA)) + geom_point() + geom_smooth(colour = "black", method = "lm", se = FALSE) + xlab("ZNRF3 RNA Abundance") + ylab("XPB1 RNA Abundance") + theme( panel.background = element_blank(), panel.border = element_rect(fill = NA, size = 2), axis.text = element_text(face = "bold", size = 32, colour = "black"), axis.title.x = element_text(face = "bold", size = 45, margin = margin(t= 10, r = 0, b= 0, l = 0)), axis.title.y = element_text(face = "bold", size = 45, margin = margin(t=0,r=10,b=0,l=0)) ) + annotate("text", label = "\U03C1 = 0.372", x = 7, y = 12.25, size = 14, hjust = 0) + annotate("text", label = "P: 3.18 %*% 10^-8", x = 7, y = 12.1, size = 14, hjust = 0, parse = TRUE) ZNRF3.XBP1.RNA ## LOAD DATA - TCGA #### TCGA_ZNRF3_XBP1_RNA_PFS <- readRDS("/Users/michaelfraser/OneDrive/Work/Manuscripts/2020/ZNRF3/FINAL/Nature Cancer/Data and Code/TCGA_ZNRF3_XBP1_RNA_PFS.rds") # SPEARMAN TEST - TCGA #### x <- TCGA_ZNRF3_XBP1_RNA_PFS$ZNRF3.RNA y <- TCGA_ZNRF3_XBP1_RNA_PFS$XBP1.RNA cor.test(x, y, alternative = "two.sided", method = "spearman") ## SCATTERPLOT - TCGA #### ZNRF3.XBP1.RNA <- ggplot(data = TCGA_ZNRF3_XBP1_RNA_PFS, aes(x = ZNRF3.RNA, y = XBP1.RNA)) + geom_point() + geom_smooth(colour = "black", method = "lm", se = FALSE) + xlab("ZNRF3 RNA Abundance") + ylab("XPB1 RNA Abundance") + theme( panel.background = element_blank(), panel.border = element_rect(fill = NA, size = 2), axis.text = element_text(face = "bold", size = 32, colour = "black"), axis.title.x = element_text(face = "bold", size = 45, margin = margin(t= 10, r = 0, b= 0, l = 0)), axis.title.y = element_text(face = "bold", size = 45, margin = margin(t=0,r=10,b=0,l=0)) ) + annotate("text", label = "\U03C1 = 0.171", x = 7, y = 12.25, size = 14, hjust = 0) + annotate("text", label = "P: 1.37 %*% 10^-4", x = 7, y = 12.1, size = 14, hjust = 0, parse = TRUE) ZNRF3.XBP1.RNA ## COX PROPORTIONAL HAZARDS MODELS - TCGA #### TCGA_ZNRF3_XBP1_RNA_PFS <- TCGA_ZNRF3_XBP1_RNA_PFS %>% mutate(ZNRF3.XBP1.RNA.BIN = as.numeric(ifelse(ZNRF3.RNA.BIN == 0 & XBP1.RNA.BIN == 0, 0, ifelse(ZNRF3.RNA.BIN == 1 & XBP1.RNA.BIN == 0,1, ifelse(ZNRF3.RNA.BIN == 0 & XBP1.RNA.BIN == 1, 2, ifelse(ZNRF3.RNA.BIN == 1 & XBP1.RNA.BIN == 1, 3, NA)))))) summary(coxph(Surv(pfs.time, pfs.bin) ~ ZNRF3.RNA.BIN + XBP1.RNA.BIN, data = TCGA_ZNRF3_XBP1_RNA_PFS)) ## LOG RANK TEST - TCGA #### survdiff(Surv(pfs.time, pfs.bin) ~ ZNRF3.XBP1.RNA.BIN, data = TCGA_ZNRF3_XBP1_RNA_PFS) # KAPLAN MEIER CURVE - TCGA #### fit <- survfit(Surv(pfs.time, pfs.bin) ~ ZNRF3.XBP1.RNA.BIN, data = TCGA_ZNRF3_XBP1_RNA_PFS) TCGA.ZNRF3.XBP1.RNA.KM <- ggsurvplot( fit, data = TCGA_ZNRF3_XBP1_RNA_PFS, size = 1, palette = c("#FF0000", "#104E8B", "black", "chartreuse3"), conf.int = FALSE, pval = FALSE, risk.table = TRUE, risk.table.title = "Number At Risk", xlab = "Time Post-Treatment (Months)", ylab = "Progression-Free Survival", xlim = c(0,122), ylim = c(0,1.01), break.time.by = 24, axes.offset = FALSE, font.legend = c(16), font.x = c(20, "bold"), font.y = c(20,"bold"), legend = c(.25, 0.38), legend.labs = c("Both High", "ZNRF3 Low", "XBP1 Low", "Both Low" ), legend.title = "ZNRF3/XBP1 RNA", fontsize = 6, risk.table.height = 0.25, risk.table.y.text = FALSE ) TCGA.ZNRF3.XBP1.RNA.KM$table <- TCGA.ZNRF3.XBP1.RNA.KM$table + theme( plot.title = element_blank(), axis.ticks.x = element_blank(), axis.ticks.y = element_blank(), axis.text.x = element_blank(), axis.line.x = element_blank(), axis.line.y = element_blank(), axis.title.x = element_blank(), axis.title.y = element_blank(), plot.margin = margin(0,1,1,1,"cm") ) TCGA.ZNRF3.XBP1.RNA.KM$plot <- TCGA.ZNRF3.XBP1.RNA.KM$plot + ggplot2::annotate("text", x=0.3, y=0.17, label = "P: 3.0 %*% 10^-4", hjust=0, size=8, color = "black", parse = TRUE) + ggplot2::annotate("text", x=0.3, y=0.07, label = "(Logrank test)", hjust=0, size=8, color = "black") TCGA.ZNRF3.XBP1.RNA.KM$plot <- TCGA.ZNRF3.XBP1.RNA.KM$plot + theme( panel.background = element_blank(), panel.border = element_rect(fill = NA, size = 2), axis.line = element_line(size = 0.5, color='black'), axis.text.x = element_text(size = 24, face = "bold", color = "black"), axis.text.y = element_text(size = 24, face = "bold", color = "black"), axis.title.x = element_text(size = 30, face = "bold", color = "black", margin = margin(t=10,b=0,r=0,l=0)), axis.title.y = element_text(size = 26, face = "bold", color = "black", margin = margin(t=0,b=0,r=10,l=10)), legend.title = element_text(size = 22, face = "bold", color = "black"), legend.text = element_text(size = 20, face = "italic", color = "black"), legend.background = element_blank(), plot.margin = margin(1,1,1,1, "cm") ) TCGA.ZNRF3.XBP1.RNA.KM # # FOREST PLOT - TCGA #### znrf3.xbp1.mvcox.table <- TCGA_ZNRF3_XBP1_RNA_PFS %>% transmute(pfs.time, pfs.bin, `ZNRF3`= factor(ZNRF3.RNA.BIN), `XBP1` = factor(XBP1.RNA.BIN)) znrf3.xbp1.mvcox.table <- znrf3.xbp1.mvcox.table %>% mutate(ZNRF3 = recode(ZNRF3, `0` = "High", `1` = "Low")) %>% mutate(XBP1 = recode(XBP1, `0` = "High", `1` = "Low")) median(CPCG_ZNRF3_OUTCOME_ADJUSTED_PGA$adjusted.pga) panels <- list( list(width = 0.03), list(width = 0.07, display = ~variable, fontface = "bold", heading = "Variable"), list(width = 0.03, item = "vline", hjust = 0.5), list(width = 0.1, display = ~level, heading = "Level", fontface = "italic", hjust = 0.5), list(width = 0.03, item = "vline", hjust = 0.5), list(width = 0.05, display = ~n, hjust = 0.5, heading = "N"), list(width = 0.03, item = "vline", hjust = 0.5), list( width = 0.75, item = "forest", hjust = 0.5, heading = "Hazard Ratio", linetype = "dashed", line_x = 0 ), list(width = 0.03, item = "vline", hjust = 0.5), list(width = 0.12, display = ~ ifelse(reference, "Reference", sprintf( "%0.2f (%0.2f, %0.2f)", trans(estimate), trans(conf.low), trans(conf.high) )), display_na = NA, heading = "HR (95% CI)"), list(width = 0.03, item = "vline", hjust = 0.5), list( width = 0.05, display = ~ ifelse(reference, "", format.pval(p.value, digits = 1, eps = 0.001)), display_na = NA, hjust = 0.5, heading = "p-value" ), list(width = 0.03) ) TCGA.ZNRF3.XBP1.RNA.PFS.FOREST <- forest_model(coxph(Surv(pfs.time, pfs.bin) ~ ZNRF3 * XBP1, znrf3.xbp1.mvcox.table), panels, format_options = forest_model_format_options(text_size = 8)) TCGA.ZNRF3.XBP1.RNA.PFS.FOREST + theme( axis.text.x = element_text(size = 18, face = "bold", color = "black", angle = 90, hjust = 1, vjust = 0.5), aspect.ratio = 0.9 )
52888fcc0c29b222b1519112a542f2a478739c16
8518aa91916c77ad8b3757fe824c1873e7609d54
/R/asymprob2.r
d24d2234007429706165fe5d00471a4d30dd9238
[]
no_license
cran/BinGSD
190799b72085e6bd74458e05f12f407c8f8ec812
