blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
327
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
91
license_type
stringclasses
2 values
repo_name
stringlengths
5
134
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
46 values
visit_date
timestamp[us]date
2016-08-02 22:44:29
2023-09-06 08:39:28
revision_date
timestamp[us]date
1977-08-08 00:00:00
2023-09-05 12:13:49
committer_date
timestamp[us]date
1977-08-08 00:00:00
2023-09-05 12:13:49
github_id
int64
19.4k
671M
star_events_count
int64
0
40k
fork_events_count
int64
0
32.4k
gha_license_id
stringclasses
14 values
gha_event_created_at
timestamp[us]date
2012-06-21 16:39:19
2023-09-14 21:52:42
gha_created_at
timestamp[us]date
2008-05-25 01:21:32
2023-06-28 13:19:12
gha_language
stringclasses
60 values
src_encoding
stringclasses
24 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
9.18M
extension
stringclasses
20 values
filename
stringlengths
1
141
content
stringlengths
7
9.18M
a33f32474bfdbce06eaf8fb6e7abfc723191b062
116eaeafe38f8df9aaa628df6e444144339376ba
/MechaCarChallenge.R
fddb04af170ef176168ecb47d7b3425d7093a444
[]
no_license
kaytar23/MechaCar_Statistical_Analysis
cfa6f4b02093084af3827ae80dc64c993e3c4c5d
4c6ad3670b2b51e664be56faeeccb1c003bb4ff8
refs/heads/main
2023-08-18T01:19:23.926486
2021-09-23T03:52:22
2021-09-23T03:52:22
409,409,682
0
0
null
null
null
null
UTF-8
R
false
false
749
r
MechaCarChallenge.R
library(dplyr) MechaCar_mpg <- read_csv("MechaCar_mpg.csv") summary(lm(mpg ~ vehicle_length + vehicle_weight + spoiler_angle + ground_clearance + AWD,data=MechaCar_mpg)) Suspension_Coil <- read_csv("Suspension_Coil.csv") total_summary <- Suspension_Coil %>% summarise(Mean=mean(PSI),Median=median(PSI),Variance=var(PSI), SD=sd(PSI)) lot_summary <- Suspension_Coil %>% group_by(Manufacturing_Lot) %>% summarize(Mean=mean(PSI),Median=median(PSI),Variance=var(PSI), SD=sd(PSI)) t.test(Suspension_Coil$PSI, mu=1500) t.test(subset(Suspension_Coil,Manufacturing_Lot=="Lot1")$PSI, mu = 1500) t.test(subset(Suspension_Coil,Manufacturing_Lot=="Lot2")$PSI, mu = 1500) t.test(subset(Suspension_Coil,Manufacturing_Lot=="Lot3")$PSI, mu = 1500)
10b3df9cf919aefd3c5b361650ff4e2310499f98
2d7b44297ddfcedbea062dd960caa90c72841173
/vote-rennes.R
f6d97c30914cccaed7ee264f16867c4f812dafa7
[]
no_license
DataBzh/territoire
c7c342a4ea64697142fb2aa6c5d0134bf780362b
fb6a07f1a76dc2861cf37fb07455159948427735
refs/heads/master
2021-01-19T03:31:44.667322
2019-05-27T06:54:32
2019-05-27T06:54:32
64,167,586
3
1
null
null
null
null
UTF-8
R
false
false
2,081
r
vote-rennes.R
library(tidyverse) library(rgdal) source("/home/colin/Dropbox/R/misc/data-bzh-tools-master/main.R") rennes <- read_csv2("https://data.rennesmetropole.fr/explore/dataset/centres-de-vote/download/?format=csv&timezone=Europe/Berlin&use_labels_for_header=true") rennes <- rennes %>% separate(`Geo Point`, into = c("long","lat"), sep = ",") table(rennes$c_nom) %>% sort() sum(rennes$burx_nb) rennes %>% group_by(c_nom) %>% summarise(somme = n()) %>% arrange(desc(somme)) %>% ggplot(aes(x = reorder(c_nom, somme), y = somme))+ geom_bar(stat = "identity", fill = databzh$colour1) + coord_flip() + xlab("") + ylab(" ") + labs(title = "Centres de vote sur Rennes Métropole", subtitle = "Données via : Open Data Rennes", caption = "http://data-bzh.fr") + databzhTheme() ggplot(rennes, aes(burx_nb)) + geom_bar(fill = databzh$colour2) + xlab("") + ylab(" ") + labs(title = "Bureaux de vote par centre sur Rennes Métropole", subtitle = "Données via : Open Data Rennes", caption = "http://data-bzh.fr") + databzhTheme() roj <- readOGR(dsn=".", layer="emprise-de-rennes-metropole") wmap_df <- fortify(roj) ggplot(wmap_df, aes(long,lat, group=group)) + geom_polygon(fill = "#e4e4e4") + coord_map() + geom_path(data=wmap_df, aes(long, lat, group=group), color="grey50") + geom_point(data=rennes, aes(as.numeric(lat), as.numeric(long), group = NULL), color = databzh$colours[2]) + scale_size(range = c(1,12)) + xlab("") + ylab(" ") + labs(title = "Centres de vote sur Rennes Métropole", subtitle = "Données via : Open Data Rennes", caption = "http://data-bzh.fr") + theme(title=element_text(), plot.title=element_text(margin=margin(0,0,20,0), size=18, hjust = 0.5), axis.text.x=element_blank(), axis.text.y=element_blank(), axis.ticks=element_blank(), axis.title.x=element_blank(), axis.title.y=element_blank(), panel.grid.major= element_line("grey50", linetype = "dashed"), panel.background= element_blank())
8da72434959bf5e76f562413a904cefde8fbcf7d
f21245e27e040e5c02a3f4a1936e8e8b96f069b1
/R/gplates_reconstruct.R
e1aa168366faed0e04190ec02c53a382eabf315f
[]
no_license
LunaSare/gplatesr
d642b59ac07353f83220419a534cf962e3b052be
24c182c77caed9eb6125380084f56ca6d5884960
refs/heads/master
2022-09-13T22:37:07.489673
2022-08-29T16:43:44
2022-08-29T16:43:44
164,476,513
1
0
null
null
null
null
UTF-8
R
false
false
2,953
r
gplates_reconstruct.R
#' Launch the service via docker #' @export launch_docker <- function() { #docker <- stevedore::docker_client() #docker$container$run("alpine:3.1", c("echo", "hello world")) #system("docker run --rm -it -p 8888:80 gplates/gws") system("docker run --rm -p 8888:80 gplates/gws", wait=FALSE) } #' Reconstruct a point #' @param lon A numeric vector of length one. #' @param lat A numeric vector of length one. #' @param age A numeric vector of length one indicating the geologic time to reconstruct. #' @param base_url The url to use; make sure it ends with a slash #' @return Coordinates #' @export gplates_reconstruct_point <- function(lon,lat,age, base_url='http://gws.gplates.org/'){ url <- paste0(base_url,'reconstruct/reconstruct_points/') # query <- sprintf('?points=%f,%f&time=%d&model=GOLONKA',lon,lat,as.integer(age)) #The Paleobiodb navigator uses GOLONKA, PALEOMAP extends to 750 ma, default only to 200 ma query <- sprintf('?points=%f,%f&time=%f&model=GOLONKA',lon,lat,as.numeric(age)) #The Paleobiodb navigator uses GOLONKA, PALEOMAP extends to 750 ma, default only to 200 ma fullrequest <- sprintf(paste0(url,query)) print(fullrequest) rawdata <- readLines(fullrequest, warn="F") dat <- jsonlite::fromJSON(rawdata) rcoords = dat['coordinates'][[1]] return(rcoords) } #' Reconstruct ancient coastlines #' @inherit gplates_reconstruct_point #' @return An S4 object of class SpatialPolygonsDataFrame #' @export gplates_reconstruct_coastlines <- function(age, base_url='http://gws.gplates.org/'){ url <- paste0(base_url,'reconstruct/coastlines/') # query <- sprintf('?time=%d&model=GOLONKA',as.integer(age)) query <- sprintf('?time=%f&model=GOLONKA',as.numeric(age)) fullrequest <- sprintf(paste0(url,query)) print(fullrequest) r <- httr::GET(fullrequest) bin <- httr::content(r, "raw") writeBin(bin, paste0(tempdir(), "/myfile.geojson")) #dat <- rgdal::readOGR(dsn=paste0(tempdir(), "/myfile.geojson"), layer="OGRGeoJSON", stringsAsFactors=FALSE) dat <- rgdal::readOGR(dsn=paste0(tempdir(), "/myfile.geojson")) return(dat) } #' Reconstruct static polygons #' @inherit gplates_reconstruct_point #' @return An S4 object of class SpatialPolygonsDataFrame #' @export gplates_reconstruct_static_polygons <- function(age, base_url='http://gws.gplates.org/'){ url <- paste0(base_url,'reconstruct/static_polygons/') #url <- 'http://gws.gplates.org/reconstruct/static_polygons/' #query <- sprintf('?time=%d&model=GOLONKA',as.integer(age)) query <- sprintf('?time=%f&model=GOLONKA',as.numeric(age)) fullrequest <- sprintf(paste0(url,query)) print(fullrequest) r <- httr::GET(fullrequest) bin <- httr::content(r, "raw") writeBin(bin, paste0(tempdir(), "/myfile.geojson")) #dat <- rgdal::readOGR(dsn=paste0(tempdir(), "/myfile.geojson"), layer="OGRGeoJSON", stringsAsFactors=FALSE) dat <- rgdal::readOGR(dsn=paste0(tempdir(), "/myfile.geojson")) return(dat) }
84332a105f40e144ad66fade97051a2b3c3df58f
127141eb7e2897126bc81caa19b6e6cb5ceb9572
/global.R
4680b9b7666f68b5053731462ed0df6548c1e17f
[]
no_license
yogesh1612/network_data_prep_app
c04ecadc2a506f4d3f7701e1a03bd666e4f8e9e2
6c4b2229b93bebe73158bdb27d90f5cfb07a7f27
refs/heads/main
2023-03-12T23:29:02.274201
2021-02-25T09:33:27
2021-02-25T09:33:27
341,204,060
0
3
null
null
null
null
UTF-8
R
false
false
2,697
r
global.R
## --- functionize dataframe to adjacency mat for network-an app input df2adjacency <- function(input_df, cutoff_percentile=0.25,id_var){ rownames(input_df) <- make.names(input_df[,id_var], unique=TRUE) #rownames(input_df) <- input_df[,id_var] input_df[,id_var] <- NULL # first, retain only metric colms a0_logi = apply(input_df, 2, function(x) {is.numeric(x)}); a0_logi df0 = input_df[, a0_logi] n1 = nrow(df0); n1 # calc dist mat dist_mat = dist(as.matrix(scale(df0))) # build full square-shaped dist matrix full_dmat = matrix(0, n1, n1) diag(full_dmat) = 1 # created shell matrix counter0 = 1 for (i in 1:(n1-1)){ counter1 = counter0 + (n1 - i) - 1; counter1 vals = dist_mat[counter0: counter1]; vals full_dmat[(i+1):n1, i] = vals; full_dmat counter0 = counter1+1; counter0 } # 0.01s for 32x32 mat # populate upper triangular part also for (row0 in 1:(n1-1)){ for (colm0 in (row0+1):n1){ full_dmat[row0, colm0] = full_dmat[colm0, row0] } } ## set threshold in percentile terms (can be slider based widget in shiny app) #thresh0=0.25 # say. top 25% closest rows only form links thresh1 = quantile(unlist(full_dmat), cutoff_percentile,na.rm = TRUE) %>% as.numeric(); thresh1 adj_mat = map_dfc(full_dmat, function(x) {1*(x < thresh1)}) # 0.03s adj_mat1 = matrix(adj_mat, n1, n1) # adj_mat1[1:8,1:8] rownames(adj_mat1) = rownames(input_df) colnames(adj_mat1) = rownames(input_df) return(adj_mat1) } # func ends # test-drive above # system.time({ adj0 = df2adjacency(input_df, 0.33,"car") }) # 0.05s # adj0[1:8,1:8] # view a few summry_df <- function(df){ # select data type summ_df <- data.frame() summ_df <- df %>% summarise_all(class) %>% gather() %>% rename("Variable"="key","Datatype"="value") mean <- df %>% summarise(across(where(is.numeric), mean, na.rm= TRUE))%>%t() sd <- df %>% summarise(across(where(is.numeric), sd, na.rm= TRUE))%>%t() min <- df %>% summarise(across(where(is.numeric), min, na.rm= TRUE))%>%t() max <- df %>% summarise(across(where(is.numeric), max, na.rm= TRUE))%>%t() mode <- sapply(df,function(x) getmode(x)) t1 <- as.data.frame(cbind(mean,sd,min,max,mode)) names(t1) <- c('Mean',"SD","Min","Max","Mode") t2 <- tibble::rownames_to_column(t1, "Variable")%>% mutate_if(is.numeric, round, digits=2) t3 <- left_join(summ_df,t2,by=c("Variable")) return(t3) } getmode <- function(v) { uniqv <- unique(v) uniqv[which.max(tabulate(match(v, uniqv)))] }
2fc358f9d4ea151f1019742fe343a99e2ea21fa2
137736b1a6048880f4d525e15f46ce4092239548
/code/03d simulate sampling - stratified by zone.R
30f1d9aa8498aa0e37068decccc1f916a93d82db
[]
no_license
BritishTrustForOrnithology/eodip5_earth_obs_power_analysis
21a5a68f668924d40b254ed7a01bdccdf22484e7
c7b77137d567080c7b600f6158ad8c251b8d7364
refs/heads/master
2022-11-06T17:59:13.021168
2020-06-23T07:37:52
2020-06-23T07:37:52
274,339,857
0
0
null
null
null
null
UTF-8
R
false
false
18,789
r
03d simulate sampling - stratified by zone.R
#simulate sampling and error - simple random sampling within classification zones #Simon Gillings #February 2016 library(plyr) #set working directory setwd('X:\\Shared Projects\\Defra80 - EODIP5\\gis analysis\\') # LOAD DATA ------------------------------------------------------------------------------------------ #load data df<-readRDS('parcels_with_grids.rds') #load habitat short names hablabs<-read.table(file='hablabels.csv',sep=',',header=T,colClasses = rep('character',2)) #lookup lists of squares by zone. Note that some parcels in the original Living Map files fall outside the zones shapefile provided zone.500m<-read.table(file='centroids_500m_zone.csv',sep=',',header=T,colClasses = rep('character',2)) names(zone.500m)<-c('ref500m','zone500m') zone.200m<-read.table(file='centroids_200m_zone.csv',sep=',',header=T,colClasses = rep('character',2)) names(zone.200m)<-c('ref200m','zone200m') zone.100m<-read.table(file='centroids_100m_zone.csv',sep=',',header=T,colClasses = rep('character',2)) names(zone.100m)<-c('ref100m','zone100m') # PREPARE DATA ----------------------------------------------------------------------------------------- #combine the two habs as agreed by JNCC df$CLASS<-ifelse(df$CLASS=='Semi-improved (poor condition)','Semi-improved grassland',df$CLASS) #merge zones with df for each grid resolution df<-merge(df,zone.500m,by='ref500m',all.x=T) df<-merge(df,zone.200m,by='ref200m',all.x=T) df<-merge(df,zone.100m,by='ref100m',all.x=T) #some parcels fall in squares outside the zones - mark up as zone X df$zone500m[is.na(df$zone500m)]<-'X' df$zone200m[is.na(df$zone200m)]<-'X' df$zone100m[is.na(df$zone100m)]<-'X' #get definitive list of squares at each resolution #sqrlist.01km<-unique(df$ref01km) sqrlist.500m<-unique(subset(df,select=c('ref500m','zone500m'))) sqrlist.200m<-unique(subset(df,select=c('ref200m','zone200m'))) sqrlist.100m<-unique(subset(df,select=c('ref100m','zone100m'))) #how many squares per zone per grid resolution table(sqrlist.500m$zone500m) table(sqrlist.200m$zone200m) table(sqrlist.100m$zone100m) #get definitive list of habitats hablist<-data.frame(CLASS=unique(df$CLASS),stringsAsFactors = F) #add error rates hablist$error.low<-0.05 hablist$error.mid<-0.15 hablist$error.high<-0.30 #sort hablist<-hablist[order(hablist$CLASS),] hablist<-merge(hablist,hablabs,by='CLASS') #simulate random sampling in each zone simulate.random<-function(repnum,nsqr,gridres,errorlevel) { #repnum = counter to show progress on reps #nsqr = number of squares in sample #gridres = what size grid squares to use #errorlevel = use low, mid or high error estimate cat(paste(repnum,nsqr,gridres,errorlevel,'\n')) #get the relevant list of squares in the region and assign to object squares assign("squares",get(apropos(gridres) ) ) names(squares)[2]<-'zone' #make a sample of squares at this resolution (without replacement) #need to check that sample size is not greater than number of squares in region; if so reduce sample size for this run max.samp.size<-table(squares$zone) nsqr.A<-ifelse(max.samp.size[['A']]<nsqr,max.samp.size[['A']],nsqr) nsqr.B<-ifelse(max.samp.size[['B']]<nsqr,max.samp.size[['B']],nsqr) nsqr.C<-ifelse(max.samp.size[['C']]<nsqr,max.samp.size[['C']],nsqr) nsqr.D<-ifelse(max.samp.size[['D']]<nsqr,max.samp.size[['D']],nsqr) nsqr.E<-ifelse(max.samp.size[['E']]<nsqr,max.samp.size[['E']],nsqr) nsqr.X<-ifelse(max.samp.size[['X']]<nsqr,max.samp.size[['X']],nsqr) #process each zone separately this.sample.A<-as.character(sample(squares[squares$zone=='A',1], replace=F, size=nsqr.A, prob=NULL)) this.sample.B<-as.character(sample(squares[squares$zone=='B',1], replace=F, size=nsqr.B, prob=NULL)) this.sample.C<-as.character(sample(squares[squares$zone=='C',1], replace=F, size=nsqr.C, prob=NULL)) this.sample.D<-as.character(sample(squares[squares$zone=='D',1], replace=F, size=nsqr.D, prob=NULL)) this.sample.E<-as.character(sample(squares[squares$zone=='E',1], replace=F, size=nsqr.E, prob=NULL)) this.sample.X<-as.character(sample(squares[squares$zone=='X',1], replace=F, size=nsqr.X, prob=NULL)) #get all parcels in these squares, after checking which column holds the grid refs and CLASS at this scale i<-which(names(df)==paste0('ref',gridres)) ic<-which(names(df)=='CLASS') this.parcels.A<-df[df[,i] %in% this.sample.A,ic] this.parcels.B<-df[df[,i] %in% this.sample.B,ic] this.parcels.C<-df[df[,i] %in% this.sample.C,ic] this.parcels.D<-df[df[,i] %in% this.sample.D,ic] this.parcels.E<-df[df[,i] %in% this.sample.E,ic] this.parcels.X<-df[df[,i] %in% this.sample.X,ic] #tally up how many parcels of each type would be checked this.hab.freqs.A<-as.data.frame(table(this.parcels.A),stringsAsFactors = F) this.hab.freqs.B<-as.data.frame(table(this.parcels.B),stringsAsFactors = F) this.hab.freqs.C<-as.data.frame(table(this.parcels.C),stringsAsFactors = F) this.hab.freqs.D<-as.data.frame(table(this.parcels.D),stringsAsFactors = F) this.hab.freqs.E<-as.data.frame(table(this.parcels.E),stringsAsFactors = F) this.hab.freqs.X<-as.data.frame(table(this.parcels.X),stringsAsFactors = F) names(this.hab.freqs.A)<-c('CLASS','n.parcels.checked.A') names(this.hab.freqs.B)<-c('CLASS','n.parcels.checked.B') names(this.hab.freqs.C)<-c('CLASS','n.parcels.checked.C') names(this.hab.freqs.D)<-c('CLASS','n.parcels.checked.D') names(this.hab.freqs.E)<-c('CLASS','n.parcels.checked.E') names(this.hab.freqs.X)<-c('CLASS','n.parcels.checked.X') #merge results with master list of habs and error rates and convert NAs to zeroes this.hab.freqs<-join_all(list(hablist,this.hab.freqs.A,this.hab.freqs.B,this.hab.freqs.C,this.hab.freqs.D,this.hab.freqs.E,this.hab.freqs.X) ,by='CLASS') this.hab.freqs[is.na(this.hab.freqs)]<-0 #simulate how many errors there might be in this many patches. First create a column of 1s to force code to create 1 answer per call of rbinom this.hab.freqs$x<-1 #check which error column to use e<-which(names(this.hab.freqs)==paste0('error.',errorlevel)) #simulate the number of errors n.errors.A<-rbinom(this.hab.freqs$x,this.hab.freqs$n.parcels.checked.A,this.hab.freqs[,e]) n.errors.B<-rbinom(this.hab.freqs$x,this.hab.freqs$n.parcels.checked.B,this.hab.freqs[,e]) n.errors.C<-rbinom(this.hab.freqs$x,this.hab.freqs$n.parcels.checked.C,this.hab.freqs[,e]) n.errors.D<-rbinom(this.hab.freqs$x,this.hab.freqs$n.parcels.checked.D,this.hab.freqs[,e]) n.errors.E<-rbinom(this.hab.freqs$x,this.hab.freqs$n.parcels.checked.E,this.hab.freqs[,e]) n.errors.X<-rbinom(this.hab.freqs$x,this.hab.freqs$n.parcels.checked.X,this.hab.freqs[,e]) #bind the results together and create output this.hab.freqs<-cbind(this.hab.freqs,n.errors.A,n.errors.B,n.errors.C,n.errors.D,n.errors.E,n.errors.X) this.hab.freqs$error.rate.A<-this.hab.freqs$n.errors.A/this.hab.freqs$n.parcels.checked.A this.hab.freqs$error.rate.B<-this.hab.freqs$n.errors.B/this.hab.freqs$n.parcels.checked.B this.hab.freqs$error.rate.C<-this.hab.freqs$n.errors.C/this.hab.freqs$n.parcels.checked.C this.hab.freqs$error.rate.D<-this.hab.freqs$n.errors.D/this.hab.freqs$n.parcels.checked.D this.hab.freqs$error.rate.E<-this.hab.freqs$n.errors.E/this.hab.freqs$n.parcels.checked.E this.hab.freqs$error.rate.X<-this.hab.freqs$n.errors.X/this.hab.freqs$n.parcels.checked.X this.hab.freqs$nsqr<-nsqr this.hab.freqs$gridres<-gridres this.hab.freqs$errorlevel<-errorlevel this.hab.freqs$error.expected<-this.hab.freqs[,e] this.hab.freqs<-this.hab.freqs[,-c(2,3,4)] return(this.hab.freqs) } ################################################################################################################################################## # ALL SCALES, WIDE RANGE OF SAMPLE SIZES, 15% ERROR --------------------------------------------------------------- ################################################################################################################################################## #create population of scenarios sqrs.min<-100 sqrs.max<-2000 sqrs.step<-100 reps<-100 #expand.grid creates all permutations of whatever vectors are fed in. scenarios<-expand.grid(seq(from=1,to=reps,by=1), seq(sqrs.min,sqrs.max,by=sqrs.step), c('500m','200m','100m'), 'mid', stringsAsFactors = F) #rename columns names(scenarios)<-c('repnum','nsqr','gridres','errorlevel') #how many scenarios dim(scenarios) #apply the simulate function to all scenarios results<-mapply(simulate.random,scenarios$repnum,scenarios$nsqr,scenarios$gridres,scenarios$errorlevel,SIMPLIFY=F) #convert list of dataframes to one big dataframe results <- ldply(results, data.frame) saveRDS(results,file='sim_random_sampling_by_zone_15pc_error\\sim_random_sampling_by_zone_results_3scales_100-2000sqrs_error15.rds') #results<-readRDS(file='sim_random_sampling_by_zone_15pc_error\\sim_random_sampling_by_zone_results_3scales_100-2000sqrs_error15.rds') #make boxplots #how many habs to plot nhabs<-nrow(hablist) for(h in 1:nhabs) { #which habitat this.hab<-hablist$CLASS[h] this.lab<-hablist$LABEL[h] #create output for image for this habitat loc.name<-paste0('sim_random_sampling_by_zone_15pc_error\\sim_random_sampling_error15_',gsub(" ", "_", this.hab),'.png') png(loc.name,width=1000,height=1500) #set image parameters for png output par(mfrow=c(5,2)) par(mar=c(6,9,4,2)) par(mgp=c(0,2.5,0)) par(tcl=-1) #get results for this habitat this.results<-results[results$CLASS==this.hab,] #process a single grid scale this.results<-this.results[this.results$gridres=='500m',] #for this habitat, convert NaN values to zeroes this.results$error.rate.A<-ifelse(is.nan(this.results$error.rate.A),0,this.results$error.rate.A) this.results$error.rate.B<-ifelse(is.nan(this.results$error.rate.B),0,this.results$error.rate.B) this.results$error.rate.C<-ifelse(is.nan(this.results$error.rate.C),0,this.results$error.rate.C) this.results$error.rate.D<-ifelse(is.nan(this.results$error.rate.D),0,this.results$error.rate.D) this.results$error.rate.E<-ifelse(is.nan(this.results$error.rate.E),0,this.results$error.rate.E) this.results$error.rate.X<-ifelse(is.nan(this.results$error.rate.X),0,this.results$error.rate.X) this.error<-unique(this.results$error.expected) boxplot(data=this.results,n.parcels.checked.A~nsqr,cex.axis=2.5,main='Zone A: No. parcels checked',cex.main=3.25,las=1) boxplot(data=this.results,error.rate.A~nsqr,cex.axis=2.5,main='Zone A: Error estimates',cex.main=3.25,ylim=c(0,1),las=1) abline(h=this.error,col='red') boxplot(data=this.results,n.parcels.checked.B~nsqr,cex.axis=2.5,main='Zone B: No. parcels checked',cex.main=3.25,las=1) boxplot(data=this.results,error.rate.B~nsqr,cex.axis=2.5,main='Zone B: Error estimates',cex.main=3.25,ylim=c(0,1),las=1) abline(h=this.error,col='red') boxplot(data=this.results,n.parcels.checked.C~nsqr,cex.axis=2.5,main='Zone C: No. parcels checked',cex.main=3.25,las=1) boxplot(data=this.results,error.rate.C~nsqr,cex.axis=2.5,main='Zone C: Error estimates',cex.main=3.25,ylim=c(0,1),las=1) abline(h=this.error,col='red') boxplot(data=this.results,n.parcels.checked.D~nsqr,cex.axis=2.5,main='Zone D: No. parcels checked',cex.main=3.25,las=1) boxplot(data=this.results,error.rate.D~nsqr,cex.axis=2.5,main='Zone D: Error estimates',cex.main=3.25,ylim=c(0,1),las=1) abline(h=this.error,col='red') boxplot(data=this.results,n.parcels.checked.E~nsqr,cex.axis=2.5,main='Zone E: No. parcels checked',cex.main=3.25,las=1) boxplot(data=this.results,error.rate.E~nsqr,cex.axis=2.5,main='Zone E: Error estimates',cex.main=3.25,ylim=c(0,1),las=1) abline(h=this.error,col='red') #boxplot(data=this.results.grid,n.parcels.checked.X~nsqr,cex.axis=2.5,main='Zone X: No. parcels checked',cex.main=3.25,las=1) #boxplot(data=this.results.grid,error.rate.X~nsqr,cex.axis=2.5,main='Zone X: Error estimates',cex.main=3.25,ylim=c(0,1),las=1) dev.off() } #summarise how often the "correct" answer is found. Acceptable precision of +/-5% (arithmetic) on the known error rate #replace NaNs with zeroes for this classification of whether error was correctly assigned precision<-0.05 error<-0.15 precision.lower<-error-precision precision.upper<-error+precision results$error.rate.A<-ifelse(is.nan(results$error.rate.A),0,results$error.rate.A) results$error.rate.B<-ifelse(is.nan(results$error.rate.B),0,results$error.rate.B) results$error.rate.C<-ifelse(is.nan(results$error.rate.C),0,results$error.rate.C) results$error.rate.D<-ifelse(is.nan(results$error.rate.D),0,results$error.rate.D) results$error.rate.E<-ifelse(is.nan(results$error.rate.E),0,results$error.rate.E) results$est.correct.A<-ifelse(results$error.rate.A>=precision.lower & results$error.rate.A<=precision.upper,100,0) results$est.correct.B<-ifelse(results$error.rate.B>=precision.lower & results$error.rate.B<=precision.upper,100,0) results$est.correct.C<-ifelse(results$error.rate.C>=precision.lower & results$error.rate.C<=precision.upper,100,0) results$est.correct.D<-ifelse(results$error.rate.D>=precision.lower & results$error.rate.D<=precision.upper,100,0) results$est.correct.E<-ifelse(results$error.rate.E>=precision.lower & results$error.rate.E<=precision.upper,100,0) p.correct.vals.A<-aggregate(data=results,est.correct.A~CLASS+gridres+nsqr,mean) p.correct.vals.B<-aggregate(data=results,est.correct.B~CLASS+gridres+nsqr,mean) p.correct.vals.C<-aggregate(data=results,est.correct.C~CLASS+gridres+nsqr,mean) p.correct.vals.D<-aggregate(data=results,est.correct.D~CLASS+gridres+nsqr,mean) p.correct.vals.E<-aggregate(data=results,est.correct.E~CLASS+gridres+nsqr,mean) p.correct.A<-p.correct.vals.A p.correct.B<-p.correct.vals.B p.correct.C<-p.correct.vals.C p.correct.D<-p.correct.vals.D p.correct.E<-p.correct.vals.E p.correct.A$est.correct.A<-ifelse(p.correct.A$est.correct.A>=95,1,0) p.correct.B$est.correct.B<-ifelse(p.correct.B$est.correct.B>=95,1,0) p.correct.C$est.correct.C<-ifelse(p.correct.C$est.correct.C>=95,1,0) p.correct.D$est.correct.D<-ifelse(p.correct.D$est.correct.D>=95,1,0) p.correct.E$est.correct.E<-ifelse(p.correct.E$est.correct.E>=95,1,0) habs.correct.A<-aggregate(data=p.correct.A,est.correct.A~nsqr+gridres,sum) habs.correct.B<-aggregate(data=p.correct.B,est.correct.B~nsqr+gridres,sum) habs.correct.C<-aggregate(data=p.correct.C,est.correct.C~nsqr+gridres,sum) habs.correct.D<-aggregate(data=p.correct.D,est.correct.D~nsqr+gridres,sum) habs.correct.E<-aggregate(data=p.correct.E,est.correct.E~nsqr+gridres,sum) #produce summary graph per zone zones<-c('A','B','C','D','E') #some zones lack certain habitats - this is the max number of habitats present max.habs<-c(12,20,16,21,27) for(z in 1:5) { this.zone<-zones[z] this.max.habs<-max.habs[z] assign("this.results",get(apropos(paste0('habs.correct.',this.zone) ) ) ) names(this.results)[3]<-'ncorrect' loc.name<-paste0('sim_random_sampling_by_zone_15pc_error\\nhabs_correctly_assessed_zone_',this.zone,'.png') png(loc.name,width=400,height=400) par(mar=c(5.1,4.1,0.2,0.2)) plot(this.results$nsqr[this.results$gridres=='100m'],this.results$ncorrect[this.results$gridres=='100m'],ylim=c(0,this.max.habs),xlab='Sample size',ylab='Habitats correctly assessed',pch=16,type='l',lty=1, cex.lab=1.25) par(new=T) plot(this.results$nsqr[this.results$gridres=='200m'],this.results$ncorrect[this.results$gridres=='200m'],ylim=c(0,this.max.habs),xlab='Sample size',ylab='Habitats correctly assessed',pch=16,type='l',lty=2, cex.lab=1.25) par(new=T) plot(this.results$nsqr[this.results$gridres=='500m'],this.results$ncorrect[this.results$gridres=='500m'],ylim=c(0,this.max.habs),xlab='Sample size',ylab='Habitats correctly assessed',pch=16,type='l',lty=3, cex.lab=1.25) abline(h=this.max.habs,col='red') leg.text<-c('100-m','200-m','500-m') legend('topleft',leg.text,lty=c(1,2,3)) dev.off() } #save results #table.loc<-'X:\\Shared Projects\\Defra80 - EODIP5\\gis analysis\\sim_random_sampling_15pc_error\\how_often_correct.csv' #write.table(p.correct,table.loc,row.names=F,sep=',') #check which habitats are covered in each zone using 500m grid zonehabstats<-read.table('n_squares_with_without_hab_byzone_ref500m.csv',sep=',',header=T, colClasses = c(rep('character',2),rep('numeric',3))) zonehabstats$pwith<-with(data=zonehabstats,sqrswithhab/nsquares) head(zonehabstats) #Zone A habs.A<-subset(zonehabstats,pwith>=0.01 & zone=='A') #trim to hab, grid res and rows with adequate precision p.correct.vals.A2<-subset(p.correct.vals.A,CLASS %in% habs.A$CLASS & gridres=='500m' & est.correct.A>=95) #get largest sample size that works p.correct.vals.A2[!duplicated(p.correct.vals.A2$CLASS),] #print best achieved error rate for those that fail subset(p.correct.vals.A,CLASS %in% habs.A$CLASS & gridres=='500m' & est.correct.A<95 & nsqr==2000) #Zone B habs.B<-subset(zonehabstats,pwith>=0.01 & zone=='B') #trim to hab, grid res and rows with adequate precision p.correct.vals.B2<-subset(p.correct.vals.B,CLASS %in% habs.B$CLASS & gridres=='500m' & est.correct.B>=95) #get largest sample size that works p.correct.vals.B2[!duplicated(p.correct.vals.B2$CLASS),] #print best achieved error rate for those that fail subset(p.correct.vals.B,CLASS %in% habs.B$CLASS & gridres=='500m' & est.correct.B<95 & nsqr==2000) #Zone C habs.C<-subset(zonehabstats,pwith>=0.01 & zone=='C') #trim to hab, grid res and rows with adequate precision p.correct.vals.C2<-subset(p.correct.vals.C,CLASS %in% habs.C$CLASS & gridres=='500m' & est.correct.C>=95) #get largest sample size that works p.correct.vals.C2[!duplicated(p.correct.vals.C2$CLASS),] #print best achieved error rate for those that fail subset(p.correct.vals.C,CLASS %in% habs.C$CLASS & gridres=='500m' & est.correct.C<95 & nsqr==2000) #Zone D habs.D<-subset(zonehabstats,pwith>=0.01 & zone=='D') #trim to hab, grid res and rows with adequate precision p.correct.vals.D2<-subset(p.correct.vals.D,CLASS %in% habs.D$CLASS & gridres=='500m' & est.correct.D>=95) #get largest sample size that works p.correct.vals.D2[!duplicated(p.correct.vals.D2$CLASS),] #print best achieved error rate for those that fail subset(p.correct.vals.D,CLASS %in% habs.D$CLASS & gridres=='500m' & est.correct.D<95 & nsqr==2000) #Zone E habs.E<-subset(zonehabstats,pwith>=0.01 & zone=='E') #trim to hab, grid res and rows with adequate precision p.correct.vals.E2<-subset(p.correct.vals.E,CLASS %in% habs.E$CLASS & gridres=='500m' & est.correct.E>=95) #get largest sample size that works p.correct.vals.E2[!duplicated(p.correct.vals.E2$CLASS),] #print best achieved error rate for those that fail subset(p.correct.vals.E,CLASS %in% habs.E$CLASS & gridres=='500m' & est.correct.E<95 & nsqr==2000)
f3b9e5e9269fdedae937182c508ba7217788de3c
33b7262af06cab5cd28c4821ead49b3a0c24bb9d
/RegressionTests/compare.R
8e950023a4f331ee254ae289a95455cbab7c89bf
[]
no_license
topepo/caret
d54ea1125ad41396fd86808c609aee58cbcf287d
5f4bd2069bf486ae92240979f9d65b5c138ca8d4
refs/heads/master
2023-06-01T09:12:56.022839
2023-03-21T18:00:51
2023-03-21T18:00:51
19,862,061
1,642
858
null
2023-03-30T20:55:19
2014-05-16T15:50:16
R
UTF-8
R
false
false
3,820
r
compare.R
setwd("~/tmp") ############################################################## Old <- "2018_03_10_21__6.0-79" New <- "2018_05_25_22__6.0-80" oldResults <- list.files(file.path(getwd(), Old), pattern = "RData") newResults <- list.files(file.path(getwd(), New), pattern = "RData") oldOrphan <- oldResults[!(oldResults %in% newResults)] newOrphan <- newResults[!(newResults %in% oldResults)] common <- intersect(oldResults, newResults) checkModels <- function(model, opath, npath){ for(i in model) { thisMod <- gsub(".RData", "", i, fixed = TRUE) cat("############################################################\n") cat(thisMod, "\n") rlt <- checkResults(i,opath, npath) if(!is.null(rlt)) print(rlt) else print(TRUE) cat("\n") rm(rlt) } } getObj <- function(filename){ load(filename) testObj <- ls(pattern = "^test") testResults <- list() for(i in seq(along = testObj)) { tmp <- get(testObj[i]) if(!is.null(tmp)) { testResults <- c(testResults, list(tmp)) names(testResults)[length(testResults)] <- testObj[i] rm(tmp) } } testResults } checkResults <- function(model, opath, npath){ oldResults <- getObj(file.path(getwd(), opath, model)) newResults <- getObj(file.path(getwd(), npath, model)) commonObj <- intersect(names(newResults), names(oldResults)) testResults <- vector(mode = "list", length = length(commonObj)) names(commonObj) <- commonObj for(i in commonObj) { cat("\n", i, "\n\n") if((class(newResults[[i]])[1] == class(oldResults[[i]])[1])) { if(!is.null(newResults[[i]]) & !is.null(oldResults[[i]])) { if(class(newResults[[i]])[1] == "train") { checkTrain(oldResults[[i]], newResults[[i]]) } else { testResults[[i]] <- all.equal(newResults[[i]], oldResults[[i]], tolerance = 0.001) print(testResults[[i]]) } } else cat("skipping due to NULL", i, "\n") } else cat("skipping due to conflicting classes", i, "\n") } } notEqual <- function(x) if(class(x)[1] != "logical" || !x) TRUE else FALSE checkTrain <- function(Old, New = NULL) { if(!is.null(Old) & !is.null(New)) { oldRes <- Old$results[, !grepl("SD$", names(Old$results))] newRes <- New$results[, !grepl("SD$", names(New$results))] param <- gsub("^\\.", "", names(Old$bestTune)) if(Old$method == "C5.0Cost") { names(oldRes)[names(oldRes) == "Cost"] <- "cost" param[param == "Cost"] <- "cost" } pNames <- Old$perfNames names(oldRes)[names(oldRes) %in% pNames] <- paste("Old_", names(oldRes)[names(oldRes) %in% pNames], sep = "") names(newRes)[names(newRes) %in% pNames] <- paste("New_", names(newRes)[names(newRes) %in% pNames], sep = "") both <- merge(oldRes, newRes, all = !(Old$method %in% c("C5.0Cost", "M5Rules", "leapSeq", "leapBackward", "leapForward"))) for(i in pNames) { cat(i, ":", sep = "") aeq <- all.equal(both[, paste("Old_", i, sep = "")], both[, paste("New_", i, sep = "")]) print(aeq) if(notEqual(aeq)) { cr <- cor(both[, paste("Old_", i, sep = "")], both[, paste("New_", i, sep = "")], use = "pairwise.complete.obs") cat("\t\t\tcorr:", round(cr, 2), "\n") if(is.na(cr) || cr< .8) print(both[, c(param, paste("Old_", i, sep = ""), paste("New_", i, sep = ""))]) } } } } checkModels(common, Old, New) q("no")
