blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
327
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
91
license_type
stringclasses
2 values
repo_name
stringlengths
5
134
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
46 values
visit_date
timestamp[us]date
2016-08-02 22:44:29
2023-09-06 08:39:28
revision_date
timestamp[us]date
1977-08-08 00:00:00
2023-09-05 12:13:49
committer_date
timestamp[us]date
1977-08-08 00:00:00
2023-09-05 12:13:49
github_id
int64
19.4k
671M
star_events_count
int64
0
40k
fork_events_count
int64
0
32.4k
gha_license_id
stringclasses
14 values
gha_event_created_at
timestamp[us]date
2012-06-21 16:39:19
2023-09-14 21:52:42
gha_created_at
timestamp[us]date
2008-05-25 01:21:32
2023-06-28 13:19:12
gha_language
stringclasses
60 values
src_encoding
stringclasses
24 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
9.18M
extension
stringclasses
20 values
filename
stringlengths
1
141
content
stringlengths
7
9.18M
5846b59c404700653dc838e18f7b9275f4db2267
5e8bb97ee1805d7c68aeb2ebcd61718ed20ae282
/odds_ratio.R
14ccf7e611aef5736cf9275587ccec0eb940d59b
[]
no_license
crglaser/swing-miss-percentages
2879eaca136be6f59789ff83289b215da6997e9a
629129682d4a3568f5310175c9f5323e5df55096
refs/heads/master
2021-01-10T13:16:28.265996
2016-01-14T00:21:40
2016-01-14T00:21:40
49,166,906
0
0
null
null
null
null
UTF-8
R
false
false
370
r
odds_ratio.R
odds_ratio <- function(hitter_probability, pitcher_probability, league_probability){ hitter_odds <- probability_to_odds(hitter_probability) pitcher_odds <- probability_to_odds(pitcher_probability) league_odds <- probability_to_odds(league_probability) ratio <- (hitter_odds * pitcher_odds) / league_odds percentage <- ratio / (ratio + 1) return(percentage) }
28d5e177bfe16c127b7c81f176eb47969d3894f1
92cf452f280a949e9d8163bbcd2c07a12c045688
/shinyRcode/R/reloadData.R
846a596fdeb0fc9c514628e8907a99b3ac9d394a
[]
no_license
SWS-Methodology/faoswsFisheriesSUAFBSdocumentation
8b59d60b16431ef4688e23dcdc3f44889a09a486
c5a42a5c2b3dc7d25aeda15d1d3245a9ae910dfb
refs/heads/master
2021-05-19T10:53:08.144166
2020-11-02T14:46:12
2020-11-02T14:46:12
251,660,525
1
0
null
null
null
null
UTF-8
R
false
false
8,006
r
reloadData.R
reloadData <- function(data, keycountry, minyear, maxyear, keydomain, keydataset, keygeo = 'geographicAreaM49_fi', keytime = 'timePointYears', keyelement= 'measuredElementSuaFbs', keyitem = 'measuredItemFaostat_L2'){ sel_years <- as.character(as.numeric(minyear):as.numeric(maxyear)) if(nrow(data) == 0){ Key <- DatasetKey(domain = keydomain, dataset = keydataset, dimensions = list(geographicAreaM49_fi = Dimension(name = keygeo, keys = keycountry), measuredElementSuaFbs = Dimension(name = keyelement, GetCodeList(keydomain, keydataset, keyelement )[,code]), measuredItemFaostat_L2 = Dimension(name = keyitem, GetCodeList(keydomain, keydataset, keyitem )[,code]), timePointYears = Dimension(name = keytime, keys = sel_years ))) withProgress(message = 'Data loading in progress', value = 0, { Sys.sleep(0.25) incProgress(0.25) dataKey <- GetData(Key) Sys.sleep(0.75) incProgress(0.95) }) data <- dataKey return(data) } else if(nrow(data) > 0 & unique(data$geographicAreaM49_fi) != keycountry | min(unique(data$timePointYears)) != minyear | max(unique(data$timePointYears)) != maxyear){ Key <- DatasetKey(domain = keydomain, dataset = keydataset, dimensions = list(geographicAreaM49_fi = Dimension(name = keygeo, keys = keycountry), measuredElementSuaFbs = Dimension(name = keyelement, GetCodeList(keydomain, keydataset, keyelement )[,code]), measuredItemFaostat_L2 = Dimension(name = keyitem, GetCodeList(keydomain, keydataset, keyitem )[,code]), timePointYears = Dimension(name = keytime, keys = sel_years ))) withProgress(message = 'Data loading in progress', value = 0, { Sys.sleep(0.25) incProgress(0.25) dataKey <- GetData(Key) Sys.sleep(0.75) incProgress(0.95) }) data <- dataKey return(data) } else {data <- NULL} } reloadDataToken <- function(data, keycountry, minyear, maxyear, keydomain, keydataset, keytoken, keygeo = 'geographicAreaM49_fi', keytime = 'timePointYears', keyelement= 'measuredElementSuaFbs', keyitem = 'measuredItemFaostat_L2'){ sel_years <- as.character(as.numeric(minyear):as.numeric(maxyear)) if(nrow(data) == 0){ if(localrun){ if(CheckDebug()){ library(faoswsModules) SETTINGS = ReadSettings("sws.yml") R_SWS_SHARE_PATH = SETTINGS[["share"]] SetClientFiles(SETTINGS[["certdir"]]) GetTestEnvironment(baseUrl = SETTINGS[["server"]], token = keytoken) } } else { R_SWS_SHARE_PATH = "Z:" SetClientFiles("/srv/shiny-server/.R/QA/") GetTestEnvironment(baseUrl = "https://swsqa.aws.fao.org:8181", token = keytoken) } Key <- DatasetKey(domain = keydomain, dataset = keydataset, dimensions = list(geographicAreaM49_fi = Dimension(name = keygeo, keys = keycountry), measuredElementSuaFbs = Dimension(name = keyelement, GetCodeList(keydomain, keydataset, keyelement )[,code]), measuredItemFaostat_L2 = Dimension(name = keyitem, GetCodeList(keydomain, keydataset, keyitem )[,code]), timePointYears = Dimension(name = keytime, keys = sel_years ))) withProgress(message = 'Data loading in progress', value = 0, { Sys.sleep(0.25) incProgress(0.25) dataKey <- GetData(Key) Sys.sleep(0.75) incProgress(0.95) }) data <- dataKey return(data) } else if(nrow(data) > 0 & unique(data$geographicAreaM49_fi) != keycountry | min(unique(data$timePointYears)) != minyear | max(unique(data$timePointYears)) != maxyear){ if(localrun){ if(CheckDebug()){ library(faoswsModules) SETTINGS = ReadSettings("sws.yml") R_SWS_SHARE_PATH = SETTINGS[["share"]] SetClientFiles(SETTINGS[["certdir"]]) GetTestEnvironment(baseUrl = SETTINGS[["server"]], token = keytoken) } } else { R_SWS_SHARE_PATH = "Z:" SetClientFiles("/srv/shiny-server/.R/QA/") GetTestEnvironment(baseUrl = "https://swsqa.aws.fao.org:8181", token = keytoken) } Key <- DatasetKey(domain = keydomain, dataset = keydataset, dimensions = list(geographicAreaM49_fi = Dimension(name = keygeo, keys = keycountry), measuredElementSuaFbs = Dimension(name = keyelement, GetCodeList(keydomain, keydataset, keyelement )[,code]), measuredItemFaostat_L2 = Dimension(name = keyitem, GetCodeList(keydomain, keydataset, keyitem )[,code]), timePointYears = Dimension(name = keytime, keys = sel_years ))) withProgress(message = 'Data loading in progress', value = 0, { Sys.sleep(0.25) incProgress(0.25) dataKey <- GetData(Key) Sys.sleep(0.75) incProgress(0.95) }) data <- dataKey return(data) } else {data <- NULL} }
3f7cec553c5a3c59ab6aa2d3b6b70c90c55cc122
23691014ae69404742f014d19109b0d3075f871a
/man/fit-method.Rd
21a85a49335786ae5f5021152d6a77870493876c
[]
no_license
zrmacc/CICs
d43c14c451344adcb6ff86be63b2195616031d4c
28ad3929a27da57046e054bc7f07818f5199c521
refs/heads/master
2023-04-17T08:49:18.313907
2021-05-02T19:54:19
2021-05-02T19:54:19
274,303,685
0
1
null
null
null
null
UTF-8
R
false
true
348
rd
fit-method.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Class.R \name{show,compCICs-method} \alias{show,compCICs-method} \title{Show Method for Compare CICs Object} \usage{ \S4method{show}{compCICs}(object) } \arguments{ \item{object}{An object of class \code{compCICs}.} } \description{ Show Method for Compare CICs Object }
ae758e1315c6f30a978b5829ab600e2faa43f5ec
e2af2bedf379072f012ef2847be39118192fe161
/SFrestaurantscores/global.R
f863abc222413f2cb3ed9a9823c881b433f8ca25
[]
no_license
hlau117/Project1-ShinyApp
de23cca85d8b3f3a65223ab90c8b558c168a3491
5023b98a8fcd2d54faa231824bbbcb9fa99f91d7
refs/heads/master
2021-07-10T16:43:56.665856
2017-10-13T14:53:46
2017-10-13T14:53:46
106,331,957
0
0
null
null
null
null
UTF-8
R
false
false
1,757
r
global.R
library(xts) library(dygraphs) library(plyr) library(dplyr) load("total_postcode.rda") load("Spatial_Zipcodes.rda") SF_rest= read.csv("Restaurant_Scores.csv",sep=',') #rename columns SF_rest= SF_rest%>%select(rest_id=business_id, name=business_name, address=business_address, postcode= business_postal_code, lat=business_latitude, long=business_longitude, ins_id= inspection_id, fulldate=inspection_date, score= inspection_score, descr= violation_description, risk_cat= risk_category) #remove rows with missing score values & position(lat & long) values SF_rest=SF_rest %>% filter(is.na(lat)!=TRUE) SF_rest=SF_rest %>% filter(is.na(score)!=TRUE) #change date to date object and extract day, month, year into each seperate column SF_rest$fulldate=as.Date(SF_rest$fulldate, format = "%m/%d/%Y") SF_rest$mmyydate=format(SF_rest$fulldate, "%Y-%m") SF_rest$day= format(SF_rest$fulldate, "%d") SF_rest$month= format(SF_rest$fulldate, "%m") SF_rest$year= format(SF_rest$fulldate, "%Y") #rename risk factor SF_rest$risk_cat= gsub("^$","No Risk", SF_rest$risk_cat) #clean post code factor SF_rest= SF_rest %>% filter (!(postcode %in% c("00000","Ca","CA","","941"))) %>% droplevels() SF_rest$postcode=gsub(".*2019.*", "94110", SF_rest$postcode) #add a none feature for the day date unique_days=unique(sort(SF_rest[,"day"], decreasing=FALSE)) unique_days=append(unique_days,"None") #add NA for violation description of No risks category level levels(SF_rest$descr)[levels(SF_rest$descr)==""] = "NA" save(SF_rest, file = "Clean_SF_rest.rda")
fb8cabd40f68cacb57e320e8cd746e0448aedd49
3e8ad7252429b4f19795dab539308410804d056a
/functions.R
71f1238240d2eeeae226c10368630576f0ee3110
[]
no_license
dainiuxt/RprogrammingLectures
e0d0e5e79830b8265a43d58358cacc38b369b011
e71ba3b83ef2628881f66a66a2fc0b8847487cdf
refs/heads/master
2020-12-25T18:23:09.717279
2014-06-14T20:56:10
2014-06-14T20:56:10
null
0
0
null
null
null
null
UTF-8
R
false
false
296
r
functions.R
#lapply x <- list(a = 1:5, b = rnorm(10)) lapply(x, mean) x <- list(a = 1:4, b = rnorm(10), c = rnorm(20, 1), d = rnorm(100, 5)) x<- 1:10 lapply(x, runif) lapply(x, runif, min=0, max =10) x <- list(a = matrix(1:4, 2, 2), b = matrix(1:6, 3, 2)) lapply(x, function(elt) elt[,1]) sapply(x, mean)
0e1473cf40623abf7d050c54ed45e59898505086
2efe10652a9d1d4f01219a5d7f8d429896660cfb
/signit-pipeline/signit_summary_table.R
47cf1f1761c7c8fc164229e3e41a022666cde25e
[]
no_license
eyzhao/bio-pipelines
9416b33f280e33ecf56c916833ee13e36f64c56d
52e4e40e7b3f2da24675c422d58b7b373b7024a3
refs/heads/master
2021-03-24T09:48:16.445178
2019-12-04T17:25:10
2019-12-04T17:25:10
105,455,771
4
0
null
null
null
null
UTF-8
R
false
false
1,240
r
signit_summary_table.R
' signit_summary_table.R Usage: signit_summary_table.R -i INPUT -o OUTPUT [ -s SIGNIT --fraction ] Options: -i --input INPUT Path to serialized output from SignIT (.Rds file) -o --output OUTPUT Path to output summary stats table (.tsv file) -s --signit SIGNIT Path to SignIT R library files. If not provided, will assume that SignIT is installed and load the package using library(signit) instead. --fraction If using this flag, summary table will report all values as exposure fractions instead of number of mutations. ' -> doc library(docopt) args <- docopt(doc) if (is.null(args[['signit']])) { library(signit) } else { library(devtools) library(tidyverse) library(rjags) library(nnls) library(dbscan) library(Rtsne) load_all(args[['signit']]) } message('Reading SignIT data') exposures <- readRDS(args[['input']]) summary_table <- get_exposure_summary_table(exposures, alpha = c(0, 0.05, 0.5), fraction = args[['fraction']]) message('Created summary table.') summary_table %>% write_tsv(args[['output']]) print(paste0('Results saved as TSV at ', args[['output']]))
9b6641683cedfcc3b8739b243376eb8e29a6c72c
bffd64b5c5f55b0b9791c99e7f245a49a7a05b7a
/Movie Recommender System/AppDeployCode/server.R
998b348b0bd24a4e5fa16a815b55c97456654785
[]
no_license
vkk2/schoolprojects
dc8dbe0915437098c2264af3c1978674b2016324
1a97a62bda724abe2aa6e07603471665cbc79f84
refs/heads/main
2023-02-28T01:32:10.800144
2021-02-04T16:50:28
2021-02-04T16:50:28
322,464,282
0
0
null
null
null
null
UTF-8
R
false
false
10,519
r
server.R
## server.R library(recommenderlab) library(Matrix) # load functions #source('functions/cf.R') #source('functions/cf_algorithm.R') # collaborative filtering #source('functions/similarity_measures.R') # similarity measures # define functions get_user_ratings = function(value_list) { dat = data.table(MovieID = sapply(strsplit(names(value_list), "_"), function(x) ifelse(length(x) > 1, x[[2]], NA)), Rating = unlist(as.character(value_list))) dat = dat[!is.null(Rating) & !is.na(MovieID)] dat[Rating == " ", Rating := 0] dat[, ':=' (MovieID = as.numeric(MovieID), Rating = as.numeric(Rating))] dat = dat[Rating > 0] } # read in data myurl = "https://liangfgithub.github.io/MovieData/" movies = readLines(paste0(myurl, 'movies.dat?raw=true')) movies = strsplit(movies, split = "::", fixed = TRUE, useBytes = TRUE) movies = matrix(unlist(movies), ncol = 3, byrow = TRUE) movies = data.frame(movies, stringsAsFactors = FALSE) colnames(movies) = c('MovieID', 'Title', 'Genres') movies$MovieID = as.integer(movies$MovieID) movies$Title = iconv(movies$Title, "latin1", "UTF-8") small_image_url = "https://liangfgithub.github.io/MovieImages/" movies$image_url = sapply(movies$MovieID, function(x) paste0(small_image_url, x, '.jpg?raw=true')) #### genre_ratingdf=read.csv("data/genre_rating.csv",stringsAsFactors = FALSE) genre_list = c("Action", "Adventure", "Animation", "Children's", "Comedy", "Crime", "Documentary", "Drama", "Fantasy", "Film-Noir", "Horror", "Musical", "Mystery", "Romance", "Sci-Fi", "Thriller", "War", "Western") shinyServer(function(input, output, session) { # show the books to be rated output$ratings <- renderUI({ num_rows <- 20 num_movies <- 6 # movies per row lapply(1:num_rows, function(i) { list(fluidRow(lapply(1:num_movies, function(j) { list(box(width = 2, div(style = "text-align:center", img(src = movies$image_url[(i - 1) * num_movies + j], height = 150)), #div(style = "text-align:center; color: #999999; font-size: 80%", books$authors[(i - 1) * num_books + j]), div(style = "text-align:center", strong(movies$Title[(i - 1) * num_movies + j])), div(style = "text-align:center; font-size: 150%; color: #f0ad4e;", ratingInput(paste0("select_", movies$MovieID[(i - 1) * num_movies + j]), label = "", dataStop = 5)))) #00c0ef }))) }) }) # Calculate recommendations when the sbumbutton is clicked df <- eventReactive(input$btn, { withBusyIndicatorServer("btn", { # showing the busy indicator # hide the rating container useShinyjs() jsCode <- "document.querySelector('[data-widget=collapse]').click();" runjs(jsCode) # get the user's rating data value_list <- reactiveValuesToList(input) user_ratings <- get_user_ratings(value_list) user_results = (1:10)/10 user_predicted_ids = 1:10 user_ratings=na.omit(user_ratings) #userid=rep(9999,nrow(user_ratings)) #print(nrow(user_ratings)) # print(user_ratings[1:5]) #user_ratings=data.frame("MovieID"=user_ratings$MovieID[1:nrow(user_ratings)],"Rating"=user_ratings$Rating[1:nrow(user_ratings)]) #userdf=data.frame("UserID"=rep(9999,nrow(user_ratings))) #newuser=cbind(userdf,user_ratings) #print(head(newuser)) #print(tail(newuser)) #print(nrow(newuser)) #print(ncol(newuser)) #print(newuser$Rating[1:5]) Rmat_ex=matrix(NA,3706) for (i in 1:nrow(user_ratings)){ Rmat_ex[user_ratings$MovieID[i]]=user_ratings$Rating[i] } #Rmat_ex[1]=5 #Rmat_ex[2]=5 # print(Rmat_ex[1:5]) Rmat_ex <- as(t(Rmat_ex), "realRatingMatrix") trainedmodel=readRDS("data/trainedmodel.rds") #Rmat_ex=gettestmatrix(newuser) model3_predtop_ex <- predict(object = trainedmodel, newdata = Rmat_ex, n = 10, type = "topNList") recom_list=as(model3_predtop_ex,"list") # print(recom_list) recom_movieid=as.integer(substring(recom_list[[1]],first=2)) #print(recom_movieid) #recom_movieid=as.integer(recom_list[[1]]) recom_results <- data.table(MovieID=recom_movieid) }) # still busy }) # clicked on button # display the recommendations output$results <- renderUI({ num_rows <- 2 num_movies <- 5 recom_result <- df() lapply(1:num_rows, function(i) { list(fluidRow(lapply(1:num_movies, function(j) { box(width = 2, status = "success", solidHeader = TRUE, title = paste0("Rank ", (i - 1) * num_movies + j), div(style = "text-align:center", a(img(src = paste0(small_image_url, recom_result$MovieID[(i - 1) * num_movies + j], '.jpg?raw=true'), height = 150)) ), div(style="text-align:center; font-size: 100%", strong(movies$Title[which(movies$MovieID==recom_result$MovieID[(i - 1) * num_movies + j])]) ) ) }))) }) # rows }) # renderUI function #adding # category <- c("Action", "Adventure", "Animation") # population <- c(3,8,4) # # df2 <- data.frame(category,population) # # df_subset <- reactive({ # a <- subset(df2, category == input$state) # return(a) #}) #output$table1 <- renderTable(df_subset()) #Note how df_subset() was used and not df_subset ########################################################## # This is the By genre portion for server.r # output name is genreresults # ########################################################### output$genreresults <- renderUI({ num_rows <- 2 num_movies <- 5 #genre_ratingdf=genre_ratingdf %>% filter(Action==1) %>% top_n(5, ave_ratings) genre_selected=input$state if(genre_selected=="Action") genre_ratingdf=genre_ratingdf %>% filter(Action==1) %>% top_n(5, ave_ratings) else if (genre_selected=="Adventure") genre_ratingdf=genre_ratingdf %>% filter(Adventure==1) %>% top_n(5, ave_ratings) else if (genre_selected=="Animation") genre_ratingdf=genre_ratingdf %>% filter(Animation==1) %>% top_n(5, ave_ratings) else if (genre_selected=="Children's") genre_ratingdf=genre_ratingdf %>% filter(Children.s==1) %>% top_n(5, ave_ratings) else if (genre_selected=="Comedy") genre_ratingdf=genre_ratingdf %>% filter(Comedy==1) %>% top_n(5, ave_ratings) else if (genre_selected=="Crime") genre_ratingdf=genre_ratingdf %>% filter(Crime==1) %>% top_n(5, ave_ratings) else if (genre_selected=="Documentary") genre_ratingdf=genre_ratingdf %>% filter(Documentary==1) %>% top_n(5, ave_ratings) else if (genre_selected=="Drama") genre_ratingdf=genre_ratingdf %>% filter(Drama==1) %>% top_n(5, ave_ratings) else if (genre_selected=="Fantasy") genre_ratingdf=genre_ratingdf %>% filter(Fantasy==1) %>% top_n(5, ave_ratings) else if (genre_selected=="Film-Noir") genre_ratingdf=genre_ratingdf %>% filter(Film.Noir==1) %>% top_n(5, ave_ratings) else if (genre_selected=="Horror") genre_ratingdf=genre_ratingdf %>% filter(Horror==1) %>% top_n(5, ave_ratings) else if (genre_selected=="Musical") genre_ratingdf=genre_ratingdf %>% filter(Musical==1) %>% top_n(5, ave_ratings) else if (genre_selected=="Mystery") genre_ratingdf=genre_ratingdf %>% filter(Mystery==1) %>% top_n(5, ave_ratings) else if (genre_selected=="Romance") genre_ratingdf=genre_ratingdf %>% filter(Romance==1) %>% top_n(5, ave_ratings) else if (genre_selected=="Sci-Fi") genre_ratingdf=genre_ratingdf %>% filter(Sci.Fi==1) %>% top_n(5, ave_ratings) else if (genre_selected=="Thriller") genre_ratingdf=genre_ratingdf %>% filter(Thriller==1) %>% top_n(5, ave_ratings) else if (genre_selected=="War") genre_ratingdf=genre_ratingdf %>% filter(War==1) %>% top_n(5, ave_ratings) else if (genre_selected=="Western") genre_ratingdf=genre_ratingdf %>% filter(Western==1) %>% top_n(5, ave_ratings) list(fluidRow(lapply(1:5, function(j) { box(width = 2, status = "success", solidHeader = TRUE, title = paste0("Rank ", j ), div(style = "text-align:center", a(img(src = paste0(small_image_url, genre_ratingdf$MovieID[j], '.jpg?raw=true'), height = 150)) ), div(style="text-align:center; font-size: 100%", strong(genre_ratingdf$Title[j]) ) ) }))) # lapply(1:num_rows, function(i) { # list(fluidRow(lapply(1:num_movies, function(j) { # box(width = 2, status = "success", solidHeader = TRUE, title = paste0("Rank ", (i - 1) * num_movies + j), # # div(style = "text-align:center", # a(img(src = paste0(small_image_url, genre_ratingdf$MovieID[i], '.jpg?raw=true'), height = 150)) # ), # div(style="text-align:center; font-size: 100%", # strong(genre_ratingdf$Title[i]) # ) # # ) # }))) # columns # }) #df1=genre_ratingdf %>% filter(Action==1)) #recom_result <- genre_ratingdf # fluidRow({ # div(style = "text-align:center", # a(img(src = paste0(small_image_url, 318, '.jpg?raw=true', height = 150))) # ) # }) # lapply(1:num_rows, function(i) { # list(fluidRow(lapply(1:num_movies, function(j) { # box(width = 2, status = "success", solidHeader = TRUE, title = paste0("Rank ", (i - 1) * num_movies + j), # # div(style = "text-align:center", # a(img(src = movies$image_url[recom_result$MovieID[(i - 1) * num_movies + j]], height = 150)) # ), # div(style="text-align:center; font-size: 100%", # strong(movies$Title[recom_result$MovieID[(i - 1) * num_movies + j]]) # ) # # ) # }))) # columns # }) # rows }) # renderUI function }) # server function
8399feac9c382590f36bdcdfd3255d5c3b0122ea
9509cefb9198144bde21774fdd5b3c7a68a005a7
/man/targetsmet.Rd
73c63104701d3b9fd0c66ffd379f66fee041d2ca
[]
no_license
jeffreyhanson/marxan
cc5d39f4a0980f8a7c4d1cf041a500721b03c198
fff42df08ac0a8ad1f762f6402d15698babf1dff
refs/heads/master
2021-08-07T12:54:25.036732
2016-11-03T04:53:28
2016-11-03T04:53:28
29,377,383
2
2
null
null
null
null
UTF-8
R
false
true
929
rd
targetsmet.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/generics.R, R/MarxanResults.R, R/MarxanSolved.R \name{targetsmet} \alias{targetsmet} \alias{targetsmet.MarxanResults} \alias{targetsmet.MarxanSolved} \title{Extract information on whether solutions have met targets} \usage{ targetsmet(x, ...) \method{targetsmet}{MarxanResults}(x, y = NULL) \method{targetsmet}{MarxanSolved}(x, y = NULL) } \arguments{ \item{x}{"MarxanResults" or "MarxanSolved" object.} \item{...}{not used.} \item{y}{"NULL" to return all values, "integer" 0 to return values for best solution, "integer" value greater than 0 for \code{y}'th solution value.} } \value{ "matrix" or "logical" vector depending on arguments. } \description{ This function reports whether a solution has met the targets for each species in a solution. } \seealso{ \code{\link{MarxanResults-class}}, \code{\link{MarxanSolved}}, \code{\link{marxan}} }
60f5446d2c582e88e333f677ce3b6dc9a9cb609b
9a7b9c3dfcffd0c0562650d5c5a0d6fa9890c1cb
/R/single_term_digital_filter.R
850552271e6b4f7378d6c003bf92019ccbbf8c3d
[ "LicenseRef-scancode-public-domain-disclaimer", "LicenseRef-scancode-warranty-disclaimer" ]
permissive
smwesten-usgs/recharge
8ea2470e024a1451b46b030e3ee489797d81a871
aee45d90d83e6ae1646d391d4c7a26af562fc407
refs/heads/master
2021-07-16T05:12:33.133309
2021-03-02T17:25:36
2021-03-02T17:25:36
101,231,984
6
0
null
null
null
null
UTF-8
R
false
false
2,504
r
single_term_digital_filter.R
#' Baseflow Separation by use of a single-term digital filter. #' #' Extract baseflow from a daily streamflow record using the method described by #'Nathan and MacMahon (1990). #' #' @param date vector of dates corresponding to each \code{discharge}, should be of class "Date." #' Missing values are not permitted. #' @param discharge the daily streamflow to be separated missing values are not permitted #'within the time specified by \code{Start} and \code{end}. #' @param alpha filter parameter. #' @param STAID the station identifier for the data. #' #' @return an object of class "baseflow" and inherits class "data.frame" of the selected data, #'a data frame of the baseflow information, and other information about the analysis. #' #' @keywords baseflow #' @examples #' #'\dontrun{ #'} #'@export bf_single_term_filter <- function(date, discharge, alpha, STAID="Unknown") { ## Start of code: initial processing STAID <- as.character(STAID[1L]) discharge <- pmax(discharge, 0.000001 ) # Convert 0 to a small number if(any(is.na(discharge))) stop("Missing values in discharge vector.") if(any(diff(as.double(date)) != 1)) stop("Date data are not continuous.") n <- length( discharge ) baseflow <- rep(0.0, n) quickflow <- rep(0.0, n) forward_run <- function( quickflow, discharge, alpha ) { n <- length( discharge ) for ( i in 2:n) { quickflow[i] <- alpha * quickflow[i-1] + ( 1. + alpha ) / 2. * ( discharge[i] - discharge[i-1] ) } quickflow <- pmin( quickflow, discharge ) quickflow <- pmax( quickflow, rep(0.0, n) ) return(quickflow) } reverse_run <- function( quickflow, discharge, alpha ) { n <- length( discharge ) for ( i in (n-1):1) { quickflow[i] <- alpha * quickflow[i+1] + ( 1. + alpha ) / 2. * ( discharge[i] - discharge[i+1] ) } quickflow <- pmin( quickflow, discharge ) quickflow <- pmax( quickflow, rep(0.0, n) ) return(quickflow) } quickflow <- forward_run( quickflow, discharge, alpha ) quickflow <- reverse_run( quickflow, discharge, alpha ) quickflow <- forward_run( quickflow, discharge, alpha ) baseflow <- discharge - quickflow retval <- data.frame( date=date, discharge=discharge, baseflow=round( baseflow, 3), quickflow = round( quickflow, 3 ) ) if(!is.null(STAID)) attr(retval, "STAID") <- STAID attr(retval, "type") <- "digital" class(retval) <- c("single_term_digital", "data.frame") return(retval) }
0b54b064fe14e372d68cc58cb89229024a79336c
7917fc0a7108a994bf39359385fb5728d189c182
/paws/tests/testthat/test_efs.R
ce38c6ef58b9ab70241f869a0be531f882dd2e8b
[ "Apache-2.0" ]
permissive
TWarczak/paws
b59300a5c41e374542a80aba223f84e1e2538bec
e70532e3e245286452e97e3286b5decce5c4eb90
refs/heads/main
2023-07-06T21:51:31.572720
2021-08-06T02:08:53
2021-08-06T02:08:53
396,131,582
1
0
NOASSERTION
2021-08-14T21:11:04
2021-08-14T21:11:04
null
UTF-8
R
false
false
396
r
test_efs.R
svc <- paws::efs() test_that("describe_access_points", { expect_error(svc$describe_access_points(), NA) }) test_that("describe_access_points", { expect_error(svc$describe_access_points(MaxResults = 20), NA) }) test_that("describe_file_systems", { expect_error(svc$describe_file_systems(), NA) }) test_that("describe_mount_targets", { expect_error(svc$describe_mount_targets(), NA) })
553f23fd33be69696b0236fab3a02110c7df9df2
6ccbeb28582657306ee2a5500ec4396bafad06e4
/Generation0/EggToAdultViability/DeltaEggToAdultViability.R
c9c7fde10a1fb2ab0b5fca67d2581d79e1e2f753
[]
no_license
KKLund-Hansen/SexChromCoAdapt
ac890836f047e1363459db2d4bd0b2b2071721b1
34712cefaa8b257b2c279969a377b4bbf7174d21
refs/heads/master
2021-07-20T10:26:06.996833
2021-02-06T19:47:25
2021-02-06T19:47:25
242,177,677
0
0
null
null
null
null
UTF-8
R
false
false
5,654
r
DeltaEggToAdultViability.R
################################################################################################ ############################### ΔEGG-TO-ADULT OFFSPRING VIABILITY ############################## ################################################################################################ #Set up environment library(Hmisc) #Read in csv file with data deltaEtA.data <- read.table(file = "EggToAdultViability.csv", h = T, sep = ",") ########################################## STATISTIC ######################################### ### CALCULATE THE PROPORTION OF ECLOSED OFFSPRING ### deltaEtA.data$prop_eclose <- deltaEtA.data$eclosed / 100 ### ΔEGG-TO-ADULT CALCULATIONS ### #To test if the change of sex chromosomes is significantly from the wild type population, #we do a bootstrap model to generate CI. If theses don't overlap 0 there has been a significant change Delta.EtA <- as.numeric(tapply(deltaEtA.data$prop_eclose, deltaEtA.data$population, mean, na.rm = T)) #View Delta.EtA Delta.EtA #ΔEtA Inn-Lx - Innisfail Delta.EtA[3] - Delta.EtA[2] # 0.012 #ΔEtA Inn-Ly - Innisfail Delta.EtA[4] - Delta.EtA[2] # 0.06522222 #ΔEtA Inn-Ox - Innisfail Delta.EtA[5] - Delta.EtA[2] # -0.021 #ΔEtA Inn-Oy - Innisfail Delta.EtA[6] - Delta.EtA[2] # 0.045 #ΔEtA Odd-Ix - Odder Delta.EtA[8] - Delta.EtA[7] # -0.041 #ΔEtA Odd-Iy - Odder Delta.EtA[9] - Delta.EtA[7] # 0.083 #ΔEtA Odd-Dx - Odder Delta.EtA[10] - Delta.EtA[7] # -0.027 #ΔEtA Odd-Dy - Odder Delta.EtA[11] - Delta.EtA[7] # 0.082 #TEST OF PROBABILITY OF SUCCESS. THE PROBABILITY OF POSITIVE VALUE binom.test(5, 8, p = 0.5, alternative = "two.sided") #Not significant, P = 0.7266 #First we make new vector to collect the data LxI <- numeric(10000) LyI <- numeric(10000) OxI <- numeric(10000) OyI <- numeric(10000) IxO <- numeric(10000) IyO <- numeric(10000) DxO <- numeric(10000) DyO <- numeric(10000) #Then we set up a bootstrap that resampels the data from 10 data points to calculate a new mean everytime for 10000 times for (i in 1:10000){ DATA <- do.call(rbind, lapply(split(deltaEtA.data, deltaEtA.data$population), function(x) x[sample(10, replace = T),])) Delta.EtA <- as.numeric(tapply(DATA$prop_eclose, DATA$population, mean, na.rm = T)) LxI[i] <- Delta.EtA[3] - Delta.EtA[2] LyI[i] <- Delta.EtA[4] - Delta.EtA[2] OxI[i] <- Delta.EtA[5] - Delta.EtA[2] OyI[i] <- Delta.EtA[6] - Delta.EtA[2] IxO[i] <- Delta.EtA[8] - Delta.EtA[7] IyO[i] <- Delta.EtA[9] - Delta.EtA[7] DxO[i] <- Delta.EtA[10] - Delta.EtA[7] DyO[i] <- Delta.EtA[11] - Delta.EtA[7] } #Run the calculation #95% CI for LxI mean(LxI) # 0.0120167 mean(LxI) - (1.96 * sd(LxI)) # -0.07538602 mean(LxI) + (1.96 * sd(LxI)) # 0.09941942 #95% CI for LyI mean(LyI) # 0.0649472 mean(LyI) - (1.96 * sd(LyI)) # -0.001384755 mean(LyI) + (1.96 * sd(LyI)) # 0.1312792 #95% CI for OxI mean(OxI) # -0.0209501 mean(OxI) - (1.96 * sd(OxI)) # -0.09146467 mean(OxI) + (1.96 * sd(OxI)) # 0.04956447 #95% CI for OyI mean(OyI) # 0.0449297 mean(OyI) - (1.96 * sd(OyI)) # -0.03566782 mean(OyI) + (1.96 * sd(OyI)) # 0.1255272 #95% CI for IxO mean(IxO) # -0.0417557 mean(IxO) - (1.96 * sd(IxO)) # -0.1708264 mean(IxO) + (1.96 * sd(IxO)) # 0.08731496 #95% CI for IyO mean(IyO) # 0.0826641 mean(IyO) - (1.96 * sd(IyO)) # -0.01776238 mean(IyO) + (1.96 * sd(IyO)) # 0.1830906 #95% CI for DxO mean(DxO) # -0.0279631 mean(DxO) - (1.96 * sd(DxO)) # -0.1436605 mean(DxO) + (1.96 * sd(DxO)) # 0.08773426 #95% CI for DyO mean(DyO) # 0.0812175 mean(DyO) - (1.96 * sd(DyO)) # -0.023429 mean(DyO) + (1.96 * sd(DyO)) # 0.185864 ######################################### PLOT DATA ######################################### #To be able to plot the bootstrap data as boxplots I create a new data frame with the data #First I make a vector with the populations population <- c( rep("aLHmX-Inn", 10000), rep("bLHmY-Inn", 10000), rep("cOddX-Inn", 10000), rep("dOddY-Inn", 10000), rep("eInnX-Odd", 10000), rep("fInnY-Odd", 10000), rep("gDahX-Odd", 10000), rep("hDahY-Odd", 10000)) #Then I collcet all the bootstrap data in a new vector deltaPropEclose <- c(LxI, LyI, OxI, OyI, IxO, IyO, DxO, DyO) #Then it's all collceted in a new data frame DEtA <- data.frame(population, deltaPropEclose) #And write it into a new file write.csv(DEtA, file = "DeltaEggToAdultViabilityplot.csv") #Read in csv file with data DEtAplot.data <- read.table(file = "DeltaEggToAdultViabilityplot.csv", h = T, sep = ",") #MEAN meanDEtA <- tapply(DEtAplot.data$deltaPropEclose, DEtAplot.data$population, mean, na.rm = T) #SD sdDEtA <- tapply(DEtAplot.data$deltaPropEclose, DEtAplot.data$population, sd, na.rm = T) # Plot par(mar = c(6, 5, 2, 2)) #Plot errorbars xDEtA <- c(0.5, 1, 1.5, 2, 3, 3.5, 4, 4.5) errbar(xDEtA, meanDEtA, meanDEtA + (1.96 * sdDEtA), meanDEtA - (1.96 * sdDEtA), xlim = c(0.3, 4.7), xlab = "", xaxt = "n", ylim = c(-0.2, 0.2), ylab = expression(Delta~"Proportion of eclosed offspring"), cex.axis = 1.2, cex.lab = 1.6, las = 1, pch = c(17, 18), cex = c(3, 3.5), lwd = 3) #AXIS axis(1, at = c(0.5, 1, 1.5, 2, 3, 3.5, 4, 4.5), cex.axis = 1.5, labels = c(expression("L"["X"]), expression("L"["Y"]), expression("O"["X"]), expression("O"["Y"]), expression("I"["X"]), expression("I"["Y"]), expression("D"["X"]), expression("D"["Y"]))) #Add line at 0 abline(h = 0, lty = 2, lwd = 2) #And add text on top mtext(expression(italic("Innisfail")), side = 1, line = 3, at = 1.25, cex = 1.6) mtext(expression(italic("Odder")), side = 1, line = 3, at = 3.75, cex = 1.6) #Now add arrows to show significance points(1, 0.19, pch = "*", bg = "black", cex = 2.5)
3b7c1fa3c4d4e5bbe16936f7e1dca758c420fe24
9b564709ac525bbce6cd9e88beb73eddd65bbff2
/COVID_webscraping.R
8ca5592bf595294cf0ee0967df043b3e009551d8
[]
no_license
jordanjasuta/webscraping_tools
21ba15a4469a015701014e53c36a4ac82f4d9344
e3255c880fa97394b00401b83803da2bb8a4755c
refs/heads/master
2022-06-20T13:18:28.007158
2020-05-10T21:15:39
2020-05-10T21:15:39
147,696,255
1
0
null
null
null
null
UTF-8
R
false
false
1,187
r
COVID_webscraping.R
library(rvest) library(dplyr) url <- "https://covid19.bz/" # For a one-time datapull: covid_table <-as.data.frame(matrix(0, ncol = 6, nrow = 1)) for (column in 1:5){ table_val <- url %>% read_html() %>% html_nodes(xpath=paste('//*[@id="content"]/div/div/div/section[7]/div/div/div[',column,']/div/div/div/div/div/div[1]/span[2]')) %>% html_attr("data-to-value") covid_table[column] <-table_val var_name <- url %>% read_html() %>% html_nodes(xpath=paste('//*[@id="content"]/div/div/div/section[7]/div/div/div[',column,']/div/div/div/div/div/div[2]')) %>% html_text() names(covid_table)[column] <- var_name } names(covid_table)[6] <- 'Date Pulled' covid_table[6] <-Sys.Date() covid_table # to add new rows with subsequent datapulls: vals <- c() for (column in 1:5){ table_val <- url %>% read_html() %>% html_nodes(xpath=paste('//*[@id="content"]/div/div/div/section[7]/div/div/div[',column,']/div/div/div/div/div/div[1]/span[2]')) %>% html_attr("data-to-value") vals <- append(vals, table_val) } date <- Sys.Date() vals = append(vals, as.character(date)) covid_table <- rbind(covid_table, 'date' = vals) covid_table
a86cf7fa779b4bb47096706fb3703073f85f4000
1ee9dbee0d344056920cd62f052df8e7360da768
/smuf_runf_0919_KO_randomlinesIR.R
e8a7352ae5a3f696932d73e9ab096b745f6f0bfa
[]
no_license
efsalvarenga/smuf_rdev
f7f6d1e1bab6e246073d855723db29cf92943370
648407b0cec07b8bd9c83f085d9409dcc5a57fc8
refs/heads/master
2022-03-03T22:16:27.054629
2019-10-09T19:03:28
2019-10-09T19:03:28
88,738,275
0
0
null
null
null
null
UTF-8
R
false
false
5,983
r
smuf_runf_0919_KO_randomlinesIR.R
#=========================================== # Smart Metering Uncertainty Forecasting # # Author Estevao "Steve" Alvarenga # [email protected] # Created in 10/Feb/17 #------------------------------------------- # smuf_main combined functions optim & fcst #=========================================== #=========================================== # Initialising #=========================================== setwd("~/GitRepos/smuf_rdev") # library(tidyr) # library(dplyr) source("smuf_main-fxs.R") savfile = "smuf_runf_0919_KO_randomlinesIR.rds" wm01_00 <- readRDS("smuf_import-completeIRhour.rds") importpar <- readRDS("smuf_import-parameter.rds") s01 <- importpar[1] s02 <- importpar[2] s03 <- importpar[3] sum_of_h <- importpar[4] data_size <- importpar[5] #=========================================== # Integrated Parameters #=========================================== #cus_list to 1000, stp to 150 (detectcores), hrz_lim larger (0:167)*113), turn on CV cus_list <- seq(1,200) frontierstp <- 16 # Number of demand bins (Stepwise frontier for portfolio optimisation) frontierexp <- 1 # Exponentiality of frontier steps max.gen <- 100 # For genetic opt waitgen <- 10 # For genetic opt win_size <- c(4,24) # Small and large win_size (select only 2) win_selec <- win_size[2] cross_overh <- 4 # Cross-over forced for fx_fcst_kds_quickvector ahead_t <- seq(1,72) # Up to s02 hrz_lim <- seq(1,167)*29 # Rolling forecasts steps {seq(0:167)*113} is comprehensive in_sample_fr <- 1/6 # Fraction for diving in- and out-sample crossvalsize <- 1 # Number of weeks in the end of in_sample used for crossvalidation crossvalstps <- 16 # Steps used for multiple crossvalidation (Only KDE) crossvalfocus <- c(1) # What period is focused when running crossvalidation is_wins_weeks <- 12 # Number of weeks used for in-sample (KDE uses win_size) & seasonality sampling <- 1024 # For monte-carlo CRPS calculation armalags <- c(5,5) # Max lags for ARIMA fit in ARMA-GARCH model (use smuf_lags.R) gof.min <- 0.05 # GoF crossover value to change ARMA-GARCH to KDS #=========================================== # Call simulator #=========================================== bigrndno <- data.frame(V1=double(), hor=character(), CRPS=double()) rndres_big <- list() for (h in hrz_lim){ ptm <- proc.time() runkey <- Sys.time() cat("\n\nStep",match(h,hrz_lim), "of",length(hrz_lim),"| Running BIG [h] LOOP with h =",h,"\n") #=========================================== # Individual customers forecast #=========================================== cat("[Ind] ") wm01_01 <- wm01_00[min(cus_list):max(cus_list),] wl06 <- fx_int_fcstgeneric_kdss(wm01_01,h,in_sample_fr,s01,s02,sum_of_h,win_selec,is_wins_weeks,crossvalsize,fcst_run,armalags,cross_overh,gof.min) # wv45 <- rowMeans(wl06[[1]]) # sd01 <- as.numeric(fx_sd_mymat(wl06[[3]])) # wv46 <- seq(0,frontierstp)^frontierexp/frontierstp^frontierexp * sum(wv45) wv51 <- colMeans(wl06[[2]]) rndres <- wv51 #=========================================== # Random groups & evaluation #=========================================== cat("[Rnd] ") rnd.names <- c(10,100,200) for (c in rnd.names){ cat(c," ") matmult <- matrix(0,length(cus_list),length(cus_list)) for (j in 1:length(cus_list)){ vecmult <- rep(0,length(cus_list)) vecmult[sample(cus_list,c,replace=F)] = 1/c matmult[j,] = vecmult } wm01_02 <- matmult %*% wm01_01 wl06_02 <- fx_int_fcstgeneric_kdss(wm01_02,h,in_sample_fr,s01,s02,sum_of_h,win_selec,is_wins_weeks,crossvalsize,fcst_run,armalags,cross_overh,gof.min) rndres <- rbind(rndres,colMeans(wl06_02[[2]])) } # # Previous Rndgrp implementation [slow] # wm01_02l <- fx_rndgrp(wm01_01,frontierstp) # wm01_02 <- wm01_02l[[1]] / rowSums(wm01_02l[[2]]) # wl06rnd <- fx_int_fcstgeneric_kdss(wm01_02,h,in_sample_fr,s01,s02,sum_of_h,win_selec,is_wins_weeks,crossvalsize,fcst_run,armalags,cross_overh,gof.min) # wv45rnd <- as.numeric(rowMeans(wl06rnd[[1]]) * rowSums(wm01_02l[[2]])) # sd01rnd <- as.numeric(fx_sd_mymat(wl06rnd[[3]])) # cr01rnd <- rowMeans(wl06rnd[[2]]) # rnd_per_no <- as.data.frame(cbind(as.numeric(rowSums(wm01_02l[[2]])),wl06rnd[[2]])) # rndnosimpl <- rnd_per_no %>% # gather(hor,crps,-V1) %>% # group_by(V1,hor) %>% # summarise(CRPS=mean(crps)) # bigrndno <- rbind(bigrndno,as.data.frame(rndnosimpl)) # saveRDS(bigrndno, file=savfile) # # plt.names <- c(1,5,10,20,30,40,50,60,70,80,90,100,120,140,160,180,200) # mymat <- as.matrix( # bigrndno %>% # group_by(V1,hor) %>% # summarise(CRPS=mean(CRPS)) %>% # filter(V1 %in% plt.names) %>% # spread(hor,CRPS) # ) fx_plt_mymat(rndres,c(0,0.2)) legend('topright', inset=c(0,0), legend = c(1,rnd.names), lty=1, col=rainbow(1+length(rnd.names)), bty='n', cex=.75, title="Method") rndres_big[[match(h,hrz_lim)]] <- rndres cat("\n") print(proc.time() - ptm) } rndres_sum <- Reduce("+", rndres_big) / length(rndres_big) fx_plt_mymat(rndres_sum,c(0,0.5)) legend('topright', inset=c(0,0), legend = c(1,rnd.names), lty=1, col=rainbow(1+length(rnd.names)), bty='n', cex=.75, title="Method") saveRDS(rndres_sum,'rndres_sum.rds')
b2befbda5bb77f2e868e27e0961b73e26c72eafe
1339e9fa22cd678ce3e778acdeb388e884271a6c
/project/costFunction.R
17f7e408f61a9a05b1115a96d166cda9d7d55958
[ "MIT" ]
permissive
nkafr/Adult-dataset-analysis
67718ae3d3390295775bb1c3ecdc722834deae8e
e78ab13d9938e94c524a1750150214982f6eb6cc
refs/heads/master
2021-01-20T18:36:11.369520
2016-07-15T01:36:54
2016-07-15T01:36:54
63,377,724
0
0
null
null
null
null
UTF-8
R
false
false
807
r
costFunction.R
costFunction <- function(X, y) { #costfunction Computes cost for logistic regression function(theta) { m <- length(y); # m is the number of training examples #initialize J J <- 0 #h is the hypothesis function h <- sigmoid(X %*% theta) #use a vectorized implementation insted of for loop for faster computation J <- (t(-y) %*% log(h) - t(1 - y) %*% log(1 - h)) / m J } } grad <- function(X, y) { # grad computes the gradient of the cost w.r.t. to the parameters theta. function(theta) { m <- length(y); # m is the number of training examples #initialize grad vector grad <- matrix(0,dim(as.matrix(theta))) h <- sigmoid(X %*% theta) # calculate grads grad <- (t(X) %*% (h - y)) / m grad } }
c1f3f4f2fb05157919712bd700502a6a3a9d78a2
fff9ee52053ff5acd4d358add0793bf4ed6b2aba
/Uppercase_Speaker.R
9778013431dc1355483d56a7f0c9bd8a4acb0556
[]
no_license
jfedgerton/Cleaning_CHAMP_Speakers
a6baabb378521c0cdd0d6e930b977cb2a36ff480
b57c3e376a0c49d2fff361027b5f20adaa90ba7b
refs/heads/master
2020-04-21T13:09:12.997216
2019-02-07T14:59:05
2019-02-07T14:59:05
169,588,961
0
0
null
null
null
null
UTF-8
R
false
false
716
r
Uppercase_Speaker.R
csv_1278 <- list.files(path = "C:/Users/Jared/Dropbox/CHAMP-Net/Data/Show-Year CSVs/format_csv_1278", pattern = NULL, all.files = FALSE, full.names = FALSE, recursive = FALSE, ignore.case = FALSE, include.dirs = FALSE, no.. = FALSE) for (i in 1:length(csv_1278)){ import_file_pathway <- paste0("C:/Users/Jared/Dropbox/CHAMP-Net/Data/Show-Year CSVs/format_csv_1278/", csv_1278[i]) temp <- suppressMessages(read_delim(import_file_pathway, delim = "\t", escape_double = FALSE, trim_ws = TRUE)) temp$Speaker <- toupper(temp$Speaker) write.table(temp, file = import_file_pathway, sep = "\t", row.names = F) }
9120bc2c571b82ac6ac3f5070d5a9a2df5cd0fb0
b139d2dbfcac7b96cdb61737962f2a90f76ddb6b
/R/harmonizeCols.R
16a150798d5452c7d28028fc2a1c4c4ea8e5c483
[]
no_license
michaelrahija/FAOSDGdata
ef681a7ad3f715a239425f21d7cea537ef9b1177
59e76d4c935161596c3b855c5172675234e99011
refs/heads/master
2021-08-22T13:07:05.875370
2020-06-11T04:55:40
2020-06-11T04:55:40
193,698,740
0
0
null
null
null
null
UTF-8
R
false
false
2,678
r
harmonizeCols.R
#' harmonizeCols #' #' This is function which takes as an input a dataframe containing data #' for a particular indicator, and outputs a dataframe with SDMX concepts as column names and #' followed by an attribute name. Example: REF_REA #' #' @param sdgdf is a data frame referring to a specific SDG #' #' @return This function returns a dataframe containing the cleaned data frame #' #' @importFrom dplyr select #' @export harmonizeCols <- function(sdgdf){ #filter SDG 2.1.2 for mid bounds if("2.1.2" %in% unique(sdgdf$Indicator)){ sdgdf <- filter(sdgdf, Bounds == "Mid-point") } #get rid of any spaces in a column name colnames(sdgdf) <- gsub(pattern = " ", replacement = "", colnames(sdgdf)) #harmonize footnote column name colnames(sdgdf)[grepl("foot", colnames(sdgdf), ignore.case = T)] <- "Footnote" if(!("Age.Group" %in% colnames(sdgdf))) { sdgdf$Age.Group <- NA } if(!("Disaggregation" %in% colnames(sdgdf))) { sdgdf$Disaggregation <- NA } if(!("Time_Detail" %in% colnames(sdgdf))) { sdgdf$Time_Detail <- NA } if(!("ReportingType" %in% colnames(sdgdf))) { sdgdf$ReportingType <- NA } if(!("Bounds" %in% colnames(sdgdf))) { sdgdf$Bounds <- NA } #select relevant columns, and provide simple names relcols <- c("GeoAreaCode", "GeoAreaName", "RefAreaType_InternalUseOnly", "SeriesCode", "SeriesDescription", "Indicator", "TimePeriod", "Time_Detail", "Nature", "Units", "ReportingType", "Source", "Value", "Age.Group", "Bounds", "Disaggregation", "Footnote", "version") df <- select(sdgdf, relcols) #recode w/ SDMX concept names when possible, when concept colnames(df) <- c("REF_AREACode", "REF_AREADesc", "RefAreaType_InternalUseOnly", "SERIESCode", "SERIESDescription", "SERIESInd", "TIME_PERIOD", "TIME_DETAIL", "NATURE", "UNIT_MEASURE", "REPORTING_TYPE", "SOURCE_DETAIL", "OBS_VALUE", "AGE", "Bounds", "Disaggregation", "Footnote", "version") #clean classes df[] <- lapply(df, as.character) df }
eee5e4882bf0ffb154bf626ea2bdff1d12f19b02
df562e5ef9ea2846cb05319114009c3de7e4dee1
/MasterR/crea_print_table.R
bd1b52111a93c759bb670bc9f4b61da4da83f425
[]
no_license
SCelisV/R
a05d9dc1b0bcb2bfabfbe83703db8364edd8a9ab
0aa0a984dae0c0466addbf6dc0dd629d863f7cf5
refs/heads/master
2022-12-23T23:23:40.878996
2020-09-30T20:10:21
2020-09-30T20:10:21
286,298,641
0
0
null
null
null
null
UTF-8
R
false
false
317
r
crea_print_table.R
TabA = as.table(cbind(c("A","B","C"),c(1,2,3))) # > TabA # A B # A A 1 # B B 2 # C C 3 TabB = as.table(cbind(c("D","E","F"),c(1,2,3))) # > TabB # A B # A D 1 # B E 2 # C F 3 nams = c(TabA,TabB) # > nams # [1] "TabA" "TabB" for (i in nams){ print (i) tab = get(nams[i]) print(tab) print(get(nams[i])) }
bb853f6a9de34eb91b696f6ecdfca9ea92598268
c2ecf5c58b195b5999c7e0c32f726f894f8723a0
/MUpdaters/man/MDataUpdater.AddNewField.Rd
ee890ce42f2ed3c3f88672377cebc7e3954452c7
[]
no_license
pashkovds/mdlibs
d67fef9b021e7b0b20ec3b0eeaa2f099d8eff87c
8cb0a4a2f12e5f472d039e9ea55ecdbf26202046
refs/heads/master
2021-01-01T03:43:41.411779
2016-04-23T10:06:55
2016-04-23T10:06:55
56,423,368
0
0
null
null
null
null
UTF-8
R
false
true
380
rd
MDataUpdater.AddNewField.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MDataUpdater.AddNewField.R \docType{data} \name{MDataUpdater.AddNewField} \alias{MDataUpdater.AddNewField} \title{MDataUpdater.AddNewField} \format{An object of class \code{R6ClassGenerator} of length 24.} \usage{ MDataUpdater.AddNewField } \description{ MDataUpdater.AddNewField } \keyword{datasets}
569a88c3b1fd0355523319f5b4be5f4608f14d7c
cc3beea2feb5d66b4df71a96f42129687a1296e7
/draft/from_R_tips_folder/decimal_position.R
1f490fd30ce76990c64c210358b4db7ce2991a6d
[]
no_license
YulongXieGitHub/YulongR_Code
133c90b708c33c447737aaa0b6d01f5c9cb33818
e1f68c1564fb4036df9500297fbd36548e3b8014
refs/heads/master
2021-01-23T15:03:12.427516
2015-07-16T01:52:35
2015-07-16T01:52:35
39,168,963
0
0
null
null
null
null
UTF-8
R
false
false
23,089
r
decimal_position.R