94b7b5de408aa79152c26a23335fedb10096f374
refs/heads/master
2020-12-21T21:09:19.043736
2019-10-30T16:00:18
2019-10-30T16:00:18
236,562,129
0
0
null
null
null
null
UTF-8
R
false
false
791
r
asymprob2.r
#compute the lower boundary crossing probabilities given the design, under H0. #asymprob2(n.I,lowerbounds,K) asymprob2<-function(n.I,lowerbounds,K){ sigma=matrix(0,K,K) #the covariance matrix of multivariate normal distribution. for(i in 1:K){ for(j in 1:K){ sigma[i,j]=sqrt(n.I[min(i,j)]/n.I[max(i,j)]) } } problow=rep(0,K) problow[1]=stats::pnorm(lowerbounds[1]) ##Z_1 follows a standard normal distribution. ##note the last (K-k) lower and upper integration would not influence the result. for(k in 2:K){ upperlimits=c(rep(Inf,k-1),lowerbounds[k],rep(Inf,(K-k))) lowerlimits=c(lowerbounds[1:(k-1)],rep(-Inf,(K-k+1))) problow[k]=mvtnorm::pmvnorm(lower=lowerlimits,upper=upperlimits,mean=rep(0,K),sigma=sigma)[1] } return(problow) }
92fa0b1c975f5b464df478924779edeed6d665e7
33f6b19d9bdcd986121e7772c33a8d246af1a964
/R/friends.R
7ccd99c6210592fd220d4db0ee12edc061a267b1
[]
no_license
cranndarach/rtweet
6f538c2e4394c42bce618909702b65bb8194b467
17d69a0723be3bce97b1b44c7bcd896cac4896cb
refs/heads/master
2021-01-17T05:04:37.389407
2016-09-10T03:29:44
2016-09-10T03:29:44
null
0
0
null
null
null
null
UTF-8
R
false
false
1,792
r
friends.R
#' get_friends #' #' @description Requests information from Twitter's REST API #' regarding a user's friend network (i.e., accounts followed #' by a user). To request information on followers of accounts #' #' @param user Screen name or user id of target user. #' @param page Default \code{page = -1} specifies first page of json #' results. Other pages specified via cursor values supplied by #' Twitter API response object. #' @param parse Logical, indicating whether to return parsed #' vector or nested list (fromJSON) object. By default, #' \code{parse = TRUE} saves you the time [and frustrations] #' associated with disentangling the Twitter API return objects. #' @param token OAuth token (1.0 or 2.0). By default #' \code{token = NULL} fetches a non-exhausted token from #' an environment variable. #' @seealso \url{https://dev.twitter.com/overview/documentation} #' @examples #' \dontrun{ #' # get ids of users followed by the president of the US #' pres <- get_friends(user = "potus") #' pres #' #' # get ids of users followed by the Environmental Protection Agency #' epa <- get_friends(user = "epa") #' epa #' } #' #' @return friends User ids for everyone a user follows. #' @export get_friends <- function(user, page = "-1", parse = TRUE, token = NULL) { query <- "friends/ids" stopifnot(is.atomic(user), is.atomic(page), isTRUE(length(user) == 1)) token <- check_token(token, query) n.times <- rate_limit(token, query)[["remaining"]] params <- list( user_type = user, count = 5000, cursor = page, stringify = TRUE) names(params)[1] <- .id_type(user) url <- make_url( query = query, param = params) f <- scroller(url, 1, n.times, token) f <- f[!sapply(f, is.null)] if (parse) f <- parse_fs(f) f }
ef7e251a51eaba8aad98eb7a4fa65f31bae42e51
c319000e5d98025fb8dfd4617d74bd44b32bb606
/geog0323/final/r/distdir.R
6d56885e361b991f137030e49a82924c1cdcc1c6
[]
no_license
kufreu/kufreu.github.io
7011047203686fbf9f0fec334fdc3c8341e4d1df
8a55f269e44bfba670f2462c09da4e260b8dc79b