4714a7ca4647fe3ac13414e98d8101e5bf21e34f
4d0db5c2e04637437fc318cb50267b65341f53cc
/DataAnalysis/analysis.r
6bdf646d3f6c6d8ac73a129b3a903602dfad9758
[]
no_license
blukaniro/TrainingGrad190716
a70b065cdae046d4f945cdac978ca1f8b444c23a
c727e21d2319849ac77e84b6d304298211edaf5d
refs/heads/master
2020-06-20T01:25:52.263030
2019-07-19T03:42:20
2019-07-19T03:42:20
196,943,285
0
0
null
null
null
null
UTF-8
R
false
false
1,713
r
analysis.r
# 190719田島亮介 # データの読み込みと整理 d<-read.table("dataset.txt", header=T) d2<-d[c(-4,-11),] #出液とSFWが著しく大きい値のものを外れ値として除外 # 分散分析 summary(aov(sap~treatment,d2)) summary(aov(SFW~treatment,d2)) summary(aov(panicle~treatment,d2)) summary(aov(root~treatment,d2)) ## 新鮮重: 10%水準で,慣行>有機,節根数:5%水準で慣行>有機 ## これらを栽培方法との関係から考察.あるいは有意差なしの考察(をしないと出液速度に触れられない?) # 相関のチェック plot(d2[,2:5]) cor(d2[,2:5]) ## 新鮮重,茎数,節根数の相関高い ## これらの考察 # データから指標算出 root_per_panicle<-d2$root/d2$panicle #茎数あたりの節根数 sap_per_panicle<-d2$sap/d2$panicle #茎数あたりの出液速度 sap_per_root<-d2$sap/d2$root #根数あたりの出液速度 d2<-data.frame(d2,rp=root_per_panicle, sp=sap_per_panicle, sr=sap_per_root) #データ追加 # 分散分析 summary(aov(rp~treatment,d2)) summary(aov(sp~treatment,d2)) summary(aov(sr~treatment,d2)) ## 茎数あたりの節根数: 5%水準で慣行>有機 ## 茎数あたりの出液速度: 5%水準で慣行<有機 ## 根数あたりの出液速度: 1%水準で慣行<有機 ## この関係を栽培方法との関係から考察 # 図表は箱ひげ図,棒グラフ,相関図等がわかりやすく表記され適切に言及されている par(mfrow=c(2,4)) boxplot(sap~treatment,d2) boxplot(SFW~treatment,d2) boxplot(panicle~treatment,d2) boxplot(root~treatment,d2) boxplot(rp~treatment,d2) boxplot(sp~treatment,d2) boxplot(sr~treatment,d2)
29c3e7b33a150e0dc72d1d191265937949231c7b
3c38d8cbe00ffb6d1150682ea1f3c79acfc33d96
/R/project_to.R
0a267ccfe4c09591db0c68e5609248cce865d8d9
[]
no_license
HughParsonage/grattan
c0dddf3253fc91511d122870a65e65cc918db910
cc3e37e1377ace729f73eb1c93df307a58c9f162
refs/heads/master
2023-08-28T00:12:35.729050
2023-08-25T08:02:25
2023-08-25T08:02:25
30,398,321
26
11
null
2022-06-26T15:44:27
2015-02-06T06:18:13
R
UTF-8
R
false
false
1,770
r
project_to.R
#' Simple projections of the annual 2\% samples of Australian Taxation Office tax returns. #' #' @param sample_file A \code{data.table} matching a 2\% sample file from the ATO. #' See package \code{taxstats} for an example. #' @param to_fy A string like "1066-67" representing the financial year for which forecasts of the sample file are desired. #' @param fy.year.of.sample.file The financial year of \code{sample_file}. See \code{\link{project}} for the default. #' @param ... Other arguments passed to \code{\link{project}}. #' @return A sample file with the same number of rows as \code{sample_file} but #' with inflated values as a forecast for the sample file in \code{to_fy}. #' If \code{WEIGHT} is not already a column of \code{sample_file}, it will be added and its sum #' will be the predicted number of taxpayers in \code{to_fy}. #' @export project_to <- function(sample_file, to_fy, fy.year.of.sample.file = NULL, ...) { if (is.null(fy.year.of.sample.file)) { fy.year.of.sample.file <- match(nrow(sample_file), c(254318L, 258774L, 263339L, 269639L, 277202L)) if (is.na(fy.year.of.sample.file)) { stop("`fy.year.of.sample.file` was not provided, yet its value could not be ", "inferred from nrow(sample_file) = ", nrow(sample_file), ". Either use ", "a 2% sample file of the years 2012-13, 2013-14, 2014-15, 2015-16, 2016-17, or ", "supply `fy.year.of.sample.file` manually.") } fy.year.of.sample.file <- c("2012-13", "2013-14", "2014-15", "2015-16", "2016-17")[fy.year.of.sample.file] } h <- as.integer(fy2yr(to_fy) - fy2yr(fy.year.of.sample.file)) project(sample_file = sample_file, h = h, fy.year.of.sample.file = fy.year.of.sample.file, ...) }
c3c49b4d20e99321bae60826f2ca7a5066b71ef7
fe734fd0801d41d36a223b66851e0b1d2a6b1eed
/data_analytics.R
c9c4a628fe22338f2a51c65de553a92b4055644e
[]
no_license
anyelacamargo/babycorn
a6ef1053d4842c8f351608c58530d784a273f046
fbf90d0ffe5514ab5c1b57d21af1378a1f9ca682
refs/heads/master
2020-09-24T02:18:09.139475
2020-03-04T10:30:16
2020-03-04T10:30:16
225,638,213
0
0
null
null
null
null
UTF-8
R
false
false
11,222
r
data_analytics.R
library(openxlsx) library(ggplot2) library(reshape2) #library(dplyr) library(caret) library(outliers) library(glmnet) library(e1071) library(xgboost) parm_search_xgboost <- function(dtrain){ searchGridSubCol <- expand.grid(subsample = c(0.5, 0.75, 1), colsample_bytree = c(0.6, 0.8, 1), lambda = seq(0, 1, by = 0.5), lambda_bias = seq(0, 1, by = 0.5), alpha = seq(0, 1, by = 0.5), eta = seq(0, 1, by = 0.1)) ntrees <- 100 rmseErrorsHyperparameters <- apply(searchGridSubCol, 1, function(parameterList){ #Extract Parameters to test currentSubsampleRate <- parameterList[["subsample"]] currentColsampleRate <- parameterList[["colsample_bytree"]] lambda <- parameterList[["lambda"]] lambda_bias <- parameterList[["lambda_bias"]] alpha <- parameterList[["alpha"]] eta <- parameterList[["eta"]] xgboostModelCV <- xgb.cv(data = dtrain, nrounds = ntrees, nfold = 5, showsd = TRUE, metrics = "rmse", verbose = FALSE, "eval_metric" = "rmse", "objective" = "reg:linear", 'booster' = "gblinear", "max.depth" = 15, "subsample" = currentSubsampleRate, "colsample_bytree" = currentColsampleRate, 'lambda' = lambda, 'lambda_bias' = lambda_bias, 'alpha' = alpha, 'eta' = eta) xvalidationScores <- data.frame(xgboostModelCV$evaluation_log) #print(xvalidationScores) #Save rmse of the last iteration rmse <- tail(xvalidationScores$test_rmse_mean, 1) return(c(rmse, currentSubsampleRate, currentColsampleRate, lambda, lambda_bias, alpha, eta)) }) return(rmseErrorsHyperparameters[,which(rmseErrorsHyperparameters[1,] == min(rmseErrorsHyperparameters[1,]))]) } run_gboosting <- function(sdata, class_name, descriptor_list){ par(mfrow = c(2,2)) for(kw in c('SPAD', 'NDVI', 'LCC')){ i <- grep(kw, descriptor_list) subdata <- sdata[, c(descriptor_list[c(1:4, i)], class_name)] index <- createDataPartition(subdata[[class_name]], p = 0.7, list = FALSE) train_data <- subdata[index, ] test_data <- subdata[-index, ] dtrain <- xgb.DMatrix(data=as.matrix(train_data[, -match(class_name, colnames(train_data))]), label=train_data$UPYLD, missing=NA) dtest <- xgb.DMatrix(data=as.matrix(test_data[, -match(class_name, colnames(test_data))]), label=test_data$UPYLD, missing=NA) param <- list(booster = "gblinear", objective = "reg:linear", subsample = 0.7, max_depth = 2, colsample_bytree = 0.7, eval_metric = 'mae', base_score = 0.012, min_child_weight = c(1,2), lambda = 1, lambda_bias = 0.5, alpha = 0, eta = 0.1) xgb_cv <- xgb.cv(data=dtrain, params=param, nrounds=100, prediction=TRUE, maximize=FALSE, #folds=foldsCV, nfold = 5, early_stopping_rounds = 30, print_every_n = 5 ) # Check best results and get best nrounds print(xgb_cv$evaluation_log[which.min(xgb_cv$evaluation_log$test_mae_mean)]) nrounds <- xgb_cv$best_iteration xgb <- xgb.train(params = param , data = dtrain # , watchlist = list(train = dtrain) , nrounds = nrounds , verbose = 1 , print_every_n = 5 #, feval = amm_mae ) xgb.pred <- predict(xgb, dtest) plot(test_data[[class_name]], xgb.pred , col = "blue", pch=4, main = 'GB') res <- caret::postResample(as.numeric(test_data[[class_name]]), xgb.pred) print(res) } } tune_svm <- function(sdata, f){ tc <- tune.control(cross = 5) tuned_par <- tune.svm(f, data = sdata, gamma = 10^(-5:-1), cost = seq(1,3, by = 0.5), epsilon = seq(0, 0.2, by = 0.01), tunecontrol = tc) return(tuned_par) } run_SVM <- function(sdata, class_name, descriptor_list){ #index <- sample(1:nrow(sdata)) par(mfrow = c(2,2)) for(kw in c('SPAD', 'NDVI', 'LCC')){ i <- grep(kw, descriptor_list) subdata <- sdata[, c(descriptor_list[c(1:4, i)], class_name)] index <- createDataPartition(subdata[[class_name]], p = 0.7, list = FALSE) train_data <- subdata[index, ] test_data <- subdata[-index, ] set.seed(42) f <- as.formula(paste(class_name, '~ .')) o <- tune_svm(train_data, f) tuned_par <- list() tuned_par$gamma <- o$best.parameters$gamma tuned_par$epsilon <- o$best.parameters$epsilon tuned_par$cost <- o$best.parameters$cost save(o, file = 'o.dat') svm_model <- svm(f, train_data, gamma = tuned_par$gamma, epsilon = tuned_par$epsilon, cost=tuned_par$cost, type="eps-regression", kernel = 'radial') w <- t(svm_model$coefs) %*% svm_model$SV b <- -svm_model$rho # in this 2D case the hyperplane is the line w[1,1]*x1 + w[1,2]*x2 + b = 0 predictYsvm <- predict(svm_model, test_data[, -match(class_name, colnames(test_data))]) res <- caret::postResample(as.numeric(test_data[[class_name]]), predictYsvm) plot(test_data[[class_name]], predictYsvm, col = "green", pch=4, main = paste(class_name, ' prediction using ', kw, sep = ''), ylab= 'predicted', xlab = 'observed') abline(a=-b/w[1,2], b=-w[1,1]/w[1,2], col="blue", lty=3, lwd=1) text(10.5, 8, paste('R2 = ', round(res[[2]],2), sep ='')) print(res) } } file_names <- list.files(path = '.', pattern = '.xlsx') fnames <- read.csv('field_names.csv') raw_trial_data <- c() for(fname in file_names){ sname <- getSheetNames(fname) sname <- sname[-grep('details', sname)] for(tname in sname){ raw_trial_data <- rbind(raw_trial_data, cbind(year = strsplit(fname, '\\ ')[[1]][3], exp = strsplit(tname, '\\ ')[[1]][2], readWorkbook(fname, tname))) } } # raw_trial_data[['Var']] <- as.factor(raw_trial_data[['Var']]) # raw_trial_data[['N']] <- as.factor(raw_trial_data[['N']]) # raw_trial_data[['P']] <- as.factor(raw_trial_data[['P']]) # raw_trial_data[['S']] <- as.factor(raw_trial_data[['S']]) raw_trial_data <- raw_trial_data[, 1:50] descriptor_list <- c("Var", "N", "P", "S", "SPAD1", "SPAD2", "SPAD3", "NDVI1", "NDVI2", "NDVI3", "LCC1","LCC2","LCC3", "LFW2", "LFW3", "LDW2", "LDW3", "LeafN2","LeafN3", "LNU2", "LNU3", "PFW1", "PDW1", "PlN1", "PNU1", "PFW2", "PDW2", "PlN2", "PNU2", "PFW3", "PDW3", "PlN3", "PNU3") class_name <- 'UPYLD' run_SVM(raw_trial_data, class_name, descriptor_list) break v <- c("LFW", "LDW", "LeafN", "LNU","SPAD","LCC","PFW","PDW","PlN","PNU","NDVI") #m <- raw_trial_data predictor <- v[1] i <- grep(predictor, colnames(raw_trial_data)) m <- melt(raw_trial_data, id.vars = names(raw_trial_data)[1:17], measure.vars = paste(predictor, 1:3, sep = ''), variable.name = 'sample', value.name = predictor) colnames(m)[ncol(m)] = predictor for(predictor in v[2:length(v)]){ print(predictor) #i <- grep('sample', colnames(m)) #if(length(i) != 0){ # m <- m[, -i] #} i <- grep(predictor, colnames(raw_trial_data)) mm <- melt(raw_trial_data, id.vars = names(raw_trial_data)[1:17], measure.vars = paste(predictor, 1:3, sep = ''), variable.name = 'sample', value.name = predictor) m <- cbind(m, mm[,19]) colnames(m)[ncol(m)] = predictor } #Unpeeled Baby Corn Rs UBC <- 9000 #The price of N is Rs. per ton. PoN <- 12400 i <- grep('sample', colnames(m)) m$sample <- as.numeric(m$sample) m[['sample']] <- as.factor(m[['sample']]) m[['Rep']] <- as.factor(m[['Rep']]) #' Output 1 m1 <- subset(m, exp != '3') #m1 <- mutate(m1, Nv = (((as.numeric(N)-1) * 30) * PoN)/100) #m1 <- mutate(m1, Yv = as.numeric(UPYLD) * UBC) #m1[['Nv']] <- as.factor(m1[['Nv']]) break pdf('babycorn_prelplots.pdf') caption_n <- 'Col on right, left-to-right, indicate exp, Phosphorus level, Spacing level, Var = Seed variety' for(tname in names(m1)[8:17]){ tiff(paste(tname, '.tiff', sep = ''), res = 100) i <- match(tname, fnames$tname) p <- ggplot(m1, aes_string(x = 'N', y = tname, color = 'Var', fill = 'Var')) + geom_boxplot(outlier.colour = "red", outlier.shape = 1, fatten = 1, notch = FALSE, color="black") + #geom_point(aes_string(x = 'Nv', y = 'Yv')) + #geom_smooth() + facet_grid(S + P + exp ~ year) + theme(panel.background = element_rect(fill = "white", colour = "grey50"), axis.text.x = element_text(size = 6), axis.text.y = element_text(size = 6), axis.title.x = element_text(size = 8), axis.title.y = element_text(size = 8)) + labs(title = "Babycorn data analytics preliminary results by year", #subtitle = "Carat weight by Price", caption = caption_n) + xlab('Nitrogen levels') + ylab(fnames[i, 2]) print(p) dev.off() } caption_n <- 'Cols on right, left-to-right, indicate exp, Phosphorus level, Spacing level, Var = Seed variety' for(tname in names(m1)[19:29]){ tiff(paste(tname, '.tiff', sep = ''), res = 100) i <- match(tname, fnames$tname) p <- ggplot(m1, aes_string(x = 'N', y = tname, color = 'Var', fill = 'Var')) + geom_boxplot(outlier.colour = "red", outlier.shape = 1, fatten = 1, notch = FALSE, color="black") + #geom_point(aes_string(x = 'Nv', y = 'Yv')) + #geom_smooth() + facet_grid(S + P + exp ~ sample) + theme(panel.background = element_rect(fill = "white", colour = "grey50"), axis.text.x = element_text(size = 6), axis.text.y = element_text(size = 6), axis.title.x = element_text(size = 8), axis.title.y = element_text(size = 8)) + labs(title = "Babycorn data analytics preliminary results by sample", #subtitle = "Carat weight by Price", caption = caption_n) + xlab('Nitrogen levels') + ylab(fnames[i, 2]) print(p) dev.off() } dev.off()
877768eef339e735c20e57793986e2549ccab1d5
ffdea92d4315e4363dd4ae673a1a6adf82a761b5
/data/genthat_extracted_code/emmeans/examples/rbind.emmGrid.Rd.R
22ec369431f535cfdc2fe53a2f21b625e53df904
[]
no_license
surayaaramli/typeRrh
d257ac8905c49123f4ccd4e377ee3dfc84d1636c
66e6996f31961bc8b9aafe1a6a6098327b66bf71
refs/heads/master
2023-05-05T04:05:31.617869
2019-04-25T22:10:06
2019-04-25T22:10:06
null
0
0
null
null
null
null
UTF-8
R
false
false
609
r
rbind.emmGrid.Rd.R
library(emmeans) ### Name: rbind.emmGrid ### Title: Combine or subset 'emmGrid' objects ### Aliases: rbind.emmGrid +.emmGrid [.emmGrid ### ** Examples warp.lm <- lm(breaks ~ wool * tension, data = warpbreaks) warp.rg <- ref_grid(warp.lm) # Show only 3 of the 6 cases summary(warp.rg[c(2,4,5)]) # Do all pairwise comparisons within rows or within columns, # all considered as one faily of tests: w.t <- pairs(emmeans(warp.rg, ~ wool | tension)) t.w <- pairs(emmeans(warp.rg, ~ tension | wool)) rbind(w.t, t.w, adjust = "mvt") update(w.t + t.w, adjust = "fdr") ## same as abve except for adjustment
4801fda0b755959f97bef3118952599618e86bcd
97106176566468697903370a30a9b68661167af3
/ps4ex2.R
9970808d5f71f83a344672023803a4d128779b69
[]
no_license
rossihabibi/Econometrics4Law16
91d120dcba6793b432b49432b21ae8a8d795977a
a251c9de65edcb6a87a2e1ed41c4dc5268958c5d
refs/heads/master
2020-12-24T06:13:50.626704
2016-12-09T20:45:33
2016-12-09T20:45:33
73,163,681
0
0
null
null
null
null
UTF-8
R
false
false
1,318
r
ps4ex2.R
rm(list = ls()) library(tidyr) library(dplyr) # for easy data manipulation library(AER) # ivreg library(foreign) # to use stata data formats options(digits = 2) download.file('http://fmwww.bc.edu/ec-p/data/wooldridge/mroz.dta', 'data/mroz.dta', mode="wb") mroz <- read.dta("data/mroz.dta") head(mroz) dim(mroz) #17 variables, 935 observations # We want to study only the intensive margin, so keep only women who are in the labour force at the time of the study mroz <- filter(mroz, inlf == 1) ## 1 iv1 <- ivreg(lwage ~ educ + exper + expersq | fatheduc + motheduc + exper + expersq, data = mroz) summary(iv1) # The effect of 1 extra year of education is 6% increase in wage, on average. Statistically different than 0, at the 10% level. Effect of experience is much more pronounced and estimated more precisely (Why is that? In the data, there is enough variation in exper and wage to (statistically) identify precisely the coefficient.) # Effect of 1 more year of experience : a1 + 2*a2 ## 2 - 3 - 4 Tests s_iv1 <- summary(iv1, diagnostics = TRUE) s_iv1$diagnostics ## 2 - same test as weak instruments, alternatively, run the first stage regression and (jointly or not) test nullity of coefficients of instruments stage1 <- lm(educ ~ fatheduc + motheduc + exper + expersq, data = mroz) summary(stage1)
b4f35f2f74fe27cfe04404d434c8842349082b00
62cfdb440c9f81b63514c9e545add414dc4d5f63
/man/qat_plot_noc_rule_1d.Rd
c36529c5b33c7e15e6e1a56cdf545f6755e1bbab
[]
no_license
cran/qat
7155052a40947f6e45ba216e8fd64a9da2926be4
92975a7e642997eac7b514210423eba2e099680c
refs/heads/master
2020-04-15T16:53:45.041112
2016-07-24T01:26:59
2016-07-24T01:26:59
17,698,828
0
0
null
null
null
null
UTF-8
R
false
false
1,942
rd
qat_plot_noc_rule_1d.Rd
\name{qat_plot_noc_rule_1d} \alias{qat_plot_noc_rule_1d} %- Also NEED an '\alias' for EACH other topic documented here. \title{Plot a NOC rule result} \description{ A plot of the result of a NOC rule check will be produced. } \usage{ qat_plot_noc_rule_1d(flagvector, filename, measurement_vector = NULL, max_return_elements = 0, measurement_name = "", directoryname = "", plotstyle = NULL) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{flagvector}{The resulting flagvector of qat\_analyse\_noc\_rule\_1d} \item{filename}{Name of the file without extension.} \item{measurement_vector}{The measurement vector, which should be plotted} \item{max_return_elements}{The number of maximum reruning elements, which was used in the test.} \item{measurement_name}{Name of the measurement.} \item{directoryname}{Directory, where the resulted file should be stored.} \item{plotstyle}{A list with a qat color scheme.} } \details{ A plot will be produced, which base on the resulting flagvector of qat\_analyse\_noc\_rule\_1d. With additional information on the parameters, which were used while performing the test, this function will produce a more detailed plot. When no plotstyle is defined the standard-colorscheme will be used. The resulting plot will be stored in the folder, which is defined by directory under the given filename, with the extension png. } \value{ No return value. } \author{Andre Duesterhus} \seealso{\code{\link{qat_analyse_noc_rule_1d}}} \examples{ vec <- c(1,2,3,4,4,4,5,5,4,3,NaN,3,2,1) result <- qat_analyse_noc_rule_1d(vec, 1) # this example produce a file exampleplot_noc.png in the current directory qat_plot_noc_rule_1d(result$flagvector, "exampleplot_noc", measurement_vector=vec, max_return_elements=result$max_return_elements, measurement_name="Result of Check") } % Add one or more standard keywords, see file 'KEYWORDS' in the % R documentation directory. \keyword{ts}
d3d1280a59b973d26e56a3da712bf413c13b65c0
72d9009d19e92b721d5cc0e8f8045e1145921130
/ROI.plugin.qpoases/man/Example_01.Rd
44e21bb85c5c9aaf38db09917d56f1d09c7d77f9
[]
no_license
akhikolla/TestedPackages-NoIssues
be46c49c0836b3f0cf60e247087089868adf7a62
eb8d498cc132def615c090941bc172e17fdce267
refs/heads/master
2023-03-01T09:10:17.227119
2021-01-25T19:44:44
2021-01-25T19:44:44
332,027,727
1
0
null
null
null
null
UTF-8
R
false
false
701
rd
Example_01.Rd
\name{Example-1} \title{Quadratic Problem 1} \description{ \deqn{maximize \ \ x_1^2 + x_2^2 + x_3^2 - 5 x_2} \deqn{subject \ to:} \deqn{-4 x_1 - 3 x_2 + \geq -8} \deqn{ 2 x_1 + x_2 + \geq 2} \deqn{ - 2 x_2 + x_3 \geq 0} \deqn{x_1, x_2, x_3 \geq 0} } \examples{ require("ROI") A <- cbind(c(-4, -3, 0), c( 2, 1, 0), c( 0, -2, 1)) x <- OP(Q_objective(diag(3), L = c(0, -5, 0)), L_constraint(L = t(A), dir = rep(">=", 3), rhs = c(-8, 2, 0))) opt <- ROI_solve(x, solver="qpoases") opt ## Optimal solution found. ## The objective value is: -2.380952e+00 solution(opt) ## [1] 0.4761905 1.0476190 2.0952381 }
cc6b3fb041b323628fffd80903b8170301139514
946f724c55b573ef4c0d629e0914bb6bca96f9e9
/man/Posterior_phi.Rd
f32ab6c4b6ed2f611ef26e7c35dd991e1ab276ba
[]
no_license
stla/brr
84fb3083383e255a56812f2807be72b0ace54fd6
a186e16f22b9828c287e3f22891be22b89144ca6
refs/heads/master
2021-01-18T22:59:46.721902
2016-05-30T09:42:14
2016-05-30T09:42:14
35,364,602
1
1
null
null
null
null
UTF-8
R
false
false
2,208
rd
Posterior_phi.Rd
% Generated by roxygen2 (4.1.1): do not edit by hand % Please edit documentation in R/posteriors.R \name{Posterior_phi} \alias{Posterior_phi} \alias{dpost_VE} \alias{dpost_phi} \alias{ppost_VE} \alias{ppost_phi} \alias{qpost_VE} \alias{qpost_phi} \alias{rpost_phi} \alias{spost_phi} \title{Posterior distribution on the relative risk and the vaccine efficacy} \usage{ dpost_phi(phi, a, b, c, d, S, T, x, y, ...) dpost_VE(VE, a, b, c, d, S, T, x, y, ...) ppost_phi(q, a, b, c, d, S, T, x, y, ...) ppost_VE(q, a, b, c, d, S, T, x, y, ...) qpost_phi(p, a, b, c, d, S, T, x, y, ...) qpost_VE(p, a, b, c, d, S, T, x, y, ...) rpost_phi(n, a, b, c, d, S, T, x, y) spost_phi(a, b, c, d, S, T, x, y, ...) } \arguments{ \item{phi,VE,q}{vector of quantiles} \item{a,b}{non-negative shape parameter and rate parameter of the prior Gamma distribution on the control incidence rate} \item{c,d}{non-negative shape parameters of the prior distribution on the relative risk} \item{S,T}{sample sizes in control group and treated group} \item{x,y}{counts in the treated group and control group} \item{...}{other arguments passed to \code{\link{Beta2Dist}}} \item{p}{vector of probabilities} \item{n}{number of observations to be simulated} } \value{ \code{dpost_phi} gives the density, \code{ppost_phi} the distribution function, \code{qpost_phi} the quantile function, \code{rpost_phi} samples from the distribution, and \code{spost_phi} gives a summary of the distribution. } \description{ Density, distribution function, quantile function and random generation for the posterior distribution on relative risk or the vaccine efficacy. } \details{ The prior distribution on the relative risk \eqn{\phi} is the Beta2 distribution with shape parameters \eqn{c} and \eqn{d} and scale parameter \eqn{(T+b)/S}. } \note{ \code{Posterior_phi} is a generic name for the functions documented. } \examples{ a <- 2; b <- 2; c <- 3; d <- 4; S <- 1; T <- 1; x <- 2; y <- 6 spost_phi(a, b, c, d, S, T, x, y, output="pandoc") require(magrittr) phi <- seq(0, 6, length.out=100) phi \%>\% { plot(., dpost_phi(., a, b, c, d, S, T, x, y), type="l") } phi \%>\% { lines(., dprior_phi(., b, c, d, S, T), col="red") } }
8f54b2deb1719945d90cf5168aa98b4d3c659614
4e38799dd969f4c2fef6b34e9539f63f8b17d666
/example/archived_modules/scope_02_TMT_int.R
d5000ce61b825bf94f6d2f552743c27950cc2139
[ "MIT" ]
permissive
SlavovLab/DO-MS
f97eb2626dd272156e19a25fe50488a036c59f4d
e637a3bd5bfd32558f33e0a23b7302109e3088f7
refs/heads/master
2023-08-08T01:37:54.457583
2023-07-30T16:30:25
2023-07-30T16:30:25
141,730,083
21
8
MIT
2023-07-30T16:30:27
2018-07-20T15:42:00
HTML
UTF-8
R
false
false
2,807
r
scope_02_TMT_int.R
init <- function() { type <- 'plot' box_title <- 'Reporter ion intensity' help_text <- 'Plotting the TMT reporter intensities for a single run.' source_file <- 'evidence' .validate <- function(data, input) { validate(need(data()[['evidence']], paste0('Upload evidence.txt'))) # require reporter ion quantification data validate(need(any(grepl('Reporter.intensity.corrected', colnames(data()[['evidence']]))), paste0('Loaded data does not contain reporter ion quantification'))) } .plotdata <- function(data, input) { TMT_labels <- c('C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9', 'C10', 'C11') plotdata <- data()[['evidence']] %>% dplyr::filter(Type != "MULTI-MATCH") %>% dplyr::select(Raw.file, starts_with('Reporter.intensity.corrected')) %>% # rename TMT channels - match the integer at the end of the column name dplyr::rename_at(vars(starts_with('Reporter.intensity.corrected')), funs(TMT_labels[as.numeric(str_extract(., '\\d+$'))])) %>% tidyr::gather('Channel', 'Intensity', -c(Raw.file)) %>% # reorder manually instead of alphabetically so it doesn't put 10 and 11 before 2 # also reverse so the carriers are at the top dplyr::mutate(Channel=factor(Channel, levels=rev(TMT_labels))) %>% dplyr::mutate(Intensity=log10(Intensity)) %>% #dplyr::filter(!is.infinite(Intensity) & !is.na(Intensity)) dplyr::filter(!is.na(Intensity)) plotdata$Intensity <- ifelse(is.infinite(plotdata$Intensity),2,plotdata$Intensity) return(plotdata) } .plot <- function(data, input) { .validate(data, input) plotdata <- .plotdata(data, input) # compute median channel intensities channel_medians <- plotdata %>% group_by(Channel) %>% summarise(m=median(Intensity, na.rm=T)) # map back to plotdata plotdata$median_intensity <- channel_medians[plotdata$Channel,]$m ggplot(plotdata) + geom_violin(aes(x=Channel, y=Intensity, group=Channel, fill=Channel), alpha=0.6, kernel='gaussian') + # passes to stat_density, makes violin rectangular geom_point(aes(x=Channel, y=median_intensity), color='red', shape=3, size=2) + facet_wrap(~Raw.file, nrow = 1) + coord_flip() + scale_fill_discrete(guide=F) + scale_x_discrete(name='TMT Channel') + labs(title=NULL, x='TMT Channel', y=expression(bold('Log'[10]*' RI Intensity'))) + theme_bw() + # make white background on plot theme_base(input=input) } return(list( type=type, box_title=box_title, help_text=help_text, source_file=source_file, validate_func=.validate, plotdata_func=.plotdata, plot_func=.plot )) }
6971a84bfe83115c0abb88684860ac2a1f19e79a
72d9009d19e92b721d5cc0e8f8045e1145921130
/perccal/R/RcppExports.R
d4257b5a7db74fea311e411436c1a8b4abd4c017
[]
no_license
akhikolla/TestedPackages-NoIssues
be46c49c0836b3f0cf60e247087089868adf7a62
eb8d498cc132def615c090941bc172e17fdce267
refs/heads/master
2023-03-01T09:10:17.227119
2021-01-25T19:44:44
2021-01-25T19:44:44
332,027,727
1
0
null
null
null
null
UTF-8
R
false
false
479
r
RcppExports.R
# Generated by using Rcpp::compileAttributes() -> do not edit by hand # Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393 sample_rcpp <- function(N, nsamp) { .Call('_perccal_sample_rcpp', PACKAGE = 'perccal', N, nsamp) } Cquantile <- function(xx, p) { .Call('_perccal_Cquantile', PACKAGE = 'perccal', xx, p) } Cdboot_multi <- function(xxyy, lgridlo, lgridhi, B, B2, G) { .Call('_perccal_Cdboot_multi', PACKAGE = 'perccal', xxyy, lgridlo, lgridhi, B, B2, G) }
4ee650ac361fd960f8ee8d002735722d35833868
5cae7a96ee29b4561c5c9e8c50106b6e3f8c3151
/cachematrix.R
ea3b68eadb23ca480229a5c9bc57da7974feca23
[]
no_license
HadidVera/ProgrammingAssignment2
09916d8742d3cbffc03b209dd5269abc1da2fce9
04f9f01bc7c677afb67df0662284cfc4090d5a51
refs/heads/master
2021-04-28T10:32:31.701697
2018-02-19T16:38:40
2018-02-19T16:38:40
122,069,152
0
0
null
2018-02-19T13:51:18
2018-02-19T13:51:18
null
UTF-8
R
false
false
1,465
r
cachematrix.R
# Coursera - R programming - Programming assignment (week 3) # Assignment: Caching the Inverse of a Matrix # HVera # February 2018 #### # Matrix inversion is usually a costly computation and there may be some benefit to caching # the inverse of a matrix rather than compute it repeatedly. # The following pair of functions cache the inverse of a matrix. #### function makeCacheMatrix # This function creates a special "list" object that can cache its inverse and contain # 1. set the value of the matrix # 2. get the value of the matrix # 3. set the inverse of the matrix # 4. get the inverse of the matrix makeCacheMatrix <- function(x = matrix()){ m_inv <- NULL set <- function(y) { x <<- y m_inv <<- NULL } get <- function() x setinverse <- function(inverse) m_inv <<- inverse getinverse <- function() m_inv list(set = set, get = get, setinverse = setinverse, getinverse = getinverse) } #### function cacheSolve # This function computes the inverse of the special "matrix" returned by makeCacheMatrix above # If the inverse has already been calculated (and the matrix has not changed), then the function # should retrieve the inverse from the cache cacheSolve <- function(x, ...) { m_inv <- x$getinverse() if(!is.null(m_inv)) { message("getting cached data") return(m_inv) } data <- x$get() m_inv <- solve(data) x$setinverse(m_inv) m_inv }
62cd1d3ec02946d05c28a410ea76be66a28d3de1
a8c00b380003dd12b4957ba02501574f53ef46a6
/run_analysis.R
7ff10c4418907a74abc36b1d761d4835e5d2148a
[]
no_license
problemsny/Coursera-Week3-CourseProject
802366d07dc86b0298b99ad50cfe413cb5d7be02
2798ceeaf57d7f5e417a6ad18c3d6ea403d7d192
refs/heads/master
2021-01-01T20:05:32.555052
2015-05-19T00:54:01
2015-05-19T00:54:01
35,848,819
0
0
null
null
null
null
UTF-8
R
false
false
1,749
r
run_analysis.R
# This is for Coursera - Week 3 - Course Project # Assignment to get and clean data collected on 30 subjects doing 6 different activities # Of those 30, 70% were selected for training (the "train" files) and 30% as test (the "test" files) # Refer to the README.txt for further explanation. # First part - Reading all files into R #reading the test data xtest <- read.table("test/X_test.txt") ytest <- read.table("test/y_test.txt") subjecttest <- read.table("test/subject_test.txt") #reading the train data xtrain <- read.table("train/X_train.txt") ytrain <- read.table("train/y_train.txt") subjecttrain <- read.table("train/subject_train.txt") #reading identifiers for later use columnnames <- read.table("features.txt") ## This will be used to rename the column names activities <- read.table("activity_labels.txt") ## This will be used to rename the Activity from numbers #bind the datasets together xdata <- rbind(xtest, xtrain) ydata <- rbind(ytest, ytrain) subjectdata <- rbind(subjecttest, subjecttrain) # Second part - extract only mean and std from datasets #look for the words mean() or std() in columnnames meanstd <- grep("-(mean|std)\\(\\)", columnnames$V2) #subset the dataset by mean and std xdata <- xdata[,meanstd] # Third part - Use descriptive names for activities #rename the activity number with associated activity description ydata[,1] <- activities[ydata[,1],2] # Fourth part - Label the variable names appropriately #rename ydata and subjectdata with single test - rename xdata with columnnames names(subjectdata) <- "subject" names(ydata) <- "activity" names(xdata) <- columnnames[meanstd, 2] # Put them all together nicely :) finaloutput1 <- cbind(subjectdata, ydata, xdata)
8686d26f321b36d916fe0bc21547d9c7bba00d4b
ddc2b096e681398f576a95e40c7fd366b65f50a2
/SDPSimulations/AssortHetHeatMapMK.R
84949f446e2c2bdc592dd90e304765b977efee08
[]
no_license
sbellan61/SDPSimulations
f334d96743c90d657045a673fbff309106e45fce
cfc80b116beafabe3e3aed99429fb03d58dc85db
refs/heads/master
2021-03-27T20:48:25.857117
2017-09-19T20:13:37
2017-09-19T20:13:37
21,144,447
1
0
null
null
null
null
UTF-8
R
false
false
4,020
r
AssortHetHeatMapMK.R