# # Profile_thermalSetpoint.R # # # October 28, 2009 # ------------------------------------------------------------------------- # # eliminate all stuff # rm(list = ls(all = TRUE)) start_time <- date(); # format(Sys.time(), "%a %b %d %X %Y %Z") Start.time <- Sys.time() set.seed(12345, kind = NULL) # set seed of random number # ------------------------------------------------------------------------------------------------- # change to the script directory # ------------------------------------------------------------------------------------------------- if(.Platform$OS.type == "unix") { Path.Current <- "/phome/d3l143/FY2010_NAP_DataAnalysis/0_scripts" }else{ Path.Current <- "C:/YuLong_Projects/FY2010_NAP_DataAnalysis/0_scripts" } setwd(Path.Current) # ------------------------------------------------------------------------------------------------- # include needed objects # ------------------------------------------------------------------------------------------------- source(paste(Path.Current,"0_CrownePlaza_Function.R",sep="/")) # ------------------------------------------------------------------------------------------------- # setup output and log directory # ------------------------------------------------------------------------------------------------- Path.out <- "../Profile_thermalSetpoint" # OUTPUT processed result directory Path.log <- "../0_log" # OUTPUT log directory Path.Data <- "../1_CrownePlaza_ReturnAirT" # INPUT data folder retrieved from "nac" on "nac.pnl.gov" server if (!file.exists(Path.out)){print(paste("NOT existing:",Path.out));dir.create(Path.out,showWarnings=TRUE,recursive=TRUE)} if (!file.exists(Path.log)){print(paste("NOT existing:",Path.log));dir.create(Path.log,showWarnings=TRUE,recursive=TRUE)} if (!file.exists(Path.Data)){stop(paste(" INPUT data folder retrieved from \"nac\" on \"nac.pnl.gov\" server does NOT existing\n",sep=""))} # ------------------------------------------------------------------------------------------------- # create a LOG file and a TIME Recording file # ------------------------------------------------------------------------------------------------- FL.LOG <- paste(Path.log,"Profile_thermalSetpoint.log",sep="/") # OUTPUT Log file if (file.exists(FL.LOG)){print(paste(FL.LOG,"exist.Delete it!"));file.remove(FL.LOG)} cat(paste("Log file for data processing script [Profile_thermalSetpoint.R]!\n",sep=""),file=FL.LOG, append=TRUE) cat(paste("\n***************************************************************************", "* [Profile_thermalSetpoint.R] *", "***************************************************************************",sep="\n"),file=FL.LOG, append=TRUE) # ------------------------------------------------------------------------------------------------- # define OUTPUT files # ------------------------------------------------------------------------------------------------- FL.rawData.OBJ <- paste(Path.Data,paste("CrownePlaza_ReturnAirT.Rdata",sep=""),sep="/") # INPUT DATA in Rdata Objects FL.aggData.OBJ <- paste(Path.Data,paste("CrownePlaza_ReturnAirT_Sum.Rdata",sep=""),sep="/") # INPUT SUM in Rdata Objects FL.profile.OBJ <- paste(Path.out, paste("CrownePlaza_Profile_ThermalSetPoint.Rdata",sep=""),sep="/") # OUTPUT Profile of Thermal SetPoint FL.profile.CSV <- paste(Path.out, paste("CrownePlaza_Profile_ThermalSetPoint.CSV",sep=""),sep="/") # OUTPUT Profile of Thermal SetPoint FL.profile.PDF <- paste(Path.out, paste("CrownePlaza_Profile_ThermalSetPoint.PDF",sep=""),sep="/") # OUTPUT Profile of Thermal SetPoint FL.profile.IDF <- paste(Path.out, paste("CrownePlaza_Profile_ThermalSetPoint.IDF",sep=""),sep="/") # OUTPUT Profile of Thermal SetPoint if (!file.exists(FL.rawData.OBJ)){stop(paste(FL.rawData.OBJ," should exist. Find out why it is missing!"));file.remove(FL.rawData.OBJ)} # remove existing OUTPUT files if (!file.exists(FL.aggData.OBJ)){stop(paste(FL.aggData.OBJ," should exist. Find out why it is missing!"));file.remove(FL.aggData.OBJ)} # remove existing OUTPUT files if (file.exists(FL.profile.OBJ)){print(paste(FL.profile.OBJ," exist. Delete it!"));file.remove(FL.profile.OBJ)} # remove existing OUTPUT files if (file.exists(FL.profile.CSV)){print(paste(FL.profile.CSV," exist. Delete it!"));file.remove(FL.profile.CSV)} # remove existing OUTPUT files if (file.exists(FL.profile.PDF)){print(paste(FL.profile.PDF," exist. Delete it!"));file.remove(FL.profile.PDF)} # remove existing OUTPUT files if (file.exists(FL.profile.IDF)){print(paste(FL.profile.IDF," exist. Delete it!"));file.remove(FL.profile.IDF)} # remove existing OUTPUT files cat(paste("\nAll paths and files are defined\n"),file=FL.LOG,append=TRUE) cat(paste("\nAll paths and files are defined\n")) # ------------------------------------------------------------------------------------------------- # load the data files # ------------------------------------------------------------------------------------------------- load(FL.rawData.OBJ) # raw data load(FL.aggData.OBJ) # hourly aggregated data objects cat(paste("\nLoaded the data retrieved from the database and the subsequently hourly aggregated data!\n"),file=FL.LOG,append=TRUE) cat(paste("\nLoaded the data retrieved from the database and the subsequently hourly aggregated data!\n")) myData[,"day.week"] <- factor(myData[,"day.week"],levels=week.label, labels=week.names) # convert 1-7 to Sun,Mon,...,Sat myData[,"day.type"] <- factor(myData[,"day.type"], levels=dayType.label,labels=dayType.names) # convert 1 & 7 to "wkend and 2-6 to "wkday" # ------------------------------------------------------------------------------------------------- # calculating the quantitle and output 25%, 50% and 75% to the CSV file # ------------------------------------------------------------------------------------------------- # # calculating the quantitle on the raw data # p25 <- tapply(myData[,"Value"],as.factor(as.character(myData[,"hour"])),quantile,0.25,na.rm = TRUE) p50 <- tapply(myData[,"Value"],as.factor(as.character(myData[,"hour"])),quantile,0.50,na.rm = TRUE) p75 <- tapply(myData[,"Value"],as.factor(as.character(myData[,"hour"])),quantile,0.75,na.rm = TRUE) Profile.raw <- data.frame(p25 = p25, p50 = p50, p75= p75) Profile.raw <- data.frame(hour = as.numeric(as.character(row.names(Profile.raw))),Profile.raw) Profile.raw <- Profile.raw[order(Profile.raw[,"hour"]),] cat(paste("\n\nProfile.raw on the raw data\n"),file=FL.profile.CSV,append=TRUE) write.table(Profile.raw,sep=",",row.names = FALSE,col.names = TRUE,file=FL.profile.CSV,append=TRUE) # # calculating the quantitle on the hourly aggregated data # p25 <- tapply(Data.daily.roomWise[,"Value"],as.factor(as.character(Data.daily.roomWise[,"hour"])),quantile,0.25,na.rm = TRUE) p50 <- tapply(Data.daily.roomWise[,"Value"],as.factor(as.character(Data.daily.roomWise[,"hour"])),quantile,0.50,na.rm = TRUE) p75 <- tapply(Data.daily.roomWise[,"Value"],as.factor(as.character(Data.daily.roomWise[,"hour"])),quantile,0.75,na.rm = TRUE) Profile.aggHourly <- data.frame(p25 = p25, p50 = p50, p75= p75) Profile.aggHourly <- data.frame(hour = as.numeric(as.character(row.names(Profile.aggHourly))),Profile.aggHourly) Profile.aggHourly <- Profile.aggHourly[order(Profile.aggHourly[,"hour"]),] cat(paste("\n\nProfile.aggHourly on the hourly aggregated data\n"),file=FL.profile.CSV,append=TRUE) write.table(Profile.aggHourly,sep=",",row.names = FALSE,col.names = TRUE,file=FL.profile.CSV,append=TRUE) # # calculating the quantitle on the daytype-hourly aggregated data # p25 <- tapply(Data.dayType.roomWise[,"Value"],as.factor(as.character(Data.dayType.roomWise[,"hour"])),quantile,0.25,na.rm = TRUE) p50 <- tapply(Data.dayType.roomWise[,"Value"],as.factor(as.character(Data.dayType.roomWise[,"hour"])),quantile,0.50,na.rm = TRUE) p75 <- tapply(Data.dayType.roomWise[,"Value"],as.factor(as.character(Data.dayType.roomWise[,"hour"])),quantile,0.75,na.rm = TRUE) Profile.aggDayType <- data.frame(p25 = p25, p50 = p50, p75= p75) Profile.aggDayType <- data.frame(hour = as.numeric(as.character(row.names(Profile.aggDayType))),Profile.aggDayType) Profile.aggDayType <- Profile.aggDayType[order(Profile.aggDayType[,"hour"]),] cat(paste("\n\nProfile.aggDayType on the daytype-hourly aggregated data\n"),file=FL.profile.CSV,append=TRUE) write.table(Profile.aggDayType,sep=",",row.names = FALSE,col.names = TRUE,file=FL.profile.CSV,append=TRUE) # ------------------------------------------------------------------------------------------------- # output Thermal Setpoint shcedule at (P25, P50 & P75) in Eplus idf format # ------------------------------------------------------------------------------------------------- # # output in Eplus idf format (P25) # cat(paste("Output the 25% Thermal Setpoint Schedule!\n",sep="")) cat(paste("Output the 25% Thermal Setpoint Schedule!\n",sep=""),file=FL.LOG,append=TRUE) cat(paste("\n\nSchedule:Compact,", "\n",sep=""),file=FL.profile.IDF,append=TRUE) cat(paste(" CLGSETP_SCH_P25, !- Name", "\n",sep=""),file=FL.profile.IDF,append=TRUE) cat(paste(" Temperature, !- Schedule Type Limits Name","\n",sep=""),file=FL.profile.IDF,append=TRUE) cat(paste(" Through: 12/31, !- Field 1", "\n",sep=""),file=FL.profile.IDF,append=TRUE) cat(paste(" For: Weekdays SummerDesignDay Saturday WinterDesignDay Sunday Holiday AllOtherDays !- Field 2", "\n",sep=""),file=FL.profile.IDF,append=TRUE) for (idx in seq(from=1,to=(dim(Profile.raw)[1]-1),by=1)) { idx.field <- 2 + idx T <- Profile.raw[idx,"p25"] ltrs <- substring(T,1:nchar(T),1:nchar(T)) T.3dec <- substr(T,1,which(ltrs==".")+3) cat(paste(" Until: ",idx,":00, ",T.3dec,", !- Field ",idx.field, "\n",sep=""),file=FL.profile.IDF,append=TRUE) } idx.field <- idx.field + 1 T <- Profile.raw[dim(Profile.raw)[1],"p25"] ltrs <- substring(T,1:nchar(T),1:nchar(T)) T.3dec <- substr(T,1,which(ltrs==".")+3) cat(paste(" Until: ",dim(Profile.raw)[1],":00, ",T.3dec,"; !- Field ",idx.field,"\n",sep=""),file=FL.profile.IDF,append=TRUE) # # output in Eplus idf format (P50) # cat(paste("Output the 50% Thermal Setpoint Schedule!\n",sep="")) cat(paste("Output the 50% Thermal Setpoint Schedule!\n",sep=""),file=FL.LOG,append=TRUE) cat(paste("\n\nSchedule:Compact,", "\n",sep=""),file=FL.profile.IDF,append=TRUE) cat(paste(" CLGSETP_SCH_p50, !- Name", "\n",sep=""),file=FL.profile.IDF,append=TRUE) cat(paste(" Temperature, !- Schedule Type Limits Name","\n",sep=""),file=FL.profile.IDF,append=TRUE) cat(paste(" Through: 12/31, !- Field 1", "\n",sep=""),file=FL.profile.IDF,append=TRUE) cat(paste(" For: Weekdays SummerDesignDay Saturday WinterDesignDay Sunday Holiday AllOtherDays !- Field 2", "\n",sep=""),file=FL.profile.IDF,append=TRUE) for (idx in seq(from=1,to=(dim(Profile.raw)[1]-1),by=1)) { idx.field <- 2 + idx T <- Profile.raw[idx,"p50"] ltrs <- substring(T,1:nchar(T),1:nchar(T)) T.3dec <- substr(T,1,which(ltrs==".")+3) cat(paste(" Until: ",idx,":00, ",T.3dec,", !- Field ",idx.field, "\n",sep=""),file=FL.profile.IDF,append=TRUE) } idx.field <- idx.field + 1 T <- Profile.raw[dim(Profile.raw)[1],"p50"] ltrs <- substring(T,1:nchar(T),1:nchar(T)) T.3dec <- substr(T,1,which(ltrs==".")+3) cat(paste(" Until: ",dim(Profile.raw)[1],":00, ",T.3dec,"; !- Field ",idx.field,"\n",sep=""),file=FL.profile.IDF,append=TRUE) # # output in Eplus idf format (p75) # cat(paste("Output the 75% Thermal Setpoint Schedule!\n",sep="")) cat(paste("Output the 75% Thermal Setpoint Schedule!\n",sep=""),file=FL.LOG,append=TRUE) cat(paste("\n\nSchedule:Compact,", "\n",sep=""),file=FL.profile.IDF,append=TRUE) cat(paste(" CLGSETP_SCH_p75, !- Name", "\n",sep=""),file=FL.profile.IDF,append=TRUE) cat(paste(" Temperature, !- Schedule Type Limits Name","\n",sep=""),file=FL.profile.IDF,append=TRUE) cat(paste(" Through: 12/31, !- Field 1", "\n",sep=""),file=FL.profile.IDF,append=TRUE) cat(paste(" For: Weekdays SummerDesignDay Saturday WinterDesignDay Sunday Holiday AllOtherDays !- Field 2", "\n",sep=""),file=FL.profile.IDF,append=TRUE) for (idx in seq(from=1,to=(dim(Profile.raw)[1]-1),by=1)) { idx.field <- 2 + idx T <- Profile.raw[idx,"p75"] ltrs <- substring(T,1:nchar(T),1:nchar(T)) T.3dec <- substr(T,1,which(ltrs==".")+3) cat(paste(" Until: ",idx,":00, ",T.3dec,", !- Field ",idx.field, "\n",sep=""),file=FL.profile.IDF,append=TRUE) } idx.field <- idx.field + 1 T <- Profile.raw[dim(Profile.raw)[1],"p75"] ltrs <- substring(T,1:nchar(T),1:nchar(T)) T.3dec <- substr(T,1,which(ltrs==".")+3) cat(paste(" Until: ",dim(Profile.raw)[1],":00, ",T.3dec,"; !- Field ",idx.field,"\n",sep=""),file=FL.profile.IDF,append=TRUE) # # output in Eplus idf format for each room # for (room.lab in as.character(levels(Data.allDays.roomWise[,"room.name"]))) { cat(paste("Output the Thermal Setpoint Schedule at room ",room.lab,"!\n",sep="")) cat(paste("Output the Thermal Setpoint Schedule at room ",room.lab,"!\n",sep=""),file=FL.LOG,append=TRUE) cat(paste("\n\nSchedule:Compact,", "\n",sep=""),file=FL.profile.IDF,append=TRUE) cat(paste(" ",paste("CLGSETP_SCH_",room.lab,sep="")," !- Name", "\n",sep=""),file=FL.profile.IDF,append=TRUE) cat(paste(" Temperature, !- Schedule Type Limits Name","\n",sep=""),file=FL.profile.IDF,append=TRUE) cat(paste(" Through: 12/31, !- Field 1", "\n",sep=""),file=FL.profile.IDF,append=TRUE) cat(paste(" For: Weekdays SummerDesignDay Saturday WinterDesignDay Sunday Holiday AllOtherDays !- Field 2", "\n",sep=""),file=FL.profile.IDF,append=TRUE) for (idx.hour in seq(from=0,to=22,by=1)) { idx.field <- 2 + idx.hour idx <- seq(from=1,to=dim(Data.allDays.roomWise)[1],by=1)[as.character(Data.allDays.roomWise[,"room.name"]) == room.lab & Data.allDays.roomWise[,"hour"] == idx.hour] T <- Data.allDays.roomWise[idx,"Value"] ltrs <- substring(T,1:nchar(T),1:nchar(T)) T.3dec <- substr(T,1,which(ltrs==".")+3) cat(paste(" Until: ",idx.hour+1,":00, ",T.3dec,", !- Field ",idx.field, "\n",sep=""),file=FL.profile.IDF,append=TRUE) } idx.field <- idx.field + 1 idx <- seq(from=1,to=dim(Data.allDays.roomWise)[1],by=1)[as.character(Data.allDays.roomWise[,"room.name"]) == room.lab & Data.allDays.roomWise[,"hour"] == 23] T <- Data.allDays.roomWise[idx,"Value"] ltrs <- substring(T,1:nchar(T),1:nchar(T)) T.3dec <- substr(T,1,which(ltrs==".")+3) cat(paste(" Until: ",24,":00, ",T.3dec,"; !- Field ",idx.field,"\n",sep=""),file=FL.profile.IDF,append=TRUE) } # ------------------------------------------------------------------------------------------------- # plotting # ------------------------------------------------------------------------------------------------- cat(paste("Plot the profiles!\n",sep="")) cat(paste("Plot the profiles!\n",sep=""),file=FL.LOG,append=TRUE) pdf(file = FL.profile.PDF,paper="a4r", width=0, height=0) # ------------------------------------------------------------------------------------------------- # Variation Across Rooms [myData] # ------------------------------------------------------------------------------------------------- cat(paste("\nprofile across all rooms and all days based on raw data!\n"),file=FL.LOG,append=TRUE) cat(paste("\nprofile across all rooms and all days based on raw data!\n")) # get the y limit for plotting y.limit <- range(myData[,"Value"]) # round to tenth place y.limit <- c(floor(floor(min(y.limit))/10)*10,ceiling(ceiling(max(y.limit))/10)*10) y.limit <- c(50,100) # overwrite with this fixed limits for return air temperature # weekend idx.row <- as.character(myData[,"day.type"]) == "wkend" boxplot(myData[idx.row,"Value"] ~ factor(myData[idx.row,"hour"]), boxwex = 0.15, notch=FALSE, at = c(0:23) - 0.20,cex=1.0, xaxt="n", # main=paste("Variation Across Rooms ","(raw data)",sep=""), xlab="Hour", ylab = expression("Return Air T F"^{o}), ylim=y.limit, outcex=0.7,outcol="blue",staplecol="blue",whiskcol="blue",boxcol="blue",boxfill="white",medlwd=2.0,medcol="green") # weekeday idx.row <- as.character(myData[,"day.type"]) == "wkday" boxplot(myData[idx.row,"Value"] ~ factor(myData[idx.row,"hour"]), add = TRUE, boxwex = 0.15, notch=FALSE, at = c(0:23) + 0.20,cex=1.0, col="red",outcex=0.7,outcol="red",staplecol="red",whiskcol="red",boxcol="red",boxfill="white",medlwd=2.0,medcol="green") # all data boxplot(myData[idx.row,"Value"] ~ factor(myData[idx.row,"hour"]), add = TRUE, boxwex = 0.15, notch=FALSE, at = c(0:23) + 0.00,cex=1.0, xaxt="n", col="black",outcex=0.7,outcol="black",staplecol="black",whiskcol="black",boxcol="black",boxfill="white",medlwd=2.0,medcol="green") abline(h=c(50,55,60,65,70,75,80,85,90,95),lty=2) # if (flag.hor){abline(h=value.hor,lty=2)} # legends (from package gplots) smartlegend(x="right",y="top", inset = 0.05, c("wkend","all","wkday"), col=c("blue","black","magenta"), fill = c("blue","black","magenta")) # ------------------------------------------------------------------------------------------------- # Variation Across Rooms # ------------------------------------------------------------------------------------------------- cat(paste("\nprofile based on hourly aggregated data at each room across all days!\n"),file=FL.LOG,append=TRUE) cat(paste("\nprofile based on hourly aggregated data at each room across all days!\n")) # get the y limit for plotting y.limit <- range(Data.daily.roomWise[,"Value"]) # round to tenth place y.limit <- c(floor(floor(min(y.limit))/10)*10,ceiling(ceiling(max(y.limit))/10)*10) y.limit <- c(50,100) # overwrite with this fixed limits for return air temperature # weekend idx.row <- as.character(Data.daily.roomWise[,"day.type"]) == "wkend" boxplot(Data.daily.roomWise[idx.row,"Value"] ~ factor(Data.daily.roomWise[idx.row,"hour"]), boxwex = 0.15, notch=FALSE, at = c(0:23) - 0.20,cex=1.0, xaxt="n", # main=paste("Variation Across Rooms ","(hourly aggregated data for each day)",sep=""), xlab="Hour", ylab = expression("Return Air T F"^{o}), ylim=y.limit, outcex=0.7,outcol="blue",staplecol="blue",whiskcol="blue",boxcol="blue",boxfill="white",medlwd=2.0,medcol="green") # weekeday idx.row <- as.character(Data.daily.roomWise[,"day.type"]) == "wkday" boxplot(Data.daily.roomWise[idx.row,"Value"] ~ factor(Data.daily.roomWise[idx.row,"hour"]), add = TRUE, boxwex = 0.15, notch=FALSE, at = c(0:23) + 0.20,cex=1.0, col="red",outcex=0.7,outcol="red",staplecol="red",whiskcol="red",boxcol="red",boxfill="white",medlwd=2.0,medcol="green") # all data boxplot(Data.daily.roomWise[idx.row,"Value"] ~ factor(Data.daily.roomWise[idx.row,"hour"]), add = TRUE, boxwex = 0.15, notch=FALSE, at = c(0:23) + 0.00,cex=1.0, xaxt="n", col="black",outcex=0.7,outcol="black",staplecol="black",whiskcol="black",boxcol="black",boxfill="white",medlwd=2.0,medcol="green") abline(h=c(50,55,60,65,70,75,80,85,90,95),lty=2) # if (flag.hor){abline(h=value.hor,lty=2)} # legends (from package gplots) smartlegend(x="right",y="top", inset = 0.05, c("wkend","all","wkday"), col=c("blue","black","magenta"), fill = c("blue","black","magenta")) # ------------------------------------------------------------------------------------------------- # Variation Across Rooms # ------------------------------------------------------------------------------------------------- cat(paste("\nprofile based on hourly aggregated data across all weekends or weekdays across all rooms!\n"),file=FL.LOG,append=TRUE) cat(paste("\nprofile based on hourly aggregated data across all weekends or weekdays across all rooms!\n")) # get the y limit for plotting y.limit <- range(Data.dayType.roomWise[,"Value"]) # round to tenth place y.limit <- c(floor(floor(min(y.limit))/10)*10,ceiling(ceiling(max(y.limit))/10)*10) y.limit <- c(50,100) # overwrite with this fixed limits for return air temperature # weekend idx.row <- as.character(Data.dayType.roomWise[,"day.type"]) == "wkend" boxplot(Data.dayType.roomWise[idx.row,"Value"] ~ factor(Data.dayType.roomWise[idx.row,"hour"]), boxwex = 0.15, notch=FALSE, at = c(0:23) - 0.20,cex=1.0, xaxt="n", # main=paste("Variation Across Rooms ","(hourly aggregated data for all weekdays and weekends)",sep=""), xlab="Hour", ylab = expression("Return Air T F"^{o}), ylim=y.limit, outcex=0.7,outcol="blue",staplecol="blue",whiskcol="blue",boxcol="blue",boxfill="white",medlwd=2.0,medcol="green") # weekeday idx.row <- as.character(Data.dayType.roomWise[,"day.type"]) == "wkday" boxplot(Data.dayType.roomWise[idx.row,"Value"] ~ factor(Data.dayType.roomWise[idx.row,"hour"]), add = TRUE, boxwex = 0.15, notch=FALSE, at = c(0:23) + 0.20,cex=1.0, col="red",outcex=0.7,outcol="red",staplecol="red",whiskcol="red",boxcol="red",boxfill="white",medlwd=2.0,medcol="green") # all data boxplot(Data.dayType.roomWise[idx.row,"Value"] ~ factor(Data.dayType.roomWise[idx.row,"hour"]), add = TRUE, boxwex = 0.15, notch=FALSE, at = c(0:23) + 0.00,cex=1.0, xaxt="n", col="black",outcex=0.7,outcol="black",staplecol="black",whiskcol="black",boxcol="black",boxfill="white",medlwd=2.0,medcol="green") abline(h=c(50,55,60,65,70,75,80,85,90,95),lty=2) # if (flag.hor){abline(h=value.hor,lty=2)} # legends (from package gplots) smartlegend(x="right",y="top", inset = 0.05, c("wkend","all","wkday"), col=c("blue","black","magenta"), fill = c("blue","black","magenta")) dev.off() # ------------------------------------------------------------------------------------------------- # time used for completing this script # ------------------------------------------------------------------------------------------------- End.time <- Sys.time() Diff.time <- End.time - Start.time Diff.time cat(paste("\nProfile_thermalSetpoint.R is finished successfully at ",End.time,"!\n",sep=" ")) cat(paste("\nProfile_thermalSetpoint.R is finished successfully at ",End.time,"!\n",sep=" "),file=FL.LOG,append=TRUE) cat(paste("\nProcessing time for [Profile_thermalSetpoint.R] is ",as.numeric(Diff.time, units="mins")," minutes\n",sep=" ")) cat(paste("\nProcessing time for [Profile_thermalSetpoint.R] is ",as.numeric(Diff.time, units="mins")," minutes\n",sep=" "),file=FL.LOG,append=TRUE)
a6dad4b699c72a5d8a63c861ecbc0cfd5af84f19
57965d63586beb192af1a2f8974fdd5630a3964b
/man/np.deneqtest.Rd
62bf0477c127ec7acccc2f699a8646c1abb65a41
[]
no_license
JeffreyRacine/R-Package-np
6fee493cbd555cabe976d2f9c14cd10aef99c665
525db82ebc67423728888daf66ce0d9fdd70bbc7
refs/heads/master
2023-08-31T13:32:00.925187
2023-08-27T13:08:45
2023-08-27T13:08:45
1,957,067
41
23
null
2022-08-12T15:40:15
2011-06-26T20:09:34
C
UTF-8
R
false
false
3,959
rd
np.deneqtest.Rd
% $Id: np.cmstest.Rd,v 1.58 2006/11/03 21:17:20 tristen Exp $ \name{npdeneqtest} \alias{npdeneqtest} \title{ Kernel Consistent Density Equality Test with Mixed Data Types } \description{ \code{npdeneqtest} implements a consistent integrated squared difference test for equality of densities as described in Li, Maasoumi, and Racine (2009). } \usage{ npdeneqtest(x = NULL, y = NULL, bw.x = NULL, bw.y = NULL, boot.num = 399, random.seed = 42, \dots) } \arguments{ \item{x,y}{ data frames for the two samples for which one wishes to test equality of densities. The variables in each data frame must be the same (i.e. have identical names). } \item{bw.x,bw.y}{ optional bandwidth objects for \code{x,y} } \item{boot.num}{ an integer value specifying the number of bootstrap replications to use. Defaults to \code{399}. } \item{random.seed}{ an integer used to seed R's random number generator. This is to ensure replicability. Defaults to 42. } \item{\dots}{ additional arguments supplied to specify the bandwidth type, kernel types, and so on. This is used if you do not pass in bandwidth objects and you do not desire the default behaviours. To do this, you may specify any of \code{bwscaling}, \code{bwtype}, \code{ckertype}, \code{ckerorder}, \code{ukertype}, \code{okertype}.} } \value{ \code{npdeneqtest} returns an object of type \code{deneqtest} with the following components \item{Tn}{ the (standardized) statistic \code{Tn} } \item{In}{ the (unstandardized) statistic \code{In} } \item{Tn.bootstrap}{ contains the bootstrap replications of \code{Tn} } \item{In.bootstrap}{ contains the bootstrap replications of \code{In} } \item{Tn.P}{ the P-value of the \code{Tn} statistic } \item{In.P}{ the P-value of the \code{In} statistic } \item{boot.num}{ number of bootstrap replications } \code{\link{summary}} supports object of type \code{deneqtest}. } \references{ Li, Q. and E. Maasoumi and J.S. Racine (2009), \dQuote{A Nonparametric Test for Equality of Distributions with Mixed Categorical and Continuous Data,} Journal of Econometrics, 148, pp 186-200. } \author{ Tristen Hayfield \email{[email protected]}, Jeffrey S. Racine \email{[email protected]} } \details{ \code{npdeneqtest} computes the integrated squared density difference between the estimated densities/probabilities of two samples having identical variables/datatypes. See Li, Maasoumi, and Racine (2009) for details. } \section{Usage Issues}{ If you are using data of mixed types, then it is advisable to use the \code{\link{data.frame}} function to construct your input data and not \code{\link{cbind}}, since \code{\link{cbind}} will typically not work as intended on mixed data types and will coerce the data to the same type. It is crucial that both data frames have the same variable names. } \seealso{ \code{\link{npdeptest},\link{npsdeptest},\link{npsymtest},\link{npunitest}} } \examples{ \dontrun{ set.seed(1234) ## Distributions are equal n <- 250 sample.A <- data.frame(x=rnorm(n)) sample.B <- data.frame(x=rnorm(n)) npdeneqtest(sample.A,sample.B,boot.num=99) Sys.sleep(5) ## Distributions are unequal sample.A <- data.frame(x=rnorm(n)) sample.B <- data.frame(x=rchisq(n,df=5)) npdeneqtest(sample.A,sample.B,boot.num=99) ## Mixed datatypes, distributions are equal sample.A <- data.frame(a=rnorm(n),b=factor(rbinom(n,2,.5))) sample.B <- data.frame(a=rnorm(n),b=factor(rbinom(n,2,.5))) npdeneqtest(sample.A,sample.B,boot.num=99) Sys.sleep(5) ## Mixed datatypes, distributions are unequal sample.A <- data.frame(a=rnorm(n),b=factor(rbinom(n,2,.5))) sample.B <- data.frame(a=rnorm(n,sd=10),b=factor(rbinom(n,2,.25))) npdeneqtest(sample.A,sample.B,boot.num=99) } % enddontrun } \keyword{ nonparametric }
5cf217615541810e5c41d0258996ec5d73dedf19
465ad1d280890bf23acf6a4e473d0aff03bbef0c
/code/run_flash_drift_rand.R
293e1811b65f3c4dcfa3a0f3f5b96c7beb5f5a00
[]
no_license
jhmarcus/drift-workflow
c6fef2ea3392296266fb72d15aee0ae77a30a8c5
da05b47f313f183f994155384ca6790f7b865d6e
refs/heads/master
2022-12-17T14:55:06.367786
2020-09-18T18:24:11
2020-09-18T18:24:11
170,155,451
1
0
null
null
null
null
UTF-8
R
false
false
818
r
run_flash_drift_rand.R
library(tidyverse) library(ebnm) library(flashier) library(drift.alpha) library(softImpute) library(lfa) options(extrapolate.control=list(beta.max=1.0)) args <- commandArgs(trailingOnly=TRUE) bed_prefix <- args[1] rds_path <- args[2] K <- as.integer(args[3]) KCOMPLETE <- 30 # read the genotype matrix Y <- t(lfa:::read.bed(bed_prefix)) # complete missing data before running fit <- softImpute(Y, rank=KCOMPLETE, lambda=0.0, type="als") Y_imp <- complete(Y, fit) # random init n <- nrow(Y_imp) EL <- matrix(runif(n * K), nrow=n, ncol=K) EL[, 1] <- 1 EF <- t(solve(crossprod(EL), crossprod(EL, Y))) dr <- drift(init_from_EL(Y, EL, EF), miniter=20, maxiter=20, extrapolate=FALSE, verbose=TRUE) dr <- drift(dr, miniter=2, maxiter=2500, tol=1e-4, extrapolate=TRUE, verbose=TRUE) # save the rd saveRDS(dr, rds_path)
0de611082a2bddc0227d74dfd7757850ab6f53df
0479b5e809beae1d18a9c6b603305d674fd5b12e
/man/combine_pvalue.Rd
5f1f2312c02333b38e78346b5b32e5c9b476cfae
[]
no_license
huerqiang/GeoTcgaData
ecbd292e37df065ae4697c7dd07027c1e665853d
cc85914f2a17177164c7ae426f8f0f09f91e98c1
refs/heads/master
2023-04-12T10:04:20.034688
2023-04-04T05:57:04
2023-04-04T05:57:04
206,305,770
6
0
null
null
null
null
UTF-8
R
false
true
835
rd
combine_pvalue.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/SNP.R \name{combine_pvalue} \alias{combine_pvalue} \title{combine pvalues of SNP difference analysis result} \usage{ combine_pvalue(snpResult, snp2gene, combineMethod = min) } \arguments{ \item{snpResult}{data.frame of SNP difference analysis result.} \item{snp2gene}{data frame of two column: snp and gene.} \item{combineMethod}{Method of combining the pvalue of multiple snp in a gene.} } \value{ data.frame } \description{ combine pvalues of SNP difference analysis result } \examples{ snpResult <- data.frame(pvalue = runif(100), estimate = runif(100)) rownames(snpResult) <- paste0("snp", seq_len(100)) snp2gene <- data.frame(snp = rownames(snpResult), gene = rep(paste0("gene", seq_len(20)), 5)) result <- combine_pvalue(snpResult, snp2gene) }
20ce30e4de48ce65df7a3ad3c6ccb6609a2a0788
ffdea92d4315e4363dd4ae673a1a6adf82a761b5
/data/genthat_extracted_code/neatmaps/examples/formatCluster.Rd.R
b1b5cb3d738ad51f53b2561652aaf9d15bbe0199
[]
no_license
surayaaramli/typeRrh
d257ac8905c49123f4ccd4e377ee3dfc84d1636c
66e6996f31961bc8b9aafe1a6a6098327b66bf71
refs/heads/master
2023-05-05T04:05:31.617869
2019-04-25T22:10:06
2019-04-25T22:10:06
null
0
0
null
null
null
null
UTF-8
R
false
false
237
r
formatCluster.Rd.R
library(neatmaps) ### Name: formatCluster ### Title: Format Cluster Output ### Aliases: formatCluster ### ** Examples # dummy cluster results clustList <- list(c("A", "B"), c("C", "D", "E")) formatCluster(clusterList = clustList)
ef1c23c631398b1e199f9c5cafe121ce32b0e7df
cc1b9747506561c5f306415307c0862704c526b0
/secr-analysis.R
3787c9b3fd4d4f9c426a5c708a191c048198c6f9
[]
no_license
cwsjitu/SECR-Simulation-Analysis
b4062f465ba0c2df6dceb2e5a3708391835289d8
52708ee520ba2bed4c42a1c1111494ab15beae45
refs/heads/master
2021-01-20T09:16:35.868909
2017-05-04T10:01:40
2017-05-04T10:01:40
90,232,064
0
0
null
2017-05-04T07:03:34
2017-05-04T07:03:34
null
UTF-8
R
false
false
579
r
secr-analysis.R
##set your working directory with # setwd() library(secr) library(raster) library(rgdal) library(sp) library(maptools) library(rgeos) library(dplyr) ## coordinate system latlong = "+init=epsg:4326" ## LatLon Projection ingrid = "+init=epsg:32643" ## UTM Projection ## assumptions to generate capture history N <- ## Number of individuals/activity centers traploc <- ## Number of trap locations g0 <- ## value between 0.1 and 0.3 sigma <- ## depends on home range of species occasions <- 10 ## 10 sampling occasions
bf31c6a02ca8150d62a921d566b1ec8a55e4ba40
0500ba15e741ce1c84bfd397f0f3b43af8cb5ffb
/cran/paws.end.user.computing/man/appstream_describe_application_fleet_associations.Rd
3bd33cd440d610fe81433a1abe76ba4fa8d4f025
[ "Apache-2.0" ]
permissive
paws-r/paws
196d42a2b9aca0e551a51ea5e6f34daca739591b
a689da2aee079391e100060524f6b973130f4e40
refs/heads/main
2023-08-18T00:33:48.538539
2023-08-09T09:31:24
2023-08-09T09:31:24
154,419,943
293
45
NOASSERTION
2023-09-14T15:31:32
2018-10-24T01:28:47
R
UTF-8
R
false
true
1,001
rd
appstream_describe_application_fleet_associations.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/appstream_operations.R \name{appstream_describe_application_fleet_associations} \alias{appstream_describe_application_fleet_associations} \title{Retrieves a list that describes one or more application fleet associations} \usage{ appstream_describe_application_fleet_associations( FleetName = NULL, ApplicationArn = NULL, MaxResults = NULL, NextToken = NULL ) } \arguments{ \item{FleetName}{The name of the fleet.} \item{ApplicationArn}{The ARN of the application.} \item{MaxResults}{The maximum size of each page of results.} \item{NextToken}{The pagination token used to retrieve the next page of results for this operation.} } \description{ Retrieves a list that describes one or more application fleet associations. Either ApplicationArn or FleetName must be specified. See \url{https://www.paws-r-sdk.com/docs/appstream_describe_application_fleet_associations/} for full documentation. } \keyword{internal}
9b7f1ca2ab9da28e5156620557882d392ea96a20
881d461d3ca9c3acf2d4076e7ea042053fd0d6e6
/alldeaths_2016.R
82ef7ac94f79e0155c63f6b09e076eff8f2e2ae7
[]
no_license
markocherrie/SpatialClustering
f35326bb0f4d1a29feaf70a84da59faa5a7686f6
2f5c1fc1c8b99d15846a51a5a660ac3165069ed2
refs/heads/master
2022-11-22T03:17:48.172696
2020-07-24T10:46:56
2020-07-24T10:46:56
282,066,957
0
0
null
null
null
null
UTF-8
R
false
false
4,560
r
alldeaths_2016.R
############### STEP 1: PRE_PROCESSING # read in the data library(readr) library(sf) dz<-read_sf("boundaries/DZ/SG_DataZoneBdry_2011/SG_DataZone_Bdry_2011.shp") simd<-read_csv("data/SIMD2016indicators.csv") # pre-processing library(dplyr) dzsimd<- dz %>% left_join(simd, by= c("DataZone" = "Data_Zone")) %>% filter(Council_area%in%c("Glasgow City")) %>% mutate(SMR=as.numeric(as.character(SMR))) %>% mutate(SMR= ifelse(is.na(SMR), median(SMR, na.rm=TRUE), SMR)) %>% select(DataZone, Name, SMR) # plot with sf plot(dzsimd["SMR"]) ### plot with tmap library(tmap) tmap_mode("plot") tmap_dzsimd<-tm_shape(dzsimd) + tm_fill("SMR", style = "quantile", palette = "Blues") + tm_borders(alpha = 0.1) + tm_layout(main.title = "SMR in Glasgow 2016", main.title.size = 0.7 , legend.position = c("right", "bottom"), legend.title.size = 0.8) tmap_dzsimd tmap_mode("view") tmap_dzsimd # construct neighbours list from polygon list library(sp) library(spdep) # convert to sp object dzsimd_sp <- as(dzsimd, "Spatial") w <- poly2nb(dzsimd_sp, row.names=dzsimd_sp$DataZone) summary(w) # Plot the boundaries plot(dzsimd_sp, col='white', border='gray', lwd=2) # Get polygon centroids xy <- coordinates(dzsimd_sp) # Draw lines between the polygons centroids for neighbours # that are listed as linked in w plot(w, xy, col='red', lwd=2, add=TRUE) ############### STEP 2: CLUSTER PROCESSING # listw type spatial weights object ww <- nb2listw(w, style='B') ww # calculate moran's I moran(dzsimd$SMR, ww, n=length(ww$neighbours), S0=Szero(ww)) # Calculate whether significant using monte carlo method set.seed(1234) dzsimdmc_results <- moran.mc(dzsimd$SMR, ww, nsim=1000) dzsimdmc_results plot(dzsimdmc_results, main="", las=1) # we need a weights matrix for this wm <- nb2mat(w, style='B') # row standardisation of weights matrix rwm <- mat2listw(wm, style='W') mat <- listw2mat(rwm) moran.plot(dzsimd$SMR, rwm, las=1) # Decomposition of global indicators locm_dzsimd <- localmoran(dzsimd$SMR, ww) summary(locm_dzsimd) # scale the SMR dzsimd$s_SMR <- scale(dzsimd$SMR) %>% as.vector() # Generate the lag dzsimd$lag_s_SMR <- lag.listw(ww, dzsimd$s_SMR) # create a dataframe with SMR + spatial laggged SMR x <- dzsimd$s_SMR y <- dzsimd$lag_s_SMR xx <- tibble::data_frame(x,y) ############### STEP 3: CLUSTER RESULTS # Identify significant clusters dzsimdsp <- st_as_sf(dzsimd) %>% mutate(quad_sig = ifelse(dzsimd$s_SMR > 0 & dzsimd$lag_s_SMR > 0 & locm_dzsimd[,5] <= 0.05, "high-high", ifelse(dzsimd$s_SMR <= 0 & dzsimd$lag_s_SMR <= 0 & locm_dzsimd[,5] <= 0.05, "low-low", ifelse(dzsimd$s_SMR> 0 & dzsimd$lag_s_SMR <= 0 & locm_dzsimd[,5] <= 0.05, "high-low", ifelse(dzsimd$s_SMR <= 0 & dzsimd$lag_s_SMR > 0 & locm_dzsimd[,5] <= 0.05, "low-high", "non-significant"))))) # plot the significant clusters qtm(dzsimdsp, fill="quad_sig", fill.title="LISA for SMR 2016", fill.palette = c("#DC143C","#87CEFA","#DCDCDC")) # Summary table of clusters table(dzsimdsp$quad_sig) # let's get the data out so we can use later smrclusterchange <- dzsimdsp %>% select(DataZone, quad_sig) %>% left_join(smr2020cluster, by="DataZone") %>% mutate(quad_sigchange = ifelse(quad_sigSMR2020 == quad_sig,"No change", ifelse(quad_sig == "non-significant" & quad_sigSMR2020 =="high-high", "Non-sig to high-high", ifelse(quad_sig == "non-significant" & quad_sigSMR2020 =="low-low", "Non-sig to low-low", ifelse(quad_sig == "low-low" & quad_sigSMR2020 =="non-significant", "Low-low to non-sig", ifelse(quad_sig == "high-high" & quad_sigSMR2020 =="non-significant", "High-high to non-sig", "Non-classified")))))) qtm(smrclusterchange, fill="quad_sigchange", fill.title="Change in cluster 2016-2020", fill.palette = c("#ffc0cb","#32CD32","#DCDCDC", "#DC143C", "#87CEFA"))
c3a9a3b7ff73b669087bd3ba47f57d40b2c78c10
399f7bc329848e396ca8faa449a3bd23aec7b35f
/man/has_name.Rd
cb7e82b1029dbfeb4861643d2e5ea198c8c55f3f
[]
no_license
cran/container
c9cbe63c8aee7be8b0406cadfb4bcabf4031333b
c3c3fff6cc67740d4d1820f338285c04cf80c92d
refs/heads/master
2022-12-24T03:30:41.848446
2022-12-11T10:20:02
2022-12-11T10:20:02
145,894,631
0
0
null
null
null
null
UTF-8
R
false
true
928
rd
has_name.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/has_name.R \name{has_name} \alias{has_name} \alias{has_name.Container} \alias{has_name.dict.table} \title{Check for Name} \usage{ has_name(x, name) \method{has_name}{Container}(x, name) \method{has_name}{dict.table}(x, name) } \arguments{ \item{x}{any \code{R} object.} \item{name}{\code{character} the name to be found.} } \value{ \code{TRUE} if name is in \code{x} and otherwise \code{FALSE}. For \code{dict.table} \code{TRUE} if the dict.table objects has the given column name, otherwise \code{FALSE}. } \description{ Check for Name } \examples{ co = container(a = 1, 2, f = mean) has_name(co, "a") # TRUE has_name(co, "f") # TRUE has_name(co, "2") # FALSE dit = dict.table(a = 1:2, b = 3:4) has_name(dit, "a") # TRUE has_name(dit, "x") # FALSE } \seealso{ \code{\link[=has]{has()}} }
22a12698f640d626de21251a22f6b82bd10f83f9
8cffdd5f866185e8529376326b9c3accac583930
/man/getL-methods.Rd
7497467c4fda0c4cd8e2804c8d43fb5a29c48314
[]
no_license
cran/simctest
fc4a187ae7ad926dbbae9a71967b44795f3de85d
eadc866013858443cbea9a6acd999b1143207373
refs/heads/master
2021-01-16T18:32:13.653593
2019-11-04T12:20:02
2019-11-04T12:20:02
17,699,678
0
0
null
null
null
null
UTF-8
R
false
false
571
rd
getL-methods.Rd
\name{getL-methods} \alias{getL} \docType{methods} \alias{getL-methods} \alias{getL,sampalgPrecomp-method} \title{Methods for Function getL in Package `simctest'} \description{ Returns the lower boundary for the stopping rule } \usage{ ##S4 method getL(alg,ind) } \arguments{ \item{alg}{the sampling algorithm} \item{ind}{a vector of indices at which the lower stopping boundary should be returned} } \section{Methods}{ \describe{ \item{alg = "sampalgPrecomp"}{ the sampling algorithm to be used } }} \examples{ getL(getalgprecomp(),1:100) } \keyword{methods}
cb7961b9aa636ee81f6a767954341d58d80192c7
9cfd9c26181fef9a29cdb0934a7609c45305054c
/hrda/ui.R
4bcbe7c456c49a231904c0b55eecd8fd214a8986
[]
no_license
suntreeshl/hrda
08106507bb6158114865dad8e57b6daf27fcd171
fe01a1948e5f7a45040ed0334670076a12f4af27
refs/heads/master
2022-11-11T20:31:03.639049
2020-07-03T13:22:35
2020-07-03T13:22:35
269,610,537
0
0
null
2020-06-05T11:10:46
2020-06-05T11:10:46
null
UTF-8
R
false
false
2,247
r
ui.R
library(shiny) library(shinydashboard) library(tidyverse) library(ggplot2) library(DT) # Define UI for application that draws a histogram ui <- dashboardPage(skin="blue", dashboardHeader( title = "HR 데이터 분석" ), dashboardSidebar( sidebarMenu( # Setting id makes input$tabs give the tabName of currently-selected tab id = "tabs", menuItem("근속현황", tabName = "dashboard", icon = icon("dashboard")), menuItem("상관분석", icon = icon("th"), tabName = "widgets", badgeColor = "green"), menuItem("시각화", icon = icon("bar-chart-o"), menuSubItem("Sub-item 1", tabName = "subitem1"), menuSubItem("Sub-item 2", tabName = "subitem2") ), #menuItem("About", tabName = "about") menuItem("About", menuSubItem("프로젝트", tabName = "about"), menuSubItem("raw", tabName = "raw") ) ) ), dashboardBody( tags$head( tags$link(rel = "stylesheet", type = "text/css", href = "custom.css") ), tabItems( tabItem(tabName = "dashboard", h2("Dashboard tab content") ), tabItem(tabName = "widgets", h2("Widgets tab content") ), tabItem(tabName = "subitem1", h2("subitem1 tab content") ), tabItem(tabName = "subitem2", h2("subitem2 tab content") ), tabItem(tabName = "about", h2("개발 계획서"), includeMarkdown("doc/plan.rmd") ), tabItem(tabName = "raw", h2("원본 데이터"), column(4, selectInput("att", "퇴사여부:", c("All", unique(as.character(data$Attrition)))) ), DT::dataTableOutput("table") ) ) ) )
058bbc179d6f13347ca20837928f975f4fa8293c
cb48a3993cddaf8f8cfcf78b3aa7419a1bb62fc9
/plot4.R
87d7b629e006dab699f6285e7732a6904595e169
[]
no_license
BowenRaymone/ExData_Plotting1
b7bd6caa05ca1db8032544eac6812c070e3a66e8
cd3214738f402792904ae9898046659d57ff8d10
refs/heads/master
2021-01-24T03:43:18.813627
2018-02-26T03:21:44
2018-02-26T03:21:44
122,902,958
1
0
null
2018-02-26T02:43:40
2018-02-26T02:43:40
null
UTF-8
R
false
false
1,433
r
plot4.R
# run the file power_consumption <- read.table("./household_power_consumption.txt",header = TRUE,stringsAsFactors=FALSE,sep=";") sub_power_consumption <- power_consumption[power_consumption$Date %in% c("1/2/2007","2/2/2007") ,] # remove the total data set to clean some memory rm("power_consumption") # convert the date time using strptime datetime <- strptime(paste(sub_power_consumption$Date, sub_power_consumption$Time, sep=" "), "%d/%m/%Y %H:%M:%S") # plot of Global_active_power into png png("plot4.png", width=800, height=800) par(mfrow = c(2, 2)) # plot Global_active_power plot(datetime, as.numeric(sub_power_consumption$Global_active_power), type="l", xlab="", ylab="Global Active Power", cex=0.2) # plot Voltage plot(datetime, as.numeric(sub_power_consumption$Voltage), type="l", xlab="datetime", ylab="Voltage") # plot energy plot(datetime, as.numeric(sub_power_consumption$Sub_metering_1), type="l", ylab="Energy Submetering", xlab="") lines(datetime, as.numeric(sub_power_consumption$Sub_metering_2), type="l", col="red") lines(datetime, as.numeric(sub_power_consumption$Sub_metering_3), type="l", col="blue") legend("topright", c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3"), lty=, lwd=2.5, col=c("black", "red", "blue"), bty="o") # plot Global_reactive_power plot(datetime, as.numeric(sub_power_consumption$Global_reactive_power), type="l", xlab="datetime", ylab="Global_reactive_power") dev.off()
7d332e4dc0535a35a1bf4cb71ec558dae96fde6e
de936b8365a44c245fae40ab116a42e17997e6a7
/regtable.R
38def7af21d4bd8ccd949f1f2eae84e71dbfbe56
[]
no_license
KoenV/regtable
aa47b60dc1640d7632f386877a4606f8dbcb149c
2d1c08b7e79c5ba65a3c3028b5efea0b806e55ac
refs/heads/master
2021-01-18T16:06:44.594349
2017-04-24T13:28:20
2017-04-24T13:28:20
86,712,896
1
0
null
null
null
null
UTF-8
R
false
false
4,034
r
regtable.R
# ############################################################################## # function to make tables for lm and glm objects # [email protected] # date: 24/04/2017 ################################################################################ reg_table = function(fit=fit,data=data,log=FALSE,roundings=3){ require(Hmisc) require(car) suppressMessages(require(tibble)) format_pval.table <- function(x){ if (x < .001) return(paste('<', '.001')) else paste(round(x, 3)) } model_variables = attr(fit$terms,"term.labels") summary_table = summary(fit)$coef if(log==TRUE){ summary_table[,1]=exp(summary_table[,1]) } table = vector('list',length(model_variables)+1) for (i in 1:length(model_variables)){ if (is.factor(data[,model_variables[i]])){ table[[i]] = as_tibble(matrix(NA, nlevels(data[,model_variables[i]])+1,5)) names(table[[i]]) = c('Variable','Value', ifelse(log==TRUE,'Odds Ratio','Estimate'),'95% CI', 'P-value') table[[i]][1,1] = ifelse(label(data[,model_variables[i]])=='', model_variables[i],label(data[,model_variables[i]])) # @ overal p-value test = if(log==TRUE){ anova(fit,test='LRT') }else{anova(fit)} logical_row = grepl(model_variables[i],rownames(test)) table[[i]][1,5] = ifelse(nrow(table[[i]])==3,'', format_pval.table(test[logical_row,5])) table[[i]][1,2:4] = '' table[[i]][2:nrow(table[[i]]),1] = '' table[[i]][2:nrow(table[[i]]),2] = levels(data[,model_variables[i]]) table[[i]][2,3:5] = '#' spfc_smmry = grepl(model_variables[i],rownames(summary_table)) table[[i]][3:nrow(table[[i]]),3] = round( summary_table[spfc_smmry,1],roundings) ci = suppressMessages(confint(fit)) if(log==TRUE){ ci=exp(ci) } lower_ci = unname(round(ci[spfc_smmry,1],roundings)) upper_ci = unname(round(ci[spfc_smmry,2],roundings)) table[[i]][3:nrow(table[[i]]),4] = paste0(lower_ci,';',upper_ci) table[[i]][3:nrow(table[[i]]),5] = sapply(1:sum(spfc_smmry), function(x){ format_pval.table(summary_table[spfc_smmry,4][x]) }) }else{ table[[i]] = as_tibble(matrix(NA,1,5)) names(table[[i]]) = c('Variable','Value', ifelse(log==TRUE,'Odds Ratio','Estimate'),'95% CI', 'P-value') table[[i]][1,1] = ifelse(label(data[,model_variables[i]])=='', model_variables[i],label(data[,model_variables[i]])) table[[i]][1,2] = '' spfc_smmry = grepl(model_variables[i],rownames(summary_table)) table[[i]][1,3] = round(summary_table[spfc_smmry,1],roundings) ci = suppressMessages(confint(fit)) if(log==TRUE){ ci=exp(ci) } lower_ci = unname(round(ci[spfc_smmry,1],roundings)) upper_ci = unname(round(ci[spfc_smmry,2],roundings)) table[[i]][1,4] = paste0(lower_ci,';',upper_ci) table[[i]][1,5] = format_pval.table(summary_table[spfc_smmry,4]) } } return(do.call('rbind',table)) }
850673a39ea7d7d2459c22a8758e98457a4afe73
02638637685acc16f9a404d9f589d0c0dd0cb784
/tests/testthat.R
4b29043cbec893c70706968b8c9c85ab6be2fc73
[]
no_license
himiko14122/mdsstat
cada89ba3bfeef3b38d5a0140fb643fb7b521550
dfa250f58d6a09662062382b24144dc3194524b4
refs/heads/master
2022-04-12T22:05:48.970010
2020-03-08T14:50:02
2020-03-08T14:50:02
null
0
0
null
null
null
null
UTF-8
R
false
false
62
r
testthat.R
library(testthat) library(mdsstat) test_check("mdsstat")
7b400881e3bd9eb295fc17ebb0c5643eb64e40b0
4970a3f8a4ca8a42a6fb22f454265691544f1810
/man/galaxy.Rd
540f5a353af1402a1808af66030ccc89d29b821f
[]
no_license
Penncil/xmeta
d2ee5b14843d88f1b28c3e3755816269103cbbcd
832b3f244648818cf2df2691ec5dd7bfa21bc810
refs/heads/master
2023-04-08T17:04:05.411553
2023-04-04T17:05:36
2023-04-04T17:05:36
249,091,838
4
1
null
2020-03-22T01:27:08
2020-03-22T01:27:07
null
UTF-8
R
false
true
3,301
rd
galaxy.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/galaxy.R \name{galaxy} \alias{galaxy} \title{Galaxy Plot: A New Visualization Tool of Bivariate Meta-Analysis Studies} \usage{ galaxy(data, y1, s1, y2, s2, scale1, scale2, scale.adj, corr, group, study.label, annotate, xlab, ylab, main, legend.pos) } \arguments{ \item{data}{dataset with at least 4 columns for the effect sizes of the two outcomes and their standard errors} \item{y1}{column name for outcome 1, default is 'y1'} \item{s1}{column name for standard error of \code{y1}, default is 's1'} \item{y2}{column name for outcome 2, default is 'y2'} \item{s2}{column name for standard error of \code{y2}, default is 's2'} \item{scale1}{parameter for the length of the cross hair: the ellipse width is scale1 / s1 * scale.adj} \item{scale2}{parameter for the length of the cross hair: the ellipse height is scale2 / s2 * scale.adj} \item{scale.adj}{a pre-specified parameter to adjust for \code{scale1} and \code{scale2}} \item{corr}{column name for within-study correlation} \item{group}{column name for study group} \item{study.label}{column name for study label} \item{annotate}{logical specifying whether study label should be added to the plot, default is FALSE.} \item{xlab}{x axis label, default \code{y1}} \item{ylab}{y axis label, default \code{y2}} \item{main}{main title} \item{legend.pos}{The position of the legend for study groups if \code{group} is specified, see \code{legend}, default is 'bottomright'.} } \description{ A new visualization method that simultaneously presents the effect sizes of bivariate outcomes and their standard errors in a two-dimensional space. } \details{ This function returns the galaxy plot to visualize bivariate meta-analysis data, which faithfully retains the information in two separate funnel plots, while providing useful insights into outcome correlations, between-study heterogeneity and joint asymmetry. Galaxy plot: a new visualization tool of bivariate meta-analysis studies. Funnel plots have been widely used to detect small study effects in the results of univariate meta-analyses. However, there is no existing visualization tool that is the counterpart of the funnel plot in the multivariate setting. We propose a new visualization method, the galaxy plot, which can simultaneously present the effect sizes of bivariate outcomes and their standard errors in a two-dimensional space. The galaxy plot is an intuitive visualization tool that can aid in interpretation of results of multivariate meta-analysis. It preserves all of the information presented by separate funnel plots for each outcome while elucidating more complex features that may only be revealed by examining the joint distribution of the bivariate outcomes. } \examples{ data(sim_dat) galaxy(data=sim_dat, scale.adj = 0.9, corr = 'corr', group = 'subgroup', study.label = 'study.id', annotate = TRUE, main = 'galaxy plot') } \references{ Hong, C., Duan, R., Zeng, L., Hubbard, R., Lumley, T., Riley, R., Chu, H., Kimmel, S., and Chen, Y. (2020) Galaxy Plot: A New Visualization Tool of Bivariate Meta-Analysis Studies, American Journal of Epidemiology, https://doi.org/10.1093/aje/kwz286. } \author{ Chuan Hong, Chongliang Luo, Yong Chen }
b65ce37adce03922c019afd08d1777bc1323a06a
f6887dbd9e53746a835ab8553bbfd40255ff333e
/bin/analyse_structure.R
1e9724023e4c848e0172d4a64c424fa2503628f2
[ "MIT" ]
permissive
amchakra/tosca
38d1d4e43a917623076430035497447331584f63
6a902524c818e104cbcf9bf753828a289ee32905
refs/heads/main
2023-06-10T10:18:04.766415
2022-10-17T16:11:15
2022-10-17T16:11:15
260,152,891
3
2
MIT
2023-03-07T13:34:43
2020-04-30T08:17:03
Nextflow
UTF-8
R
false
false
4,052
r
analyse_structure.R
#!/usr/bin/env Rscript suppressPackageStartupMessages(library(data.table)) suppressPackageStartupMessages(library(toscatools)) suppressPackageStartupMessages(library(rslurm)) suppressPackageStartupMessages(library(tictoc)) suppressPackageStartupMessages(library(parallel)) suppressPackageStartupMessages(library(optparse)) option_list <- list(make_option(c("", "--hybrids"), action = "store", type = "character", help = "Hybrids file"), make_option(c("", "--fasta"), action = "store", type = "character", help = "Transcript fasta"), make_option(c("", "--output"), action = "store", type = "character", help = "Output file"), make_option(c("", "--nodes"), action = "store", type = "integer", default = 100, help = "Number of nodes to allocate [default: %default]"), make_option(c("", "--shuffled_mfe"), action = "store_true", type = "logical", help = "Calculate shuffled binding energy (100 iterations)", default = FALSE), make_option(c("", "--clusters_only"), action = "store_true", type = "logical", help = "Analyse structure for hybrids in clusters only", default = FALSE)) opt_parser = OptionParser(option_list = option_list) opt <- parse_args(opt_parser) # Load genome message("Loading genome...") tic() genome.fa <- Biostrings::readDNAStringSet(opt$fasta) genome.dt <- data.table(gene_id = names(genome.fa), sequence = as.character(genome.fa)) toc() hybrids.dt <- fread(opt$hybrids) setkey(hybrids.dt, name) stopifnot(!any(duplicated(hybrids.dt$name))) # Check no duplicates # Get sequences message("Getting sequences...") tic() hybrids.dt <- get_sequence(hybrids.dt = hybrids.dt, genome.dt = genome.dt) toc() stopifnot(!any(is.na(c(hybrids.dt$L_sequence, hybrids.dt$L_sequence)))) sel.hybrids.dt <- hybrids.dt[!(L_seqnames == "rRNA_45S" & R_seqnames == "rRNA_45S")] sel.hybrids.dt <- sel.hybrids.dt[!(L_seqnames == "rDNA" & R_seqnames == "rDNA")] sel.hybrids.dt <- sel.hybrids.dt[!(L_seqnames == "rRNA_5S" & R_seqnames == "rRNA_5S")] if(opt$clusters_only) sel.hybrids.dt <- sel.hybrids.dt[!is.na(cluster)][cluster != "."] # Getting MFE and structure message("Analysing structure...") tic() # Cluster jobs sjob <- slurm_apply(analyse_structure, sel.hybrids.dt[, .(name, L_sequence, R_sequence)], jobname = sapply(strsplit(basename(opt$hybrids), "\\."), "[[", 1), nodes = opt$nodes, cpus_per_node = 1, slurm_options = list(time = "24:00:00"), submit = TRUE) Sys.sleep(60) status <- FALSE while(status == FALSE) { squeue.out <- system(paste("squeue -n", sjob$jobname), intern = TRUE) # Get contents of squeue for this job if(length(squeue.out) == 1) status <- TRUE # i.e. only the header left Sys.sleep(60) } structure.list <- get_slurm_out(sjob) cleanup_files(sjob) # Remove temporary files structure.dt <- rbindlist(structure.list) hybrids.dt <- merge(hybrids.dt, structure.dt, by = "name") # Do shuffled depending on flag if(opt$shuffled_mfe) { sjob <- slurm_apply(get_shuffled_mfe, sel.hybrids.dt[, .(name, L_sequence, R_sequence)], jobname = sapply(strsplit(basename(opt$hybrids), "\\."), "[[", 1), nodes = opt$nodes, cpus_per_node = 1, slurm_options = list(time = "24:00:00"), submit = TRUE) Sys.sleep(60) # To give it enough time to submit before the first check status <- FALSE while(status == FALSE) { squeue.out <- system(paste("squeue -n", sjob$jobname), intern = TRUE) # Get contents of squeue for this job if(length(squeue.out) == 1) status <- TRUE # i.e. only the header left Sys.sleep(60) } mfe.list <- get_slurm_out(sjob) cleanup_files(sjob) # Remove temporary files mfe.dt <- rbindlist(mfe.list) hybrids.dt <- merge(hybrids.dt, mfe.dt, by = "name") } fwrite(hybrids.dt, opt$output, sep = "\t") message("Completed!")