refs/heads/master
2021-08-02T23:21:33.186303
2021-07-24T22:40:42
2021-07-24T22:40:42
207,661,358
0
2
null
null
null
null
UTF-8
R
false
false
2,523
r
distdir.R
#### distdir #### # this function calculates distance in meters and direction in degrees from an origin (origin) to a destination (input) # this function is dependent on geosphere, dplyr, and sf # written by kufre u. distdir <- function (input, origin, prefix = "") { library(geosphere) library(dplyr) library(sf) library(units) print("Distance is measured in meters.") wgs84 <- input %>% as("sf") %>% st_transform(3395) %>% st_geometry %>% st_centroid %>% st_transform(4326) if (missing(origin)){ cbd <- input %>% as("sf") %>% st_transform(3395) %>% st_geometry %>% st_centroid %>% st_union %>% st_centroid %>% st_transform(4326) } else { cbd <- origin %>% as("sf") %>% st_transform(3395) %>% st_geometry %>% st_centroid %>% st_union %>% st_centroid %>% st_transform(4326) } int <- input %>% as("sf") %>% mutate( distance = drop_units(st_distance(wgs84, cbd)), direction_degrees = (bearing(as_Spatial(cbd), as_Spatial(wgs84)) + 360) %% 360 ) result <- int %>% mutate(direction_card_ord = ifelse( direction_degrees <= 22.5 | direction_degrees >= 337.5, "N", ifelse( direction_degrees <= 67.5 & direction_degrees >= 22.5, "NE", ifelse( direction_degrees <= 122.5 & direction_degrees >= 67.5, "E", ifelse( direction_degrees <= 157.5 & direction_degrees >= 112.5, "SE", ifelse( direction_degrees <= 292.5 & direction_degrees >= 247.5, "W", ifelse( direction_degrees <= 247.5 & direction_degrees >= 202.5, "SW", ifelse( direction_degrees <= 337.5 & direction_degrees >= 292.5, "NW", ifelse(direction_degrees <= 202.5 & direction_degrees >= 157.5, "S", "nichts") ) ) ) ) ) ) )) if (prefix == "") { result } else { result %>% rename(!!paste(prefix, "distance", sep = "_") := distance, !!paste(prefix, "direction_degrees", sep = "_") := direction_degrees, !!paste(prefix, "direction_card_ord", sep = "_") := direction_card_ord) } }
220dc82cc3e2c63ff3eac6100a8765c632fe74e3
0905cabde5e431aea433b339fd76b4aa5c8d6ee9
/Plot2.R
5994215bbfafc7748414e49311eebd2c030f5e2d
[]
no_license
Juan0001/ExData_Plotting1
c97143b13dffedd06e3c30c5a3c470dda4bceec4
c92f5238984ed65f90a81ad84767993b5ea0ad30
refs/heads/master
2020-12-25T10:42:18.169652
2015-03-04T01:14:25
2015-03-04T01:14:25
30,330,526
0
0
null
2015-02-05T01:10:31
2015-02-05T01:10:30
null
UTF-8
R
false
false
846
r
Plot2.R
## Read the data and subset data from the dates 2007-02-01 and 2007-02-02 data <- read.table("./Data/household_power_consumption.txt", header = TRUE, sep = ";", stringsAsFactors = FALSE) library(dplyr) wData <- filter(elecData, Date == "1/2/2007" | Date == "2/2/2007") ## Convert the Date and Time variables to Date/Time classes wData$Date_Time <- paste(wData$Date, wData$Time) wData$Date_Time <- strptime(wData$Date_Time, "%d/%m/%Y %H:%M:%S") wData <- select(wData, -(Date:Time)) ## Convert other data to numreic cols = c(1:6) wData[, cols] = apply(wData[, cols], 2, function(x) as.numeric(x)) ## Construct Plot 2 png("./Figures/Plot2.png", width=480, height=480) with(wData, plot(Date_Time, Global_active_power, type="l", xlab="", ylab="Global Active Power (kilowatts)")) dev.off()
e71e15ce77c607dee234c2167c5e1ae67a2f70ec
7fcc5697a1eda15658a8dba645ce94bed1501c2f