#################################################################################################### ## Makes control files for each analysis within which each line giving one R CMD BATCH command line ## to run on a cluster. #################################################################################################### rm(list=ls()) # clear workspace if(grepl('tacc', Sys.info()['nodename'])) setwd('/home1/02413/sbellan/DHSProject/SDPSimulations/') if(grepl('nid', Sys.info()['nodename'])) setwd('/home1/02413/sbellan/SDPSimulations/SDPSimulations/') if(grepl('stevenbellan', Sys.info()['login'])) setwd('~/Documents/R Repos/SDPSimulations/SDPSimulations/') source("SimulationFunctions.R") # load simulation functions from script hazs <- c('bmb','bfb','bme','bfe','bmp','bfp') # transmission coefficient names, for convenience nc <- 48 # core per simulation ## source('AssortHetHeatMapMK.R') #################################################################################################### ## Simulate Tanzania but with assortativity/heterogeneity & varied amounts of pre-couple extra-couple #################################################################################################### ## cc <- which(ds.nm=='Tanzania') countries <- 15 ## 1:length(ds.nm) each.val <- 200 ## equates to ~100,000 couples ## blocks.beh <- expand.grid(country = countries, het.beh=T, het.beh.sd=seq(0,3, by = .1), het.beh.cor=seq(0,1, by = .05), bmb.sc = 1) ## blocks.beh$bfb.sc <- blocks.beh$bme.sc <- blocks.beh$bfe.sc <- blocks.beh$bmb.sc ## all contact coefficients scaled same way ## blocks.beh$bmp.sc <- blocks.beh$bfp.sc <- 1 ## blocks.beh$het.gen <- F; blocks.beh$het.gen.sd <- blocks.beh$het.gen.cor <- 0 ## blocks.beh <- blocks.beh[with(blocks.beh, order(country, het.beh.sd, het.beh.cor, bmb.sc)),] blocks.gen <- expand.grid(country = countries, het.gen=T, het.gen.sd=seq(0,3, by = .1), het.gen.cor=seq(0,1, by = .05), bmb.sc = 1) blocks.gen$bfb.sc <- blocks.gen$bme.sc <- blocks.gen$bfe.sc <- blocks.gen$bmb.sc ## all contact coefficients scaled same way blocks.gen$bmp.sc <- blocks.gen$bfp.sc <- 1 blocks.gen$het.beh <- F; blocks.gen$het.beh.sd <- blocks.gen$het.beh.cor <- 0 blocks.gen <- blocks.gen[with(blocks.gen, order(country, het.beh.sd, het.beh.cor, bmb.sc)),] ## blocks <- as.data.table(rbind(blocks.beh, blocks.gen)) blocksg <- data.table(blocks.gen) blocksg$jobnum <- 1:nrow(blocksg) blocksg nn <- nrow(blocksg) out.dir <- file.path('results','AssortHetHeatMap2') blocksg[,c('group','s.epic','s.demog','scale.by.sd','scale.adj','infl.fac','maxN','sample.tmar','psNonPar','each'):= .(country,country, country, T, 1, 200, 10^5, F, F, each.val)] blocksg[,c('seed','out.dir','sim.nm','doSubs'):=.(1,out.dir, 'AHH', F)] blocksg[,c('tmar','tint'):=.('tmar=(65*12):(113*12)',113*12)] blocksg[,c('acute.sc'):=.(5)] load(file.path(out.dir,'CFJobsToDo.Rdata')) blocksgTD <- blocksg[jobnum %in% jtd] if(!file.exists(out.dir)) dir.create(out.dir) # create directory if necessary if(!file.exists(file.path(out.dir,'Rdatas'))) dir.create(file.path(out.dir,'Rdatas')) # create directory if necessary if(!file.exists(file.path(out.dir,'Routs'))) dir.create(file.path(out.dir,'Routs')) # create directory if necessary sink("AssortHetHeatMap.txt") # create a control file to send to the cluster for(ii in blocksgTD[,jobnum]) { #blocksgTD[,jobnum]) { cmd <- "R CMD BATCH '--no-restore --no-save --args" cmd <- addParm(cmd, blocksgTD, ii) ## remove lab since it has spaces & isn't used in psrun cmd <- paste0(cmd, " ' SimulationStarter.R ", file.path(out.dir,'Routs', paste0('AHHsim', sprintf("%06d", ii),'.Rout')), sep='') cat(cmd) # add command cat('\n') # add new line } sink() save(blocksg, file = file.path(out.dir,'blocksg.Rdata')) # these are country-acute phase specific blocks print(nrow(blocksg)) print(nrow(blocksgTD))
f6fd1826e043fd39b25e9ac007e176765710a905
b12c8b99b619a1f084cc85ed316f287b2ef29274
/boxer_data_cleaning.R
dc29d853443fb5011f7098d5ee6b15194a5a823f
[]
no_license
LocalSymmetry/ChampionBoxers
a8cc094b521f0e072a21d35bc01b54ac1aac9382
4eae55c17b39460b0a82fa089a9196389cc5bdcf
refs/heads/master
2021-01-21T21:15:36.632241
2017-06-21T14:36:14
2017-06-21T14:36:14
94,803,710
2
1
null
null
null
null
UTF-8
R
false
false
10,215
r
boxer_data_cleaning.R
# Data cleaning for "A Search for Champion Boxers". # Data were scraped from BoxRec.com for title fights # of all 5 major boxing organizations (WBO, WBA, WBC, IBO, IBF). # # # Data source: BoxRec.com # Raw variable information for each league # division: weight class of title fight (17 factors) # boxer1id: Boxrec.com id of the first listed boxer # boxer1: name of the first listed boxer # boxer2id: Boxrec.com id of the second listed boxer # boxer2: name of the second listed boxer # date: date of the title fight in "YYYY-MM-DD" format # fightid: Boxrec.com id of the fight # place: place the fight took place in # WinLoss: determination of if boxer1 won against boxer2 # decision: how the match was decided # othertext: other text placed with the match on BoxRec.com. Contains raw # HTML. library(dplyr) library(tidyr) # We will use readr due to names being encoded in UTF-8. library(readr) # Note, there will be duplicate matches in the data sets # as title fights can be for multiple leagues. wbo.df <- read_csv("Data/WBO.csv", na = c("")) wba.df <- read_csv("Data/WBA.csv", na = c("")) wbc.df <- read_csv("Data/WBC.csv", na = c("")) ibo.df <- read_csv("Data/IBO.csv", na = c("")) ibf.df <- read_csv("Data/IBF.csv", na = c("")) # Data Preprocessing # All five data sets have the same column information. # We will concatenate all five data frames, and then use # fightid to remove duplicate fights for title fights # in multiple leagues at once. boxing.df <- rbind(wbo.df, wba.df, wbc.df, ibo.df, ibf.df) boxing.df <- boxing.df[!duplicated(boxing.df$fightid), ] # Data Cleaning # Remove the HTML from "othertext" column. HTMLRemoval <- function(string){ outstring <- gsub("<.*?>", "", string) # There needs to be a space after "title", or it runs into the next sentence. outstring <- gsub("title", "title ", outstring) return(outstring) } # First, we gather a list of boxer id's to scrape boxer information off of # BoxRec.com boxers <- stack(lapply(boxing.df[, c('boxer1id', 'boxer2id')], as.character)) boxers <- unique(boxers$values) write.csv(boxers, "Data/BoxerIDs.csv", row.names = FALSE) # Now we will clean the variables in the boxing.df data frame. # First, we will remove rows for fights that have not yet been decided. boxing.df <- boxing.df[!is.na(boxing.df$decision), ] # We will now clean HTML. # We will remove the HTML from the boxer ID's and only leave the number. boxing.df$boxer1id <- gsub("http://boxrec.com/boxer/", "", x = boxing.df$boxer1id) boxing.df$boxer1id <- factor(boxing.df$boxer1id) boxing.df$boxer2id <- gsub("http://boxrec.com/boxer/", "", x = boxing.df$boxer2id) boxing.df$boxer2id <- factor(boxing.df$boxer2id) # We will do the same for the fight IDs. boxing.df$fightid <- gsub("http://boxrec.com/show/", "", x = boxing.df$fightid) boxing.df$fightid <- factor(boxing.df$fightid) boxing.df$othertext <- sapply(boxing.df$othertext, HTMLRemoval) # We will now turn the date field into timestamps. boxing.df$date <- as.Date(boxing.df$date, format="%Y-%m-%d") # Fix Losses in WinLoss. boxing.df$WinLoss <- sapply(boxing.df$WinLoss, function(string) gsub("L ", "L", string)) boxing.df$WinLoss <- factor(boxing.df$WinLoss) # Save a copy of the full unique data frame. write_csv(boxing.df, "Data/AllLeagues.csv") # Cleaning of Boxer Information Scrape # # Data source: www.BoxRec.com # Raw variable information # boxerid: Boxrec.com id of the boxer # boxer: name of the boxer (has escape characters) # attributetype: The type of attribute from the boxer's biography (raw HTML) # attributevalue: The value of attribute from the boxer's biography (raw HTML) # Remove escape characters and raw HTML. AttributeClean <- function(string){ # Remove HTML outstring <- gsub("<.*?>", "", string) # Remove escape characters outstring <- gsub("\n", "", outstring) outstring <- gsub("\t", "", outstring) outstring <- gsub("Â", "", outstring) # Remove long spaces outstring <- gsub(" ", "", outstring) return(outstring) } # Clean length strings. LengthClean <- function(string){ outstring <- gsub("½", ".5", string) outstring <- gsub("cm", "", outstring) outstring <- gsub("″", "", outstring) outstring <- gsub("′", "", outstring) outstring <- gsub("\\s", "", outstring) return(outstring) } # Convert imperial height units to feet. ImpToFeet <- function(string){ # The first character is feet, the remaining characters are inches. outnumber <- (as.numeric(substring(string,1,1)) + as.numeric(substring(string,3))/12.0) return(outnumber) } # Strip the percent sign off of KOs. StripPercent <- function(string){ outstring <- gsub("%", "", string) return(outstring) } # Remove website url from boxerid. CleanBoxerID <- function(boxerID){ return(gsub("http://boxrec.com/boxer/", "", boxerID)) } boxer.info.df <- read_csv("Data/BoxerInfo.csv") # Clean the boxername, attributetype, and attributevalue variables. boxer.info.df$boxername <- sapply(boxer.info.df$boxername, AttributeClean) boxer.info.df$attributetype <- sapply(boxer.info.df$attributetype, AttributeClean) boxer.info.df$attributevalue <- sapply(boxer.info.df$attributevalue, AttributeClean) # Convert the variables back to factors. boxer.info.df$boxername <- factor(boxer.info.df$boxername) boxer.info.df$attributetype <- factor(boxer.info.df$attributetype) boxer.info.df$attributevalue <- factor(boxer.info.df$attributevalue) # Save the clean version. write_csv(boxer.info.df, "Data/BoxerInfoClean.csv") # Using read.csv to change strings to NA. boxer.info.df <- read_csv("Data/BoxerInfoClean.csv", na = c("", "NA", " ")) # DROP NAs in attributetype. boxer.info.df <- boxer.info.df[!is.na(boxer.info.df$attributetype), ] # DROP NAs in attributevalue. boxer.info.df <- boxer.info.df[!is.na(boxer.info.df$attributevalue), ] # Resave the clean version sans NA's. write_csv(boxer.info.df, "Data/BoxerInfoClean.csv") # Now, we will make every attribute type its own column and aggregate the values # for each boxer. boxer.info.spread <- spread(boxer.info.df, attributetype, attributevalue) # Convert bouts and rounds to numeric boxer.info.spread$bouts <- as.numeric(boxer.info.spread$bouts) boxer.info.spread$rounds <- as.numeric(boxer.info.spread$rounds) # Clean boxerid so it is without the website handle. boxer.info.spread$boxerid.num <- sapply(boxer.info.spread$boxerid, CleanBoxerID) # Fix born and debut dates. boxer.info.spread$debut <- as.Date(boxer.info.spread$debut, format="%Y-%m-%d") boxer.info.spread$born <- as.Date(boxer.info.spread$born, format="%Y-%m-%d") # Split variables with multiple forms of information. # Death date also contains age at death. Two age values are "not known" which # will be replaced with NA. boxer.info.spread <- separate(boxer.info.spread, 'death date', c("date.of.death", "age.of.death"), sep=" / age ") boxer.info.spread$date.of.death <- as.Date(boxer.info.spread$date.of.death, format="%Y-%m-%d") boxer.info.spread$age.of.death <- as.numeric(boxer.info.spread$age.of.death) # Reach has inches and cm. boxer.info.spread <- separate(boxer.info.spread, reach, c("reach.in", "reach.cm"), sep=" / ") boxer.info.spread$reach.cm <- sapply(boxer.info.spread$reach.cm, LengthClean) boxer.info.spread$reach.in <- sapply(boxer.info.spread$reach.in, LengthClean) boxer.info.spread$reach.cm <- as.numeric(boxer.info.spread$reach.cm) boxer.info.spread$reach.in <- as.numeric(boxer.info.spread$reach.in) # Height has feet, inches, and cm. boxer.info.spread <- separate(boxer.info.spread, height, c("height.imp", "height.cm"), sep=" / ") boxer.info.spread$height.cm <- sapply(boxer.info.spread$height.cm, LengthClean) boxer.info.spread$height.imp <- sapply(boxer.info.spread$height.imp, LengthClean) boxer.info.spread$height.imp <- sapply(boxer.info.spread$height.imp, ImpToFeet) boxer.info.spread$height.cm <- as.numeric(boxer.info.spread$height.cm) # Turn KOs into a percentage. boxer.info.spread$KO.percent <- sapply(boxer.info.spread$KOs, StripPercent) boxer.info.spread$KO.percent <- as.numeric(boxer.info.spread$KO.percent)/100 # Save this version. write_csv(boxer.info.spread, "Data/BoxerInfoByAttributes.csv") # Variable Information # boxerid: BoxRec.com url for each boxer. # boxername: The name of the boxer. # alias: The alias used for the boxer in promotions. # birth name: The given birth name for the boxer. # birth place: The place the boxer was born. # born: The year the boxer was born. # bouts: The number of bouts a boxer has fought in. # date.of.death: Date of boxer's death. # age.of.death: Boxer's age at death. # debut: Date the boxer debuted. # division: Weight class of the boxer. # global ID: The Global ID for the boxer. # height.imp: The height of the boxer in feet. # height.cm: The height of the boxer in cm. # KOs: Character format for percentage of wins for a boxer that are KO's. # manager/agent: Manager for the boxer. # promoter: Promoter for the boxer. # ranking: BoxRec rankings. This column has not been cleaned. # reach.in: The length of outstretched arms measured from arm to arm in inches. # reach.cm: The length of outstretched arms measured from arm to arm in cm. # residence: Current place of residence. # role: The role in boxing the boxer plays. May include Manager, Promoter, etc. # rounds: The number of rounds the boxer has fought in. # stance: The boxing stance style: orthodox or southpaw. # titles held: A list of titles held by the boxer. # US ID: The US ID for the boxer. # VADA CBP: If the boxer is enrolled in an anti-doping organization. # KO.percent: Numerical format for percentage of wins for a boxer that are KO's. # boxerid.num: Numerical ID for the boxer. Aligned with BoxRec.com.
2defde7738b77642d8bbc9261c0e2024a039c8c1
bb397c245cbe62a30db267f0f8ea54f1fd164119
/Rfunctions/GllimFitIID.R
b9c8eefd6974cd93b3ca0923bf43a9605e63c5c2
[]
no_license
Trung-TinNGUYEN/GLLiM-ABC-v0
503b0734c6669d9aad40b041718bd19fe9b86bec
f30ed29982b7244fe3d505ae9fe17c81b17c91e8
refs/heads/main
2023-07-26T01:21:50.087487
2021-08-21T23:22:46
2021-08-21T23:22:46
null
0
0
null
null
null
null
UTF-8
R
false
false
5,390
r
GllimFitIID.R
GllimFitIID<-function(thetadata, ydata,iR, K, constr=list(Sigma="")){ # %%%%%%%% Gaussian Locally Linear Mapping and pre-computed quantities %%%%%%%%% # % Description: Fit a GLLiM for iR IID data model using the xLLiM package with constraints # % cstr= constr on covariance matrices Sigmak, can be # constr=list(Sigma="") for FULL covariances Sigmak (DEFAULT) # Remark: this constraint is almost equivalent to bloc diagonal covariances with blocs # of size D if y is of size DxiR. # constr = list(Sigma="d") for diagonal covariances # constr = list(Sigma="i") for isotropic covariances (but for this one, used the ISO version in the standard GLLiM, faster) # etc... see xlllim: 'd'=diag., 'i'=iso., '*'=equal for all k, 'v'=equal det. for all k # using N associated observations # % ydata and parameters are in thetadata. # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # %%%% Input %%%%. NOTE that R=iR here # %- thetadata (LxN) % N training parameters values (L) # %- ydata (DRxN) % N training observations of dimension DR (the R iid obi of dim D are stacked at first) #### DR x N , R iid replications (R=iR just because R is already used) #### iR = number of iid replications in each sample # %- K (integer) % number of components in the mixtures # %%%% Output %%%% # % -mod : the output of the gllim function in xllim that contains # % the parameter Psi: mod$c, etc... # % - c (LxK) % Gaussian means of theta # % - Gamma (LxLxK) % Gaussian covariances of theta # % - pi (1xK) % Gaussian weights # % - A (DxLxK) % Affine transformation matrices # % - b (DxK) % Affine transformation vectors # % - Sigma (DxDxK) % Error covariances assumed FULL here # % -invGamma (LxLxK) % inverses of matrices Gammak , do not depend on y or z # % -invSigma DxDxK inverses of Sigmak, do not depend on y or z ##### % -covstar (LxLxK) % matrices Sigma_k^* covariance matrices of the posterior ##### the log determinants can be precomputed too ##### the Sigmak* and log det Vk in the iid case, quantites independent of y # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # modified fromm xllim to provide a GLLiM iid estimation of the direct # parameters, constraint on covariances can be chosen here # NB: # The case D=1 has to be treated separately due to the fact that 1xM matrices are turned into # a vector by R.. To be merged into a single function later # gllimIID1D not checked, working? D=nrow(ydata)/iR if (D==1) {resgllim <- gllimIID1D(thetadata, ydata,iR, in_K=K,cstr=constr,verb=0) # pre-computation (to save time) of quantities that are independant on y (or z), # same covstar and log det and inverse Gamma matrices for all y Aa<-resgllim$A # D x L x K L<-dim(Aa)[2] #D<-dim(Aa)[1] # in case some clusters disappear... K<-dim(Aa)[3] #K<-dim(Aa)[3] Sigmaa<-resgllim$Sigma Gammaa<-resgllim$Gamma invSigmaa<-Sigmaa invGammaa<-Gammaa covstarRa<-Gammaa # just for initial allocation # dim L x L x K logdetVa<-NULL # inverse of Gammak and Sigmakstar and its log-determinant for (k in 1:K){ invGammaa[,,k]<-chol2inv(chol(Gammaa[,,k])) invSigmaa[,,k]<-chol2inv(chol(Sigmaa[,,k])) # attention numerical issue when mat non symmetric before inversion # no transpose because D=1 make it a vector anyway tempMat<-iR*Aa[,,k]%*%t(Aa[,,k])/invSigmaa[,,k] covstarRa[,,k]=chol2inv(chol(invGammaa[,,k]+tempMat)) #tempMat<-diag(L)+iR*t(Aa[,,k])%*%invSigmaa[,,k]%*%Aa[,,k]%*%Gammaa[,,k] ##covstarRa[,,k]=chol2inv(chol(invGammaa[,,k]+ R*t(Aa[,,k])%*%Aa[,,k]/Sigmaa[1,1,k])) #covstarRa[,,k]=Gammaa[,,k]%*%chol2inv(chol(tempMat)) dettemp<-det(diag(L)+tempMat%*%Gammaa[,,k]) # since Sigma is 1x1 logdetVa<-c(logdetVa, iR*log(Sigmaa[,,k])+log(dettemp)) #logdetVa<-c(logdetVa, iR*log(det(Sigmaa[,,k]))+log(dettemp)) } # end for } # end if else{ resgllim <- gllimIID(thetadata, ydata,iR, in_K=K,cstr=constr,verb=0) # pre-computation (to save time) independant on y (or z), # same covstar and log-determinant and inverse Gamma matrices for all y Aa<-resgllim$A L<-dim(Aa)[2] D<-dim(Aa)[1] # in case some cluster disappears... K<-dim(Aa)[3] #K<-dim(Aa)[3] Sigmaa<-resgllim$Sigma Gammaa<-resgllim$Gamma invSigmaa<-Sigmaa invGammaa<-Gammaa covstarRa<-Gammaa # just for initial allocation # dim L x L x K logdetVa<-NULL # inverse of Gammak and Sigmakstar and its log det for (k in 1:K){ invGammaa[,,k]<-chol2inv(chol(Gammaa[,,k])) invSigmaa[,,k]<-chol2inv(chol(Sigmaa[,,k])) # attention numerical issue when mat non symmetric before inversion tempMat<-iR*t(Aa[,,k])%*%invSigmaa[,,k]%*%Aa[,,k] covstarRa[,,k]=chol2inv(chol(invGammaa[,,k]+tempMat)) #tempMat<-diag(L)+iR*t(Aa[,,k])%*%invSigmaa[,,k]%*%Aa[,,k]%*%Gammaa[,,k] ##covstarRa[,,k]=chol2inv(chol(invGammaa[,,k]+ R*t(Aa[,,k])%*%Aa[,,k]/Sigmaa[1,1,k])) #covstarRa[,,k]=Gammaa[,,k]%*%chol2inv(chol(tempMat)) dettemp<-det(diag(L)+tempMat%*%Gammaa[,,k]) logdetVa<-c(logdetVa, iR*log(det(Sigmaa[,,k]))+log(dettemp)) } } # end else list("mod"=resgllim, "invGamma"=invGammaa ,"invSigma"=invSigmaa , "covstarR"=covstarRa,"logdetVR"=logdetVa) }
b6bbce5339dfdaa0e8a666675ce1065bbaa009a5
a7cef5b06a271bbe30affa1b45235ae2e814b87b
/man/xcusum.sf.Rd
cc96192831f4b93500a3e7ba15e4a4ad21d0c2a3
[]
no_license
cran/spc
23075576d12adf3641607accce3e2d4149d55e5c
296041a2d3a3b082415fa676bceaded3f0d39f08
refs/heads/master
2022-11-10T04:04:21.939750
2022-10-24T11:30:02
2022-10-24T11:30:02
17,699,981
2
1
null
null
null
null
UTF-8
R
false
false
1,741
rd
xcusum.sf.Rd
\name{xcusum.sf} \alias{xcusum.sf} \title{Compute the survival function of CUSUM run length} \description{Computation of the survival function of the Run Length (RL) for CUSUM control charts monitoring normal mean.} \usage{xcusum.sf(k, h, mu, n, hs=0, sided="one", r=40)} \arguments{ \item{k}{reference value of the CUSUM control chart.} \item{h}{decision interval (alarm limit, threshold) of the CUSUM control chart.} \item{mu}{true mean.} \item{n}{calculate sf up to value \code{n}.} \item{hs}{so-called headstart (enables fast initial response).} \item{sided}{distinguishes between one- and two-sided CUSUM control chart by choosing \code{"one"} and \code{"two"}, respectively.} \item{r}{number of quadrature nodes, dimension of the resulting linear equation system is equal to \code{r+1}.} } \details{ The survival function P(L>n) and derived from it also the cdf P(L<=n) and the pmf P(L=n) illustrate the distribution of the CUSUM run length. For large n the geometric tail could be exploited. That is, with reasonable large n the complete distribution is characterized. The algorithm is based on Waldmann's survival function iteration procedure. } \value{Returns a vector which resembles the survival function up to a certain point.} \references{ K.-H. Waldmann (1986), Bounds for the distribution of the run length of one-sided and two-sided CUSUM quality control schemes, \emph{Technometrics 28}, 61-67. } \author{Sven Knoth} \seealso{ \code{xcusum.q} for computation of CUSUM run length quantiles. } \examples{ ## Waldmann (1986), one-sided CUSUM, Table 2 k <- .5 h <- 3 mu <- 0 # corresponds to Waldmann's -0.5 SF <- xcusum.sf(k, h, 0, 1000) plot(1:length(SF), SF, type="l", xlab="n", ylab="P(L>n)", ylim=c(0,1)) # } \keyword{ts}
94df418cd249f58467c2f67b961b7db96182b0b7
585a9c9b373cc7e0e048201f3d78ebf26b303e3d
/bin/sorts.R
e9a0fc098301860498ddaad3a6620df2b1b87413
[]
no_license
rlowe/stalk2graph
80cf07c852c012cb282ab2d7f8e3fa17324b12b9
11cc70b0a85d32b46efdf792e6b27151e9bfdd37
refs/heads/master
2020-04-10T16:29:30.567014
2016-05-01T06:56:50
2016-05-01T06:56:50
8,306,354
0
0
null
null
null
null
UTF-8
R
false
false
1,714
r
sorts.R
args<-commandArgs(trailingOnly = FALSE) require(ggplot2) sorts_data<-read.csv(args[length(args)-1]) smp<-diff(sorts_data$merge_passes) srange<-diff(sorts_data$range) srows<-diff(sorts_data$rows) ss<-diff(sorts_data$scan) sorts_data<-data.frame(Time="", Type="", Value=as.numeric("")) sorts_data<-sorts_data[-1,] for (i in 1:length(ss)) { sorts_data<-rbind( sorts_data, data.frame(Time=as.character(i), Type="Merge Passes", Value=as.numeric(smp[i]))) sorts_data<-rbind( sorts_data, data.frame(Time=as.character(i), Type="Range", Value=as.numeric(srange[i]))) sorts_data<-rbind( sorts_data, data.frame(Time=as.character(i), Type="Rows", Value=as.numeric(srows[i]))) sorts_data<-rbind( sorts_data, data.frame(Time=as.character(i), Type="Scan", Value=as.numeric(ss[i]))) } png(args[length(args)],width=800) options(scipen=20) ggplot(sorts_data, aes(x=Time, y=Value, fill=Type, color=Type, group=Type, xaxt='n')) + geom_area(position = "stack", stat="identity") + ggtitle("MySQL Sorts") + theme(axis.title.y = element_blank(), axis.title.x = element_blank(), axis.text.x = element_blank(), axis.ticks = element_blank(), panel.grid.major = element_blank(), panel.grid.minor=element_blank()) dev.off()
a0b1e3ea0f3e244a96c0f57cf7342ac91eb79f00
8117e00c26fd2906e1542aec58a88c3967c2fb2d
/tests/testthat/test-makeSuggList.R
0c84f5e17fc2dceb90026ba110025dc355d4785e
[]
no_license
RGLab/corpusFreq
fbf280fa91f5905d2a5c5af12f6dbef11458cd50
f44551c40ab82934db3496d135faa00316f8219e
refs/heads/main
2021-05-02T15:06:50.119428
2021-04-26T20:46:49
2021-04-26T20:46:49
120,689,873
1
0
null
null
null
null
UTF-8
R
false
false
1,431
r
test-makeSuggList.R
# Helpers------------------------------------------------------- tmp <- c("lymphocyte is a dose of reality in a harsh world.", "Doses would be too much.", "And is critical for this test.") freqTbl <- makeFreqTbl(tmp) getRes <- function(vec, freqTbl){ metaData <- list() metaData$medLength <- stats::median(sapply(vec, nchar)) metaData$numStrings <- length(vec) words <- vec2words(vec) res <- corpusFreq:::makeSuggList(words = words, freqTbl = freqTbl, metaData = metaData) } # Tests -------------------------------------------------------- context("makeSuggList") test_that("Many short strings use internalFt with stopwords", { vec <- c("1 dose", "2 doses", "5 doses", "3 doses", "1 does", "1 dose", "4 doses") res <- getRes(vec, freqTbl) expect_true("dose" %in% res$does) }) test_that("Corrects non-freqTbl but regular english word. i.e. 'adn' to 'and'", { vec <- c("the fox adn the hen are not friends.") res <- getRes(vec, freqTbl) expect_true("and" %in% res$adn) }) test_that("Corrects biological word present in freqTbl", { vec <- c("Why did the lymphocyt cross the road?") res <- getRes(vec, freqTbl) expect_true("lymphocyte" %in% res$lymphocyt) }) test_that("Single string with few words, no internalFt work", { vec <- c("Why did the lymphocyt cross the road?") res <- getRes(vec, freqTbl) expect_false("why" %in% names(res) ) })
b71c02919c11019befce3bd7e8a147bd8a6b14d4
1b388061103d48f7e9fab752ff794e16222a3116
/R/measure_missing.R
73149ab8882c2b502cdc43090ed8f7229960adea
[]
no_license
neyhartj/gws
b5fc9257075a162fadebd8ea6a3634638555e929
cb52791be50d96b3cb4b733c3aa08476b7c05249
refs/heads/master
2021-01-19T06:46:14.146652
2020-03-12T21:25:46
2020-03-12T21:25:46
63,906,263
0
1
null
null
null
null
UTF-8
R
false
false
252
r
measure_missing.R
#' Measure the missingness of a SNP or entry #' #' measure.missing <- function(x, type = "numeric") { if (type == "numeric") { return( sum(is.na(x)) / length(x) ) } if (type == "nucleotide") { return( sum(x == "NN") / length(x) ) } }
2ff2a2d7f46bb7bfa07e1ab0fce9258e8baa8bf2
5ba559ffe9bea4744986265aaf0abb900f318232
/R/pruning.r
3b7c1ac9cf73907e4ec6f5edbabe23916a88476a
[ "BSD-3-Clause" ]
permissive
BenJamesbabala/autoBagging
e021721b5467f5bff267279256e76692912ffd44
af6bca0552917953555c778e3c4964d41698f65f
refs/heads/master
2020-12-02T12:46:51.029484
2017-06-23T12:45:35
2017-06-23T12:45:35
null
0
0
null
null
null
null
UTF-8
R
false
false
1,694
r
pruning.r
#' Boosting-based pruning of models #' #' @param form formula #' @param preds predictions in training data #' @param data training data #' @param cutPoint ratio of the total number of models to keepFORA #' #' @export bb <- function (form, preds, data, cutPoint) { class <- get_target(form) prunedN <- ceiling(ncol(preds) - (ncol(preds) * cutPoint)) weights <- rep(1/nrow(data), nrow(data)) ordem <- NULL for (l in 1:prunedN) { errors <- apply(preds, 2, function(x) {sum(((!(x == data[,class])) * 1) * weights)}) # hammer time! works fine, though errors[ordem] <- max(errors) * 2 ordem[l] <- which.min(errors) errorU <- min(errors) predU <- preds[,ordem[l]] == data[,class] if (errorU > 0.5) { weights <- rep(1/nrow(data), nrow(data)) } else { for (w in 1:length(weights)) { weights[w] <- ifelse(predU[w], weights[w] / (2*errorU) , weights[w] / (2 * (1-errorU)) ) } } } return(ordem) } #' MDSQ #' #' @inheritParams bb #' #' @export mdsq <- function (form, preds, data, cutPoint) { class <- get_target(form) prunedN <- ceiling(ncol(preds) - (ncol(preds) * cutPoint)) ordem <- as.vector(NULL) pred <- ifelse(preds == data[,class], 1, -1) ens <- rep(0, length(data[,class])) colnames(pred) <- 1:ncol(pred) o <- rep(0.075, length(data[,class])) for (l in 1:prunedN) { dist <- apply(as.matrix(pred), 2, function (x) {sqrt( sum( ( ((x+as.vector(ens))/l) - o )^2 ) )}) ens <- as.matrix(ens) + as.matrix(pred[,c(names(which.min(dist)))]) pred <- as.matrix(pred[,setdiff(colnames(pred),names(which.min(dist)))]) ordem[l] <- as.integer(names(which.min(dist))) } return(ordem) }
d7bd4f0fccf05846848dd4c20aa8a8e475a9566f
6a2f6ab46c35441db0288fbde4be1a5188f2ec30
/R/ti_celltrails.R
4a780d652ba02f2e91aa5a239f4ef99cf5c3dc77
[]
no_license
herrinca/dynmethods
f7595c8ce4f06cb2cb4b809c49ceebd705330940
0a5768cf4452b2b745ee675bbd013140d54029da
refs/heads/master
2020-03-26T22:19:11.513964
2018-08-21T18:03:51
2018-08-21T18:03:51
145,448,352
0
0
null
2018-08-20T17:17:18
2018-08-20T17:17:18
null
UTF-8
R
false
false
3,331
r
ti_celltrails.R
######################################### DO NOT EDIT! ######################################### #### This file is automatically generated from data-raw/2-generate_r_code_from_containers.R #### ################################################################################################ #' @title Inferring a trajectory inference using CellTrails #' #' @description #' Will generate a trajectory using #' [CellTrails](https://doi.org/10.1016/j.celrep.2018.05.002). #' #' This method was wrapped inside a #' [container](https://github.com/dynverse/dynmethods/tree/master/containers/celltrails). #' The original code of this method is available #' [here](https://github.com/dcellwanger/CellTrails). #' #' @references Ellwanger, D.C., Scheibinger, M., Dumont, R.A., Barr-Gillespie, #' P.G., Heller, S., 2018. Transcriptional Dynamics of Hair-Bundle Morphogenesis #' Revealed with CellTrails. Cell Reports 23, 2901–2914.e14. #' #' @param threshold_dl integer; Minimum number of samples; if value < 1 it is #' interpreted as fraction, otherwise as absolute sample count (default: `2L`; #' range: from `0L` to `100L`) #' @param threshold_cov numeric; Minimum coefficient of variation; numeric value #' between 0 and 1 (default: `0.05`; range: from `0L` to `1L`) #' @param threshold_ff numeric; A Z-score cutoff (default: `1.7`; range: from `0L` #' to `5L`) #' @param min_expr numeric; Minimum average feature expression (default: `0L`; #' range: from `0L` to `2L`) #' @param frac numeric; Fraction or number (if frac > 1) of eigengaps used to #' perform linear fit. (default: `100L`; range: from `1L` to `1000L`) #' @param min_size numeric; The initial cluster dedrogram is cut at an height such #' that the minimum cluster size is at least min_size; if min_size < 1 than the #' fraction of total samples is used, otherwise it is used as absoulte count #' (default: `0.01`; range: from `0.001` to `1L`) #' @param min_feat integer; Minimum number of differentially expressed features #' between siblings. If this number is not reached, two neighboring clusters #' (siblings) in the pruned dendrogram get joined. (default: `5L`; range: from #' `1L` to `100L`) #' @param max_pval numeric; Maximum P-value for differential expression #' computation. (default: `1e-04`; range: from `1e-07` to `1L`) #' @param min_fc numeric; Mimimum fold-change for differential expression #' computation (default: `2L`; range: from `0L` to `5L`) #' @param l integer; Neighborhood size (default: `10L`; range: from `1L` to `50L`) #' @inheritParams dynwrap::create_container_ti_method #' #' @return A TI method wrapper to be used together with #' \code{\link[dynwrap:infer_trajectories]{infer_trajectory}} #' @export ti_celltrails <- function( threshold_dl = 2L, threshold_cov = 0.05, threshold_ff = 1.7, min_expr = 0L, frac = 100L, min_size = 0.01, min_feat = 5L, max_pval = 1e-04, min_fc = 2L, l = 10L, run_environment = NULL ) { create_container_ti_method( docker_repository = "dynverse/celltrails", run_environment = run_environment, threshold_dl = threshold_dl, threshold_cov = threshold_cov, threshold_ff = threshold_ff, min_expr = min_expr, frac = frac, min_size = min_size, min_feat = min_feat, max_pval = max_pval, min_fc = min_fc, l = l ) }
7a529848fb404863a72c8e3114929f9b03c1542d
2c4de2241e8567a64987ab99983c49447691cff8
/Samsung Smartphone Data Project/Samsung Data Code.R
b3def8fd46f801f3af6a43cf2b453c5c9d48b5a9
[]
no_license
BenPiggot/Projects
53b47081f7912d22d9cdeee9981dfcbc4db0a95a
5dbb812b8bdf4bbf079130d9bb96fbbc2136f5b4
refs/heads/master
2020-05-30T23:01:02.807114
2014-06-24T05:26:02
2014-06-24T05:26:02
null
0
0
null
null
null
null
UTF-8
R
false
false
3,938
r
Samsung Data Code.R
# Set working directory setwd("~/Desktop/UCI HAR Dataset/") # Read in "Features.txt" file and clean the variable labels with the sub function. # This file will be used as the column labels for my new data frame. features_df <- read.table("~/Desktop/UCI HAR Dataset/features.txt") features <- as.character(features_df[,2]) install.packages("gsubfn") library(gsubfn) features <- gsub("[^[:alnum:]]","", features) features <- gsub(pattern="mean", replacement=".mean", features) features <- gsub(pattern="std", replacement=".std", features) # Read in other relevant files from working directory. # These files will provide the subject IDs, activities, and data # for my new data frame. subject_test_data <- read.table("./test/subject_test.txt") subject_train_data <- read.table("./train/subject_train.txt") xtest_data <- read.table("./test/X_test.txt") xtrain_data <- read.table("./train/X_train.txt") ytest_data <- read.table("./test/y_test.txt") ytrain_data <- read.table("./train/y_train.txt") # Bind togther the data, subject IDs, and activities for the "test" # portion of the experiment. Then affix columns names from the "features" # file cleaned above. test_data <- cbind(ytest_data, subject_test_data, xtest_data) names(test_data) <- c("activity", "subject", features) # Bind togther the data, subject IDs, and activities for the "train" # portion of the experiment. Then affix columns names from "features" # file cleaned above. train_data <- cbind(ytrain_data, subject_train_data, xtrain_data) names(train_data) <- c("activity", "subject", features) # Bind together the "test" and "train" sub data sets into a new data frame # called "samsung_data". samsung_data <- rbind(test_data, train_data) # Subset the "samsung_data" data frame using the grep function to select # only those columns measuring "mean" or "std" (standard deviation). mean_data <- samsung_data[,grep("mean",colnames(samsung_data))] std_data <- samsung_data[,grep("std",colnames(samsung_data))] # Recreate the "subject" and activity" columns from the "samsung_data" # data frame that were filtered out by the grep function. ysubject_data <- data.frame(rbind(cbind(ytest_data, subject_test_data), cbind(ytrain_data, subject_train_data))) # Bind the subject and activity mini data frame with the subsetted "mean" # and "std" data frames subsetted above using the grep function. This data frame - # temporarily titled "mean_std_data" - is the basis for my final "tidy data" data frame. mean_std_data <- cbind(ysubject_data, mean_data, std_data) # Rename the the first and second columns in the "mean_std_data" data frame names(mean_std_data)[1] <- "activity" names(mean_std_data)[2] <- "subject" # Provide meaningful names for the "activity" variable using the "feature_info.txt" # file as a guide. This .txt file is found in the working directory (but is not read into R). mean_std_data$activity[mean_std_data$activity==1] <- "walking" mean_std_data$activity[mean_std_data$activity==2] <- "walking downstairs" mean_std_data$activity[mean_std_data$activity==3] <- "walking upstairs" mean_std_data$activity[mean_std_data$activity==4] <- "sitting" mean_std_data$activity[mean_std_data$activity==5] <- "standing" mean_std_data$activity[mean_std_data$activity==6] <- "laying" # Re-number the mean_std_data rows to start at 1. row.names(mean_std_data) <- 1:nrow(mean_std_data) # Create the final "tidy.data" data frame using the aggregate function. tidy.data <- aggregate(. ~ activity + subject, data=mean_std_data, mean) # Reorder the "tidy.data" data frame's columns so that "subject" heads the first column # variable and "acitivity" heads the second column tidy.data <- tidy.data[,c(2,1,3:81)] # Install xlsx package and write the "tidy.data" data frame as Excel file. install.packages("xlsx") library(xlsx) write.xlsx(x = tidy.data, file = "Human Activity as Measured by Samsung Smartphone.xlsx", row.names = FALSE)
6cd39a04cdc9b16a00e82e165798373156bbf0d7