0915baaab07dc6de5020e9d0c0089c749772e4fa
517ac8ca5bef92173ec4d9f62dee3a8075c8291c
/man/compare.results.vs.cqt.Rd
bc6eb29cfbf7a048ce373f8bd3648e31756cbd1d
[]
no_license
cran/CME.assistant
5d9695b3e31e8916ec59e6d60b45135b144ef8d2
9e225c336693abbffd41c6c63e5acdcd024633e1
refs/heads/master
2023-03-23T14:28:23.960474
2021-03-22T09:30:02
2021-03-22T09:30:02
317,813,689
0
0
null
null
null
null
UTF-8
R
false
true
543
rd
compare.results.vs.cqt.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/4.CC_funcs.R \name{compare.results.vs.cqt} \alias{compare.results.vs.cqt} \title{Compare the saved cqt vs results} \usage{ compare.results.vs.cqt(dt_results, dt_cqt) } \arguments{ \item{dt_results}{obtained by `read.all.results.csv(results_dir_list)`} \item{dt_cqt}{obtained by `get.dt.cqt(dir_cqt_files)`} } \description{ Should be the same as compare CC profiles vs results. It is used to check if the cqt file and CC profile are both updated in the same time }
935060ae2fcebf6de1d15c1a77f70b4b22f00a57
5fb78098a301178b381be6dd3207527aceef34e9
/install.packages.R
148ea088b35dd47f2442c9ccd2bf9688d64d68c4
[]
no_license
wan-yang/cancer_cohort_trends
e38ccbc0befff99643ab9a374d3fdd68b57d8954
89a19babfbfd412c3ec37f570893c996ec1f4f2c
refs/heads/master
2022-04-12T05:22:42.276900
2020-02-05T14:42:07
2020-02-05T14:42:07
219,533,936
2
0
null
null
null
null
UTF-8
R
false
false
224
r
install.packages.R
## To install R packages for the analysis ## Install multiple packages install.packages(c("RColorBrewer", "data.table", "magrittr", "stringr", "ggplot2"))
c60258247b152517529fdc526b83140cd0f3eb8d
89b3c5d320e4b0ae9be7d28c9e4cba640e8b069f
/OldExams/20170814/exam_2017-08-14_solutions.R
ad8277b7810312a42425398577cb5fe0b0357f1b
[]
no_license
andrea003/KursRprgm
f5c1cb1dc803052c8d19ec6b176f40ebc2694d0c
4f707c834038d18b2e65ac74f6eb5c204e4cea71
refs/heads/master
2022-11-28T12:29:30.766426
2020-08-10T08:07:15
2020-08-10T08:07:15
null
0
0
null
null
null
null
UTF-8
R
false
false
2,897
r
exam_2017-08-14_solutions.R
#------------------------------------------------------ # 1 # a) a<-5 b<-2 (factorial(x = a)-b^a)^-0.1 # b) data(OrchardSprays) my_df<-OrchardSprays dim(my_df)[1] index<-seq(from = 1,to = dim(my_df)[1],by = 2) my_df<-my_df[index,1:2] head(my_df) tail(my_df) # c) letters my_text<-rep(letters,1000) my_text # d) x_vect<-rep(c(1,2,3,2,1),each=3) A<-matrix(data = x_vect,nrow = 5,ncol = 3,byrow = TRUE) rownames(A)<-c("w","a","r","y","f") A x_vect2<-rep(c(1,2,3,2,1),times=3) matrix(data = c(1,2,3,2,1),nrow = 5,ncol = 3,byrow = FALSE) # 2) # a) for(i in 1:7){ vec1<-rep("xyz",8-i) print(vec1) vec2<-rep("abc",i) print(vec2) } # b) # för att förstå den kumulativa summan kör: ?cumsum cbind(1:10,cumsum(1:10)) i<-1 s<-0 while(s+i<50){ s<-s+i #print(paste("i:",i,"s:",s)) if(s%%2==0){ print("Go!") }else if(s%%5==0){ print(sin(s)) }else{ print(s) } i<-i+1 } # 3: library(stringr) library(lubridate) robot<-readLines(con = "/home/joswi05/Dropbox/Josef/732G33_VT2020/KursRprgm/OldExams/20170814/wiki_robot.txt") # b) a<-str_extract_all(string = robot,pattern = "(^| )[Tt]he ") b<-str_extract(string = unlist(a),pattern = "[Tt]he") length(b) # c) date1<-ymd("1919-05-24") date2<-ymd("1921-09-12") date3<-ymd("1918-11-28") date4<-ymd("2017-08-14") # i ) wday(date1,label = TRUE,abbr = FALSE) # ii ) interval(start = date1,end = date2)/days(1) # iii ) floor(interval(start = date3,end = date2)/weeks(1)) # iv ) floor(interval(start = date1,end = date4)/months(1)) # 4 ) # a) my_curve<-function(x,a=3){ no_obs<-length(x) loop_vect<-1:no_obs y<-rep(0,no_obs) for(i in loop_vect){ if(x[i]<=-2){ # fall 1: x<=-2 y[i]<-4 }else if(-2<x[i]&x[i]<1){ # fall 2: -2<x<1 y[i]<-x[i]^2 }else{ # fall 3: 1<=x y[i]<-6-a*x[i] } } return(y) } my_curve(x = c(-10,-20,-2,-1.5)) my_curve(x = c(-2,0,0.99,1)) my_curve(x = c(-1,0,1,2,4.5),a = 5) curve(expr = my_curve,from = -3,to = 3) my_curve<-function(x,a=3){ return(ifelse(x<=-2,4,ifelse(-2<x&x<1,x^2,(6-a*x)))) } my_curve(x = c(-10,-20,-2,-1.5)) my_curve(x = c(-2,0,0.99,1)) my_curve(x = c(-1,0,1,2,4.5),a = 5) curve(expr = my_curve,from = -3,to = 3) # b) my_var<-function(x){ n<-length(x) a<-sum(x)/n val<-sum((x-a)^2)/(n-1) return(val) } my_var(x = 1:100) my_var(x = c(2,4,7,2,2.5,6)) my_var(x = c(-3,4,6,5,-10)) # 5) # a) library(ggplot2) data(iris) ggplot(data = iris,aes(x=Sepal.Length,y=Sepal.Width))+geom_point(aes(color=Species),shape=2) # b) iris$Petal.Length index1<-iris$Species=="versicolor" index2<-iris$Species=="virginica" g<-t.test(x = iris$Petal.Length[index1],y=iris$Petal.Length[index2],alternative = "l",conf.level = 0.9) g t_value<-g$statistic t_value p_value<-g$p.value p_value # c) var_res<-aggregate(x = iris$Sepal.Width,by=list(iris$Species),FUN=median) var_res var_res[order(var_res$x)[1],]
bb8e350e76f6c97bd84eef03ddb1e436a0ba080e
1897ae5489b64fae9aa083d62f51254cfe52d26f
/VII semester/machine-learning/labovi/lv4.R
8514edf90f6989727344d301bc3bddfbc1e0e6f3
[ "Unlicense", "LicenseRef-scancode-proprietary-license" ]
permissive
MasovicHaris/etf-alles
f1bfe40cab2de06a26ceb46bdb5c47de2e6db73e
0ab1ad83d00fafc69b38266edd875bce08c1fc9e
refs/heads/main
2022-01-01T18:22:54.072030
2021-12-22T09:05:05
2021-12-22T09:05:05
138,169,714
9
15
Unlicense
2020-03-29T23:36:50
2018-06-21T12:50:51
C++
UTF-8
R
false
false
1,417
r
lv4.R
library(ISLR) library(dplyr) library(MASS) library(caret) ## Zadatak 1 data("Smarket") data <- Smarket # ispis varijabli names(data) # dimenzija seta dim(data) # deskriptivna statistika summary(data) # korelacije cor(select(data, -Direction)) # podjela seta, test set 2015 godina, trening set sve ostalo training <- data[data$Year != '2005', ] train_ind <- sample(seq_len(nrow(training))) test <- data[data$Year == '2005', ] # LDA na na osnovu Lag1 i Lag2 lda.model <- lda(Direction ~ Lag1 + Lag2, data = data, subset = train_ind) # predikcija lda.pred <- predict(lda.model, test) # lda.pred$class # konfuzion matrix confusionMatrix(lda.pred$class, test$Direction) ## Zadatak 2 # QDA na na osnovu Lag1 i Lag2 qda.model <- qda(Direction ~ Lag1 + Lag2, data = data, subset = train_ind) # predikcija qda.pred <- predict(qda.model, test) # lda.pred$class # konfuzion matrix confusionMatrix(qda.pred$class, test$Direction) ## Zadatak 3 # LDA na na osnovu svih varijalbi lda.model <- lda(Direction ~ ., data = data, subset = train_ind) # predikcija lda.pred <- predict(lda.model, test) # lda.pred$class # konfuzion matrix confusionMatrix(lda.pred$class, test$Direction) # QDA na na osnovu svih varijabli qda.model <- qda(Direction ~ ., data = data, subset = train_ind) # predikcija qda.pred <- predict(qda.model, test) # lda.pred$class # konfuzion matrix confusionMatrix(qda.pred$class, test$Direction)
42480249822817162ec14dd1fec4ecb3033a7c1f
2fdf31dceb15a4932c3775e877b56f76c3aeb87b
/man/queue_endpoint.Rd
0d955c6f44e5a5199ea93f9ca303b607eae5f14f
[ "LicenseRef-scancode-generic-cla", "MIT" ]
permissive
cloudyr/AzureQstor
d135f1cca754157f22227f6f73ac5c6778c7bfa4
218afec46676ce689c72959c174291cff0a84fad
refs/heads/master
2021-05-24T07:45:42.830059
2021-01-12T19:36:42
2021-01-12T19:36:42
253,456,783
0
1
null
null
null
null
UTF-8
R
false
true
1,889
rd
queue_endpoint.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/endpoint.R \name{queue_endpoint} \alias{queue_endpoint} \title{Create a queue endpoint object} \usage{ queue_endpoint( endpoint, key = NULL, token = NULL, sas = NULL, api_version = getOption("azure_storage_api_version") ) } \arguments{ \item{endpoint}{The URL (hostname) for the endpoint, of the form \verb{http[s]://\{account-name\}.queue.\{core-host-name\}}. On the public Azure cloud, endpoints will be of the form \verb{https://\{account-name\}.queue.core.windows.net}.} \item{key}{The access key for the storage account.} \item{token}{An Azure Active Directory (AAD) authentication token. This can be either a string, or an object of class AzureToken created by \link[AzureRMR:reexports]{AzureRMR::get_azure_token}. The latter is the recommended way of doing it, as it allows for automatic refreshing of expired tokens.} \item{sas}{A shared access signature (SAS) for the account.} \item{api_version}{The storage API version to use when interacting with the host. Defaults to \code{"2019-07-07"}.} } \value{ An object of class \code{queue_endpoint}, inheriting from \code{storage_endpoint}. } \description{ Create a queue endpoint object } \details{ This is the queue storage counterpart to the endpoint functions defined in the AzureStor package. } \examples{ \dontrun{ # obtaining an endpoint from the storage account resource object AzureRMR::get_azure_login()$ get_subscription("sub_id")$ get_resource_group("rgname")$ get_storage_account("mystorage")$ get_queue_endpoint() # creating an endpoint standalone queue_endpoint("https://mystorage.queue.core.windows.net/", key="access_key") } } \seealso{ \code{\link[AzureStor:storage_endpoint]{AzureStor::storage_endpoint}}, \code{\link[AzureStor:storage_endpoint]{AzureStor::blob_endpoint}}, \code{\link{storage_queue}} }
eeace51979f602567b5b5e6e7abd808bf015a62a
09fb6336818f768df7b255b58937d51caab7bc7e
/man/getPkmid.Rd
2c058690242430ed3b0f524f2531919f3afc4653
[]
no_license
pb-jlee/R-pbh5
2cad361e8c87c8559704184266a260c62f71a901
6ff481a98bc58ca1b307988a57f4fbbe4bdb492e
refs/heads/master
2020-12-25T11:15:02.247726
2011-10-13T01:53:40
2011-10-13T01:53:40
null
0
0
null
null
null
null
UTF-8
R
false
false
849
rd
getPkmid.Rd
\name{getPkmid} \alias{getPkmid} \title{ Computes the Pkmid Values } \description{ 'getPkmid' computes the Pkmid values, a component of Nignal to Noise Ratio (SNR). A vector of Pkmid values is computed for each alignment in the cmph5 file. } \usage{ getPkmid(cmpH5, idx) } \arguments{ \item{cmpH5}{ An object of class \code{PacBioCmpH5}. } \item{idx}{ The indices of the alignments to retrieve. } } \details{ Pkmid values are calculated from Pulse Sigma and Baseline Sigma values. } \value{ 'getPkmid' returns a list of vectors with numeric values. } \examples{ require(pbh5) cmpH5 <- PacBioCmpH5(system.file("h5_files", "aligned_reads.cmp.h5", package = "pbh5")) pkmid <- getPkmid(cmpH5, idx = 1:10) boxplot(pkmid, main = "Distribution of Pkmid values for the first ten alignments") } \keyword{datasets}
d48a3043e46e3cf74a84d21833bbf61dda230662
69a62f8dab62e35a0fcb2f23bfd35bc4f401324f
/man/select_groups.Rd
b7fa651316da6eb410cc72b01ee93e69ba167ebe
[ "LicenseRef-scancode-warranty-disclaimer" ]
no_license
kleinschmidt/daver
d86f880374094bcfe96ea7683a04e85c96ae30e1
501c8dfbf77af49ff512beae7d09e582dd8adc94
refs/heads/master
2021-01-19T04:37:35.600284
2018-03-28T19:32:21
2018-03-28T19:32:21
46,999,898
2
0
null
null
null
null
UTF-8
R
false
true
357
rd
select_groups.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{select_groups} \alias{select_groups} \title{Select groups of grouped tbl} \usage{ select_groups(data, groups) } \arguments{ \item{data}{Grouped data_frame.} \item{groups}{Group numbers to select} } \description{ Useful for examining or testing one example group }
8a9585b4bea1c07caf0f0c209ecb84d6b3008c0c
95c1c71916337e940f4520f9824b18e5a9499fdd
/DAAG/data/mignonette.R
253ec1cca8f55208c770c9cafcfb2a67390b527a
[]
no_license
VladSerhiienko/MachineLearningLabworks
96c488efa2c1c3bc7725aa2f0056ffe44047b307
32ddedf45e9bb29c01156253d88f8e57e432182a
refs/heads/master
2020-05-29T21:50:25.888848
2014-12-17T20:09:38
2014-12-17T20:09:38
28,153,442
0
1
null
null
null
null
UTF-8
R
false
false
572
r
mignonette.R
"mignonette" <- structure(list(cross = c(21, 14.25, 19.125, 7, 15.125, 20.5, 17.375, 23.875, 17.125, 20.75, 16.125, 17.75, 16.25, 10, 10, 22.125, 19, 18.875, 16.5, 19.25, 25.25, 22, 8.75, 14.25), self = c(12.875, 16, 11.875, 15.25, 19.125, 12.5, 16.25, 16.25, 13.375, 13.625, 14.5, 19.5, 20.875, 7.875, 17.75, 9, 11.5, 11, 16, 16.375, 14.75, 16, 14.375, 14.25)), .Names = c("cross", "self"), row.names = c("1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24" ), class = "data.frame")
76c880bbe68917ebdbf4613b1f29fc4005512bc7
b1467d59c6171a09fa4fe55e740c0383bf5ea904
/man/dis.Rd
9152520221d5c895cdd60fb0c4eae2e594874320
[]
no_license
cran/qgen
458812019cfa3afc8f46bf58676064c6f0908d90
2a6f207bd97a0458447b33752a1c35b84416e015
refs/heads/master
2021-01-18T15:08:55.644673
2007-01-24T00:00:00
2007-01-24T00:00:00
17,719,289
1
0
null
null
null
null
UTF-8
R
false
false
592
rd
dis.Rd
\name{dis} \alias{dis} \title{ Bootstrap confidence intervals } \description{ Calculates different bootstrap confidence intervals. } \usage{ dis(path="~/qgen/", alpha=0.05) } \arguments{ \item{path}{path searched for \code{stat}X\code{.rda}-files.} \item{alpha}{number indicating the two sided error probability} } \details{ Depending on the available levels of resampling, percentile , basic (for simple resampling) and studentized (for nested resampling) confidence intervals are calculated } \value{ the confidence intervals are printed } \examples{ ### dis() } \keyword{file}
6492b486741f1aa2ff30cf6791aa3dcdc928c83c
a66434dda737b754fc8597c4bc7c6bdeb0e0a962
/Basics/Intro to package/moving-average.R
4cb3938c34dd975f8438f16e82f37023b1e19225
[]
no_license
lazy-mind/Time-Series-Analysis
05e5f208c080517c7b5809213ebc4f7a274b5dab
ad0b14cd6020b9f023e6b7cf86670f796eb055ab
refs/heads/master
2020-08-06T18:14:57.706534
2019-10-06T23:11:39
2019-10-06T23:11:39
213,103,552
0
0
null
null
null
null
UTF-8
R
false
false
586
r
moving-average.R
# Announcement of the company may have impact that last 2 days # moving average of order 2: 2 days back MA(2) noise = rnorm(10000) ma_2 = NULL # get ma2 process for (i in 3:10000) { ma_2[i] = noise[i]+0.7*noise[i-1]+0.2*noise[i-2] } # shift data moving_average_process = ma_2[3:10000] moving_average_process = ts(moving_average_process) par(mfrow=c(2,1)) plot(moving_average_process, main = "order 2", col = "blue") acf(moving_average_process, main="moving_average_process acf") # see that have no auto correlation with t =0 after t =2, which is right because we dont have info
6879efa9a983f59815a53ad5370cc481e3a73508
0e1dd4e156415271dfe8f4dfd20d5b9665e8c977
/man/plot.ccamforecast.Rd
af59c437ea3d2829c8e8aaec0d4158ecb558f007
[]
no_license
elisvb/CCAM
b2a711641b955185851fecc6ca2fde5b24d1b468
1d1cc18416b242437495f9aa11cd1f84cb466783
refs/heads/master
2023-03-16T15:43:06.737809
2023-03-09T19:42:22
2023-03-09T19:42:22
133,826,645
3
1
null
null
null
null
UTF-8
R
false
true
332
rd
plot.ccamforecast.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/methods.R \name{plot.ccamforecast} \alias{plot.ccamforecast} \title{Plot ccamforecast object} \usage{ \method{plot}{ccamforecast}(x, ...) } \arguments{ \item{x}{...} \item{...}{extra arguments} } \description{ Plot ccamforecast object } \details{ ... }
683aae559e01d0cb48c83e05eb54b0052b60dba6
a693da8676743148657e3ddb7dbfdc47c50d53a1
/man/geoconvert.2.Rd
b195e798a8ff12d5a8c3bf66582ec105a209c6c5
[]
no_license
Hafro/geo
4de0f08370973b75d8d46003fb8e9a9d536beaff
6deda168a3c3b2b5ed1237c9d3b2f8b79a3e4059
refs/heads/master
2022-11-23T15:06:47.987614
2022-11-16T22:26:55
2022-11-16T22:26:55
38,042,352
3
6
null
2022-11-16T22:26:56
2015-06-25T10:09:50
R
UTF-8
R
false
true
611
rd
geoconvert.2.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/geoconvert.2.R \name{geoconvert.2} \alias{geoconvert.2} \title{Convert from decimal degrees} \usage{ geoconvert.2(lat) } \arguments{ \item{lat}{Vector of latitude or longitudes} } \value{ Returns a vector of six digit values with degrees, minutes and fractions of minutes, with two decimal values, concatenated. } \description{ Convert from decimal degrees to degrees, minutes and fractional minutes representation (DDMMmm) of lat or lon. } \seealso{ Called by \code{\link{geoconvert}}, when \code{inverse = TRUE}. } \keyword{manip}
c64e32fb58b38d31723efb75cfd425e5955ca435
fc409801ba3a5c1ba885820257302b2ee8d251fa
/R/compareModels.PopQuants.R
cdd906a5da6e457e0070a3fe727f5707839db427
[ "MIT" ]
permissive
wStockhausen/rTCSAM02
092557d6cb29179a2637db94a62b9c0ce37cdbbb
44039e8366db3e7fb35edfd4219b311b36fd2ae9
refs/heads/master
2023-07-09T07:17:24.410585
2023-06-22T21:29:08
2023-06-22T21:29:08
69,492,060
0
0
null
null
null
null
UTF-8
R
false
false
6,393
r
compareModels.PopQuants.R
#' #'@title Compare population quantities from TCSAM2015 and rsimTCSAM model runs. #' #'@description Function to compare population quantities from TCSAM2015 and rsimTCSAM model runs. #' #'@param tcsams - single TCSAM2015 model report object, or named list of such #'@param rsims - single rsimTCSAM results object, or named list of such #'@param showPlot - flag to show/print plots immediately #'@param pdf - name of pdf file to record plot output to #'@param width - pdf page width (in inches) #'@param height - pdf page width (in inches) #'@param verbose - flag (T/F) to print debug info #' #'@return list of ggplot2 objects #' #'@details none. #' #'@export #' compareModels.PopQuants<-function(tcsams=NULL, rsims=NULL, showPlot=TRUE, pdf=NULL, width=8, height=6, verbose=FALSE){ #set up pdf device, if requested if (!is.null(pdf)){ pdf(file=pdf,width=width,height=height); on.exit(grDevices::dev.off()) } if (inherits(tcsams,'tcsam2015.rep')){ tcsams<-list(tcsam=tcsams);#wrap in list } if (inherits(rsims,'rsimTCSAM')){ rsims<-list(rsim=rsims);#wrap in list } plots<-list(); #abundance trends if (verbose) cat("Plotting population abundance trends\n"); mdfr<-getMDFR('mr/P_list/N_yxmsz',tcsams,rsims); dfr<-reshape2::dcast(mdfr,modeltype+model+y+x+m+s~.,fun.aggregate=sum,value.var='val'); p1<-wtsPlots::plotMDFR.XY( dfr,x='y',value.var='.',faceting='x~m', plotABline=TRUE,plotPoints=FALSE, xlab='year',ylab='Abundance (millions)',units="", linetype='s',guideTitleLineType='', colour='model',guideTitleColour=''); if (showPlot||!is.null(pdf)) print(p1); p2<-wtsPlots::plotMDFR.XY( dfr[dfr$y>=1980,],x='y',value.var='.',faceting='x~m', plotABline=TRUE,plotPoints=FALSE, xlab='year',ylab='Abundance (millions)',units="", linetype='s',guideTitleLineType='', colour='model',guideTitleColour=''); if (showPlot||!is.null(pdf)) print(p2); plots$N_yxms<-list(p1,p2); #biomass trends if (verbose) cat("Plotting population biomass trends\n"); mdfr<-getMDFR('mr/P_list/B_yxms',tcsams,rsims); p1<-wtsPlots::plotMDFR.XY( mdfr,x='y',value.var='val',faceting='x~m', plotABline=TRUE,plotPoints=FALSE, xlab='year',ylab='Biomass (1000s t)',units="", linetype='s',guideTitleLineType='', colour='model',guideTitleColour=''); if (showPlot||!is.null(pdf)) print(p1); p2<-wtsPlots::plotMDFR.XY( mdfr[mdfr$y>=1980,],x='y',value.var='val',faceting='x~m', plotABline=TRUE,plotPoints=FALSE, xlab='year',ylab='Biomass (1000s t)',units="", linetype='s',guideTitleLineType='', colour='model',guideTitleColour=''); if (showPlot||!is.null(pdf)) print(p2); plots$B_yxms<-list(p1,p2); #mature biomass at mating trends if (verbose) cat("Plotting population mature biomass-at-mating trends\n"); mdfr<-getMDFR('mr/P_list/MB_yx',tcsams,rsims); p1<-wtsPlots::plotMDFR.XY( mdfr,x='y',value.var='val',faceting='x~.', plotABline=TRUE,plotPoints=FALSE, xlab='year',ylab='Mating Biomass (1000s t)',units="", colour='model',guideTitleColour=''); if (showPlot||!is.null(pdf)) print(p1); p2<-wtsPlots::plotMDFR.XY( mdfr[mdfr$y>=1980,],x='y',value.var='val',faceting='x~.', plotABline=TRUE,plotPoints=FALSE, xlab='year',ylab='Mating Biomass (1000s t)',units="", colour='model',guideTitleColour=''); if (showPlot||!is.null(pdf)) print(p2); plots$MB_yx<-list(p1,p2); #recruitment if (verbose) cat("Plotting recruitment time series\n"); path<-'mp/R_list/R_y'; mdfr<-getMDFR(path,tcsams,rsims); p<-wtsPlots::plotMDFR.XY( mdfr,x='y',agg.formula=NULL,faceting=NULL, xlab='year',ylab='Recruitment',units='millions',lnscale=FALSE, colour='model',guideTitleColor='', shape='model',guideTitleShape=''); if (showPlot||!is.null(pdf)) print(p); plots$R_y<-p; p<-wtsPlots::plotMDFR.XY( mdfr,x='y',agg.formula=NULL,faceting=NULL, xlab='year',ylab='Recruitment',units='millions',lnscale=TRUE, colour='model',guideTitleColor='', shape='model',guideTitleShape=''); if (showPlot||!is.null(pdf)) print(p); plots$lnR_y<-p; #Population abundance-at-size if (verbose) cat("Plotting poulation abundance-at-size\n"); path<-'mr/P_list/N_yxmsz'; mdfr<-getMDFR(path,tcsams,rsims); mdfr<-removeImmOS(mdfr); p<-wtsPlots::plotMDFR.Bubbles( mdfr,x='y',y='z', agg.formula='model+y+x+z',faceting='model~x', xlab='year',ylab='size (mm CW)',units="millions", colour='.',guideTitleColour='',useColourGradient=TRUE,alpha=0.5); if (showPlot||!is.null(pdf)) print(p); plots$N_yxmsz<-p; #Population abundance-at-size (bubble plots) if (verbose) cat("Plotting poulation abundance-at-size (bubble plots)\n"); path<-'mr/P_list/N_yxmsz'; mdfr<-getMDFR(path,tcsams,rsims); mdfr<-removeImmOS(mdfr); p<-wtsPlots::plotMDFR.Bubbles( mdfr,x='y',y='z', agg.formula='model+y+x+z',faceting='model~x', xlab='year',ylab='size (mm CW)',units="millions", colour='.',guideTitleColour='',useColourGradient=TRUE,alpha=0.5); if (showPlot||!is.null(pdf)) print(p); plots$N_yxmsz<-p; #Population abundance-at-size (line plots) cat("TODO: In compareModels.PopQuants(...), implement plots for population abundance-at-size as line plots.\n"); #p<-compareModels.SizeComps(mdfr); return(invisible(plots)) }
5325471cc40e892aa474363c542211b9bd53753a
0bebbba10f446ec5be7a378937be76c5e7610ab1
/missing.R
f9d0beb263ef67cab8fa5237a9c4e2d98991fb62
[]
no_license
songxh0424/bankruptcy
c3920ca513fce346bb7a3cca35aa3a35fc0293e8
004aad6aefb8a3c706db2f2cb180e6e013587f52
refs/heads/master
2021-08-24T02:29:49.794192
2017-12-07T17:17:04
2017-12-07T17:17:04
113,479,011
1
0
null
null
null
null
UTF-8
R
false
false
1,712
r
missing.R
setwd("/Users/Carl/Google Drive/2017 winter/503/project") library(foreign) # read.arff library(tidyr) library(dplyr) library(ggplot2) library(gridExtra) library(MASS) library(class) library(randomForest) library(mice) # multiple imputation library(missForest) # impute with RF library(adabag) # boosting library(caret) # train models library(doMC) # parallel library(knitr) library(sparsediscrim) load("project.RData") bank = read.arff("bank/5year.arff") # remove Attr37, 43% NA bank = bank[, -37] summary(bank) colSums(is.na(bank)) / 5910 # multiple imputation bank_imputed = mice(bank[, -64], method = "pmm", seed = 1234) # randomForest imputation bank_imputed2 = missForest(bank[, -64]) # orginal data with na imputed dat = bank_imputed2$ximp dat$class = bank$class dat = mutate(dat, class = factor(ifelse(class == 1, "Yes", "No"), levels = c("Yes", "No"))) set.seed(1234) ratio = 0.7 index = sample(1:nrow(dat), floor(ratio * nrow(dat))) train = dat[index, ] test = dat[-index, ] # standardized dat.std = dat dat.std[, -64] = scale(dat[, -64]) train.std = dat.std[index, ] test.std = dat.std[-index, ] # with number of na as a predictor dat.na = dat dat.na$numNA = rowSums(is.na(bank)) train.na = dat.na[index, ] test.na = dat.na[-index, ] # with the first 20 PCs pcacor = princomp(train[, -64], cor = TRUE) train.pca = as.data.frame(pcacor$scores[,1:20]) train.pca$class = train$class names(train.pca)[1:20] = paste("Comp.", 1:20, sep = "") test.pca = as.data.frame(as.matrix(test[,-64] - outer(rep(1,nrow(test)),colMeans(train[,-64]))) %*% as.matrix(pcacor$loadings[,1:20])) test.pca$class = test$class names(test.pca)[1:20] = paste("Comp.", 1:20, sep = "") summary(train$class) summary(test$class)
13efbb1a30caa07a76a43098e6420f8b4be81fdf
e9b555e22cf3f49cd5a3f7f115e4afe10173985d
/code/metrics-paper.R
0ab3368228a3326320975630497ebd4e36fba5d3
[]
no_license
niladrir/metrics-paper
28af7592ade1c991d07f57d416e8e9bf58edc7c0
3889ce9e0468c8d9dc2f8f9d069612d1e20c1a19
refs/heads/master
2021-01-23T13:29:15.772053
2017-04-24T03:47:12
2017-04-24T03:47:12
9,685,813
0
0
null
null
null
null
UTF-8
R
false
false
70,767
r
metrics-paper.R
library(nullabor) library(ggplot2) library(plyr) library(reshape) library(fpc) library(tourr) ##====================================Distance Metrics=========================================== ## Distance based on Boxplots with indexing box_dist_indx <- function(i, j){ X <- lineup.dat[lineup.dat$.sample == i, ] PX <- lineup.dat[lineup.dat$.sample == j, ] X.sum <- ddply(X, .(group), summarize, sum.stat = quantile(val, c(0.25, 0.5, 0.75))) PX.sum <- ddply(PX, .(group), summarize, sum.stat = quantile(val, c(0.25, 0.5, 0.75))) abs.diff.X <- abs(X.sum$sum.stat[X.sum$group == levels(X.sum$group)[1]] - X.sum$sum.stat[X.sum$group == levels(X.sum$group)[2]]) abs.diff.PX <- abs(PX.sum$sum.stat[PX.sum$group == levels(PX.sum$group)[1]] - PX.sum$sum.stat[PX.sum$group == levels(PX.sum$group)[2]]) sqrt(sum((abs.diff.X - abs.diff.PX)^2)) } ## Distance based on Boxplots: No indexing box_dist <- function(X, PX){ X.sum <- ddply(X, .(group), summarize, sum.stat = quantile(val, c(0.25, 0.5, 0.75))) PX.sum <- ddply(PX, .(group), summarize, sum.stat = quantile(val, c(0.25, 0.5, 0.75))) abs.diff.X <- abs(X.sum$sum.stat[X.sum$group == levels(X.sum$group)[1]] - X.sum$sum.stat[X.sum$group == levels(X.sum$group)[2]]) abs.diff.PX <- abs(PX.sum$sum.stat[PX.sum$group == levels(PX.sum$group)[1]] - PX.sum$sum.stat[PX.sum$group == levels(PX.sum$group)[2]]) sqrt(sum((abs.diff.X - abs.diff.PX)^2)) } ### Regression based distance with indexing reg_bin_indx <- function(i, j, nbins = 1){ X <- lineup.dat[lineup.dat$.sample == i, ] PX <- lineup.dat[lineup.dat$.sample == j, ] ss <- seq(min(X[,1]), max(X[,1]), length = nbins + 1) beta.X <- NULL ; beta.PX <- NULL for(k in 1:nbins){ X.sub <- subset(X, X[,1] >= ss[k] & X[,1] <= ss[k + 1]) PX.sub <- subset(PX, X[,1] >= ss[k] & X[,1] <= ss[k + 1]) b.X <- as.numeric(coef(lm(X.sub[,2] ~ X.sub[,1]))) b.PX <- as.numeric(coef(lm(PX.sub[,2] ~ PX.sub[,1]))) beta.X <- rbind(beta.X, b.X) beta.PX <- rbind(beta.PX, b.PX) } beta.X <- subset(beta.X, !is.na(beta.X[,2])) beta.PX <- subset(beta.PX, !is.na(beta.PX[,2])) sum((beta.X[,1] - beta.PX[,1])^2 + (beta.X[,2] - beta.PX[,2])^2) } ### Regression based distance: No indexing reg_bin <- function(X, PX, nbins = 1){ # X <- lineup.dat[lineup.dat$.sample == i, ] # PX <- lineup.dat[lineup.dat$.sample == j, ] ss <- seq(min(X[,1]), max(X[,1]), length = nbins + 1) beta.X <- NULL ; beta.PX <- NULL for(k in 1:nbins){ X.sub <- subset(X, X[,1] >= ss[k] & X[,1] <= ss[k + 1]) PX.sub <- subset(PX, X[,1] >= ss[k] & X[,1] <= ss[k + 1]) b.X <- as.numeric(coef(lm(X.sub[,2] ~ X.sub[,1]))) b.PX <- as.numeric(coef(lm(PX.sub[,2] ~ PX.sub[,1]))) beta.X <- rbind(beta.X, b.X) beta.PX <- rbind(beta.PX, b.PX) } beta.X <- subset(beta.X, !is.na(beta.X[,2])) beta.PX <- subset(beta.PX, !is.na(beta.PX[,2])) sum((beta.X[,1] - beta.PX[,1])^2 + (beta.X[,2] - beta.PX[,2])^2) } ### Distance for Univariate Data dist_uni_indx <- function(i, j){ xx <- lineup.dat[lineup.dat$.sample == i, 1] yy <- lineup.dat[lineup.dat$.sample == j, 1] stat.xx <- c(mean(xx), sd(xx), moments::skewness(xx), moments::kurtosis(xx)) stat.yy <- c(mean(yy), sd(yy), moments::skewness(yy), moments::kurtosis(yy)) sqrt(sum((stat.xx - stat.yy)^2)) } ####Modified Binned Distance with indexing bdist_mod_indx <- function(i,j, nbin.X = 5, nbin.Y = 5) { X <- lineup.dat[lineup.dat$.sample == i,] PX <- lineup.dat[lineup.dat$.sample == j,] if(!is.numeric(X[,1])){ X[,1] <- as.numeric(X[,1]) nij <- as.numeric(table(cut(X[,1], breaks=seq(min(X[,1]), max(X[,1]),length.out = length(unique(X[,1])) + 1), include.lowest = TRUE),cut(X[,2], breaks=seq(min(lineup.dat[,2]), max(lineup.dat[,2]),length.out = nbin.Y + 1), include.lowest = TRUE))) }else nij <- as.numeric(table(cut(X[,1], breaks=seq(min(lineup.dat[,1]), max(lineup.dat[,1]),length.out = nbin.X + 1), include.lowest = TRUE),cut(X[,2], breaks=seq(min(lineup.dat[,2]), max(lineup.dat[,2]),length.out = nbin.Y + 1), include.lowest = TRUE))) if(!is.numeric(PX[,1])){ PX[,1] <- as.numeric(PX[,1]) mij <- as.numeric(table(cut(PX[,1], breaks=seq(min(X[,1]), max(X[,1]),length.out = length(unique(X[,1])) + 1), include.lowest = TRUE),cut(PX[,2], breaks=seq(min(lineup.dat[,2]), max(lineup.dat[,2]),length.out = nbin.Y + 1), include.lowest = TRUE))) }else mij <- as.numeric(table(cut(PX[,1], breaks=seq(min(lineup.dat[,1]), max(lineup.dat[,1]),length.out = nbin.X + 1), include.lowest = TRUE),cut(PX[,2], breaks=seq(min(lineup.dat[,2]), max(lineup.dat[,2]),length.out = nbin.Y + 1), include.lowest = TRUE))) sqrt(sum((nij-mij)^2)) } ####Modified Binned Distance: No indexing # # misses parameter lineup.dat - use package nullabor # bin_dist <- function(X,PX, nbin.X = 5, nbin.Y = 5) { # if(!is.numeric(X[,1])){ # X[,1] <- as.numeric(X[,1]) # nij <- as.numeric(table(cut(X[,1], breaks=seq(min(X[,1]), max(X[,1]),length.out = length(unique(X[,1])) + 1), include.lowest = TRUE),cut(X[,2], breaks=seq(min(lineup.dat[,2]), max(lineup.dat[,2]),length.out = nbin.Y + 1), include.lowest = TRUE))) # }else # nij <- as.numeric(table(cut(X[,1], breaks=seq(min(lineup.dat[,1]), max(lineup.dat[,1]),length.out = nbin.X + 1), include.lowest = TRUE),cut(X[,2], breaks=seq(min(lineup.dat[,2]), max(lineup.dat[,2]),length.out = nbin.Y + 1), include.lowest = TRUE))) # if(!is.numeric(PX[,1])){ # PX[,1] <- as.numeric(PX[,1]) # mij <- as.numeric(table(cut(PX[,1], breaks=seq(min(X[,1]), max(X[,1]),length.out = length(unique(X[,1])) + 1), include.lowest = TRUE),cut(PX[,2], breaks=seq(min(lineup.dat[,2]), max(lineup.dat[,2]),length.out = nbin.Y + 1), include.lowest = TRUE))) # }else # mij <- as.numeric(table(cut(PX[,1], breaks=seq(min(lineup.dat[,1]), max(lineup.dat[,1]),length.out = nbin.X + 1), include.lowest = TRUE),cut(PX[,2], breaks=seq(min(lineup.dat[,2]), max(lineup.dat[,2]),length.out = nbin.Y + 1), include.lowest = TRUE))) # sqrt(sum((nij-mij)^2)) # } ##Weighted Bin Distance with indexing wbdist_indx <- function(i,j, nbins=10) { X <- lineup.dat[lineup.dat$.sample == i,] PX <- lineup.dat[lineup.dat$.sample == j,] d1 <- MASS::kde2d(X[,1],X[,2],n=nbins,lims=c(range(X[,1]), range(X[,2]))) d2 <- MASS::kde2d(PX[,1],PX[,2],n=nbins,lims=c(range(PX[,1]), range(PX[,2]))) sqrt(sum((d1$z-d2$z)^2)/(sum(d1$z^2) * sum(d2$z^2))) } ## Distances based on separation: No Indexing min_sep_dist <- function(X, PX, clustering = FALSE, nclust = 3){ require(fpc) dX <- dist(X[,1:2]) dPX <- dist(PX[,1:2]) if(clustering){ X$cl <- X[,3] PX$cl <- PX[,3] X.clus <- sort(cluster.stats(dX, clustering = X$cl)$separation) PX.clus <- sort(cluster.stats(dPX, clustering = X$cl)$separation) } else{ complete.X <- cutree(hclust(dX), nclust) complete.PX <- cutree(hclust(dPX), nclust) X.clus <- sort(cluster.stats(dX, complete.X)$separation) PX.clus <- sort(cluster.stats(dPX, complete.PX)$separation) } sqrt(sum((X.clus - PX.clus)^2)) } ## Distances based on separation with indexing min_sep_dist_indx <- function(i, j, clustering = FALSE, nclust = 3){ X <- lineup.dat[lineup.dat$.sample == i,] PX <- lineup.dat[lineup.dat$.sample == j,] require(fpc) dX <- dist(X[,1:2]) dPX <- dist(PX[,1:2]) if(clustering){ X$cl <- X[,3] PX$cl <- PX[,3] X.clus <- sort(cluster.stats(dX, clustering = X$cl)$separation) PX.clus <- sort(cluster.stats(dPX, clustering = X$cl)$separation) } else{ complete.X <- cutree(hclust(dX), nclust) complete.PX <- cutree(hclust(dPX), nclust) X.clus <- sort(cluster.stats(dX, complete.X)$separation) PX.clus <- sort(cluster.stats(dPX, complete.PX)$separation) } sqrt(sum((X.clus - PX.clus)^2)) } ### Distances based on average separation ave_sep_dist <- function(X, PX, clustering = FALSE, nclust = 3) { dX <- dist(X[, 1:2]) dPX <- dist(PX[, 1:2]) if (clustering) { X$cl <- X[, 3] PX$cl <- PX[, 3] X.clus <- sort(cluster.stats(dX, clustering = X$cl)$average.toother) PX.clus <- sort(cluster.stats(dPX, clustering = PX$cl)$average.toother) } else { complete.X <- cutree(hclust(dX), nclust) complete.PX <- cutree(hclust(dPX), nclust) X.clus <- sort(cluster.stats(dX, complete.X)$average.toother) PX.clus <- sort(cluster.stats(dPX, complete.PX)$average.toother) } sqrt(sum((X.clus - PX.clus)^2)) } ### Distances based on average separation with indexing ave_sep_dist_indx <- function(i, j, clustering = FALSE, nclust = 3){ X <- lineup.dat[lineup.dat$.sample == i,] PX <- lineup.dat[lineup.dat$.sample == j,] dX <- dist(X[,1:2]) dPX <- dist(PX[,1:2]) if(clustering){ X$cl <- X[,3] PX$cl <- PX[,3] X.clus <- sort(cluster.stats(dX, clustering = X$cl)$average.toother) PX.clus <- sort(cluster.stats(dPX, clustering = PX$cl)$average.toother) } else{ complete.X <- cutree(hclust(dX), nclust) complete.PX <- cutree(hclust(dPX), nclust) X.clus <- sort(cluster.stats(dX, complete.X)$average.toother) PX.clus <- sort(cluster.stats(dPX, complete.PX)$average.toother) } sqrt(sum((X.clus - PX.clus)^2)) } ### hausdorff Distance ##====================================Application to the Turk Experiment===================================================== pos.1 <- 1:20 pos.2 <- 1:20 dat.pos <- expand.grid(pos.1 = pos.1, pos.2 = pos.2) ###====================================Turk 1 Experiment=============================================================== files <- dir("/Users/Niladri/Documents/Research/Permutation/paper-metrics-data-code/Mahbub's data/exp1") results <- NULL for(k in files){ ### Reading the lineup data dat <- read.table(paste("/Users/Niladri/Documents/Research/Permutation/paper-metrics-data-code/Mahbub's data/exp1/",k, sep = ""), header = T) #dat <- read.table(paste("U:/Documents/Research/Permutation/exp1/",i, sep = ""), header = T) ### Melting the data dat.m <- melt(dat, id = c("age", "grp", "weight")) ### Changing the categorical variable to a numerical variable dat.m$x <- as.numeric(dat.m$grp) ### Breaking the variable name to get the position and type of plot (null or obs) dat.m$plot <- substring(dat.m$variable, 1, 3) dat.m$position <- substring(dat.m$variable, 4, 5) ### Finding the observed data obs <- dat.m[dat.m$plot == "obs", c("x", "value") ] ### Storing the pic name file.name <- k split.file.name <- unlist(strsplit(file.name,"\\.")) split.2 <- unlist(strsplit(split.file.name[1],"\\_")) pic_name <- paste("plot_", split.2[2],"_", split.2[3], "_", split.2[4], "_", split.2[5], "_", split.2[6], ".png", sep = "" ) ### Calculating the distance metrics on the lineups. Only binned, weighted bin, canberra distance ### and hausdorff are calculated. dat.m <- dat.m[, c("x", "value", "position")] names(dat.m) <- c("group", "val", ".sample") lineup.dat <- dat.m lineup.dat$group <- as.factor(lineup.dat$group) stat <- ddply(dat.pos,.(pos.1, pos.2),summarize,box.dist = box_dist_indx(pos.1, pos.2), bin.dist = bdist_mod_indx(pos.1, pos.2, nbin.X = 8, nbin.Y = 8) ) res <- data.frame(pic_name, stat) results <- rbind(results, res) } lineup.dat$.sample <- as.numeric(lineup.dat$.sample) #write.table(results, "turk1-metrics.txt", row.names = F) #results <- read.table("turk1-metrics.txt", header = T) qplot(factor(group), val, data = lineup.dat, geom = "boxplot", col = group, ylab = "", xlab = "group") + facet_wrap(~.sample) #ggsave("turk1-diff-box-prop.pdf", height = 5, width = 5.5) res.exp1 <- read.csv("/Users/Niladri/Documents/Research/Permutation/paper-metrics-data-code/Mahbub's data/raw_data_turk1.csv") res.exp1 <- subset(res.exp1, select = c(pic_name, response, plot_location, time_taken)) res.dat <- ddply(res.exp1, .(pic_name), summarize, prop = sum(response)/length(response), pos = mean(plot_location), m.time = median(time_taken)) metrics.sub <- subset(results, pos.1 != pos.2) dat.merge <- merge(metrics.sub, res.dat, by = "pic_name") dat.merge <- subset(dat.merge, pos.2 != pos) dd <- ddply(dat.merge, .(pic_name, pos.1), summarize, box.mean = mean(box.dist), bin.mean = mean(bin.dist), len = length(box.dist), prop = mean(prop), m.time = mean(m.time)) prop.dist <- ddply(dd, .(pic_name), summarize, diff.box = box.mean[len == 19] - max(box.mean[len == 18]), grtr.box = sum(box.mean[len == 18] > box.mean[len == 19]) , diff.bin = bin.mean[len == 19] - max(bin.mean[len == 18]), grtr.bin = sum(bin.mean[len == 18] > bin.mean[len == 19]) , prop = mean(prop), m.time = mean(m.time)) prop.dist$special <- ifelse(prop.dist$pic_name == "plot_turk1_100_8_12_2.png", 1, 0) ### Faceting prop.diff <- subset(prop.dist, select = c(pic_name, diff.box, diff.bin, prop, m.time, special)) prop.diff.m <- melt(prop.diff, id = c("pic_name", "prop", "special", "m.time")) levels(prop.diff.m$variable) <- c("Boxplot Based Distance", "Binned Distance") qplot(value, prop, data = prop.diff.m, geom = "point", size = I(3), ylim = c(0, 1), xlab = "Difference", ylab = "Detection Rate", shape = factor(special)) + geom_smooth(se = FALSE) + facet_wrap( ~ variable, scales = "free_x") + geom_vline(xintercept = 0, col = "red") + theme(legend.position = "none") ggsave("turk1-prop-box-bin.pdf", height = 4, width = 8.5) qplot(value, m.time, data = prop.diff.m, geom = "point", size = I(3), xlab = "Difference", ylab = "Mean Time to Respond", shape = factor(special)) + facet_wrap( ~ variable, scales = "free_x") + geom_vline(xintercept = 0, col = "red") + theme(legend.position = "none") ggsave("turk1-mtime-box-bin.pdf", height = 4, width = 8.5) grtr.diff <- subset(prop.dist, select = c(pic_name, grtr.box, grtr.bin, prop, special)) grtr.diff.m <- melt(grtr.diff, id = c("pic_name", "prop", "special")) levels(grtr.diff.m$variable) <- c("Boxplot Based Distance", "Binned Distance") qplot(value, prop, data = grtr.diff.m, geom = "point", size = I(3), ylim = c(0, 1), xlab = "Greater than Observed Plot", ylab = "Detection Rate", shape = factor(special)) + facet_wrap( ~ variable) + theme(legend.position = "none") ggsave("turk1-grtr-box-bin.pdf", height = 4, width = 8.5) ### Individual Plots qplot(diff.box, prop, data = prop.dist, ylim = c(0, 1), size = I(3), xlab = "Difference", ylab = "Detection Rate", shape = factor(special)) + geom_smooth( se = FALSE) + geom_vline(xintercept = 0, col = "red") + theme(legend.position = "none") ggsave("turk1-diff-box-prop.pdf", height = 5, width = 5.5) qplot(factor(grtr.box), prop, data = prop.dist, ylim = c(0, 1), size = I(3), alpha = I(0.6), xlab = "Greater than observed plot", ylab = "Detection Rate", shape = factor(special)) + theme(legend.position = "none") ggsave("turk1-grtr-box-prop.pdf", height = 5, width = 5.5) qplot(diff.bin, prop, data = prop.dist, ylim = c(0, 1), size = I(3), xlab = "Difference", ylab = "Detection Rate", shape = factor(special)) + theme(legend.position = "none") + geom_smooth( se = FALSE) + geom_vline(xintercept = 0, col = "red") ggsave("turk1-diff-bin-prop-8.pdf", height = 5, width = 5.5) qplot(factor(grtr.bin), prop, data = prop.dist, ylim = c(0, 1), size = I(3), alpha = I(0.6), xlab = "greater than observed plot", ylab = "Detection Rate", shape = factor(special)) + theme(legend.position = "none") ggsave("turk1-grtr-bin-prop-8.pdf", height = 5, width = 5.5) qplot(diff.box, m.time, data = prop.dist, size = I(3), xlab = "difference", ylab = "median time to respond") + geom_smooth(method = "lm", se = FALSE) + geom_vline(xintercept = 0, col = "red") ggsave("turk1-diff-box-mtime.pdf", height = 5, width = 5.5) qplot(diff.bin, m.time, data = prop.dist, size = I(3), xlab = "difference", ylab = "median time to respond") + geom_smooth(method = "lm", se = FALSE) + geom_vline(xintercept = 0, col = "red") ggsave("turk1-diff-bin-mtime.pdf", height = 5, width = 5.5) ###============================================================================ ###Turk 2 Experiment ###============================================================================ files.png <- dir("/Users/Niladri/Documents/Research/Permutation/paper-metrics-data-code/Mahbub's data/exp2","*.png") files.txt <- dir("/Users/Niladri/Documents/Research/Permutation/paper-metrics-data-code/Mahbub's data/exp2","*.txt") metrics <- NULL for(i in 1:length(files.txt)){ dat <- read.table(paste("/Users/Niladri/Documents/Research/Permutation/paper-metrics-data-code/Mahbub's data/exp2/",files.txt[i], sep = ""), header = T) dat.m <- melt(dat, id = "X") dat.m$.sample <- substring(dat.m$variable, 2) lineup.dat <- data.frame(x = dat.m$X, z = dat.m$value, .sample = dat.m$.sample) metrics.dat <- ddply(dat.pos, .(pos.1, pos.2), summarize, reg.bin = reg_bin_indx(pos.1, pos.2), bin.dist = bdist_mod_indx(pos.1, pos.2, nbin.X = 2, nbin.Y = 2), reg.no.int = reg_no_int_indx(pos.1, pos.2)) metrics.dat <- data.frame(metrics.dat, pic_name = files.png[i]) metrics <- rbind(metrics, metrics.dat) } #write.table(metrics, "turk2-metrics.txt", row.names = F) #lineup.dat$.sample <- as.numeric(lineup.dat$.sample) #qplot(x,z, data = lineup.dat, geom = "point", alpha = I(0.5), xlab = "X", ylab = "Y") + geom_smooth(method = "lm", se = FALSE) + facet_wrap(~.sample) res.exp2 <- read.csv("/Users/Niladri/Documents/Research/Permutation/paper-metrics-data-code/Mahbub's data/raw_data_turk2.csv") res.exp2 <- subset(res.exp2, select = c(pic_name, response, plot_location, time_taken)) res.dat <- ddply(res.exp2, .(pic_name), summarize, prop = sum(response)/length(response), pos = mean(plot_location), m.time = median(time_taken)) metrics.sub <- subset(metrics, pos.1 != pos.2) dat.merge <- merge(metrics.sub, res.dat, by = "pic_name") dat.merge <- subset(dat.merge, pos.2 != pos) dd <- ddply(dat.merge, .(pic_name, pos.1), summarize, reg.mean = mean(reg.bin), bin.mean = mean(bin.dist), reg.no.int.mean = mean(reg.no.int), len = length(reg.bin), prop = mean(prop), m.time = mean(m.time)) prop.dist <- ddply(dd, .(pic_name), summarize, diff.reg = reg.mean[len == 19] - max(reg.mean[len == 18]), grtr.reg = sum(reg.mean[len == 18] > reg.mean[len == 19]), diff.reg.no.int = reg.no.int.mean[len == 19] - max(reg.no.int.mean[len == 18]), grtr.reg.no.int = sum(reg.no.int.mean[len == 18] > reg.no.int.mean[len == 19]), diff.bin = bin.mean[len == 19] - max(bin.mean[len == 18]), grtr.bin = sum(bin.mean[len == 18] > bin.mean[len == 19]), prop = mean(prop), m.time = mean(m.time)) prop.dist$special <- ifelse(prop.dist$pic_name == "plot_turk2_100_350_12_3.png", 1, 0) ### Facetted Plots prop.diff <- subset(prop.dist, select = c(pic_name, diff.reg, diff.bin, prop, m.time, special)) prop.diff.m <- melt(prop.diff, id = c("pic_name", "prop", "special", "m.time")) levels(prop.diff.m$variable) <- c("Regression Based Distance", "Binned Distance") qplot(value, prop, data = prop.diff.m, geom = "point", size = I(3), xlab = "Difference", ylab = "Detection Rate", shape = factor(special)) + geom_smooth(se = FALSE) + facet_wrap( ~ variable, scales = "free_x") + geom_vline(xintercept = 0, col = "red") + theme(legend.position = "none") ggsave("turk2-prop-reg-bin.pdf", height = 4, width = 8.5) qplot(value, m.time, data = prop.diff.m, geom = "point", size = I(3), xlab = "Difference", ylab = "Mean Time to Respond", shape = factor(special)) + facet_wrap( ~ variable, scales = "free_x") + geom_vline(xintercept = 0, col = "red") + theme(legend.position = "none") ggsave("turk2-mtime-reg-bin.pdf", height = 4, width = 8.5) grtr.diff <- subset(prop.dist, select = c(pic_name, grtr.reg, grtr.bin, prop, special)) grtr.diff.m <- melt(grtr.diff, id = c("pic_name", "prop", "special")) levels(grtr.diff.m$variable) <- c("Regression Based Distance", "Binned Distance") qplot(value, prop, data = grtr.diff.m, geom = "point", size = I(3), ylim = c(0, 1), xlab = "Greater than Observed Plot", ylab = "Detection Rate", shape = factor(special)) + facet_wrap( ~ variable) + theme(legend.position = "none") ggsave("turk2-grtr-reg-bin.pdf", height = 4, width = 8.5) ### Individual Plots qplot(diff.reg, prop, data = prop.dist, size = I(3), xlab = "Difference", ylab = "Detection Rate", shape = factor(special)) + geom_smooth(se = FALSE) + geom_vline(xintercept = 0, col = "red") + theme(legend.position = "none") ggsave("turk2-diff-reg-prop.pdf", height = 5, width = 5.5) qplot(factor(grtr.reg), prop, data = prop.dist, size = I(3), xlab = "Greater than observed plot", ylab = "Detection Rate", shape = factor(special)) + theme(legend.position = "none") ggsave("turk2-grtr-reg-prop.pdf", height = 5, width = 5.5) qplot(diff.bin, prop, data = prop.dist, size = I(3), xlab = "Difference", ylab = "Detection Rate", shape = factor(special)) + geom_smooth(se = FALSE) + geom_vline(xintercept = 0, col = "red") + theme(legend.position = "none") ggsave("turk2-diff-bin-prop-2.pdf", height = 5, width = 5.5) qplot(factor(grtr.bin), prop, data = prop.dist, size = I(3), xlab = "Greater than observed plot", ylab = "Detection Rate", shape = factor(special)) + theme(legend.position = "none") ggsave("turk2-grtr-bin-prop-2.pdf", height = 5, width = 5.5) qplot(diff.reg, m.time , data = prop.dist, size = I(3), xlab = "difference", ylab = "median time to respond") + geom_smooth(method = "lm", se = FALSE) + geom_vline(xintercept = 0, col = "red") ggsave("turk2-diff-reg-mtime.pdf", height = 5, width = 5.5) qplot(diff.bin, m.time , data = prop.dist, size = I(3), xlab = "difference", ylab = "median time to respond") + geom_smooth(method = "lm", se = FALSE) + geom_vline(xintercept = 0, col = "red") ggsave("turk2-diff-bin-mtime.pdf", height = 5, width = 5.5) ###=================================================================================================== ###Large p, small n ###=================================================================================================== files.png <- dir("/Users/Niladri/Documents/Research/Permutation/paper-metrics-data-code/Mahbub's data/large-p-exp","*.png") files.txt <- dir("/Users/Niladri/Documents/Research/Permutation/paper-metrics-data-code/Mahbub's data/large-p-exp","*.txt") metrics1 <- NULL metrics2 <- NULL for(i in 1:length(files.txt)){ dat <- read.table(paste("/Users/Niladri/Documents/Research/Permutation/paper-metrics-data-code/Mahbub's data/large-p-exp/",files.txt[i], sep = ""), header = T) if(dim(dat)[2] == 4){ lineup.dat <- data.frame(x = dat$x, z = dat$cl, cl = dat$cl, .sample = dat$.sample) metrics.dat <- ddply(dat.pos, .