/afl_data/R/helpers.R
e84a67d8e1408c3e352ef061d5b03ad4661b04e4
[ "MIT" ]
permissive
tipresias/bird-signs
c69cd7238a31513d3f1b47d1b28b5113178ba94b
464ebd3fe5a2fc144f47978ef1c215819df89316
refs/heads/main
2021-06-17T15:19:37.320376
2021-04-29T12:46:01
2021-04-29T12:46:01
196,322,870
1
3
MIT
2021-03-21T02:54:48
2019-07-11T05:02:02
R
UTF-8
R
false
false
186
r
helpers.R
convert_to_snake_case <- function(string) { string %>% stringr::str_to_lower() %>% stringr::str_replace_all("\\.", "_") } is_empty <- function(data_frame) { nrow(data_frame) == 0 }
c39ab54c2be81fc446d47ef0900f5aec5aec18ab
6803e12cc707b1e467e46d1d5ae64d34af943e42
/cachematrix.R
b2db79ae1a925669f276b7f2e0cf307b7b451648
[]
no_license
JLeung46/ProgrammingAssignment2
5b66acfea874c8de8f83a7ec8837766e7c8a8174
e71c3a368ee15541d67d4f34e846239d2a113d06
refs/heads/master
2021-01-17T18:01:06.999219
2015-01-25T20:08:12
2015-01-25T20:08:12
29,195,296
0
0
null
2015-01-13T15:06:51
2015-01-13T15:06:51
null
UTF-8
R
false
false
1,418
r
cachematrix.R
## makeCacheMatrix creates an object that contains functions to ## set the value of the matrix, get the value of the matrix, ## set the inverse of the matrix, and get the inverse of the matrix. ## cacheSolve checks if the inverse of the matrix has been calculated. ## If so, fetch it from the cache, otherwise calculate the inverse ## and store it into the cache. Then return the inverse of the matrix. ## Creates a special matrix object that can cache its inverse. makeCacheMatrix <- function(x = matrix()) { inv <- NULL # initialize inverse to null set <- function(y){ # sets the value of the matrix x <<-y inv <<- NULL } get <- function() x # gets the value of the matrix setinv <- function(v) inv <<- v # sets the inverse of the matrix getinv <- function() inv # gets the inverse of the matrix list(set = set, get = get, setinv = setinv, getinv = getinv) } ## Computes the inverse of the special matrix. If inverse ## has already been calculated, then retrieve inverse from cache. cacheSolve <- function(x, ...) { inv <- x$getinv() # Gets the inverse of the object if(!is.null(inv)){ # If previously calculated, retrive from cache message("getting cached data") return(inv) } data <- x$get() # Otherwise get the data inv <- solve(data, ...) # Calculate inverse of the matrix x$setinv(inv) # Set the inverse into cache inv }
5934a1c59d78c43d6510a6f73aafa5c4be7e56bc
e6d29f8a2fea50e45e37285d3d47985763fd8c03
/example.R
03de573aef24df19d83ed8c79b261fe761918155
[ "MIT" ]
permissive
Mariana-plr/IPAQlong
de0b7b8d532e2d3dccd20204c42911b8c0f897c2
6f57ae46fa8779e08fa8efac56ce9b394b8f267e
refs/heads/main
2023-08-04T09:11:44.930621
2023-07-29T12:03:08
2023-07-29T12:03:08
471,093,506
1
1
null
null
null
null
UTF-8
R
false
false
1,027
r
example.R
# install IPAQlong install.packages("devtools") devtools::install_github("Mariana-plr/IPAQlong") library("IPAQlong") # generate example data (IPAQ long form): participants in rows, questions 1:25 (parts 1-4) in columns data <- matrix(NA,nrow = 3, ncol = 25) data[,1] <- c(1,1,1) # response to question 1 is either yes-1 or no-0 for (i in 2:25){ if (i%%2 == 0) { data[,i] <- sample(1:7,3) # questions with an even number refer to days per week } else { data[,i] <- sample(1:200,3) # questions with an odd number refer to minutes or hours per day. Hours should be converted to minutes } } data <- as.data.frame(data) # input to IPAQlong functions should be a dataframe object # Calculate scores using ipaq_scores function and save results in an object called "ipaq_scores" ipaq_scores <- IPAQlong::ipaq_scores(data = data, truncate = F) # Calculate subscores using ipaq_subscores function and save results in an object called "ipaq_subscores" ipaq_subscores <- IPAQlong::ipaq_subScores(data = data)
572a65709eeef3d09e15d69e9cdde45645b8a609