7a95abd73d1ab9826e7f2bd7762f31c98bd0274f
/meteor/inst/testfiles/E_Penman/libFuzzer_E_Penman/E_Penman_valgrind_files/1612738781-test.R
114b208e3f6b787a79fef2c2d246c8d4d95379d2
[]
no_license
akhikolla/updatedatatype-list3
536d4e126d14ffb84bb655b8551ed5bc9b16d2c5
d1505cabc5bea8badb599bf1ed44efad5306636c
refs/heads/master
2023-03-25T09:44:15.112369
2021-03-20T15:57:10
2021-03-20T15:57:10
349,770,001
0
0
null
null
null
null
UTF-8
R
false
false
605
r
1612738781-test.R
testlist <- list(Rext = numeric(0), Rs = NaN, Z = c(NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, NaN, 2.96763823300824e+280, 3.65588327285767e+233, 4.71235854849405e+257, 1.0639991435071e+248, NaN, 4.78479882533389e-304, 5.44361528587885e-320, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), alpha = numeric(0), atmp = NaN, relh = NaN, temp = c(NaN, NaN), u = numeric(0)) result <- do.call(meteor:::E_Penman,testlist) str(result)
8e79d4dd686c3f9243491bfebb348d8aba71484d
6b4fe2baa84e74af637f319ea5d887cb2fd6f9a2
/kevin/rimod-analysis/rnaseq/burgholderia_infection_analysis.R
65a604f46174d5d2b6391d0af32dcd35f83f449c
[]
no_license
dznetubingen/analysis_scripts
1e27ca43a89e7ad6f8c222507549f72b1c4efc20
4fcac8a3851414c390e88b4ef4ac461887e47096
refs/heads/master
2021-06-25T10:47:40.562438
2021-01-04T16:02:34
2021-01-04T16:02:34
187,789,014
1
0
null
2020-09-03T11:37:25
2019-05-21T07:55:17
Jupyter Notebook
UTF-8
R
false
false
11,403
r
burgholderia_infection_analysis.R
########################################################### # Analysis of Salmon quantified RiMod frontal RNA-seq data # !!! Analysis of Pathogengroup with apparenty Burgholderia infection !!! # # ########################################################## library(tximport) library(DESeq2) library(GenomicFeatures) library(stringr) library(pheatmap) library(IHW) library(biomaRt) library(fgsea) setwd("~/rimod/RNAseq/results_salmon/") #### Hard-coded section script_name = "rnaseq_salmon_analysis_rimod_frontal.R" date = Sys.Date() current_time = gsub(":", ".", gsub(" ", "_", Sys.time())) #### # parameters parsing row_sum_cutoff = 10 row_sum_samples_nr = 5 metadata = "/home/kevin/rimod/files/FTD_Brain.csv" analysis_dir = "/home/kevin/rimod/RNAseq/analysis/" region <- "fro" salmon_files = "/home/kevin/rimod/RNAseq/analysis/txi_salmon/frontal_lengthScaledTPM_counts.txt" #====================================================================# # set working directory setwd(analysis_dir) # Create sub-folder for current analysis dir.create(paste("burgholderia_analysis","_",region, "_", current_time, sep="")) setwd(paste("burgholderia_analysis", "_", region, "_",current_time, sep="")) # Save parameters in config file params <- c(current_time, as.character(row_sum_cutoff), metadata, salmon_files, analysis_dir, script_name, region) param.names <- c("Time", "Row_sum_cutoff", "Metadata", "salmon_files", "Analysis_directory", "Script_name", "Region") params <- data.frame(param.name = param.names, param = params) write.table(params, paste("config_file", current_time, sep="_"), quote = F, row.names = F, sep="\t") #=================================================================# # Load metadata md <- read.csv(metadata, stringsAsFactors = FALSE) md$SAMPLEID <- as.character(sapply(md$SAMPLEID, function(x){strsplit(x, split="_")[[1]][[1]]})) md$SAMPLEID <- str_pad(md$SAMPLEID, width = 5, side = "left", pad = "0") # fill sample ids to 5 digits # load counts cts <- read.table(salmon_files, sep="\t", header=T, row.names=1) # bring counts and md in similar format rna.samples <- as.character(sapply(colnames(cts), function(x){strsplit(x, split="_")[[1]][[1]]})) rna.samples <- str_pad(gsub("X", "", rna.samples), width=5, side='left', pad='0') md <- md[md$SAMPLEID %in% rna.samples,] md <- md[match(rna.samples, md$SAMPLEID),] #### REMOVE ALL SPORADIC CASES #### disease.codes <- c("FTD-C9", "FTD-MAPT", "FTD-GRN", "control") keep <- md$DISEASE.CODE %in% disease.codes md <- md[keep,] # subset TXI cts <- cts[,keep] # remove sample 05180 (new Analysis 14.01.2020) keep <- !grepl("5108", colnames(cts)) md <- md[keep,] cts <- cts[,keep] md$DISEASE.CODE <- gsub("-", "_", md$DISEASE.CODE) # make disease code names safe # Split Age covariate into bins age_bins = 4 md$AGE.BIN <- make.names(cut(md$AGE, breaks=age_bins)) # pmd md$PMD.MIN. <- as.numeric(md$PMD.MIN.) pmd.mean <- mean(na.omit(md$PMD.MIN.)) md$PMD.MIN.[is.na(md$PMD.MIN.)] <- pmd.mean md$pmd <- md$PMD.MIN. # PH ph <- as.numeric(md$PH) ph.mean <- mean(na.omit(ph)) ph[is.na(ph)] <- ph.mean md$PH <- ph ## Make Burgholderia infected group burgholderia <- c("04245", "09070", "07106", "09218", "09126", "10058", "02218", "10200", "97231" , "11054") md$BS <- rep("free", nrow(md)) md$BS[md$SAMPLEID %in% burgholderia] <- "infected" ## Remove all controls keep <- !md$DISEASE.CODE == "control" md <- md[keep,] cts <- cts[,keep] #===========================================# # DESeq2 analysis # Generate DDS object cts <- round(cts) # round to integer counts dds <- DESeqDataSetFromMatrix(cts, colData = md, design = ~ PH + GENDER + BS) # Specify control group dds$BS <- relevel(dds$BS, ref = "free") # apply prefiltering dds <- estimateSizeFactors(dds) keep <- rowSums((counts(dds, normalized=TRUE) >= row_sum_cutoff)) >= row_sum_samples_nr dds <- dds[keep,] # Run DESeq dds <- DESeq(dds) resnames <- resultsNames(dds) #== Extract results ==# pval_cut <- 0.05 ### infected - free res <- results(dds, c("BS", "infected", "free"), filterFun = ihw) res <- na.omit(res) rownames(res) <- str_split(rownames(res), pattern="[.]", simplify = T)[,1] deg <- res[res$padj <= pval_cut,] print(dim(deg)) ########### ## Save results # Adjust rownames write.table(res, paste("deseq_result_infected.free", "_", region, "_",current_time, ".txt", sep=""), sep="\t", quote=F, col.names = NA) # Save only significant genes for online tools write.table(rownames(deg), paste("DEGs_infected.free", "_", region, "_",current_time, ".txt", sep=""), sep="\t", quote=F, row.names=F) # Divde in up and down regulated genes # MAPT mapt.up <- deg[deg$log2FoldChange > 0,] mapt.down <- deg[deg$log2FoldChange < 0,] write.table(rownames(mapt.up), "DEGs_UP_mapt.ndc.txt", quote=F, row.names=F) write.table(rownames(mapt.down), "DEGs_Down_mapt.ndc.txt", quote=F, row.names=F) ######################################## ## Generate count table and vst table ######################################## # normalized count values norm.counts <- counts(dds, normalized=TRUE) write.table(norm.counts, paste("deseq_normalized_counts", "_", current_time, ".txt", sep=""), sep="\t", quote=F, col.names = NA) # reg log transformed values rld <- vst(dds, blind=FALSE) rld.mat <- assay(rld) write.table(rld.mat, paste("deseq_vst_values","_", current_time, ".txt", sep=""), sep="\t", quote=F, col.names = NA) ################################ ## Plotting section ############ ## PCA pca <- plotPCA(rld, intgroup = "DISEASE.CODE") png(paste("pca_group_deseq_rLogvals", "_", current_time, ".png", sep=""), width = 1200, height = 900) pca dev.off() pca <- plotPCA(rld, intgroup = "GENDER") png(paste("pca_gender_deseq_rLogvals", "_", current_time, ".png", sep=""), width = 1200, height = 900) pca dev.off() ##### HEATMAPs ################ ## MAPT mapt.vst <- rld.mat[rownames(deg.mapt),] pheatmap(mapt.vst, scale="row") #==============================# # Make more PCAs # separate PCAs for the different mutation library(factoextra) dc <- md$DISEASE.CODE mapt.rld <- rld.mat[,dc %in% c('control', 'FTD_MAPT')] grn.rld <- rld.mat[,dc %in% c('control', 'FTD_GRN')] c9.rld <- rld.mat[,dc %in% c('control', 'FTD_C9')] # MAPT - control mapt.pca <- prcomp(t(mapt.rld), retx=T) mapt.dc <- dc[dc %in% c('control', 'FTD_MAPT')] mapt.gene <- md$GENE[dc %in% c('control', 'FTD_MAPT')] mapt.gene[mapt.dc == 'control'] <- 'control' fviz_eig(mapt.pca) mapt.x <- as.data.frame(mapt.pca$x) mapt.x$Disease_code <- mapt.gene mpca <- ggplot(mapt.x, aes(x=PC1, y=PC2, color=Disease_code)) + geom_point(size=3) + stat_ellipse() png(paste("pca_mapt_rlog", "_", current_time, ".png", sep=""), width = 1200, height = 900) mpca dev.off() # GRN - control grn.pca <- prcomp(t(grn.rld), retx=T) grn.dc <- dc[dc %in% c('control', 'FTD_GRN')] fviz_eig(grn.pca) grn.x <- as.data.frame(grn.pca$x) grn.x$Disease_code <- grn.dc gpca <- ggplot(grn.x, aes(x=PC1, y=PC2, color=Disease_code)) + geom_point(size=3) + stat_ellipse() png(paste("pca_grn_rlog", "_", current_time, ".png", sep=""), width = 1200, height = 900) gpca dev.off() # C9 - control c9.pca <- prcomp(t(c9.rld), retx=T) c9.dc <- dc[dc %in% c('control', 'FTD_C9')] fviz_eig(c9.pca) c9.x <- as.data.frame(c9.pca$x) c9.x$Disease_code <- c9.dc cpca <- ggplot(c9.x, aes(x=PC1, y=PC2, color=Disease_code)) + geom_point(size=3) + stat_ellipse() png(paste("pca_c9orf72_rlog", "_", current_time, ".png", sep=""), width = 1200, height = 900) cpca dev.off() # PCA for all samples all.pca <- prcomp(t(rld.mat), retx = T) fviz_eig(all.pca) all.x <- as.data.frame(all.pca$x) all.x$Disease_code <- dc pca <- ggplot(all.x, aes(x=PC1, y=PC2, color=Disease_code)) + geom_point(size=3) pca ##################################### ## fGSEA analysis ##################################### ensembl <- useMart("ensembl", dataset = "hsapiens_gene_ensembl") pathways <- gmtPathways("~/resources/genesets/h.all.v6.1.entrez.gmt") pval_filter <- 0.05 ## MAPT FGSEA mapt <- as.data.frame(res.mapt) bm <- getBM(attributes = c("ensembl_gene_id", "entrezgene_id"), filters = "ensembl_gene_id", values = rownames(mapt), mart = ensembl) mapt <- merge(mapt, bm, by.x='row.names', by.y='ensembl_gene_id') mapt <- mapt[order(mapt$log2FoldChange),] ranks <- mapt[,3] names(ranks) <- mapt$entrezgene mapt.gsea <- fgsea(pathways, ranks, minSize=15, maxSize=500, nperm=1000) mapt.gsea <- mapt.gsea[order(mapt.gsea$pval)] mapt.gsea <- as.data.frame(mapt.gsea) mapt.gsea <- mapt.gsea[, -ncol(mapt.gsea)] # get rid of last column write.table(mapt.gsea, "fGSEA_results_hallmark_MAPT.txt", sep="\t", quote=F) ## GRN FGSEA grn <- as.data.frame(res.grn) bm <- getBM(attributes = c("ensembl_gene_id", "entrezgene_id"), filters = "ensembl_gene_id", values = rownames(grn), mart = ensembl) grn <- merge(grn, bm, by.x='row.names', by.y='ensembl_gene_id') grn <- grn[order(grn$log2FoldChange),] ranks <- grn[,3] names(ranks) <- grn$entrezgene grn.gsea <- fgsea(pathways, ranks, minSize=15, maxSize=500, nperm=1000) grn.gsea <- grn.gsea[order(grn.gsea$pval)] grn.gsea <- as.data.frame(grn.gsea) grn.gsea <- grn.gsea[, -ncol(grn.gsea)] # get rid of last column write.table(grn.gsea, "fGSEA_results_hallmark_GRN.txt", sep="\t", quote=F) ## C9 FGSEA c9 <- as.data.frame(res.c9) bm <- getBM(attributes = c("ensembl_gene_id", "entrezgene_id"), filters = "ensembl_gene_id", values = rownames(c9), mart = ensembl) c9 <- merge(c9, bm, by.x='row.names', by.y='ensembl_gene_id') c9 <- c9[order(c9$log2FoldChange),] ranks <- c9[,3] names(ranks) <- c9$entrezgene c9.gsea <- fgsea(pathways, ranks, minSize=15, maxSize=500, nperm=1000) c9.gsea <- c9.gsea[order(c9.gsea$pval),] c9.gsea <- as.data.frame(c9.gsea) c9.gsea <- c9.gsea[, -ncol(c9.gsea)] # get rid of last column write.table(c9.gsea, "fGSEA_results_hallmark_c9orf72.txt", sep="\t", quote=F) # Remove Gender effect with Limma library(limma) design <- model.matrix(~ md$DISEASE.CODE) x_noBatch <- removeBatchEffect(rld.mat, batch = md$GENDER, design=design) nb <- rld assay(nb) <- x_noBatch plotPCA(nb, intgroup = "DISEASE.CODE") png("PCA_RNA_rimod_frontal_GenderCorrected.png", width=800, height=600) plotPCA(nb, intgroup = "DISEASE.CODE") dev.off() ## Export for YETI vst_vals <- rld.mat rownames(vst_vals) <- str_split(rownames(vst_vals), pattern="[.]", simplify = T)[,1] # MAPT mapt.vst <- vst_vals[rownames(deg.mapt),] write.table(mapt.vst, "MAPT_DEGs_vst_yeti.txt" ,sep="\t", col.names= NA, quote=F) # GRN grn.vst <- vst_vals[rownames(deg.grn),] write.table(grn.vst, "GRN_DEGs_vst_yeti.txt", sep="\t", col.names = NA, quote=F) # C9 c9.vst <- vst_vals[rownames(deg.c9),] write.table(c9.vst, "C9_DEGs_vst_yeti.txt" ,sep="\t", col.names=NA, quote=F) #== Prioritize Genes for Humanbase Use ==# # Save only significant genes for online tools hb.mapt <- deg.mapt[abs(deg.mapt$log2FoldChange) > 0.8,] hb.grn <- deg.grn[abs(deg.grn$log2FoldChange) > 0.8,] hb.c9 <- deg.c9[abs(deg.c9$log2FoldChange) > 0.8,] write.table(rownames(hb.mapt), paste("DEGs_HB_lfc0.8_mapt.ndc", "_", region, "_",current_time, ".txt", sep=""), sep="\t", quote=F, row.names=F) write.table(rownames(hb.grn), paste("DEGs_HB_lfc0.8_grn.ndc", "_", region, "_",current_time, ".txt", sep=""), sep="\t", quote=F, row.names=F) write.table(rownames(hb.c9), paste("DEGs_HB_lfc0.8_c9.ndc", "_", region, "_",current_time, ".txt", sep=""), sep="\t", quote=F, row.names=F)
ff2b6f6cb9cb88c4f0bd8aa47c03582fa139551b
f91d3993ecdceba7e19fcdd16ac31fc30121e114
/man/model_exponential_gamma.Rd
b43a2a80d1ff06a2a1f8ef7069b5641f44252ef7
[]
no_license
eliobartos/bayeselio
5e5b0e5e0bc0dd8808a93969da41d58fc0843234
97bba1bca1d54a83d22300ac14794dece7e3eb04
refs/heads/master
2023-02-26T22:52:33.625846
2021-02-02T11:50:37
2021-02-02T11:50:37
270,571,898
0
0
null
null
null
null
UTF-8
R
false
true
1,648
rd
model_exponential_gamma.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/model_exponential_gamma.R \name{model_exponential_gamma} \alias{model_exponential_gamma} \title{Run bayesian exponential-gamma model for estimating non-zero positive variable} \usage{ model_exponential_gamma(shape, rate, n_sample, sum_sample, n_post = 1e+05) } \arguments{ \item{shape}{Parameter for prior distribution representing the number of samples from before - 1} \item{rate}{Parameter for prior distribution representing the sum of samples from before} \item{n_sample}{Total number of cases in your data} \item{sum_sample}{Sum of variable for each successful case.} \item{n_post}{Size of sample from posterior distribution} } \value{ Vector of samples from posterior distribution representing mean of exponential distribution (1/lambda). Posterior distribution is Gamma(shape + n_sample, rate + sum_sample) } \description{ Runs a bayesian estimation of non-zero positive variable using exponential distribution as likelihood and gamma distribution as conjugate prior. Posterior distribution is gamma distribution. Prior used is Gamma(shape, rate) } \details{ Mean of prior distribution is shape/rate. Remember Exp(lambda) has mean of 1/lambda. } \examples{ post = model_exponential_gamma(0, 0, 20, 100) # No prior information, pror is uniform post2 = model_exponential_gamma(5, 95, 3, 50) # Prior succes rate is around 5\% with estimation strenght as it was estimated on a sample of 100 mean(post) quantile(post, probs = c(0.05, 0.95)) # 90\% highest density posterior interval mean(post2) quantile(post2, probs = c(0.05, 0.95)) } \author{ Elio Bartoš }
d3732fd612b5e968d8d6c59fa86bf6cfa8e99e13
3a80a99645855f421ecf7fd902ff92f18d1afec8
/codes/Analysis3.R
ecef3f42588184955f28723406e7dc2728735ded
[]
no_license
hjkim88/Mohamed_Flu
729c0391900518d3b851bbc14f82a025adc90c3f
13d33b396d05b0dd840e1d9ee0b1352ebf075b75
refs/heads/master
2021-04-09T20:44:51.058756
2020-04-09T20:36:44
2020-04-09T20:36:44
248,878,517
0
0
null
null
null
null
UTF-8
R
false
false
9,092
r
Analysis3.R
### # File name : Analysis3.R # Author : Hyunjin Kim # Date : Apr 9, 2020 # Email : [email protected] # Purpose : There may be a concern that age can affect the cytokine analysis. # e.g., we see cytokine level difference between IV+ and IV- but # it can happen due to age difference. # Therefore, I would like to make pie charts to see age differences # among the groups and also generate age-corrected cytokine level data, # then will produce line graphs with the age-corrected data. # # Instruction # 1. Source("Analysis3.R") # 2. Run the function "flu09_analysis3" - specify the input path and the output directory # 3. The results will be generated under the output directory # # Example # > source("The_directory_of_Analysis3.R/Analysis3.R") # > flu09_analysis3(data_path="./data/flu09_cytokine.rda", # output_dir="./results/analysis3/") ### flu09_analysis3 <- function(data_path="./data/flu09_cytokine.rda", output_dir="./results/analysis3/") { ### load libraries if(!require(ggbeeswarm, quietly = TRUE)) { install.packages("ggbeeswarm") require(ggbeeswarm, quietly = TRUE) } if(!require(gridExtra, quietly = TRUE)) { install.packages("gridExtra") require(gridExtra, quietly = TRUE) } ### load the data load(data_path) ### set types of cytokines ### defined by the Mohamed's presentation file th1_cytokines <- c("IL10", "GRO", "IL8", "GCSF", "IFNa2", "FKN", "MCP1", "MCP3", "IL1a", "IL1Ra2", "TNFa", "VEGF") th2_cytokines <- c("IL4", "IL5", "IL6", "IL9", "IL13", "IL15", "IL17") ### clinical factors to be tested ### must be in colnames(cyto_sample) factor_list <- c("FLU.Strain.Designation", "Age.at.Enrollment", "Race", "Gender", "Respiratory.Disease", "Tobacco.Use") ### data to be tested plot_df <- cyto_sample[,factor_list] ### annotate additional info - IV+/Resp+, IV+/Resp-, IV-/Resp+, IV-/Resp- plot_df$IV.Resp <- sapply(1:nrow(plot_df), function(x) { if(plot_df[x,"FLU.Strain.Designation"] == "Negative" && plot_df[x,"Respiratory.Disease"] == "Yes") { return("IV-/Resp+") } else if(plot_df[x,"FLU.Strain.Designation"] == "Negative" && plot_df[x,"Respiratory.Disease"] == "No") { return("IV-/Resp-") } else if(plot_df[x,"FLU.Strain.Designation"] != "Negative" && plot_df[x,"Respiratory.Disease"] == "Yes") { return("IV+/Resp+") } else if(plot_df[x,"FLU.Strain.Designation"] != "Negative" && plot_df[x,"Respiratory.Disease"] == "No"){ return("IV+/Resp-") } else { return(NA) } }) ### numerize the numeric column plot_df[,"Age.at.Enrollment"] <- as.numeric(plot_df[,"Age.at.Enrollment"]) cyto_nw[,"Study.Day"] <- as.numeric(cyto_nw[,"Study.Day"]) cyto_plasma[,"Study.Day"] <- as.numeric(cyto_plasma[,"Study.Day"]) ### N/A -> NA in Tobacco.Use plot_df[which(plot_df[,"Tobacco.Use"] == "N/A"),"Tobacco.Use"] <- "NA" ### annotate clinical info to the cytokine level data plot_df_nw <- merge(cyto_nw[,c("ID", "Study.Day", th1_cytokines, th2_cytokines)], plot_df, by.x = "ID", by.y = "row.names") plot_df_ps <- merge(cyto_plasma[,c("ID", "Study.Day", th1_cytokines, th2_cytokines)], plot_df, by.x = "ID", by.y = "row.names") ### remove samples that are categorized into a group with less than 10 samples for(factor in setdiff(c(factor_list, "Study.Day"), "Age.at.Enrollment")) { ### NW unique_vals <- unique(plot_df_nw[,factor]) remove_ind <- NULL for(val in unique_vals) { target_ind <- which(plot_df_nw[,factor] == val) if(length(target_ind) < 10) { remove_ind <- c(remove_ind, target_ind) } } if(length(remove_ind) > 0) { plot_df_nw <- plot_df_nw[-remove_ind,] } ### plasma unique_vals <- unique(plot_df_ps[,factor]) remove_ind <- NULL for(val in unique_vals) { target_ind <- which(plot_df_ps[,factor] == val) if(length(target_ind) < 10) { remove_ind <- c(remove_ind, target_ind) } } if(length(remove_ind) > 0) { plot_df_ps <- plot_df_ps[-remove_ind,] } } ### add new column - Age.over.50 plot_df_nw$Age.over.50 <- "FALSE" plot_df_nw$Age.over.50[plot_df_nw$Age.at.Enrollment >= 50] <- "TRUE" plot_df_ps$Age.over.50 <- "FALSE" plot_df_ps$Age.over.50[plot_df_ps$Age.at.Enrollment >= 50] <- "TRUE" ### 1. pie charts ### create result directory outDir <- paste0(output_dir, "1_Pie_Chart/") dir.create(path = outDir, showWarnings = FALSE, recursive = TRUE) ### NW ### create an analysis-ready data for the pie charts pie_data <- vector("list", length = length(unique(plot_df_nw$IV.Resp))) names(pie_data) <- unique(plot_df_nw$IV.Resp) for(group in unique(plot_df_nw$IV.Resp)) { pie_data[[group]] <- data.frame(Age.over.50=c("FALSE", "TRUE"), n=c(length(intersect(which(plot_df_nw$IV.Resp == group), which(plot_df_nw$Age.over.50 == "FALSE"))), length(intersect(which(plot_df_nw$IV.Resp == group), which(plot_df_nw$Age.over.50 == "TRUE")))), stringsAsFactors = FALSE, check.names = FALSE) } ### get pie charts p <- vector("list", length = length(unique(plot_df_nw$IV.Resp))) names(p) <- unique(plot_df_nw$IV.Resp) for(group in unique(plot_df_nw$IV.Resp)) { total_sample_num <- sum(pie_data[[group]]$n) pct <- sapply(pie_data[[group]]$n, function(x) signif(x*100/total_sample_num, digits = 3)) pct <- paste0(pie_data[[group]]$n, "(", pct, "%)") p[[group]] <- ggplot(data = pie_data[[group]], aes(x = "", y = n, fill = Age.over.50)) + geom_bar(stat = "identity", width = 1) + coord_polar(theta="y") + geom_text(label = pct, position = position_stack(vjust = 0.5), size = 6) + labs(x = NULL, y = NULL, title = group) + theme_classic(base_size = 16) + theme(plot.title = element_text(hjust = 0.5, color = "black"), axis.line = element_blank(), axis.ticks = element_blank()) } ### arrange the plots and print out fName <- paste0("Pie_Chart_NW_IV.Resp_Age") g <- arrangeGrob(grobs = p, nrow = 2, ncol = 2, top = fName) ggsave(file = paste0(outDir, fName, ".png"), g, width = 15, height = 9, dpi = 300) ### PS ### create an analysis-ready data for the pie charts pie_data <- vector("list", length = length(unique(plot_df_ps$IV.Resp))) names(pie_data) <- unique(plot_df_ps$IV.Resp) for(group in unique(plot_df_ps$IV.Resp)) { pie_data[[group]] <- data.frame(Age.over.50=c("FALSE", "TRUE"), n=c(length(intersect(which(plot_df_ps$IV.Resp == group), which(plot_df_ps$Age.over.50 == "FALSE"))), length(intersect(which(plot_df_ps$IV.Resp == group), which(plot_df_ps$Age.over.50 == "TRUE")))), stringsAsFactors = FALSE, check.names = FALSE) } ### get pie charts p <- vector("list", length = length(unique(plot_df_ps$IV.Resp))) names(p) <- unique(plot_df_ps$IV.Resp) for(group in unique(plot_df_ps$IV.Resp)) { total_sample_num <- sum(pie_data[[group]]$n) pct <- sapply(pie_data[[group]]$n, function(x) signif(x*100/total_sample_num, digits = 3)) pct <- paste0(pie_data[[group]]$n, "(", pct, "%)") p[[group]] <- ggplot(data = pie_data[[group]], aes(x = "", y = n, fill = Age.over.50)) + geom_bar(stat = "identity", width = 1) + coord_polar(theta="y") + geom_text(label = pct, position = position_stack(vjust = 0.5), size = 6) + labs(x = NULL, y = NULL, title = group) + theme_classic(base_size = 16) + theme(plot.title = element_text(hjust = 0.5, color = "black"), axis.line = element_blank(), axis.ticks = element_blank()) } ### arrange the plots and print out fName <- paste0("Pie_Chart_PS_IV.Resp_Age") g <- arrangeGrob(grobs = p, nrow = 2, ncol = 2, top = fName) ggsave(file = paste0(outDir, fName, ".png"), g, width = 15, height = 9, dpi = 300) }
a3be76283e4e6477def67d9d2007b462afc1aa60
82eeee2eaf170541c9336a00d14e6ac1f3d6f4fa
/ADSP - 로지스틱 회귀모형.R
093b834d7b65ba8dc95610462e779b4169631c81
[]
no_license
wpzero1/RStudy
58d19493f001f3a2d06e4864eeeb6ac44389c0a2
521bd66fcc8982303040b501190c348d7eb6140d
refs/heads/master
2020-06-27T06:14:08.227373
2019-08-16T12:54:30
2019-08-16T12:54:30
174,159,271
0
0
null
null
null
null
UTF-8
R
false
false
5,407
r
ADSP - 로지스틱 회귀모형.R
#로지스틱 회귀모형 # 8장 정형 데이터 마이닝 # 01. 데이터 마이닝 개요 : 거대한 양의 데이터 속에서 쉽게 드러나지 않는 유용한 정보를 찾아내는 과정 # (1) 분류 : 의사결정나무, memory-based reasoning 등 # (2) 추정 : 연속된 변수값 추정. 신경망 모형 # (3) 예측 : 장바구니 분석, 의사결정나무, 신경망 등 # (4) 연관분석 : 장바구니분석 # (5) 군집 : 데이터마이닝이나 모델링의 준비 단계 # (6) 기술 # 데이터마이닝 5단계 : 목적 정의 - 데이터 준비 - 데이터 가공 - 데이터 마이닝 기법 적용 - 검증 # 02. 분류분석 # 1. 로지스틱 회귀모형 *** : 반응변수가 범주형인 경우. 즉 두가지 범주로 되어있을 때, 종속변수와 독립변수간의 관계식을 이용해 두 집단 분류 # 회귀 분석이기에 지도학습으로 분류(Supervised Learning). 선호되는 이유? 독립변수에 대해 어떠한 가정도 필요x, 연속성 및 이산형 모두 가능함. # 오즈비(Odds ratio) : 변수가 성공/실패로 구성된다면, 한 집단이 다른 집단에 비해 성공할 승산의 비에 대한 측정량 # 성공률/실패율 = Pi/(1-Pi) # 오즈비는 음이 아닌 실숫값. 성공 가능성 높은 경우 1.0보다 큰 값, 실패가 일어날 가능성이 높으면 1.0보다 작은 값 가짐 # 온도에 따른 거북이 알의 수컷, 암컷 결과 실험 x<-c(27.2,27.7,28.3,28.4,29.9) #온도 male<-c(2,17,26,19,27) #수컷 수 female<-c(25,7,4,8,1) #암컷 수 total=male+female #합계 pmale<-male/total #수컷 비율 # 독립변수 : 온도, 종속변수 : 수컷비율 # 단순선형회귀식 z<-lm(pmale~x) #회귀분석(종속~독립) summary(z) #추정 회귀식 : 수컷비율 = -6.9020+0.2673*온도 p<-coefficients(z)[1]+coefficients(z)[2]*x p # 1보다 큰 값이 존재함 #로짓변환 값 log(pmale/(1-pmale))을 종속변수로 한 단순성형회귀식 추정. # 적절한 변환 통해 곡선을 직선 형태로 바꿀 수 있음 logit<-log(pmale/(1-pmale)) z1<-lm(logit~x) summary(z1) # 예측값 수컷비 출력 logit2<-coefficients(z1)[1]+coefficients(z1)[2]*x rmalehat<-exp(logit2)/(1+exp(logit2)) rmalehat # 로짓변환하여 온도별 예측 확률값은 0~1 사이 값 가짐 # 최대우도추정법 : 관측값들이 가정된 모집단에서 하나의 표본으로 추출될 가능성이 가장 크게 되도록 하는 회귀계수 추정법 logit<-glm(pmale~x,family = "binomial",weights = total) summary(logit) # 추정 회귀식 : 수컷 비율 = -61.3183+2.211*온도. 27.3도에서 암컷과 수컷을 구분짓는 경계값이 됨 # 회귀 계수 해석 exp(-61.3183)*exp(2.211*27) #27도에서 오즈 예측값. 0.2 exp(-61.3183)*exp(2.211*28) #28도에서 오즈 예측값. 1.8 #28도에서 오즈 예측값은 27도에서의 오즈 예측값보다 exp(2.211)차이. #28도에서 암컷에서 수컷으로 부화할 가능성은 0.2*9.125=1.825 # iris 데이터를 이용한 로지스틱 회귀 iris colnames(iris)<-tolower(colnames(iris)) #컬럼명 소문자로 변환 a<-subset(iris,species=="setosa"|species=="versicolor") #로지스틱 회귀를 하기 위해 범주가 2개인 setosa=1과 versicolor=2만 추출. a$species<-factor(a$species) #2개 레벨을 가진 새로운 factor(범주)형 #glm() : 선형회귀분석 lm과 유사. glm(모형,data,family="binomial") b<-glm(species~sepal.length,data=a,family = binomial) summary(b) # sepal.length p-value 유의수준보다 낮아 매우 유의한 변수다. coef(b) #sepal.length : 5.140336 (회귀계수) #로지스틱 회귀계수 값은 exp(5.140336)의 값이므로 약 170배가 된다. exp(coef(b))["sepal.length"] #sepal.length가 한 단위 증가함에 따라 Vericolor일 오즈가 10배 증가 fitted(b)[c(1:3,98:100)] #로지스틱 모델은 0 또는 1로 값을 예측하기에, 0.5이하면 setosa, 0.5이상이면 versicolor 예측값을 의미 predict(b,newdata = a[c(1,50,51,100),],type = "response") #type을 response로 지정하고 예측 수행하면, 0~1 사이 확률 구해줌 cdplot(species~sepal.length,data=a) #연속형 변수의 변화에 따른 범주형 변수의 조건부 분포를 보여줌. #즉 sepal.length가 증가함에 따라 veriscolor의 확률이 증가함을 보여준다. #다항 로지스틱 회귀분석 : 32종류의 자동차에 대한 11개 변수값 측정 자료 attach(mtcars) #attach는 코드에서 필드이름만으로 데이터에 바로 접근 가능 str(mtcars) #이항변수 vs(0:flat engine, 1:straight engine)를 반응변수로, #mpg와 am(Transmission: automatic=0, manual=1)을 예측변수로 하는 로지스틱 회귀모형 추정 vs mpg am glm.vs<-glm(vs~mpg+am,data=mtcars,family = "binomial") summary(glm.vs) # 해석 #am이 주어질 때, mpg값이 한 단위 증가할 때 vs=1 오즈가 exp(0.6809)=1.98(98%) 증가 #mpg가 주어질 때 오즈가 대한 am의 효과는 exp(-3.0073)=0.05배. 변속기가 수동인 경우 자동에 비해 vs=1의 오즈가 95% 감소 anova(glm.vs,test="Chisq") #모형의 적합 단계별로 이탈로의 감소량과 유의성 검정 결과 제시 #Mcfadden R square로 모델 fit 확인 가능 install.packages("pscl") library(pscl) pR2(glm.vs) #R square 값이 0.69로, 데이터셋의 분산의 약 69.1% 설명
948f246ba577b1f77ecb5c3b12adc9fc1b8c0196
99f3d631d68638ea24f16e3008fd48d883606982
/Car_crash.R
0b7e3a9f897b0a7f1598b516ca1136722ad5253a
[]
no_license
BN-project/BN-project
d1d9552a7acb9af479298dede8b4123503416620
0c6582270a666b66317a75eee95297e249cb9100
refs/heads/master
2021-09-03T07:03:14.065512
2018-01-06T17:36:31
2018-01-06T17:36:31
109,718,110
0
0
null
null
null
null
UTF-8
R
false
false
30,740
r
Car_crash.R