(pos.1, pos.2), summarize, b.mod = bdist_mod_indx(pos.1, pos.2, nbin.X = 10, nbin.Y = 10), sep.dist = min_sep_dist_indx(pos.1, pos.2, clustering = TRUE, nclust = 2), ave.dist = ave_sep_dist_indx(pos.1, pos.2, clustering = TRUE, nclust = 2)) metrics.dat1 <- data.frame(metrics.dat, pic_name = files.png[i]) metrics1 <- rbind(metrics1, metrics.dat1) } if(dim(dat)[2] == 6){ lineup.dat <- data.frame(x = dat$X1, z = dat$X2, cl = dat$cl, .sample = dat$.sample) metrics.dat <- ddply(dat.pos, .(pos.1, pos.2), summarize, b.mod = bdist_mod_indx(pos.1, pos.2, nbin.X = 5, nbin.Y = 5), sep.dist = min_sep_dist_indx(pos.1, pos.2, clustering = TRUE, nclust = 3), ave.dist = ave_sep_dist_indx(pos.1, pos.2, clustering = TRUE, nclust = 2)) metrics.dat2 <- data.frame(metrics.dat, pic_name = files.png[i]) metrics2 <- rbind(metrics2, metrics.dat2) } metrics <- rbind(metrics1, metrics2) } #write.table(metrics, "largep-metrics.txt", row.names = F) #qplot(X1, X2, data = dat, geom = "point", alpha = I(0.7), color = factor(cl)) + facet_wrap(~.sample) + scale_colour_discrete(name = "Group") res.exp.lp <- read.csv("/Users/Niladri/Documents/Research/Permutation/paper-metrics-data-code/Mahbub's data/raw_data_turk7.csv") res.exp.lp <- subset(res.exp.lp, pic_name %in% files.png, select = c(pic_name, response, plot_location, time_taken)) res.dat <- ddply(res.exp.lp, .(pic_name), summarize, prop = sum(response)/length(response), pos = mean(plot_location), m.time = mean(time_taken)) metrics.sub <- subset(metrics, pos.1 != pos.2) dat.merge <- merge(metrics.sub, res.dat, by = "pic_name") dat.merge <- subset(dat.merge, pos.2 != pos) dd <- ddply(dat.merge, .(pic_name, pos.1), summarize, bin.mean = mean(b.mod), sep.mean = mean(sep.dist), ave.mean = mean(ave.dist), len = length(b.mod), prop = mean(prop), m.time = mean(m.time)) prop.dist <- ddply(dd, .(pic_name), summarize, diff.bin = bin.mean[len == 19] - max(bin.mean[len == 18]), diff.sep = sep.mean[len == 19] - max(sep.mean[len == 18]), diff.ave = ave.mean[len == 19] - max(ave.mean[len == 18]), prop = mean(prop), m.time = mean(m.time)) #write.csv(prop.dist, "prop.dist.csv", row.names = FALSE) ## This includes min separation, ## average separation, wb.ratio and average between matrix. #prop.dist <- read.csv("prop.dist.csv") #ggpairs(prop.dist[, 2:7]) library(GGally) ggpairs(prop.dist[, -1]) nomatch.sep.ave <- subset(prop.dist, (diff.sep > 0 & diff.ave < 0) | (diff.sep < 0 & diff.ave > 0)) prop.dist <- ddply(dd, .(pic_name), summarize, diff.bin = bin.mean[len == 19] - max(bin.mean[len == 18]), grtr.bin = sum(bin.mean[len == 18] > bin.mean[len == 19]), diff.sep = sep.mean[len == 19] - max(sep.mean[len == 18]), grtr.sep = sum(sep.mean[len == 18] > sep.mean[len == 19]), diff.ave = ave.mean[len == 19] - max(ave.mean[len == 18]), grtr.ave = sum(ave.mean[len == 18] > ave.mean[len == 19]), prop = mean(prop), m.time = mean(m.time)) prop.dist$shape <- ifelse(prop.dist$pic_name == "plot_large_p_small_n_30_100_0_2_3.png", 1, 0) ### Facetted Plots prop.diff <- subset(prop.dist, select = c(pic_name, diff.sep, diff.ave, diff.bin, prop, m.time, shape)) prop.diff.m <- melt(prop.diff, id = c("pic_name", "prop", "m.time", "shape")) levels(prop.diff.m$variable) <- c("Minimum Separation", "Average Separation","Binned Distance") qplot(value, prop, data = prop.diff.m, geom = "point", size = I(3), xlab = "Difference", ylab = "Detection Rate", shape = factor(shape)) + geom_smooth(se = FALSE) + facet_wrap( ~ variable, scales = "free_x") + geom_vline(xintercept = 0, col = "red") + theme(legend.position = "none") ggsave("largep-prop-sep-bin.pdf", height = 4, width = 8.5) qplot(value, m.time, data = prop.diff.m, geom = "point", size = I(3), xlab = "Difference", ylab = "Mean Time to Respond", shape = factor(shape)) + facet_wrap( ~ variable, scales = "free_x") + geom_vline(xintercept = 0, col = "red") + theme(legend.position = "none") ggsave("largep-mtime-sep-bin.pdf", height = 4, width = 8.5) grtr.diff <- subset(prop.dist, select = c(pic_name, grtr.sep, grtr.ave, grtr.bin, prop, shape)) grtr.diff.m <- melt(grtr.diff, id = c("pic_name", "prop", "shape")) levels(grtr.diff.m$variable) <- c("Minimum Separation", "Average Separation","Binned Distance") qplot(value, prop, data = grtr.diff.m, geom = "point", size = I(3), ylim = c(0, 1), xlab = "Greater than Observed Plot", ylab = "Detection Rate") + facet_wrap( ~ variable) + theme(legend.position = "none") ggsave("largep-grtr-sep-bin.pdf", height = 4, width = 8.5) ### Individual Plots qplot(diff.bin, prop, data = prop.dist, size = I(3), xlab = "Difference", ylab = "Detection Rate", shape = factor(special)) + geom_smooth(se = FALSE) + geom_vline(xintercept = 0, col = "red") + theme(legend.position = "none") ggsave("largep-diff-bin-prop-10-5.pdf", height = 5, width = 5.5) qplot(diff.bin, m.time, data = prop.dist, size = I(3), xlab = "Difference", ylab = "Median time to respond") + geom_smooth(method = "lm",se = FALSE) + geom_vline(xintercept = 0, col = "red") ggsave("largep-diff-bin-mtime.pdf", height = 5, width = 5.5) qplot(diff.sep, prop, data = prop.dist, size = I(3), xlab = "Difference", ylab = "Detection Rate")+ geom_smooth(se = FALSE) + geom_vline(xintercept = 0, col = "red")+ theme(legend.position = "none") ggsave("largep-diff-clus-prop.pdf", height = 5, width = 5.5) qplot(diff.sep, m.time, data = prop.dist, size = I(3), xlab = "Difference", ylab = "Median time to respond") + geom_smooth(method = "lm",se = FALSE) + geom_vline(xintercept = 0, col = "red") ggsave("largep-diff-clus-mtime.pdf", height = 5, width = 5.5) qplot(factor(grtr.bin), prop, data = prop.dist, size = I(3), xlab = "Greater than observed plot", ylab = "Detection Rate", alpha = I(0.6), shape = factor(special)) + theme(legend.position = "none") ggsave("largep-grtr-bin-prop-10-5.pdf", height = 5, width = 5.5) qplot(factor(grtr.sep), prop, data = prop.dist, size = I(3), xlab = "greater than observed plot", ylab = "Detection Rate", alpha = I(0.6), shape = factor(special)) + theme(legend.position = "none") ggsave("largep-grtr-clus-prop.pdf", height = 5, width = 5.5) qplot(factor(grtr.sep), m.time, data = prop.dist, size = I(3), xlab = "greater than observed plot", ylab = "prop correct", alpha = I(0.6)) time.dist <- merge(prop.dist, res.exp.lp, by = "pic_name") qplot(diff.bin, time_taken, data = subset(time.dist, time_taken < 250), size = I(3), alpha = I(0.3)) + geom_smooth(method = "lm", se = FALSE) qplot(diff.sep, time_taken, data = subset(time.dist, time_taken < 250), size = I(3), alpha = I(0.3)) + geom_smooth(method = "lm", se = FALSE) ####============================================================================ ## Lendie's Data - Turk 10 Experiment ####============================================================================ files.csv <- dir("/Users/Niladri/Documents/Research/Permutation/Adam's Data/Adam's and Lendie's data/turk10/lineups/data/", "*.csv") pic_details <- read.csv("/Users/Niladri/Documents/Research/Permutation/Adam's Data/Adam's and Lendie's data/turk10/lineups/picture-details.csv") files.svg.all <- dir("/Users/Niladri/Documents/Research/Permutation/Adam's Data/Adam's and Lendie's data/turk10/lineups/images/", "*.svg") files.svg <- matrix(unlist(strsplit(as.character(pic_details$pic_name), "/")), ncol = 2, byrow = TRUE)[,2] res.lendie <- read.csv("/Users/Niladri/Documents/Research/Permutation/Adam's Data/Adam's and Lendie's data/turk10/raw_data_turk10.csv") res.lendie <- subset(res.lendie, pic_name %in% files.svg, select = c(pic_name, response, response_no, plot_location, time_taken)) res.dat <- ddply(res.lendie, .(pic_name), summarize, prop = sum(response)/length(response), pos = mean(plot_location), m.time = median(time_taken)) metrics <- NULL for(i in 1:length(files.csv)){ dat <- read.table(paste("/Users/Niladri/Documents/Research/Permutation/Adam's Data/Adam's and Lendie's data/turk10/lineups/data/",files.csv[i], sep = ""), header = T, sep = ",") lineup.dat <- data.frame(x = dat$naive1.qq.x, y = dat$naive1.qq.y, .sample = dat$.n) metrics.dat <- ddply(dat.pos, .(pos.1, pos.2), summarize, reg.bin = reg_bin_indx(pos.1, pos.2), bin.dist = bdist_mod_indx(pos.1, pos.2, nbin.X = 5, nbin.Y = 5)) metrics.dat <- data.frame(metrics.dat, data_name = files.csv[i]) metrics <- rbind(metrics, metrics.dat) } pic_details <- subset(pic_details, select = c("pic_name","data_name")) pic_details$pic_name <- files.svg metrics.sub <- subset(metrics, pos.1 != pos.2) metrics.m <- merge(metrics.sub, pic_details, by = "data_name") res.mer <- merge(metrics.m, res.dat, by = "pic_name") dat.merge <- subset(res.mer, pos.2 != pos) dd <- ddply(dat.merge, .(pic_name, data_name, pos.1), summarize, reg.mean = mean(reg.bin), bin.mean = mean(bin.dist), len = length(bin.dist), prop = mean(prop), m.time = mean(m.time)) prop.dist <- ddply(dd, .(pic_name, data_name), summarize, diff.bin = bin.mean[len == 19] - max(bin.mean[len == 18]), grtr.bin = sum(bin.mean[len == 18] > bin.mean[len == 19]), diff.reg = reg.mean[len == 19] - max(reg.mean[len == 18]), grtr.reg = sum(reg.mean[len == 18] > reg.mean[len == 19]), prop = mean(prop), m.time = mean(m.time)) qplot(diff.reg, prop, data = prop.dist) qplot(diff.bin, prop, data = prop.dist) ### Metrics Example set.seed(1500) X1 <- rnorm(50, 10, 2) X2 <- NULL for(i in 1:50){ X2[i] <- rnorm(1, mean = 3 + 0.7*(X1[i] - 10), sd = sqrt(4*(1 - 0.7^2))) } true.dat <- data.frame(X1 = X1, X2 = X2) cor(X1, X2) qplot(X1, X2, geom = "point", size = I(3)) ggsave("dat-example-1.pdf", height = 3.5, width = 3.5) binplot <- function(x, y, nbins= 8, plot=TRUE) { xd <- cut(x, breaks=nbins, labels=as.character(1:nbins)) yd <- cut(y, breaks=nbins, labels=as.character(1:nbins)) ndf <- as.data.frame(xtabs(~yd+xd)) X <- data.frame(x=x, y=y) X$xnew <- (x-min(x))/(max(x)-min(x))*nbins + 0.5 X$ynew <- (y-min(y))/(max(y)-min(y))*nbins + 0.5 if (plot) { print(ggplot() + geom_tile(aes(xd,yd,fill=Freq), colour="grey50", data=ndf) + scale_fill_gradient2(name = "Count") + xlab("p") + ylab("q") ) } invisible(ndf) } nij <- binplot(X1,X2) ggsave("bin-example-1.pdf", height = 3.5, width = 4.2) freqplot <- function(x, y, nbins= 8, plot=TRUE) { xd <- cut(x, breaks=nbins, labels=as.character(1:nbins)) yd <- cut(y, breaks=nbins, labels=as.character(1:nbins)) ndf <- as.data.frame(xtabs(~yd+xd)) X <- data.frame(x=x, y=y) if (plot) { print(ggplot() + geom_tile(aes(xd,yd,fill=0.5), colour="grey50", data=ndf) + scale_fill_gradient2(name = "Count") + xlab("p") + ylab("q") + geom_text(aes(xd, yd, label = Freq), data = ndf) + theme(legend.position = "none") ) } invisible(ndf) } mij <- freqplot(X1,X2) m1 <- mij ggsave("freq-example-1.pdf", height = 3.5, width = 3.5) X1 <- sample(X1) samp.dat <- data.frame(X1 = X1, X2 = X2) qplot(X1, X2, geom = "point", size = I(3), xlab = "Permuted X1") ggsave("dat-example-2.pdf", height = 3.5, width = 3.5) nij <- binplot(X1,X2) ggsave("bin-example-2.pdf", height = 3.5, width = 4.2) mij <- freqplot(X1,X2) m2 <- mij ggsave("freq-example-2.pdf", height = 3.5, width = 3.5) m12 <- merge(m1, m2, by=c("xd", "yd")) sqrt(with(m12, sum( (Freq.x-Freq.y)^2))) ###================================================================ #### Exp1 : data generation ###================================================================ set.seed(1000) b0 <- 5 b1 <- 15 b2 <- 8 sigma <- 12 x1 <- rpois(100, 30) x2 <- rep(c(1,2), c(51, 49)) eps <- rnorm(100, 0, sigma) y = b0 + b1*x1 + b2*x2 + eps mod1 <- lm(y ~ x1) summary(mod1)$sigma ##11.77 qplot(factor(x2), mod1$resid, geom = "boxplot") qplot(group, val, data = obs.dat, geom = "boxplot") ###================================================================== ### Turk 1 Example ###================================================================== dat <- read.table("../data/dat_turk1_100_16_12_3.txt", header = T) ## plot_turk1_100_16_12_3 dat.m <- melt(dat, id = c("age", "grp", "weight")) dat.m$x <- as.numeric(dat.m$grp) dat.m$plot <- substring(dat.m$variable, 1, 3) dat.m$position <- substring(dat.m$variable, 4, 5) dat.m <- dat.m[, c("x", "value", "position")] names(dat.m) <- c("group", "val", ".sample") lineup.dat <- dat.m lineup.dat$group <- as.factor(lineup.dat$group) lineup.dat$.sample <- as.numeric(as.character(lineup.dat$.sample)) levels(lineup.dat$group) <- c("A", "B") qplot(group, val, data = lineup.dat, geom = "boxplot", col = group, ylab = "", xlab = "Group") + facet_wrap(~ .sample) + scale_color_discrete(name = "Group") ggsave("turk1-example.pdf", height = 5, width = 5.5) ###========================================================================= ### Exp1 -- generation of distribution of distance metric ###========================================================================= dat <- read.table("../data/dat_turk1_100_8_12_2.txt", header = T) ## plot_turk1_100_8_12_2 ### The detection rate for the above lineup is 0.28. But the difference for both binned distance and regression based distance are large negative. ### Melting the data dat.m <- melt(dat, id = c("age", "grp", "weight")) ### Changing the categorical variable to a numerical variable dat.m$x <- as.numeric(dat.m$grp) ### Breaking the variable name to get the position and type of plot (null or obs) dat.m$plot <- substring(dat.m$variable, 1, 3) dat.m$position <- substring(dat.m$variable, 4, 5) ### Finding the observed data obs <- dat.m[dat.m$plot == "obs", c("x", "value") ] dat.m <- dat.m[, c("x", "value", "position")] names(dat.m) <- c("group", "val", ".sample") lineup.dat <- dat.m lineup.dat$group <- as.factor(lineup.dat$group) lineup.dat$.sample <- as.numeric(as.character(lineup.dat$.sample)) obs.dat <- subset(lineup.dat, .sample == 20) levels(lineup.dat$group) <- c("A", "B") qplot(group, val, data = lineup.dat, geom = "boxplot", col = group, ylab = "", xlab = "Group") + facet_wrap(~ .sample) + scale_color_discrete(name = "Group") + theme(legend.position = "none") ggsave("lineup-high-prop-neg-diff.pdf", height = 4, width = 4.5) dat.bin <- dat.bin.28 <- dat.box <- NULL for (i in 1:1000){ samp.dat <- data.frame(group = obs.dat$group, val = rnorm(dim(obs.dat)[1], 0, 11.77)) dat1 <- sapply(1:18, function(k){ null.dat <- data.frame(group = obs.dat$group, val = rnorm(dim(obs.dat)[1], 0, 11.77)) b1 = bin_dist(X=samp.dat, PX=null.dat, lineup.dat = lineup.dat, X.bin = 2, Y.bin = 2) b2 = bin_dist(samp.dat, null.dat, lineup.dat = lineup.dat, X.bin = 2, Y.bin = 8) s = box_dist(samp.dat, null.dat) return(list(b1 = b1, b2 = b2, s = s)) }) dat1 <- matrix(unlist(dat1), nrow = 3 ) dat.bin <- c(dat.bin, mean(dat1[1,])) dat.bin.28 <- c(dat.bin.28, mean(dat1[2,])) dat.box <- c(dat.box, mean(dat1[3,])) } df <- as.data.frame(t(dat1)) names(df) <- c("Binned-2-2", "Binned-2-8", "Boxplot Dist") write.csv(df, "distr-turk1.csv", row.names = FALSE) pos.1 <- 1:20 pos.2 <- 1:20 dat.pos <- expand.grid(pos.1 = pos.1, pos.2 = pos.2) metrics.dat <- ddply(dat.pos, .(pos.1, pos.2), summarize, bin.dist = bdist_mod_indx(pos.1, pos.2, nbin.X = 2, nbin.Y = 2)) pos <- 20 metrics.dat <- subset(metrics.dat, pos.1 != pos.2 & pos.2 != pos) dd1 <- ddply(metrics.dat, .(pos.1), summarize, bin.mean = mean(bin.dist), len = length(bin.dist)) dat.bin <- as.data.frame(dat.bin) ggplot() + geom_density(data = dat.bin, aes(x = dat.bin), fill = "grey80", col = "grey80" ) + geom_segment(data = subset(dd1, len == 19), aes(x= bin.mean, xend = bin.mean, y=0.02*max(density(dat.bin$dat.bin)$y), yend = 0.2*max(density(dat.bin$dat.bin)$y)), colour="darkorange", size=1) + geom_segment(data = subset(dd1, len != 19), aes(x = bin.mean, xend = bin.mean, y = rep(0.02*max(density(dat.bin$dat.bin)$y),19), yend = rep(0.1*max(density(dat.bin$dat.bin)$y),19)), size=1, alpha = I(0.7)) + xlab("Binned Distance (p = q = 2)") + ylab("") + geom_text(data = dd1, y = - 0.03*max(density(dat.bin$dat.bin)$y), size = 2.5, aes(x = bin.mean, label = pos.1)) + ylim(c(- 0.04*max(density(dat.bin$dat.bin)$y), max(density(dat.bin$dat.bin)$y) + 0.1*max(density(dat.bin$dat.bin)$y))) ggsave("distribution-bin-dist-2-2-exp1.pdf", height = 4, width = 4.5) ### bin_dist with x.bin = 2, y.bin = 8 metrics.dat <- ddply(dat.pos, .(pos.1, pos.2), summarize, bin.dist = bdist_mod_indx(pos.1, pos.2, nbin.X = 2, nbin.Y = 8)) pos <- 20 metrics.dat <- subset(metrics.dat, pos.1 != pos.2 & pos.2 != pos) dd1 <- ddply(metrics.dat, .(pos.1), summarize, bin.mean = mean(bin.dist), len = length(bin.dist)) dat.bin <- as.data.frame(dat.bin.28) ggplot() + geom_density(data = dat.bin, aes(x = dat.bin.28), fill = "grey80", col = "grey80" ) + geom_segment(data = subset(dd1, len == 19), aes(x= bin.mean, xend = bin.mean, y=0.02*max(density(dat.bin$dat.bin.28)$y), yend = 0.2*max(density(dat.bin$dat.bin.28)$y)), colour="darkorange", size=1) + geom_segment(data = subset(dd1, len != 19), aes(x = bin.mean, xend = bin.mean, y = rep(0.02*max(density(dat.bin$dat.bin.28)$y),19), yend = rep(0.1*max(density(dat.bin$dat.bin.28)$y),19)), size=1, alpha = I(0.7)) + xlab("Binned Distance (p = 2, q = 8)") + ylab("") + geom_text(data = dd1, y = - 0.03*max(density(dat.bin$dat.bin.28)$y), size = 2.5, aes(x = bin.mean, label = pos.1)) + ylim(c(- 0.04*max(density(dat.bin$dat.bin.28)$y), max(density(dat.bin$dat.bin.28)$y) + 0.1*max(density(dat.bin$dat.bin.28)$y))) ggsave("distribution-bin-dist-2-8-exp1.pdf", height = 4, width = 4.5) ### box_dist metrics.dat <- ddply(dat.pos, .(pos.1, pos.2), summarize, box.dist = box_dist_indx(pos.1, pos.2)) pos <- 20 metrics.dat <- subset(metrics.dat, pos.1 != pos.2 & pos.2 != pos) dd3 <- ddply(metrics.dat, .(pos.1), summarize, box.mean = mean(box.dist), len = length(box.dist)) dat.box <- as.data.frame(dat.box) ggplot() + geom_density(data = dat.box, aes(x = dat.box), fill = "grey80", col = "grey80" ) + geom_segment(data = subset(dd3, len == 19), aes(x= box.mean, xend = box.mean, y=0.02*max(density(dat.box$dat.box)$y), yend = 0.2*max(density(dat.box$dat.box)$y)), colour="darkorange", size=1) + geom_segment(data = subset(dd3, len != 19), aes(x = box.mean, xend = box.mean, y = rep(0.02*max(density(dat.box$dat.box)$y),19), yend = rep(0.1*max(density(dat.box$dat.box)$y),19)), size=1, alpha = I(0.7)) + xlab("Boxplot Based Distance") + ylab("") + geom_text(data = dd3, y = - 0.03*max(density(dat.box$dat.box)$y), size = 2.5, aes(x = box.mean, label = pos.1)) + ylim(c(- 0.04*max(density(dat.box$dat.box)$y), max(density(dat.box$dat.box)$y) + 0.1*max(density(dat.box$dat.box)$y))) ggsave("distribution-box-dist-exp1.pdf", height = 4, width = 4.5) ###================================================================== ### Turk 2 Example ###================================================================== dat <- read.table(file.choose(), header = TRUE) #plot_turk2_100_600_12_2 dat.m <- melt(dat, id = "X") dat.m$.sample <- substring(dat.m$variable, 2) lineup.dat <- data.frame(x = dat.m$X, z = dat.m$value, .sample = dat.m$.sample) lineup.dat$.sample <- as.numeric(as.character(lineup.dat$.sample)) qplot(x, z, data = lineup.dat, alpha = I(0.1), xlab = "X1", ylab = "X2") + geom_smooth(method = "lm", se = FALSE, size = 1) + facet_wrap(~ .sample) ggsave("turk2-example.pdf", height = 5, width = 5.5) ###================================================================= ### Exp 2: data generation ###================================================================= b0 <- 6 b1 <- -3.5 sigma <- 12 n <- 100 x1 <- rnorm(n, 0, 1) y <- b0 + b1*x1 + rnorm(100, 0, sigma) qplot(x1, y, geom = "point") + geom_smooth(method = "lm", se = FALSE) ### Using Lineup dat <- read.table(file.choose(), header = TRUE) #plot_turk2_100_350_12_3 dat.m <- melt(dat, id = "X") dat.m$.sample <- substring(dat.m$variable, 2) lineup.dat <- data.frame(x = dat.m$X, z = dat.m$value, .sample = dat.m$.sample) lineup.dat$.sample <- as.numeric(as.character(lineup.dat$.sample)) qplot(x, z, data = lineup.dat, alpha = I(0.1), xlab = "X1", ylab = "X2") + geom_smooth(method = "lm", se = FALSE, size = 1) + facet_wrap(~ .sample) ggsave("lineup-exp2-neg-diff-large-prop.pdf", height = 4, width = 4.5) ## From the lineup data obs.dat <- lineup.dat[lineup.dat$.sample == 10, ] #qplot(x, z, data = obs.dat, geom = "point") + geom_smooth(method = "lm", se = FALSE) mod2 <- lm(z ~ 1, data = obs.dat) mean.null <- predict(mod2) sd.null <- summary(mod2)$sigma ###============================================================================= ### generation of distribution of distance metric ###============================================================================= ### using bin_dist with x.bin = 2, y.bin = 2 dat.bin <- dat.bin.82 <- dat.reg <- dat.reg.no.int <- NULL for (i in 1:1000){ zz <- NULL for(i in 1:dim(obs.dat)[1]){ zz[i] <- rnorm(1, mean.null[i], sd.null) } samp.dat <- data.frame(group = obs.dat$x, z = zz ) dat1 <- sapply(1:18, function(k){ yy <- NULL for(i in 1:dim(obs.dat)[1]){ yy[i] <- rnorm(1, mean.null[i], sd.null) } null.dat <- data.frame(group = obs.dat$x, z = yy) b1 = bin_dist(samp.dat, null.dat, lineup.dat = lineup.dat, X.bin = 2, Y.bin = 2) b2 = bin_dist(samp.dat, null.dat, lineup.dat = lineup.dat, X.bin = 8, Y.bin = 2) r.int = reg_dist(samp.dat, null.dat) r.no.int <- reg_no_int_dist(samp.dat, null.dat) return(list(b1 = b1, b2 = b2, r.int = r.int, r.no.int = r.no.int)) }) dat1 <- matrix(unlist(dat1), nrow = 4 ) dat.bin <- c(dat.bin, mean(dat1[1,])) dat.bin.82 <- c(dat.bin.82, mean(dat1[2,])) dat.reg <- c(dat.reg, mean(dat1[3,])) dat.reg.no.int <- c(dat.reg.no.int, mean(dat1[4,])) } df <- as.data.frame(t(dat1)) names(df) <- c("Binned-2-2", "Binned-8-2", "Regression Dist", "Regression No Intercept") write.csv(df, "distr-turk2.csv", row.names = FALSE) #opt_diff(lineup.dat, var = c('x', 'z'), 2, 10, 2, 10, 19, plot = TRUE) metrics.dat <- ddply(dat.pos, .(pos.1, pos.2), summarize, bin.dist = bdist_mod_indx(pos.1, pos.2, nbin.X = 2, nbin.Y = 2), bin.dist.82 = bdist_mod_indx(pos.1, pos.2, nbin.X = 8, nbin.Y = 2), reg.dist = reg_bin_indx(pos.1, pos.2), reg.dist.no.int = reg_no_int_indx(pos.1, pos.2)) pos <- 10 metrics.dat <- subset(metrics.dat, pos.1 != pos.2 & pos.2 != pos) dd3 <- ddply(metrics.dat, .(pos.1), summarize, bin.mean = mean(bin.dist), bin.mean.82 = mean(bin.dist.82), reg.mean = mean(reg.dist), reg.mean.no.int = mean(reg.dist.no.int), len = length(bin.dist)) dat.bin <- as.data.frame(dat.bin) ggplot() + geom_density(data = dat.bin, aes(x = dat.bin), fill = "grey80", col = "grey80" ) + geom_segment(data = subset(dd3, len == 19), aes(x= bin.mean, xend = bin.mean, y=0.02*max(density(dat.bin$dat.bin)$y), yend = 0.2*max(density(dat.bin$dat.bin)$y)), colour="darkorange", size=1) + geom_segment(data = subset(dd3, len != 19), aes(x = bin.mean, xend = bin.mean, y = rep(0.02*max(density(dat.bin$dat.bin)$y),19), yend = rep(0.1*max(density(dat.bin$dat.bin)$y),19)), size=1, alpha = I(0.7)) + xlab("Binned Distance (p = q = 2)") + ylab("") + geom_text(data = dd3, y = - 0.03*max(density(dat.bin$dat.bin)$y), size = 2.5, aes(x = bin.mean, label = pos.1)) + ylim(c(- 0.04*max(density(dat.bin$dat.bin)$y), max(density(dat.bin$dat.bin)$y) + 0.1*max(density(dat.bin$dat.bin)$y))) ggsave("distribution-bin-dist-2-2-exp2.pdf", height = 4, width = 4.5) dat.bin.82 <- as.data.frame(dat.bin.82) ggplot() + geom_density(data = dat.bin.82, aes(x = dat.bin.82), fill = "grey80", col = "grey80" ) + geom_segment(data = subset(dd3, len == 19), aes(x= bin.mean.82, xend = bin.mean.82, y=0.02*max(density(dat.bin.82$dat.bin.82)$y), yend = 0.2*max(density(dat.bin.82$dat.bin.82)$y)), colour="darkorange", size=1) + geom_segment(data = subset(dd3, len != 19), aes(x = bin.mean.82, xend = bin.mean.82, y = rep(0.02*max(density(dat.bin.82$dat.bin.82)$y),19), yend = rep(0.1*max(density(dat.bin.82$dat.bin.82)$y),19)), size=1, alpha = I(0.7)) + xlab("Binned Distance (p = 8, q = 2)") + ylab("") + geom_text(data = dd3, y = - 0.03*max(density(dat.bin.82$dat.bin.82)$y), size = 2.5, aes(x = bin.mean.82, label = pos.1)) + ylim(c(- 0.04*max(density(dat.bin.82$dat.bin.82)$y), max(density(dat.bin.82$dat.bin.82)$y) + 0.1*max(density(dat.bin.82$dat.bin.82)$y))) ggsave("distribution-bin-dist-8-2-exp2.pdf", height = 4, width = 4.5) dat.reg <- as.data.frame(dat.reg) ggplot() + geom_density(data = dat.reg, aes(x = dat.reg), fill = "grey80", col = "grey80" ) + geom_segment(data = subset(dd3, len == 19), aes(x= reg.mean, xend = reg.mean, y=0.02*max(density(dat.reg$dat.reg)$y), yend = 0.2*max(density(dat.reg$dat.reg)$y)), colour="darkorange", size=1) + geom_segment(data = subset(dd3, len != 19), aes(x = reg.mean, xend = reg.mean, y = rep(0.02*max(density(dat.reg$dat.reg)$y),19), yend = rep(0.1*max(density(dat.reg$dat.reg)$y),19)), size=1, alpha = I(0.7)) + xlab("Regression Based Distance") + ylab("") + geom_text(data = dd3, y = - 0.03*max(density(dat.reg$dat.reg)$y), size = 2.5, aes(x = reg.mean, label = pos.1)) + ylim(c(- 0.04*max(density(dat.reg$dat.reg)$y), max(density(dat.reg$dat.reg)$y) + 0.1*max(density(dat.reg$dat.reg)$y))) ggsave("distribution-reg-dist-exp2.pdf", height = 4, width = 4.5) dat.reg.no.int <- as.data.frame(dat.reg.no.int) ggplot() + geom_density(data = dat.reg.no.int, aes(x = dat.reg.no.int), fill = "grey80", col = "grey80" ) + geom_segment(data = subset(dd3, len == 19), aes(x= reg.mean.no.int, xend = reg.mean.no.int, y=0.02*max(density(dat.reg.no.int$dat.reg.no.int)$y), yend = 0.2*max(density(dat.reg.no.int$dat.reg.no.int)$y)), colour="darkorange", size=1) + geom_segment(data = subset(dd3, len != 19), aes(x = reg.mean.no.int, xend = reg.mean.no.int, y = rep(0.02*max(density(dat.reg.no.int$dat.reg.no.int)$y),19), yend = rep(0.1*max(density(dat.reg.no.int$dat.reg.no.int)$y),19)), size=1, alpha = I(0.7)) + xlab("Regression Based Distance \n (only slope)") + ylab("") + geom_text(data = dd3, y = - 0.03*max(density(dat.reg.no.int$dat.reg.no.int)$y), size = 2.5, aes(x = reg.mean.no.int, label = pos.1)) + ylim(c(- 0.04*max(density(dat.reg.no.int$dat.reg.no.int)$y), max(density(dat.reg.no.int$dat.reg.no.int)$y) + 0.1*max(density(dat.reg.no.int$dat.reg.no.int)$y))) ggsave("distribution-reg-no-int-dist-exp2.pdf", height = 4, width = 4.5) ### P-value distance pval_dist <- function(X) { as.numeric(summary(lm(X[,2] ~ X[,1], data = X))$coefficients[,4][2]) } dat <- NULL for (i in 1:1000){ zz <- NULL for(k in 1:dim(obs.dat)[1]){ zz[k] <- rnorm(1, mean = mean.null[k], sd = sd.null) } samp.dat <- data.frame(group = obs.dat$x, z = zz ) qplot(group, z, data = samp.dat) + geom_smooth(method = "lm", se = FALSE) dat <- c(dat, pval_dist(samp.dat)) } pval <- ddply(lineup.dat, .(.sample), summarize, p = pval_dist(data.frame(lineup.dat[lineup.dat$.sample == .sample,1], lineup.dat[lineup.dat$.sample == .sample,2]))) pos <- 10 m <- 20 qplot(dat, geom = "density", fill = I("grey80"), colour = I("grey80"), xlab = "p-value", ylab = "") + geom_segment(aes(x = pval$p[pval$.sample != 10], xend = pval$p[pval$.sample != pos], y = rep(0.01 * min(density(dat)$y), (m - 1)), yend = rep(0.1 * max(density(dat)$y), (m - 1))), size = 1, alpha = I(0.7)) + geom_segment(aes(x = pval$p[pval$.sample == 10], xend = pval$p[pval$.sample == 10], y = 0.01 * min(density(dat)$y), yend = 0.2 * max(density(dat)$y)), colour = "darkorange", size = 1) + geom_text(data = pval, y = -0.03 * max(density(dat)$y), size = 2.5, aes(x = p, label = .sample)) + ylim(c(-0.04 * max(density(dat)$y), max(density(dat)$y) + 0.1)) ggsave("distribution-pval-exp2.pdf", height = 4, width = 4.5) ####======================================================================================================== ### using bin_dist with x.bin = 8, y.bin = 2 opt_diff(lineup.dat, var = c('x', 'z'), 2, 10, 2, 10, 10, plot = TRUE) dat <- NULL for (i in 1:1000){ zz <- NULL for(i in 1:dim(obs.dat)[1]){ zz[i] <- rnorm(1, mean.null[i], sd.null) } samp.dat <- data.frame(group = obs.dat$x, z = zz ) dat1 <- replicate(18, { yy <- NULL for(i in 1:dim(obs.dat)[1]){ yy[i] <- rnorm(1, mean.null[i], sd.null) } null.dat <- data.frame(group = obs.dat$x, z = yy) bin_dist(samp.dat, null.dat, lineup.dat = lineup.dat, X.bin = 8, Y.bin = 2) }) dat <- c(dat, mean(dat1)) } ddd <- distmet(lineup.dat, var = c("x", "z"), 'bin_dist', null_permute("x"), pos = 10, dist.arg = list(X.bin = 8, Y.bin = 2)) pos <- 10 m <- 20 ### Using reg_dist dat <- NULL for (i in 1:1000){ zz <- NULL for(i in 1:dim(obs.dat)[1]){ zz[i] <- rnorm(1, mean.null[i], sd.null) } samp.dat <- data.frame(group = obs.dat$x, z = zz ) dat1 <- replicate(18, { yy <- NULL for(i in 1:dim(obs.dat)[1]){ yy[i] <- rnorm(1, mean.null[i], sd.null) } null.dat <- data.frame(group = obs.dat$x, z = yy) reg_dist(samp.dat, null.dat) }) dat <- c(dat, mean(dat1)) } ddd <- distmet(lineup.dat, var = c("x", "z"), 'reg_dist', null_permute("x"), pos = 10) pos <- 10 m <- 20 dat.reg <- as.data.frame(dat.reg) ggplot() + geom_density(data = dat.reg, aes(x = dat.reg), fill = "grey80", col = "grey80" ) + geom_segment(data = subset(dd3, len == 19), aes(x= reg.mean, xend = reg.mean, y=0.02*max(density(dat.reg$dat.reg)$y), yend = 0.2*max(density(dat.reg$dat.reg)$y)), colour="darkorange", size=1) + geom_segment(data = subset(dd3, len != 19), aes(x = reg.mean, xend = reg.mean, y = rep(0.02*max(density(dat.reg$dat.reg)$y),19), yend = rep(0.1*max(density(dat.reg$dat.reg)$y),19)), size=1, alpha = I(0.7)) + xlab("Distance") + ylab("") + geom_text(data = dd3, y = - 0.03*max(density(dat.reg$dat.reg)$y), size = 2.5, aes(x = reg.mean, label = pos.1)) + ylim(c(- 0.04*max(density(dat.reg$dat.reg)$y), max(density(dat.reg$dat.reg)$y) + 0.1*max(density(dat.reg$dat.reg)$y))) ggsave("distribution-reg-dist-exp2.pdf", height = 4, width = 4.5) ### Reg distance: no intercept reg_no_int_dist <- function(X, PX, nbins = 1) { ss <- seq(min(X[, 1]), max(X[, 1]), length = nbins + 1) beta.X <- NULL beta.PX <- NULL for (k in 1:nbins) { X.sub <- subset(X, X[, 1] >= ss[k] & X[, 1] <= ss[k + 1]) PX.sub <- subset(PX, X[, 1] >= ss[k] & X[, 1] <= ss[k + 1]) b.X <- as.numeric(coef(lm(X.sub[, 2] ~ X.sub[, 1]))) b.PX <- as.numeric(coef(lm(PX.sub[, 2] ~ PX.sub[, 1]))) beta.X <- rbind(beta.X, b.X) beta.PX <- rbind(beta.PX, b.PX) } beta.X <- subset(beta.X, !is.na(beta.X[, 2])) beta.PX <- subset(beta.PX, !is.na(beta.PX[, 2])) sum((beta.X[, 2] - beta.PX[, 2])^2) } ### Reg distance: no intercept reg_no_int_indx <- function(i, j, nbins = 1){ X <- lineup.dat[lineup.dat$.sample == i, ] PX <- lineup.dat[lineup.dat$.sample == j, ] ss <- seq(min(X[,1]), max(X[,1]), length = nbins + 1) beta.X <- NULL ; beta.PX <- NULL for(k in 1:nbins){ X.sub <- subset(X, X[,1] >= ss[k] & X[,1] <= ss[k + 1]) PX.sub <- subset(PX, X[,1] >= ss[k] & X[,1] <= ss[k + 1]) b.X <- as.numeric(coef(lm(X.sub[,2] ~ X.sub[,1]))) b.PX <- as.numeric(coef(lm(PX.sub[,2] ~ PX.sub[,1]))) beta.X <- rbind(beta.X, b.X) beta.PX <- rbind(beta.PX, b.PX) } beta.X <- subset(beta.X, !is.na(beta.X[,2])) beta.PX <- subset(beta.PX, !is.na(beta.PX[,2])) sum((beta.X[,2] - beta.PX[,2])^2) } dat <- NULL for (i in 1:1000){ zz <- NULL for(i in 1:dim(obs.dat)[1]){ zz[i] <- rnorm(1, mean.null[i], sd.null) } samp.dat <- data.frame(group = obs.dat$x, z = zz ) dat1 <- replicate(18, { yy <- NULL for(i in 1:dim(obs.dat)[1]){ yy[i] <- rnorm(1, mean.null[i], sd.null) } null.dat <- data.frame(group = obs.dat$x, z = yy) reg_no_int_dist(samp.dat, null.dat) }) dat <- c(dat, mean(dat1)) } ddd <- distmet(lineup.dat, var = c("x", "z"), 'reg_no_int_dist', null_permute("x"), pos = 10) dat.reg.no.int <- as.data.frame(dat.reg.no.int) ggplot() + geom_density(data = dat.reg.no.int, aes(x = dat.reg.no.int), fill = "grey80", col = "grey80" ) + geom_segment(data = subset(dd3, len == 19), aes(x= reg.mean.no.int, xend = reg.mean.no.int, y=0.02*max(density(dat.reg.no.int$dat.reg.no.int)$y), yend = 0.2*max(density(dat.reg.no.int$dat.reg.no.int)$y)), colour="darkorange", size=1) + geom_segment(data = subset(dd3, len != 19), aes(x = reg.mean.no.int, xend = reg.mean.no.int, y = rep(0.02*max(density(dat.reg.no.int$dat.reg.no.int)$y),19), yend = rep(0.1*max(density(dat.reg.no.int$dat.reg.no.int)$y),19)), size=1, alpha = I(0.7)) + xlab("Distance") + ylab("") + geom_text(data = dd3, y = - 0.03*max(density(dat.reg.no.int$dat.reg.no.int)$y), size = 2.5, aes(x = reg.mean.no.int, label = pos.1)) + ylim(c(- 0.04*max(density(dat.reg.no.int$dat.reg.no.int)$y), max(density(dat.reg.no.int$dat.reg.no.int)$y) + 0.1*max(density(dat.reg.no.int$dat.reg.no.int)$y))) ggsave("distribution-reg-no-int-dist-exp2.pdf", height = 4, width = 4.5) ###======================================================================================================================= res.dat <- read.csv(file.choose()) is.character(res.dat$pic_name) res.lineup <- subset(res.dat, pic_name == "plot_turk2_100_350_12_3.png") pval <- function(t){ summary(lm(z ~ x, data = subset(lineup.dat, lineup.dat$.sample == t)))$coefficients[,4][2] } dat <- read.table("dat_turk2_100_350_12_3.txt", header = T) dat.m <- melt(dat, id = "X") dat.m$.sample <- substring(dat.m$variable, 2) lineup.dat <- data.frame(x = dat.m$X, z = dat.m$value, .sample = dat.m$.sample) metrics.dat <- ddply(dat.pos, .(pos.1, pos.2), summarize, reg.bin = reg_bin_indx(pos.1, pos.2), bin.dist = bdist_mod_indx(pos.1, pos.2, nbin.X = 8, nbin.Y = 2)) metrics.sub <- subset(metrics.dat, pos.1 != pos.2 & pos.2 != 10) dd <- ddply(metrics.sub, .(pos.1), summarize, reg.mean = mean(reg.bin), bin.mean = mean(bin.dist)) dd$pic_name = "plot_turk2_100_350_12_3.png" dat.merge <- merge(dd, res.lineup, by = "pic_name") dat.merge <- subset(dat.merge, select = c(reg.mean, bin.mean, response_no, pos.1)) rel <- ddply(dat.merge, .(pos.1), summarize, rel.freq = sum(response_no == pos.1)/dim(res.lineup)[1], reg.mean = mean(reg.mean), bin.mean = mean(bin.mean)) pvalue.dat <- ddply(lineup.dat, .(.sample), summarize, p = pval(.sample)) pval.merge <- merge(rel, pvalue.dat, by.x = "pos.1", by.y = ".sample") pval.merge$plot_loc <- ifelse(pos.1 == 10, 1, 0) qplot(log(p), rel.freq, data = pval.merge, geom = "point", col = plot_loc) + geom_linerange(aes(x = log(p), ymin = 0, ymax = rel.freq )) + theme(legend.position="none") + scale_colour_continuous(high = "red", low = "black") + scale_x_continuous("p-value" ) + scale_y_continuous("Relative Frequency", limits = c(0,1), breaks = c(0, 0.5, 1)) ggsave("rel-pvalue.pdf", height = 2.5, width = 4) rel.m <- melt(rel, id = c("pos.1", "rel.freq")) rel.m$plot_loc <- ifelse(pos.1 == 10, 1, 0) levels(rel.m$variable) <- c("Regression Based", "Binned") qplot(value, rel.freq, data = rel.m, geom = "point", col = plot_loc) + geom_linerange(aes(x = value, ymin = 0, ymax = rel.freq )) + theme(legend.position="none") + scale_colour_continuous(high = "red", low = "black") + facet_grid(variable ~ ., scales = "free_x") + scale_x_continuous("Mean Distances" ) + scale_y_continuous("Relative Frequency", limits = c(0,1), breaks = c(0, 0.5, 1)) # + theme(legend.position="none", axis.ticks = element_blank(), axis.text.x = element_blank()) ### Turk Experiment : Large p, Small n lineup.dat <- read.table(file.choose(), header = TRUE) # plot_large_p_small_n_30_80_0_2_3 qplot(X1, X2, data = lineup.dat, geom = "point", alpha = I(0.6), size = I(3), col = factor(cl)) + facet_wrap(~.sample) + scale_color_discrete(name = "Group") ggsave("lineup-large-p-small-n.pdf", height = 5, width = 5.5) #### New Lineup generate_plot_2d<-function(n=30,p, noise=1, m=20){ x<-matrix(rnorm(p*n),ncol=p) if(noise==0){ x[1:10,(p-1)]<-x[1:10,(p-1)]+3 x[11:20,(p-1)]<-x[11:20,(p-1)]-3 x[21:30,p]<-x[21:30,p]+sqrt(27) } colnames(x)<-paste("X",1:(p),sep="") x<-scale(x) x<-data.frame(x, cl=factor(c(rep(1,n/3),rep(2,n/3),rep(3,n/3)))) d=2 optima <- save_history(x[,-(p+1)], tour_path=guided_tour(index_f=pda_pp(cl=x[,(p+1)], lambda=0.2), max.tries=1000), max_bases=100, rescale=F) nbases<-dim(optima)[3] optima.global<-unclass(optima)[,,nbases] projdata.true<-data.frame(as.matrix(x[,-(p+1)])%*%optima.global, cl=x[,(p+1)], nbases=rep(nbases,n)) projdata.samples<-NULL flag <- 0 while(flag < 19) { x[,(p+1)]<-sample(x[,(p+1)]) optima <- save_history(x[,-(p+1)], guided_tour(index_f=pda_pp(cl=x[,(p+1)], lambda=0.2),max.tries=100), max_bases=100, rescale=F) nbases<-dim(optima)[3] optima.global<-unclass(optima)[,,nbases] projdata<-data.frame(as.matrix(x[,-(p+1)])%*%optima.global, cl=x[,(p+1)], nbases=rep(nbases,30)) lamb<-summary(manova(cbind(X1, X2)~cl, data=projdata), test="Wilks")[[4]][3] if(lamb < 0.001){ projdata.samples<-rbind(projdata.samples, projdata) flag <- flag + 1 }else { projdata <- NULL projdata.samples <- rbind(projdata.samples, projdata) flag = flag } cat(flag, lamb, "\n") } projdata.samples$.n <- rep(1:19, each = 30) #pos<-sample(m,1) lineup.data<-lineup(true=projdata.true, samples=projdata.samples,pos=1) return(lineup.data) } dat <- generate_plot_2d(p = 80, noise = 0) qplot(X1, X2, data=dat, colour=cl) + facet_wrap(~ .sample) + scale_colour_discrete(name="Group") + scale_y_continuous("X2") + scale_x_continuous("X1") ggsave("largep-lineup-new-1.pdf", height = 5, width = 5.5) n <- 30; p <- 80 dat.b <- dat.s <- NULL for (i in 1:15){ flag <- 0 while(flag < 1){ x<-matrix(rnorm(p*n),ncol=p) x[1:10,(p-1)]<-x[1:10,(p-1)]+3 x[11:20,(p-1)]<-x[11:20,(p-1)]-3 x[21:30,p]<-x[21:30,p]+sqrt(27) colnames(x)<-paste("X",1:(p),sep="") x<-scale(x) x<-data.frame(x, cl=factor(c(rep(1,n/3),rep(2,n/3),rep(3,n/3)))) x[,(p+1)]<-sample(x[,(p+1)]) optima <- save_history(x[,-(p+1)], tour_path=guided_tour(index_f=pda_pp(cl=x[,(p+1)], lambda=0.2), max.tries=100), max_bases=100, rescale=F) nbases<-dim(optima)[3] optima.global<-unclass(optima)[,,nbases] projdata.null<-data.frame(as.matrix(x[,-(p+1)])%*%optima.global, cl=x[,(p+1)], nbases=rep(nbases,n)) lamb<-summary(manova(cbind(X1, X2)~cl, data=projdata.null), test="Wilks")[[4]][3] if(lamb < 0.001){ flag <- flag + 1 } cat(flag, lamb, "\n") } dat1 <- sapply(1:5, function(k){ flag1 <- 0 while(flag1 < 1){ x[,(p+1)]<-sample(x[,(p+1)]) optima <- save_history(x[,-(p+1)], guided_tour(index_f=pda_pp(cl=x[,(p+1)], lambda=0.2),max.tries=100), max_bases=100, rescale=F) nbases<-dim(optima)[3] optima.global<-unclass(optima)[,,nbases] projdata<-data.frame(as.matrix(x[,-(p+1)])%*%optima.global, cl=x[,(p+1)], nbases=rep(nbases,30)) lamb1 <- summary(manova(cbind(X1, X2)~cl, data=projdata), test="Wilks")[[4]][3] if(lamb1 < 0.001){ flag1 <- flag1 + 1 } cat("flag1 =", flag1, "i = ", i, lamb1, "\n") } projdata.null$cl <- as.numeric(projdata.null$cl) projdata$cl <- as.numeric(projdata$cl) b = bin_dist(projdata.null, projdata, lineup.dat = dat, X.bin = 6, Y.bin = 4) s = sep_dist(projdata.null, projdata, clustering = TRUE, nclust = 3) return(list(b = b, s = s)) }) dat1 <- matrix(unlist(dat1), nrow = 2 ) dat.b <- c(dat.b, mean(dat1[1,])) dat.s <- c(dat.s, mean(dat1[2,])) } #opt_diff(lineup.dat, var = c('X1', 'X2'), 2, 10, 2, 10, 20, plot = TRUE) #detach(package:plyr) library(dplyr) ddd <- distmet(dat, var = c("X1", "X2"), 'bin_dist', null_permute("cl"), pos = 1, dist.arg = list(X.bin = 6, Y.bin = 4)) pos <- 1 m <- 20 qplot(dat.b, geom = "density", fill = I("grey80"), colour = I("grey80"), xlab = "Permutation distribution", ylab = "") + geom_segment(aes(x = ddd$lineup$mean.dist[ddd$lineup$plotno != pos], xend = ddd$lineup$mean.dist[ddd$lineup$plotno != pos], y = rep(0.01 * min(density(dat.b)$y), (m - 1)), yend = rep(0.05 * max(density(dat.b)$y), (m - 1))), size = 1, alpha = I(0.7)) + geom_segment(aes(x = ddd$lineup$mean.dist[ddd$lineup$plotno == pos], xend = ddd$lineup$mean.dist[ddd$lineup$plotno == pos], y = 0.01 * min(density(dat.b)$y), yend = 0.1 * max(density(dat.b)$y)), colour = "darkorange", size = 1) + geom_text(data = ddd$lineup, y = -0.03 * max(density(dat.b)$y), size = 2.5, aes(x = mean.dist, label = plotno)) + ylim(c(-0.04 * max(density(dat.b)$y), max(density(dat.b)$y) + 0.1)) ggsave("bin-dist-largep-6-4-new-1.pdf", height = 5, width = 5.5) ### Sep dist dat$cl <- as.numeric(dat$cl) ddd <- distmet(dat, var = c("X1", "X2", "cl"), 'sep_dist', null_permute("cl"), pos = 1, dist.arg = list(clustering = TRUE, nclust = 3)) pos <- 1; m = 20 qplot(dat.s, geom = "density", fill = I("grey80"), colour = I("grey80"), xlab = "Permutation distribution", ylab = "") + geom_segment(aes(x = ddd$lineup$mean.dist[ddd$lineup$plotno != pos], xend = ddd$lineup$mean.dist[ddd$lineup$plotno != pos], y = rep(0.01 * min(density(dat.s)$y), (m - 1)), yend = rep(0.05 * max(density(dat.s)$y), (m - 1))), size = 1, alpha = I(0.7)) + geom_segment(aes(x = ddd$lineup$mean.dist[ddd$lineup$plotno == pos], xend = ddd$lineup$mean.dist[ddd$lineup$plotno == pos], y = 0.01 * min(density(dat.s)$y), yend = 0.1 * max(density(dat.s)$y)), colour = "darkorange", size = 1) + geom_text(data = ddd$lineup, y = -0.03 * max(density(dat.s)$y), size = 2.5, aes(x = mean.dist, label = plotno)) + ylim(c(-0.04 * max(density(dat.s)$y), max(density(dat.s)$y) + 0.1)) ggsave("sep-dist-largep-new-1.pdf", height = 5, width = 5.5) ### Case Study ## Separation Distance X <- lineup.dat[lineup.dat$.sample == 20, ] PX <- lineup.dat[lineup.dat$.sample == 7, ] M2sep_dist_indx <- function(i, j, clustering = FALSE, nclust = 3){ X <- lineup.dat[lineup.dat$.sample == i,] PX <- lineup.dat[lineup.dat$.sample == j,] require(fpc) dX <- dist(X[,1:2]) dPX <- dist(PX[,1:2]) if(clustering){ X$cl <- X[,3] PX$cl <- PX[,3] X.clus <- as.vector(cluster.stats(dX, clustering = X$cl)$ave.between.matrix) PX.clus <- as.vector(cluster.stats(dPX, clustering = PX$cl)$ave.between.matrix) }else{ complete.X <- cutree(hclust(dX), nclust) complete.PX <- cutree(hclust(dPX), nclust) X.clus <- as.vector(cluster.stats(dX, complete.X)$ave.between.matrix) PX.clus <- as.vector(cluster.stats(dPX, complete.PX)$ave.between.matrix) } sqrt(sum((X.clus - PX.clus)^2)) } M3sep_dist_indx <- function(i, j, clustering = FALSE, nclust = 3){ X <- lineup.dat[lineup.dat$.sample == i,] PX <- lineup.dat[lineup.dat$.sample == j,] require(fpc) dX <- dist(X[,1:2]) dPX <- dist(PX[,1:2]) if(clustering){ X$cl <- X[,3] PX$cl <- PX[,3] X.clus <- cluster.stats(dX, clustering = X$cl)$wb.ratio PX.clus <- cluster.stats(dPX, clustering = PX$cl)$wb.ratio }else{ complete.X <- cutree(hclust(dX), nclust) complete.PX <- cutree(hclust(dPX), nclust) X.clus <- cluster.stats(dX, complete.X)$wb.ratio PX.clus <- cluster.stats(dPX, complete.PX)$wb.ratio } sqrt(sum((X.clus - PX.clus)^2)) } lineup.dat <- read.table(file.choose(), header = TRUE) # plot_large_p_small_n_30_80_0_2_3 qplot(X1, X2, data = lineup.dat, geom = "point", alpha = I(0.6), size = I(2), col = factor(cl)) + facet_wrap(~.sample) + scale_color_discrete(name = "Group") part.largep <- distmet(lineup.dat, var = c("X1", "X2", "cl"), 'M3sep_dist', null_permute("cl"), pos = 20, repl = 1, dist.arg = list(clustering = TRUE, nclust = 3)) part.largep$lineup$plotno[order(part.largep$lineup$mean.dist, decreasing = TRUE)] files.png <- dir("/Users/Niladri/Documents/Research/Permutation/paper-metrics-data-code/Mahbub's data/large-p-exp","*.png") files.txt <- dir("/Users/Niladri/Documents/Research/Permutation/paper-metrics-data-code/Mahbub's data/large-p-exp","*.txt") metrics1 <- NULL metrics2 <- NULL for(i in 1:length(files.txt)){ dat <- read.table(paste("/Users/Niladri/Documents/Research/Permutation/paper-metrics-data-code/Mahbub's data/large-p-exp/",files.txt[i], sep = ""), header = T) if(dim(dat)[2] == 4){ lineup.dat <- data.frame(x = dat$x, z = dat$cl, cl = dat$cl, .sample = dat$.sample) metrics.dat <- ddply(dat.pos, .(pos.1, pos.2), summarize, sep.dist = M3sep_dist_indx(pos.1, pos.2, clustering = TRUE, nclust = 2)) metrics.dat1 <- data.frame(metrics.dat, pic_name = files.png[i]) metrics1 <- rbind(metrics1, metrics.dat1) } if(dim(dat)[2] == 6){ lineup.dat <- data.frame(x = dat$X1, z = dat$X2, cl = dat$cl, .sample = dat$.sample) metrics.dat <- ddply(dat.pos, .(pos.1, pos.2), summarize, sep.dist = M3sep_dist_indx(pos.1, pos.2, clustering = TRUE, nclust = 3)) metrics.dat2 <- data.frame(metrics.dat, pic_name = files.png[i]) metrics2 <- rbind(metrics2, metrics.dat2) } metrics <- rbind(metrics1, metrics2) } #write.table(metrics, "largep-metrics.txt", row.names = F) #qplot(X1, X2, data = dat, geom = "point", alpha = I(0.7), color = factor(cl)) + facet_wrap(~.sample) + scale_colour_discrete(name = "Group") res.exp.lp <- read.csv("/Users/Niladri/Documents/Research/Permutation/paper-metrics-data-code/Mahbub's data/raw_data_turk7.csv") res.exp.lp <- subset(res.exp.lp, pic_name %in% files.png, select = c(pic_name, response, response_no, plot_location, time_taken)) res.dat <- ddply(res.exp.lp, .(pic_name), summarize, prop = sum(response)/length(response), pos = mean(plot_location), m.time = median(time_taken)) metrics.sub <- subset(metrics, pos.1 != pos.2) dat.merge <- merge(metrics.sub, res.dat, by = "pic_name") dat.merge <- subset(dat.merge, pos.2 != pos) dd <- ddply(dat.merge, .(pic_name, pos.1), summarize, sep.mean = mean(sep.dist), len = length(sep.dist), prop = mean(prop), m.time = mean(m.time)) prop.dist <- ddply(dd, .(pic_name), summarize, diff.sep = sep.mean[len == 19] - max(sep.mean[len == 18]), grtr.sep = sum(sep.mean[len == 18] > sep.mean[len == 19]), prop = mean(prop), m.time = mean(m.time)) qplot(diff.sep, prop, data = prop.dist, size = I(3), xlab = "Difference", ylab = "Detection Rate")+ geom_smooth(se = FALSE) + geom_vline(xintercept = 0, col = "red")+ theme(legend.position = "none") ######=================================================================================== wilks <- function(x){ summary(manova(cbind(X1, X2)~cl, data = subset(lineup.dat, lineup.dat$.sample == x)), test="Wilks")[[4]][3] } dddd <- ddply(lineup.dat, .(.sample), summarize, w = wilks(.sample)) sum(dddd$w - dddd$w[dddd$.sample == 19])/19 wilks_dist <- function(X, PX, clustering = FALSE, nclust = 3) { dX <- dist(X[, 1:2]) dPX <- dist(PX[, 1:2]) if (clustering) { X$cl <- X[, 3] PX$cl <- PX[, 3] X.clus <- summary(manova(cbind(X[,1], X[,2])~cl, data = X), test="Wilks")[[4]][3] PX.clus <- summary(manova(cbind(PX[,1], PX[,2])~cl, data = PX), test="Wilks")[[4]][3] } else { complete.X <- cutree(hclust(dX), nclust) complete.PX <- cutree(hclust(dPX), nclust) X.clus <- summary(manova(cbind(X[,1], X[,2])~cl, data = X), test="Wilks")[[4]][3] PX.clus <- summary(manova(cbind(PX[,1], PX[,2])~cl, data = PX), test="Wilks")[[4]][3] } sn.cl <- sign(X.clus - PX.clus) ifelse(sn.cl == -1, sqrt(sum((X.clus - PX.clus)^2)),0) } eden <- ddply(dat.pos, .(pos.1, pos.2), summarize, d = wilks_dist(lineup.dat[lineup.dat$.sample == pos.1, ], lineup.dat[lineup.dat$.sample == pos.2, ], clustering = TRUE)) eden <- subset(eden, pos.1 != pos.2 & pos.2 != 20) ddply(eden, .(pos.1), summarize, mean(d)) wilks_dist_indx <- function(i, j, clustering = FALSE, nclust = 3){ X <- lineup.dat[lineup.dat$.sample == i,] PX <- lineup.dat[lineup.dat$.sample == j,] require(fpc) dX <- dist(X[,1:2]) dPX <- dist(PX[,1:2]) X$cl <- X[, 3] PX$cl <- PX[, 3] X.clus <- summary(manova(cbind(X[,1], X[,2])~cl, data = X), test="Wilks")[[4]][3] PX.clus <- summary(manova(cbind(PX[,1], PX[,2])~cl, data = PX), test="Wilks")[[4]][3] sn.cl <- sign(X.clus - PX.clus) ifelse(sn.cl == -1, sqrt(sum((X.clus - PX.clus)^2)),0) }