7f950e1930f11ff7219c0fbf997a6efa0166cd9c
/ui.R
0514e33eef520504f2496a230cc7b2f9ffd095ae
[]
no_license
phytoclast/BioClimR
ed16b3fae59cac41092de67d4da57f879ac0138c
431cdd6d440dc29300e004093c015a1d13f413f5
refs/heads/master
2020-04-19T13:08:54.262863
2020-03-13T20:17:05
2020-03-13T20:17:05
168,210,580
0
0
null
null
null
null
UTF-8
R
false
false
3,487
r
ui.R
# # This is the user-interface definition of a Shiny web application. You can # run the application by clicking 'Run App' above. # # Find out more about building applications with Shiny here: # # http://shiny.rstudio.com/ # library(shiny) library(ggplot2) #calculate percentiles library(plyr) fluidPage( headerPanel('Biome Climate Browser'), sidebarPanel( htmlOutput("Biome"), htmlOutput("ECO_NAME"), htmlOutput("country"), htmlOutput("elev"), htmlOutput("lat"), htmlOutput("lon"), htmlOutput("temp"), htmlOutput("prec") ), mainPanel( plotOutput("climplot"), verbatimTextOutput('Climtext'), fluidRow( column(width=5, radioButtons("RadioNorm", label = ("Select Timeframe"), choices = list('Last Glacial Maximum ' = -25000, 'Mid Holocene' = -4000, 'Current' = 1990, 'Moderate global warming' = 2070 , 'Stronger global warming' = 2071), selected = 1990) ), column(width = 2, radioButtons("RadioUnits", label = ("Select Units"), choices = list('Metric System' = 'm', 'Medieval Units' = 'USC'), selected = 'm') ), column(width = 5, radioButtons("RadioGraphtype",inline = T, label = ("Select Graph"), choiceNames = list(HTML("<font size=-2>Monthly"), HTML("Summer × Winter"), HTML("Summer × Moisture"), HTML("Surplus × Deficit"), HTML("Summer × pAET"), HTML("Winter × pAET"), HTML("Moisture × Deficit"), HTML("Moisture × Seasonality"), HTML("Map"), HTML("Temperature × Elevation</font>")), choiceValues = list(1,2,4,5,6,7,8,3,9,10), selected = 1), HTML("</font>") )), fluidRow( HTML("<font size=-2>Last Glacial Maximum: ~26,500 years ago (model: CCSM4);<br> Mid Holocene: ~6000 years ago (model: CCSM4);<br> Current: ~1961-1990 (WorldClim 1.4, http://worldclim.org/);<br> Moderate global warming: at year 2070 (scenario = RCP 4.5, model = CCSM4);<br> Stronger global warming: at year 2070 (scenario = RCP 8.5, model = CCSM4) <br>Temperature and preciptation error bars coorespond to the 10th and 90th percentiles of the geographic variability of the climate averages. NPP was estimated to be between 0.8 to 1.2 kg per square meter per AET depending on vegetation type or fertility, and AET was assumed to track monthly values for dry sites (high slope position, low soil water holding capacity), and annual totals for moist sites (low slope position, high soil water holding capacity). More information about the "), tags$a(href="https://www.researchgate.net/publication/327537609_Climate_Classification_Outline", "climate classification"), HTML(" used above.</font>") ) ) )
7689d7f7520c1ac48ace1a55ac4470e3484bfabc