#### Probabilistic Modelling and Bayesian Networks #### #### The Project: Car Crashes #### ############################################################# # Reading the document: crashes <-read.csv("Car_crash_data_project.csv",header=T,sep=",") #### Preparation and exploration of data #### # Number of variables and observations: dim(crashes) # 684 rows (observations) and 27 columns (variables) anyNA(crashes) # True # Name of the variables names(crashes) # [1] "Month" "Year" "Week_day" # [4] "Type_day" "Casualties" "Num_vehicles" # [7] "Lanes" "Road_width" "Lane_width" # [10] "Hard_shoulder" "Paved_hard_shoulder" "Security_barriers" # [13] "Aditional_panels" "Edge_landmarks" "Reflectors" # [16] "Surface" "Luminosity" "Atmosferic_factors" # [19] "Limited_visibility" "Danger_signs" "Crash_type" # [22] "Traffic" "Conc_distraction" "Conc_alcohol_durgs" # [25] "Conc_speed" "Conc_tyred_sleepy_ill" "Conc_weather" # 1.- Month anyNA(crashes$Month) # FALSE class(crashes$Month) # Factor levels(crashes$Month) # Months # length(levels(crashes$Month)) --> 12 summary(crashes$Month) # Frequency tables # Apr Aug Dec Feb Jan Jul Jun Mar May Nov Oct Sep # 39 52 67 55 41 67 66 70 47 64 64 52 plot(crashes$Month) # Categorical, 12 categories, no NA, no 0 frequencies # 2.- Year anyNA(crashes$Year) # FALSE class(crashes$Year) # INTEGER !! crashes$Year <- as.factor(crashes$Year) # Factor transformation !! levels(crashes$Year) # 2006, 2015 summary(crashes$Year) # Frequency tables # 2006 2015 # 431 253 plot(crashes$Year) # Categorical, 2 categories, no NA, no 0 frequencies # 3.- Week day anyNA(crashes$Week_day) # FALSE class(crashes$Week_day) # INTEGER !! crashes$Week_day <- as.factor(crashes$Week_day) # Factor transformation !! levels(crashes$Week_day) # Days in numeric representation summary(crashes$Week_day) # Frequency tables # 1 2 3 4 5 6 7 # 86 108 92 90 102 107 99 plot(crashes$Week_day) # Categorical, 7 categories, no NA, no 0 frequencies # 4.- Type day anyNA(crashes$Type_day) # FALSE class(crashes$Type_day) # Factor levels(crashes$Type_day) # Holiday, post-holiday, pre-holiday, work-day summary(crashes$Type_day) # Frequency tables # Holiday Post_holiday Pre_holiday Work_day # 125 93 120 346 plot(crashes$Type_day) # Categorical, 4 categories, no NA, no 0 frequencies # 5.- Casualties (Damnificados) anyNA(crashes$Casualties) # FALSE class(crashes$Casualties) # Integer, N min(crashes$Casualties); max(crashes$Casualties) # Bounds: [1:33] table(crashes$Casualties) # Values: 1-10,20,33 ; Frequencies. # 1 2 3 4 5 6 7 8 9 10 20 33 # 292 221 89 42 20 9 5 2 1 1 1 1 summary(crashes$Casualties) # Summary of statisticals # Min. 1st Qu. Median Mean 3rd Qu. Max. # 1.000 1.000 2.000 2.114 2.250 33.000 boxplot(crashes$Casualties) # Integer ordinal, Values: 1-10,20,33, no NA # Poisson (lambda): Lambda estimation f<-function(lambda) {return(sum(log10(dpois(crashes$Casualties, lambda))))} lambda.values <- seq(1, 10, 0.1) loglikelihood <- sapply(lambda.values , FUN=f) df <- data.frame(Lambda=lambda.values , Loglikelihood=loglikelihood) ggplot(df, aes(x=Lambda, y=Loglikelihood)) + geom_line(size=1.1) + labs(x=expression(lambda), y="Log-likelihood") + geom_vline(xintercept=2.1) # df$Lambda[which(df$Loglikelihood ==max(df$Loglikelihood))] --> 2.1 # 6.- Num_vehicles anyNA(crashes$Num_vehicles) # FALSE class(crashes$Num_vehicles) # Integer, N min(crashes$Num_vehicles); max(crashes$Num_vehicles) # Bounds: [1:6] table(crashes$Num_vehicles) # Values: 1-6 ; Frequencies. # 1 2 3 4 5 6 # 329 284 57 9 4 1 summary(crashes$Num_vehicles) # Summary of statisticals # Min. 1st Qu. Median Mean 3rd Qu. Max. # 1.000 1.000 2.000 1.652 2.000 6.000 boxplot(crashes$Num_vehicles) # Integer ordinal, Values: 1-6, no NA # Poisson (lambda): Lambda estimation f<-function(lambda) {return(sum(log10(dpois(crashes$Num_vehicles, lambda))))} lambda.values <- seq(1, 10, 0.1) loglikelihood <- sapply(lambda.values , FUN=f) df <- data.frame(Lambda=lambda.values , Loglikelihood=loglikelihood) ggplot(df, aes(x=Lambda, y=Loglikelihood)) + geom_line(size=1.1) + labs(x=expression(lambda), y="Log-likelihood") + geom_vline(xintercept=1.7) # df$Lambda[which(df$Loglikelihood ==max(df$Loglikelihood))] --> 1.7 # 7.- Lanes anyNA(crashes$Lanes) # FALSE class(crashes$Lanes) # Integer min(crashes$Lanes); max(crashes$Lanes) # Bounds: [0:5] table(crashes$Lanes) # Values: 0-5 ; Frequencies. # 0 1 2 3 4 5 # 42 26 558 50 6 2 summary(crashes$Lanes) # Summary of statisticals # Min. 1st Qu. Median Mean 3rd Qu. Max. # 0.000 2.000 2.000 1.939 2.000 5.000 boxplot(crashes$Lanes) # Integer ordinal, Values: 0-5, no NA # 8.- Road_width anyNA(crashes$Road_width) # TRUE which(is.na(crashes$Road_width) ==T) # NA values. All of them in 2015 data # [1] 436 437 448 454 455 467 468 477 480 483 486 489 495 502 518 527 528 537 540 541 # [21] 543 552 558 563 568 570 578 585 598 600 611 616 628 640 641 649 654 657 662 669 # [41] 675 676 length(which(is.na(crashes$Road_width) ==T)) # 42 class(crashes$Road_width) # Factor levels(crashes$Road_width) # "6m_to_7m", "Less_6m", "More_7m" summary(crashes$Road_width) # Frequency tables # 6m_to_7m Less_6m More_7m NA's # 375 29 238 42 plot(crashes$Road_width) # Categorical, 3 categories, NA:42 (All in 2015), no 0 frequencies # 9.- Lane_width anyNA(crashes$Lane_width) # TRUE which(is.na(crashes$Lane_width) ==T) # NA values. All of them in 2015 data. # [1] 436 437 448 454 455 467 468 477 480 483 486 489 495 502 518 527 528 537 540 541 # [21] 543 552 558 563 568 570 578 585 598 600 611 616 628 640 641 649 654 657 662 669 # [41] 675 676 which(is.na(crashes$Lane_width) ==T)==which(is.na(crashes$Road_width) ==T) # ALL TRUE # length(which(is.na(crashes$Lane_width) ==T)) --> 42 class(crashes$Lane_width) # Factor levels(crashes$Lane_width) # "325m_to_375m", "Less_325m", "More_375m" summary(crashes$Lane_width) # Frequency tables # 325m_to_375m Less_325m More_375m NA's # 509 88 45 42 plot(crashes$Lane_width) # Categorical, 3 categories, NA:42 (All in 2015)(same as Road_width), no 0 frequencies # 10.- Hard_shoulder (Arcen) anyNA(crashes$Hard_shoulder) # TRUE which(is.na(crashes$Hard_shoulder) ==T) # NA values. All of them in 2015 data. # [1] 436 437 448 454 455 467 468 477 480 483 486 489 495 502 518 527 528 537 540 541 # [21] 543 552 558 563 568 570 578 585 598 600 611 616 628 640 641 649 654 657 662 669 # [41] 675 676 which(is.na(crashes$Hard_shoulder) ==T)==which(is.na(crashes$Road_width) ==T) # ALL TRUE # length(which(is.na(crashes$Hard_shoulder) ==T)) --> 42 class(crashes$Hard_shoulder) # Factor levels(crashes$Hard_shoulder) # "150m_to_250m", "Less_150m", "More_250m", "None" summary(crashes$Hard_shoulder) # Frequency tables # 150m_to_250m Less_150m More_250m None NA's # 47 266 5 324 42 plot(crashes$Hard_shoulder) # Categorical, 4 categories, NA:42 (All in 2015)(same as Road_width), no 0 frequencies # 11.- Paved_hard_shoulder anyNA(crashes$Paved_hard_shoulder) # TRUE which(is.na(crashes$Paved_hard_shoulder) ==T) # NA values. All of them in 2015 data. # [1] 436 437 448 454 455 467 468 477 480 483 486 489 495 502 518 527 528 537 540 541 # [21] 543 552 558 563 568 570 578 585 598 600 611 616 628 640 641 649 654 657 662 669 # [41] 675 676 which(is.na(crashes$Paved_hard_shoulder) ==T)==which(is.na(crashes$Road_width) ==T) # ALL TRUE # length(which(is.na(crashes$Paved_hard_shoulder) ==T)) --> 42 class(crashes$Paved_hard_shoulder) # Factor levels(crashes$Paved_hard_shoulder) # "N", "Y" summary(crashes$Paved_hard_shoulder) # Frequency tables # N Y NA's # 235 407 42 plot(crashes$Paved_hard_shoulder) # Categorical, 2 categories, NA:42 (All in 2015)(same as Road_width), no 0 frequencies # 12.- Security_barriers anyNA(crashes$Security_barriers) # TRUE which(is.na(crashes$Security_barriers) ==T) # NA values. All of them in 2015 data. # [1] 436 437 448 454 455 467 468 477 480 483 486 489 495 502 518 527 528 537 540 541 # [21] 543 552 558 563 568 570 578 585 598 600 611 616 628 640 641 649 654 657 662 669 # [41] 675 676 which(is.na(crashes$Security_barriers) ==T)==which(is.na(crashes$Road_width) ==T) # ALL TRUE # length(which(is.na(crashes$Security_barriers) ==T)) --> 42 class(crashes$Security_barriers) # Factor levels(crashes$Security_barriers) # "N", "Y" summary(crashes$Security_barriers) # Frequency tables # N Y NA's # 391 251 42 plot(crashes$Security_barriers) # Categorical, 2 categories, NA:42 (All in 2015)(same as Road_width), no 0 frequencies # 13.- Additional_panels anyNA(crashes$Aditional_panels) # TRUE which(is.na(crashes$Aditional_panels) ==T) # NA values. All of them in 2015 data. # [1] 436 437 448 454 455 467 468 477 480 483 486 489 495 502 518 527 528 537 540 541 # [21] 543 552 558 563 568 570 578 585 598 600 611 616 628 640 641 649 654 657 662 669 # [41] 675 676 which(is.na(crashes$Aditional_panels) ==T)==which(is.na(crashes$Road_width) ==T) # ALL TRUE # length(which(is.na(crashes$Aditional_panels) ==T)) --> 42 class(crashes$Aditional_panels) # Factor levels(crashes$Aditional_panels) # "N", "Y" summary(crashes$Aditional_panels) # Frequency tables # N Y NA's # 452 190 42 plot(crashes$Aditional_panels) # Categorical, 2 categories, NA:42 (All in 2015)(same as Road_width), no 0 frequencies # 14.- Edge_landmarks anyNA(crashes$Edge_landmarks) # TRUE which(is.na(crashes$Edge_landmarks) ==T) # NA values. All of them in 2015 data. # [1] 436 437 448 454 455 467 468 477 480 483 486 489 495 502 518 527 528 537 540 541 # [21] 543 552 558 563 568 570 578 585 598 600 611 616 628 640 641 649 654 657 662 669 # [41] 675 676 which(is.na(crashes$Edge_landmarks) ==T)==which(is.na(crashes$Road_width) ==T) # ALL TRUE # length(which(is.na(crashes$Edge_landmarks) ==T)) --> 42 class(crashes$Edge_landmarks) # Factor levels(crashes$Edge_landmarks) # "N", "Y" summary(crashes$Edge_landmarks) # Frequency tables # N Y NA's # 280 362 42 plot(crashes$Edge_landmarks) # Categorical, 2 categories, NA:42 (All in 2015)(same as Road_width), no 0 frequencies # 15.- Reflectors anyNA(crashes$Reflectors) # TRUE which(is.na(crashes$Reflectors) ==T) # NA values. All of them in 2015 data. # [1] 436 437 448 454 455 467 468 477 480 483 486 489 495 502 518 527 528 537 540 541 # [21] 543 552 558 563 568 570 578 585 598 600 611 616 628 640 641 649 654 657 662 669 # [41] 675 676 which(is.na(crashes$Reflectors) ==T)==which(is.na(crashes$Road_width) ==T) # ALL TRUE # length(which(is.na(crashes$Reflectors) ==T)) --> 42 class(crashes$Reflectors) # Factor levels(crashes$Reflectors) # "N", "Y" summary(crashes$Reflectors) # Frequency tables # N Y NA's # 324 318 42 plot(crashes$Reflectors) # Categorical, 2 categories, NA:42 (All in 2015)(same as Road_width), no 0 frequencies # 16.- Surface anyNA(crashes$Surface) # FALSE class(crashes$Surface) # Factor levels(crashes$Surface) # "Dry", "Flooded", "Mud_or_gravel", "Oil", "Other", "Snow", "Wet" # length(levels(crashes$Surface)) --> 7 summary(crashes$Surface) # Frequency tables # Dry Flooded Mud_or_gravel Oil Other Snow Wet # 372 4 3 10 17 2 276 plot(crashes$Surface) # Categorical, 7 categories, no NA, ~ no 0 frequencies # 17.- Luminosity anyNA(crashes$Luminosity) # FALSE class(crashes$Luminosity) # Factor levels(crashes$Luminosity) # "Artificial_enough", "Artificial_not_enough", "Daylight", "Dusk", # "Dusk_artificial", "Dusk_no_artificial", "No_light" # length(levels(crashes$Luminosity)) --> 7 summary(crashes$Luminosity) # Frequency tables # Artificial_enough Artificial_not_enough Daylight Dusk Dusk_artificial Dusk_no_artificial No_light # 48 30 468 29 6 14 89 plot(crashes$Luminosity) # Categorical, 7 categories, no NA, ~ no 0 frequencies # 18.- Atmospheric_factors anyNA(crashes$Atmosferic_factors) # TRUE which(is.na(crashes$Atmosferic_factors) ==T) # NA values. All of them in 2006 data. # 24 25 26 49 53 55 128 368 380 405 414 419 421 length(which(is.na(crashes$Atmosferic_factors) ==T)) # 13 class(crashes$Atmosferic_factors) # Factor levels(crashes$Atmosferic_factors) # "Clear", "Cloudy", "Hail" , "Heavy_rain", "Light_fog", # "Light_rain", "Snowing", "Strong_wind" # length(levels(crashes$Atmosferic_factors)) --> 8 summary(crashes$Atmosferic_factors) # Frequency tables # Clear Cloudy Hail Heavy_rain Light_fog Light_rain Snowing Strong_wind NA's # 395 37 1 59 7 167 2 3 13 plot(crashes$Atmosferic_factors) # Categorical, 8 categories, NA:13 (All in 2006), no 0 frequencies # 19.- Limited_visibility anyNA(crashes$Limited_visibility) # FALSE class(crashes$Limited_visibility) # Factor levels(crashes$Limited_visibility) # "N" "Y" summary(crashes$Limited_visibility) # Frequency tables # N Y # 276 408 plot(crashes$Limited_visibility) # Categorical, 2 categories, no NA, no 0 frequencies # 20.- Danger_signs anyNA(crashes$Danger_signs) # TRUE which(is.na(crashes$Danger_signs) ==T) # NA values. All of them in 2015 data. # [1] 436 437 448 454 455 467 468 477 480 483 486 489 495 502 518 527 528 537 540 541 # [21] 543 552 558 563 568 570 578 585 598 600 611 616 628 640 641 649 654 657 662 669 # [41] 675 676 which(is.na(crashes$Danger_signs) ==T)==which(is.na(crashes$Road_width) ==T) # ALL TRUE # length(which(is.na(crashes$Danger_signs) ==T)) --> 42 class(crashes$Danger_signs) # Factor levels(crashes$Danger_signs) # "No", "Not_needed", "Yes" # length(levels(crashes$Danger_signs)) --> 3 summary(crashes$Danger_signs) # Frequency tables # No Not_needed Yes NA's # 190 141 311 42 plot(crashes$Danger_signs) # Categorical, 3 categories, NA:42 (All in 2015)(same as Road_width), no 0 frequencies # 21.- Crash_type anyNA(crashes$Crash_type) # FALSE class(crashes$Crash_type) # Factor levels(crashes$Crash_type) #"Collision", "Crash", "Fall", "Off_the_road", "Other","Ped_run_over", "Rollover" # length(levels(crashes$Crash_type)) --> 7 summary(crashes$Crash_type) # Frequency tables # Collision Crash Fall Off_the_road Other Ped_run_over Rollover # 361 28 23 91 156 14 11 plot(crashes$Crash_type) # Categorical, 7 categories, no NA, ~ no 0 frequencies # 22.- Traffic anyNA(crashes$Traffic) # TRUE which(is.na(crashes$Traffic) ==T) # NA values. All of them in 2015 data. # [1] 433 436 437 438 443 445 446 447 448 449 450 451 452 453 454 455 456 459 461 462 463 # [22] 467 468 472 473 476 477 478 479 480 481 482 483 486 488 489 492 493 494 495 497 500 # [43] 502 503 506 508 509 511 512 513 518 519 520 527 528 533 534 537 539 540 541 542 543 # [64] 552 554 555 556 558 559 560 561 563 564 566 567 568 570 571 573 575 576 577 578 580 # [85] 581 583 584 585 586 591 592 593 595 596 598 599 600 601 602 603 604 606 607 610 611 # [106] 612 613 614 616 620 622 625 626 628 629 630 631 632 633 635 636 637 639 640 641 643 # [127] 647 648 649 650 651 654 656 657 658 662 665 669 671 672 673 674 675 676 680 681 682 # [148] 683 intersect(which(is.na(crashes$Traffic) ==T),which(is.na(crashes$Road_width) ==T) )==which(is.na(crashes$Road_width) ==T) # ALL TRUE length(which(is.na(crashes$Traffic) ==T)) # 148 class(crashes$Traffic) # Factor levels(crashes$Traffic) # "Heavy", "Jam", "Light" # length(levels(crashes$Traffic)) --> 3 summary(crashes$Traffic) # Frequency tables # Heavy Jam Light NA's # 33 13 490 148 plot(crashes$Traffic) # Categorical, 3 categories, NA:148 (All in 2015)(included Road_width), no 0 frequencies # 23.- Conc_distraction anyNA(crashes$Conc_distraction) # FALSE class(crashes$Conc_distraction) # Factor levels(crashes$Conc_distraction) # "N", "Y" summary(crashes$Conc_distraction) # Frequency tables # N Y # 481 203 plot(crashes$Conc_distraction) # Categorical, 2 categories, no NA, no 0 frequencies # 24.- Conc_alcohol_durgs anyNA(crashes$Conc_alcohol_durgs) # FALSE class(crashes$Conc_alcohol_durgs) # Factor levels(crashes$Conc_alcohol_durgs) # "N", "Y" summary(crashes$Conc_alcohol_durgs) # Frequency tables # N Y # 658 26 plot(crashes$Conc_alcohol_durgs) # Categorical, 2 categories, no NA, no 0 frequencies # 25.- Conc_speed anyNA(crashes$Conc_speed) # FALSE class(crashes$Conc_speed) # Factor levels(crashes$Conc_speed) # "N", "Y" summary(crashes$Conc_speed) # Frequency tables # N Y # 579 105 plot(crashes$Conc_speed) # Categorical, 2 categories, no NA, no 0 frequencies # 26.- Conc_tyred_sleepy_ill anyNA(crashes$Conc_tyred_sleepy_ill) # FALSE class(crashes$Conc_tyred_sleepy_ill) # Factor levels(crashes$Conc_tyred_sleepy_ill) # "N", "Y" summary(crashes$Conc_tyred_sleepy_ill) # Frequency tables # N Y # 588 96 plot(crashes$Conc_tyred_sleepy_ill) # Categorical, 2 categories, no NA, no 0 frequencies # 27.- Conc_weather anyNA(crashes$Conc_weather) # FALSE class(crashes$Conc_weather) # Factor levels(crashes$Conc_weather) # "N", "Y" summary(crashes$Conc_weather) # Frequency tables # N Y # 588 96 plot(crashes$Conc_weather) # Categorical, 2 categories, no NA, no 0 frequencies #### Separate the samples of 2006 and 2015 crashes2015 <- crashes[which(crashes["Year"] == '2015' ),][,-2] crashes2006 <- crashes[which(crashes["Year"] == '2006' ),][,-2] #### Estimation of values for NA of 2006 # Decision tree and estimate values library(rpart) crashes2006.test <- crashes2006[which(is.na(crashes2006[,17])),-17] crashes2006.train <- crashes2006[which(!(is.na(crashes2006[,17]))),] names(crashes2006.train) d.tr <- rpart(Atmosferic_factors~., data = crashes2006.train) plot(d.tr, branch=0, margin=0.25, uniform=TRUE) text(d.tr, use.n=TRUE, splits=TRUE, pretty=6) predict(d.tr, crashes2006.test) # We'll take the highest probability (Minimum max value > .7) predictions <- predict(d.tr, crashes2006.test, "vector") atmNAs2006 <- which(is.na(crashes2006[,17])) # We've tried estimating the values using all the data except from variable Traffic and "the 42 NA instances". # Just one significant change. We've decided to use the 2006 prediction. #### Estimation of values for NA of 2015 # Remove Traffic + Remove NA instances crashes2015 <- crashes2015[,-21] #names(crashes2015) crashes2015 <- crashes2015[-(which(is.na(crashes2015$Danger_signs) ==T)),] # Verification: anyNA(crashes2015) ## Creation of crashes2 (combine the estimation values 1 of 2006 and 2015) to see # the relation between variables. crashes2 <-crashes[,-22] crashes2 <- crashes2[-(which(is.na(crashes2$Danger_signs) ==T)),] crashes2$Atmosferic_factors[atmNAs] <- levels(crashes2[,18])[predictions] #### Converting numeric attributes to categorical # 1. More than 5 casualties -> new category crashes2[which(crashes2[,5]>5),5]="more_than_5" crashes2[,5] <-as.factor(crashes2[,5]) # 2. More than 2 vehicles -> new category crashes2[which(crashes2[,6]>2),6]="more_than_2" crashes2[,6] <-as.factor(crashes2[,6]) #table(crashes2[,6]) # 3. More than 2 lanes -> new category crashes2[which(crashes2[,7]>2),7]="more_than_2" crashes2[,7] <-as.factor(crashes2[,7]) #### Modification of the data observing the first attempt of the model # 1. Extreme category surface created -> new category library(car) crashes2$Surface <- recode(crashes2$Surface,"'Dry'='Dry';'Wet'='Wet';else='Extreme'") # 2. Surface: grouping Dusk categories -> new category (diff between 2006 and 2015) crashes2$Luminosity <- recode(crashes2$Luminosity,"'Artificial_enough'='Artificial_enough';'Artificial_not_enough'='Artificial_not_enough';'Daylight'='Daylight';'No_light'='No_light';else='Dusk'") # Variable relations: Chi-square matrix p-value chisqmatrix <- function(x) { names = colnames(x); num = length(names) m = matrix(nrow=num,ncol=num,dimnames=list(names,names)) for (i in 1:(num-1)) { for (j in (i+1):num) { m[i,j] = chisq.test(x[,i],x[,j])$p.value } } return (m) } mat = chisqmatrix(crashes2) mat # Some frequency table observations table(crashes2$Type_day,crashes2$Week_day) table(crashes2$Surface,crashes2$Atmosferic_factors) table(crashes2$Num_vehicles,crashes2$Casualties) table(crashes2$Hard_shoulder,crashes2$Paved_hard_shoulder) table(crashes2$Edge_landmarks,crashes2$Reflectors) table(crashes2$Atmosferic_factors,crashes2$Conc_weather) # Remove Week_day, Casualties, Paved_hard_shoulder, Edge landmarks, Atmosferic_factors, # Crash Type (because of low p-values) crashes2 <- crashes2[,-c(3,5,11,14,18,21)] ## Finally, we separate data from 2006 and 2015 crashes2.2006 <- crashes2[which(crashes2["Year"] == '2006' ),][,-2] crashes2.2015 <- crashes2[which(crashes2["Year"] == '2015' ),][,-2] #### Modelling the data library(bnlearn) library(Rgraphviz) library(ggplot2) ## 2006 data # Sampling data set.seed(937) #937 rs <- sample(1:431, 300, replace=F) crashes2.2006.train <- crashes2.2006[rs,] crashes2.2006.test <- crashes2.2006[-rs,] ## 2015 data # Sampling data rs2 <- sample(1:211, 150, replace=F) crashes2.2015.train <- crashes2.2015[rs2,] crashes2.2015.test <- crashes2.2015[-rs2,] ### Modelling (always optimized) 2006 # 1. gs model2006.gs <- gs(crashes2.2006.train) # 2. fast.iamb model2006.iamb <-fast.iamb(crashes2.2006.train) # 3. mmpc model2006.mmpc <- mmpc(crashes2.2006.train) # 4. hc 10/7 model2006.hc.bic <- hc(crashes2.2006.train,restart = 10, perturb = 7) model2006.hc.k2 <- hc(crashes2.2006.train,restart = 10, perturb = 7,score = "k2") model2006.hc.bde <- hc(crashes2.2006.train,restart = 10, perturb = 7,score = "bde") bnlearn::score(x=model2006.hc.bic, data=crashes2.2006.train, type="bic") # -4519.796 bnlearn::score(x=model2006.hc.k2, data=crashes2.2006.train, type="bic") # -4698.222 bnlearn::score(x=model2006.hc.bde, data=crashes2.2006.train, type="bic") # -4519.244 # We will use model2006.hc.bde # 5. tabu model2006.tabu.bic <- tabu(crashes2.2006.train) model2006.tabu.k2 <- tabu(crashes2.2006.train,score = "k2") model2006.tabu.bde <- tabu(crashes2.2006.train,score = "bde") bnlearn::score(x=model2006.tabu.bic, data=crashes2.2006.train, type="bic") # -4519.796 bnlearn::score(x=model2006.tabu.k2, data=crashes2.2006.train, type="bic") # -4899.863 bnlearn::score(x=model2006.tabu.bde, data=crashes2.2006.train, type="bic") # -4519.796 # We will use model2006.tabu.bic # Plotting graphviz.plot(x=model2006.gs, layout="dot", shape="ellipse") graphviz.plot(x=model2006.iamb, layout="dot", shape="ellipse") graphviz.plot(x=model2006.mmpc, layout="dot", shape="ellipse") graphviz.plot(x=model2006.hc.bde, layout="dot", shape="ellipse") graphviz.plot(x=model2006.tabu.bic, layout="dot", shape="ellipse") # Our final model: HC.BDE --> model2006.hc.bde ### Modelling (always optimized) 2015 # 1. gs model2015.gs <- gs(crashes2.2015.train) # 2. fast.iamb model2015.iamb <-fast.iamb(crashes2.2015.train) # 3. mmpc model2015.mmpc <- mmpc(crashes2.2015.train) # 4. hc 10/7 model2015.hc.bic <- hc(crashes2.2015.train,restart = 10, perturb = 7) model2015.hc.k2 <- hc(crashes2.2015.train,restart = 10, perturb = 7,score = "k2") model2015.hc.bde <- hc(crashes2.2015.train,restart = 10, perturb = 7,score = "bde") bnlearn::score(x=model2015.hc.bic, data=crashes2.2015.train, type="bic") # -2241.088 bnlearn::score(x=model2015.hc.k2, data=crashes2.2015.train, type="bic") # -7487.2192 bnlearn::score(x=model2015.hc.bde, data=crashes2.2015.train, type="bic") # -2241.442 # We will use model2015.hc.bde # 5. tabu model2015.tabu.bic <- tabu(crashes2.2015.train) model2015.tabu.k2 <- tabu(crashes2.2015.train,score = "k2") model2015.tabu.bde <- tabu(crashes2.2015.train,score = "bde") bnlearn::score(x=model2015.tabu.bic, data=crashes2.2015.train, type="bic") # -2241.088 bnlearn::score(x=model2015.tabu.k2, data=crashes2.2015.train, type="bic") # -7181.836 bnlearn::score(x=model2015.tabu.bde, data=crashes2.2015.train, type="bic") # -2241.442 # We will use model2015.tabu.bic # Plotting graphviz.plot(x=model2015.gs, layout="dot", shape="ellipse") graphviz.plot(x=model2015.iamb, layout="dot", shape="ellipse") graphviz.plot(x=model2015.mmpc, layout="dot", shape="ellipse") graphviz.plot(x=model2015.hc.bde, layout="dot", shape="ellipse") graphviz.plot(x=model2015.tabu.bic, layout="dot", shape="ellipse") # Our final model: HC.BDE --> model2015.hc.bde ### Generalisation and Overfitting eval_struct <- function(bn, train, test){ n = dim(train)[1] + dim(test)[1] results = c() for (size in sizes) { d <- train[1:size,] bnf <- bn.fit(x=bn, data=d, method = "bayes") gener <- stats::logLik(bnf, test)/(n*dim(test)[1]) fit <- stats::logLik(bnf,d)/(n*dim(d)[1]) results = c(results, gener, fit) } return(matrix(results, ncol = 2, byrow = T)) } set.seed(937) #937 plotmodel1 <-eval_struct(model2006.hc.bic,crashes2.2006.train,crashes2.2006.test) plot(log10(sizes), plotmodel1[,1], main="Generalisation 2006", ylab="LL/nN", xlab="log(Size)", type="l", col="blue", ylim=c(min(plotmodel1), max(plotmodel1))) lines(log10(sizes), plotmodel1[, 2], col="red") sizes <- round(exp(seq(1, log(150), (log(150) - 1) / 20))) plotmodel2 <-eval_struct(model2015.hc.bic,crashes2.2015.train,crashes2.2015.test) plot(log10(sizes), plotmodel2[,1], main="Generalisation 2015", ylab="LL/nN", xlab="log(Size)", type="l", col="blue", ylim=c(min(plotmodel2), max(plotmodel2))) lines(log10(sizes), plotmodel2[, 2], col="red") #### Inference library(gRain) # grain object model2006.hc.bde.grain <- grain(as(amat(model2006.hc.bde), "graphNEL"), data=crashes2.2006.train, smooth=1/dim(crashes2.2006.train)[1]) plot(model2006.hc.bde.grain) # Compilation model2006.hc.bde.compiled <- compile(model2006.hc.bde.grain) summary(model2006.hc.bde.compiled) # Propagate model2006.hc.bde.propagated <- propagate(model2006.hc.bde.compiled) summary(model2006.hc.bde.propagated) # Same process to 2015 data model2015.hc.bde.grain <- grain(as(amat(model2015.hc.bde), "graphNEL"), data=crashes2.2015.train,smooth=1/dim(crashes2.2015.train)[1]) model2015.hc.bde.compiled <- compile(model2015.hc.bde.grain) model2015.hc.bde.propagated <- propagate(model2015.hc.bde.compiled) ### Probability estimation # 1) Marginal prob.: Conc_alcohol_durgs querygrain(model2006.hc.bde.propagated , nodes="Conc_alcohol_durgs", type="marginal") # N Y # 0.95997981 0.04002019 querygrain(model2015.hc.bde.propagated , nodes="Conc_alcohol_durgs", type="marginal") # N Y # 0.97319288 0.02680712 # 2) Marginal prob.: Limited visibilty. Evidence: Reflectors querygrain(model2006.hc.bde.propagated , nodes="Limited_visibility", type="marginal") # N Y # 0.2333501 0.7666499 querygrain(model2015.hc.bde.propagated , nodes="Limited_visibility", type="marginal") # N Y # 0.5924582 0.4075418 # With reflectors? Evidence model2006.hc.bde.propagated.ev2 <- setEvidence(model2006.hc.bde.propagated,nodes="Reflectors",states="Y", propagate=TRUE) querygrain(model2006.hc.bde.propagated.ev2 , nodes="Limited_visibility", type="marginal") # N Y # 0.3046502 0.6953498 # --> True model2015.hc.bde.propagated.ev2 <- setEvidence(model2015.hc.bde.propagated,nodes="Reflectors",states="Y", propagate=TRUE) querygrain(model2015.hc.bde.propagated.ev2 , nodes="Limited_visibility", type="marginal") # N Y # 0.5924582 0.4075418 The same (nodes no connected) # 3) Marginal prob.: Num_of_cars. Evidences: Distraction and Limited visibility # 2006 data model2006.hc.bde.propagated.ev3 <- setEvidence(model2006.hc.bde.propagated,nodes=c("Limited_visibility","Conc_distraction"),states=c("Y","Y"), propagate=TRUE) querygrain(model2006.hc.bde.propagated.ev3 , nodes="Num_vehicles", type="marginal") # 1 2 more_than_2 # 0.1792610 0.6980846 0.1226544 model2006.hc.bde.propagated.ev4 <- setEvidence(model2006.hc.bde.propagated,nodes=c("Limited_visibility","Conc_distraction"),states=c("N","N"), propagate=TRUE) querygrain(model2006.hc.bde.propagated.ev4 , nodes="Num_vehicles", type="marginal") # 1 2 more_than_2 # 0.5566936 0.3195912 0.1237152 # Single vehicle accidents increase # 2015 data model2015.hc.bde.propagated.ev3 <- setEvidence(model2015.hc.bde.propagated,nodes=c("Limited_visibility","Conc_distraction"),states=c("Y","Y"), propagate=TRUE) querygrain(model2015.hc.bde.propagated.ev3 , nodes="Num_vehicles", type="marginal") # 1 2 more_than_2 # 0.4561207 0.4265556 0.1173237 model2015.hc.bde.propagated.ev4 <- setEvidence(model2015.hc.bde.propagated,nodes=c("Limited_visibility","Conc_distraction"),states=c("N","N"), propagate=TRUE) querygrain(model2015.hc.bde.propagated.ev4 , nodes="Num_vehicles", type="marginal") # 1 2 more_than_2 # 0.5393078 0.3587505 0.1019417 # Single vehicle accidents increase # 4) Marginal prob.: Surface querygrain(model2006.hc.bde.propagated , nodes="Surface", type="marginal") # Dry Extreme Wet # 0.58332044 0.04335095 0.37332861 querygrain(model2015.hc.bde.propagated , nodes="Surface", type="marginal") # Dry Extreme Wet # 0.52657241 0.06011447 0.41331312 # 5) Marginal prob.: Month querygrain(model2006.hc.bde.propagated , nodes="Month", type="marginal") # Apr Aug Dec Feb Jan Jul # 0.05000444 0.06333600 0.07666756 0.09333200 0.07333467 0.08000044 # Jun Mar May Nov Oct Sep # 0.11666222 0.08999911 0.06666889 0.10999644 0.09999778 0.08000044 querygrain(model2015.hc.bde.propagated , nodes="Month", type="marginal") # Apr Aug Dec Feb Jan Jul # 0.07333866 0.11331734 0.08666489 0.05334932 0.06667555 0.13996979 # Jun Mar May Nov Oct Sep # 0.07333866 0.11331734 0.06667555 0.06667555 0.08666489 0.06001244
76823b0f87c1804347ea8025cf8bc9fe9f60283d
3d78414d840fb586325c73f0b116e908e3179163
/R/parse_quiz_metadata.R
faf839f29362a3ceaff8087755ef3808044feda1
[]
no_license
kamclean/cowboy
cf537c956912c1b7b431ac5fd794e1222bf017d6
c04a19ce231db60a70ece3ee16d48db85d8aa56a
refs/heads/main
2023-04-02T11:28:22.789164
2021-04-05T13:45:06
2021-04-05T13:45:06
354,847,284
0
0
null
null
null
null
UTF-8
R
false
false
8,623
r
parse_quiz_metadata.R
# parse_quiz_metadata-------------------------------- # Documentation #' Creates a moodle quiz data dictionary #' @description Wrangles files directly extracted from moodle to create a formatted data dictionary for the moodle quiz #' @param question_xml Output from xml2::read_xml() applied to Moodle Quiz XML file. From the quiz settings, select "Question Bank" then "Export" then download "Moodle XML" file. #' @param question_stats Output from readr::read_csv() applied to Moodle Quiz structure analysis CSV file. From the quiz settings, select "Results" then "Statistics" then download "Quiz structure analysis" table as CSV file. #' @return Returns a formatted data dictionary for the moodle quiz #' @import dplyr #' @import xml2 #' @import tibble #' @import stringr #' @import tidyr #' @importFrom purrr map_chr is_empty map_dfr #' @export parse_quiz_metadata <- function(question_xml, question_stats){ parse_quiz_question <- function(question_stats){ out <- question_stats %>% dplyr::filter(suppressWarnings(is.na(as.numeric(`Quiz name`))==F)) %>% dplyr::select(response = `Quiz name`, class = `Course name`, name_short = `Number of complete graded first attempts`) %>% dplyr::mutate(class = case_when(class=="Embedded answers (Cloze)" ~ "cloze", class=="Matching" ~ "matching", class=="Matrix/Kprime" ~ "matrix", class=="Multiple choice" ~ "multichoice", class=="Short answer" ~ "shortanswer", TRUE ~ class)) %>% dplyr::mutate(response = paste0("Response ", response)) return(out)} question <- parse_quiz_question(question_stats = question_stats) list <- question_xml %>% xml2::xml_children() table <- list %>% purrr::map_chr(function(x){xml2::xml_attr(x,"type")}) %>% tibble::enframe(name = "n", value = "class") %>% dplyr::mutate(name_short = list %>% purrr::map_chr(function(x){y = xml2::xml_find_all(x, "name") %>% xml2::xml_find_all("text") %>% xml2::xml_text() if(purrr::is_empty(y)==T){y <- NA_character_} return(y)}), name_long = list %>% purrr::map_chr(function(x){y = xml2::xml_find_all(x, "questiontext") %>% xml2::xml_find_all("text")%>% xml2::xml_text() if(purrr::is_empty(y)==T){y <- NA_character_} return(y)})) %>% dplyr::mutate(across(c(name_short, name_long), function(x){x %>% stringr::str_remove_all("<.*?>") %>% stringr::str_replace_all("&nbsp;", " ") %>% stringr::str_trim()})) %>% dplyr::mutate(level_matching = list %>% purrr::map_chr(function(x){y = x %>% xml2::xml_find_all("subquestion") %>% xml2::xml_find_all("text") %>% xml2::xml_text() if(purrr::is_empty(y)==T){y <- NA_character_} return(paste0(y, collapse = "; "))}), level_multichoice = list %>% purrr::map_chr(function(x){y = x %>% xml2::xml_find_all("answer") %>% xml2::xml_find_all("text") %>% xml2::xml_text() if(purrr::is_empty(y)==T){y <- NA_character_} return(paste0(y, collapse = "; "))})) %>% dplyr::mutate(across(c(level_matching, level_multichoice), function(x){ x %>% stringr::str_remove_all("<.*?>|\n|\\]\\]>") %>% stringr::str_replace_all("&nbsp;", " ") %>% stringr::str_replace_all( "NA|\\*", NA_character_)})) %>% dplyr::mutate(n = as.character(n)) %>% dplyr::filter(! class %in% c("category", "description")) table <- table %>% dplyr::left_join(question, by = c("class", "name_short")) %>% dplyr::filter(is.na(response)==F) matrix <- list %>% purrr::map_dfr(.id = "n", function(x){y = x %>% xml2::xml_find_all("row") %>% xml2::xml_find_all("shorttext")%>% xml2::xml_text() %>% tibble::enframe(name = NULL, value = "name_long_matrix") %>% dplyr::mutate(name_long_matrix = stringr::str_trim(name_long_matrix), level_matrix = x %>% xml2::xml_find_all("col") %>% xml2::xml_find_all("shorttext")%>% xml2::xml_text() %>% stringr::str_trim() %>% paste0(collapse = "; "))}) cloze <- table %>% dplyr::select(-level_multichoice, -level_matching) %>% dplyr::filter(class=="cloze") %>% # remove periods (.) not at end of sentence dplyr::mutate(name_long = stringr::str_replace_all(name_long, paste0(c("e\\.g\\.", "E\\.g\\."), collapse = "|"), "E_g_"), name_long = stringr::str_replace_all(name_long, "\\}Please", "\\}. Please"), name_long = stringr::str_replace_all(name_long, paste0(paste0("\\}", c("a", "b", "c", "d", "e", "f"), "\\)\\."), collapse = "|"), "\\}\\."), name_long = stringr::str_replace_all(name_long, paste0(paste0(":", c("a", "b", "c", "d", "e", "f"), "\\)\\."), collapse = "|"), "\\:\\.")) %>% tidyr::separate_rows(name_long, sep = "\\.") %>% dplyr::filter(stringr::str_detect(name_long, "\\}")) %>% dplyr::mutate(name_long = stringr::str_trim(name_long)) %>% dplyr::mutate(value = stringr::str_extract_all(name_long, "\\{(.*?)\\}"), name_long = stringr::str_replace_all(name_long, "\\{(.*?)\\}", "___"), value = stringr::str_remove_all(value, "\\{1:MULTICHOICE:=|\\}|~"), name_long = stringr::str_trim(name_long)) %>% tidyr::separate_rows(value, sep = "=") %>% dplyr::filter(value!="") cloze_sum <- cloze %>% dplyr::distinct(name_short,name_long) %>% dplyr::group_by(name_short) %>% dplyr::summarise(name_long = unique(name_long), nq = 1:n(), .groups= "drop") cloze <- cloze %>% dplyr::left_join(cloze_sum, by = c("name_short", "name_long")) %>% dplyr::group_by(name_short,name_long, nq) %>% dplyr::summarise(level_cloze = paste0(value, collapse = "; "), .groups = "drop") %>% dplyr::rename("name_long_cloze" = name_long) %>% dplyr::arrange(name_short,nq) %>% dplyr::select(-nq) final <- table %>% dplyr::left_join(matrix, by = "n") %>% dplyr::left_join(cloze, by = "name_short") %>% dplyr::mutate(name_long = case_when(class=="matrix" ~ name_long_matrix, class=="cloze" ~ name_long_cloze, TRUE ~ name_long)) %>% dplyr::mutate(name_long_3char = stringr::str_sub(name_long, nchar(name_long)-2, nchar(name_long)), name_long = ifelse(name_long_3char=="___",# stringr::str_sub(name_long, 1, nchar(name_long)-3), name_long)) %>% dplyr::select(-name_long_matrix, -name_long_cloze, - name_long_3char,-n) %>% tidyr::unite(col = "level", starts_with("level_"), sep = "&&&", na.rm = T) %>% dplyr::mutate(level = ifelse(level == "", NA, level), level = stringr::str_to_title(level) %>% iconv(to="ASCII//TRANSLIT") %>% stringr::str_squish() %>% stringr::str_trim(), level = stringr::str_replace_all(level, "E_g_","E.g."), level = stringr::str_split(level, pattern = "; ")) %>% dplyr::group_by(name_short) %>% dplyr::mutate(n = 1:n(), total = n(), n = ifelse(n==1&total==1, "", as.character(n)), name_short =ifelse(n=="", name_short, paste0(name_short, "___", n)), response = ifelse(n=="", response, paste0(response, "-", n)), response_n = stringr::str_extract(response, "([0-9]+)") %>% as.numeric()) %>% dplyr::ungroup() %>% dplyr::arrange(response_n,n) %>% dplyr::mutate(response = factor(response, levels = unique(response))) %>% dplyr::select(-n, -total, -response_n) return(final)}
bdf2d1a16d9247a3a11920610294a4337c8fae48