67573da26a88ab14f59421614ae8ff2ae3c15079
de0400bfb372ffbcbfa7db1bea39ef3578c3257b
/man/is_empty_rtable.Rd
92baf816a9ca60d6d0f4bcc3b27e0241801f98d5
[ "MIT", "Apache-2.0" ]
permissive
bbaranow/rtables
caef2758ed69ee8d73516c8bad43fc65d6c32a9c
efdfd495553dd682c5f1d388b778dac635a29cca
refs/heads/master
2022-11-18T23:46:01.900811
2020-06-09T12:38:56
2020-06-09T12:38:56
277,768,817
0
1
NOASSERTION
2020-07-15T11:42:29
2020-07-07T09:05:42
null
UTF-8
R
false
true
285
rd
is_empty_rtable.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/rtable.R \name{is_empty_rtable} \alias{is_empty_rtable} \title{If rtable is empty} \usage{ is_empty_rtable(x) } \arguments{ \item{x}{object} } \value{ if rtable is empty } \description{ If rtable is empty }
9f6c4b6cf1865d254575925a339f4ceb903798bf
a595d015cbd1ca1e3ad435cf90251b39c3d230d2
/R_Scripts/DESEQ2_TKO.R
6ed427e4168475c4be73b57cf97d6fc4e6ab8d0b
[]
no_license
sbodapati/CRISPR_Benchmarking_Algorithms
00256deab82f65658dc874cdea5fd665c8ce59e8
30da389cca81bca673712944856df447b1d752c7
refs/heads/master
2021-08-01T08:23:38.081571
2020-04-16T16:17:45
2020-04-16T16:17:45
203,469,469
4
3
null
2021-07-25T19:52:26
2019-08-20T23:26:49
HTML
UTF-8
R
false
false
1,167
r
DESEQ2_TKO.R
--- title: "Testing Sunil’s simulations" author: "Timothy Daley" date: "2/11/2019" output: html_document --- testCounts = read.table(file = "/Users/sbodapati/Desktop/TimFile_2.txt", header = TRUE) head(testCounts) counts = testCounts[ ,1:3] colData = data.frame(condition = factor(c(0, 1, 1))) # 1 is condition, 0 is baseline rownames(colData) = colnames(counts) # install DESeq2 #install.packages("BiocManager") #BiocManager::install("DESeq2") # set up DESeq testCountsDESeq2 = DESeq2::DESeqDataSetFromMatrix(countData = counts, colData = colData, design = ~ condition) # compute testCountsDESeq2 = DESeq2::DESeq(testCountsDESeq2) # get results testCountsDESeq2 = DESeq2::results(testCountsDESeq2) log2fc = testCountsDESeq2$log2FoldChange library(ggplot2) ggplot(data.frame(log2fc = log2fc, essential = factor(testCounts$Essentiality)), aes(x = log2fc, col = essential, fill = essential)) + geom_density(alpha = 0.6) + theme_bw() + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.line = element_line(colour = "black")) ```
13eae24066e0469812aa0da4ea93e966ca31b9f2
12e3d5f8618bbc113e6f039b7346fc5d723015c9
/Stats_I/Class20/Bootstrap_ClassExamples_with_ForClass.R
3d780a3dbdcb8476ff8323356fa1e3b461853991
[]
no_license
raschroeder/R-Coursework
4af2ded6e9af2c0c64697dcc796a12e508f38ae4
1e9800b00f84cb4092c956d9910a710729b9aff3
refs/heads/master
2020-04-05T12:44:28.824912
2019-02-06T15:59:07
2019-02-06T15:59:07
156,878,511
0
0
null
null
null
null
UTF-8
R
false
false
6,345
r
Bootstrap_ClassExamples_with_ForClass.R
############################################################## #####################Boostrapping basics ############################################################## ################################# #lets Build a normal distrobution ################################ ?rnorm #lets us build a normal distrobution with whatever mean and SD we want! n=1e6 #Population Size MeanofPop = 0 SDofPop = 1 ## Build the population population<-rnorm(n, MeanofPop, SDofPop) hist(population) #Build a Probability density function (just like all those in your books) plot(density(population)) ################################# #lets sample from our population ################################ SizeofSample = 10 #we are going to take small samples from our population ?sample # This function is going to let us sample from the population. #We can do it with or without replacement #sample 1 - takes the population, removes a sample, and replaces with other ones sample.1<-sample(population, SizeofSample, replace = TRUE) hist(sample.1) mean(sample.1) #mean shoud be around 0 SE.1<-sd(sample.1)/sqrt(SizeofSample) # should be around SDofPop SE.1 Estimated.SEM<-SDofPop/sqrt(SizeofSample) #Sample 2 sample.2<-sample(population, SizeofSample, replace = TRUE) hist(sample.2) mean(sample.2) SE.2<-sd(sample.2)/sqrt(SizeofSample) # should be around SDofPop/sqrt(SizeofSample) SE.2 #why are the two simulated SE so differnet from the estimted SE? # Cause we only did 1 sample! Too bootstrap we need to sample with replacement 1000s of times! # We need to build a distrobution of sample means! # We could code it ourselves using a nested series of functions # lets write on the board what we want to happen and then we will examine how to code it below. samples.means<-replicate(1000,mean(sample(population, SizeofSample, replace = TRUE))) #takes 1000 samples and calcs the means plot(density(samples.means)) sd(samples.means) # this is actually smaller than the esimated SEM. This is actually more accurate than estimating it. ############################################################## #####################Boostrapping Practice 1 ############################################################## #Lets build a beta distrobution BetaDistro<-rbeta(n, shape1=2, shape2=25, ncp = 1) plot(density(BetaDistro)) True.Median<-median(BetaDistro) True.Median #Lets bootstrapp a median if this skewed distrobution. Sample.Size.Median = 30 samples.medians<-replicate(1000,median(sample(BetaDistro, Sample.Size.Median, replace = TRUE))) plot(density(samples.medians)) Boot.Median<-mean(samples.medians) Boot.Median Percent.Off<-(abs(True.Median-Boot.Median)/True.Median)*100 Percent.Off #How can I reduce the error? ##Increase the sample size or the number of estimates ############################################################## #####################Boostrapping a Correlation ############################################################## # lets pretend you had 20 people on two scales and you wanted to correlate their data: set.seed(666) n=20 Corr.data <- data.frame(y = runif(n), x = runif(n)) Corr.data # Original correlation with(Corr.data, cor(x, y)) # So basically a weak relationship, lets examine CIs around the correlation # Our function that will be used to feed into boot_corr <- function(data, resample_vector) { cor(data$x[resample_vector], data$y[resample_vector]) } library(boot) cor_results <- boot(Corr.data, boot_corr, sim = "ordinary",R = 1000) boot.ci(cor_results) ############################## ### Some magic stuff below ### ############################## # Let run a difference test on the SD difference between groups using boot function # We will look to see if the differences include zero # lets start with Some data Group 1 and 2, had a mean of 50, but group 1 has an # SD = 25, and group 2 SD = 12.5 N=30 set.seed(42) DatSet<-data.frame(Group1=rnorm(N,50,25),Group2=rnorm(N,50,12.5)) summary(DatSet) sd(DatSet$Group1) sd(DatSet$Group2) # We need to define our test. boot.variance <- function(data, i) { SD1=sd(data$Group1[i]) SD2=sd(data$Group2[i]) d=(SD1-SD2) } Var_results <- boot(DatSet, boot.variance, sim = "ordinary",R = 1000) boot.ci(Var_results) # We can run a Monte-Carlo simulation as well MonteCarlo.variance <- function(N) { SD1=sd(rnorm(N,50,25)) SD2=sd(rnorm(N,50,12.5)) d=(SD1-SD2) return(d) } sample.size=30 M.Var<-replicate(10000,MonteCarlo.variance(sample.size)) Percentle.CI.Var<-quantile(M.Var, c(.05,.5,.95)) Percentle.CI.Var ############################################################## #####################Small Group Challange ############################################################## # We will form groups of 3. # The goal is to create your own bootstrapped between subjects t-test! # You will 1) build populations, 2) sample from each distrobution, 3) create difference scores, 3) use the difference score to calculate the boot t.test (all by code!) # Remember SD of the bootstrapped distrobution of scores = SEM of that distrobution # SO, boot.t test = mean(differences scores)/SD(differences scores) [Note this is quick and dirty version] # I have build you one function which will help at the end # to get the pvalues for your t-test use tis function. # You need to enter the t and the n as the sample size of your t-test # Run the code to load into memory Boot.t.pvalue<-function(boot.t, sample.size) { pvalue<-2*pt(-abs(boot.t),df=(sample.size*2)-2) return(pvalue) } # When you find you t-value, you just need to do this pvalue<- Boot.t.pvalue(tvalue, sample.size) ################################### #######Task ################################### #Step 1: Make chart of the steps you need to follow to solve the task # (my headers below will help you organize your chart). # here are the paramters you need to run this simulation study #Make two Normal populations! #population 1: mean = 60 , SD = 10 #population 2: mean = 90 , SD = 20 n=1e6 #Population Size ### Build the populations #graph each (just to check your code) #Sample with 10 people from each population and do each 10000 timess # Get a vector of the differences between each sample mean #plot the vector (this is the distrobution of mean differences of 1000 studies on this experiment) # Run a boot.t test and get the pvalue
87862519f568de16a947dd685bfa61bf7b287406
49a6940dee400fe0953f5a6b7dc899f0297926f9
/cleaning_data/no-cgm-or-a1c/Protocol_I.R
4e23eeff72e712f5048979d8ba9c3bed30e2772a
[]
no_license
joshuagrossman/a1c
947f50de2d760f6929531859110ca16db31a0545
0825dba7fe588f8915595bb947c15a3d0a636a69
refs/heads/master
2023-03-04T11:54:09.442051
2021-02-05T08:13:26
2021-02-05T08:13:26
197,865,786
1
0
null
null
null
null
UTF-8
R
false
false
1,790
r
Protocol_I.R
################################## LIBRARIES ################################### source("lib/source.R") ################################## GLOBALS ##################################### data_path <- "data/Protocol_I/Data Tables" cleaned_data_path <- "data/Protocol_I/clean" data_name <- "Protocol_I" ################################# READ IN DATA ################################# dfs <- make_dfs(data_path) #View(dfs) cleaned_dfs <- list() ################################# CGM DATA ##################################### cleaned_dfs$cgm <- dfs$IDataCGM %>% filter(!is.na(Glucose)) %>% mutate(datetime = convert_to_datetime(DeviceDtDaysFromEnroll, DeviceTm)) %>% select(PtID, datetime, Glucose) ################################# HBA1C DATA ################################### cleaned_dfs$a1c <- dfs$IScreening %>% mutate(date = convert_to_date(TestDtDaysAfterEnroll)) %>% select(PtID, date, HbA1c) ################################# INSULIN DATA ################################# # TODO(Josh): Fix this if insulin data is useful # cleaned_dfs$insulin <- # dfs$HDataPump %>% # mutate(datetime = convert_to_datetime(DeviceDtDaysFromEnroll, DeviceTm)) %>% # select(PtID, datetime, ImmediateVol, ExtendedVol) ################################ STATIC MEASUREMENTS ########################### IPtRoster_cleaned <- dfs$IPtRoster %>% select(PtID, AgeAsOfEnrollDt) IScreening_cleaned <- dfs$IScreening %>% select(PtID, Gender, Ethnicity, Race, Weight, Height) cleaned_dfs$measurements <- full_join(IPtRoster_cleaned, IScreening_cleaned, by = "PtID") ################################ WRITE CSVS TO FILE ############################ write_main_csvs(cleaned_dfs, cleaned_data_path) split_into_csvs(str_c(cleaned_data_path, "/cgm.csv"), data_name)
72f0d3b60ef64d865016352112de87761074e460
e910b929a3b5d2e4c1628e22138254a1808d95c4
/man/qseckw.Rd
42e18ead971ed6367adf19ac2f2a401cdb3cfe26
[]
no_license
cran/SecKW
2e3d6d4acd400fffe7f4a16331a5054f957643dd
80f09e2d00a51be56d3112efcffb93bd637c23fe
refs/heads/master
2020-12-22T18:27:44.488677
2016-07-18T13:02:45
2016-07-18T13:02:45
236,889,700
0
0
null
null
null
null
UTF-8
R
false
true
916
rd
qseckw.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/qseckw.R \name{qseckw} \alias{qseckw} \title{The cumulative function of the Secant Kumaraswamy Weibull probability distribution.} \usage{ qseckw(p, a, b, c, lambda, lower = TRUE, log.p = FALSE) } \arguments{ \item{p}{Vector of probabilities.} \item{a}{A parameter.} \item{b}{B parameter.} \item{c}{C parameter.} \item{lambda}{Lambda parameter.} \item{lower}{logical; if TRUE (default), probabilities are \eqn{P[X \leq x]} otherwise, \eqn{P[X > x]}.} \item{log.p}{logical; if TRUE, probabilities p are given as log(p).} } \value{ A vector with n observations of the Secant Kumaraswamy Weibull distribution. } \description{ The cumulative function of the Secant Kumaraswamy Weibull probability distribution. } \examples{ qseckw(0.5, 1, 1, 1, 1, TRUE, FALSE) qseckw(0.5, 3, 0.5, 2, 2, TRUE, FALSE) }
9baa49e9061450422dd9f14c4cb0fe45b7e4cab5
1b925a76538fc8e59ea4e481d2871628d929d530
/R/makeridgeplot.R
7e1f87a23d55b4ab1b9992dff9ec1efed3b017d8
[]
no_license
CASPResearch/ProvPack
7217be03f0e531fa4ca1f68058a0a6ba5afefcc6
630b519f6939077dad69e5bfccf3b0eef054bcce
refs/heads/master
2021-04-27T08:26:14.701309
2019-06-27T13:03:54
2019-06-27T13:03:54
122,489,213
0
0
null
null
null
null
UTF-8
R
false
false
5,164
r
makeridgeplot.R
#' Make ridge plot of distributional data #' #' This function creates overlapping KDEs and plots them as an overlapping 'ridge plot' #' inspired by the iconic "Unknown Pleasures" album cover by Joy Division. Whilst being very visually #' attractive it also allows large amounts of KDEs to be plotted in one go, allowing for succint representation. #' This also allows the different KDE's to be sorted by a clustering algorithm, which groups similar spectra #' together according to their Kolmogorov-Smirnov statistic. #' #' For large datasets this can take a while but be patient! #' @param distributional An object of class distributional (see "load_distributional"), e.g. Zircon ages, rutile ages etc... #' @param scale This is the degree of overlap for the ridges. A value of 1 means that the largest overlap in the #' plot touches the base of the ridge above. Default value is 10, adjust to see what works best for individual cases. #' @param clustered Boolean, defaults to TRUE indicates whether the samples are to be sorted vertically according #' to the similarity of their spectra. If FALSE, they are grouped according to their "typing" #' @param from,to Minimum and maximum x value. Optional #' @param samebandwidth Boolean, default FALSE. If TRUE, all KDEs are generated with the same bandwidth (not recommended) #' @param normalise Boolean, default TRUE. All KDEs given same area. #' @param adaptive Boolean, default TRUE. Geological spectra are often multi-modal, and so the KDE algorithms #' should have an "adaptive" bandwidth which varies across the x-axis according to point density. This is broad #' when data is sparse but narrow when data is dense. Turn off only if data is strongly unimodal. #' @return Returns a ggplot object. Automatically plots it, but can be saved to variable as any normal ggplot object. #' @keywords distributional, ridges, KDEs #' @examples #' \dontrun{ridgeplot <- makeridges(zircs)} #' \dontrun{ridgeplot <- makeridges(zircs,samebandwidth = FALSE, normalise = FALSE, adaptive = FALSE)} #' \dontrun{ridgeplot <- makeridges(zircs,clustered = FALSE, scale = 20)} #' \dontrun{ridgeplot <- makeridges(zircs, from = -500, to = 2500)} #' \dontrun{ridgeplot <- makeridges(zircs, clustered = FALSE)} #' @export makeridges <- function(distributional, scale = 10, clustered = T, from = NA, to = NA, samebandwidth = F, normalise = T, adaptive = T) { if(class(distributional)!= "distributional"){ print("Can only make ridgeplots for distributional objects!") return(NULL) } kdesdf = provenance::KDEs( distributional, from = from, to = to, normalise = normalise, samebandwidth = samebandwidth, adaptive = adaptive ) #Extract into a list of objects KDE list_kdes = kdesdf$kdes #generate a list and subseqently a dataframe of all the y coordinates listys = lapply(list_kdes, function(x) x$y) df = as.data.frame(listys) #extract the common x coordinates commonx = list_kdes[[1]]$x #add common x coordinates to the dataframe df$x = commonx #This basically reshapes the data so that x is common, and y's are different. It allows plotting of multiple lines simulataneously df_melted <- reshape2::melt(df, id = "x") #Adds a typing column by checking which type list each sample name belongs to. Complex code, don't be afraid. df_melted$typing = as.character(lapply(df_melted$variable, function(x) names(distributional$typing)[indx = which(sapply(distributional$typing, function(y) is.element(x, y)))])) #Orders the dataframe based on type so they plot in groups next to each other. Manually adjust for visual affect, e.g. by manually setting levels of "sandtype" df_melted$typing <- factor(df_melted$typing, levels = distributional$TrueOrder) if (clustered) { ks_dist <- as.dist(provenance::diss(distributional,method='KS')) clust <- hclust(ks_dist, method= "ward.D") names <- colnames(df) clustorder <- names[rev(clust$order)] clst <- factor(clustorder, levels = clustorder) df_melted$variable <- factor(df_melted$variable, levels = clst) sorted <- df_melted } else { sorted <- df_melted[order(df_melted$typing),] sorted$variable <- factor(sorted$variable, levels = unique(sorted$variable)) } colnames(sorted) <- c("Variable", "Samples", "Density", "Type") plot <- ggplot(data = sorted, aes( x = Variable, y = Samples, height = Density, fill = Type, group = Samples )) + ggridges::geom_density_ridges(stat = "identity", scale = scale, size = 0.3) + scale_fill_manual(values = as.character(distributional$palette)) + scale_x_continuous(expand = c(0, 0)) + scale_y_discrete(expand = c(0.00, 0)) + theme_minimal() return(plot) }
29f1af810fb2925e1ded54820454f48ec4a25152
fa79fb5281eb3d132993970cc11ca7f1e1cb5d33
/metaanalysis_archive/analyze_expression_by_tissue.R
39f8494401f33f309cd0993c25e7159a85021604
[]
no_license
metabdel/motrpac_public_data_analysis
e9a72b42359e49a6a99e95aa8f557cfd95f84c3c
3a9d81a0ea071d892bc9023474f4881c2b32b95e
refs/heads/master
2023-03-02T12:03:51.024399
2021-02-10T00:20:59
2021-02-10T00:20:59
null
0
0
null
null
null
null
UTF-8
R
false
false
2,652
r
analyze_expression_by_tissue.R
setwd('/Users/David/Desktop/MoTrPAC/PA_database') library(metafor) source('repos/motrpac/helper_functions.R') # Get the datasets and their metadata load("PADB_univariate_results_and_preprocessed_data_acute.RData") acute_datasets = cohort_data acute_metadata = cohort_metadata load("PADB_univariate_results_and_preprocessed_data_longterm.RData") longterm_datasets = cohort_data longterm_metadata = cohort_metadata # extract the data objects for the meta-analysis acute_genes = rownames(acute_datasets[[1]]$gene_data) for(i in 2:length(acute_datasets)){ if(length(acute_datasets[[i]])<3){next} acute_genes = intersect(acute_genes,rownames(acute_datasets[[i]]$gene_data)) } longterm_genes = rownames(longterm_datasets[[1]]$gene_data) for(i in 2:length(longterm_datasets)){ if(length(longterm_datasets[[i]])<3){next} longterm_genes = intersect(longterm_genes,rownames(longterm_datasets[[i]]$gene_data)) } # get genes that are expressed q_thr = 0.5 expressed_genes1 = list() sum_counts1 = list() for(i in 1:length(acute_datasets)){ if (length(acute_datasets[[i]])<3){next} tissue = acute_metadata[[i]]$tissue m = acute_datasets[[i]]$gene_data[acute_genes,] m = apply(m,2,rank) m = m/nrow(m) curr_expressed = rowSums(m>q_thr)/ncol(m) if(is.null(expressed_genes1[[tissue]])){ expressed_genes1[[tissue]] = curr_expressed sum_counts1[[tissue]]=1 } else{ expressed_genes1[[tissue]] = expressed_genes1[[tissue]] + curr_expressed sum_counts1[[tissue]] = sum_counts1[[tissue]]+1 } } expressed_genes2 = list() sum_counts2 = list() for(i in 1:length(longterm_datasets)){ if (length(longterm_datasets[[i]])<3){next} tissue = longterm_metadata[[i]]$tissue m = longterm_datasets[[i]]$gene_data[longterm_genes,] m = apply(m,2,rank) m = m/nrow(m) curr_expressed = rowSums(m>q_thr)/ncol(m) if(is.null(expressed_genes2[[tissue]])){ expressed_genes2[[tissue]] = curr_expressed sum_counts2[[tissue]] = 1 } else{ expressed_genes2[[tissue]] = expressed_genes2[[tissue]] + curr_expressed sum_counts2[[tissue]] = sum_counts2[[tissue]]+1 } } for(nn in names(expressed_genes1)){ expressed_genes1[[nn]] = expressed_genes1[[nn]] / sum_counts1[[nn]] } for(nn in names(expressed_genes2)){ expressed_genes2[[nn]] = expressed_genes2[[nn]] / sum_counts2[[nn]] } gs = intersect(acute_genes,longterm_genes) plot(expressed_genes1$muscle[gs],expressed_genes2$muscle[gs]) plot(expressed_genes1$blood[gs],expressed_genes2$blood[gs]) tissue_expression_scores = list(longterm = expressed_genes2,acute=expressed_genes1,shared_genes=gs) save(tissue_expression_scores,file="tissue_expression_scores.RData")
d4d8cf20eb110a7d765122dec8d58b8c27885a60
c0e766a6a57e3c5c32f8b0afe130b8df66e6dbf9
/rsellPoshmark/man/PM_Sales_Upload_Submit.Rd
92f7718b209aa195b71e4bb39a46158e3b0b3e63
[]
no_license
t2tech-corp/Rsell-Packages
b450fec180754aa9cf0cf3ab6b369c74c57b7e70
047a2348650e5a2ee0bc52500824a34f16167056
refs/heads/main
2023-03-03T00:22:15.006720
2021-02-14T22:58:12
2021-02-14T22:58:12
329,474,392
0
0
null
null
null
null
UTF-8
R
false
true
523
rd
PM_Sales_Upload_Submit.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/PM_Sales_Upload_Submit.R \name{PM_Sales_Upload_Submit} \alias{PM_Sales_Upload_Submit} \title{Submit Poshmark Sales Activity to Database} \usage{ PM_Sales_Upload_Submit(sales_activity) } \arguments{ \item{sales_activity}{Poshmark Sales Activity Report} } \value{ sales_activity Poshmark Sales Activity Report with added Duplicate column } \description{ This function Submits the Poshmark Sales Activity to Database. } \details{ Requires: dplyr }
291b84c4a41b54898a6cb3db979c11740d317a4e
5af60ba162be455e6f1df3f68f72047aef59eccb
/man/align_lc.Rd
a363c43deb8ba60f463a8bf555c970bc25d061bc
[ "MIT" ]
permissive
bcjaeger/tblHelpers
b1e91e8a3a9d4382d9790c27ecf4551586168512
9fcfe4fc936f06406935c005c0428171bbe2a920
refs/heads/master
2021-01-03T02:47:58.961819
2020-02-20T02:14:02
2020-02-20T02:14:02
239,887,667
0
0
null
null
null
null
UTF-8
R
false
true
678
rd
align_lc.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/ft_style.R \name{align_lc} \alias{align_lc} \title{Left-center align} \usage{ align_lc(object) } \arguments{ \item{object}{a \code{flextable} object.} } \value{ a \code{flextable} object with left-centered columns } \description{ This function takes care of some tedious stylistic changes that users may want to automate. Specifically, left aligning the far left column and center aligning every other column. } \examples{ library(flextable) library(dplyr) iris \%>\% group_by(Species) \%>\% slice(1:3) \%>\% ft_grouped_by() \%>\% theme_vanilla() \%>\% align_lc() \%>\% pad_groups() }
053c6c179b0500f9f46344f2310df2c3a16d098d
175034b927dfde0bd0100c4be76a901324291470
/exercise-2/exercise.R
4cbae5ce6e895c97eac5c2505c9be0aeee6aad86
[ "MIT" ]
permissive
AlexEarll/module9-dataframes
358346285e7bb8cde28ef07e27abb212a88a92f0
65f26ada762c2e76a8d8553df1551bda2017d33e
refs/heads/master
2021-01-11T18:57:09.673696
2017-01-19T23:20:02
2017-01-19T23:20:02
79,280,629
0
0
null
2017-01-17T22:50:17
2017-01-17T22:50:17
null
UTF-8
R
false
false
2,553
r
exercise.R
# Create a vector of 100 employees ("Employee 1", "Employee 2", ... "Employee 100) # Hint: use the `paste()` function to produce the list employees <- c(paste("Employee", 1:100)) print(employees) # Create a vector of 100 random salaries for the year 2014 # Use the `runif()` function to pick a random number between 40000 and 50000 salaries.2014 <- runif(100, 40000, 50000) # Create a vector of 100 salaries in 2015 that have increased from 2014 by some amount # Hint: use `runif()` to add a random number to 2014's salaries. Starting from a # _negative_ number so that salaries may decrease! salaries.2015 <- salaries.2014 + runif(100,-1000,5000) # Create a data.frame 'salaries' by combining the 3 vectors you just made # Remember to set `stringsAsFactors=FALSE`! table <- data.frame(employees, salaries.2014, salaries.2015, stringsAsFactors=FALSE) # Create a column 'raise' that stores the size of the raise between 2014 and 2015 table["raise"] <- salaries.2015 - salaries.2014 # Create a column 'got.raise' that is TRUE if the person got a raise table["got.raise"] <- salaries.2015 - salaries.2014 > 0 ### Retrieve values from your data frame to answer the following questions ### Note that you should get the value as specific as possible (e.g., a single ### cell rather than the whole row!) # What was the 2015 salary of employee 57 print((table$salaries.2015[57])) # How many employees got a raise? num.got.raise <- table$got.raise[table$got.raise == TRUE] print(length(num.got.raise)) # What was the value of the highest raise? max.raise <- table$raise[table$raise == max(table$raise)] print(max.raise) # What was the "name" of the employee who received the highest raise? max.raise.name <- table$employees[table$raise == max(table$raise)] print(max.raise.name) # What was the largest decrease in salaries between the two years? max.decrease <- table$raise[table$raise == min(table$raise)] print(max.decrease) # What was the name of the employee who recieved largest decrease in salary? max.decrease.name <- table$employees[table$raise == min(table$raise)] print(max.decrease.name) # What was the average salary increase? average.salary <- mean(table$raise) print(average.salary) ### Bonus ### # Write a .csv file of your salaries to your working directory write.csv(table, file = "salaries.csv") # For people who did not get a raise, how much money did they lose? num.no.raise <- table$raise[table$got.raise == FALSE] print(num.no.raise) # Is that what you expected them to lose based on how you generated their salaries? #wat
5a0c3ec2af6c0ad1cfcdaf88b8a942d7b412b5bd
753e3ba2b9c0cf41ed6fc6fb1c6d583af7b017ed
/service/paws.inspector/man/describe_assessment_targets.Rd
d4f58ad1c12ec6b4b13dbcefaebb6d049e75c5f2
[ "Apache-2.0" ]
permissive
CR-Mercado/paws
9b3902370f752fe84d818c1cda9f4344d9e06a48
cabc7c3ab02a7a75fe1ac91f6fa256ce13d14983
refs/heads/master
2020-04-24T06:52:44.839393
2019-02-17T18:18:20
2019-02-17T18:18:20
null
0
0
null
null
null
null
UTF-8
R
false
true
950
rd
describe_assessment_targets.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/paws.inspector_operations.R \name{describe_assessment_targets} \alias{describe_assessment_targets} \title{Describes the assessment targets that are specified by the ARNs of the assessment targets} \usage{ describe_assessment_targets(assessmentTargetArns) } \arguments{ \item{assessmentTargetArns}{[required] The ARNs that specifies the assessment targets that you want to describe.} } \description{ Describes the assessment targets that are specified by the ARNs of the assessment targets. } \section{Accepted Parameters}{ \preformatted{describe_assessment_targets( assessmentTargetArns = list( "string" ) ) } } \examples{ # Describes the assessment targets that are specified by the ARNs of the # assessment targets. \donttest{describe_assessment_targets( assessmentTargetArns = list( "arn:aws:inspector:us-west-2:123456789012:target/0-0kFIPusq" ) )} }
41abf2f0214333560d4babd3a4d1084c1233e41e
b1228c161b4b527503eab4ff22ba2d90f5b39ed4
/cachematrix.R
e33b9bbbd4fbe35588775816cc7b53d980117a7e
[]
no_license
matheux/ProgrammingAssignment2
6fd7ad8ae93fe7c35903b6b371345c402b9e4aff
ac283e26976df2f4ea9ce02fab9d04baf3407691
refs/heads/master
2021-01-20T16:44:40.414160
2014-11-22T18:36:00
2014-11-22T18:36:00
null
0
0
null
null
null
null
UTF-8
R
false
false
956
r
cachematrix.R
## Below functions are meant to be used to calculate the inverse of a matrix ## Because it might be a time consuming operation (if the matrix is big), one might ## not want to do this twice for the same matrix. Those function allow this. ## Creates a special "matrix"-like object that caches its inverse, when its calculated makeCacheMatrix <- function(x = matrix()) { inv <- NULL set <- function(y) { x <<- y m <<- NULL } get <- function() x setinv <- function(inverse) inv <<- inverse getinv <- function() inv list(set = set, get = get, setinv = setinv, getinv = getinv) } ## This function calculates the inverse of a matrix. If it has already been calculated, then ## the function would retrieve the inverse from cache cacheSolve <- function(x, ...) { inv <- x$getinv() if(!is.null(inv)) { message("getting cached data") return(inv) } data <- x$get() inv <- solve(data) x$setinv(inv) inv }
8652b1a3b4f9525b28b3aee6848850fc574f6ef4
d0ceb8abe592f2bc3c14ee230c1fab9ee1052e9a
/sandbox/R/normalIncrementalVaR.R
18ec8ed9eb76c20ccc14f95d46fe794576fda5c6
[]
no_license
Jicheng-Yan/FactorAnalytics
7c8afce66a7ea743883aaedd9382a8d7703a5606
e9a79f7a759a43f21744817ca550cfab9d3c3d5b
refs/heads/master
2020-12-25T05:02:35.257591
2014-06-12T23:40:32
2014-06-12T23:40:32
null
0
0
null
null
null
null
UTF-8
R
false
false
2,138
r
normalIncrementalVaR.R
#' compute normal incremental VaR given portfolio weights, mean vector and #' covariance matrix. #' #' compute normal incremental VaR given portfolio weights, mean vector and #' covariance matrix. Incremental VaR is defined as the change in portfolio VaR #' that occurs when an asset is removed from the portfolio. #' #' #' @param mu n x 1 vector of expected returns. #' @param Sigma n x n return covariance matrix. #' @param w n x 1 vector of portfolio weights. #' @param tail.prob scalar tail probability. #' @return n x 1 vector of incremental VaR values #' @author Eric Zivot and Yi-An Chen #' @references Jorian (2007) pg. 168 #' @examples #' #' normalIncrementalVaR(mu=c(1,2),Sigma=matrix(c(1,0.5,0.5,2),2,2),w=c(0.5,0.5),tail.prob = 0.01) #' normalIncrementalVaR <- function(mu, Sigma, w, tail.prob = 0.01) { ## compute normal incremental VaR given portfolio weights, mean vector and ## covariance matrix ## Incremental VaR is defined as the change in portfolio VaR that occurs ## when an asset is removed from the portfolio ## inputs: ## mu n x 1 vector of expected returns ## Sigma n x n return covariance matrix ## w n x 1 vector of portfolio weights ## tail.prob scalar tail probability ## output: ## iVaR n x 1 vector of incremental VaR values ## References: ## Jorian (2007) pg. 168 mu = as.matrix(mu) Sigma = as.matrix(Sigma) w = as.matrix(w) if ( nrow(mu) != nrow(Sigma) ) stop("mu and Sigma must have same number of rows") if ( nrow(mu) != nrow(w) ) stop("mu and w must have same number of elements") if ( tail.prob < 0 || tail.prob > 1) stop("tail.prob must be between 0 and 1") n.w = nrow(mu) ## portfolio VaR with all assets pVaR = crossprod(w, mu) + sqrt( t(w) %*% Sigma %*% w ) * qnorm(tail.prob) temp.w = w iVaR = matrix(0, n.w, 1) for (i in 1:n.w) { ## set weight for asset i to zero and renormalize temp.w[i,1] = 0 temp.w = temp.w/sum(temp.w) pVaR.new = crossprod(temp.w, mu) + sqrt( t(temp.w) %*% Sigma %*% temp.w ) * qnorm(tail.prob) iVaR[i,1] = pVaR.new - pVaR ## reset weight temp.w = w } return(-iVaR) }
23cf953c00ecc883484c60938ec97b4ed91170fa
ae35a82f670cc677c06ab201a014127f1c821fd9
/sand/inst/code/chapter4.R
b0e518e70d1520bb3457cfcc04b8e6ea4c7a088f
[]
no_license
masanao-yajima/sand
676d5bb99b9b0185da1bf669dc39d158f9354a70
16a0227562614a0fd7381f08d98ef1b8145566a9
refs/heads/master
2021-01-23T03:28:02.674213
2017-03-24T16:04:22
2017-03-24T16:04:22
86,083,383
1
1
null
2017-03-24T15:32:43
2017-03-24T15:32:43
null
UTF-8
R
false
false
8,164
r
chapter4.R
# SAND with R, chapter4.tex # CHUNK 1 library(sand) data(karate) hist(degree(karate), col="lightblue", xlim=c(0,50), xlab="Vertex Degree", ylab="Frequency", main="") # CHUNK 2 hist(graph.strength(karate), col="pink", xlab="Vertex Strength", ylab="Frequency", main="") # CHUNK 3 library(igraphdata) data(yeast) # CHUNK 4 ecount(yeast) # --- ## [1] 11855 # --- # CHUNK 5 vcount(yeast) # --- ## [1] 2617 # --- # CHUNK 6 d.yeast <- degree(yeast) hist(d.yeast,col="blue", xlab="Degree", ylab="Frequency", main="Degree Distribution") # CHUNK 7 dd.yeast <- degree.distribution(yeast) d <- 1:max(d.yeast)-1 ind <- (dd.yeast != 0) plot(d[ind], dd.yeast[ind], log="xy", col="blue", xlab=c("Log-Degree"), ylab=c("Log-Intensity"), main="Log-Log Degree Distribution") # CHUNK 8 a.nn.deg.yeast <- graph.knn(yeast,V(yeast))$knn plot(d.yeast, a.nn.deg.yeast, log="xy", col="goldenrod", xlab=c("Log Vertex Degree"), ylab=c("Log Average Neighbor Degree")) # CHUNK 9 A <- get.adjacency(karate, sparse=FALSE) library(network) g <- network::as.network.matrix(A) library(sna) sna::gplot.target(g, degree(g), main="Degree", circ.lab = FALSE, circ.col="skyblue", usearrows = FALSE, vertex.col=c("blue", rep("red", 32), "yellow"), edge.col="darkgray") # CHUNK 10 l <- layout.kamada.kawai(aidsblog) plot(aidsblog, layout=l, main="Hubs", vertex.label="", vertex.size=10 * sqrt(hub.score(aidsblog)$vector)) plot(aidsblog, layout=l, main="Authorities", vertex.label="", vertex.size=10 * sqrt(authority.score(aidsblog)$vector)) # CHUNK 11 eb <- edge.betweenness(karate) E(karate)[order(eb, decreasing=T)[1:3]] # --- ## Edge sequence: ## ## [53] John A -- Actor 20 ## [14] Actor 20 -- Mr Hi ## [16] Actor 32 -- Mr Hi # --- # CHUNK 12 table(sapply(cliques(karate), length)) # --- ## ## 1 2 3 4 5 ## 34 78 45 11 2 # --- # CHUNK 13 cliques(karate)[sapply(cliques(karate), length) == 5] # --- ## [[1]] ## [1] 1 2 3 4 8 ## ## [[2]] ## [1] 1 2 3 4 14 # --- # CHUNK 14 table(sapply(maximal.cliques(karate), length)) # --- ## ## 2 3 4 5 ## 11 21 2 2 # --- # CHUNK 15 clique.number(yeast) # --- ## [1] 23 # --- # CHUNK 16 cores <- graph.coreness(karate) sna::gplot.target(g, cores, circ.lab = FALSE, circ.col="skyblue", usearrows = FALSE, vertex.col=cores, edge.col="darkgray") detach("package:network") detach("package:sna") # CHUNK 17 aidsblog <- simplify(aidsblog) dyad.census(aidsblog) # --- ## $mut ## [1] 3 ## ## $asym ## [1] 177 ## ## $null ## [1] 10405 # --- # CHUNK 18 ego.instr <- induced.subgraph(karate, neighborhood(karate, 1, 1)[[1]]) ego.admin <- induced.subgraph(karate, neighborhood(karate, 1, 34)[[1]]) graph.density(karate) # --- ## [1] 0.1390374 # --- graph.density(ego.instr) # --- ## [1] 0.25 # --- graph.density(ego.admin) # --- ## [1] 0.2091503 # --- # CHUNK 19 transitivity(karate) # --- ## [1] 0.2556818 # --- # CHUNK 20 transitivity(karate, "local", vids=c(1,34)) # --- ## [1] 0.1500000 0.1102941 # --- # CHUNK 21 reciprocity(aidsblog, mode="default") # --- ## [1] 0.03278689 # --- reciprocity(aidsblog, mode="ratio") # --- ## [1] 0.01666667 # --- # CHUNK 22 is.connected(yeast) # --- ## [1] FALSE # --- # CHUNK 23 comps <- decompose.graph(yeast) table(sapply(comps, vcount)) # --- ## ## 2 3 4 5 6 7 2375 ## 63 13 5 6 1 3 1 # --- # CHUNK 24 yeast.gc <- decompose.graph(yeast)[[1]] # CHUNK 25 average.path.length(yeast.gc) # --- ## [1] 5.09597 # --- # CHUNK 26 diameter(yeast.gc) # --- ## [1] 15 # --- # CHUNK 27 transitivity(yeast.gc) # --- ## [1] 0.4686663 # --- # CHUNK 28 vertex.connectivity(yeast.gc) # --- ## [1] 1 # --- edge.connectivity(yeast.gc) # --- ## [1] 1 # --- # CHUNK 29 yeast.cut.vertices <- articulation.points(yeast.gc) length(yeast.cut.vertices) # --- ## [1] 350 # --- # CHUNK 30 is.connected(aidsblog, mode=c("weak")) # --- ## [1] TRUE # --- # CHUNK 31 is.connected(aidsblog, mode=c("strong")) # --- ## [1] FALSE # --- # CHUNK 32 aidsblog.scc <- clusters(aidsblog, mode=c("strong")) table(aidsblog.scc$csize) # --- ## ## 1 4 ## 142 1 # --- # CHUNK 33 kc <- fastgreedy.community(karate) # CHUNK 34 length(kc) # --- ## [1] 3 # --- sizes(kc) # --- ## Community sizes ## 1 2 3 ## 18 11 5 # --- # CHUNK 35 membership(kc) # --- ## Mr Hi Actor 2 Actor 3 Actor 4 Actor 5 Actor 6 ## 2 2 2 2 3 3 ## Actor 7 Actor 8 Actor 9 Actor 10 Actor 11 Actor 12 ## 3 2 1 1 3 2 ## Actor 13 Actor 14 Actor 15 Actor 16 Actor 17 Actor 18 ## 2 2 1 1 3 2 ## Actor 19 Actor 20 Actor 21 Actor 22 Actor 23 Actor 24 ## 1 2 1 2 1 1 ## Actor 25 Actor 26 Actor 27 Actor 28 Actor 29 Actor 30 ## 1 1 1 1 1 1 ## Actor 31 Actor 32 Actor 33 John A ## 1 1 1 1 # --- # CHUNK 36 plot(kc,karate) # CHUNK 37 library(ape) dendPlot(kc, mode="phylo") # CHUNK 38 k.lap <- graph.laplacian(karate) eig.anal <- eigen(k.lap) # CHUNK 39 plot(eig.anal$values, col="blue", ylab="Eigenvalues of Graph Laplacian") # CHUNK 40 f.vec <- eig.anal$vectors[, 33] # CHUNK 41 faction <- get.vertex.attribute(karate, "Faction") f.colors <- as.character(length(faction)) f.colors[faction == 1] <- "red" f.colors[faction == 2] <- "cyan" plot(f.vec, pch=16, xlab="Actor Number", ylab="Fiedler Vector Entry", col=f.colors) abline(0, 0, lwd=2, col="lightgray") # CHUNK 42 func.class <- get.vertex.attribute(yeast.gc, "Class") table(func.class) # --- ## func.class ## A B C D E F G M O P R T U ## 51 98 122 238 95 171 96 278 171 248 45 240 483 # --- # CHUNK 43 yc <- fastgreedy.community(yeast.gc) c.m <- membership(yc) # CHUNK 44 table(c.m, func.class, useNA=c("no")) # --- ## func.class ## c.m A B C D E F G M O P R T U ## 1 0 0 0 1 3 7 0 6 3 110 2 35 14 ## 2 0 2 2 7 1 1 1 4 39 5 0 4 27 ## 3 1 9 7 18 4 8 4 20 10 23 8 74 64 ## 4 25 11 10 22 72 84 81 168 14 75 16 27 121 ## 5 1 7 5 14 0 4 0 2 3 6 1 34 68 ## 6 1 24 1 4 1 4 0 7 0 1 0 19 16 ## 7 6 18 6 76 7 9 3 7 8 5 1 7 33 ## 8 8 12 67 59 1 34 0 19 60 10 7 6 73 ## 9 4 1 7 7 2 10 5 3 2 0 3 0 11 ## 10 0 0 0 6 0 0 0 2 0 5 0 11 1 ## 11 0 9 0 10 1 3 0 0 0 0 0 2 4 ## 12 0 1 3 0 0 0 0 6 10 0 0 0 2 ## 13 0 1 1 2 0 1 0 0 2 0 0 16 10 ## 14 1 0 4 1 0 1 0 0 4 0 1 0 11 ## 15 0 1 0 0 0 2 0 2 0 0 1 0 8 ## 16 0 1 2 0 0 1 0 0 10 0 0 0 0 ## 17 0 0 1 3 0 0 0 2 0 0 0 2 3 ## 18 0 0 0 0 3 1 0 9 0 0 1 0 1 ## 19 0 1 1 1 0 0 0 0 0 0 0 0 3 ## 20 0 0 0 6 0 0 0 1 0 0 0 1 2 ## 21 1 0 0 0 0 0 0 0 6 0 0 1 0 ## 22 0 0 0 0 0 0 0 1 0 0 0 0 8 ## 23 0 0 0 0 0 0 0 4 0 0 0 0 0 ## 24 0 0 0 0 0 0 2 2 0 0 0 1 0 ## 25 0 0 0 0 0 0 0 5 0 0 0 0 0 ## 26 0 0 1 0 0 0 0 4 0 0 1 0 1 ## 27 3 0 4 0 0 1 0 0 0 0 0 0 0 ## 28 0 0 0 0 0 0 0 0 0 6 0 0 0 ## 29 0 0 0 1 0 0 0 1 0 0 3 0 0 ## 30 0 0 0 0 0 0 0 0 0 2 0 0 2 ## 31 0 0 0 0 0 0 0 3 0 0 0 0 0 # --- # CHUNK 45 assortativity.nominal(yeast, (V(yeast)$Class=="P")+1, directed=FALSE) # --- ## [1] 0.4965229 # --- # CHUNK 46 assortativity.degree(yeast) # --- ## [1] 0.4610798 # ---
2af0751c83e7d9b071579a1d49fe8b44609badda
65c8daa4013d472247dcd245785903945d1cadfc
/man/projsplx.Rd
4c1ab2c35da27595f9a9f4a01d1b75ab61900d89
[ "MIT" ]
permissive
HansonMenghan/alstructure
7c6907adad6b17ba66a3f41ff3511d549595c245
e3554111e746a2359675d6615459af8579b69a14
refs/heads/master
2023-03-20T08:11:25.527193
2018-05-26T18:30:10
2018-05-26T18:30:10
null
0
0
null
null
null
null
UTF-8
R
false
true
873
rd
projsplx.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/factor.R \name{projsplx} \alias{projsplx} \title{Project a vector onto the simplex} \usage{ projsplx(y) } \arguments{ \item{y}{a \eqn{n}{n} dimensional vector} } \value{ a \eqn{n}{n} dimensional vector which is the projection of \eqn{y}{y} onto the \eqn{n}{n} dimensional simplex } \description{ Algorithm from (Y. Chen and Ye 2011) to project an \eqn{n}{n} dimensional vector onto the \eqn{n}{n} dimensional simplex (i.e. the set of points in \eqn{x \in \mathcal{R}^n}{x in R^n} such that \eqn{\sum_i x_i = 1}{x_1 + x_2 + ... + x_n= 1} and \eqn{x_i > 0}{x_i > 0} for all \eqn{i}{i} ). This is used to enforce the admixture constraints in the \code{uALS} algorithm. } \references{ Chen, Y., and X. Ye. 2011. “Projection Onto A Simplex.” ArXiv E-Prints, January. } \keyword{internal}
748b7f4c878fe57897684cc733ce0a2279ff0604
c4ded5120db258ebdd2cf143fbf3bee2fa0065b9
/src/song_lyrics/50years_billboard_hot_100/tidy/data.R
138d8f4b26faf5856793180cd3c2dbca2e59e507
[]
no_license
rlads2021/project-spacegray3128
c0be0b041d9567a0e805854b8de1ebf8a08c14da
203dd49db14367bc6bbadafd93094e4aa4d2e988
refs/heads/master
2023-06-07T08:34:31.696514
2021-06-23T14:23:12
2021-06-23T14:23:12
379,555,786
0
0
null
null
null
null
UTF-8
R
false
false
454
r
data.R
library(httr) library(rvest) library(stringr) #用gather轉換 df_artists %>% mutate(Rank = 1:100) %>% gather("Year", "Artist", 1:50) -> df_Artist df_titles %>% mutate(Rank = 1:100) %>% gather("Year", "Title", 1:50) -> df_Title df_lyrics %>% mutate(Rank = 1:100) %>% gather("Year", "Lyrics", 1:50) -> df_Lyrics #最終的Dataframe df_All <- df_Title %>% mutate(Artist = df_Artist$Artist) #, #Lyrics = df_Lyrics$Lyrics)
6d3ed89fc64a0e10260a6aa09d026fcbadb319b8
2f95a5177b0c47e8af4163196c79539bbb6cc499
/R-old/PD52.R
888af130e7eb1eb9fcad97e6f4ac1ab6fddb30b9
[]
no_license
pipetcpt/study-pkpd
1bd270a05cbaaa82f77ddfdfb3f84f9eb1e417fd
a702cb5b6f56fe2c5236582b34213dc49a5c82ff
refs/heads/master
2020-06-19T01:04:41.186453
2019-11-07T10:26:10
2019-11-07T10:26:10
196,513,459
0
0
null
null
null
null
UTF-8
R
false
false
4,093
r
PD52.R
# PD 52 require(wnl) setwd("D:/Rt/PD") dPD52 = read.csv("PD52.csv") colnames(dPD52) = c("TIME", "DV", "ID", "DOSE") IDs = unique(dPD52[,"ID"]) ; IDs nID = length(IDs) ; nID AMTs = unique(dPD52[,"DOSE"]) ; AMTs require(deSolve) # First order biophse model fPD52ade = function(t, y, p) { Cp = AMTs[i]*p["Kp"]*t*exp(-p["Kp"]*t) Stim = p["Smax"]*Cp^p["n"]/(p["SD50"]^p["n"] + Cp^p["n"]) Kut = p["Kout"]/(p["Km"] + y[1]) dy1dt = Stim - Kut*y[1] return(list(c(dy1dt))) } fPD52a = function(THETA) { Kp = THETA[1] n = THETA[2] Km = THETA[3]/1e3 Kout = THETA[4] Smax = THETA[5] SD50 = THETA[6] y = vector() for (i in 1:nID) { i <<- i cID = IDs[i] cTIME = unique(c(0, dPD52[dPD52$ID == cID, "TIME"])) iTIME = cTIME %in% dPD52[dPD52$ID == cID, "TIME"] cy = lsoda(c(0), cTIME, fPD52ade, c(Kp=Kp, n=n, Km=Km, Kout=Kout, Smax=Smax, SD50=SD50)) y = c(y, cy[iTIME, "1"]) } return(y) } y0a = fPD52a(c(5.93, 1.68, 1, 30.5, 244, 0.9842)) ; y0a length(y0a) r1 = nlr(fPD52a, dPD52, c("Kp", "n", "Km", "Kout", "Smax", "SD50"), c(10, 2, 0.001, 30, 240, 5)) ; r1 # Bolus approximation model fPD52bde = function(t, y, p) { Cp = AMTs[i]*exp(-p["Kp"]*t) Stim = p["Smax"]*Cp^p["n"]/(p["SD50"]^p["n"] + Cp^p["n"]) Kut = p["Kout"]/(p["Km"] + y[1]) dy1dt = Stim - Kut*y[1] return(list(c(dy1dt))) } fPD52b = function(THETA) { Kp = THETA[1] n = THETA[2] Km = THETA[3]/1e3 Kout = THETA[4] Smax = THETA[5] SD50 = THETA[6] y = vector() for (i in 1:nID) { i <<- i cID = IDs[i] cTIME = unique(c(0, dPD52[dPD52$ID == cID, "TIME"])) iTIME = cTIME %in% dPD52[dPD52$ID == cID, "TIME"] cy = lsoda(c(0), cTIME, fPD52bde, c(Kp=Kp, n=n, Km=Km, Kout=Kout, Smax=Smax, SD50=SD50)) y = c(y, cy[iTIME, "1"]) } return(y) } y0b = fPD52b(c(2.49348, 2.02, 1, 32.52, 195, 1.556)) ; y0b length(y0b) r2 = nlr(fPD52b, dPD52, c("Kp", "n", "Km", "Kout", "Smax", "SD50"), c(6, 1.7, 0.001, 30, 240, 1)) ; r2 # Figure 52.1 plot(0, 0, type="n", xlim=c(0, 3.5), ylim=c(0, 80), xlab="Time (h)", ylab="Locomotor activity") abline(h=1:8*10, lty=3) for (i in 1:nID) { cID = IDs[i] points(dPD52[dPD52$ID == cID, "TIME"], dPD52[dPD52$ID == cID, "DV"], pch=17-i, col=c("red", "blue")[i]) lines(dPD52[dPD52$ID == cID, "TIME"], y0a[dPD52$ID == cID]) lines(dPD52[dPD52$ID == cID, "TIME"], y0b[dPD52$ID == cID], lty=2) } # Refined model fPD52cde = function(t, y, p) { Cp = AMTs[i]*exp(-p["Kp"]*t) Stim = p["Smax"]*Cp^p["n"]/(p["SD50"]^p["n"] + Cp^p["n"]) Kut = p["Kout"]/(1e-8 + y[1]) dy1dt = Stim - Kut*y[1] return(list(c(dy1dt))) } fPD52c = function(THETA) { Kp = THETA[1] n = THETA[2] Kout = THETA[3] Smax = THETA[4] SD50 = THETA[5] y = vector() for (i in 1:nID) { i <<- i cID = IDs[i] cTIME = unique(c(0, dPD52[dPD52$ID == cID, "TIME"])) iTIME = cTIME %in% dPD52[dPD52$ID == cID, "TIME"] cy = lsoda(c(1e-8), cTIME, fPD52cde, c(Kp=Kp, n=n, Kout=Kout, Smax=Smax, SD50=SD50)) y = c(y, cy[iTIME, "1"]) } return(y) } y0c = fPD52c(c(2.49348, 2.02, 32.52, 195, 1.556)) ; y0c length(y0c) r3 = nlr(fPD52c, dPD52, c("Kp", "n", "Kout", "Smax", "SD50"), c(6, 1.7, 30, 240, 1)) ; r3 dx(r3) # Alternative model 2 fPD52dde = function(t, y, p) { Cp = AMTs[i]*exp(-p["Kp"]*t) Stim = 1 + p["Smax"]*Cp^p["n"]/(p["SD50"]^p["n"] + Cp^p["n"]) dy1dt = p["Kin"]*Stim - p["Kout"]*y[1] return(list(c(dy1dt))) } fPD52d = function(THETA) { Kp = THETA[1] n = THETA[2] Kin = THETA[3] Kout = THETA[4] Smax = THETA[5] SD50 = THETA[6] y = vector() for (i in 1:nID) { i <<- i cID = IDs[i] cTIME = unique(c(0, dPD52[dPD52$ID == cID, "TIME"])) iTIME = cTIME %in% dPD52[dPD52$ID == cID, "TIME"] cy = lsoda(c(Kin/Kout), cTIME, fPD52dde, c(Kp=Kp, n=n, Kin=Kin, Kout=Kout, Smax=Smax, SD50=SD50)) y = c(y, cy[iTIME, "1"]) } return(y) } y0d = fPD52d(c(2.49348, 2.02, 0.1, 32.52, 195, 1.556)) ; y0d length(y0d) r4 = nlr(fPD52d, dPD52, c("Kp", "n", "Kin", "Kout", "Smax", "SD50"), c(6, 1.7, 0.1, 30, 240, 1)) ; r4 dx(r4)
a9e8791013a2334942f1de55847aeefbb234b18c
9c22b7117aefe645d9f6d21c9962bcc043547a8e
/man/cNames.Rd
edb55524415560edab51dcf94d7a0fa31351cd1a
[]
no_license
Farabell/MarIOGraphing
ff28322fda76aa2a3b0a29c28fc52da8251d976a
1fafba71cb07b96cea8131e812f388d1194d5a65
refs/heads/master
2016-09-14T00:47:50.466392
2016-04-27T03:18:08
2016-04-27T03:18:08
57,167,067