9e618621cf49c5730984612d7234fa7ff827b7b8
/man/computeSIR.Rd
e072cd064fd7f6a85d224b8dc55d38fd4aa2d9c0
[]
no_license
MARCTELLY/SimuLearning
ac5ae0326affa66112f757416c0d31faa8be9de7
2b8b5f277358e265c8bcb03230c3e153b5b7b890
refs/heads/main
2023-03-23T20:15:17.288350
2021-03-14T23:08:05
2021-03-14T23:08:05
346,826,336
0
0
null
null
null
null
UTF-8
R
false
true
568
rd
computeSIR.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/computeSIR.R \name{computeSIR} \alias{computeSIR} \title{computeSIR Compute susceptible, Infected and Removote at a given time} \usage{ computeSIR(alpha, beta, initSusc, timeOfSpread) } \arguments{ \item{alpha}{infection rate} \item{beta}{removal rate} \item{initSusc}{initial susceptible} \item{timeOfSpread}{time of spread} } \value{ vector } \description{ computeSIR Compute susceptible, Infected and Removote at a given time } \examples{ computeSIR(0.5, 0.02, 10, 3) [1] 0 11 0 }
2550005358e08b9ea1d8e97d8d68ecc4fcb16e0e
75e77231822c4ca6cd737663f59686daabd66a9a
/job_assignment.R
de90254e017f52c36ce0ad93ce0db9be00315675
[]
no_license
aman11111/Duck-Worth-Lewis-Method-Improvement
7d780fa0279b1d16b037dd72b8fa138fb33414e2
b5b091b21acfd227a1191694d23a260f8b6e1b01
refs/heads/master
2021-01-25T06:56:12.332255
2017-06-07T11:47:57
2017-06-07T11:47:57
93,628,614
0
0
null
null
null
null
UTF-8
R
false
false
4,732
r
job_assignment.R
setwd("F:\\") df <- read.table("ggevent.log", sep = ",", header = FALSE) #(giving names to the columns) colnames(df)<-c("ai5","x","y","sdkv","event","ts","z","timestamp","game_id") library(dplyr) #(removing columns which are not required further) df1<-select(df, -x, -y, -z, -sdkv, -ts, -game_id) library(stringr) #(breaking the timestamp column into 3 columns and picking the last one) df2<-str_split_fixed(df1$timestamp, ":", 3) df1[,3] <- df2[,3] #(giving the column a name) colnames(df1)[3] <- "time" #(spliting time column into three parts and picking the last column into df1) df4<-str_split_fixed(df1$`time`, " ", 3) df1[,3]<-df4[,3] #(spliting event column into three parts and picking the last column into df1) df5<-str_split_fixed(df1$event, ":", 3) df1[,2]<-df5[,3] #(spliting ai5 column into three parts and picking the last column into df1) df7<-str_split_fixed(df1$ai5, ":", 3) df1[,1]<-df7[,3] #(again spliting time column into three parts and converting it into seconds) df8<-str_split_fixed(df1$time, ":", 3) for(i in 1:length(df1$ai5)){ df8[i,1]<- 60*(as.numeric(df8[i,2]))+as.numeric(df8[i,3]) } df1[,3]<-df8[,1] View(df1) #(finding total number of different users, here denoted by L) L<-unique(df1$ai5) #(making a list of there activities, here list is defined by K) K<-list(length(L)) for(i in 1:length(L)){ K[[i]]<- df1[which(df1$ai5==L[i]),] } #(removing unwanted elements) rm(df, df2, df4, df5, df7, df8) #(finding number of rows in every element of the list) myvec <- sapply(K, NROW) #(removing elements of the list which have only one row) z<-which(myvec==1) for(i in 1:length(z)){ K[[z[i]-i+1]]<-NULL } #(making all value of time numeric) for(j in 1:length(K)){ K[[j]]$time<-as.numeric(K[[j]]$time) } #(continuous two ggstart problem ) for(j in 1:length(K)){ for(i in 1:(length(K[[j]]$time)-1)){ if(K[[j]]$event[i]==" ggstart" && K[[j]]$event[i+1] ==" ggstart"){ K[[j]]$time[i+1]<-K[[j]]$time[i] } else{ i<-i+1 } } } #(continuous two ggstop problem ) for(j in 1:length(K)){ y=0 for(i in 1:(length(K[[j]]$time)-1-y)){ if(K[[j]]$event[i]==" ggstop" && K[[j]]$event[i+1] ==" ggstop"){ K[[j]]$time[i]<-K[[j]]$time[i+1] } else{ i<-i+1 } } } #(for removing one ggstart row from continuous two gstart ) for(j in 1:length(K)){ i<-1 while(i<length(K[[j]]$time)){ if(K[[j]]$event[i]== " ggstart" && K[[j]]$event[i+1] == " ggstart"){ K[[j]]<-K[[j]][-i, ] } else{ i<-i+1 } } } #(for removing one ggstop row from continuous two gstop ) for(j in 1:length(K)){ i<-1 while(i<length(K[[j]]$time)){ if(K[[j]]$event[i]== " ggstop" && K[[j]]$event[i+1] == " ggstop"){ K[[j]]<-K[[j]][-i, ] } else{ i<-i+1 } } } #(code for conjugative ggstop and ggstart) for(j in 1:length(K)){ i<-2 while(i<length(K[[j]]$time)){ if(K[[j]]$event[i]== " ggstop" && K[[j]]$event[i+1] == " ggstart"){ if(K[[j]]$time[i+1]-K[[j]]$time[i]<30 && K[[j]]$event[i-1]==" ggstart"){ K[[j]]$time[i+1]<-K[[j]]$time[i-1] K[[j]]<-K[[j]][c(-i, -(i-1)), ] } else{ i<-i+1 } } else{ i<-i+1 } } } #(removing matrices which have only one row after removing rows in conjugative ggstop and ggstart) myvec <- sapply(K, NROW) m<-which(myvec==1) for(i in 1:length(m)){ K[[m[i]-i+1]]<-NULL } #(total number of valid sessions) avgarray<-list(length(K)) countvalid<-rep(0, length(K)) for(j in 1:length(K)){ countvalid[j] =0 avgarray[[j]]<-rep(0, (length(K[[j]]$event)-1)) for(i in 1:(length(K[[j]]$event)-1)){ if(K[[j]]$event[i] ==" ggstart" && K[[j]]$event[i+1]==" ggstop"){ if(K[[j]]$time[i+1]-K[[j]]$time[i]>60){ avgarray[[j]][i]<- K[[j]]$time[i+1]-K[[j]]$time[i] countvalid[j] =countvalid[j] +1 } else{ avgarray[[j]][i]<- 0 i<-i+1 } } } } sum(countvalid) #(total number of sessions) count<-rep(0, length(K)) for(j in 1:length(K)){ count[j] =0 for(i in 1:(length(K[[j]]$event)-1)){ if(K[[j]]$event[i] ==" ggstart" && K[[j]]$event[i+1]==" ggstop"){ if(K[[j]]$time[i+1]-K[[j]]$time[i]>=1){ count[j] =count[j] +1 } else{ i<-i+1 } } } } sum(count) #(for average time of a session) h<-unlist(avgarray) v<-which(h==0) h<-h[-v] mean(h) print("total number of sessions are") sum(count) print("total number of valid sessions are") sum(countvalid) print("average of valid sessions is") mean(h)
0e3b2717e1a9acb70e7d49474a33b1def52990a9
2b1c1c7b88d8a55532931528b1e8f76cb9a67cc6
/man/filter_state.Rd
67940a74d13f5efa5869f5ee8e06c0cda920c3a5
[]
no_license
ktargows/tigris
61931e7c57ecbd8ac75b8a4a46cfdf322eab318b
50c5da523b4ccc5816b85f91c4d39dbdd99761f2
refs/heads/master
2021-03-13T04:08:23.931958
2017-05-16T18:36:25
2017-05-16T18:36:25
null
0
0
null
null
null
null
UTF-8
R
false
true
659
rd
filter_state.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/states.R \name{filter_state} \alias{filter_state} \title{Filter a \code{states} Spatial object for only those states matching the contents of the \code{state} vector.} \usage{ filter_state(states, state) } \arguments{ \item{states}{object returned from a call to \code{states}} \item{state}{a vector of full state names. The function performs the comparison in a case-insensitive manner.} } \description{ Filter a \code{states} Spatial object for only those states matching the contents of the \code{state} vector. } \examples{ \dontrun{ states() \%>\% filter_state("south") } }