567e72b5e2be621384ef613a914ed6f41ee1cc3a
/R/make_groups.R
d5dabf24daaf14070ae961e0ea2e4a625660ab0f
[ "MIT" ]
permissive
tidymodels/rsample
2dce83f71b341938b00ecd39bde74c654fcb78c1
be593b9e5502998832a0a939197bfc3a4b46738b
refs/heads/main
2023-08-30T23:11:24.971458
2023-08-23T15:12:18
2023-08-23T15:12:18
89,093,570
251
63
NOASSERTION
2023-08-23T08:13:42
2017-04-22T19:19:58
R
UTF-8
R
false
false
11,454
r
make_groups.R
#' Make groupings for grouped rsplits #' #' This function powers grouped resampling by splitting the data based upon #' a grouping variable and returning the assessment set indices for each #' split. #' #' @inheritParams vfold_cv #' @param group A variable in `data` (single character or name) used for #' grouping observations with the same value to either the analysis or #' assessment set within a fold. #' @param balance If `v` is less than the number of unique groups, how should #' groups be combined into folds? Should be one of #' `"groups"`, `"observations"`, `"prop"`. #' @param ... Arguments passed to balance functions. #' #' @details #' Not all `balance` options are accepted -- or make sense -- for all resampling #' functions. For instance, `balance = "prop"` assigns groups to folds at #' random, meaning that any given observation is not guaranteed to be in one #' (and only one) assessment set. That means `balance = "prop"` can't #' be used with [group_vfold_cv()], and so isn't an option available for that #' function. #' #' Similarly, [group_mc_cv()] and its derivatives don't assign data to one (and #' only one) assessment set, but rather allow each observation to be in an #' assessment set zero-or-more times. As a result, those functions don't have #' a `balance` argument, and under the hood always specify `balance = "prop"` #' when they call [make_groups()]. #' #' @keywords internal make_groups <- function(data, group, v, balance = c("groups", "observations", "prop"), strata = NULL, ...) { rlang::check_dots_used(call = rlang::caller_env()) balance <- rlang::arg_match(balance, error_call = rlang::caller_env()) data_ind <- tibble( ..index = seq_len(nrow(data)), ..group = group ) data_ind$..group <- as.character(data_ind$..group) res <- switch( balance, "groups" = balance_groups( data_ind = data_ind, v = v, strata = strata, ... ), "observations" = balance_observations( data_ind = data_ind, v = v, strata = strata, ... ), "prop" = balance_prop( data_ind = data_ind, v = v, strata = strata, ... ) ) data_ind <- res$data_ind keys <- res$keys data_ind$..group <- as.character(data_ind$..group) keys$..group <- as.character(keys$..group) data_ind <- data_ind %>% full_join(keys, by = "..group") %>% arrange(..index) split_unnamed(data_ind$..index, data_ind$..folds) } balance_groups <- function(data_ind, v, strata = NULL, ...) { if (is.null(strata)) { balance_groups_normal(data_ind, v, ...) } else { balance_groups_strata(data_ind, v, strata, ...) } } balance_groups_normal <- function(data_ind, v, ...) { rlang::check_dots_empty() unique_groups <- unique(data_ind$..group) keys <- data.frame( ..group = unique_groups, ..folds = sample( rep(seq_len(v), length.out = length(unique_groups)) ) ) list( data_ind = data_ind, keys = keys ) } balance_groups_strata <- function(data_ind, v, strata, ...) { rlang::check_dots_empty() data_ind$..strata <- strata # Create a table that's all the unique group x strata combinations: keys <- vctrs::vec_unique(data_ind[c("..group", "..strata")]) # Create as many fold IDs as there are group x strata, # in repeating order (1, 2, ..., n, 1, 2, ..., n) folds <- rep(1:v, length.out = nrow(keys)) # Split the folds based on how many groups are within each strata # So if the first strata in sort is 3, and v is 2, that strata gets a # c(1, 2, 1) for fold IDs # # This means that, if nrow(keys) %% v == 0, each fold should have # the same number of groups from each strata # # We randomize "keys" here so that the function is stochastic even for # strata with only one group: unique_strata <- unique(keys$..strata) keys_order <- sample.int(length(unique_strata)) # Re-order the keys data.frame based on the reshuffled strata variable: keys <- keys[ order(match(keys$..strata, unique_strata[keys_order])), ] # And split both folds and keys with the reordered strata vector: folds <- split_unnamed(folds, keys$..strata) keys <- split_unnamed(keys, keys$..strata) # Randomly assign fold IDs to each group within each strata keys <- purrr::map2( keys, folds, function(x, y) { x$..folds <- sample(y) x } ) keys <- dplyr::bind_rows(keys) keys <- keys[c("..group", "..folds")] list( data_ind = data_ind, keys = keys ) } balance_observations <- function(data_ind, v, strata = NULL, ...) { rlang::check_dots_empty() n_obs <- nrow(data_ind) target_per_fold <- 1 / v # This is the core difference between stratification and not: # # Without stratification, data_ind is broken into v groups, # which are roughly balanced based on the number of observations # # With strata, data_ind is split up by strata, and then each _split_ # is broken into v groups (which are then combined with the other strata); # the balancing for each fold is done separately inside each strata "split" data_splits <- if (is.null(strata)) { list(data_ind) } else { split_unnamed(data_ind, strata) } freq_table <- purrr::map( data_splits, balance_observations_helper, v = v, target_per_fold = target_per_fold ) %>% list_rbind() collapse_groups(freq_table, data_ind, v) } balance_observations_helper <- function(data_split, v, target_per_fold) { n_obs <- nrow(data_split) # Create a frequency table counting how many of each group are in the data: freq_table <- vec_count(data_split$..group, sort = "location") # Randomly shuffle that table, then assign the first few rows to folds # (to ensure that each fold gets at least one group assigned): freq_table <- freq_table[sample.int(nrow(freq_table)), ] freq_table$assignment <- NA # Assign the first `v` rows to folds, so that each fold has _some_ data: freq_table$assignment[seq_len(v)] <- seq_len(v) # Each run of this loop assigns one "NA" assignment to a fold, # so we won't get caught in an endless loop here while (any(is.na(freq_table$assignment))) { # Get the index of the next row to be assigned, and its count: next_row <- which(is.na(freq_table$assignment))[[1]] next_size <- freq_table[next_row, ]$count # Calculate which fold to assign this new row into: group_breakdown <- freq_table %>% # The only NA column in freq_table should be assignment # So this should only drop un-assigned groups: stats::na.omit() %>% # Group by fold assignments and count data in each fold: dplyr::group_by(.data$assignment) %>% dplyr::summarise(count = sum(.data$count), .groups = "drop") %>% # Calculate...: dplyr::mutate( # The proportion of data in each fold so far, prop = .data$count / n_obs, # The amount off from the target proportion so far, pre_error = abs(.data$prop - target_per_fold), # The amount off from the target proportion if we add this new group, if_added_count = .data$count + next_size, if_added_prop = .data$if_added_count / n_obs, post_error = abs(.data$if_added_prop - target_per_fold), # And how much better or worse adding this new group would make things improvement = .data$post_error - .data$pre_error ) # Assign the group in question to the best fold and move on to the next one: most_improved <- which.min(group_breakdown$improvement) freq_table[next_row, ]$assignment <- group_breakdown[most_improved, ]$assignment } freq_table } balance_prop <- function(prop, data_ind, v, replace = FALSE, strata = NULL, ...) { rlang::check_dots_empty() check_prop(prop, replace) # This is the core difference between stratification and not: # # Without stratification, `prop`% of `data_ind` is sampled `v` times; # the resampling is done with the entire set of groups # # With strata, data_ind is split up by strata, and then each _split_ # has `prop`% of `data_ind` is sampled `v` times; # the resampling for each iteration is done inside each strata "split" data_splits <- if (is.null(strata)) { list(data_ind) } else { split_unnamed(data_ind, strata) } freq_table <- purrr::map( data_splits, balance_prop_helper, prop = prop, v = v, replace = replace ) %>% list_rbind() collapse_groups(freq_table, data_ind, v) } balance_prop_helper <- function(prop, data_ind, v, replace) { freq_table <- vec_count(data_ind$..group, sort = "location") # Calculate how many groups to sample each iteration # If sampling with replacement, # set `n` to the number of resamples we'd need # if we somehow got the smallest group every time. # If sampling without replacement, just reshuffle all the groups. n <- nrow(freq_table) if (replace) n <- n * prop * sum(freq_table$count) / min(freq_table$count) n <- ceiling(n) purrr::map( seq_len(v), function(x) { row_idx <- sample.int(nrow(freq_table), n, replace = replace) work_table <- freq_table[row_idx, ] cumulative_proportion <- cumsum(work_table$count) / sum(freq_table$count) crosses_target <- which(cumulative_proportion > prop)[[1]] is_closest <- cumulative_proportion[c(crosses_target, crosses_target - 1)] is_closest <- which.min(abs(is_closest - prop)) - 1 crosses_target <- crosses_target - is_closest out <- work_table[seq_len(crosses_target), ] out$assignment <- x out } ) %>% list_rbind() } check_prop <- function(prop, replace) { acceptable_prop <- is.numeric(prop) acceptable_prop <- acceptable_prop && ((prop <= 1 && replace) || (prop < 1 && !replace)) acceptable_prop <- acceptable_prop && prop > 0 if (!acceptable_prop) { rlang::abort( "`prop` must be a number between 0 and 1.", call = rlang::caller_env() ) } } collapse_groups <- function(freq_table, data_ind, v) { data_ind <- dplyr::left_join( data_ind, freq_table, by = c("..group" = "key"), multiple = "all", relationship = "many-to-many" ) data_ind$..group <- data_ind$assignment data_ind <- data_ind[c("..index", "..group")] # If a group was never assigned a fold, then its `..group` is NA # # If we leave that alone, it winds up messing up our fold assignments, # because it will be assigned some value in `seq_len(v)` # # So instead, we drop those groups here: data_ind <- stats::na.omit(data_ind) unique_groups <- unique(data_ind$..group) keys <- data.frame( ..group = unique_groups, ..folds = sample(rep(seq_len(v), length.out = length(unique_groups))) ) list( data_ind = data_ind, keys = keys ) } validate_group <- function(group, data, call = rlang::caller_env()) { if (!missing(group)) { group <- tidyselect::vars_select(names(data), !!enquo(group)) if (length(group) == 0) { group <- NULL } } if (is.null(group) || !is.character(group) || length(group) != 1) { rlang::abort( "`group` should be a single character value for the column that will be used for splitting.", call = call ) } if (!any(names(data) == group)) { rlang::abort("`group` should be a column in `data`.", call = call) } group }
c4ca28474db07a49a2db2544d1775f27e0800b4f
9132689eb7595fccb1811f9fe08cf1981bedeed9
/man/imputeYn.extra.Rd
fdea4886ab9b738d3a0a29acc64faa1a1a184d90
[]
no_license
cran/imputeYn
e2423f180bb0d74519291bd7943edb555340f625
579a5de507c184f87bad9a87e5844217ee693003
refs/heads/master
2021-01-24T06:13:24.603196
2015-10-23T22:08:14
2015-10-23T22:08:14
17,696,763
0
0
null
null
null
null
UTF-8
R
false
false
4,329
rd
imputeYn.extra.Rd
\name{imputeYn.extra} \alias{imputeYn.extra} \title{ Imputing the Last Largest tied Observations with a new method} \description{ The method provides one step ahead imputed values for tied censored observations. } \usage{ imputeYn.extra(Y, delta, hc.Yn, method = "km.TPQ", trans.sprob=NULL, stime2=NULL, sprob2=NULL, trace=F) } \arguments{ \item{Y}{ response. Typically the logarithmic of the survival time. } \item{delta}{ status; it includes value 1 for uncensored and value 0 for censored subject. } \item{hc.Yn}{ set of the lifetimes for the last largest censored observations. } \item{method}{ one of "it.PDQ" (repeated predicted difference quantity or called iterative (Khan and Shaw, 2013a)), "km.TPQ" (Kaplan-Meier trend predicted quantity or called "extrapolation" (Khan and Shaw, 2012a)). Default is "km.TPQ". } \item{trans.sprob}{ use only for "km.TPQ". Transformation for the survival probabilities. This transformation is needed if survival probability versus survival time plot is not linear. It takes "exp" for exponential transformation, and any value for respective power transformation. Default is NULL. } \item{stime2}{ use only for "km.TPQ". Survival times after necessary transformation if needed in order to obtain a linear relationship between the survival probability and survival time. Default is NULL. } \item{sprob2}{ use only for "km.TPQ". Survival probability after necessary transformation if needed in order to obtain a linear relationship between the survival probability and survival time. Default is NULL. } \item{trace}{ If TRUE then Kaplan-Meier survival plots will be printed for both data- the original and the data with imputed values. Default is FALSE. } } \details{ The method is developed for imputing the largest censored observations (can be seen often for heavy censored data) if Kaplan-Meier weights are involved in modeling. For example, if weighted least squares is used then the extra imputing methods will provide one step ahead of the Efron's (1967) tail correction approach. These methods satisfy the Efron's tail correction, achieve less biased estimates, and impute the largest censored observations that are also tied. Furthermore the two methods satisfy the right censoring assumption. If there is heavy censoring toward the right for right censored data, that is found as typical case for many areas like indistry, clinical trials etc, then this function provides the sensible imputations for those censored observations that are the largest and also tied observations. Details are discussed in Khan and Shaw (2013a). } \value{ It includes sorted lifetimes, censoring indicators, sorted lifetimes after imputation, censoring indicators after imputation, censored lifetimes for the Y(n)+ observations, imputed lifetimes for the Y(n)+ observations, the survival times, the survival probabilities, the survival times after transformation, the survival probabilities after transformation, the transformation used, and trace. } \references{ Efron, B. (1967). The two sample problem with censored data. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Vol. 4, p. 831-853. Khan and Shaw. (2013a). On Dealing with Censored Largest Observations under Weighted Least Squares. CRiSM working paper, Department of Statistics, University of Warwick, UK, No. 13-07. Also available in \url{http://arxiv.org/abs/1312.2533}. Khan and Shaw (2013b). Variable Selection with The Modified Buckley-James Method and The Dantzig Selector for High-dimensional Survival Data. Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong, p. 4239-4244. } \author{ Hasinur Rahaman Khan and Ewart Shaw} \examples{ ## For Channing House data (heavy censored data)## \dontrun{require(package="boot")} \dontrun{time.ch<-channing[1:97,]$time} #for male \dontrun{delta.ch<-channing[1:97,]$cens} # for male \dontrun{hc.Yn.m<-rep(137,19)} # there are 19 last largest censored male each has 137 lifetime \dontrun{imp.PDQ<-imputeYn.extra(time.ch, delta.ch, hc.Yn=hc.Yn.m, method="it.PDQ", trace=T)} \dontrun{imp.PDQ} \dontrun{imp.TPQ<-imputeYn.extra(time.ch, delta.ch, hc.Yn=hc.Yn.m, method = "km.TPQ", trace=T)} \dontrun{imp.TPQ} } \keyword{imputation}
ba2efa60bb70dca95462e8c149e022b15150e495
0a447c5e9562832c3456a893c1d1bc66a123289a
/exercise08_question1.R
7ab407dd5c6246d2c20a4bde39135979a97e3b57
[]
no_license
mcwang25/ICB2019_Exercise08
58f04b1f541dd3235701baa98f696733a591fcdc
81e8a5483520a7c8347be9f52a21957528a4076b
refs/heads/master
2020-09-11T05:14:59.822703
2019-11-22T01:53:30
2019-11-22T01:53:30
221,950,456
0
0
null
2019-11-15T15:24:26
2019-11-15T15:24:25
null
UTF-8
R
false
false
615
r
exercise08_question1.R
# Makes plot of UW v MSU game score vs time from 1-22-13 # Note assignment says not to worry about how please the graph is visually, merely to focus on necessary control structures bball <- read.table(file="UWvMSU_1-22-13.txt", header=TRUE) UWscores <- bball[bball$team=="UW",] MSUscores <- bball[bball$team=="MSU",] MSUscores$team <- NULL UWscores$team <- NULL MSUscores$cumscore <- ave(MSUscores$score, FUN=cumsum) UWscores$cumscore <- ave(UWscores$score, FUN=cumsum) MSUscores$score <- NULL UWscores$score <- NULL plot(x=MSUscores$time, y=MSUscores$cumscore, type='l')+lines(x=UWscores$time,y=UWscores$cumscore)
49fae1509d576bc7dbd9361bdb905a6edfd77198
6dec0f6aec45dff66fcc2f480b03a5ffe3b9408c
/man/gx.eb.Rd
4c21ba313a116e0c785efdd92695d13b886fe26b
[]
no_license
cran/rgr
9645638952aa019902d3308e7e6cf04c1112bab7
87383fabc4cb3529c4c97493c596f7fd347cf302
refs/heads/master
2021-01-21T21:55:06.570408
2018-03-05T22:42:52
2018-03-05T22:42:52
17,699,219
0
0
null
null
null
null
UTF-8
R
false
false
1,860
rd
gx.eb.Rd
\name{gx.eb} \alias{gx.eb} \title{ Computation of Empirical Balances } \description{ Computes empirical balances (ratios) for the stated columns of a \code{n} by \code{p} matrix of compositional data. } \usage{ gx.eb(r, s, xx, ...) } \arguments{ \item{r}{ number of parts in the numerator. } \item{s}{ number of parts in the denominator. } \item{xx}{ matrix for which the balances for the stated columns will be computed. } \item{...}{ the column indices of the parts in the numerator, followed by the column indices for the parts in the denominator. The total number of indices must equal the sum of \code{r} and \code{s}. } } \value{ \item{z}{ the vector of \code{n} balances. } } \note{ Multi-element ratios have a long history in exploration geochemistry, the parts in numerator and denominator being selected on the basis of prior knowledge of the mineralogy and geochemistry of the feature, commonly a mineral occurrence, being sought. As the features are rare events ratios can be used to accentuate their numerical expression to increase their \sQuote{contrast} from the main mass of background data. The use of balances, ratios of geometric means of the parts in the numerator and denominator, accomodates the compositional nature of geochemical data. } \references{ Egozcue, J.J. & Pawlowsky-Glahn, V., 2005. Groups of Parts and Their Balances in Compositional Data Analysis. Mathematical Geology, 37(7):795-828. } \author{ Robert G. Garrett } \seealso{ \code{\link{ltdl.fix.df}} } \examples{ ## Make test data available data(sind.mat2open) ## Compute and display empirical balances for columns 1, 5 & 4 ## of the data vs. columns 2 & 3 temp <- gx.eb(3, 2, sind.mat2open, 1, 5, 4, 2, 3) shape(temp, "Zn.Cu.Cd/Fe.Mn balance") ## Clean-up rm(sind.mat2open) rm(temp) } \keyword{ multivariate }
b8490fbaf83ffd87940f557c645dfc2d99679ccd
44a2d03cd3f012721b41223c4bb3f4dc5de483a9
/man/fbind.Rd
0c3dd4f96d45e27b0bd742ec89320528a282b586
[ "MIT" ]
permissive
sumalibajaj/modelbuilding_try
fd26b46d846ab897d3dee7fcb15c4dc7ed1339b8
a79b3151a6c5bc9676b46acda2d521a1aecd51bd
refs/heads/main
2023-03-30T19:10:43.135402
2021-03-29T14:50:58
2021-03-29T14:50:58
352,672,653
0
0
null
null
null
null
UTF-8
R
false
true
207
rd
fbind.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fbind.R \name{fbind} \alias{fbind} \title{Title} \usage{ fbind(a, b) } \arguments{ \item{b}{} } \value{ } \description{ Title }
9da97534c0a22240293def3f74e75c1900a77c3a
eb1f7d5c5009758ed188a4ef3d32e67741b4a552
/R/Expectation.R
cb0a338a571335d3933971f6d636fd48a74be671
[]
no_license
l-modolo/fdrDEP
d80874419e8173ebfe045c3200dc0d8c0f888465
e03c54bd02f2d050a5f3b6d556d25582b325c117
refs/heads/master
2020-12-24T13:18:11.323501
2015-03-23T11:09:39
2015-03-23T11:09:39
8,160,842
0
0
null
null
null
null
UTF-8
R
false
false
4,892
r
Expectation.R
Expectation = function(parameters, Mvar) { res = list() f0x = c() f1x = c() gammA = matrix(rep(0, parameters[['NUM']]*2), parameters[['NUM']], 2, byrow=TRUE) omega = c() f0x = 2*dnorm(parameters[['zvalues']], Mvar$f0[1], Mvar$f0[2]) * (1 - parameters[['kappa']]/Mvar$ptheta[1]) f0x[parameters[['zvalues']]==0] = parameters[['kappa']]/Mvar$ptheta[1] # f1x if(parameters[['f1']] == "kernel" | parameters[['f1']] == "kernel.symetric") { f1x = Mvar$f1 } else { f1x = rep(0, parameters[['NUM']]) if(parameters[['f1_compartiments']] == 1) { f1x = dnorm(parameters[['zvalues']], Mvar$f1[1], Mvar$f1[2]) } else { for (c in 1:parameters[['f1_compartiments']]) { f1x = f1x+Mvar$pc[c]*dnorm(parameters[['zvalues']], Mvar$f1[c, 1], Mvar$f1[c, 2]) } } } if(parameters[['dependency']] == "none") { gammA[,1] = Mvar$ptheta[1]*f0x / ( Mvar$ptheta[1]*f0x + Mvar$ptheta[2]*f1x ) gammA[,2] = 1 - gammA[,1] if(parameters[['f1']] != "kernel" & parameters[['f1']] != "kernel.symetric" & parameters[['f1_compartiments']] > 1) { # omega omega = matrix(rep(0, parameters[['NUM']]*parameters[['f1_compartiments']]), parameters[['NUM']], parameters[['f1_compartiments']], byrow=TRUE) for (c in 1:parameters[['f1_compartiments']]) { f1c = dnorm(parameters[['zvalues']], Mvar$f1[c, 1], Mvar$f1[c, 2]) omega[, c] = gammA[, 2] * Mvar$pc[c]*f1c/f1x if(length(Mvar$f0) >= 3) { omega[parameters[['zvalues']]==0, c] = 0 } } } c0 = f0x*Mvar$ptheta[1] + f1x*Mvar$ptheta[2] return(list(gammA = gammA, omega = omega, c0 = c0)) } # forward alpha = matrix(rep(0, parameters[['NUM']]*2), parameters[['NUM']], 2, byrow=TRUE) c0 = rep(0, parameters[['NUM']]) alpha[1, 1] = Mvar$pii[1]*f0x[1] alpha[1, 2] = Mvar$pii[2]*f1x[1] c0[1] = 1/sum(alpha[1, ]) alpha[1, ] = c0[1]*alpha[1, ] alpha.tmp = tryCatch({ .C('calAlpha',alpha=as.numeric(alpha),c0=as.numeric(c0),as.numeric(Mvar$A),as.numeric(f0x),as.numeric(f1x),as.integer(parameters[['NUM']])) }, warning = function(e) {return(-1)}, simpleError = function(e) {return(-1)}, error = function(e) {return(-1)}) if(length(alpha.tmp) == 1) { if(parameters[['v']]) cat("Error in calAlpha\n") return(-1) } alpha = alpha.tmp$alpha dim(alpha) = c(parameters[['NUM']],2) c0 = alpha.tmp$c0 # backward beta = matrix(rep(0, parameters[['NUM']]*2), parameters[['NUM']], 2, byrow=TRUE) beta[parameters[['NUM']], 1] = c0[parameters[['NUM']]] beta[parameters[['NUM']], 2] = c0[parameters[['NUM']]] beta.tmp = tryCatch({ .C('calBeta',beta=as.numeric(beta),as.numeric(c0),as.numeric(Mvar$A),as.numeric(f0x),as.numeric(f1x),as.integer(parameters[['NUM']])) }, warning = function(e) {return(-1)}, simpleError = function(e) {return(-1)}, error = function(e) {return(-1)}) if(length(beta.tmp) == 1) { if(parameters[['v']]) cat("Error in calBeta\n") return(-1) } beta = beta.tmp$beta dim(beta) = c(parameters[['NUM']],2) # lfdr lfdr = rep(0, parameters[['NUM']]) lfdr.tmp = tryCatch({ .C('calLfdr',as.numeric(alpha),as.numeric(beta),lfdr=as.numeric(lfdr),as.integer(parameters[['NUM']])) }, warning = function(e) {return(-1)}, simpleError = function(e) {return(-1)}, error = function(e) {return(-1)}) if(length(lfdr.tmp) == 1) { if(parameters[['v']]) cat("Error in calLfdr\n") return(-1) } lfdr = lfdr.tmp$lfdr # gammA & dgammA gammA = matrix(rep(0,(parameters[['NUM']]*2)), parameters[['NUM']], 2, byrow=TRUE) gammA[parameters[['NUM']], ] = c(lfdr[parameters[['NUM']]], 1-lfdr[parameters[['NUM']]]) dgammA = array(rep(0, (parameters[['NUM']]-1)*4), c(2, 2, (parameters[['NUM']]-1))) gammA.tmp = tryCatch({ .C('calGamma',as.numeric(alpha),as.numeric(beta),as.numeric(Mvar$A),as.numeric(f0x),as.numeric(f1x),gamma=as.numeric(gammA),dgamma=as.numeric(dgammA),as.integer(parameters[['NUM']])) }, warning = function(e) {return(-1)}, simpleError = function(e) {return(-1)}, error = function(e) {return(-1)}) if(length(gammA.tmp) == 1) { if(parameters[['v']]) cat("Error in calGamma\n") return(-1) } gammA = gammA.tmp$gamma dgammA = gammA.tmp$dgamma dim(gammA) = c(parameters[['NUM']],2) dim(dgammA) = c(2, 2, (parameters[['NUM']]-1)) if(parameters[['f1']] != "kernel" & parameters[['f1']] != "kernel.symetric" & parameters[['f1_compartiments']] > 1) { # omega omega = matrix(rep(0, parameters[['NUM']]*parameters[['f1_compartiments']]), parameters[['NUM']], parameters[['f1_compartiments']], byrow=TRUE) for (c in 1:parameters[['f1_compartiments']]) { f1c = dnorm(parameters[['zvalues']], Mvar$f1[c, 1], Mvar$f1[c, 2]) omega[, c] = gammA[, 2] * Mvar$pc[c]*f1c/f1x if(length(Mvar$f0) >= 3) { omega[parameters[['zvalues']]==0, c] = 0 } } } return(list(gammA = gammA, dgammA = dgammA, omega = omega, c0 = c0, trans.par = Mvar$trans.par)) }
b8dbf79fa2e8d8e3cdcc34f2e49d97756e11d8d2
40cf04ee6cf3ffa246ecc069bcb629c0fffc4691
/R/data.R
7f5402cdc615bca8ae929953ea5fa0ff69108842
[ "CC0-1.0", "LicenseRef-scancode-unknown-license-reference" ]
permissive
akleinhesselink/sedgwickenv
a5c1abf183c54634df2658450d9da875525800b7
66ae557277ebacb25b3aacd5dbb7ff11a5cacf38
refs/heads/master
2020-03-29T20:36:36.473096
2019-12-19T22:23:36
2019-12-19T22:23:36
150,320,819
1
0
null
null
null
null
UTF-8
R
false
false
6,531
r
data.R
#' Geolocation and environmental characteristics of 24 study sites at the UCSB Sedgwick Reserve. #' #' A dataset describing the position, soil characteristics, light interception, #' and surface temperature at 24 vegetation study sites at the UCSB Sedgwick Reserve. #' Sites originally established by Nathan Kraft and Gaurav Kandlikar in 2016. #' Soil characteristics are based on standard soil analysis conducted by A&L. Western #' Agricultural labs on samples collected from common gardens at each site by #' Gaurav Kandlikar. Soil depth and light interception data were collected by #' Andrew Kleinhesselink. #' #' @format A data frame with 24 rows and 30 variables: #' \describe{ #' \item{site}{Site code based on original site number used by G.K. and N.K.} #' \item{name}{site nickname} #' \item{lon}{decimal longitude} #' \item{lat}{decimal latitude} #' \item{ele}{elevation (m), determined from USGS DEM} #' \item{type}{sites either upper or lower, upper sites on serpentine soil} #' \item{microsite}{for upper sites, sites on hummocks are identified} #' \item{Tmax}{Average daily Tmax \ifelse{html}{\out{&#176;}}{\&deg;}C temperature for March. Recorded directly with iButton placed in PVC housing on soil surface at each site} #' \item{Tmin}{Average daily Tmax \ifelse{html}{\out{&#176;}}{\&deg;}C temperature for March. Recorded directly with iButton placed in PVC housing on soil surface at each site} #' \item{soil_organic}{soil organic matter (\%)} #' \item{pH}{soil pH} #' \item{CEC}{soil cation exchange capacity (meq per 100g)} #' \item{NH4_N}{soil ammonium concentration (ppm)} #' \item{Nitrate}{soil Nitrate (ppm)} #' \item{sand}{Soil sand content (\%)} #' \item{clay}{Soil clay content (\%)} #' \item{Ca}{soil Calcium (ppm)} #' \item{Mg}{soil Magnesium (ppm)} #' \item{K}{soil Potassium (ppm)} #' \item{light_above}{Ambient light (mmol per m\ifelse{html}{\out{<sup>3</sup>}}{\eqn{^3}} measured at 1.5 m above site at two locations at midday} #' \item{light_below}{Ambient light (mmol per m\ifelse{html}{\out{<sup>3</sup>}}{\eqn{^3}} measured at soil surface, below any vegetion at the site} #' \item{light_use}{vegetation light interception. Calculated as (light_above - light_below)/light_above} #' \item{soil_depth}{Average soil depth (cm). Determined by driving metal rod into two locations in five plots at each site, n = 10} #' \item{soil_depth_sd}{Standard deviation (cm) of soil depth measurements at each site. n = 10 per site} #' \item{Apr_2016_GWC}{Soil water content from soils collected April 2016 (g/g)} #' \item{Apr_2017_GWC}{Soil water content from soils collected April 2017 (g/g)} #' \item{Jan_2018_GWC}{Soil water content from soils collected January 2018 (g/g)} #' \item{May_2016_GWC}{Soil water content from soils collected May 2016 (g/g)} #' \item{avg_soil_moisture}{Average of April and May soil moisture measurements} #' } "sedgwick_env" #' Sedgwick reserve boundary. #' #' Spatial boundary of Sedgwick Reserve for making maps. WGS84 geographical projection. #' #' @format A SpatialPolygons object. #' \describe{ #' } "sedgwick_boundary" #' Sedgwick Elevation Layer #' #' Digital Elevation Model for Sedgwick Reserve downloaded from USGS. #' 1/3 Arc-second Resolution (~10m). Geographical projection on GRS80 ellipsoid. #' #' @format A RasterLayer object with 12 slots #' \describe{ #' } "sedgwick_DEM" #' Sedgwick Surface Temperature Data #' #' Spring surface temperatures for each of 24 study sites. Temperatures recorded with #' iButton temperature loggers housed in short section of white PVC pipe placed on soil #' surface at each site. Temperatures were logged every 4 hours and maximum and minimum #' daily temperatures were calculated. Temperatures were recorded from February to June #' 2016 and then again in 2018. #' #' @format A dataframe with 6636 rows and 7 variables #' \describe{ #' \item{site}{Site code based on original site number used by G.K. and N.K.} #' \item{date}{Date of sample in "Y-m-d" format} #' \item{doy}{Day of year} #' \item{Tmin}{Minimum temperature \ifelse{html}{\out{&#176;}}{\&deg;}C recorded during that day} #' \item{Tmax}{Maximum temperature \ifelse{html}{\out{&#176;}}{\&deg;}C recorded during that day} #' \item{Tavg}{Average temperature \ifelse{html}{\out{&#176;}}{\&deg;}C. Tavg \= Tmin + Tamx/2 } #' \item{daily_range}{Range between maximum and minimum temperature \ifelse{html}{\out{&#176;}}{\&deg;}C during day} #' } "sedgwick_ibutton" #' Soil depth at each of the 24 sites. #' #' Soil depth recorded at two locations within five plots (n=10) at each of the 24 site. #' Soil depth was measured by driving a thin metal rod into the soil and recorded the #' depth at which rock was hit and the rod stopped penetrating. Depth measured in the #' spring of 2017 by A. Kleinhesselink. #' #' @format A dataframe with 240 rows and 4 variables #' \describe{ #' \item{site}{Site code based on original site number used by G.K. and N.K.} #' \item{plot}{Plot number at each site (1-5)} #' \item{rep}{Two sampling locations located at opposite corners of each plot} #' \item{depth}{maximum depth (cm)} #' } "sedgwick_soil_depth" #' Spring moisture at each of the 24 sites. #' #' Soil moisture was determined gravimetrically in the spring of 2016, 2017 and 2018 #' at each of the 24 sites. Shallow (<10 cm) soil was collected from multiple locations #' at each site. These were homogenized and then weighed to get a wet weight. They were #' then dried at 60 \ifelse{html}{\out{&#176;}}{\&deg;}C for 72 hours and then re-weighed #' to get dry weight. Soil moisture by mass was recorded as (wet-dry)/dry weight. #' #' @format A dataframe with 96 rows and 3 variables #' \describe{ #' \item{site}{Site code based on original site number used by G.K. and N.K.} #' \item{date}{Date of sample in "Y-m-d" format} #' \item{GWC}{Soil moisture expressed as fraction of dry weight} #' } "sedgwick_soil_moisture" #' Vegetation height at each of the 24 sites. #' #' Vegetation height was recorded in two places in each plot at each site. Height was #' determined by dropping a ruler in two opposite corners of the plot and recording #' the height of the vegetation nearest to the ruler. #' #' @format A dataframe with 240 rows and 4 variables #' \describe{ #' \item{site}{Site code based on original site number used by G.K. and N.K.} #' \item{plot}{Plot number at each site (1-5)} #' \item{veg_height}{maximum vegetation height (cm)} #' } "sedgwick_veg_height"
9261d5fe272014c6b2035a9a8c189ef3d4a3a4cf
fb0eda2c5c5364c907b3836b3c849ca2598a09df
/Script_data_table_03_2.R
fbc1dbe77a316f9350a617e2bf51536a0582f924
[]
no_license
CursoRUCE/R-Intermedio
d3fbec6ec66ab66c134f566e9d2cb1e8e7a17f70
67320956724f01dcad1b487e3b3ebd61b63b04c0
refs/heads/master
2021-01-10T17:38:43.034711
2015-11-29T02:42:16
2015-11-29T02:42:16
45,076,997
1
0
null
null
null
null
UTF-8
R
false
false
4,604
r
Script_data_table_03_2.R