0
0
null
null
null
null
UTF-8
R
false
true
408
rd
cNames.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/cNames.R \name{cNames} \alias{cNames} \title{DF Naming Function} \usage{ cNames(x) } \arguments{ \item{x}{A df} } \value{ renamed columns } \description{ This function allows naming of 5 column df to predetermined names. Required to implement maxfit() function. } \examples{ cNames(YI1) cNames(CM) } \author{ Kristen Rodriguez }
6d0a10781586581994b4b928c391819efd0c3129
29585dff702209dd446c0ab52ceea046c58e384e
/simba/R/makead.R
d2220d3cfaef1c2a460bc3ff1dab85015ae73de4
[]
no_license
ingted/R-Examples
825440ce468ce608c4d73e2af4c0a0213b81c0fe
d0917dbaf698cb8bc0789db0c3ab07453016eab9
refs/heads/master
2020-04-14T12:29:22.336088
2016-07-21T14:01:14
2016-07-21T14:01:14
null
0
0
null
null
null
null
UTF-8
R
false
false
2,724
r
makead.R
"makead" <- function(nspec, nplots, avSR=NULL, anc=NULL, grad.v=NULL, cf=0.2, puq=0.01) { # grad.v is a vector describing the gradient setting, if it is set a gradient is applied. # puq gives the proportion of ubiquituous species which are allowed to grow everywhere # if ancestor is given, nspec, nplots and avSR is generated from this matrix, but avSR can still be changed if (!is.null(anc)){ nspec <- ncol(anc) nplots <- nrow(anc) if (is.null(avSR)){ anc <- ifelse(anc > 0, 1, 0) avSR <- mean(rowSums(anc)) } } probv <- 1/c(2:(nspec+1))^cf probv <- probv - min(probv) + 1/nplots probv <- probv/max(probv) mat <- matrix(NA, nplots, nspec) for(i in 1:nspec) { mat[,i] <- as.vector(rbind(matrix(1, round(nplots*probv[i],0), 1), matrix(0, (nplots-round(nplots*probv[i],0)), 1))) } mat <- apply(mat, 2, "sample") if (!is.null(grad.v)){ if (!is.null(puq)){ nuq <- round(nspec*puq, 0) vuq <- rep(1, nuq) vuq <- sample(c(vuq,vuq-1)) vuq2 <- rep(0, ncol(mat)-length(vuq)) vuq <- c(vuq, vuq2) vuqs <- vuq == 1 vrest <- vuq == 0 muq <- mat[,vuqs] muq <- muq + matrix(rnorm(ncol(muq)*nrow(muq), mean=0.5, sd=0.2), nrow(muq), ncol(muq)) mgrad <- mat[,vrest] } else { mgrad <- mat muq <- NULL } divid <- runif(ncol(mgrad)) divid1 <- ifelse(divid <= 0.5, TRUE, FALSE) divid2 <- ifelse(divid <= 0.5, FALSE, TRUE) grad.v <- as.numeric(grad.v) vgrad1 <- grad.v/max(grad.v) vgrad2 <- 1-vgrad1 mgrad1 <- mgrad[,divid1]*vgrad1 mgrad2 <- mgrad[,divid2]*vgrad2 mrand <- matrix(rnorm(ncol(mgrad)*nrow(mgrad), mean=0.5, sd=0.2), nrow(mgrad), ncol(mgrad)) mrand <- ifelse(mrand<0, 0, mrand) mgrad1 <- mgrad1 + mrand[,divid1] mgrad2 <- mgrad2 + mrand[,divid2] mat <- cbind(muq, mgrad1, mgrad2) contr <- nspec*nplots x.f <- 1 for (i in 1:100){ mat.tmp <- ifelse(mat>=(i/100), 1, 0) x.f <- ifelse(abs(sum(mat.tmp)-avSR*nplots)<=contr,i/100, x.f) # keep optimum value contr <- ifelse(abs(sum(mat.tmp)-avSR*nplots)<=contr, abs(sum(mat.tmp)-avSR*nplots), contr) } mat <- ifelse(mat>=x.f, 1, 0) ##save rare species ##mat[1,colSums(mat)==0] <- 1 nspec <- c(ncol(muq), ncol(mgrad1), ncol(mgrad2)) } mat <- mat[,c(sample(c(1:ncol(mat))))] mat <- data.frame(mat, row.names=as.character(c(1:nrow(mat)))) names(mat) <- as.character(c(1:ncol(mat))) attr(mat, "lengths") <- nspec return(mat) }
b34ee6ef05c86e50dde4ad8bb2424193ab9ddece
ee056e185f00f9d3918a1338261b4b8633cb48bc
/man/bnormnlr-package.Rd
1efa6f8098420b341c6599b32b685e16bbec1467
[]
no_license
cran/bnormnlr
773c7dbdea8aff88829b0a36fcd74df7f8e067aa
5a07c0e7a633db4f825a90dcd22f845c56a1ac88
refs/heads/master
2020-04-04T22:11:22.316786
2014-12-08T00:00:00
2014-12-08T00:00:00
null
0
0
null
null
null
null
UTF-8
R
false
false
1,933
rd
bnormnlr-package.Rd
\name{bnormnlr-package} \alias{bnormnlr-package} \alias{bnormnlr} \docType{package} \title{ Bayesian Estimation for Normal Heteroscedastic Nonlinear Regression Models } \description{ Implementation of Bayesian estimation in normal heteroscedastic nonlinear regression Models following Cepeda-Cuervo, (2001). } \details{ \tabular{ll}{ Package: \tab bnormnlr\cr Type: \tab Package\cr Version: \tab 1.0\cr Date: \tab 2014-12-09\cr License: \tab GPL-2\cr } The package provides three functions: bnlr to perform Bayesian estimation for heteroscedastic normal nonlinear regression models; chainsum to summarize the MCMC chains obtained from bnlr and infocrit to extract information criteria measures from the model fit. } \author{ Nicolas Molano-Gonzalez, Marta Corrales Bossio, Maria Fernanda Zarate, Edilberto Cepeda-Cuervo. Maintainer: Nicolas Molano-Gonzalez <[email protected]> } \references{ Cepeda-Cuervo, E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis. Instituto de Matematicas. Universidade Federal do Rio do Janeiro. Cepeda-Cuervo, E. and Gamerman, D. (2001). Bayesian modeling of variance heterogeneity in normal regression models. Brazilian Journal of Probability and Statistics 14.1: 207-221. Cepeda-Cuervo, E. and Achcar, J.A. (2010). Heteroscedastic nonlinear regression models. Communications in Statistics-Simulation and Computation 39.2 : 405-419. } \keyword{ package } \examples{ utils::data(muscle, package = "MASS") ###mean and variance functions fmu<-function(param,cov){ param[1] + param[2]*exp(-cov/exp(param[3]))} fsgma<-function(param,cov){drop(exp(cov\%*\%param))} ##Note: use more MCMC chains (i.e NC=10000) for more accurate results. m1b<-bnlr(y=muscle$Length,f1=fmu,f2=fsgma,x=muscle$Conc, z=cbind(1,muscle$Conc),bta0=c(20,-30,0),gma0=c(2,0),Nc=1200) chainsum(m1b$chains,burn=1:200) infocrit(m1b,1:8000) }
52c66d8f1ee974c7e4b4fef46554863566bca218
71e2d1ae54ecc891532f1f08480571a66f6185a8
/Script/Thesis_data processing_env.R
4b840bf75482a0e3fb55bc30fdd0896db43cdd52
[]
no_license
Anhbt95/IMBRSea_Thesis
739d117feafc67419cc0de4f10ae44d7a0a5b34c
ff1d399ef3ff8dbeca8d7c1f5824d72f9a3b7a28
refs/heads/master
2022-10-23T10:31:03.387136
2020-06-14T22:07:46
2020-06-14T22:07:46
272,233,430
0
0
null
null
null
null
UTF-8
R
false
false
19,885
r
Thesis_data processing_env.R
# IMBRSea Thesis # Tuan Anh Bui # 18.04.2020 # Belgian beam trawl Discard spatial analysis # This is the script for data processing - environmental variables # Env vars: bathy, slope, chl, sst, substrate (mud, gravel, sand) ######################################## # Load support files and packages ----------------------------------------- source("HighstatLibV12.R") # install.packages(c("cowplot", "googleway", "ggplot2", "ggrepel", # "ggspatial", "libwgeom", "sf", "rnaturalearth", "rnaturalearthdata")) library(data.table) #library(COSTeda) library(lattice); #library(nnet); library(tcltk); library(tcltk2) library(sf) library(rnaturalearth) library(rnaturalearthdata) library(INLA) library(sp) library(raster) library(tidyverse) library(lubridate) library(RColorBrewer) library(rgdal) #install.packages("ggpubr") library(ggpubr) #install.packages("ggridges") library(ggridges) #library(dismo) #library(splancs) #library(reshape) #library(gstat) #library(rgeos) #library(sdmpredictors) # to get Bathymetry #library(fields) # library(devtools) #install_github('timcdlucas/INLAutils', force = T) #devtools::install_github("timcdlucas/INLAutils") # library(INLAutils) #install.packages("inlabru") #library(inlabru) #install_github("gfalbery/ggregplot") #library(ggregplot) ######################################## # Load data --------------------------------------------------------------- # Indicate local directory # dir_data = "C:/Users/tbui/Thesis_R/Data" # Change directory here if the local dir for data is different # Dir in Tuan-Anh laptop dir_data = "D:/IMBRSea/1.Study/_IMBRSea_Thesis/Data_analysis/Thesis_Discard-spatial-analysis/Data" # obs_final_quota_20062019_TBB_DEF_70-99 with quota and other management variables obs_final <- readRDS(file=paste0(dir_data,"/","obs_final_quota_20062019_TBB_DEF_70-99.rds")) obs <- obs_final ######################################## # Data check -------------------------------------------------------------- # Since the rules are not available to all fishing activity # (certain IcesDivision or period, or in 2019 as rules are available to 2018 only) # The availability of data should be check (non NA data) obs_NA <- obs %>% filter(is.na(haul_limit) == T) obs_NA_non <- obs %>% filter(is.na(haul_limit) == F) unique(obs_NA_non$NameEnglish) # data is available for 9 out of 12 taxa of interest obs_NA_sub <- obs_NA %>% filter(NameEnglish %in% unique(obs_NA_non$NameEnglish)) %>% select(Year, NameScientific, NameEnglish, HaulTime, IcesDivision, haul_limit) a1 <- obs_NA_non %>% group_by(NameScientific, NameEnglish) %>% summarize(n_ava = n()) a2 <- obs_NA_sub %>% group_by(NameScientific, NameEnglish) %>% summarize(n_NA = n()) a3 <- obs_NA_sub %>% filter(Year == 2019) %>% group_by(NameScientific, NameEnglish) %>% summarize(n_2019 = n()) obs_check <- left_join(left_join(a1,a2),a3); rm(a1,a2,a3) # 6/9 taxa has non NA samples more than NA ones. # The other 3 species are: Common dab, Lemon sole, Raja spp # Boundary Area of Interest ----------------------------------------------- # Set area of interest (aoi) world <- ne_countries(scale = "medium", returnclass = "sf") aoi_lim <- c("Belgium", "Denmark", "France", "Germany", "Luxembourg", "Netherlands", "United Kingdom", "Spain", "Switzerland", "Austria", "Italy","Ireland")# "Isle of Man" aoi <- world %>% filter(admin %in% aoi_lim) ggplot(data = aoi) + geom_sf() + coord_sf(xlim = xlim, ylim = ylim) st_write(aoi, paste0(dir_data,"/Data_shp","aoi.shp")) aoi2 <- as(aoi, "Spatial") # Convert aoi from sf to sp to be processed in INLA plot(aoi2) # Sampling area ggplot() + geom_sf(data = aoi) + geom_point(data = obs %>% group_by(HaulLatitude, HaulLongitude) %>% summarize(n = n()), mapping = aes(x = HaulLongitude, y = HaulLatitude)) + coord_sf(xlim = c(-9,10), ylim = c(43.5, 56.5)) + theme_bw() # Spatial range of data range(obs$HaulLatitude) # 44.18333 - 55.98333 range(obs$HaulLongitude) # -8.250000 6.883333 # Define the boundary area around data # The boundary is selected so that the mesh boundary will cover the # sea in are of interest only # if x or y are set larger, other sea such as Mediterranean can be added # thus making the mesh building complicated # Extent of area of interest xym2<- as.matrix(data.frame(x = c(min(obs$HaulLongitude)-0.5, max(obs$HaulLongitude)+0.5, max(obs$HaulLongitude)+0.5, min(obs$HaulLongitude)-0.5), y = c(min(obs$HaulLatitude)-0.3, min(obs$HaulLatitude)-0.3, max(obs$HaulLatitude)+0.3, max(obs$HaulLatitude)+0.3))) # Look at the box outside the dots p <- Polygon(xym2) ps <- Polygons(list(p),1) sps <- SpatialPolygons(list(ps)) proj4string(sps) <- proj4string(aoi2) #add projection to sps plot(sps) # Since the substrate data does not cover the whole area of interest (sps) # The spatial polygon for study area must be adjusted # We first extract shapefile of boundaries (sps) and the land (aoi_rec) # Then overlay with substrate data in QGIS to mask the boundary polygon # Save sps to shapefile #sps1 <- st_as_sf(sps) #st_write(sps1, paste0(dir_data, "/", "sps1.shp")) #sps1 # Add new sps created in QGIS sps <- readOGR(paste0(dir_data, "/Data_shp/", "sps_final.shp")) plot(sps) # Crop with the land (aoi) aoi_rec <- crop(aoi2, sps) proj4string(sps) <- proj4string(aoi_rec) #Add projection to sps plot(sps) # Plot the box plot(aoi_rec,add=T) # Goc_rec is the land # plot(aoi_rec) #Select the polygon which contains the data => being the sea coast <- rgeos::gDifference(sps, aoi_rec) #coast = the sea plot(coast, col="red") # in red aoi_rec=the land # coast will be used to identify the mesh in analysis # save coast coast_sf <- st_as_sf(coast) st_write(coast_sf, paste0(dir_data, "/", "coast.shp")) readOGR(paste0(dir_data, "/", "coast.shp")) #test reopen ######################################## # Environmental variables ------------------------------------------------- # Original files is located in local directory of Tuan-Anh's laptop # The working version masked from the original files and smaller in size # will be uploaded to Git_hub # local directory for original files dir_data_env <- "D:/IMBRSea/1.Study/_IMBRSea_Thesis/Data_analysis/Thesis_R/Data" dir_data_env2 <- "C:/Users/User/Desktop/wget" #for monthly CHL and SST #Get the file names bathy <- raster(paste0(dir_data_env,"/","bathy_30s.tif")) slope <- raster(paste0(dir_data_env,"/","biogeo06_30s.tif")) gravel <- raster(paste0(dir_data_env,"/","GravelPercent.asc")) mud <- raster(paste0(dir_data_env,"/","MudPercent.asc")) sand <- raster(paste0(dir_data_env,"/","SandPercent.asc")) # chl and sst pred are culmulative mean values (2002 - 2019) and will be used for prediction chl_pred <- raster(paste0(dir_data_env,"/","A20021852019334.L3m_CU_CHL_chlor_a_4km.nc")) sst_pred <- raster(paste0(dir_data_env,"/","AQUA_MODIS.20020704_20191130.L3m.CU.SST.sst.4km.nc")) # Unify projection of data (WGS84 EPSG:4326) proj4string(gravel) <- proj4string(mud) <- proj4string(sand) <- proj4string(bathy) proj4string(chl_pred) <- proj4string(sst_pred) <- proj4string(bathy) # Processing -------------------------------------------------------------- # Mask raster data to the area of interest # First the data should be "croped" to adjust the extent of data # as well as reduce computational burden # Then the data will be "masked" to the area of interest # Since the raster data are different in resolution # The data should be # 1. Crop to an extent that is larger than area of interst # 2. Resample to unify resolution # 3. Crop and mask again to area of interest # 1. Crop to an extent that is larger than area of interst (should use lapply) # extent ext <- c(xmin = min(obs$HaulLongitude)-1, xmax = max(obs$HaulLongitude)+1, ymin = min(obs$HaulLatitude)-1, ymax = max(obs$HaulLatitude)+1) bathy <- crop(bathy, ext) slope <- crop(slope, ext) chl_pred <- crop(chl_pred, ext) sst_pred <- crop(sst_pred, ext) gravel <- crop(gravel, ext) mud <- crop(mud, ext) sand <- crop(sand, ext) # 2. Resample to unify resolution using nearest neighbor method # chl, gravel, mud, sand are resampled to the resolution of bathy # (bathy has the highest resolution among the raster data) chl_pred <- raster::resample(chl_pred, bathy, method = 'ngb') sst_pred <- raster::resample(sst_pred, bathy, method = 'ngb') gravel <- raster::resample(gravel, bathy, method = 'ngb') mud <- raster::resample(mud, bathy, method = 'ngb') sand <- raster::resample(sand, bathy, method = 'ngb') # 3. Crop and mask again to area of interest (sps) # bathy bathy <- crop(bathy, sps) bathy <- mask(bathy, sps) bathy <- abs(bathy) #make negative (depth) positive # slope slope <- crop(slope, sps) slope <- mask(slope, sps) # gravel, mud, sand gravel <- crop(gravel, sps) gravel <- mask(gravel, sps) gravel <- gravel/100 #Convert 0-100% to ratio mud <- crop(mud, sps) mud <- mask(mud, sps) mud <- mud/100 #Convert 0-100% to ratio sand <- crop(sand, sps) sand <- mask(sand, sps) sand <- sand/100 #Convert 0-100% to ratio # chl_pred sst_pred chl_pred <- crop(chl_pred, sps) chl_pred <- mask(chl_pred, sps) sst_pred <- crop(sst_pred, sps) sst_pred <- mask(sst_pred, sps) # Save env data ----------------------------------------------------------- dir_data dir_data_env <- paste0(dir_data,"/Data_env") raster::writeRaster(bathy, filename = paste0(dir_data_env,"/","bathy_sub.tif")) raster::writeRaster(slope, filename = paste0(dir_data_env,"/","slope_sub.tif")) raster::writeRaster(gravel, filename = paste0(dir_data_env,"/","gravel_sub.tif")) raster::writeRaster(sand, filename = paste0(dir_data_env,"/","sand_sub.tif")) raster::writeRaster(mud, filename = paste0(dir_data_env,"/","mud_sub.tif")) raster::writeRaster(chl_pred, filename = paste0(dir_data_env,"/","chl_pred.tif")) raster::writeRaster(sst_pred, filename = paste0(dir_data_env,"/","sst_pred.tif")) # Raster visualization p1 <- rasterVis::levelplot(bathy, margin = F, main = "bathy") p2 <- rasterVis::levelplot(slope, margin = F, main = "slope") p3 <- rasterVis::levelplot(chl_pred, margin = F, main = "chl_a") p7 <- rasterVis::levelplot(sst_pred, margin = F, main = "sst_a") p4 <- rasterVis::levelplot(gravel, margin = F, main = "gravel") p5 <- rasterVis::levelplot(mud, margin = F, main = "mud") p6 <- rasterVis::levelplot(sand, margin = F, main = "sand") ggpubr::ggarrange(p1, p2, p3, p4, p5, p6, p7, ncol = 4, nrow = 2) # Plot Gravel, Mud, Sand ggpubr::ggarrange(p4, p5, p6, ncol = 3, nrow = 1) # Stack environmental predictors predictors <- stack(bathy, slope, gravel, mud, sand) # Create the data set with the environmental predictors --------------------------------- # raster::extract is used to extract values of raster layers at sample points obs <- as_tibble(cbind(obs, raster::extract(predictors, as.matrix(cbind(obs$HaulLongitude,obs$HaulLatitude))))) # Rename Environmental predictors # layer - Bathy # biogeo06_30s - Slope # Chlorophyll.Concentration..OCI.Algorithm - Chl_a names(obs)[names(obs) == "layer"] <- "Bathy" names(obs)[names(obs) == "biogeo06_30s"] <- "Slope" names(obs)[names(obs) == "Chlorophyll.Concentration..OCI.Algorithm"] <- "Chl_a" # Add Substrate factor variables to data # If percentage of any substrate type is >= 1/3, # the substrate will be categorized as that type obs$Substrate <- NA obs$Substrate <- if_else(obs$GravelPercent >= 1/3, "Gravel", if_else(obs$SandPercent >= 1/3, "Sand", "Mud") ) summary(obs$Substrate) summary(obs) # IF you have NAs => check where they are! # It can be because the data are close to the coast # It can also be because the extent is not overlapping the observer dataset # SST and CHL extraction ------------------------------------------------------------- # Monthly SST and monthly and annual CHL are derived from # MODIS 4-km synthetic products from # the NASA Ocean Biology Distributed Active Archive Center (OB.DAAD) # https://oceancolor.gsfc.nasa.gov/ # SST --------------------------------------------------------------------- library(ncdf4) ##Load netCDF files #Create a list of file # Change the directory - paste0("_change_this_part","/") - and name pattern - pattern="*_change_this_part" (f_sst <- list.files(path = paste0(dir_data_env2,"/"), pattern="*.L3m.MO.SST.sst.4km.nc",full.names=T)) #Note: Directory separation symbol of R "/" is not the same as of Windows "\ #Explore the netCDF file nc_open(f_sst[1]) #Indicate variable, read from the netCDF file var <- "sst" #"chlor_a" ##Convert netCDF files to StackRaster format sst_stack <- stack(f_sst, varname = var) #Indicate variable as chlor_a sst_stack proj4string(sst_stack) <- proj4string(bathy) #Crop RasterStack by arae of interest sst_AOI <- crop(sst_stack, ext) #Extract sst to obs obs$sst <- NA for (i in 1:length(f_sst)) { # progress indicator print(paste("Processing file",i,"from",length(f_sst),sep=" ")) data <- nc_open(f_sst[i]) # Extract information from netCDF file # Extract date dateini<-ncatt_get(data,0,"time_coverage_start")$value dateend<-ncatt_get(data,0,"time_coverage_end")$value datemean<-mean(c(as.Date(dateend,"%Y-%m-%dT%H:%M:%OSZ"),as.Date(dateini,"%Y-%m-%dT%H:%M:%OSZ"))) year <- as.integer(format(datemean, "%Y")) month <- as.integer(format(datemean, "%m")) obs_sub <- obs %>% filter(Year == year, Month == month) obs[which(obs$Year == year & obs$Month == month),"sst"] <- raster::extract(sst_AOI[[i]], as.matrix(cbind(obs_sub$HaulLongitude,obs_sub$HaulLatitude))) } summary(obs$sst) # CHL --------------------------------------------------------------------- ##Load netCDF files #Create a list of file # Change the directory - paste0("_change_this_part","/") - and name pattern - pattern="*_change_this_part" (f_chl <- list.files(path = paste0(dir_data_env2,"/"), pattern="*.L3m_MO_CHL_chlor_a_4km.nc",full.names=T)) #Note: Directory separation symbol of R "/" is not the same as of Windows "\ #Explore the netCDF file nc_open(f_chl[1]) #Indicate variable, read from the netCDF file var <- "chlor_a" ##Convert netCDF files to StackRaster format chl_stack <- stack(f_chl, varname = var) #Indicate variable as chlor_a chl_stack proj4string(chl_stack) <- proj4string(bathy) #Crop RasterStack by arae of interest chl_AOI <- crop(chl_stack, ext) #Extract chl to obs obs$chl <- NA for (i in 1:length(f_chl)) { # progress indicator print(paste("Processing file",i,"from",length(f_chl),sep=" ")) data <- nc_open(f_chl[i]) # Extract information from netCDF file # Extract date dateini<-ncatt_get(data,0,"time_coverage_start")$value dateend<-ncatt_get(data,0,"time_coverage_end")$value datemean<-mean(c(as.Date(dateend,"%Y-%m-%dT%H:%M:%OSZ"),as.Date(dateini,"%Y-%m-%dT%H:%M:%OSZ"))) year <- as.integer(format(datemean, "%Y")) month <- as.integer(format(datemean, "%m")) obs_sub <- obs %>% filter(Year == year, Month == month) obs[which(obs$Year == year & obs$Month == month),"chl"] <- raster::extract(chl_AOI[[i]], as.matrix(cbind(obs_sub$HaulLongitude,obs_sub$HaulLatitude))) } summary(obs$chl) # 11280 observations are NA obs$chl_month <- obs$chl obs <- obs %>% select(-chl) # Since a lot of chl are NA, annual chl is proposed to be used # CHL annual -------------------------------------------------------------- ##Load netCDF files #Create a list of file # Change the directory - paste0("_change_this_part","/") - and name pattern - pattern="*_change_this_part" (f_chl <- list.files(path = paste0(dir_data_env2,"/year"), pattern="*.L3m_YR_CHL_chlor_a_4km.nc",full.names=T)) #Note: Directory separation symbol of R "/" is not the same as of Windows "\ #Explore the netCDF file nc_open(f_chl[1]) #Indicate variable, read from the netCDF file var <- "chlor_a" ##Convert netCDF files to StackRaster format chl_stack <- stack(f_chl, varname = var) #Indicate variable as chlor_a chl_stack proj4string(chl_stack) <- proj4string(bathy) #Crop RasterStack by arae of interest chl_AOI <- crop(chl_stack, ext) #Extract chl to obs obs$chl_year <- NA for (i in 1:length(f_chl)) { # progress indicator print(paste("Processing file",i,"from",length(f_chl),sep=" ")) data <- nc_open(f_chl[i]) # Extract information from netCDF file # Extract date dateini<-ncatt_get(data,0,"time_coverage_start")$value dateend<-ncatt_get(data,0,"time_coverage_end")$value datemean<-mean(c(as.Date(dateend,"%Y-%m-%dT%H:%M:%OSZ"),as.Date(dateini,"%Y-%m-%dT%H:%M:%OSZ"))) year <- as.integer(format(datemean, "%Y")) obs_sub <- obs %>% filter(Year == year) obs[which(obs$Year == year),"chl_year"] <- raster::extract(chl_AOI[[i]], as.matrix(cbind(obs_sub$HaulLongitude,obs_sub$HaulLatitude))) } summary(obs$chl_year) ######################################## # Check NA --------------------------------------------------------------- # Check obs_NA <- obs %>% filter(is.na(Bathy) == T | is.na(GravelPercent) == T | is.na(sst) == T | is.na(chl_year) == T) %>% group_by(HaulLatitude, HaulLongitude) %>% summarize(n = n()) range(obs_NA$HaulLatitude) range(obs_NA$HaulLongitude) ggplot() + geom_sf(data = aoi) + geom_point(data = obs_NA, aes(x = HaulLongitude, y = HaulLatitude, color = "red")) + coord_sf(xlim = c(-3,3), ylim = c(44, 53.2)) # Most NA values are sample points on land (might be errors during input of lat/lon) # 1 point in Biscay bay, should be out of range of substrate data # Remove NA values in Bathy (Slope), Substrate (GravelPercent, Sand, Mud), sst, chl_year obs <- obs %>% filter(is.na(Bathy) == F & is.na(GravelPercent) == F & is.na(sst) == F & is.na(chl_year) == F) # Calculate Catch, CPUE --------------------------------------------------- obs <- obs %>% mutate(C = D + L, CPUE = C/Dur_hour, logCPUE = log10(CPUE)) summary(obs$CPUE) #no 0 CPUE, do not need to add 1 to log10 # Save data --------------------------------------------------------------- # Final obs data str(obs) #50,594 observations # dir_data="F:/backup_to_H/R_gitlab/spatial_discards_TuanAnh/followup_jochen" # Jochen saveRDS(obs,file=paste0(dir_data,"/","obs_final_LA_full_pred_20062019_TBB_DEF_70-99.rds")) #rds # Adjustment of landing limitation in the final data ---------------------- # This adjustment should be conducted in the 'Thesis_data processing_landing limitation' script # 1. No haul_limit - quota_uti = 0 # 2. For close_fishing, if haul_limit > -100kg then 0, otherwise 1 # Ray has -5000 kg haul_limit, different from the others, but reasonable to keep at 1 quota_uti. str(obs) # 1. Transform Quota_uti from NA to 0. # Assumption: no landing limitation at these sample points, thus the quota utilization is 0 obs[which(is.na(obs$Quota_uti) == T),"Quota_uti"] <- 0 # 2. For close_fishing, if haul_limit > -100kg then Quota_uti = 0, otherwise 1 # The original data has Quota_uti = 0 when haul_limit = 0, otherwise 1 obs[which(obs$limit_type == "closing_fishing" & obs$haul_limit > - 100), "Quota_uti"] <- 0 View( obs %>% filter(limit_type == "closing_fishing") #Double check ) # Save new file for analysis saveRDS(obs,file=paste0(dir_data,"/","obs_final_LA2_full_pred_20062019_TBB_DEF_70-99.rds"))
6ee4d355247f900fbbc83ff7df98eae3c80758d5
abc470631514c9261498e960137b112259dff4ba
/inst/examples1/server.R
2a97310e2f4b33ea99aac4dd9c894f8fa1c39d38
[]
no_license
jonkatz2/enquery
8c29bfb7910150aa1946a5cd1eb2cb31c40274bf
e7bcae098053aeae40555a67512ef52b12f06120
refs/heads/master
2021-07-08T15:52:12.219085
2020-07-12T13:04:58
2020-07-12T13:04:58
148,210,881
0
0
null
null
null
null
UTF-8
R
false
false
113
r
server.R
library(shiny) library(enquery) options(shiny.sanitize.errors = FALSE) function(input, output, session) { }
6f189be5e7f3c15c2b84cc7f765aa92b9f421cec
169094a8afb4b431d445101260a0c4e988d42842
/prep_whi/FIS/fis_prep_whi.R
87b25820e3fd62b3ee65b8a2cb4e0d86a1b5bd61
[]
no_license
OHI-Science/whi
60c73ab4f9eeea27e3d539a4d5863c01f08de2ce
7658065914e1d77d0192cf6ee8b074ae849cc84e
refs/heads/master
2018-07-05T19:40:50.153919
2018-05-31T22:03:39
2018-05-31T22:03:39
108,908,592
0
1
null
2018-04-23T19:10:07
2017-10-30T21:06:58
R
UTF-8
R
false
false
2,413
r
fis_prep_whi.R
#FIS prep ###ISSUE###We are missing catch data that is not associated with islands - Must have along given us data from catch blocks around island (including cross seamount) ##ISSUE resolved with updated catch data FEb 2018# ## setup: libraries, file paths ---- library(tidyverse) # install.packages('tidyverse') dir_layers <- file.path('~/Documents/github/WHI/region2017/layers') #naming convention of the data file: it is "goalcode_layername_assessmentYEAR.csv". data_file <- file.path(dir_layers, 'fis_sus_updated_whi2018.csv') #old file fis_sus_scores_updated.csv fis_sus_updated_mhi2017.csv d <- readr::read_csv('fis_sus_updated_whi2018.csv') #catch dir_prep <- file.path('~/Documents/github/WHI/prep/FIS') data_file <- file.path(dir_prep, 'fis_catch_whi_2018.csv') c <- readr::read_csv('fis_catch_whi_2018.csv') #c<-subset(c, mus!="PMUS") str(c) #combine pelagic catch summarized by island into one catch estimate for all of Hawaii - pelagics and bottom fish only library(plyr)#install.packages('plyr') d_reef<-subset(c, mus=="CHCRT"|mus=="PHCRT")#subset data for reef fish #d_reef<-ddply(d_reef, .(species,year,rgn_id), summarise, total=sum(catch), licenses=sum(licenses))#summarize the reef fish landings by rgn also d_deep7<-subset(c, mus=="BMUS") #d_deep7<-ddply(d_deep7, .(year, species), summarise, total=sum(catch)) d_pel<-subset(c, mus=="PMUS") d_cp<-subset(c, fishery=="coastal_pelagic") ## save this local data layer in "layers" folder with the same naming convention as above format dir_layers <- file.path('~/documents/github/whi/region2017/layers') readr::write_csv(d_pel, file.path(dir_layers, "fis_pelagic_catch_whi2018.csv")) readr::write_csv(d_cp, file.path(dir_layers, "fis_cp_catch_whi2018.csv")) readr::write_csv(d_reef, file.path(dir_layers, "fis_reef_catch_whi2018.csv")) readr::write_csv(d_deep7, file.path(dir_layers, "fis_bottom_catch_whi2018.csv")) #readr::write_csv(d_pel_islands, file.path(dir_layers, "fis_pel_propcatch_mhi2017.csv")) ## You will see a notification in the "Git" window in RStudio once the layer is saved successfully. #dont forgt to register the layer in layers.csv # #####all catch data in one file # data_file <- file.path(dir_layers, 'fis_catch_mhi2017.csv') # d <- readr::read_csv(data_file) # # str(d) # d<-ddply(d, .(species, year, rgn_id), numcolwise(sum) ) # readr::write_csv(d, file.path(dir_layers, "fis_catch_island_mhi2017.csv")) #
c1280a2bf1aff297814b3822e758137c90f29aa2
b858cccaca3a09b1ac9f17416f2d2b96a4b01b53
/stockchart/ui.R
864e0258ddf8f9346e9fc18fa6112cb25502b916
[]
no_license
pauljabernathy/proj1
a962726c794553a2f96a0996015d80ba3c9b4f1d
5ae1a3210d8cbb8b2ed1bcfe891c01e4c47c3b03
refs/heads/master
2016-09-03T06:56:17.714670
2014-06-20T16:05:27
2014-06-20T16:05:27
null
0
0
null
null
null
null
UTF-8
R
false
false
735
r
ui.R
library(shiny) source('server.R') shinyUI(fluidPage( titlePanel("Stock Chart Generator"), sidebarLayout( sidebarPanel(numericInput("initial",label = h4("Initial Investment"), value=16.66), actionButton("oneChartButton","get one chart"), numericInput("numRuns", label=h4("number of simulations"), value=1000), actionButton("doSimButton","Do Simulation") ), mainPanel( plotOutput("stockchart"), verbatimTextOutput("amount"), p("monte carloe results"), verbatimTextOutput("sim") # verbatimTextOutput(renderPrint({ # input$goButton # isolate( # doSimulation()[1] # ) # })) ) ) ))
76880ec9529bcc3d3d8d7933264819998084b451
d11e6ae866c3518c8056358b2257e1366c14f686
/Rolling window - SVR.R
7d07f772315b9d21a9a9bf0727fd62e5f4ad1091
[]
no_license
lafet1/bachelor_thesis
48678f26d435e077eb4ebdd2372b26bc4fd63ab6
5200963593febd4163fcf520768e5506602a529c
refs/heads/master
2021-09-04T17:21:43.670176
2018-01-20T09:13:55
2018-01-20T09:13:55
116,477,492
0
1
null
null
null
null
ISO-8859-13
R
false
false
5,330
r
Rolling window - SVR.R
# rm(list=ls()) library(RCurl) library(dplyr) library(e1071) # SVR via svm() library(kernlab) # SVR via ksvm() - caret does not support svm() with RBF kerneł library(forecast) # ARIMA via auto.arima() library(tseries) library(PSF) # PSF via psf() library(mlr) # train() for optimalization library(emoa) # required by mlr package library(FSelector) library(parallelMap) set.seed(100) # list with measures a <- c() b <- c() c <- c() #svrPerf <- list(a, b, c) #svrPred <- list() #svrFeat <- list() #svrParams <- list() # for parameter tuning ps <- makeParamSet( makeNumericParam("C", lower = -12, upper = 12, trafo = function(x) 2^x), makeNumericParam("sigma", lower = -12, upper = 12, trafo = function(x) 2^x), makeDiscreteParam("kernel", values = c("rbfdot")), makeNumericParam("epsilon", lower = -5, upper = 0, trafo = function(x) 10^x) ) ctrl <- makeTuneMultiCritControlRandom(maxit = 100L) rdesc <- makeResampleDesc("FixedCV", initial.window = 0.5) # FixedCV is for time-series CV # for feature selection rdesc1 <- makeResampleDesc("CV", iters = 50) psFeatSel <- makeParamSet(makeDiscreteParam("fw.abs", values = seq(2, 6, 1))) lrnFilter <- makeFilterWrapper(learner = "regr.ksvm", fw.method = "information.gain") ctrl1 <- makeTuneMultiCritControlRandom(maxit = 50L) # variable names varNames <- c(paste("lag", 24:1, sep = ""), "response") # starting parallelization parallelStartSocket(2) for(i in 1:100){ # loop for getting the features # moving training data set svmTrainResp <- ts2[(25 + (i-1)*168):(528 + (i-1)*168)] # response in training svmTrainPred <- data.frame() for (j in 0:503){ auxTrainPred <- c(ts2[(1 + (i-1)*168 + j):(24 + (i-1)*168 + j)]) # predictors in training svmTrainPred <- rbind(svmTrainPred, auxTrainPred) # binding all predictors } svmTrain <- cbind(svmTrainPred, svmTrainResp) # finished data set colnames(svmTrain) <- varNames # moving testing data set svmTestResp <- ts2[(529 + (i-1)*168):(696 + (i-1)*168)] # response in testing svmTestPred <- data.frame() for (j in 0:167){ auxTestPred <- c(ts2[(505 + (i-1)*168 + j):(528 + (i-1)*168 + j)]) # predictors svmTestPred <- rbind(svmTestPred, auxTestPred) # binding all predictors } svmTest <- cbind(svmTestPred, svmTestResp) # finished data set colnames(svmTest) <- varNames # first the feature selection needs to be carried out -- selecting features regrTr <- makeRegrTask(data = svmTrain, target = "response") filter1a <- tuneParamsMultiCrit(learner = lrnFilter, task = regrTr, resampling = rdesc1, par.set = psFeatSel, measures = list(mae, rmse), control = ctrl1, show.info = FALSE) # new learner based on the found features lrnFilter1 <- makeFilterWrapper(learner = "regr.ksvm", fw.method = "information.gain", fw.abs = filter1a$x[[1]]$fw.abs) modelFilter <- train(lrnFilter1, regrTr) svrFeat[[i]] <- c(getFilteredFeatures(modelFilter), "response") print(i) } # stopping parallelization parallelStop() # starting parallelization parallelStartSocket(2) for(i in 1:100){ # loop for training the actual model # moving training data set svmTrainResp <- ts2[(25 + (i-1)*168):(528 + (i-1)*168)] # response in training svmTrainPred <- data.frame() for (j in 0:503){ auxTrainPred <- c(ts2[(1 + (i-1)*168 + j):(24 + (i-1)*168 + j)]) # predictors in training svmTrainPred <- rbind(svmTrainPred, auxTrainPred) # binding all predictors } svmTrain <- cbind(svmTrainPred, svmTrainResp) # finished data set colnames(svmTrain) <- varNames # moving testing data set svmTestResp <- ts2[(529 + (i-1)*168):(696 + (i-1)*168)] # response in testing svmTestPred <- data.frame() for (j in 0:167){ auxTestPred <- c(ts2[(505 + (i-1)*168 + j):(528 + (i-1)*168 + j)]) # predictors svmTestPred <- rbind(svmTestPred, auxTestPred) # binding all predictors } svmTest <- cbind(svmTestPred, svmTestResp) # finished data set colnames(svmTest) <- varNames # parameter optimization regrTr1 <- makeRegrTask(data = svmTrain[svrFeat[[i]]], target = "response") svmTune <- tuneParamsMultiCrit("regr.ksvm", task = regrTr1, resampling = rdesc, par.set = ps, measures = list(mae, rmse), control = ctrl, show.info = FALSE) # optimized model learning optParams <- vector() for(k in 1:length(svmTune$x)){ # get the best set in case of multiple optima optParams[k] <- svmTune$x[[k]]$C # high C tends to screw up predictions a bit } svrParams[[i]] <- svmTune$x[[which.min(optParams)]] lrnFilter2 <- setHyperPars(makeLearner("regr.ksvm"), par.vals = svmTune$x[[which.min(optParams)]]) modelFinal <- train(lrnFilter2, task = regrTr1) # predictions regrTe1 <- makeRegrTask(data = svmTest[svrFeat[[i]]], target = "response") predSVM <- predict(modelFinal, task = regrTe1) # measures svrPred[[i]] <- predSVM svrPerf[[1]][i] <- sum(abs((predSVM$data$truth - predSVM$data$response)))/ length(predSVM$data$truth) svrPerf[[2]][i] <- sum(abs((predSVM$data$truth - predSVM$data$response) / predSVM$data$truth)) / length(predSVM$data$truth) svrPerf[[3]][i] <- sqrt(sum((predSVM$data$truth - predSVM$data$response)^2) / length(predSVM$data$truth)) print(i) } # stopping parallelization parallelStop()
6073c08449eb924a9b03fafb4bd5fbc98ae4171e
fd8f64801574f35593eca598668db2a4a81ce899
/PRMSdata/shiny_demo_MT2_vers2.R
28cd42b6f4ce9c4fc46fcbe6f2540e32d6022913
[]
no_license
abock80/SB_Mapping
66a4b6267f729adfeb22f805800f518f8eb18c8f
3e10ab25aa1658e3c95e4d6aa4fd2a71f4e63bba
refs/heads/master
2020-05-25T15:45:45.755369
2016-09-02T22:34:03
2016-09-02T22:34:03
59,135,510
2
0
null
null
null
null
UTF-8
R
false
false
3,351
r
shiny_demo_MT2_vers2.R
library(shiny) library(leaflet) library(RColorBrewer) # one script - ui.r # one script - server.r y2030=c('ECHAM5','GENMON','Mean',NA) y2055=c('ECHAM5','GENMON','GFDL','Mean') y2080=c('ECHAM5','GENMON','Mean',NA) dd2<-data.frame(y2030,y2055,y2080) ui <- bootstrapPage( tags$head(tags$style( HTML(' #select {background-color: rgba(0,0,255,0.2);;} #GCMnames {background-color: rgba(255,255,255,1);}') )), tags$style(type = "text/css", "html, body {width:100%;height:100%}"), leafletOutput("map", width = "100%", height = "100%"), absolutePanel(top=10,right=10, selectInput("select", label = h3("Year"), choices = list("2030" = 1, "2055" = 2, "2080" = 3), selected = 1), actionButton("do", "Select Year"), radioButtons("GCMnames", label="GCM Names", choices="",selected=""), selectInput("colors", "Color Scheme", rownames(subset(brewer.pal.info, category %in% c("seq", "div")))), checkboxInput("legend", "Show legend", TRUE)) #verbatimTextOutput('summary') ) server <- function(input, output, session) { output$summary <- renderPrint({ print(input$selection) print(input$target) print(values[[input$selection]]) print(values[[input$selection]][input$target + 1]) }) gcmNames <- eventReactive(input$do,{ unlist(as.character(levels(dd2[,as.numeric(input$select)]))) }) observe({ z<-gcmNames() updateRadioButtons(session, "GCMnames", choices = c(z), inline=TRUE,selected="") }) output$text1 <- renderText({ input$GCMnames }) # This reactive expression represents the palette function, # which changes as the user makes selections in UI. colorpal <- reactive({ colorNumeric(input$colors, dep2030$MEAN_2030) }) output$map <- renderLeaflet({ # Use leaflet() here, and only include aspects of the map that # won't need to change dynamically (at least, not unless the # entire map is being torn down and recreated). leaflet(finalSegs) %>% addTiles()%>% fitBounds(~min(Longs), ~min(Lats), ~max(Longs), ~max(Lats)) }) observe({ pal <- colorpal() popup <- paste0("<strong>Name: </strong>", finalSegs@data$seg_id) leafletProxy("map",data=finalSegs) %>% clearShapes() %>% #addPolylines(color="red",weight=3,popup=~popup) addPolylines(color=~pal(dep2030$MEAN_2030),weight=3,popup=~popup) }) # Use a separate observer to recreate the legend as needed. observe({ pal <- colorpal() popup <- paste0("<strong>Name: </strong>", finalSegs@data$seg_id) proxy <- leafletProxy("map",data=finalSegs) %>% clearShapes() %>% #addPolylines(color="red",weight=3,popup=~popup) addPolylines(color=~pal(dep2030$MEAN_2030),weight=3,popup=~popup) # Remove any existing legend, and only if the legend is # enabled, create a new one. proxy %>% clearControls() if (input$legend) { pal <- colorpal() proxy %>% addLegend(position = "bottomright", pal = pal, values = ~dep2030$MEAN_2030 ) } }) } shinyApp(ui, server)
aa465cdcd30e0912d762ce44b172ca83a2ff35bf
1cf81a76e49517222cd309668866320ec8d6ae7d
/server.R
a7e24b63a34623cdcb4bb889e7fe2fcfd555d823
[]
no_license
neilkutty/DC_Crime_Data
7c94c824b72714c2ee4b87a1f903a7aa2f72bb0a
f841c20683059991a74f4a6c7e5ddbac7afd1859
refs/heads/master
2018-11-06T21:40:20.654794
2018-08-27T20:41:46
2018-08-27T20:41:46
54,295,626
0
0
null
null
null
null
UTF-8
R
false
false
6,451
r
server.R
library(jsonlite) library(ggplot2) library(leaflet) library(dplyr) library(tidyr) library(curl) library(lubridate) #library(rgdal) library(caret) ########---------------------------------------------------------------------#>>> ## Retrieve the data in JSON format from opendata.dc.gov using fromJson() dccrimejsonlite <- fromJSON('http://opendata.dc.gov/datasets/dc3289eab3d2400ea49c154863312434_8.geojson') ## use cbind() combine the list elements and create a dataframe dc_crime_json <- cbind(dccrimejsonlite$features$properties,dccrimejsonlite$features$geometry) ## Seperate and clean lat/long columns but keep original datetime column ## --also separate REPORT_DAT column dc_crime_lite <- dc_crime_json %>% select(OFFENSE,SHIFT,REPORT_DAT,BLOCK,METHOD,coordinates) %>% separate(coordinates, into = c("X", "Y"), sep = ",")%>% separate(REPORT_DAT, into = c("Date","Time"), sep="T", remove = FALSE)%>% mutate(Weekday = weekdays(as.Date(REPORT_DAT)), Date = as.Date(Date), X = as.numeric(gsub("c\\(","",X)), Y = as.numeric(gsub("\\)","",Y))) dc_crime_lite$DATETIME = as.POSIXct(strptime(dc_crime_lite$REPORT_DAT, tz = "UTC", "%Y-%m-%dT%H:%M:%OSZ")) #Shiny server function(input, output, session) { filterData <- reactive({ if (is.null(input$mymap_bounds)) return(dc_crime_lite) bounds <- input$mymap_bounds latRng <- range(bounds$north, bounds$south) lngRng <- range(bounds$east, bounds$west) filter(dc_crime_lite, Y >= latRng[1] & Y <= latRng[2] & X >= lngRng[1] & X <= lngRng[2]) }) output$plotOffense <- if(is.null(filterData)){ return() }else{ renderPlot({ off <- as.data.frame(table(filterData()$OFFENSE)) off$Freq <- as.numeric(off$Freq) off$Var1 <- factor(off$Var1) colnames(off) <- c("OFFENSE","COUNT") ggplot(off, aes(x=OFFENSE,y=COUNT)) + geom_bar(stat="identity",alpha = 0.45, fill='red') + ggtitle("Number of Crimes by Offense") + geom_text(aes(label = off$COUNT), size = 3.5, hjust = .58, color = "black")+ coord_flip()+ scale_x_discrete(label = function(x) lapply(strwrap(x, width = 10, simplify = FALSE), paste, collapse="\n"))+ theme(axis.title=element_text(size=10), axis.text.y = element_text(size=10, hjust = 1), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.border = element_blank(), panel.background = element_blank() ) })} output$plotSeries <- if(is.null(filterData)){ return() }else{ renderPlot({ ts <- filterData() %>% select(Date) %>% group_by(Date) %>% summarize(count = n()) ggplot(ts[-c(nrow(ts),1),], aes(x=Date, y=count, alpha = 0.8))+ geom_line()+ geom_text(aes(label = ts[-c(nrow(ts),1),]$count), size = 3.5, hjust = .58, color = "black")+ ggtitle("Number of Crimes by Day")+ guides(alpha=FALSE)+ theme(axis.title=element_text(size=10), axis.text.x = element_text(size = 10, angle = 45, hjust = 1))+ theme_bw() }) } output$plotTimeline <- if(is.null(filterData)){ return() }else{ renderPlot({ scat <- filterData() %>% select(OFFENSE, Date) %>% group_by(OFFENSE, Date) %>% summarize(count = n()) ggplot(scat, aes(x=Date, y=count, color=OFFENSE))+ geom_point()+ ggtitle("Number of Crimes by Day by Offense")+ scale_fill_brewer("Set2")+ theme(axis.title=element_text(size=10), axis.text.x = element_text(size = 10, angle = 45, hjust = 1), panel.background = element_rect(fill = "white"), strip.background = element_rect(fill = "white"), legend.position = c(.35,.75), legend.background = element_rect(fill=alpha('white', 0.2))) }) } output$plotDayTime <- if(is.null(filterData)){ return() }else{ renderPlot({ dt <- filterData() %>% select(Weekday, SHIFT) %>% group_by(Weekday, SHIFT) %>% summarize(count = n()) dt$Weekday <- factor(dt$Weekday, levels= c("Sunday", "Monday","Tuesday", "Wednesday", "Thursday", "Friday", "Saturday")) dt$SHIFT <- factor(dt$SHIFT, levels= c("DAY","EVENING","MIDNIGHT")) dt[order(dt$Weekday,dt$SHIFT),] ggplot(dt,aes(x=SHIFT,y=count,fill=SHIFT)) + geom_bar(stat="identity", alpha = 0.75) + scale_fill_brewer(palette = 'Set2')+ scale_y_continuous()+ ggtitle("Number of Crimes by Day of Week and Time of Day (SHIFT)")+ facet_grid(.~Weekday)+ theme(axis.title=element_text(size=10), axis.text.x = element_text(size = 10, angle = 45, hjust = 1), panel.background = element_rect(fill = "white"), strip.background = element_rect(fill = "white"), legend.position = c(.085,.9), legend.background = element_rect(fill=alpha('white', 0.2))) })} output$table1 <- renderDataTable(options=list(pageLength=25),{ filterData()%>% select(Weekday, SHIFT, DATETIME, BLOCK, OFFENSE, METHOD) }) points <- eventReactive(input$resetMap,{ cbind(dc_crime_lite$X,dc_crime_lite$Y) }, ignoreNULL = FALSE) output$mymap <- renderLeaflet({ leaflet() %>% addProviderTiles("OpenStreetMap.Mapnik", options = providerTileOptions(noWrap = TRUE) ) %>% addMarkers(data = points(), popup = paste0("<strong>Report Date: </strong>", dc_crime_lite$DATETIME, "<br><strong>Offense: </strong>", dc_crime_lite$OFFENSE, "<br><strong>method: </strong>", dc_crime_lite$METHOD, "<br><strong>shift: </strong>", dc_crime_lite$SHIFT, "<br><strong>blocksite address: </strong><br>", dc_crime_lite$BLOCK ), clusterOptions = markerClusterOptions() ) }) }
e573e5a4d8d40e10b1fe405760d3d2d0a4273560
7eb711dcaf5eb7f78a21672311aab5b6877ed9f5
/R/DE_edgeR.R
eddec501551dde6d5a68086d2995bdd941a0e3d6
[]
no_license
xizhihui/codes
ef8d2135648e065768d7d11cc7f70d8e55da4182
bd1beb82ff177f0b75fa320a2e637af5d1da64de
refs/heads/master
2021-06-18T04:31:54.831817
2021-06-15T05:03:22
2021-06-15T05:03:22
160,029,844
0
0
null
null
null
null
UTF-8
R
false
false
3,048
r
DE_edgeR.R
######################################################## # 使用edgeR进行差异分析 # 使用方式: # source('DE_edgeR.R') # edgeR_DGE(exprSet, group, type) # exprSet: 表达矩阵 # group: 样品分组 # type: 差异分析方法, classical, lrt, qlt # + classcial # + glm: likelihood ratio test/ quasi-likelihood F-test # + + quasi-likelihood(qlf): 推荐用于差异分析,因为他对错误率限制较好。 # + + likelihood(lrt):对与单细胞RNA-测序和没有重复的数据较好 ##################### example ########################### # suppressPackageStartupMessages(library(edgeR)) # setwd('~/practice/180716_edgeR/') # rawdata = read.table('rawdata.txt') # head(rawdata) # rawdata = rawdata[-(1:5),] # groups = grepl('01A', colnames(rawdata)) # groups = ifelse(groups, 'tumor', 'normal') # table(groups) # edgeR_DGE(exprSet = rawdata, group=groups, type='classical') ######################################################## edgeR_DGE <- function(exprSet, group, type, cpm=c(100,4)) { require(edgeR) # 生成DEGList DGE = DGEList(counts=exprSet, group=group) DGE.old = DGE # 生成design design = model.matrix(~group) cat('design生成完成\n') # cpm过滤 keep = rowSums(edgeR::cpm(DGE) > cpm[1]) >= cpm[2] DGE = DGE[keep,] cat('过滤完成\n') # 进行校正 DGE = calcNormFactors(DGE) cat('计算校正因子\n') # 检测离群值和关系 png('plotMDS.png') plotMDS(DGE, method='bcv', col=as.numeric(DGE$samples$group)) legendCol = unique(as.numeric(DGE$samples$group)) legendGroup = unique(as.character(DGE$samples$group)) legend("bottomright", legendGroup, col=legendCol, pch=20) dev.off() cat('MDS 出图完毕\n') if (type == 'classical') { # 计算离散度dispersion d = estimateCommonDisp(DGE) d = estimateTagwiseDisp(d) test = exactTest(d) cat('使用classical进行差异分析完毕\n') } else { # 计算离散度dispersion d = estimateGLMCommonDisp(DGE) d = estimateGLMTrendedDisp(d) d = estimateGLMTagwiseDisp(d) if (type == 'qlf') { fit = glmQLFit(d, design) test = glmQLFTest(fit, coef=2) cat('使用qlf差异分析完毕') } else if (type == 'lrt') { fit = glmFit(d, design) test = glmLRT(fit, coef=2) cat('使用lrt差异分析完毕') } } png('plotBCV.png') plotBCV(d) dev.off() png('plotSmear.png') de = decideTestsDGE(test, adjust.method="BH", p.value = 0.05) tags = rownames(d)[as.logical(de)] plotSmear(test, de.tags=tags) abline(h=c(-4,4), col='blue') dev.off() cat('BCV,Smear 出图完毕\n正则保存数据.') finalDGE = topTags(test, n=nrow(exprSet)) finalDGE = as.data.frame(finalDGE) write.table(file='DGE_edgeR.txt', finalDGE) save(test, fit, file='DE_edgeR.RData') cat('数据保存完毕,运行完成') }