# Creación objetos data.table # data frame DF <- data.frame(x=c("b","b","a","a"),y=4:1, z=rnorm(4)) DF # data.table #install.packages("data.table", dependencies = TRUE) library(data.table) DT <- data.table(x=c("b","b","a","a"),y=4:1, z=rnorm(4)) DT # data frame vs data.table head(mtcars, n = 4) mtcarsDT <- data.table(mtcars) head(mtcarsDT, n = 4) # data frame vs data.table class(mtcars) mtcarsDT <- data.table(mtcars) class(mtcarsDT) # Objetos data.table en área de trabajo tables() carsDT <- data.table(cars) tables() # data.table a data frame DT sapply(DT,class) # Subsetting filas DT <- data.table(x=rep(c("a","b","c"),each=2), y=c(0,1), v=1:6) DT # Fila 2 DT[2] # Filas 2, 4, 6 DT[c(2, 4, 6)] ## Subsetting filas DT # Filas mediante TRUE y FALSE DT[c(TRUE, TRUE, FALSE, FALSE, TRUE, TRUE)] ## Subsetting filas DT # Filas mediante TRUE y FALSE DT[c(FALSE,TRUE)] # reciclado # Subsetting omitir filas DT # Omitimos las filas 2, 3, 4 DT[!2:4] ## Subsetting columnas DT # Columna de nombre v DT[,v] # col v como vector ## Subsetting columnas DT # Columna de nombre v DT[,list(v)] # col v como data.table ## Subsetting columnas DT # Columna de nombre v DT[,.(v)] # col v como data.table # En data.table list() es equivalente a .() ## Subsetting columnas DT # Columna 3 DT[,3] # Para extraer la columna 3 se debe añadir with=FALSE {r} DT[,3, with=FALSE] # Subsetting columnas DT # Columnas 1 y 3 DT[,c(1,3), with=FALSE] # Subsetting y cálculo de variables DT # Suma de la variable v sobre las filas 2, 3, 4 DT[2:4] DT[2:4,sum(v)] # Subsetting y cálculo de variables DT # Media de la variable v sobre las filas 1, 2, 3 DT[1:3] DT[1:3,mean(v)] # Setkeys DT setkey(DT,x) tables() # Subsetting mediante keys DT # Seleccionar las filas en las cuales la key sea igual a b DT["a"] # busqueda binaria (fast) # Seleccionar las filas en las cuales la key sea igual a b {r} DT # Equivalente a: DT[c("b","c")] # Subsetting omitir filas mediante keys # El simbolo ! en data.table desempeña el mismo papel que el signo - en data frame. DT # Omitimos las filas donde key sea igual a a o b DT[!c("a","b")] # equivalente # Keyed by # Para aplicar una función a los grupos generados por una key (tapply()) se utiliza: DT DT[,sum(v),by=key(DT)] # agrupamos mediante la key # Group by # Para aplicar una función a los grupos generados por una variable se utiliza: DT DT[,sum(v),by=y] # agrupamos mediante la variable y # Group by # Para aplicar una función a ciertos grupos generados mediate la key utilizamos: DT["a"] DT["a",sum(v)] # sum(v) en grupo a # Group by # Para aplicar una función a ciertos grupos generados mediate la key utilizamos: DT[c("a","b")] # Si se trata de más de un grupo se debe añadir by=.EACHI DT[c("a","b"),sum(v),by=.EACHI] # sum(v) en grupos a y b ## Joins # Considere los data tables DT y DT2: DT DT2 <- data.table(c("b","c"),z=c(4,2)) DT2 # Para cruzar las información mediante la key de DT y la primera columna de DT2 utilizamos: DT[DT2] # Para cruzar la informacion de la primera fila del grupo usamos: DT[DT2,mult="first"] # Para cruzar la informacion de la última fila del grupo usamos: DT[DT2,mult="last"] # Modificacion de columnas DT <- data.table(x=rep(c("a","b","c"),each=2), y=c(0,1), v=1:6) DT # Para añadir una columna a newcol a DT utilizamos: DT[,newcol:=8L] # add col por referencia # Eliminación de columnas DT # Para eliminar la columna newcol de DT utilizamos: DT[,newcol:=NULL] # remove col por referencia # Modificacion de columnas existentes setkey(DT,x) DT # Para reasignar valores a una variable existente usamos: print(DT["a",v:=10L]) # subassign a col existente v por referencia ## Modificacion de columnas setkey(DT,x) DT # Para asignar valores de una nueva variable utilizamos: print(DT["b",v2:=9L]) # subassign a nueva col by por referencia (NA) # Modificacion de columnas setkey(DT,x) DT # Para asignar a cada elemento de un grupo valores resultantes de aplicar una función a dichos grupos utilizamos: DT[,m:=mean(v),by=x] # add nueva col por grupo ## Importando data a R # read.table(file, header = FALSE, sep = "", dec=".", stringsAsFactors = TRUE, ...) # fread( ) # fast file reader function str(fread) # read.table( ) vs fread( ) # Utilizamos el archivo flights.csv (25MB). system.time( read_base <- read.csv("flights.csv", header = TRUE, sep = ",") ) dim(read_base) # install.packages("data.table") library(data.table) system.time( read_DT <- fread("flights.csv", sep = ",", header = F) ) dim(read_DT) - fread() es aproximadamente 10 veces más rápida que read.csv()
f2260b66026b66a7550d4fe05d7739a0d4686660
3d29b0de9404f87361979a216214614efce9419c
/man/OC2c.Rd
bdc39cb1a70969abb81edc94ca6d00c9a5b53ecc
[]
no_license
andreaskiermeier/AcceptanceSampling
2717f283cf840c28fc51a2918e2c2016805227ec
250d891adda26e152d3404ea1c8aff40dc7b883a
refs/heads/master
2023-04-30T14:33:51.511179
2023-04-19T06:38:16
2023-04-19T06:38:16
46,367,877
2
3
null
2015-11-23T23:51:11
2015-11-17T18:47:01
R
UTF-8
R
false
false
3,516
rd
OC2c.Rd
\name{OC2c} \alias{OC2c} \alias{plot,OC2c-method} \alias{plot,OCbinomial,missing-method} \alias{plot,numeric,OCbinomial-method} \alias{plot,OChypergeom,missing-method} \alias{plot,numeric,OChypergeom-method} \alias{plot,OCpoisson,missing-method} \alias{plot,numeric,OCpoisson-method} \alias{show,OC2c-method} \alias{show,OChypergeom-method} \alias{summary,OC2c-method} \alias{summary,OChypergeom-method} \title{Operating Characteristics of an Acceptance Sampling Plan} \description{ The preferred way of creating new objects from the family of \code{"OC2c"} classes.} \usage{OC2c(n,c,r=if (length(c)<=2) rep(1+c[length(c)], length(c)) else NULL, type=c("binomial","hypergeom", "poisson"), ...) } \arguments{ \item{n}{A vector of length k giving the sample size at each of the k stages of sampling, e.g. for double sampling k=2.} \item{c}{A vector of length k giving the \bold{cumulative} acceptance numbers at each of the k stages of sampling.} \item{r}{A vector of length k giving the \bold{cumulative} rejection numbers at each of the k stages of sampling.} \item{type}{The possible types relate to the distribution on which the plans are based on, namely, \code{binomial}, \code{hypergeom}, and \code{poisson}.} \item{...}{Additional parameters passed to the class generating function for each type. See Details for options.} } \details{ Typical usages are: \preformatted{ OC2c(n, c) OC2c(n, c, r, pd) OC2c(n, c, r, type="hypergeom", N, pd) OC2c(n, c, r, type="poisson", pd) } The first and second forms use a default \code{type} of "binomial". The first form can calculate \code{r} \emph{only} when \code{n} and \code{c} are of length 1 or 2. The second form provides a the proportion of defectives, \code{pd}, for which the OC function should be calculated (default is \code{pd=seq(0, 1, 0.01)}. The third form states that the OC function based on a Hypergeometric distribution is desired. In this case the population size \code{N} also needs to be specified. In this case, \code{pd} indicates the proportion of population defectives, such that \code{pd*N} gives the actual number of defectives in the population. If \code{N} or \code{pd} are not specified they take defaults of \code{N=100} and \code{pd=seq(0, 1, 0.01)}. A warning is issued if N and D=N*pd are not integers by checking the value, not the object type. } \value{ An object from the family of \code{OC2c-class}, namely of class \code{OCbinomial}, \code{OChypergeom}, or \code{OCpoisson}. } \seealso{ \code{\link{OC2c-class}} } \examples{ ## A standard binomial sampling plan x <- OC2c(10,1) x ## print out a brief summary plot(x) ## plot the OC curve plot(x, xlim=c(0,0.5)) ## plot the useful part of the OC curve ## A double sampling plan x <- OC2c(c(125,125), c(1,4), c(4,5), pd=seq(0,0.1,0.001)) x plot(x) ## Plot the plan ## Assess whether the plan can meet desired risk points assess(x, PRP=c(0.01, 0.95), CRP=c(0.05, 0.04)) ## A plan based on the Hypergeometric distribution x <- OC2c(10,1, type="hypergeom", N=5000, pd=seq(0,0.5, 0.025)) plot(x) ## The summary x <- OC2c(10,1, type="hypergeom", N=5000, pd=seq(0,0.5, 0.1)) summary(x, full=TRUE) ## Plotting against a function which generates P(defective) xm <- seq(-3, 3, 0.05) ## The mean of the underlying characteristic x <- OC2c(10, 1, pd=1-pnorm(0, mean=xm, sd=1)) plot(xm, x) ## Plot P(accept) against mean } \keyword{classes}
9b42226ed8d5f2caf7ba261e93bfbc5ea311fccb
08ac50745353290c77f57652ff0001623a425f4d
/analysis/analyze_data.R
dd193e9ca83f29d243ebe3de5984975df726708b
[]
no_license
cwru-robotics/turtlebot-estimation
e2f43d4b9c8018c7416359a127425783feb91c69
0b9013ff69be2a4ef88cbfebfcc2d47401185b54
refs/heads/master
2020-07-09T04:42:43.213587
2016-09-18T23:51:54
2016-09-18T23:51:54
66,859,804
1
0
null
null
null
null
UTF-8
R
false
false
4,158
r
analyze_data.R
#!/usr/bin/env Rscript # R Script to analyze data from experiments # Usage is analyze_data.R experiment1 experiment2... # If experiment names to render are not specified then all experiments are rendered # Must change the data_dir to your user directory! # TODO make this use environment variable to detect home directory data_dir <- "/home/USER/thesis/experiment_data" dirs <- list.dirs(path=data_dir, recursive=FALSE) # Find all experiments in the data_dir report_dir <- paste0(data_dir, "/reports") # Create a subdirectory in the data_dir to store reports args <- commandArgs(trailingOnly = TRUE) # Function to generate reports for all data in the data_dir if no argument was passed into function call renderAll <- function() { message("No args received, rendering all experiments") for (directory in 1:length(dirs)){ experiment_name = substr(dirs[directory], nchar(data_dir)+2, nchar(dirs[directory])) files <- list.files(path=dirs[directory], pattern="turtlebot([0-9])+_gazebo_odom.csv") if (experiment_name != "reports" && experiment_name != "old") { message(paste0("Rendering experiment ", experiment_name)) for (file in 1:length(files)) { # Generate a report for each robot in the experiment if (file < 10) { robot_number <- substr(files[file], 10, 10) } else if (file < 100) { robot_number <- substr(files[file], 10, 11) } rmarkdown::render("robot.Rmd", params=list(experiment=experiment_name, robot=robot_number), output_file=paste0("turtlebot_", robot_number, ".pdf"), output_dir=paste(report_dir, experiment_name, sep="/"), quiet=TRUE) } # Generate a report for the experiment as a whole rmarkdown::render('experiment.Rmd', params=list(experiment=experiment_name, robots=length(files)), output_file=paste0(experiment_name, ".pdf"), output_dir=paste(report_dir, experiment_name, sep="/"), quiet=TRUE) } } } # Renders specific experiments that were passed in as args to script call renderSome <- function() { message("Some args received, only rendering specified experiments") for (directory in 1:length(dirs)){ experiment_name = substr(dirs[directory], nchar(data_dir)+2, nchar(dirs[directory])) files <- list.files(path=dirs[directory], pattern="turtlebot([0-9])+_gazebo_odom.csv") if (is.element(experiment_name, args)) { message(paste0("Rendering experiment ", experiment_name)) for (file in 1:length(files)) { if (file < 10) { robot_number <- substr(files[file], 10, 10) } else if (file < 100) { robot_number <- substr(files[file], 10, 11) } rmarkdown::render("robot.Rmd", params=list(experiment=experiment_name, robot=robot_number), output_file=paste0("turtlebot_", robot_number, ".pdf"), output_dir=paste(report_dir, experiment_name, sep="/"), quiet=TRUE) } rmarkdown::render('experiment.Rmd', params=list(experiment=experiment_name, robots=length(files)), output_file=paste0(experiment_name, ".pdf"), output_dir=paste(report_dir, experiment_name, sep="/"), quiet=TRUE) } } } message('Ready to analyze experiment data!') # Accept command line args to control if we render all reports, or just for some experiments if (length(args) == 0) { # If no args, render everything that we can renderAll() } else { # If some args, render only experiments with names matching the passed args renderSome() }
11065455bceabd80f6cc593b4f4ed0862849be15
5833b6528abf04acc1c595942a37d2cd336d59dd
/inst/shinyapp/capionis/dashboard/plot.survival.R
f518d5fcc9165338fbfed7645320fb31fd39855f
[]
no_license
sakho3600/WAHEco
f108a705e9372b07c098dcba9599128abde2e5e6
8dc13ed6df08bbee56860725d13f59df80845414
refs/heads/master
2020-05-20T12:49:52.297351
2017-08-21T22:06:14
2017-08-21T22:06:14
null
0
0
null
null
null
null
UTF-8
R
false
false
1,382
r
plot.survival.R
survival.ROUTER <- "/survival" survival.NAMESPACE_ID <- "survival-trans" survival.view <- function(ns){ tagList( fluidRow( box(title = "Courbe de survie", status = "primary", solidHeader = TRUE, plotOutput(ns("plot2"))), box(title = "Évolution de la population", status = "primary", solidHeader = TRUE, plotOutput(ns("plot1"))) ) ) } survival.itemMenu <- menuSubItem("Courbes Survie", href=survival.ROUTER, newtab = FALSE, icon = shiny::icon("line-chart")) survival.server <- function(input, output, session, ...) { output$plot1 <- renderPlot({ print(plot(eco_mod, type = "counts", panel="by_state")) }) output$plot2 <- renderPlot({ interval_cycles <- eco_mod$eval_strategy_list$chvp$values$markov_cycle plotting <- plot(interval_cycles, eco_mod$eval_strategy_list$chvp$parameters$p_fct_param_chvp, type='l', col='blue', xlab="Time (cycles)", ylab="Probabilité état") lines(interval_cycles, eco_mod$eval_strategy_list$rchvp$parameters$p_fct_param_rchvp, col="red") lines(interval_cycles, eco_mod$eval_strategy_list$chvp$parameters$p_fct_parm_exp_chvp, lty=3, lwd=3, col="green") lines(interval_cycles, eco_mod$eval_strategy_list$rchvp$parameters$p_fct_parm_exp_rchvp, lty=3, lwd=3, col="violet") }) }
a855323e4218a9c49d7be93a1f75e6b679747181
4bb1aca720b47e74d86202b6e4417c63a64d91d8
/Ventdata_EEZcheck.R
fa2dfad3b28a52fb9e9d40073f011bb471da1720
[]
no_license
sbeaulieu/vents-Drupal
4cd7b04be8d79ff288f5b3ca2d5f574053064191
cc41a073696db9de90638285fe019914f1e2b628
refs/heads/master
2021-07-09T23:18:48.904636
2021-04-17T12:27:54
2021-04-17T12:27:54
36,871,545
1
1
null
2021-04-17T12:27:54
2015-06-04T13:22:20
PHP
UTF-8
R
false
false
921
r
Ventdata_EEZcheck.R
# R script point-in-polygon to check older version EEZ categories used in Vents Database against categories in VLIZ World EEZ Ver 11 from Nov 2019 # I couldn't figure out how to do reverse geocode using R package mregions, nor could I figure out how to login to LifeWatch web services library(rgdal) setwd("C:/Users/sbeaulieu/Desktop") vents <- read.csv("VentdataSortedclean_20200321.csv") coordinates(vents) <- c("Longitude", "Latitude") EEZs <- readOGR(".", "eez_v11") # takes a minute proj4string(vents) <- proj4string(EEZs) inside.EEZ <- !is.na(over(vents, as(EEZs, "SpatialPolygons"))) # use 'over' again, this time with EEZs as a SpatialPolygonsDataFrame # object, to determine which EEZ (if any) contains each sighting, and # store the EEZ name as an attribute of the vents data vents$EEZ <- over(vents, EEZs)$GEONAME # write the augmented vents dataset to CSV write.csv(vents, "vents-by-EEZ.csv", row.names=FALSE)
ed7778e5867321f43a0e29773025159b0868996f
62b3f0aaf7a0532c8f752052bf5ab9cb7f8b024e
/man/ggplot.profr.Rd
7c582107d77044d7892e63917f94bde581a46ca3
[]
no_license
Barbleiss/profr
c6ebedb922ab7edf0dc9af924e2c60f2a3c2fc18
ab520c615d80bafefbde15eef85263b533d717b2
refs/heads/master
2020-06-04T08:37:13.450908
2018-12-06T13:41:55
2018-12-06T13:41:55
null
0
0
null
null
null
null
UTF-8
R
false
true
813
rd
ggplot.profr.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/output.r \name{ggplot.profr} \alias{ggplot.profr} \title{Visualise profiling data with ggplot2. Visualise profiling data stored in a \code{profr} data.frame.} \usage{ ggplot.profr(data, ..., minlabel = 0.1, angle = 0) } \arguments{ \item{data}{profile output to plot} \item{...}{other arguments passed on to \code{\link[ggplot2]{ggplot}}} \item{minlabel}{minimum percent of time for function to get a label} \item{angle}{function label angle} } \description{ This will plot the call tree of the specified stop watch object. If you only want a small part, you will need to subset the object } \examples{ if (require("ggplot2")) { ggplot(nesting_prof) ggplot(reshape_prof) } } \seealso{ \code{\link{plot.profr}} } \keyword{hplot}
bedc03abc1f8a193d7c63c3c939debeef767a74a
0b1b36fe7d540a2f1aeb024b8fc1d0805bb54dc5
/R code/180918.R
0565198704e90f33fb970d76eea3e03724f7b29c
[]
no_license
Kim-Ayeong/R_Hadoop_class
b67c8548396fd56b8d53828a3b0b159fff71dfb5
421fb2b0960fa06d5d642a2b48307bdb62b5b258
refs/heads/master
2022-04-07T14:51:26.434800
2020-03-13T11:18:57
2020-03-13T11:18:57
235,706,419
0
0
null
null
null
null
UHC
R
false
false
3,005
r
180918.R
#9월18일 #lec3_updated2 #factor x <- factor(c("a", "b", "b", "a")) str(x) #1,2는 임의로 부여한 factor 수준 값 x[2] <- "a" #가능 x[2] <- "c" #불가능, 미싱값 입력 x <- rep( x = c(0,1), times = c(3,17) ) (Gender <- factor(x)) #convert the numeric vector as a factor (Gender <- factor(x, levels=c(0, 1), labels=c("M", "F"))) par(mfrow = c(1,2)) plot(Gender, col = c(1,2)) # Ordered factor x <- c(1, 1, 1, 2, 2, 2, 3, 3, 3) (Income <- ordered(x, levels=c(1, 2, 3), labels=c("L", "M", "H"))) #lec5 {1+2; 3+4; 6+8} #14, 마지막 식만 결과값만 출력 #if문 str(mtcars) x <- mtcars$mpg if(is.numeric(x)) boxplot(x, border="blue", col="lightblue", pars=list(boxwex=0.3)) #border:선의 색, col:채우기 색, boxplot의 상대적인 길이가 0.3 x <- factor(mtcars$cyl) if( is.numeric(x) ) boxplot(x) else { if(is.factor(x)) { tmp <- table(x) nlev <- length(levels(x)) barplot(tmp, col = (1:nlev) + 1) } } #for문 x <- mtcars$mpg (nn <- length(x)) y <- rep("NA", nn) for(i in 1:nn) { tmp <- x[i] if(tmp < 12) y[i] <- "low" if(tmp >= 12 & tmp < 17) y[i] <- "moderate" if(tmp >= 17) y[i] <- "high" } y #repeat, while문보다 for문 사용을 권장 #function simfun1 <- function(x){ res <- x^2 return(res) } class(simfun1) simfun1(1:3) simfun2 <- function(x){ res <- x^2 invisible(res) } simfun2(1:3) #결과값이 보이지 않음 (tmp <- simfun2(1:3)) #할당 후에는 결과값이 보임 simfun3 <- function(x){ res <- simfun1(x) ress <- res^2 return(ress) } simfun3(1:3) mvfun <- function(x){ nn <- length(x) res.mean <- sum(x)/nn res.var <- sum((x-res.mean)^2)/(nn-1) res <- list(mean=res.mean, var=res.var) return(res) } mvfun(1:3) #The . . . argument : 이전에 쓰던 argument를 다음 함수에도 전달해줄 수 있음. simplot1 <- function(x, y){ fit <- lm(y~x) plot(x, y, col=4, pch=16 ) abline(fit, col=2, lwd=2) } simplot1(x=mtcars$mpg, y=mtcars$cyl) simplot2 <- function(x, y, lcol=2, lwd=2, ... ){ fit <- lm(y~x) plot(x, y, ...) #plot 속 ...을 함수 인자로도 쓸 수 있음. abline(fit, col=lcol, lwd=lwd) #plot의 ...인자와 충돌할 수 있으므로, lcol, lwd로 따로 지정 } simplot2(x=mtcars$mpg, y=mtcars$cyl) #디폴트값 그대로 받아오기 simplot2(x=mtcars$mpg, y=mtcars$cyl, col=mtcars$cyl, pch=23) #plot 함수의 ...인자로 전달 simplot2(x=mtcars$mpg, y=mtcars$cyl, lcol=4, lwd=1, col=mtcars$cyl, pch=23) plot(1:25, col=1:25, pch=1:25, cex=2) #이 중에서 골라 사용하기 #Exercise 2 simfun4 <- function(x){ if(is.numeric(x)) x.num <- x else stop("x must be a numeric vector!") res <- x.num^2 return(res) } simfun4(1:3) simfun4(rep("m",3)) #Exercise 3 guessfun <- function(x){ if(!is.character(x) || length(x)>1) stop("x must be a character H or T!") res <- sample( x = c("H","T"), size = 1 ) if( is.character(x) && x == res) print("You win!") else print("You lose!") } guessfun(1) guessfun(c("H","T")) guessfun(H) guessfun("H")
725d7300f000c9ccc365bf089ddd1e92e0dedc82
a2aee752d7fd804ded63cafb587a25d6911f0db8
/tests/testthat/test-KISdata.R
71cd4e9f6421f7c1115c6a9e4d427cc35c9f1ac5
[]
no_license
jeroenbrons/knmiR
e8ca0d3cf5130d464f9239847059a93c7b46ce32
d1d9c9f3cdad6053455916a8fd1312130a8d42d5
refs/heads/master
2021-07-13T06:30:18.545480
2017-07-04T13:36:18
2017-07-04T13:36:18
null
0
0
null
null
null
null
UTF-8
R
false
false
1,081
r
test-KISdata.R
library(futile.logger) flog.threshold(DEBUG) flog.appender(appender.file("knmiR.log")) context("KIS data extraction") node <- Sys.info()["nodename"] test_that("Obtain temperature", { skip_on_travis() skip_if_not(grepl("knmi.nl", node)) expect_match(WriteKISRecipe("TG", "260_H", "2016"), "KIStable.txt") expect_error(KIS("rr", "260_H", "2016"), "Must be element of set {'TG', 'MOR_10'}.", fixed = TRUE) result <- KIS("TG", "260_H", "2016-08/2016-09") expect_equal_to_reference(result, file = "testOutput/temperatureDeBilt.rds") result <- KIS("TG", "310_H", "2016-08/2016-09") expect_equal_to_reference(result, file = "testOutput/temperatureVlissingen.rds") }) test_that("Obtain MOR_10", { skip_on_travis() skip_if_not(grepl("knmi.nl", node)) result <- KIS("MOR_10", "260_A_a", "2016-11-10") expect_equal_to_reference(result, file = "testOutput/MOR_10_DeBilt.rds") }) test_that("Get error outside", { skip_if_not(!grepl("knmi.nl", node)) expect_error(KIS("TG", "260_H", "2016"), "function works only inside KNMI", fixed = TRUE) })
c1f8abf41514495fc6f8fac61a3b16d092dec596
d30ae83d6357263f704e9d4ff5e18b0b997a9e7d
/Finding eigenvalues.R
d688d262c51799bd6a6cf5e9069b16383d639cbb
[]
no_license
gng-ucdavis/Chapter1-code
5ee11538c5ec11ef8d41db471b0f887564eead80
65ed350177b4d469889c3675c0c1b1e30b02ba4c
refs/heads/master
2023-07-02T06:45:37.781810
2021-08-07T23:28:00
2021-08-07T23:28:00
209,189,130
0
0
null
null
null
null
UTF-8
R
false
false
1,849
r
Finding eigenvalues.R
####9/17/19 This script is to look for eigenvalues in your Jacobian matrix. Solving for this will let me know if my solutions are stable or not (doesn't say if it is the only stable one) ###This is the first part of the stability analysis. The script 'solving for hyseresis' comes later ##The following are the partial derivatives of my jacobian matrix (corrected for the flipped m). ###And that's mostly it. This has the up to date parital derivative (9/17/19) that will be used for stability analyses aa=-a*H*(1+s)/(1+s+f*m*P)-2*B+1 ###This is the partial derivative of the basal resource equation wrt the basal resource. The reason why this looks weird is because I flipped the (1+s) to the numerator to keep the equations neater. *shrug bb=-a*B*(1+s)/(1+s+f*m*P) #This is the partial derivative of the basal resource wrt the prey population cc=a*f*m*B*H*(1+s)/(1+s+f*m*P)^2 #This is the partial derivative of the basal resource wrt the predator population dd=a*H*(1+s)/(1+s+f*m*P) #This is the partial derivative of the prey wrt the basal resource ee=a*B/(1+((f*m*P)/(1+s)))-b*P/((1+f*P/(1+s))*(1+n*s))-dh #This is the partial derivative of the prey wrt the prey ff=-a*f*m*B*H/((1+s)*(1+f*m*P/(1+s))^2)-b*H/((1+n*s)*(1+(f*P)/(1+s)))+b*f*H*P/((1+s)*(1+n*s)*(1+(f*P)/(1+s))^2) #This is the partial derivative of the prey wrt the predator gg=0 #This is the partial derivative of the predator equation wrt the basal resource hh=b*P*(1+s)/((1+s+f*P)*(1+n*s)) #This is the partial derivative of the predator equation wrt the prey ii=b*H/((1+f*P/(1+s))*(1+n*s))-b*f*H*P/((1+s)*(1+n*s)*(1+f*P/(1+s))^2)-dp #This is the partial derivative of the predator equation wrt the predator ##So what do I do with this? Input values for these 9 equations and find the eigenvalues jmat=(matrix(c(aa,bb,cc,dd,ee,ff,gg,hh,ii), ncol=3, byrow=T)) eigen(jmat)$values
bf1e66a0741efb76fa452b0ac25ae41545cefda2
ea3318080191c56d0d83c189325534919cc86794
/plot1.R
1f813999c50d4e388b7fd02df1e5b2724bba25d8
[]
no_license
agcode/Exdata_NEI
150a8c8d29f66708bd6cc156430560267e2ece6e
078ec2698db04378f513c8f6f07854225e8cc63f
refs/heads/master
2021-01-10T14:54:24.667032
2015-11-02T08:42:16
2015-11-02T08:42:16
44,660,446
0
0
null
null
null
null
UTF-8
R
false
false
1,215
r
plot1.R
## Exploratory Data Analysis Assignment 2 ## Have total emissions from PM2.5 decreased in the United States from 1999 to 2008? ## Using the base plotting system, make a plot showing the total PM2.5 emission from all sources for each of the years 1999, 2002, 2005, and 2008. NEI <- readRDS("summarySCC_PM25.rds") SCC <- readRDS("Source_Classification_Code.rds") # Take the aggregate of emissions over years xx <- aggregate(NEI$Emissions ~ NEI$year, FUN=sum) # Using base plotting system png("plot1.png",width= 480,height= 480,units= "px") #barplot(xx[[2]],xx[[1]],xlab="Year",ylab="Emissions") bp<-barplot(xx[[2]],xx[[1]],xlab="Year",ylab="Emissions",names.arg = c(1999, 2002, 2005, 2008),main="Total Emissions from PM2.5",col = c("red","sienna","palevioletred1","royalblue2")) text(bp, 0, round(xx[[2]], 1),cex=1,pos=3) #boxplot(NEI$Emissions ~ NEI$year,data=NEI,outline=FALSE,xlab="Year",ylab="Emissions",main = "Total emissions from PM2.5") #ggplot()+geom_point(data=xx,aes(x=xx[["NEI$year"]],y=xx[["NEI$Emissions"]]),colour = 'red', size = 3) #ggplot(xx,aes(x=xx[["NEI$year"]],y=xx[["NEI$Emissions"]]))+geom_bar(stat="identity")+xlab("Year")+ylab("Emissions")+ggtitle("Aggregate Emissions per Year") dev.off()
8975ac018930eed8129bf82b80c23459220aaa7e
560bac32951f722ddb6636bac4ca3ba02ca418f2
/dmpabook/c07.R
1284ce004fed9d0dbe2943a04e3738643991cadb
[]
no_license
anhnguyendepocen/rBooks
26ddf16647e4435263ba5dc67a8ccf3f76f0798e
274bf5178e1b4eb14427f74f7f825d4b25ece75b
refs/heads/master
2021-09-20T01:12:50.148676
2018-08-02T05:41:55
2018-08-02T05:41:55
null
0
0
null
null
null
null
UTF-8
R
false
false
38
r
c07.R
# Chap- 7: Preparing to Model the Data
6643e7ae39d9fac217734b65c675d41d8ff79ef0
2196661c2667ec48fe05185b79ff4787e7fd9bb0
/man/QQPlot-comma-AnnualAggLossDevModelOutput-dash-method.Rd
a52e7228fca87d18a3ce55d4a98be48776f92495
[]
no_license
cran/BALD
36549ff72ae813d1dc2bb25fd77dbd7db663cbbb
c528ec69adcab7ad3d278f88905782e8d5ec0c12
refs/heads/master
2021-07-10T02:35:40.347434
2018-10-22T11:00:07
2018-10-22T11:00:07
154,136,226
0
0
null
null
null
null
UTF-8
R
false
false
648
rd
QQPlot-comma-AnnualAggLossDevModelOutput-dash-method.Rd
\name{QQPlot,AnnualAggLossDevModelOutput-method} \alias{QQPlot,AnnualAggLossDevModelOutput-method} \title{A method to plot a Q-Q plot for models in the BALD package.} \description{A method to plot a Q-Q plot for models in the \pkg{BALD} package.} \details{This function plots sorted observed log incremental payments vs sorted predicted log incremental payments. Credible intervals are also plotted.} \value{NULL. Called for the side effect of plotting.} \docType{methods} \seealso{\code{\link{QQPlot}} \code{\link{triResi}}} \arguments{\item{object}{The object of type \code{AnnualAggLossDevModelOuput} from which to plot the values.}}
b4e3bb0e21bd20339f92d8011bbe56103220b399
ddc72e526751d804a51d76dc1a69d066aa037810
/global.R
674f1e99fcf9624e7e9cbe23da2907ec10e46eea
[]
no_license
soulj/SkeletalVis-Shiny
6c5a2dba0ed4913e776b8a090336e14a6b5bcfbb
0517f551448d011f690454514016c8f56efaf73a
refs/heads/master
2020-03-18T06:41:44.499049
2018-09-20T13:14:28
2018-09-20T13:14:28
134,410,379
1
0
null
null
null
null
UTF-8
R
false
false
819
r
global.R
library(feather) library(readr) library(enrichR) foldChangeTable <- read_feather("foldChangeTable.feather") pvalTable <- read_feather("pvalTable.feather") #load the accessions accessions <- read.delim("accessions.txt",stringsAsFactors = F) accessions$combined <- paste0(accessions$accession,"_",accessions$comparison) #Load the experiment table expTable<-read_csv(file = "data/expTable.csv") #load the signature lists for the response comparisons upSigs <- readRDS(file="foldChangeListUp.pval.RDS") downSigs <- readRDS(file="foldChangeListDown.pval.RDS") #load the chrDir lists chrDirsList <- readRDS("chrDirs.RDS") #load the human2otherspecies homology table human2otherspecies <- as.data.frame(read_feather("data/human2otherspecies.feather")) #get the enrichR databases databases <- sort(listEnrichrDbs()[,1])
6ea87d4bb1fdf0cf2cb0452883239724ef003466
fdd8b4769615fbd1c7dd9cb3fa98a144384046be
/Problem 4/4_2.R
ab4f483435f4e89ce3cb4d7c3c5acf8cc34ba3c3
[]
no_license
Shruti0490/R
2752cf88e2413a96cffdf438e1bbdaf586f2c87e
3e77814b120fc70ac95cedb4221fa7c96c9dea61
refs/heads/master
2022-12-30T11:41:19.854820
2020-10-22T14:27:09
2020-10-22T14:27:09
291,740,398
0
0
null
null
null
null
UTF-8
R
false
false
1,784
r
4_2.R
## Q 4.2 library(MASS) data(package='MASS') attach(UScereal) summary(UScereal) df <- UScereal # 1. The relationship between manufacturer and shelf # both are CATEGORIES barplot(table(df$shelf, df$mfr), main="4.2 - Manufacturer & Shelf", xlab="Manufacturer", ylab="Shelf", col=rainbow(3), legend=T) dev.off() # 2. The relationship between fat and vitamins # fat is NUMERICAL, vitamins are CATEGORICAL boxplot(fat ~ vitamins, main="4.2 - Vitamins & Fat", xlab="Vitamins", ylab="Fat") dev.off() # 3. the relationship between fat and shelf # fat is NUMERICAL, shelf if CATEGORICAL boxplot(fat ~ shelf, main="4.2 - Shelf & Fat", xlab="Shelf", ylab="Fat") dev.off() # 4. the relationship between carbohydrates and sugars # both carbo and sugars are NUMERICAL, and possibly # with correlation? # plotting points and linear fit attempt to see # if there is a relation... plot(carbo, sugars, main="4.2 - Carbo & Sugars", xlab="Carbo", ylab="Sugars") lm <- lm(sugars ~ carbo) abline(lm, col="red") dev.off() # 5. the relationship between fibre and manufacturer # mfr is CATEGORICAL, fibre is NUMERICAL boxplot(fibre ~ mfr, main="4.2 - Mfr & Fibre", xlab="Mfr", ylab="Fibre") dev.off() # 6. the relationship between sodium and sugars # sodium and sugars are both NUMERICAL # plotting points and linear fit to see if there # is some relation plot(sugars, sodium, main="4.2 - Sugars & Sodium", xlab="Sugars", ylab="Sodium") lm <- lm(sodium ~ sugars) abline(lm, col="red") dev.off() detach(UScereal)
171eba846156a1583082422b5742ce3b8047b552
42d44c41040f17ae75b6ec035fb4958f8a9302cf
/SCW.R
27af1c678b72f91d149477aefbc013d6d4ca8e36
[]
no_license
WenjuanW/Online-WAPA
7a7f3145183dd21a28e40eb1abcf8899e6ab08b9
eb5fc7d113af63c1f66ec7c714c6365928f6537d
refs/heads/master
2020-03-20T21:57:14.320408
2018-06-20T08:55:10
2018-06-20T08:55:10
137,770,450
0
0
null
null
null
null
UTF-8
R
false
false
1,953
r
SCW.R
SCWI <- function(streamData1,label1,c,eta){ streamData1 <- as.matrix(streamData1) label1 <- as.matrix(label1) k <- 1 # k <- 3 streamData <- apply(streamData1, 2, rep, k) y <- apply(label1, 2, rep, k) Ncols <- ncol(streamData) Nrows <- nrow(streamData) u <- matrix(0, nrow = Ncols, ncol = 1) Sigma <- diag(1,Ncols,Ncols) prediction <- matrix(0, nrow = Nrows, ncol = 1) loss <- matrix(0, nrow = Nrows, ncol = 1) # AE <- matrix(0, nrow = Nrows, ncol = 1) # count <- 0 for(i in 1:Nrows){ pred1 <- sign(t(u)%*%streamData[i,]) prediction[i] <- pred1 vt <- t(streamData[i,])%*%Sigma%*%streamData[i,] fai <- 1/pnorm(eta) ## print(Norm(streamData[i,])) ## print(Sigma) ## print(streamData[i,]) ## print(vt) lt <- max(0,fai*sqrt(vt)-y[i]*(streamData[i,] %*% u)) l1 <- max(0,1-y[i]*(streamData[i,] %*% u)) loss[i] <- l1 if (lt>0){ mt <- y[i]*t(u)%*%streamData[i,] pa <- 1+fai^2/2 xi <- 1+fai^2 stepw <- min(c,max(0,1/(vt*xi)*(-mt*pa+sqrt(mt^2*fai^4/4+vt*fai^2*xi)))) ut <- 0.25*(-stepw*vt*fai+sqrt(stepw^2*vt^2*fai^2+4*vt))^2 Betat <- stepw*fai/(sqrt(ut)+vt*stepw*fai) u <- u + stepw*y[i]*Sigma%*%streamData[i,] ##print(is.positive.semi.definite(Sigma, tol=1e-250)) ##print(is.positive.semi.definite(Sigma%*%((streamData[i,])%*%t(streamData[i,]))%*%Sigma, tol=1e-250)) Sigma <- Sigma - Betat[1,1]*Sigma%*%(streamData[i,])%*%t(streamData[i,])%*%Sigma } # if (pred1!=y[i]){ # count <- count +1 # AE[i] <- count/i # }else{ # AE[i] <- count/i # } } a <- length(which(prediction==y[1:nrow(prediction)]))/nrow(prediction) #newlist <- list("pred" = a, "loss" = loss,"AverageE" = AE) newlist <- list("pred" = a, "loss" = loss) return(newlist) } #sc <- SCWI(x_train,y_train,25,0.8)$pred
6ce8be541f74d14c098bff86dffc6fd2b22d311a
57d258a66ce8a56af95db6f37b1472f88e639b4f
/treelet_prepare_cv.R
2c9c84fb92eced24b62cad447b879c0f6697cf79
[]
no_license
dravesb/TreeletSmoothers
97fc99ae91a95788aeb240cb82b817d534c3d6a7
991f775b2f770a935e39eb0a02f6ed40669fe030
refs/heads/master
2021-01-01T04:27:45.605741
2017-08-13T20:23:39
2017-08-13T20:23:39
97,177,475
0
0
null
2017-08-13T20:17:27
2017-07-14T00:55:08
R
UTF-8
R
false
false
2,737
r
treelet_prepare_cv.R