6197e13a9eb5231f676caff48bf0ffd067a78080
e203f637b3387ff74be1a950f043b99d58787852
/4.2.R
d827eb08968e72ec935c1c6f31fa38e8998ec45b
[ "MIT" ]
permissive
tondi/stat
e274711de6a9c01ce9599e46e370a4cb5172a9b8
0351cb0708fd20339ff6cc7f6b21fe214b7d3e4a
refs/heads/master
2022-12-03T10:54:20.170710
2020-09-01T08:26:56
2020-09-01T08:26:56
291,940,332
0
0
null
null
null
null
UTF-8
R
false
false
416
r
4.2.R
install.packages("psych") results <- matrix(c(315, 101, 108, 32), nrow=2, ncol=2, byrow = TRUE) expected <- matrix( c(9, 3, 3, 1), nrow=2, ncol=2, byrow = TRUE ) # lm(results[2][2] ~ ., data = results) podzielone <- results / expected chisq.test(podzielone, expected) # X-squared = 0.0035162, df = 1, p-value = 0.9527 # eksperyment nie potwierdzil rozwazan teorytycznych na poziomie istotnosci = 0.05
b63ede35a130622a6c3fa149b1492babff8b8264
287fe76a4b1fa3f147f6ad8c9ccbc70916823b39
/Plot2.R
12f8326dc72392bc488c720541f00449d92f7922
[]
no_license
wheatonr/bendy-chicken
9394b848c8de4e9e7779b2de60d8b9d401fedfd1
443bc85e7e873234692dd22edba92fb60c962c18
refs/heads/master
2020-04-12T15:23:04.400033
2014-09-08T06:08:13
2014-09-08T06:08:13
null
0
0
null
null
null
null
UTF-8
R
false
false
649
r
Plot2.R
## Exploratory Data Analysis project 2 NEI <- readRDS("summarySCC_PM25.rds") SCC <- readRDS("Source_Classification_Code.rds") ## compute sum by year for Baltimore only baltimore<-aggregate(Emissions ~ year, sum,data=NEI[NEI$fips=="24510",]) ##setup for png output png(filename="plot2.png",width=480,height=480,units="px") ## plot Emissions vs year plot(baltimore,type="p",main="Baltimore City PM25 Emissions", ylab="PM25 (tons)",xlab="Year") ## add trendline abline(lm(Emissions ~ year,baltimore),col="red") ## add ledgend legend(x="bottomleft",legend=c("observed","trend"),col=c("black","red"), lwd=1,lty=c(NA,1),pch=c(1,NA)) dev.off()
7f27b7719422c4ce6384d0d64c3e14d6de4bdc73
80c022bc6f023dae8549f35a6759e928f99c521d
/R/stats.R
bb446cc38175f92bc90f533cc6a67881072cca1d
[]
no_license
SonmezOzan/mmfit
37d5bf3735c431718a702f2943466df73574d9d9
ba28ef0321c990daa39484aeafd3d8e54dbb462d
refs/heads/master
2021-01-20T05:34:18.521092
2017-08-26T00:21:22
2017-08-26T00:21:22
101,451,377
0
0
null
null
null
null
UTF-8
R
false
false
2,024
r
stats.R
#' summary.mmfit function and plot.mmfit function #' #' @param x a set of sample data #' @param g moment function #' @param start initial values to start with #' @param type distribution type. It take a value from "Poisson", "power law", "Gamma", "Beta", mixture of "2Poissons", and "2Exponential". #' #' @description We can use summary.mmfit(x, g, start, type) to obtain estimated distribution parameters. #' We use plot.mmfit(x, g, start, type) to plot fitting curve and empirical CDF with K-S confidence band. summary.mmfit = function(x, g, start, type){ result = mmfit(x, g, start, type) if(type == "Beta"){ cat("alpha:", result$thetahat[1], "\t", "std. error:", result$thetahatses[1], "\n") cat("beta:", result$thetahat[2], "\t", "std. error:", result$thetahatses[2], "\n") } else if(type == "Poisson"){ cat("lambda:", result$thetahat[1], "\t", "std. error:", result$thetahatses[1], "\n") } else if(type == "Gamma"){ cat("alpha:", result$thetahat[1], "\t", "std. error:", result$thetahatses[1], "\n") cat("beta:", result$thetahat[2], "\t", "std. error:", result$thetahatses[2], "\n") } else if(type == "2Poisson"){ cat("lambda1:", result$thetahat[1], "\t", "std. error:", result$thetahatses[1], "\n") cat("lambda2:", result$thetahat[2], "\t", "std. error:", result$thetahatses[2], "\n") cat("p:", result$thetahat[3], "\t", "std. error:", result$thetahatses[3], "\n") } else if(type == "2Exponential"){ cat("lambda1:", result$thetahat[1], "\t", "std. error:", result$thetahatses[1], "\n") cat("lambda2:", result$thetahat[2], "\t", "std. error:", result$thetahatses[2], "\n") cat("p:", result$thetahat[3], "\t", "std. error:", result$thetahatses[3], "\n") } else{ cat("alpha:", result$thetahat[1], "\t", "std. error:", result$thetahatses[1], "\n") } } plot.mmfit = function(x, g, start, type){ result = mmfit(x, g, start, type) gridExtra::grid.arrange(result$denscomp, result$cdfband, ncol=2) }
ef36f56e439696f0770dac34fc4e62923683c52c
449482d6e7183a795818a689da2132a2b7ce93ed
/tests/fixtures/r-gsl/main.R
b478e733d585ca5391e983867a0957a374386ce3
[ "Apache-2.0" ]
permissive
stencila/dockta
8ecb0aabc63f7451b5f7fc521d7d354d70afc89d
8fb329fb026924a00527643a6ac639651ac20329
refs/heads/master
2023-08-09T14:11:02.250754
2023-07-26T03:59:47
2023-07-26T03:59:47
151,520,823
57
11
Apache-2.0
2023-08-27T10:12:16
2018-10-04T05:00:17
TypeScript
UTF-8
R
false
false
115
r
main.R
# A test fixture with an R package with a system requirement # that has an array for deb requirements library(gsl)
17edc18523f90a86d769816300babc93d60d1b44
6a28ba69be875841ddc9e71ca6af5956110efcb2
/Matrices_And_Linear_Transformations_by_Charles_G._Cullen/CH1/EX1.11/Ex1_11.R
42f15db6e278e24283152c95978b62db55471c2e
[]
permissive
FOSSEE/R_TBC_Uploads
1ea929010b46babb1842b3efe0ed34be0deea3c0
8ab94daf80307aee399c246682cb79ccf6e9c282
refs/heads/master
2023-04-15T04:36:13.331525
2023-03-15T18:39:42
2023-03-15T18:39:42
212,745,783
0
3
MIT
2019-10-04T06:57:33
2019-10-04T05:57:19
null
UTF-8
R
false
false
884
r
Ex1_11.R
#page - 41 #section - 1.7 SPECIAL KINDS OF MATRICES #example 11 #matrix A A <- matrix(c(1,2,3,4,2,5,-6,7,3,-6,8,-9,4,7,-9,0), 4, 4, byrow=TRUE) A #matrix B B <- matrix(c(0,1,2,3,-1,0,-4,5,-2,4,0,6,-3,-5,-6,-0), 4, 4, byrow=TRUE) A AT = t(A) AT BT = t(B) BT #function to compare two matrices #symmetric check function matsym <- function(x, y) is.matrix(x) && is.matrix(y) && dim(x) == dim(y) && all(x == y) #skew symmetric check function matskew <- function(x, y) is.matrix(x) && is.matrix(y) && dim(x) == dim(y) && all(x == -y) #condition check if(matsym(AT, A)){ print("A is a symmetric matrix") }else if(matskew(AT, A)){ print("A is a skew symmetric matrix") }else{ print("none") } if(matsym(BT, B)){ print("B is a symmetric matrix") }else if(matskew(BT, B)){ print("B is a skew symmetric matrix") }else{ print("none") }
659176b81751b2f1bdffd7bdc1a42497fd10ec23
70c0910f9cdcfe59e2dc93b20b813df0c740845f
/man/print.AR.Rd
34be389633b8281d7a0f1620b0ec07181c286bae
[]
no_license
michaldanaj/MDBinom
a21ca1e7d486168922d32eac641fb1df1d518875
082a583fc9905ea13acfda382a8a9c31ddf3573c
refs/heads/master
2021-07-25T01:09:00.904252
2020-06-11T21:17:28
2020-06-11T21:17:28
52,234,495
0
0
null
2019-04-24T19:04:29
2016-02-21T23:49:48
R
UTF-8
R
false
true
353
rd
print.AR.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/MDBinom.r \name{print.AR} \alias{print.AR} \title{Wyświetla statystyki przechowywane w obiekcie \code{\link{AR}}} \usage{ \method{print}{AR}(x) } \arguments{ \item{x}{obiekt klasy \code{AR}.} } \description{ Wyświetla statystyki przechowywane w obiekcie \code{\link{AR}} }
1062f17a3812e43774ce146d3e4dc86679425ac6
402c51ab42489645ab08567448a2c4cba1096712
/arima-model.R
7e73568f03955fd77fd175ecb9127d77a89c7a49
[]
no_license
bnouyrigat/forecasting-bike-sharing
bca17309548b395ebb5221704c0ba5ee244a10d5
9a75106b217f02f946faca29c198a8cd6cdafd84
refs/heads/master
2020-03-20T22:27:24.034067
2018-06-19T18:45:32
2018-06-19T18:45:32
137,799,834
0
0
null
null
null
null
UTF-8
R
false
false
2,059
r
arima-model.R
library('ggplot2') library('forecast') library('tseries') daily_data = read.csv('./day.csv', header=TRUE, stringsAsFactors=FALSE) daily_data$Date = as.Date(daily_data$dteday) ggplot(daily_data, aes(Date, cnt)) + geom_line() + scale_x_date('month') + ylab("Daily Bike Checkouts") + xlab("") count_ts = ts(daily_data[, c('cnt')]) daily_data$clean_cnt = tsclean(count_ts) ggplot() + geom_line(data = daily_data, aes(x = Date, y = clean_cnt)) + ylab('Cleaned Bicycle Count') daily_data$cnt_ma = ma(daily_data$clean_cnt, order=7) # using the clean count with no outliers daily_data$cnt_ma30 = ma(daily_data$clean_cnt, order=30) ggplot() + geom_line(data = daily_data, aes(x = Date, y = clean_cnt, colour = "Counts")) + geom_line(data = daily_data, aes(x = Date, y = cnt_ma, colour = "Weekly Moving Average")) + geom_line(data = daily_data, aes(x = Date, y = cnt_ma30, colour = "Monthly Moving Average")) + ylab('Bicycle Count') count_ma = ts(na.omit(daily_data$cnt_ma), frequency=30) decomp = stl(count_ma, s.window="periodic") deseasonal_cnt <- seasadj(decomp) plot(decomp) adf.test(count_ma, alternative = "stationary") Acf(count_ma, main='') Pacf(count_ma, main='') count_d1 = diff(deseasonal_cnt, differences = 1) plot(count_d1) adf.test(count_d1, alternative = "stationary") Acf(count_d1, main='ACF for Differenced Series') Pacf(count_d1, main='PACF for Differenced Series') fit<-auto.arima(deseasonal_cnt, seasonal=FALSE) tsdisplay(residuals(fit), lag.max=45, main='(1,1,1) Model Residuals') fit2 = arima(deseasonal_cnt, order=c(1,1,7)) fit2 tsdisplay(residuals(fit2), lag.max=15, main='Seasonal Model Residuals') fcast <- forecast(fit2, h=30) plot(fcast) hold <- window(ts(deseasonal_cnt), start=700) fit_no_holdout = arima(ts(deseasonal_cnt[-c(700:725)]), order=c(1,1,7)) fcast_no_holdout <- forecast(fit_no_holdout,h=25) plot(fcast_no_holdout, main=" ") lines(ts(deseasonal_cnt)) fit_w_seasonality = auto.arima(deseasonal_cnt, seasonal=TRUE) fit_w_seasonality seas_fcast <- forecast(fit_w_seasonality, h=30) plot(seas_fcast)
5824fd37693fb2a86b34e4954331a1746cb91093
bf864ce7dc7edced7e8eca28a43ece359e2cda21
/string_manipulation/dnaORrna.R
d82a9caff454fbe9ad2767b3a9f8947d3e66b2fc
[]
no_license
inambioinfo/r-codes
557367f1942f19847bf18209380c42c62d49db6f
8720b1ad1d27143a3ea01d1bb7ad78c2eda449e8
refs/heads/master
2020-06-13T09:54:42.257218
2018-10-13T05:54:02
2018-10-13T05:54:02
null
0
0
null
null
null
null
UTF-8
R
false
false
793
r
dnaORrna.R
dnaORrna <- function(sequence){ #------- sequence <- toupper(sequence) #------- #sequence <- 'ATGC' nuc <- strsplit(sequence, split='')[[1]] if (length(nuc) == 0){ stop("No sequence is given!!!") } #------- conflictSeq <- intersect(c('T','U'),nuc) if(length(conflictSeq) == 0){ output <- 'DNA or RNA' }else{ #check for U rna <- length(which(nuc == "U")) if(rna >= 1){ output <- 'RNA' rna.nuc <- c('A','U','G','C') if(length(setdiff(nuc,rna.nuc))==0){ output <- 'RNA' }else{ output <- 'The given sequence is not correct.' } }else{ dna.nuc <- c('A','T','G','C') if(length(setdiff(nuc,dna.nuc))==0){ output <- 'DNA' }else{ output <- 'The given sequence is not correct.' } } } return(output) }
ec716682441c9544badc12e4d6b6f1cc8c050159
1fb7ddd7f291bc6e2300e97086c450398c6e1636
/Plot6.R
62eb662e5d41257c519245067ab2b373cc635d26
[]
no_license
Belphegorus/ExpDatAn_CP2
acb1f247728ffbd04572207bae1d041dfdf01ad4
ba2f9bb5d7fb3c028df954117273d94230998680
refs/heads/master
2016-09-01T07:33:49.234086
2016-03-27T17:27:46
2016-03-27T17:27:46
54,839,692
0
0
null
null
null
null
UTF-8
R
false
false
1,087
r
Plot6.R
# Compare emissions from motor vehicle sources in Baltimore City with emissions from motor # vehicle sources in Los Angeles County, California (fips == "06037"). # Which city has seen greater changes over time in motor vehicle emissions? library(ggplot2) sum_ssc<- readRDS("summarySCC_PM25.rds") Co <- readRDS("Source_Classification_Code.rds") Merged<- merge(sum_ssc, Co, by="SCC") fps <- sum_ssc[(sum_ssc$fips=="24510"|sum_ssc$fips=="06037") & sum_ssc$type=="ON-ROAD", ] aggrYFps <- aggregate(Emissions ~ year + fips, fps, sum) aggrYFps$fips[aggrYFps$fips=="24510"] <- "Baltimore, MD" aggrYFps$fips[aggrYFps$fips=="06037"] <- "Los Angeles, CA" png("plot6.png", width=1040, height=480) g <- ggplot(aggrYFps, aes(factor(year), Emissions)) g <- g + facet_grid(. ~ fips) g <- g + geom_bar(stat="identity") + xlab("year") + ylab(expression('Total PM'[2.5]*" Emissions")) + ggtitle('Total Emissions from motor vehicle (type=ON-ROAD) in Baltimore City, MD (fips = "24510") vs Los Angeles, CA (fips = "06037") 1999-2008') print(g) dev.off()
c723fc38274ae55aeec9301c4db81ad84978f249
c5de5d072f5099e7f13b94bf2c81975582788459
/R Extension/RMG/Energy/Trading/Congestion/NEPOOL/ISO_Data/EnergyOffer/lib.investigate.energy.offers.R
9750f7b40a54ce525d3205f0a6e055d192629131
[]
no_license
uhasan1/QLExtension-backup
e125ad6e3f20451dfa593284507c493a6fd66bb8
2bea9262841b07c2fb3c3495395e66e66a092035
refs/heads/master
2020-05-31T06:08:40.523979
2015-03-16T03:09:28
2015-03-16T03:09:28
190,136,053
2
0
null
null
null
null
UTF-8
R
false
false
13,783
r
lib.investigate.energy.offers.R
# # EO.by_maskedNodeId - extract one unit in P, MW, segment form # EO.by_month - cast the EO by month in P, MW, segment form # EO.clean_PQ_pairs_of_NAs # EO.get_unique_participantsMonth # # analyze_NorthfieldMountain # analyze_SalemHarbor # # get_cleared_mw_lessThanHub # get_cleared_mw_lessThanHR # get_must_take_mw # # subsetMaskedNodeId - filter files by a MaskedNodeId # subsetParticipantId - filter files by a participant id # ############################################################## # One masked ID at a time, sift through the monthly files, # Cast the data to keep only the P, MW, segment # If it's been processed already don't do it again. # EO.by_maskedNodeId <- function(maskedNodeId, redo=FALSE) { files <- list.files(DIR_EO, full.names=TRUE, pattern="^DB_") fname <- paste(DIR_EO, "Split/", maskedNodeId, ".RData", sep="") if (file.exists(fname)){ load(fname) # subset existing data with the files uMonths <- unique(format(EO$datetime - 60*60, "%Y%m")) # time is HE! if (redo) { fProcessed <- NULL } else { fProcessed <- paste(DIR_EO, "DB_", uMonths, ".RData", sep="") } files <- setdiff(files, fProcessed) if (length(files)==0){ rLog("All done. Exiting") return() } } else { EO <- NULL # energy offers variable } X <- finalize(files, subsetMaskedNodeId, agg="rbind", maskedNodeId) X <- EO.clean_PQ_pairs_of_NAs(X) cnames <- as.vector(outer(c("P.", "MW."), 1:10, paste, sep="")) ind <- c(1, 3, which(colnames(X) %in% cnames)) X <- X[, ind] ind <- which(is.na(X$datetime)) if (length(ind)>0) X <- X[-ind, ] # some NA crap from daylight savings Y <- melt(X, id=1:2) Y <- subset(Y, !is.na(value)) Y$segment <- gsub(".*\\.(.*)", "\\1", Y$variable) Y$variable <- gsub("(.*)\\..*", "\\1", Y$variable) #subset(Y, datetime == as.POSIXct("2011-03-14 01:00:00")) Y <- cast(Y, datetime + nodeId + segment ~ variable, I, fill=NA) # 2 mins Y <- Y[order(Y$datetime, Y$P),] Y <- data.frame(Y) # put them together EO <- rbind(EO, Y) EO <- EO[order(EO$datetime, EO$P),] # save the file back save(EO, file=fname) rLog("Wrote file", fname) } ############################################################## # make the long file ... # EO.by_month <- function(fname, outdir, NO_BLOCKS=4) { rLog("Working on", fname) month <- gsub("DB_(.*)\\.RData", "\\1", basename(fname)) fnameLong <- paste(outdir, "RData/Long/long_", month, ".RData", sep="") if (file.exists(fnameLong)){ rLog("File exists. Done.") return() } load(fname) cnames <- as.vector(outer(c("P.", "MW."), 1:10, paste, sep="")) ind <- which(colnames(res) %in% c("datetime", "nodeId", cnames)) res <- res[, ind] ind <- which(is.na(res$datetime)) if (length(ind)>0) res <- res[-ind, ] # some NA crap from daylight savings uNodeId <- unique(res$nodeId) BLOCK_SIZE <- ceiling(length(uNodeId)/NO_BLOCKS) EO <- vector("list", length=NO_BLOCKS) for (b in 1:NO_BLOCKS){ rLog(" block", b) ind <- ((b-1)*BLOCK_SIZE+1):min((b*BLOCK_SIZE),length(uNodeId)) nodes <- uNodeId[ind] aux <- melt(subset(res, nodeId %in% nodes), id=1:2) aux <- subset(aux, !is.na(value)) aux$segment <- gsub(".*\\.(.*)", "\\1", aux$variable) aux$variable <- gsub("(.*)\\..*", "\\1", aux$variable) aux <- cast(aux, datetime + nodeId + segment ~ variable, I, fill=NA) # some extra values due to daylight savings time #aux <- aux[order(aux$datetime, aux$P),] EO[[b]] <- data.frame(aux) } EO <- do.call("rbind", EO) EO <- EO[order(EO$datetime, EO$nodeId, EO$P),] rownames(EO) <- NULL save(EO, file=fnameLong) rLog("Wrote", fnameLong) } ############################################################## EO.clean_PQ_pairs_of_NAs <- function(X) { cnames <- as.vector(outer(c("P.", "MW."), 1:10, paste, sep="")) ind <- which(colnames(X) %in% cnames) ind.rm <- NULL # remove P,Q segments with NA values for (i in ind){ if (all(is.na(X[,i]))) ind.rm <- c(ind.rm, i) } if (length(ind.rm)>0) X <- X[,-ind.rm] X } ############################################################## EO.get_unique_participantsMonth <- function(files=NULL) { if (is.null(files)) files <- list.files(DIR_EO, full.names=TRUE, pattern="^DB_") FUN <- function(file=file){ yyyymm <- gsub(".*_(.*)\\.RData", "\\1", file) month <- as.Date(paste(yyyymm, "01", sep=""), format="%Y%m%d") load(file) aux <- data.frame(month=as.character(month), participantId=sort(unique(res$participantId))) aux } res <- finalize(files, FUN) fileOut <- paste(DIR_EO,"../uParticipantsMonth.csv", sep="") write.csv(res, file=fileOut, row.names=FALSE) rLog("Wrote file", fileOut) res } ############################################################## # Unit 1 = 250 MW coal # Unit 2 = 250 MW coal # Unit 3 = 640 MW coal # Unit 4 = 445 MW oil analyze_Brayton <- function() { maskedNodeIds <- c(43551, 59958, 23789, 43414) names(maskedNodeIds) <- c("Unit 1", "Unit 2", "Unit 3", "Unit 4 (Oil)") for (id in maskedNodeIds) EO.by_maskedNodeId(id) # extract the Energy Offers files <- paste(DIR_EO, "Split/", maskedNodeIds, ".RData", sep="") EO <- finalize(files, function(file=file){load(file); EO}) EO <- merge(EO, HUB[,c("datetime", "hub")], by="datetime") EO <- merge(EO, data.frame(nodeId=maskedNodeIds, unit=names(maskedNodeIds))) # pick only one hour during the day, for the coal units only EO$HE <- as.numeric(format(EO$datetime, "%H")) eo <- subset(EO, HE==17 & nodeId %in% c(43551, 59958, 23789)) # get cleared mw less than hub price qL <- cast(EO, datetime ~ ., sum, value="MW", subset=P<=hub) names(qL)[2] <- "MW<Hub" summary(qL$`MW<Hub`) xyplot(`MW<Hub` ~ datetime, data=qL, type=c("g", "l"), subset=datetime >= as.POSIXct("2008-01-01")) # get the average offer price of the coal units aux <- subset(EO, nodeId %in% c(43551, 59958, 23789)) avgP <- ddply(aux, .(datetime), function(x){ data.frame(avgP = sum(x$MW * x$P)/sum(x$MW), minP = min(x$P), maxP = max(x$P))}) # plot the price of first block aux <- subset(EO, datetime >= as.POSIXct("2008-01-01")) xyplot(P ~ datetime | unit, data=aux, subset=segment=="1" & nodeId %in% c(43551, 59958, 23789) & P < 100, layout=c(1,3), type=c("g", "p"), ylab="Price of first energy offer point, $/MWh", xlab="", main="Brayton Point, coal units") aux <- aux[order(aux$unit, aux$segment, aux$datetime),] xyplot(P ~ datetime | unit, data=aux, groups=segment, subset=nodeId %in% c(43551) & P < 300, layout=c(1,1), type=c("g", "l"), ylab="Price of first energy offer point, $/MWh", xlab="", main="Brayton Point, coal units") # how does quantity cleared correlates with hub prices? res <- merge(qL, HUB[,c("datetime", "hub")], by="datetime") res <- merge(res, avgP, by="datetime") plot(res$hub, res$`MW<Hub`) aux <- melt(res[,-2], id=1) xyplot(value ~ datetime, data=aux, groups=variable, type=c("g", "l"), subset=datetime >= as.POSIXct("2008-01-01"), ylim=c(0, 220)) xyplot(minP ~ datetime, data=res, type=c("g", "l"), subset=datetime >= as.POSIXct("2008-01-01"), ylim=c(0, 220)) } ############################################################## # analyze_Manchester <- function() { maskedNodeIds <- c(37274, 92137, 72183) for (id in maskedNodeIds) EO.by_maskedNodeId(id) # extract the Energy Offers files <- paste(DIR_EO, "Split/", maskedNodeIds, ".RData", sep="") totalQ <- get_cleared_mw_lessThanHub(files, HUB) hr <- seq(6, 19, by=1) aux <- subset(totalQ, datetime > as.POSIXct("2010-05-01")) plot(aux$datetime, aux$MW, type="l", col="blue", main="Manchester CC", cex.main=1, ylab="MW") } ############################################################## # analyze_Mystic <- function() { maskedNodeIds <- c(60658, 11009, 72020) # Mystic 7, 8, 9 in this order for (id in maskedNodeIds) EO.by_maskedNodeId(id) # extract the Energy Offers files <- paste(DIR_EO, "Split/", maskedNodeIds, ".RData", sep="") totalQ <- get_cleared_mw_lessThanHub(files, HUB) # only Mystic7 files <- paste(DIR_EO, "Split/", maskedNodeIds[1], ".RData", sep="") totalQ <- get_cleared_mw_lessThanHub(files, HUB) totalQ <- zoo(totalQ$MW, totalQ$datetime) aux <- subset(totalQ, datetime > as.POSIXct("2008-01-01")) plot(aux$datetime, aux$MW, type="l", col="blue", main="Mystic 7", cex.main=1, ylab="MW in the money") } ############################################################## # pass in the analyze_NorthfieldMountain <- function(X) { maskedNodeIds <- c(53298, 60188, 66602, 83099) files <- paste(DIR_EO, "Split/", maskedNodeIds, ".RData", sep="") EO <- finalize(files, function(file=file){load(file); EO}) EO <- merge(EO, HUB[,c("datetime", "hub")], by="datetime") EO$nodeId <- factor(EO$nodeId) xyplot(P ~ datetime | nodeId, data=EO, groups=segment, xlab="", ylab="Price", layout=c(1,4)) windows() xyplot(P ~ datetime | nodeId, data=EO, groups=segment, xlab="", ylab="Price", layout=c(2,2), subset=datetime >= as.POSIXct("2011-01-01")) day <- as.Date("2011-04-15") DD <- subset(EO, (datetime >= as.POSIXct(paste(day, "01:00:00")) & datetime <= as.POSIXct(paste(day+1, "00:00:00"))) ) DD$HE <- format(DD$datetime, "%H") DD <- DD[order(DD$datetime, DD$nodeId, DD$segment), ] split(DD, DD$HE) subset(EO, datetime >= as.POSIXct(paste(day, "01:00:00")) ) #EO <- merge(EO, data.frame(nodeId=maskedNodeIds, unit=names(maskedNodeIds))) aux <- subset(Y, cMW >= 810) p810 <- ddply(aux, .(datetime), function(x){x$P[1]}) # 30 secs plot(p810$datetime, p810[,2], type="l", col="blue") aux <- Y[1:120,] aux$cMW <- unlist(tapply(aux$MW, aux$datetime, cumsum)) # price of the first 3 units p810 <- ddply(aux, .(datetime), function(x){ #browser() res <- NA ind <- which(cumsum(x$MW) >= 810) if (length(ind)>0){ res <- x$P[ind[1]] } return(res) }) } ############################################################## # analyze_SalemHarbor <- function() { maskedNodeIds <- c(79866, 34993, 16337, 45823) for (id in maskedNodeIds) EO.by_maskedNodeId(id) # extract the Energy Offers files <- paste(DIR_EO, "Split/", maskedNodeIds, ".RData", sep="") totalQ <- get_cleared_mw(files, HUB) aux <- subset(totalQ, datetime > as.POSIXct("2010-05-01")) plot(aux$datetime, aux$MW, type="l", col="blue", main="Salem Harbor", cex.main=1, ylab="MW") } ##################################################################### # sum up the offered MWs with prices < Hub price for that hour # # get_cleared_mw_lessThanHub<- function(files, HUB) { EO <- finalize(files, function(file=file){load(file); EO}) EO <- merge(EO, HUB[,c("datetime", "hub")], by="datetime") EO <- subset(EO, P <= hub) totalQ <- cast(EO, datetime ~ ., sum, value="MW") names(totalQ)[2] <- "MW" totalQ } ##################################################################### # sum up the bid quantity only for bids < gasPrice*HR for that hour # hr can be a vector # get_cleared_mw_lessThanHR <- function(files, HUB, hr) { EO <- finalize(files, function(file=file){load(file); EO}) EO <- merge(EO, HUB[,c("datetime", "gas")], by="datetime") QQ <- vector("list", length=length(hr)) for (i in seq_along(hr)){ aux <- subset(EO, P <= gas*hr[i]) aux <- cast(aux, datetime ~ ., sum, value="MW") names(aux)[2] <- "MW" aux$hr <- hr[i] QQ[[i]] <- aux } QQ <- do.call("rbind", QQ) QQ } ##################################################################### # Define self scheduled as MW offered as must take + MW offered at # a HR < 4 # get_must_take_mw <- function(plots=FALSE) { subsetFun <- function(file=file){ load(file) mustTake <- subset(res, Must.Take.Energy != 0) mustTake <- cast(mustTake, datetime ~ ., sum, value="Must.Take.Energy") as.data.frame(mustTake) } # load all ISO files with demand bids, filter by constellation files <- list.files(DIR_EO, full.names=TRUE, pattern="^DB_") res <- finalize(files, subsetFun) names(res)[2] <- "mustTakeEnergy" if (plots){ aux <- subset(res, datetime > as.POSIXct("2010-01-01")) plot(aux$datetime, aux$mustTakeEnergy, type="l") aux <- res aux$date <- as.Date(res$datetime) aux <- cast(aux, date ~ ., mean, value="mustTakeEnergy") names(aux)[2] <- "mustTakeEnergy" plot(aux$date, aux$mustTakeEnergy, type="l") aux$year <- format(aux$date, "%Y") aux$month <- as.numeric(format(aux$date, "%m")) xyplot(mustTakeEnergy ~ month|year, data=aux, layout=c(3,1)) aux <- res aux$date <- as.Date(res$datetime) aux <- cast(aux, date ~ ., mean, value="mustTakeEnergy") names(aux)[2] <- "mustTakeEnergy" aux$yyyymm <- format(aux$date, "%Y-%m") aux$year <- format(aux$date, "%Y") aux$month <- as.numeric(format(aux$date, "%m")) bwplot(mustTakeEnergy ~ year | month, data=aux) } res } subsetMaskedNodeId <- function(file=file, maskedNodeIds){ load(file) res <- subset(res, nodeId %in% maskedNodeIds) as.data.frame(res) } subsetParticipantId <- function(file=file, maskedParticipantId){ load(file) res <- subset(res, participantId == maskedParticipantId) as.data.frame(res) } .clean.files <- function() { files <- list.files(paste(DIR_EO, "Long", sep=""), full.names=TRUE, pattern="^long_") for (f in files){ load(f) EO <- Y rownames(EO) <- NULL save(EO, file=f) } }
8b025ebb4f9bff1f052412d5670e1245b218b0ec
258bdbfae973089c337fd31c6162ccb929714043
/NC140/root-distribution.R
9f61a35b1fb907cda09f7dc4ac579b5f2af3e303
[]
no_license
weecology/branch-arch
897a4df4953561a4f90e754d5c8f2873bce046cb
d8f4d518e3f5165f810ee845d10d90a3d95acf71
refs/heads/master
2021-09-05T21:56:14.751742
2021-08-05T21:13:05
2021-08-05T21:13:05
12,822,147
1
0
null
2016-01-07T22:02:05
2013-09-14T00:36:11
HTML
UTF-8
R
false
false
1,955
r
root-distribution.R
### This script generates Root Biomass Distribution plots for within and between ### row transects source('~/Desktop/branch-arch/NC140/root-yield.R', echo = FALSE) vplayout <- function(x,y){ viewport(layout.pos.row = x, layout.pos.col = y) } within_plots <- c() for (i in c(1:5)){ rootstock_within <- filter(roots_depth, rootstock == unique(rootstocks)[i], direction == "within") plot <- ggplot(rootstock_within, aes(x = distance, y = (-1*max_depth), z = total_roots)) within_plots[[i]] <- plot + stat_contour(geom="polygon", aes(fill=..level..), bins = 30) + labs(title = unique(rootstocks)[i]) } pdf('Within-Row-Total-Mass.pdf', width= 14, height=7, family="Helvetica", pointsize=12) grid.newpage() pushViewport(viewport(layout = grid.layout(2,3))) print(within_plots[[1]], vp = vplayout(1,1)) print(within_plots[[2]], vp = vplayout(1,2)) print(within_plots[[3]], vp = vplayout(1,3)) print(within_plots[[4]], vp = vplayout(2,1)) print(within_plots[[5]], vp = vplayout(2,2)) dev.off() between_plots <- c() for (i in c(1:5)){ rootstock_between <- filter(roots_depth, rootstock == unique(rootstocks)[i], direction == "between") plot <- ggplot(rootstock_between, aes(x = distance, y = (-1*max_depth), z = total_roots)) between_plots[[i]] <- plot + stat_contour(geom="polygon", aes(fill=..level..), bins = 30) + labs(title = unique(rootstocks)[i]) } pdf('Between-Row-Total-Mass.pdf', width= 14, height=7, family="Helvetica", pointsize=12) grid.newpage() pushViewport(viewport(layout = grid.layout(2,3))) print(between_plots[[1]], vp = vplayout(1,1)) print(between_plots[[2]], vp = vplayout(1,2)) print(between_plots[[3]], vp = vplayout(1,3)) print(between_plots[[4]], vp = vplayout(2,1)) print(between_plots[[5]], vp = vplayout(2,2)) dev.off()
e6de055619e373aa46b951e188803ae92d724b2b
ccbb0b70874ac382e948d940a178793d263eb68c
/genuary/2021/2021-23/deprecated/2021-23d.R
b4fdc848452c5d07f4a6560a38cd0a48271a1ea5
[ "MIT" ]
permissive
joelfishbein/aRtist
125f6b96031e64a819eb8330645bd3a7b98d8b63
5da0d46d0c618d28243f69d67e22cfa10e911cbd
refs/heads/main
2023-08-20T19:51:15.859878
2021-10-21T02:54:15
2021-10-21T02:54:15
360,969,255
0
0
MIT
2021-04-23T18:11:26
2021-04-23T18:11:25
null
UTF-8
R
false
false
1,263
r
2021-23d.R
# https://bookdown.org/rdpeng/RProgDA/building-new-graphical-elements.html library(grid) GeomMyPoint <- ggproto("GeomMyPoint", Geom, required_aes = c("x", "y"), default_aes = aes(shape = 1), draw_key = draw_key_point, draw_panel = function(data, panel_scales, coord) { ## Transform the data first coords <- coord$transform(data, panel_scales) ## Construct a grid grob polygonGrob( x = coords$x, y = coords$y ) }) geom_mypoint <- function(mapping = NULL, data = NULL, stat = "identity", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ...) { ggplot2::layer( geom = GeomMyPoint, mapping = mapping, data = data, stat = stat, position = position, show.legend = show.legend, inherit.aes = inherit.aes, params = list(na.rm = na.rm, ...) ) } ggplot(data = cube_df, aes(x, y, group = zorder)) + geom_mypoint(fill = "pink") + coord_fixed()
3a9fd62f4fd59a26e460ae033d07f07555be9e58
41f37ff43cc885a0d99aefe33ee3af25f7ab7402
/plotit2.r
34d33104c64c347a8119856b1a58b2596687f58c
[]
no_license
jgarofoli/network-ping-analysis
d1b3d846752cb1543b97c960cfc8dd72d4f50f15
ed521bec05704e01000a7fc4d3fc82b0ccdeadb8
refs/heads/master
2021-01-10T20:39:31.104591
2015-01-25T03:48:19
2015-01-25T03:48:19
29,743,918
0
1
null
null
null
null
UTF-8
R
false
false
1,431
r
plotit2.r
mkreport <- function(fname) { mydata <- read.table(fname) x <- (mydata[,1] - mydata[1,1])/60./60. y <- mydata[,3] #pdf('figure1.pdf') quartz() par(mfrow=c(2,2)) plot(y~x,ylab="pings returned (out of 10)",xlab="time (hr)",main=fname, pch=16,col=rgb(0,0,0,1/8)) #dev.off() slices <- hist(y,plot=F)#ylab="entries [N]",xlab="number of successful pings [out of 4]", main="dist. of successful pings",plot=T) nsl <- c(sum(slices$density[1:7]),slices$density[8],slices$density[9],slices$density[10]) lbls <- c("<7","8","9","10") pie(nsl,labels=lbls,main="fraction of\nreturned pings") timedelta <- diff(mydata$V1,2) hist(timedelta,plot=T, xlab='time between ping calls [sec]', ylab='entries [N]', main="distribution of time\nbetween ping requests", breaks=0:60) selZero <- mydata$V1[mydata$V3 <= 7] selZeroDelta <- diff(selZero,2) hist(selZeroDelta,plot=T, breaks=seq(0,max(selZeroDelta)+100,30), main="distribution of time\n between <7 pings returned events", ylab="entries [N/30 seconds]", xlab="time between total failures [sec]", ) quartz() par(mfrow=c(2,2)) hist(mydata$V4,plot=T, xlab="avg round trip ping time [ms]", ylab="entries [N]", main="ping time", breaks=seq(0,1000,5), xlim=c(0,100)) mydata }
0f096882478525c32f8dfb4c20d373bfec24cd44
198eddc28dd4b9cd2d02c294f6f77c2baa8d91e1
/man/ggchisq_res.Rd
1283bc1de8ba42fb2126cf5087699dd64542713b
[]
no_license
xtmgah/JLutils
2c2819e78a70e0f0afeac385ecdfba003841fbef
20eb88f01f88a73a12d9a4c4a071e5fc9f796c2d
refs/heads/master
2021-05-18T17:53:23.560462
2020-03-16T09:42:24
2020-03-16T09:42:24
null
0
0
null
null
null
null
UTF-8
R
false
true
1,512
rd
ggchisq_res.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/ggchisq_res.R \name{ggchisq_res} \alias{ggchisq_res} \title{Chi-squared residuals matrix plot} \usage{ ggchisq_res( formula, data, weight = NULL, addNA = FALSE, label = NULL, breaks = c(-4, -2, 2, 4), palette = "RdBu", return_data = FALSE ) } \arguments{ \item{formula}{formula of variables to be cross-tabulated, rows on left hand side and columns on the right hand side} \item{data}{data frame containing the data} \item{weight}{optionnal string indicating a column containing weights} \item{addNA}{whether to include NA values in the tables} \item{label}{optionnal cell labels (see examples)} \item{breaks}{how to recode residuals into categories?} \item{palette}{Brewer colour palette (see \url{http://colorbrewer2.org})} \item{return_data}{return computed data.frame instead of ggplot?} } \value{ a ggplot graphic or a data frame if \code{return_data == TRUE}. } \description{ Chi-squared residuals matrix plot } \examples{ ggchisq_res( Sex + Age + Class ~ Survived, data = as.data.frame(Titanic), weight = "Freq") ggchisq_res( Sex + Age + Class ~ Survived, data = as.data.frame(Titanic), weight = "Freq", return_data = TRUE) ggchisq_res( Sex + Age + Class ~ Survived, data = as.data.frame(Titanic), weight = "Freq", label = "scales::percent(row.prop)") ggchisq_res( Sex + Age + Class ~ Survived, data = as.data.frame(Titanic), weight = "Freq", breaks = c(-4, -2, 0, 2, 4)) }
3f64fd5cc5e7dc7bb5aafb4aec80e9139d545401
340d2dd9b14fdb3d3e4d70a69389b6bf70faf0c7
/scripts/4_excess_deaths_global_estimates_export_for_interactive.R
9989dd2cfdf6bfd4dd2a836d549668280e6a8380
[ "MIT" ]
permissive
TheEconomist/covid-19-the-economist-global-excess-deaths-model
ba56184a57488c6f065a2428837eecfc2f56a678
07a9b7fc43dac6f1d1741e51f175555e73c18e97
refs/heads/main
2021-09-09T09:10:49.987777
2021-09-09T08:05:22
2021-09-09T08:05:22
366,795,934
445
84
MIT
2022-10-05T16:52:01
2021-05-12T17:24:01
R
UTF-8
R
false
false
37,311
r
4_excess_deaths_global_estimates_export_for_interactive.R
# Step 1: import libraries ------------------------------------------------------------------------------ # This script constructs custom data frames to populate the The Economist's interactive presentation of this estimates # Import libraries library(tidyverse) library(data.table) library(lubridate) library(readr) library(countrycode) library(ggplot2) options(scipen=999) # Step 2: import official covid-19 data from Our World in Data ------------------------------------------------------------------------------ ## A. Import official covid data from Our World In Data country_daily_data_raw <- fread("https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/owid-covid-data.csv") # If no data from current day country_daily_data <- country_daily_data_raw[order(country_daily_data_raw$date), ] # Create 7-day average of deaths for use in graphics (replacing the OWD version) country_daily_data$new_deaths_smoothed <- ave(country_daily_data$new_deaths, country_daily_data$location, FUN = function(x){ unlist(lapply(1:length(x), FUN = function(i){ mean(x[max(c(1,i-7)):i], na.rm = T) })) }) # Step 3: Generate data for main map ------------------------------------------------------------------------------ # Import data: daily <- read_csv("output-data/export_country_per_100k.csv") cumulative <- read_csv("output-data/export_country_per_100k_cumulative.csv") # Reshape the OWD data to prepare for merging with our estimates (create per 100k, etc) main_map_covid_data <- country_daily_data %>% mutate(date = as.Date(date), iso3c = iso_code, daily_covid_deaths_per_100k = (new_deaths_smoothed / population) * 100000, cumulative_covid_deaths_per_100k = (total_deaths / population) * 100000) %>% filter(date == max(date)) %>% # Select most recent date dplyr::select(iso3c,daily_covid_deaths_per_100k,cumulative_covid_deaths_per_100k) # Merge together main_map <- merge(daily[daily$date == max(daily$date), c("iso3c", "date", "estimated_daily_excess_deaths_per_100k", "estimated_daily_excess_deaths_ci_95_top_per_100k", "estimated_daily_excess_deaths_ci_95_bot_per_100k")], cumulative[cumulative$date == max(cumulative$date), c("iso3c", "cumulative_estimated_daily_excess_deaths_per_100k", "cumulative_estimated_daily_excess_deaths_ci_95_top_per_100k", "cumulative_estimated_daily_excess_deaths_ci_95_bot_per_100k")]) main_map <- merge(main_map, main_map_covid_data, all.x=T) # Write to file write_csv(main_map, "output-data/output-for-interactive/main_map.csv") # Step 4: World, country or region by day (data generation) ------------------------------------------------------------------------------ # Get official covid data in long format: # 1. Generate custom regions not in Our World in Data: North America and Latin America lat_am <- data.frame(country_daily_data[country_daily_data$continent %in% c("North America", "South America") & !country_daily_data$location %in% c("United States", "Canada"), ]) lat_am$location <- "Latin America and Caribbean" north_am <- data.frame(country_daily_data[country_daily_data$location %in% c("United States", "Canada"), ]) north_am$location <- "North America" for(i in c("new_deaths_smoothed", "total_deaths", "new_vaccinations_smoothed", "total_vaccinations", "people_vaccinated", "people_fully_vaccinated", "population")){ lat_am[, i] <- ave(lat_am[, i], lat_am$date, FUN = function(x) sum(x, na.rm = T)) north_am[, i] <- ave(north_am[, i], north_am$date, FUN = function(x) sum(x, na.rm = T)) } # Remove duplicate dates lat_am <- lat_am[!duplicated(lat_am$date), ] north_am <- north_am[!duplicated(north_am$date), ] # Ensuring populations are consistent across time (not confounded by missing data) lat_am$population <- max(lat_am$population) north_am$population <- max(north_am$population) # Set other data to NA (not used) lat_am[, setdiff(colnames(lat_am), c("location", "date", "new_deaths_smoothed", "total_deaths", "new_vaccinations_smoothed", "total_vaccinations", "people_vaccinated", "people_fully_vaccinated", "population"))] <- NA north_am[, setdiff(colnames(north_am), c("location", "date", "new_deaths_smoothed", "total_deaths", "new_vaccinations_smoothed", "total_vaccinations", "people_vaccinated", "people_fully_vaccinated", "population"))] <- NA # Append to central dataset, and select subset of this dataset to prepare for merging: covid_data_long <- rbind(country_daily_data[country_daily_data$location != "North America", ], lat_am, north_am) %>% mutate(date = as.Date(date), iso3c = iso_code, total_vaccinations_per_100 = (total_vaccinations / population) * 100, daily_vaccinations = new_vaccinations_smoothed, daily_vaccinations_per_100 = 100*new_vaccinations_smoothed / population, vaccinated = people_vaccinated, vaccinated_per_100 = 100*people_vaccinated / population, fully_vaccinated = people_fully_vaccinated, fully_vaccinated_per_100 = 100*people_fully_vaccinated / population, daily_covid_deaths = new_deaths_smoothed, daily_covid_deaths_per_100k = (new_deaths_smoothed / population) * 100000, cumulative_covid_deaths = total_deaths, cumulative_covid_deaths_per_100k = (total_deaths / population) * 100000) %>% dplyr::select(iso3c, location, date, population, daily_vaccinations, daily_vaccinations_per_100, total_vaccinations, total_vaccinations_per_100, vaccinated, vaccinated_per_100, fully_vaccinated, fully_vaccinated_per_100, daily_covid_deaths, daily_covid_deaths_per_100k, cumulative_covid_deaths, cumulative_covid_deaths_per_100k) %>% pivot_longer(cols = daily_covid_deaths:cumulative_covid_deaths_per_100k) %>% dplyr::rename(population_owd = population, official_covid_data_type = name, official_covid_deaths = value) # Add correspondence to facilitate later merging: covid_data_long$merge_column <- NA covid_data_long$merge_column[covid_data_long$official_covid_data_type == "daily_covid_deaths"] <- "daily_excess_deaths" covid_data_long$merge_column[covid_data_long$official_covid_data_type == "daily_covid_deaths_per_100k"] <- "daily_excess_deaths_per_100k" covid_data_long$merge_column[covid_data_long$official_covid_data_type == "cumulative_covid_deaths"] <- "daily_excess_deaths_cumulative" covid_data_long$merge_column[covid_data_long$official_covid_data_type == "cumulative_covid_deaths_per_100k"] <- "daily_excess_deaths_per_100k_cumulative" # 2. Define function to get model estimates in "long" format: long_exp_df <- function(files = c("output-data/export_world.csv", "output-data/export_world_per_100k.csv", "output-data/export_world_cumulative.csv", "output-data/export_world_per_100k_cumulative.csv"), types = c("daily_excess_deaths", "daily_excess_deaths_cumulative", "daily_excess_deaths_per_100k_cumulative", "daily_excess_deaths_per_100k"), col_names = c("location", "date", "population", "estimate", "estimate_top_95", "estimate_top_90", "estimate_top_50", "estimate_bot_50", "estimate_bot_90", "estimate_bot_95", "raw_estimate", "recorded", "daily_covid_deaths")){ # Check that type is provided for each if(length(files) != length(types)){ stop("Please provide a type for each file.") } # Create container data frame result <- data.frame() # Cycle through files, rename columns, add type, and bind together for(i in 1:length(files)){ temp <- read_csv(files[i]) colnames(temp) <- col_names temp$type <- types[i] result <- rbind(result, temp) } # Return combined data return(result) } # 3. Load world estimates world_long <- long_exp_df(files = c("output-data/export_world.csv", "output-data/export_world_per_100k.csv", "output-data/export_world_cumulative.csv", "output-data/export_world_per_100k_cumulative.csv"), types = c("daily_excess_deaths", "daily_excess_deaths_per_100k", "daily_excess_deaths_cumulative", "daily_excess_deaths_per_100k_cumulative")) # 4. Load region estimates region_long <- long_exp_df(files = c("output-data/export_regions.csv", "output-data/export_regions_per_100k.csv", "output-data/export_regions_cumulative.csv", "output-data/export_regions_per_100k_cumulative.csv"), types = c("daily_excess_deaths", "daily_excess_deaths_per_100k", "daily_excess_deaths_cumulative", "daily_excess_deaths_per_100k_cumulative")) # As we prefer Canada + United States as North America, we remove the duplicate (see below where this is added). We also remove countries which figure separately in the standard region specification region_long <- region_long[!region_long$location %in% c("North America", "Asia", "Oceania", "China", "India", "Russia", "United States"),] # Load alternative region estimates (Lat Am vs North America, EU as separate entity) region_alt <- long_exp_df(files = c("output-data/output-by-alternative-regions/export_regions_lat_am_na_eu.csv", "output-data/output-by-alternative-regions/export_regions_lat_am_na_eu_per_100k.csv", "output-data/output-by-alternative-regions/export_regions_lat_am_na_eu_cumulative.csv", "output-data/output-by-alternative-regions/export_regions_lat_am_na_eu_per_100k_cumulative.csv"), types = c("daily_excess_deaths", "daily_excess_deaths_per_100k", "daily_excess_deaths_cumulative", "daily_excess_deaths_per_100k_cumulative")) # 5. Load country estimates country_long <- long_exp_df(files = c("output-data/export_country.csv", "output-data/export_country_per_100k.csv", "output-data/export_country_cumulative.csv", "output-data/export_country_per_100k_cumulative.csv"), types = c("daily_excess_deaths", "daily_excess_deaths_per_100k", "daily_excess_deaths_cumulative", "daily_excess_deaths_per_100k_cumulative"), col_names = c("iso3c", "date", "population", "estimate", "estimate_top_95", "estimate_top_90", "estimate_top_50", "estimate_bot_50", "estimate_bot_90", "estimate_bot_95", "raw_estimate", "recorded", "daily_covid_deaths")) # 6. Harmonize location names country_long <- merge(country_long, unique(covid_data_long[, c("location", "iso3c")]), by="iso3c", all.x = T) region_long$iso3c <- NA region_alt$iso3c <- NA world_long$iso3c <- NA # 7. Bind all of these together export_long <- rbind(world_long, region_long, region_alt, country_long) export_long$daily_covid_deaths <- NULL # Remove this, as we are getting this data in the next step # 8. Merge with official covid data export_long <- merge(export_long, covid_data_long[ , setdiff(colnames(covid_data_long), "iso3c")], by.x=c("type", "location", "date"), by.y=c("merge_column", "location", "date"), all.x = T) # 9. Make names follow The Economist standard: econ_names <- read_csv("source-data/economist_country_names.csv") %>% rename( econ_name = Name, economist_region = Regions, iso3c = ISOA3 ) %>% select( econ_name, iso3c, economist_region ) %>% unique() export_long <- merge(export_long, econ_names[!is.na(econ_names$iso3c), ], by = "iso3c", all.x = T) export_long$location[!is.na(export_long$econ_name)] <- export_long$econ_name[!is.na(export_long$econ_name)] export_long$econ_name <- NULL # Construct "is recorded" dummy variable: export_long$known_excess_deaths <- FALSE export_long$known_excess_deaths[!is.na(export_long$recorded)] <- TRUE export_long$known_excess_deaths[export_long$type %in% c("daily_excess_deaths_cumulative", "daily_excess_deaths_per_100k_cumulative")] <- FALSE # No region reports excess deaths directly: export_long$known_excess_deaths[!export_long$iso3c %in% country_long$iso3c] <- FALSE # The EU reports it for all countries for some dates: # This cycles through all dates, checks if all EU countries have reported excess deaths, and if so, sets known_excess_deaths for the EU to "TRUE": for(i in unique(export_long$date)){ if(min(as.numeric(export_long$known_excess_deaths[export_long$iso3c %in% c("AUT", "BEL", "BGR", "HRV", "CYP", "CZE", "DNK", "EST", "FIN", "FRA", "DEU", "GRC", "HUN", "IRL", "ITA", "LVA", "LTU", "LUX", "MLT", "NLD", "POL", "PRT", "ROU", "SVK", "SVN", "ESP", "SWE") & export_long$date == i & export_long$type %in% c("daily_excess_deaths_per_100k", "daily_excess_deaths") ])) == 1){ export_long$known_excess_deaths[export_long$type %in% c("daily_excess_deaths_per_100k", "daily_excess_deaths") & export_long$date == i & export_long$location == "European Union"] <- TRUE } } # Inspect if desired: if(inspect){ type <- "daily_excess_deaths" ggplot(export_long[export_long$location %in% c("United States", "European Union", "Europe", "World", "Latin America and Caribbean") & !is.na(export_long$location) & export_long$type == type, ], aes(x=date, y=official_covid_deaths, col = "official"))+ geom_line(aes(col = "estimate"))+ geom_line(aes(y=daily_vaccinations/1000, col = "Daily vaccinations, 1000s"))+ geom_line(aes(y=estimate, col = "model estimate"))+xlab("")+ facet_grid(.~location)+theme_minimal()+theme(legend.position = "bottom")+ylab("")+ggtitle(type) type <- "daily_excess_deaths_cumulative" ggplot(export_long[export_long$location %in% c("United States", "European Union", "Europe", "World", "Latin America and Caribbean") & !is.na(export_long$location) & export_long$type == type, ], aes(x=date, y=official_covid_deaths, col = "official"))+ geom_line(aes(col = "estimate"))+ geom_line(aes(y=total_vaccinations/1000, col = "Total vaccinations, 1000s"))+ geom_line(aes(y=estimate, col = "model estimate"))+xlab("")+ facet_grid(.~location)+theme_minimal()+theme(legend.position = "bottom")+ylab("")+ggtitle(type) type <- "daily_excess_deaths_per_100k" ggplot(export_long[export_long$location %in% c("United States", "European Union", "Europe", "World", "Latin America and Caribbean") & !is.na(export_long$location) & export_long$type == type, ], aes(x=date, y=official_covid_deaths, col = "official"))+ geom_line(aes(col = "estimate"))+ geom_line(aes(y=estimate, col = "model estimate"))+ geom_line(aes(y=total_vaccinations_per_100/100, col = "Vaccinations per person"))+ xlab("")+ facet_grid(.~location)+theme_minimal()+theme(legend.position = "bottom")+ylab("")+ggtitle(type) type <- "daily_excess_deaths_per_100k_cumulative" ggplot(export_long[export_long$location %in% c("United States", "European Union", "Europe", "World", "Latin America and Caribbean") & !is.na(export_long$location) & export_long$type == type, ], aes(x=date, y=official_covid_deaths, col = "official"))+ geom_line(aes(col = "estimate"))+ geom_line(aes(y=estimate, col = "model estimate"))+ geom_line(aes(y=total_vaccinations_per_100, col = "Vaccinations per 100"))+ facet_grid(.~location)+theme_minimal()+ylab("")+ggtitle(type)+xlab("") } # 10. Round location files to 2 digits for interactive for(i in c("estimate", "estimate_top_95", "estimate_top_90", "estimate_top_50", "estimate_bot_50", "estimate_bot_90", "estimate_bot_95", "raw_estimate", "recorded", "official_covid_deaths")){ export_long[, i] <- round(export_long[, i], 3) } # 11. Sort by date export_long <- export_long[order(export_long$date), ] # Step 6: Write line charts to files (and world cumulative for most recent date) ------------------------------------------------------------------------------ # Select columns to include: columns_to_include <- c("location", "date", "type", "estimate", "estimate_top_95", "estimate_top_50", "estimate_bot_50", "estimate_bot_95", "official_covid_deaths", "known_excess_deaths") columns_to_export <- setdiff(columns_to_include, "type") # By country: write_csv(export_long[!export_long$location %in% c("Africa", "Oceania", "Americas", "Asia", "Asia & Oceania", "Europe", "Latin America and Caribbean", "North America", "World"), ], "output-data/output-for-interactive/by_location_full_data.csv") write_csv(export_long[!export_long$location %in% c("Africa", "Oceania", "Americas", "Asia", "Asia & Oceania", "Europe", "Latin America and Caribbean", "North America", "World") & export_long$type == "daily_excess_deaths", columns_to_export], "output-data/output-for-interactive/by_location.csv") write_csv(export_long[!export_long$location %in% c("Africa", "Oceania", "Americas", "Asia", "Asia & Oceania", "Europe", "Latin America and Caribbean", "North America", "World") & export_long$type == "daily_excess_deaths_per_100k", columns_to_export], "output-data/output-for-interactive/by_location_per_100k.csv") write_csv(export_long[!export_long$location %in% c("Africa", "Oceania", "Americas", "Asia", "Asia & Oceania", "Europe", "Latin America and Caribbean", "North America", "World") & export_long$type == "daily_excess_deaths_cumulative", columns_to_export], "output-data/output-for-interactive/by_location_cumulative.csv") write_csv(export_long[!export_long$location %in% c("Africa", "Oceania", "Americas", "Asia", "Asia & Oceania", "Europe", "Latin America and Caribbean", "North America", "World") & export_long$type == "daily_excess_deaths_per_100k_cumulative", columns_to_export], "output-data/output-for-interactive/by_location_per_100k_cumulative.csv") # By region: # Select regions regions_line_chart <- export_long[export_long$location %in% c("Africa", "Asia", "Oceania", "Europe", "Latin America and Caribbean", "North America"), columns_to_include] # Inspect if desired if(inspect){ ggplot(regions_line_chart[regions_line_chart$type == "daily_excess_deaths",], aes(x=date))+ geom_area(aes(y=official_covid_deaths, fill=location))+ geom_line(aes(y=estimate, col = "Estimated excess deaths"))+ geom_line(aes(y=estimate_top_95))+ geom_line(aes(y=estimate_bot_95))+ geom_line(aes(y=estimate_top_50, alpha= 0.5))+ geom_line(aes(y=estimate_bot_50, alpha= 0.5))+ theme_minimal()+theme(legend.position = "bottom", legend.title = element_blank())+ xlab("")+ylab("")+facet_grid(.~location) } # Write to files write_csv(regions_line_chart[regions_line_chart$type == "daily_excess_deaths", columns_to_export], "output-data/output-for-interactive/regions_line_chart.csv") write_csv(regions_line_chart[regions_line_chart$type == "daily_excess_deaths_cumulative", columns_to_export], "output-data/output-for-interactive/regions_line_chart_cumulative.csv") write_csv(regions_line_chart[regions_line_chart$type == "daily_excess_deaths_per_100k", columns_to_export], "output-data/output-for-interactive/regions_line_chart_per_100k.csv") write_csv(regions_line_chart[regions_line_chart$type == "daily_excess_deaths_per_100k_cumulative", columns_to_export], "output-data/output-for-interactive/regions_line_chart_per_100k_cumulative.csv") # For the world: world_line_chart <- export_long[export_long$location == "World", columns_to_include] # Inspect if desired if(inspect){ ggplot(world_line_chart[world_line_chart$type == "daily_excess_deaths_cumulative",], aes(x=date))+ geom_area(aes(y=official_covid_deaths, fill=location))+ geom_line(aes(y=estimate, col = "Estimated excess deaths"))+ geom_line(aes(y=estimate_top_95))+ geom_line(aes(y=estimate_bot_95))+ geom_line(aes(y=estimate_top_50, alpha= 0.5))+ geom_line(aes(y=estimate_bot_50, alpha= 0.5))+ theme_minimal()+theme(legend.position = "bottom", legend.title = element_blank())+ xlab("")+ylab("")+facet_grid(.~location) } # Write to files write_csv(world_line_chart[world_line_chart$type == "daily_excess_deaths", columns_to_export], "output-data/output-for-interactive/world_line_chart.csv") write_csv(world_line_chart[world_line_chart$type == "daily_excess_deaths_cumulative", columns_to_export], "output-data/output-for-interactive/world_line_chart_cumulative.csv") write_csv(world_line_chart[world_line_chart$type == "daily_excess_deaths_per_100k", columns_to_export], "output-data/output-for-interactive/world_line_chart_per_100k.csv") write_csv(world_line_chart[world_line_chart$type == "daily_excess_deaths_per_100k_cumulative", columns_to_export], "output-data/output-for-interactive/world_line_chart_per_100k_cumulative.csv") # World top-line chart: write_csv(world_line_chart[world_line_chart$type == "daily_excess_deaths_cumulative" & world_line_chart$date == max(world_line_chart$date, na.rm = T), columns_to_export], "output-data/output-for-interactive/world_most_recent_cumulative_deaths.csv") # Step 6: Generate data for table A ------------------------------------------------------------------------------ # We here rely on "export_long" created above. # Absolute terms: # Select most recent and relevant columns from combined long data: table_A_absolute <- export_long[export_long$date == max(export_long$date) & export_long$type == "daily_excess_deaths_cumulative", c("location", "official_covid_deaths", "estimate", "estimate_top_95", "estimate_bot_95", "vaccinated_per_100")] # Generate % difference between estimate and official deaths table_A_absolute$difference_pct <- round(100*(table_A_absolute$estimate - table_A_absolute$official_covid_deaths) / table_A_absolute$official_covid_deaths, 1) # Select correct column order: table_A_absolute <- table_A_absolute[, c("location", "official_covid_deaths", "estimate", "estimate_top_95", "estimate_bot_95", "difference_pct", "vaccinated_per_100")] # Per 100k: # Select most recent and relevant columns from combined long data: table_A_per_100k <- export_long[export_long$date == max(export_long$date) & export_long$type == "daily_excess_deaths_per_100k_cumulative", c("location", "official_covid_deaths", "estimate", "estimate_top_95", "estimate_bot_95", "vaccinated_per_100")] # Generate % difference between estimate and official deaths table_A_per_100k$difference_pct <- round(100*(table_A_per_100k$estimate - table_A_per_100k$official_covid_deaths) / table_A_per_100k$official_covid_deaths, 1) # Select correct column order: table_A_per_100k <- table_A_per_100k[, c("location", "official_covid_deaths", "estimate", "estimate_top_95", "estimate_bot_95", "difference_pct", "vaccinated_per_100")] colnames(table_A_per_100k) <- c("location", "official_covid_deaths_per_100k", "estimate_per_100k", "estimate_top_95_per_100k", "estimate_bot_95_per_100k", "difference_pct", "vaccinated_per_100") colnames(table_A_absolute)[2:5] <- paste0(colnames(table_A_absolute)[2:5], "_absolute") table_A <- merge(table_A_absolute, table_A_per_100k[, 1:5], by="location", all = T) # Tweak the location name for Europe to indicate that the grouping includes the EU: table_A$location[table_A$location == "Europe"] <- "Europe (incl. EU)" # Fix to extremely small countries, conservatively rounding to nearest one using ceiling/floor for the confidence interval: table_A$estimate_top_95_absolute[abs(table_A$estimate_top_95_absolute) < 1] <- ceiling(table_A$estimate_top_95_absolute[abs(table_A$estimate_top_95_absolute) < 1]) table_A$estimate_bot_95_absolute[abs(table_A$estimate_bot_95_absolute) < 1] <- floor(table_A$estimate_bot_95_absolute[abs(table_A$estimate_bot_95_absolute) < 1]) # Write to file write_csv(table_A, "output-data/output-for-interactive/table_A.csv") # Step 7: Generate data for second map ------------------------------------------------------------------------------ # Load data: second_map <- read_csv("output-data/output-for-interactive/main_map.csv")[, c( "iso3c", "date", "cumulative_estimated_daily_excess_deaths_per_100k", "cumulative_estimated_daily_excess_deaths_ci_95_top_per_100k", "cumulative_estimated_daily_excess_deaths_ci_95_bot_per_100k" )] # Load estimated demography-adjusted IFR by iso3c: ifr_by_iso <- readRDS("source-data/ifr_cache.RDS") ifr_by_iso$iso2c[ifr_by_iso$area == "Namibia"] <- "NA" ifr_by_iso$iso3c <- countrycode(ifr_by_iso$iso2c, "iso2c", "iso3c") ifr_by_iso$demography_adjusted_ifr_percent <- ifr_by_iso$area_ifr # Load estimated share of population over 65: age_over_65 <- unique(country_daily_data[, c("iso_code", "aged_65_older")]) age_over_65$iso3c <- age_over_65$iso_code age_over_65$aged_65_older_pct <- age_over_65$aged_65_older second_map <- merge(second_map, na.omit(ifr_by_iso[, c("iso3c", "demography_adjusted_ifr_percent")]), all.x = T) second_map <- merge(second_map, na.omit(age_over_65[, c("iso3c", "aged_65_older_pct")]), all.x = T) # Get implied infections per 100 persons: second_map$implied_infections_per_100_persons <- (1 / 1000) * second_map$cumulative_estimated_daily_excess_deaths_per_100k / (second_map$demography_adjusted_ifr_percent / 100) second_map$implied_infections_per_100_persons_top_95 <- (1 / 1000) * second_map$cumulative_estimated_daily_excess_deaths_ci_95_top_per_100k / (second_map$demography_adjusted_ifr_percent / 100) second_map$implied_infections_per_100_persons_bot_95 <- (1 / 1000) * second_map$cumulative_estimated_daily_excess_deaths_ci_95_bot_per_100k / (second_map$demography_adjusted_ifr_percent / 100) # Ensure infections are not negative: second_map$implied_infections_per_100_persons[second_map$implied_infections_per_100_persons < 0] <- 0 second_map$cumulative_estimated_daily_excess_deaths_ci_95_bot_per_100k[second_map$cumulative_estimated_daily_excess_deaths_ci_95_bot_per_100k < 0] <- 0 second_map$cumulative_estimated_daily_excess_deaths_ci_95_top_per_100k[second_map$cumulative_estimated_daily_excess_deaths_ci_95_top_per_100k < 0] <- 0 # Get estimated dead over 100k population over 65: second_map$cumulative_estimated_daily_excess_deaths_per_100k_population_over_65 <- second_map$cumulative_estimated_daily_excess_deaths_per_100k / (second_map$aged_65_older_pct / 100) second_map$cumulative_estimated_daily_excess_deaths_per_100k_population_over_65_top_95 <- second_map$cumulative_estimated_daily_excess_deaths_ci_95_top_per_100k / (second_map$aged_65_older_pct / 100) second_map$cumulative_estimated_daily_excess_deaths_per_100k_population_over_65_bot_95 <- second_map$cumulative_estimated_daily_excess_deaths_ci_95_bot_per_100k / (second_map$aged_65_older_pct / 100) # Write to file: write_csv(second_map, "output-data/output-for-interactive/second_map.csv") # Step 8: Generate data for table B ------------------------------------------------------------------------------ # Load data from table 1: table_B <- read_csv("output-data/output-for-interactive/table_A.csv") table_B$iso3c <- countrycode(table_B$location, "country.name", "iso3c") table_B$iso3c[table_B$location == "Micronesia"] <- "FSM" # Load data from map 2: second_map_data <- read_csv("output-data/output-for-interactive/second_map.csv") # Merge the two: table_B <- merge(table_B, second_map_data, by = "iso3c", all.x = T) # Generate columns: # Demography adjusted deaths: table_B$cumulative_estimated_daily_excess_deaths_per_100k_demography_adjusted <- table_B$cumulative_estimated_daily_excess_deaths_per_100k / (table_B$demography_adjusted_ifr_percent/mean(table_B$demography_adjusted_ifr_percent, na.rm = T)) # Ensure infections are not negative: table_B$implied_infections_per_100_persons[table_B$implied_infections_per_100_persons < 0] <- 0 table_B$implied_infections_per_100_persons_top_95[table_B$implied_infections_per_100_persons_top_95 < 0] <- 0 table_B$implied_infections_per_100_persons_bot_95[table_B$implied_infections_per_100_persons_bot_95 < 0] <- 0 # Remove rows with no data: table_B <- table_B[!(is.na(table_B$cumulative_estimated_daily_excess_deaths_per_100k_population_over_65) & is.na(table_B$implied_infections_per_100_persons)), ] # Write to file: write_csv(table_B[, c("location", "iso3c", "official_covid_deaths_per_100k", "cumulative_estimated_daily_excess_deaths_per_100k", "estimate_top_95_per_100k", "estimate_bot_95_per_100k", "cumulative_estimated_daily_excess_deaths_per_100k_population_over_65", "cumulative_estimated_daily_excess_deaths_per_100k_demography_adjusted", "implied_infections_per_100_persons", "implied_infections_per_100_persons_top_95", "implied_infections_per_100_persons_bot_95")], "output-data/output-for-interactive/table_B.csv") # Step 9: Histogram data ------------------------------------------------------------------------------ # This is exported in case people want more information on the distribution of predictions at the world cumulative level for the present day. # Load raw histogram data hist <- read_csv("output-data/export_world_cumulative_histogram_data.csv") # Pivot to long format hist <- pivot_longer(hist, cols = grep("B", colnames(hist))) # Restrict to most recent date hist <- hist[hist$date == max(hist$date), ] # Construct equal-spaced groups N_groups <- 50 groups <- seq(min(hist$value), max(hist$value), len=N_groups+1) hist$bin_min <- NA hist$bin_max <- NA hist$bin <- NA hist$bin_n <- 1 # Place observations in groups for(i in 2:length(groups)){ hist$bin_min[hist$value >= groups[i-1] & hist$value <= groups[i]] <- groups[i-1] hist$bin_max[hist$value >= groups[i-1] & hist$value <= groups[i]] <- groups[i] hist$bin[hist$value >= groups[i-1] & hist$value <= groups[i]] <- i-1 if(sum(hist$bin == i-1, na.rm = T) == 0){ hist <- rbind(hist, c(NA, NA, NA, NA, NA, NA, groups[i-1], groups[i], i-1, 0)) } } hist$world <- unique(na.omit(hist$world)[1]) hist$date <- unique(na.omit(hist$date)[1]) hist$estimate <- unique(na.omit(hist$estimate)[1]) # Sum observations per bin: hist$bin_n <- ave(hist$bin_n, hist$bin, FUN = sum) hist <- unique(hist[, c("world", "date", "estimate", "bin_min", "bin_max", "bin_n")]) if(inspect){ ggplot(hist)+geom_rect(aes(xmin=bin_min, xmax=bin_max, ymax=bin_n, ymin=0))+ theme_minimal() } # Write to file: write_csv(hist, "output-data/output-for-interactive/world_estimates_histogram.csv") # Add timestamp: tibble(timestamp = now(tzone = "UTC")) %>% write_csv('output-data/output-for-interactive/timestamp.csv')
073f1cf747d785b612b055e3aebd4f9d6c1ddc91
799feab98fba14d85188ee1502855b6ccd18381e
/T1_BasicsofR.R
774ea2b50d4dd7c6812dfbcb532651d3382fe2f0
[]
no_license
Adarsh-Suresh-Patil/IST-687-Data-Science
46a86bb75ea5921a77339d50dc03184bcdddd237
1dd171a0b465b0d69968afbee766fc0f39a97f4e
refs/heads/master
2020-04-17T13:01:07.942316
2019-03-16T06:42:18
2019-03-16T06:42:18
166,599,160
1
0
null
null
null
null
UTF-8
R
false
false
1,024
r
T1_BasicsofR.R
#Basics of R #1. Define variables #Define a vector with values 4.0, 3.3 and 3.7 grades <- c(4.0, 3.3, 3.7) #Define vector with values "Bio", "Math", "History" course <- c("Bio", "Math", "History") #Define a variable of value 3 betterthanB <- 3 #2. Calculate statistics using R #Avg of grades avggrades <- mean(grades) avggrades #calculate length of vector lengrades <- length(grades) lengrades #calculate sum of grades sumgrades <- sum(grades) sumgrades #calculate min and max of grades highestgrade <- max(grades) highestgrade lowestgrade <- min(grades) lowestgrade #add 0.3 to all elements of vector and calculate average bettergrades <- grades + 0.3 bettergrades avgbettergrades <- mean(bettergrades) avgbettergrades #Conditional IF statement in R #calculate max of grades is higher than 3.5 if(highestgrade > 3.5) "Yes" else "No" #calculate min of grades is higher than betterthanB if (lowestgrade > betterthanB) "Yes" else "No" #Accessing elements in a vector #Access 2nd element of vector course course[2]
74292c0c7f3963b690d2a66076b854208bad0dec
56b4d541153ce86dadbfbdef9636d18be7de9903
/4.data-viz.R
bd448b3a6f7fde9107afe527262257ca925f48aa
[]
no_license
tianchu-shu/data-analysis-viz
9db4c243577917a6286425fd439e841102875958
a5d19ff3edce031adf1584ba57327876d60f568c
refs/heads/master
2020-03-21T18:35:52.432421
2018-10-09T01:16:23
2018-10-09T01:16:23
138,901,620
0
0
null
null
null
null
UTF-8
R
false
false
982
r
4.data-viz.R
#Data-viz library(ggplot2) library(ggvis) library(tidyverse) library(reshape2) ggplot(df, aes(freq, fill_rate)) + geom_point(aes(color = FY)) + geom_smooth(se = FALSE) + labs(title = "") ggplot(data = melt(df), mapping = aes(x = value)) + geom_histogram(bins = 30) + facet_wrap(~variable, scales = 'free_x') ggplot(data = df) + geom_point(mapping = aes(x=VR, y=Invited, color=Q)) ggplot(data = df) + + geom_bar(mapping = aes(x = Region, fill = Sector), position="dodge") ## bar <- ggplot(data = df) + geom_bar(mapping = aes(x = Region, fill = Sector), show.legend = FALSE, width = 1) theme(aspect.ratio = 1) + labs(x = NULL, y = NULL) bar + coord_flip() bar + coord_polar() ## ggplot(df, aes(Region, freq)) + geom_point(aes(colour = Sector)) df %>% ggvis(~fill_rate, ~freq, fill = ~Region) %>% layer_points() df %>% ggvis(~fill_rate, ~freq, fill = ~Sector) %>% layer_points()
6600cc647766828955c73d6508af400a501e8a09
0e100f473781741b45e463c522cddf9812307fba
/run_analysis.R
c8138a80bc45167c99bc384ae4eee387b3b61ded
[]
no_license
raneykat/CourseraGetAndCleanProject
9af4f3dec8f5ef115bc4a17313cd3d0d4d81363b
8aa14348756cf5aa04f23391f09154e90d3c8643
refs/heads/master
2020-06-05T09:10:19.893102
2014-11-23T22:28:53
2014-11-23T22:28:53
null
0
0
null
null
null
null
UTF-8
R
false
false
4,210
r
run_analysis.R
# Katherine Raney # Getting and Cleaning Data Course Project # November 2014 #setwd("C:\\raneykat_git\\CourseraGetAndCleanProject") # libraries needed library(reshape2) library(tidyr) library(dplyr) # First, load the files # APPLIES FOR BOTH TEST AND TRAIN DATA # activity_labels # this is a lookup dataset cols <- c("activityId","activity") activity_labels <- read.csv("getdata-projectfiles-UCI HAR Dataset\\UCI HAR Dataset\\activity_labels.txt",sep=" ", col.names = cols) # specify that activityId is a factor, not a measure activity_labels$activityId <-as.factor(activity_labels$activityId) # features # this file has the column names for the x files cols2 <- c("featureId","feature") features <-read.csv("getdata-projectfiles-UCI HAR Dataset\\UCI HAR Dataset\\features.txt",sep="", col.names=cols2) # TEST DATASET # this file has the row labels for the test data set # they are the surrogate key values related to the activity_labels y_test <- read.csv("getdata-projectfiles-UCI HAR Dataset\\UCI HAR Dataset\\test\\y_test.txt", col.names=c("activityId")) # activityId is a factor, not a measure y_test$activityId <- as.factor(y_test$activityId) # subject_test # this file has surrogate keys that relate to the subjects of the test dataset subject_test <- read.csv("getdata-projectfiles-UCI HAR Dataset\\UCI HAR Dataset\\test\\subject_test.txt", col.names=c("subjectId")) # subjectId is a factor not a measure subject_test$subjectId <- as.factor(subject_test$subjectId) #this file has the measures data for the test data set x_test <- read.csv("getdata-projectfiles-UCI HAR Dataset\\UCI HAR Dataset\\test\\x_test.txt",sep = "", quote = "") #features$feature has the column names for this dataset cols3 <- features[,2] names(x_test) <- cols3 #y_test$activityId has the activity labels for this dataset, so we'll add that column x_test$activityId <- y_test$activityId #add subjectId to associate the subjects with the measures x_test$subjectId <- subject_test$subjectId #add dataset column to indicate this is test x_test$dataset <- "test" # TRAIN DATASET #this file has the row labels for the train data set # they are the surrogate key values related to the activity_labels y_train <- read.csv("getdata-projectfiles-UCI HAR Dataset\\UCI HAR Dataset\\train\\y_train.txt", col.names=c("activityId")) # activityId is a factor, not a measure y_train$activityId <- as.factor(y_train$activityId) # subject_train subject_train <- read.csv("getdata-projectfiles-UCI HAR Dataset\\UCI HAR Dataset\\train\\subject_train.txt", col.names=c("subjectId")) # subjectId is a factor not a measure subject_train$subjectId <- as.factor(subject_train$subjectId) #this file has the measures data for the train data set x_train <- read.csv("getdata-projectfiles-UCI HAR Dataset\\UCI HAR Dataset\\train\\x_train.txt",sep = "", quote = "") # cols3 (aka features$feature) has the column names for this dataset names(x_train) <- cols3 #y_train$activityId has the activity labels for this dataset, so we'll add that column x_train$activityId <- y_train$activityId #add subjectId x_train$subjectId <- subject_train$subjectId #add dataset column to indicate this is train x_train$dataset <- "train" # Combined dataset # bind x_test and x_train to form one dataset x <- rbind_list(x_test,x_train) # lets melt these measures into rows # could use gather but melt seems faster x <- melt(x,na.rm=TRUE,variable.name="feature",value.name="measure") # keep only the rows where the feature contains mean or std x <- x[grep("mean|std",x$feature),] # chain some operations together here x_tidy <- x %>% #The measures were averaged by activity, subject, and feature group_by(activityId,feature,subjectId) %>% summarise(avg=mean(measure)) %>% # The name of the activity was added as a new column, joining to the activity_labels lookup on activityId inner_join(activity_labels,by = c("activityId")) %>% select(activity,feature,subjectId,avg) #The final aggregated dataset was output as tidy_output.txt write.csv(x_tidy,file="x_tidy.txt")
0a618a76e5b971c47979036ca8d5bec5c8098586
d81c8a628b7f197106debbb8d2b62dd56719e705
/Project 3/word_cloud_jb.r
e5486eddd2525e7331616d3ce9e7429ffbf627fc
[]
no_license
ilyakats/CUNY-DATA607
77259bae9ccdb927c0c9a07bb1f5204da6a33f53
4ace18eb89e9cfc49cb816b3f612247b47aa6e15
refs/heads/master
2021-01-09T06:35:14.150125
2017-05-08T06:02:27
2017-05-08T06:02:27
81,013,259
0
1
null
null
null
null
UTF-8
R
false
false
464
r
word_cloud_jb.r
# Jaan Bernberg library(wordcloud2) my_cloud_words <- all_data[,3:7] %>% filter(YearCollected == 2017) %>% select(SkillDescription, Amount) %>% group_by(SkillDescription) %>% summarise(Amount = sum(Amount)) %>% arrange(desc(Amount)) %>% as.data.frame() rownames(my_cloud_words) <- my_cloud_words$SkillDescription wordcloud2(my_cloud_words, size = 1.5, minRotation = -pi/6, maxRotation = -pi/6, rotateRatio = 1)
58794d2b14b7b7f272bb9de0ac060fc1b9ac29bc
2dcdfa0d9adfac9453f360c6b2c9bc1c765b46a4
/Operation_Dashboard_New/ui.R
408adc9b5209d41d54fafdaf72d9dd908657f85e
[]
no_license
roymondliao/Shiny_Project
d056af95a3729a8625bc238ae6167613370ad9b4
14064bcb8c18811b4c29ad9012e2cc1feedbf256
refs/heads/master
2021-01-10T04:26:41.035961
2019-03-27T03:56:30
2019-03-27T03:56:30
53,765,381
0
0
null
null
null
null
UTF-8
R
false
false
16,712
r
ui.R
## Operaction dashboard - ui.R library(shiny) library(shinydashboard, warn.conflicts = FALSE) library(htmlwidgets) library(rCharts) library(shinythemes) library(DT) options(shiny.maxRequestSize=10*1024^2) ## app.R header <- dashboardHeader(title = "Operation Dashoard", dropdownMenuOutput("messageMenu"), ## dropdown Menu for message dropdownMenu(type = "notifications", notificationItem(status = "success", #from = "Support", text = em(h4("If you have any question or problem"), h4("please contact below:"), h6("Email:[email protected]"), h6("Wechat: Yuyu Liao"), h6("Email:[email protected]"), h6("Wechat: Frank Tseng")), icon = icon("support") )) ) sidebar <- dashboardSidebar(## icon from http://fontawesome.io/icons/ just use icon name, ## icon from http://getbootstrap.com/components/ use the last name after hyphen sidebarMenu( menuItem("Star Plot", tabName = "Star_Plot", icon = icon(name = "line-chart")), menuItem("GP Daily Plot", tabName = "gp_daily_plot", icon = icon(name = "pie-chart"), badgeLabel = "new", badgeColor = "green"), menuItem("OP Daily Report", tabName = "op_daily_report", icon = icon(name = "table")), menuItem("Mail Daily Report", tabName = "mail_daily_report", icon = icon("envelope-o")), menuItem("Reply File Upload", tabName = "auto_reply", icon = icon(name = "mail-reply-all")), menuItem("GP AutoReply Type", tabName = "gp_autoreply_type", icon = icon("list-ol")), menuItem("GP Platform", icon = icon("link"), href = "http://mp.ijinshan.com/login/login"), tags$hr(), selectizeInput("account_name", label = "Who you are?", choices = c(Choose='', "Fox Liu" = "Fox.Liu", "Serene Zeng" = "Serene.Zeng", "Pandora Syu" = "Pandora.Syu", "Wing Ho" = "Wing.Ho"), selected = NULL, options = list(placeholder = 'select name'), width = "250px"), passwordInput(inputId = "account_password", label = "Enter the password:", value = "", width = "250"), tags$head( tags$style(HTML('#submit_account{color:#FFFFFF; background-color:#000000; font-family: Georgia, "Times New Roman", Times, serif; margin: 13px; width:170px}')) ), actionButton(inputId = "submit_account", label = "Touch me", icon = icon(name = "thumbs-o-up", class = "fa-1x")), #submitButton(text = "Touch me", icon = icon(name = "thumbs-o-up", class = "fa-1x"), width = validateCssUnit("200")), tags$hr(), tags$head( tags$style(HTML('#account{color:#000000; background-color:#FFFFFF; font-family: Georgia, "Times New Roman", Times, serif; margin: 13px; width:170px; font-size: 135%}')) ), verbatimTextOutput(outputId = "account")), width = 200 ) body <- dashboardBody(# Boxes need to be put in a row (or column) tabItems( #### Star plot page tabItem(tabName = "Star_Plot", fluidRow( box(title = "Date range", width = 4, height = "500px", status = "primary", solidHeader = TRUE, br(), dateRangeInput("input_date", label = NULL, start = Sys.Date()-7, end = Sys.Date()-1), tags$head( tags$style(HTML('#submit_Star_plot{color:#FFFFFF; background-color:#0066CC; width:125px}')) ), actionButton(inputId = "submit_Star_plot", label = "Sumbit"), #submitButton(text = "Submit", icon("refresh")), br(), helpText(h2(strong("Note:")), p("The GP's Star data is update at 18:00 every day."), p("The data are from", a("http://mp.ijinshan.com/"))) ), box(title = "Star Plot", width = 8, height = "500px", status = "primary", solidHeader = TRUE, showOutput(outputId = "star_plots", "highcharts")), box(tile = "Data Table", width = 12, height = "450px", DT::dataTableOutput("star_data")) )), #### GP daily plot page tabItem(tabName = "gp_daily_plot", fluidRow( box(title = "All function feedback percentage", status = "danger", solidHeader = TRUE, width = 8, height = 500, showOutput("main_function_plot", "highcharts")), box(title = "Date range", status = "danger", solidHeader = TRUE, width = 4, height = 200, dateRangeInput("input_date_gp", label = NULL, start = Sys.Date()-7, end = Sys.Date()-1, separator = "-"), tags$head( tags$style(HTML('#submit_gp_daily{color:#FFFFFF; background-color:#FF3333; width:125px}')) ), actionButton(inputId = "submit_gp_daily", label = "Submit") #submitButton(text = "Submit", icon("refresh")) ) ), fluidRow( tabBox(title = NULL, side = "left", width = 12, height = 600, #ollapsible = TRUE, solidHeader = TRUE, status = "danger", tabPanel(title = "Main Plots", column(4, showOutput("applock_plot", "highcharts")), column(4, showOutput("scan_plot", "highcharts")), column(4, showOutput("private_plot", "highcharts")), column(4, showOutput("junk_plot", "highcharts")), column(4, showOutput("callblock_plot", "highcharts"))), tabPanel(title = 'Applock', column(8, showOutput("applock_line_plot", "highcharts")), column(4, plotOutput("apploc_wc"))), tabPanel(title = 'Scan', column(8, showOutput("scan_line_plot", "highcharts")), column(4, plotOutput("scan_wc"))), tabPanel(title = 'Private', column(8, showOutput("private_line_plot", "highcharts")), column(4, plotOutput("private_wc"))), tabPanel(title = 'Junk', column(8, showOutput("junk_line_plot", "highcharts")), column(4, plotOutput("junk_wc"))), tabPanel(title = 'Callblock', column(8, showOutput("callblock_line_plot", "highcharts")), column(4, plotOutput("callblock_wc"))) ) ), fluidRow( mainPanel( tabsetPanel(type = "tabs", tabPanel("Applock", DT::dataTableOutput("applock_dt", width = 1000)), tabPanel("Scan", DT::dataTableOutput("scan_dt", width = 1000)), tabPanel("Private", DT::dataTableOutput("private_dt", width = 1000)), tabPanel("Junk", DT::dataTableOutput("junk_dt", width = 1000)), tabPanel("Callblock", DT::dataTableOutput("callblock_dt", width = 1000)) )) ) ), #### GP and Mail Auto reply page tabItem(tabName = "auto_reply", fluidRow( box(title = "GP Platform auto reply system", status = "info", solidHeader = TRUE, width = 4, height = 300, #selectizeInput("select_op_name_gp", label = "Who you are?", # choices = c(Choose='', "Fox Liu" = "Fox.Liu", "Serene Zeng" = "Serene.Zeng", "Pandora Syu" = "Pandora.Syu", "Wing Ho" = "Wing.Ho"), # selected = NULL, options = list(placeholder = 'select name')), fileInput(inputId = "input_file", label = "Please upload GP-reply file", accept = c(".xlsx", ".csv"))), #submitButton(text = "Submit")), box(title = "Upload GP-File response massage :", width = 8, height = 300, verbatimTextOutput(outputId = "update_info_gp")), box(title = "Mail Platform auto reply system", status = "primary", solidHeader = TRUE, width = 4, height = "300px", #selectizeInput("select_op_name_mail", label = "Who you are?", # choices = c(Choose='', "Fox Liu" = "Fox.Liu", "Serene Zeng" = "Serene.Zeng", "Pandora Syu" = "Pandora.Syu", "Wing Ho" = "Wing.Ho"), # selected = NULL, options = list(placeholder = 'select name')), fileInput(inputId = "input_file_mail", label = "Please upload Mail-reply file", accept = c(".xlsx", ".csv"))), #submitButton(text = "Submit")), box(title = "Upload Mail-File response massage :", width = 8, height = "300px", verbatimTextOutput(outputId = "update_info_mail")) )), #### OP daily report page tabItem(tabName = "op_daily_report", fluidRow( box(title = "Upload file", width = 3, height = "180px", status = "success", solidHeader = TRUE, fileInput(inputId = "input_file_op", label = NULL, accept = c(".xlsx", ".csv")) #tags$head( # tags$style(HTML('#Submit_op_daily_report_uploadfile{color:#FFFFFF; background-color:#000000; width:125px}')) #), #actionButton(inputId = "Submit_op_daily_report_uploadfile", label = "Submit") ), box(title = "Upload File Message", verbatimTextOutput(outputId = "update_info_op"), width = 3, height = "180px", status = "success", solidHeader = TRUE), box(title = "Date range", width = 3, height = "180px", status = "success", solidHeader = TRUE, dateRangeInput("input_date_op", label = NULL, start = Sys.Date()-2, end = Sys.Date()-1, separator = "-"), tags$head( tags$style(HTML('#Submit_op_daily_report{color:#000000; background-color:#009900; width:125px}')) ), actionButton(inputId = "Submit_op_daily_report", label = "Submit") #submitButton(text = "Submit", icon("refresh")) ), box(title = "Choose the fucntion", selectInput("dataset", label = NULL, choices = c("applock", "callblock", "cms", "phone performance", "scan", "secret box", "suggest")), downloadButton('downloadData', 'Download'), width = 3, height = "180px", status = "success", solidHeader = TRUE) ), fluidRow( mainPanel( tabsetPanel(type = "tabs", tabPanel("Applock", DT::dataTableOutput("applock", width = validateCssUnit(1000))), tabPanel("Scan", DT::dataTableOutput("scan", width = 1000)), tabPanel("CMS", DT::dataTableOutput("cms", width = 1000)), tabPanel("Callblock", DT::dataTableOutput("callblock", width = 1000)), tabPanel("Private Browser", DT::dataTableOutput("private_browser", width = 1000)), tabPanel("Phone Performance", DT::dataTableOutput("phone_performance", width = 1000)), tabPanel("Secret box", DT::dataTableOutput("secret_box", width = 1000)), tabPanel("Suggest", DT::dataTableOutput("suggest", width = 1000))), width = 12), position = "left" )), ### gp autoreply type tabItem(tabName = "gp_autoreply_type", fluidRow( box(title = "Enter Auto Reply Context:", width = 4, height = "250px", status = "info", solidHeader = TRUE, textInput(inputId = "input_reply_type_name", label = "Type Name (Ex: enter 'typeP')", value = ""), textInput(inputId = "input_reply_type_context", label = "Type Context (Ex: enter 'what ever you want')", value = "")), box(title = "Submit and Result", width = 4, height = "250px", status = "info", solidHeader = TRUE, #selectizeInput("select_name_gp_type", label = "Who you are?", # choices = c(Choose='', "Fox Liu" = "Fox.Liu", "Serene Zeng" = "Serene.Zeng", "Pandora Syu" = "Pandora.Syu", "Wing Ho" = "Wing.Ho"), # selected = NULL, options = list(placeholder = 'Taiwan No.1')), #passwordInput(inputId = "input_name_gp_type_password", label = "Enter your password:", value = "", width = validateCssUnit(400)), tags$head( tags$style(HTML('#Submit_gp_autoreply{color:#000000; background-color:#00CCFF; width:125px}')) ), actionButton(inputId = "Submit_gp_autoreply", label = "Submit"), tags$hr(), verbatimTextOutput(outputId = "edit_gp_type_data") ) ), fluidRow( box( #actionButton(inputId = "refresh_action", label = "Refresh Type Table", icon = icon(name = "refresh", class = "fa-1x")), title = "The Auto Reply List:", width = 12, hieght = "500", status = "info", solidHeader = TRUE, DT::dataTableOutput("output_reply_table_df")) #fluidRow( # box(title = "testing", width = 6, # verbatimTextOutput("output_edit_reply_type")) #) )), ### mail daily report tabItem(tabName = "mail_daily_report", fluidRow( box(title = "Enter modify content", width = 4, height = "430px", status = "info", solidHeader = TRUE, dateInput(inputId = "input_mail_date", labe = "Select Date:", value = Sys.Date()-1, min = "2015-12-14", format = "yyyy-mm-dd", width = validateCssUnit(400)), textInput(inputId = "input_mail_index", label = "Enter Index:", value = NULL, width = validateCssUnit(400)), textInput(inputId = "input_mail_owner", label = "Enter Owner:", value = NULL, width = validateCssUnit(400)), textInput(inputId = "input_mail_track", label = "Enter Track:", value = NULL, width = validateCssUnit(400)), textInput(inputId = "input_mail_status", label = "Enter Status:", value = NULL, width = validateCssUnit(400))), #box(title = NULL, width = 4, height = "430px", status = "info", solidHeader = FALSE, # selectizeInput("select_name_mail", label = "Who you are?", # choices = c(Choose='', "Fox Liu" = "Fox.Liu", "Serene Zeng" = "Serene.Zeng", "Pandora Syu" = "Pandora.Syu", "Wing Ho" = "Wing.Ho"), # selected = NULL, options = list(placeholder = 'who is the most beautiful girl in the world?')), # passwordInput(inputId = "input_name_mail_password", label = "Enter your password:", value = "", width = validateCssUnit(400)) #submitButton(text = "Touch me", icon = icon(name = "gavel", class = "fa-1x"), width = validateCssUnit("50%")) # ), box(title = "Submit and Result", width = 4, height = "430px", status = "info", solidHeader = TRUE, tags$head( tags$style(HTML('#submit_mail_daily{color:#000000; background-color:#00CCFF; width:125px}')) ), actionButton(inputId = "submit_mail_daily", label = "Submit"), tags$hr(), verbatimTextOutput(outputId = "modifyMailPlatform_dt")), box(title = NULL, width = 12, height = "1000px", status = "info", solidHeader = FALSE, DT::dataTableOutput("output_mail_table_df")) )) )) ui <- dashboardPage(header = header, body = body, sidebar = sidebar, skin = "yellow") #shinyApp(ui, server)
46b8d02333bd03922ec9f1ff32ee102d2ef48080
8eb45bfd8ebc817911b23e74cce42cf506c85b54
/principalMochila.R
e3fe4f8aef246eaa8593896eb799489d3eafa2e4
[]
no_license
vitoriacfaria/aulas-franco-inteligencia-artificial
161cb1950447af0bd0cf2072ff0145b4bc72c341
3d2fd3aea3d3103b04775702a3c3ed8370cc26b3
refs/heads/master
2022-12-10T11:49:11.702438
2020-09-10T00:43:59
2020-09-10T00:43:59
294,262,436
0
0
null
null
null
null
UTF-8
R
false
false
442
r
principalMochila.R
# Instalando o pacote GA install.packages("GA") # Carregando o pacote GA library("GA") # Algoritmo genetico resultado = ga("binary", fitness = fAdaptMO, nBits = 8, popSize = 10, maxiter = 20, names = items) #verificacao de resultados summary(resultado) #Saida da solucao summary(resultado)$solution # Plotando o grafico da evolucao da avaliacao plot(resultado)
e26fb0ee3521950aad58189d6f316e0454e870c6
569c5a551a0ee233d923c3c75eb0e10f98a679ea
/4_publish_api.R
22c9f72d9665c323aa2ce99489625d83650e37f0
[]
no_license
DataStrategist/immunotherapy
234f0d5d4edcac2b0a6371bc6356142991570334
46512de99225dbefc1eee58946f81bd91ad68c03
refs/heads/master
2020-07-31T14:47:30.761687
2019-06-13T08:56:48
2019-06-13T08:56:48
210,641,248
0
0
null
2019-09-24T15:50:27
2019-09-24T15:50:26
null
UTF-8
R
false
false
484
r
4_publish_api.R
# Since the API is defined by `plumber/plumber.R`, i.e. inside a subfolder, # first copy the `config.yml` to the `plumber` folder fs::file_copy("config.yml", "plumber/config.yml", overwrite = TRUE) library(rsconnect) withr::with_dir( "plumber", rsconnect::deployAPI( api = ".", # server = "{server}", # <<- edit this line if necessary # account = "{account}", # <<- edit this line if necessary appTitle = "Immunotherapy API", forceUpdate = TRUE ) )
5d3ba3c108d5531b78e21f1ecfa60c7c69e236d6
809754c7533aaa3e19d327f3bc7fd57ba5e6c082
/man/STR_analysis.Rd
754e65d151e0d98192f04a025320d34e139a37bd
[]
no_license
cran/STRAH
cb72112f9dbb4551762356ba4b587a26e7389683
0954be0ce19ffd2f0a65a83e049db598277d2fb3
refs/heads/master
2020-12-22T19:10:48.560514
2019-04-09T14:05:25
2019-04-09T14:05:25
236,902,944
0
0
null
null
null
null
UTF-8
R
false
true
6,491
rd
STR_analysis.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/STR_analysis.R \name{STR_analysis} \alias{STR_analysis} \title{Analysis of short tandem repeats (STRs) in a given region of any reference genome} \usage{ STR_analysis(seqName, nr.STRs = 10, nr.mismatch = 0, chrs, STR = "A", lens.grey = 0:5 * 1000, start.position = NA, end.position = NA, reverse.comp = FALSE, bed_file, pos_matrix, output_file, species = BSgenome.Hsapiens.UCSC.hg19::Hsapiens, dsb_map = STRAH::dsb_map) } \arguments{ \item{seqName}{A character string which is the name of the given sequence file under study. Can also be set to "" in order to analyze a defined sequence from any reference genome such as the package BSgenome.Hsapiens.UCSC.hg19 for humans.} \item{nr.STRs}{An integer value reflecting the minimum length of STRs to be searched for.} \item{nr.mismatch}{An integer value reflecting the allowed number of mismatches of the short tandem repeats. By default it set to 0.} \item{chrs}{A string reflecting the chromosome under study (starting with "chr" and adding either the integers from 1-22 or "X" respectively "Y" for the human genome). This argument can also be a vector of strings to study several chromosomes.} \item{STR}{A character string for the nucleotide to be searched for. By default one searches for poly-As, hence set to "A".} \item{lens.grey}{An integer value which is by default a vector of 6 integer values. These values represent the greyzones to be studied left and right from the hotspot regions.} \item{start.position}{An integer value reflecting the start position of the region to be analyzed. If set to \code{NA} the analysis starts from the beginning of the chromosome.} \item{end.position}{An integer value reflecting the end position of the region to be analyzed. If set to \code{NA} the analysis is performed until the end of the chromosome.} \item{reverse.comp}{A logical value by default \code{FALSE}. If set to \code{TRUE} then the reverse complement of the sequence is analyzed.} \item{bed_file}{A bed file containing the chromosomes, start, and end positions of the region(s) that should be analyzed.} \item{pos_matrix}{A matrix or dataframe containing the chromosomes, start, and end positions of the region(s) that should be analyzed.} \item{output_file}{The default is an empty string and does not save an output-file. The output will be saved if the parameter is changed to a user defined string excluding the extension (by default .bed).} \item{species}{The human genome (version 19) is default but an alternative genome can be provided. For chimpanzees the parameter has to be BSgenome.Ptroglodytes.UCSC.panTro5 (given that the data is installed).} \item{dsb_map}{The DSB map of the human genome (version 19) is default but an alternative DSB map from a different genome can be provided. This parameter needs to be a data frame with at least 3 columns that contains the chromosome, start, and end position of the DSB. The DSB map for chimpanzees is included in the package.} } \value{ The output of the function is a list with the following content: \item{Sequence Name}{The chromosome with the starting and end position of the region under study is provided.} \item{Reverse Complement}{An indicator whether the reverse complement was considered} \item{Number of allowed Mismatches}{The number of allowed mismatches is provided.} \item{Minimum Length}{The minimum length of the STR to be extracted is provided.} \item{Number of Matches}{The total number of STR matches of the region is provided.} \item{Length of STR stretch in bp}{A vector containing the length of STRs per match is provided.} \item{Start positions}{The starting positions of the STRs are provided.} \item{Zone}{The zones where the STR is found are provided. 1 reflects within a hotspot, the last integer reflects that it is outside, and the integers between these two reflect the given flanking regions starting with 2 as the next closest region to the hotspot.} A BED file with the chromosomes, start, and end position of the STRs, length of the STR stretch, the zone where the STR was found, and the specified region that was analyzed are given as columns. } \description{ This function separates detected short tandem repeats (STRs) into different zones. These zones are either the hotspot zone defined by the double strand break maps of Pratto et al. (2014) or adjacent flanking zones (greyzones) left and right of the hotspots of user specified lengths. The parameters of the regions under study can be directly given in the function arguments or read in via either a BED-file or a position matrix. } \examples{ data(chr6_1580213_1582559) STR_analysis(seqName = chr6_1580213_1582559, nr.STRs = 10, nr.mismatch = 0, chrs = "chr6", STR = "A", lens.grey = 0:1*100, start.position = 1580213, end.position = 1582559, reverse.comp = FALSE, species = BSgenome.Hsapiens.UCSC.hg19::Hsapiens, dsb_map = STRAH::dsb_map) \donttest{ STR_analysis(nr.STRs = 10, nr.mismatch = 0, chrs = "chr22", STR = "A", lens.grey = 0:1*100, start.position = 30000000, end.position = 31000000, reverse.comp = FALSE, species = BSgenome.Hsapiens.UCSC.hg19::Hsapiens, dsb_map = STRAH::dsb_map) # If you want to use the function with a different reference genome # make your choice and install it before: if(requireNamespace("BSgenome.Ptroglodytes.UCSC.panTro5")) { STR_analysis(nr.STRs = 10, nr.mismatch = 0, chrs = "chr22", STR = "A", lens.grey = 0:5*1000, start.position = 30000000, end.position = 31000000, reverse.comp = FALSE, species = BSgenome.Ptroglodytes.UCSC.panTro5::BSgenome.Ptroglodytes.UCSC.panTro5, dsb_map = STRAH::dsb_map_chimp_full) } } } \references{ Heissl, A., et al. (2018) Length asymmetry and heterozygosity strongly influences the evolution of poly-A microsatellites at meiotic recombination hotspots. doi: https://doi.org/10.1101/431841 Pratto, F., et al. (2014). Recombination initiation maps of individual human genomes. Science, 346(6211). Kuhn RM, et al. (2013) The UCSC genome browser and associated tools, Brief. Bioinform., 14, 144-161. } \seealso{ \code{\link{getflank2}}, \code{\link{STR_detection}} } \author{ Philipp Hermann, \email{[email protected]}, Monika Heinzl, \email{[email protected]} Angelika Heissl, Irene Tiemann-Boege, Andreas Futschik } \keyword{array} \keyword{datasets} \keyword{list} \keyword{methods} \keyword{univar}