treelet_prepare_cv = function(grm_name, num_test = 50, snp_set_size = NA){ #-------------------------------- #Check for errors in the grm file #-------------------------------- if(is.na(grm_name)){ stop("please specify grm file name \n this should be in the current directory") } #------------------------------------------- # read in SNP file #------------------------------------------- snp_name = paste(grm_name, ".bim", sep = "") snps = as.matrix(read.table(snp_name))[,2] if(!exists("snps")){ stop("couldn't find the file") } if(is.na(snp_set_size)){ #include entire snp set snp_set_size = length(snps) } if(length(snps)<snp_set_size){ message("snp_set_size is greater than the number of snps \n setting it to the max value") snp_set_size = length(snps) } snps = sample(snps, snp_set_size) #-------------------------------- #Make training and testing sets #-------------------------------- message("writting out testing/training sets") #get train/test indices indices = 1:length(snps) train_index = sample(indices, round(length(snps)/2)) test_index = indices[-train_index] #create directory for snp sets dir.create("./snp_sets", showWarnings = FALSE) setwd("./snp_sets") #write out training snps write.table(snps[train_index], "train", col.names = F, row.names = F, quote = F) #split the testing sets once more size = floor(length(test_index)/50) for(i in 1:num_test){ #get the smaller snp_set small_snp_set = sample(test_index, size) #remove small_snp_set from test_index test_index = test_index[!test_index %in% small_snp_set] #write out small_snp_set file = paste("test",i, sep = "") write.table(snps[small_snp_set], file, col.names = F, row.names = F, quote = F) } #go back a directory setwd("..") message("writting out grms - this may take a very long time...") #-------------------------------- #Make training grms #-------------------------------- #create directory for the new grms dir.create("./cv_grms", showWarnings = FALSE) #format snp file names snp_file = paste(getwd(), "/snp_sets/train", sep = "") out = paste(getwd(), "/cv_grms/train", sep = "") #make the call to gcta system(paste("./gcta_mac --bfile ",grm_name," --extract ",snp_file," --make-grm --out ", out, sep = "")) #-------------------------------- #Make testing grms #-------------------------------- for(i in 1:num_test){ #format snp file names snp_file = paste(getwd(), "/snp_sets/test",i, sep = "") out = paste(getwd(), "/cv_grms/test",i, sep = "") #make the call to gcta system(paste("./gcta_mac --bfile ",grm_name," --extract ",snp_file," --make-grm --out ",out,sep = "")) } }
7925715014632680dcb0bedbb22fa3f78459f79d
1920a6ec39111d11bca8a24089b701a55eb73896
/man/SNP.Pattern.Rd
fcf53f4311bbc2dbd8bce8a4000890564e9d1922
[]
no_license
benliemory/BinStrain
1014195bd161cefaeb278858a297e3528c372ca5
76465748595bd394cb37c9cae811b977b2eafde8
refs/heads/master
2020-04-27T07:38:24.557622
2013-11-24T02:39:59
2013-11-24T02:39:59
14,651,642
1
1
null
null
null
null
UTF-8
R
false
false
350
rd
SNP.Pattern.Rd
\name{SNP.Pattern} \alias{SNP.Pattern} \docType{data} \title{ Data for SNP Pattern } \description{ The data describes the SNP Pattern. } \usage{data(SNP.Pattern)} \format{ A data frame with 15387 observations. Numbers from 1 to 14 represents the order of the reference genomes used to generate the SNP pattern file } \examples{ data(SNP.Pattern) }
6808e6b664e7f75a893b4c26da59232f000341c8
99f74103b2d72babd81ef255d99d8a7873779119
/Ch02/2_6_String.R
30d36d5cb6397172d0e5a1b08b43fd9872e7d161
[]
no_license
leesiri1004/R
6c652df0244de91ef1185adf6aa44c45382fa42f
9b197e3258439098695f37270217bfbc167ae116
refs/heads/master
2023-03-08T18:08:11.641332
2021-02-24T07:15:31
2021-02-24T07:15:31
330,568,766
0
0
null
null
null
null
UTF-8
R
false
false
4,004
r
2_6_String.R
#날짜 : 2021/01/19 #이름 : 이슬이 #내용 : Ch02. 데이터 유형과 구조 - 문자 처리 교재 p84 #R 패키지 설치 install.packages('stringr') #R 패키지 로드 library(stringr) #문자열 정규표현식 str <- 'hong25이순신31정약용27' rs1 <- str_extract(str, '[1-9]{2}') rs1 rs2 <- str_extract_all(str, '[1-9]{2}') rs2 rs3 <- str_extract_all(str, '[a-z]{3}') rs3 rs4 <- str_extract_all(str, '[가-힣]{3}') rs4 rs5 <- str_extract_all(str, '[^0-9]{3}') rs5 #문자열 길이 str_length(str) #문자열 자르기 str_sub(str, 1, 5) #교재 p84 실습 - 문자열 추출하기 str_extract("홍길동35이순신45유관순25", "[1-9]{2}") str_extract_all("홍길동35이순신45유관순25", "[1-9]{2}") #교재 p85 실습 - 반복 수를 지정하여 영문자 추출하기 string <- "hongkd105leess1002you25강감찬2005" str_extract_all(string, "[a-z]{3}") #영문 소문자가 3자 연속하는 경우 추출 str_extract_all(string, "[a-z]{3,}") #영문 소문자가 3자 이상 연속하는 경우 추출 str_extract_all(string, "[a-z]{3,5}") #영문 소문자가 3~5자 연속하는 경우 추출 #교재 p85 실습 - 문자열에서 한글, 영문자, 숫자 추출하기 str_extract_all(string, "hong") #해당 문자열 추출 str_extract_all(string, "25") #해당 숫자 추출 str_extract_all(string, "[가-힣]{3}") #연속된 3개의 한글 문자열 추출 str_extract_all(string, "[a-z]{3}") #연속된 3개의 영문 소문자 추출 str_extract_all(string, "[0-9]{4}") #연속된 4개의 숫자 추출 #교재 p86 실습 - 문자열에서 한글, 영문자, 숫자를 제외한 나머지 추출하기 str_extract_all(string, "[^a-z]") #영문자를 제외한 나머지 추출 str_extract_all(string, "[^a-z]{4}") #영문자를 제외한 연속된 4글자 추출 str_extract_all(string, "[^가-힣]{5}")#한글을 제외한 나머지 연속된 5글자 추출 str_extract_all(string, "[^0-9]{3}") #숫자를 제외한 나머지 연속된 3글자 추출 #교재 p86 실습 - 주민등록번호 검사하기 jumin <- "123456-1234567" str_extract(jumin, "[0-9]{6}-[1234][0-9]{6}") str_extract(jumin, "\\d{6}-[1234]\\d{6}") #d{6}: 숫자 6개 #교재 p87 실습 - 지정된 길이의 단어 추출하기 name <- "홍길동1234,이순신5678,강감찬1012" str_extract_all(name, "\\w{7,}") #7글자 이상의 단어(숫자 포함)만 추출 #교재 p87 실습 - 문자열의 길이 구하기 string <- "hongkd105leess1002you25강감찬2005" len <- str_length(string) len #교재 p87 실습 - 문자열 내에서 특정 문자열의 위치(index) 구하기 string <- "hongkd105leess1002you25강감찬2005" str_locate(string, "강감찬") #교재 p88 실습 - 부분 문자열 만들기 string_sub <- str_sub(string, 1, len - 7) #이전 예제의 len 변수 사용 string_sub string_sub <- str_sub(string, 1, 23) #문자열의 위치를 이용 string_sub #교재 p88 실습 - 문자열 교체하기 string_sub #문자열 교체 전 변수의 값 string_rep <- str_replace(string_sub, "hongkd105", "홍길동35,") string_rep <- str_replace(string_rep, "leess1002", "이순신45,") string_rep <- str_replace(string_rep, "you25", "유관순25,") string_rep #문자열 교체 후 변수의 값 #교재 p89 실습 - 문자열 결합하기 string_rep #문자열 결합 전 변수의 값 string_c <- str_c(string_rep, "강감찬55") string_c #문자열 결합 후 변수의 값 #교재 p89 실습 - 문자열 분리하기 string_c #문자열을 분리하기 전 변수의 값 string_sp <- str_split(string_c, ",") #콤마를 기준으로 문자열 분리 string_sp #문자열 분리 결과 #교재 p89 실습 - 문자열 합치기 #단계 1: 문자열 벡터 만들기 string_vec <- c("홍길동35", "이순신45", "유관순25", "강감찬55") string_vec #단계 2: 콤마를 기준으로 문자열 벡터 합치기 string_join <- paste(string_vec, collapse = ",") string_join
97a8d1919b7fbc3f9ab5de676e34d8c30f842ea0
b45944145af4b2d86ff4f02393b984370006eb1d
/Hackathon Refugees.R
d1f22a762ceddc8f78089745cbda72dbef507535
[]
no_license
madeleinenic/PODS-Hackathon
1f035bcc3058b149d0e4f0ac5b1e795b31118780
90d831cec3b1c5cd3a73eaad35ca7d665a31a1b3
refs/heads/master
2022-02-13T23:32:59.227478
2019-06-25T13:16:11
2019-06-25T13:16:11
null
0
0
null
null
null
null
UTF-8
R
false
false
1,051
r
Hackathon Refugees.R
service_data$`Blended Sponsorship Refugee` <- as.numeric(service_data$`Blended Sponsorship Refugee`) ggplot(data= service_data, aes(x= Province , y= `Blended Sponsorship Refugee`, fill= `Service Type`)) + geom_bar(stat="identity") service_data$`Government-Assisted Refugee` <- as.numeric(service_data$`Government-Assisted Refugee`) ggplot(data= service_data, aes(x= Province , y= `Government-Assisted Refugee`, fill= `Service Type`)) + geom_bar(stat="identity") service_data$`Privately Sponsored Refugee` <- as.numeric(service_data$`Privately Sponsored Refugee`) ggplot(data= service_data, aes(x= Province , y= `Privately Sponsored Refugee`, fill= `Service Type`)) + geom_bar(stat="identity") service_data$`Total number of requests` <- as.numeric(service_data$`Total number of requests`) ggplot(data= service_data, aes(x= Province , y= `Total number of requests`, fill= `Service Type`)) + geom_bar(stat="identity")
c0948155a954a9214afe20b747401e09ce0eb5fa
0b551347a29f4e01e9273615ce0c5242f9bdb63a
/pkg/R/get_power_deriv.R
b0502c402f1f5005608057d9665b77fa91f40971
[]
no_license
timemod/dynmdl
8088fecc6c2b84d50ecb7d7b762bddb2b1fcf629
8dc49923e2dcc60b15af2ae1611cb3a86f87b887
refs/heads/master
2023-04-07T21:30:53.271703
2023-03-03T13:02:30
2023-03-03T13:02:30
148,925,096
0
0
null
null
null
null
UTF-8
R
false
false
454
r
get_power_deriv.R
get_power_deriv <- function(x, p, k) { # The k-th derivative of x^p (Used in f_dynamic) # INPUTS # x: base # p: power # k: derivative order # # OUTPUTS # if ((abs(x) < 1e-12) && (p > 0) && (k > p) && (abs(p - round(p)) < 1e-12)) { return (0) } else { dxp <- x^(p - k); for (i in 0:(k - 1)) { dxp <- dxp * p p <- p - 1 } return (dxp) } }
7e48bb17aa4f268f9608e60116d0f65df6225bf8
ffdea92d4315e4363dd4ae673a1a6adf82a761b5
/data/genthat_extracted_code/StrainRanking/examples/powderymildew.Rd.R
60444ba52ba56949999522815269b2bb794eb2a1
[]
no_license
surayaaramli/typeRrh
d257ac8905c49123f4ccd4e377ee3dfc84d1636c
66e6996f31961bc8b9aafe1a6a6098327b66bf71
refs/heads/master
2023-05-05T04:05:31.617869
2019-04-25T22:10:06
2019-04-25T22:10:06
null
0
0
null
null
null
null
UTF-8
R
false
false
470
r
powderymildew.Rd.R
library(StrainRanking) ### Name: powderymildew ### Title: Demographic and genetic real data ### Aliases: powderymildew ### Keywords: datasets ### ** Examples ## load the powderymildew data set data(powderymildew) ## names of items of powderymildew names(powderymildew) ## print powderymildew print(powderymildew) ## alternatives to print one of the items of powderymildew, e.g. the 4th items: print(powderymildew$genetic.frequencies) print(powderymildew[[4]])
a2487ff34e34a16105078dea6f61cc432809b803
4834724ced99f854279c2745790f3eba11110346
/man/add_dup_markers.Rd
4be1572417edcd093dbb6f4aae3d0719d15a7eae
[]
no_license
mdavy86/polymapR
1c6ac5016f65447ac40d9001388e1e9b4494cc55
6a308769f3ad97fc7cb54fb50e2b898c6921ddf9
refs/heads/master
2021-01-25T12:37:09.046608
2018-02-13T17:07:35
2018-02-13T17:07:35
123,487,219
0
1
null
null
null
null
UTF-8
R
false
true
520
rd
add_dup_markers.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/exported_functions.R \name{add_dup_markers} \alias{add_dup_markers} \title{Add duplicate markers to a map} \usage{ add_dup_markers(maplist, bin_list) } \arguments{ \item{maplist}{A list of maps. Output of MDSMap_from_list.} \item{bin_list}{A list of marker bins containing marker duplicates. Output of screen_for_duplicate_markers.} } \value{ A maplist with added markers. } \description{ Add duplicate markers to a map }
5bbe26521ac1c94c54925dab8608b9b23c44baaa
2bec5a52ce1fb3266e72f8fbeb5226b025584a16
/flying/man/birds.Rd
c383e810c74b9c9cb46738a2833506ca5a2b6548
[]
no_license
akhikolla/InformationHouse
4e45b11df18dee47519e917fcf0a869a77661fce
c0daab1e3f2827fd08aa5c31127fadae3f001948
refs/heads/master
2023-02-12T19:00:20.752555
2020-12-31T20:59:23
2020-12-31T20:59:23
325,589,503
9
2
null
null
null
null
UTF-8
R
false
true
923
rd
birds.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/birds_documentation.R \docType{data} \name{birds} \alias{birds} \title{Sample 28 birds} \format{A data frame with 28 observations and 5 variables not counting the name. \describe{ \item{Scientific.name}{Name of bird species} \item{Empty.mass}{Body mass in Kg. Includes fuel. All-up mass with crop empty. Not to be confused with lean mass.} \item{Wing.span}{Length of wings spread out in metres} \item{Fat.mass}{Mass of fat that is consumable as fuel in Kg} \item{Order}{Order of the spicies (passerine vs non-passerine)} \item{Wing.area}{Area of both wing projected on a flat surface in metres squared} \item{Muscle.mass}{Mass in Kg. of flight muscles} }} \usage{ birds } \description{ Preset birds data, extracted from Flight program. Fat mass percentage generated randomly where zero. } \keyword{datasets}
ce5b4b7a4e71698c67fcf80302e55c7c5bb8ff3e
32e00dbb5c0b06a8aadb16a753479ce269310488
/COVIDModel/server.R
c8212a2d4feb98d6a86d8e36ebd9d42096934dd1
[]
no_license
lnsongxf/CovidShinyModel
d69ec6f372bf5db09fac0b3b3f0d6e0630119acc
e92a6dab43fcd4415cc2cddb23ffc7417348b8c0
refs/heads/master
2021-05-20T04:05:42.985126
2020-03-30T19:33:28
2020-03-30T19:33:28
null
0
0
null
null
null
null
UTF-8
R
false
false
43,339
r
server.R
source('helper.R') library(shiny) library(ggplot2) library(shinyWidgets) library(data.table) library(DT) library(dplyr) library(shinyjs) # start simulation from this number of infections # TODO: should do a test that this works...if we start with a different start.inf # are the results different? start.inf <- 1 r0.default <- 2.8 est.days <- 365 shinyServer(function(input, output, session) { ## ............................................................................ ## Helper Modal ## ............................................................................ # modal pop-up helper screen observeEvent(input$howtouse,{ showModal(modalDialog( fluidPage( HTML("<h4><b>What does this tool do?</b></h4> The app projects numbers of <i> active cases, hospitalizations, ICU-use and deaths</i> for COVID-19 based on local epidemiologic data under serial public health interventions. It can be used for regional planning for predicting hospital needs as the COVID-19 epidemic progresses. <br><br> <h4><b>What inputs do I need to make a prediction?</b></h4> After setting a date for Day 0, you need to input the <i>population of the region</i> that you are projecting for, as well as the estimated number of <i>current COVID-19 inpatients</i>. <br><br> You also will need some measure of the <i>reproductive number Re prior to Day 0</i>. This value is defaulted to 2.8, which is the approximate reproductive number currently reported in literature. <br><br> Other parameters include rates, durations, and lags for hospitalizations, ICU, and ventilator needs. These are defaulted to values reported in literature, but can be changed by clicking on 'Customize Other Parameters.' <br><br> <h4><b>How does the app predict the number of Day 0 cases and infections?</b></h4> We use the percent of infections that result in hospitalization to make a prediction into the actual number of infections. When doing this, we account for the lag time between infection and hospitalization, during which more infections will have occurred. <br> <br> By using hospitalization numbers, we try avoid assumptions on detection rates and variable testing patterns. <br> <br> <h4><b>What exactly does the app project?</b></h4> There are three tabs of graphs: <ul> <li><b>Cases</b>: Shows the projected number of active, recovered, and total cases. </li> <li><b>Hospitalization</b>: Shows the predicted hospital bed, ICU bed, and ventilator needs over time.</li> <li><b>Hospital Resources</b>: Allows you to enter in current regional capacity for hospital resources, and will predict resource availability over time.</li> </ul> <br> <h4><b>How can I take into account for public health interventions which may change the dynamics of the disease?</b></h4> Under the 'Add Interventions' section, you can add and save changes in Re over different timepoints, which will change the projections in the graphs. ") ), size = 'l' ) ) }) ## ............................................................................ ## Prediction Field (Currently Only Hospitalizations) ## ............................................................................ output$prediction_fld <- renderUI({ numericInput(inputId = 'num_hospitalized', label = 'Estimate of current inpatients with COVID-19 (diagnosed or not) on Day 0', value = 50) }) ## ............................................................................ ## Selection of R0 or Doubling Time ## ............................................................................ output$prior_val <- renderUI({ if (input$usedouble == TRUE){ sliderInput(inputId = 'doubling_time', label = 'Doubling Time (days) Before Day 0', min = 1, max = 12, step = 1, value = 6) } else{ fluidPage( fluidRow( sliderInput(inputId = 'r0_prior', label = 'Re Before Day 0', min = 0.1, max = 7, step = 0.1, value = 2.8), actionLink('predict_re', 'Estimate Re prior to Day 0 based on data.') ) ) } }) output$int_val <- renderUI({ if (input$usedouble == TRUE){ sliderInput(inputId = 'new_double', label = 'New Doubling Time (days) After Interventions', min = 0, max = 50, step = 1, value = 6) } else{ sliderInput(inputId = 'r0_new', label = 'New Re After Intervention', min = 0.1, max = 6, step = 0.1, value = 2.8) } }) ## ............................................................................ ## Estimation of Re ## ............................................................................ re.estimates <- reactiveValues( graph = NULL, best.estimate = NULL ) observeEvent(input$predict_re, { showModal( modalDialog( useShinyjs(), HTML('<h4> Estimate Re based on historical hospitalizations</h4> Provide data from dates prior to Day 0 to estimate the Re value.<br><br>'), splitLayout( dateInput(inputId = 'date.hist', label = 'Date', value = input$curr_date, max = input$curr_date, min = input$curr_date - 14), numericInput(inputId = 'num.hospitalized.hist', label = 'Number Hospitalized', value = NA) ), actionButton('add.hist', 'Add Data'), dataTableOutput( outputId = 'input_hosp_dt' ), tags$script("$(document).on('click', '#input_hosp_dt button', function () { Shiny.onInputChange('lastClickId',this.id); Shiny.onInputChange('lastClick', Math.random()) });"), HTML('<br>'), actionButton( inputId = 'run.fit', label = 'Estimate Re Prior to Day 0'), div(id = "predict.ui.toggle", fluidPage( uiOutput('best.re'), plotOutput('fit.plot') ) ) %>% hidden() ) ) }) hist.data <- reactiveVal( data.frame('Date' = character(0), 'Hospitalizations' = numeric(0), 'Day' = numeric(0)) ) observeEvent(input$add.hist,{ if (!as.character(input$date.hist) %in% as.character(hist.data()$Date) & !is.na(input$num.hospitalized.hist)){ new.hist <- rbind(hist.data(), list('Date' = as.character(input$date.hist), 'Hospitalizations' = input$num.hospitalized.hist, 'Day' = input$date.hist - input$curr_date )) new.hist <- arrange(new.hist, Day) new.hist$Date <- as.Date(as.character(new.hist$Date)) hist.data(new.hist) updateDateInput(session, inputId = 'date.hist', value = input$date.hist - 1) } else if (as.character(input$date.hist) %in% as.character(hist.data()$Date))( showNotification("This date has already been added.", type = "error") ) else{ showNotification("Please enter the hospitalization number.", type = "error") } }) output$input_hosp_dt <- renderDataTable({ hist.dt <- hist.data() if (nrow(hist.dt) > 0){ hist.dt[["Delete"]] <- paste0(' <div class="btn-group" role="group" aria-label="Basic example"> <button type="button" class="btn btn-secondary delete" id=delhist', '_', hist.dt$Day, '>Delete</button> </div> ') } hist.dt$Day <- NULL datatable(hist.dt, escape=F, selection = 'none', options = list(pageLength = 10, language = list( zeroRecords = "No historical data added.", search = 'Find in table:'), dom = 't'), rownames = FALSE) }) observeEvent(input$lastClick, { if (grepl('delhist', input$lastClickId)){ delete_day <- as.numeric(strsplit(input$lastClickId, '_')[[1]][2]) hist.data(hist.data()[hist.data()$Day != delete_day,]) } }) observeEvent(input$run.fit, { hist.temp <- hist.data() hist.temp <- arrange(hist.temp, desc(Date)) if (nrow(hist.temp) >= 2){ best.fit <- findBestRe(S0 = input$num_people, gamma = params$gamma, num.days = est.days, day.vec = hist.temp$Day, num_actual.vec = hist.temp$Hospitalizations, start.inf = start.inf, hosp.delay.time = params$hosp.delay.time, hosp.rate = params$hosp.rate, hosp.los = params$hosp.los, icu.delay.time = params$icu.delay.time, icu.rate = params$icu.rate, icu.los = params$icu.los, vent.delay.time = params$vent.delay.time, vent.rate = params$vent.rate, vent.los = params$vent.los) best.vals <- best.fit$best.vals df.graph <- data.frame(Date = hist.temp$Date, Predicted = best.vals, Actual = hist.temp$Hospitalizations) df.melt <- melt(df.graph, id.vars = 'Date') re.estimates$graph <- ggplot(df.melt, aes(x = Date, y = value, col = variable) ) + geom_point() + geom_line() + theme(text = element_text(size=20)) + theme(legend.title=element_blank()) re.estimates$best.estimate <- sprintf('<br><br><h4>The best estimate for Re prior to Day 0 is <b>%s</b>.', best.fit$best.re) show("predict.ui.toggle") } else{ showNotification("You need at least two timepoints of data to make a prediction.", type = "error") } }) output$best.re <- renderUI({ HTML(re.estimates$best.estimate) }) output$fit.plot <- renderPlot({ re.estimates$graph }) observeEvent(input$curr_date, { hist.data(data.frame('Date' = character(0), 'Hospitalizations' = numeric(0), 'Day' = numeric(0))) }) ## ............................................................................ ## Parameter selection ## ............................................................................ # initializing a set of parameters params <- reactiveValues( illness.length = 14, gamma = 1/14, hosp.delay.time = 10, hosp.rate = 0.06, hosp.los = 7, icu.delay.time = 5, icu.rate = 0.3, icu.los = 1, vent.delay.time = 1, vent.rate = 0.64, vent.los = 10, int.new.r0 = 2.8, int.new.double = 6, int.new.num.days = 0, hosp.avail = 1000, icu.avail = 200, vent.avail = 100 ) # modal pop-up to update parameters observeEvent(input$parameters_modal,{ showModal(modalDialog( fluidPage( sliderInput('illness.length', 'Average Length of Illness (Assumed Same as Time of Infectiousness)', min = 0, max = 20, step = 1, value = params$illness.length, width = '100%'), sliderInput('hosp.rate', 'Percent Hospitalized Among Infections', min = 0, max = 1, step = 0.01, value = params$hosp.rate, width = '100%'), sliderInput('icu.rate', 'Percent ICU Admitted Among Hospitalized', min = 0, max = 1, step = 0.01, value = params$icu.rate, width = '100%'), sliderInput('vent.rate', 'Percent Ventilated Among ICU Admissions', min = 0, max = 1, step = 0.01, value = params$vent.rate, width = '100%'), sliderInput('hosp.after.inf', 'Infection to hospitalization (days)', min = 0, max = 30, step = 1, value = params$hosp.delay.time, width = '100%'), sliderInput('icu.after.hosp', 'Hospitalization to ICU Admission (days)', min = 0, max = 30, step = 1, value = params$icu.delay.time, width = '100%'), sliderInput('vent.after.icu', 'ICU Admission to Ventilation (days)', min = 0, max = 30, step = 1, value = params$vent.delay.time, width = '100%'), sliderInput('hosp.los', 'Hospital Length of Stay for Non-ICU Patients (days)', min = 1, max = 15, step = 1, value = params$hosp.los, width = '100%'), sliderInput('icu.los', 'ICU Length of Stay for Non-Ventilated Patients (days)', min = 1, max = 15, step = 1, value = params$icu.los, width = '100%'), sliderInput('vent.los', 'Average Ventilation Course (days)', min = 1, max = 15, step = 1, value = params$vent.los, width = '100%')), footer = tagList( actionButton("save", "Save and Close") ) ) ) }) observeEvent(input$save, { params$illness.length = input$illness.length params$gamma = 1/input$illness.length params$hosp.delay.time = input$hosp.after.inf params$hosp.rate = input$hosp.rate params$hosp.los = input$hosp.los params$icu.delay.time = input$icu.after.hosp params$icu.rate = input$icu.rate params$icu.los = input$icu.los params$vent.delay.time = input$vent.after.icu params$vent.rate = input$vent.rate params$vent.los = input$vent.los removeModal() }) ## ............................................................................ ## Initialization ## ............................................................................ initial_beta_vector <- reactive({ if (input$usedouble == FALSE){ beta <- getBetaFromRe(input$r0_prior, params$gamma) } else{ beta <- getBetaFromDoubling(input$doubling_time, params$gamma) } initial.beta.vector <- rep(beta, est.days) initial.beta.vector }) curr.day.list <- reactive({ predict.metric <- 'Hospitalization' num.actual <- input$num_hospitalized find.curr.estimates(S0 = input$num_people, beta.vector = initial_beta_vector(), gamma = params$gamma, num.days = est.days, num_actual = num.actual, metric = predict.metric, start.inf = start.inf, hosp.delay.time = params$hosp.delay.time, hosp.rate = params$hosp.rate, hosp.los = params$hosp.los, icu.delay.time = params$icu.delay.time, icu.rate = params$icu.rate, icu.los = params$icu.los, vent.delay.time = params$vent.delay.time, vent.rate = params$vent.rate, vent.los = params$vent.los) }) ## ............................................................................ ## Interventions ## ............................................................................ output$intervention_ui <- renderUI({ if (input$showint){ fluidPage( fluidRow(uiOutput(outputId = 'int_val'), sliderInput(inputId = 'int_day', label = 'Day after Day 0 Intervention is Implemented', min = 0, max = 365, step = 1, value = 0), actionButton(inputId = 'add_intervention', label = 'Save Intervention')) ) } }) observeEvent(input$showint, { params$int.new.double <- input$doubling_time params$int.new.r0 <- input$r0_prior params$int.new.num.days <- 0 }) observeEvent(input$doubling_time,{ if(input$showint == FALSE){ params$int.new.double <- input$doubling_time } }) observeEvent(input$r0_prior,{ if(input$showint == FALSE){ params$int.new.r0 <- input$r0_prior } }) observeEvent(input$new_double, { params$int.new.double <- input$new_double }) observeEvent(input$r0_new, { params$int.new.r0 <- input$r0_new }) observeEvent(input$int_day, { params$int.new.num.days <- input$int_day }) intervention.table <- reactiveVal( data.frame('Day' = numeric(0), 'New R0' = numeric(0)) ) observeEvent(input$usedouble, { if (input$usedouble == TRUE){ intervention.table( data.frame('Day' = numeric(0), 'New Double Time' = numeric(0)) ) } else{ intervention.table( data.frame('Day' = numeric(0), 'New Re' = numeric(0)) ) } }) observeEvent(input$add_intervention,{ if (!params$int.new.num.days %in% intervention.table()$Day){ if (input$usedouble == TRUE){ intervention.table(rbind(intervention.table(), list('Day' = params$int.new.num.days , 'New.Double.Time' = params$int.new.double ))) } else{ intervention.table(rbind(intervention.table(), list('Day' = params$int.new.num.days, 'New.Re' = params$int.new.r0 ))) } intervention.table(arrange(intervention.table(), Day)) } else{ showNotification('You have already added an intervention on this date', type = 'error') } }) output$int_table <- renderDataTable({ int.df <- intervention.table() if (nrow(int.df) > 0){ int.df[["Delete"]] <- paste0(' <div class="btn-group" role="group" aria-label="Basic example"> <button type="button" class="btn btn-secondary delete" id=delete', '_', int.df$Day, '>Delete</button> </div> ') } datatable(int.df, escape=F, selection = 'none', options = list(pageLength = 10, language = list( zeroRecords = "No interventions added.", search = 'Find in table:'), dom = 't'), rownames = FALSE) }) observeEvent(input$lastClick, { if (grepl('delete', input$lastClickId)){ delete_day <- as.numeric(strsplit(input$lastClickId, '_')[[1]][2]) intervention.table(intervention.table()[intervention.table()$Day != delete_day,]) } }) ## ............................................................................ ## Projection ## ............................................................................ beta.vector <- reactive({ int.table.temp <- intervention.table() # determines what 'day' we are on using the initialization curr.day <- as.numeric(curr.day.list()['curr.day']) if (is.na(curr.day)){ # TODO: replace hacky fix to bug with non-hacky fix curr.day = 365 new.num.days = 1000 } # setting doubling time if (input$usedouble == FALSE){ if (!is.null(input$r0_prior) & !is.null(params$int.new.r0)){ int.table.temp <- rbind(int.table.temp, list(Day = c(-curr.day, input$proj_num_days, params$int.new.num.days ), New.Re = c(input$r0_prior, NA, params$int.new.r0 ))) } else{ int.table.temp <- rbind(int.table.temp, list(Day = c(-curr.day, input$proj_num_days), New.Re = c(r0.default, NA))) } } else{ int.table.temp <- rbind(int.table.temp, list(Day = c(-curr.day, input$proj_num_days, params$int.new.num.days), New.Double.Time = c(input$doubling_time, NA, params$int.new.double ))) } applygetBeta <- function(x){ if (input$usedouble == FALSE){ return(getBetaFromRe(as.numeric(x['New.Re']), params$gamma)) } else{ return(getBetaFromDoubling(as.numeric(x['New.Double.Time']), params$gamma)) } } int.table.temp$beta <- apply(int.table.temp, 1, applygetBeta) int.table.temp <- arrange(int.table.temp, Day) int.table.temp <- int.table.temp[!duplicated(int.table.temp$Day),] day.vec <- int.table.temp$Day rep.vec <- day.vec[2:length(day.vec)] - day.vec[1:length(day.vec) - 1] betas <- int.table.temp$beta[1:length(day.vec) - 1] beta.vec <- c() for (i in 1:length(rep.vec)){ beta <- betas[i] reps <- rep.vec[i] beta.vec <- c(beta.vec, rep(beta, reps)) } beta.vec }) sir.output.df <- reactive({ # run the same model as initialization model but run extra days curr.day <- as.numeric(curr.day.list()['curr.day']) new.num.days <- input$proj_num_days + curr.day new.num.days <- ifelse(is.na(new.num.days), 365, new.num.days) # starting conditions start.susc <- input$num_people - start.inf start.res <- 0 SIR.df = SIR(S0 = start.susc, I0 = start.inf, R0 = start.res, beta.vector = beta.vector(), gamma = params$gamma, num.days = new.num.days, hosp.delay.time = params$hosp.delay.time, hosp.rate = params$hosp.rate, hosp.los = params$hosp.los, icu.delay.time = params$icu.delay.time, icu.rate = params$icu.rate, icu.los = params$icu.los, vent.delay.time = params$vent.delay.time, vent.rate = params$vent.rate, vent.los = params$vent.los) # shift the number of days to account for day 0 in the model SIR.df$days.shift <- SIR.df$day - curr.day SIR.df[SIR.df$days.shift == 0,]$hosp <- input$num_hospitalized SIR.df$date <- SIR.df$days.shift + as.Date(input$curr_date) SIR.df }) ## ............................................................................ ## Plot Outputs ## ............................................................................ # UI depends on what graph is selected output$plot_output <- renderUI({ if (!is.null(input$num_hospitalized)){ if (!is.na(input$num_hospitalized)){ if (input$selected_graph == 'Cases'){ fluidPage( checkboxGroupInput(inputId = 'selected_cases', label = 'Selected', choices = c('Active', 'Resolved', 'Cases'), selected = c('Active', 'Resolved', 'Cases'), inline = TRUE), plotOutput(outputId = 'cases.plot', click = "plot_click") ) } else if (input$selected_graph == 'Hospitalization'){ fluidPage( checkboxGroupInput(inputId = 'selected_hosp', label = 'Selected', choices = c('Hospital', 'ICU', 'Ventilator'), selected = c('Hospital', 'ICU', 'Ventilator'), inline = TRUE), plotOutput(outputId = 'hospitalization.plot', click = "plot_click") ) } else{ fluidPage( column(4, numericInput(inputId = 'hosp_cap', label = 'Hospital Bed Availability', value = params$hosp.avail)), column(4, numericInput(inputId = 'icu_cap', label = 'ICU Space Availability', value = params$icu.avail)), column(4, numericInput(inputId = 'vent_cap', label = 'Ventilator Availability', value = params$vent.avail)), fluidPage(checkboxGroupInput(inputId = 'selected_res', label = 'Selected', choices = c('Hospital', 'ICU', 'Ventilator'), selected = c('Hospital', 'ICU', 'Ventilator'), inline = TRUE)), plotOutput(outputId = 'resource.plot', click = "plot_click") ) } } } }) observeEvent(input$hosp_cap, { params$hosp.avail <- input$hosp_cap }) observeEvent(input$icu_cap, { params$icu.avail <- input$icu_cap }) observeEvent(input$vent_cap, { params$vent.avail <- input$vent_cap }) ## ............................................................................ ## Dataframes for Visualization and Downloading ## ............................................................................ roundNonDateCols <- function(df){ df.new <- data.frame(df) for (col in colnames(df.new)){ if (col != 'date'){ df.new[,col] <- round(df.new[,col]) } } return(df.new) } cases.df <- reactive({ df_temp <- sir.output.df() df_temp <- df_temp[df_temp$days.shift >= 0,] df_temp$Cases <- df_temp$I + df_temp$R df_temp$Active <- df_temp$I df_temp$Resolved <- df_temp$R df_temp <- df_temp[,c('date', 'days.shift', 'Cases', 'Active', 'Resolved')] colnames(df_temp) <- c('date', 'day', 'Cases', 'Active', 'Resolved') df_temp <- roundNonDateCols(df_temp) df_temp }) hospitalization.df <- reactive({ df_temp <- sir.output.df() df_temp <- df_temp[df_temp$days.shift >= 0,] df_temp <- df_temp[,c('date', 'days.shift', 'hosp', 'icu', 'vent')] colnames(df_temp) <- c('date', 'day', 'Hospital', 'ICU', 'Ventilator') df_temp <- roundNonDateCols(df_temp) df_temp }) resource.df <- reactive({ df_temp <- sir.output.df() df_temp <- df_temp[df_temp$days.shift >= 0,] if (!is.null(input$hosp_cap)){ df_temp$hosp <- input$hosp_cap - df_temp$hosp df_temp$icu <- input$icu_cap - df_temp$icu df_temp$vent <- input$vent_cap - df_temp$vent } df_temp <- df_temp[,c('date', 'days.shift', 'hosp', 'icu', 'vent')] colnames(df_temp) <- c('date', 'day', 'Hospital', 'ICU', 'Ventilator') df_temp <- roundNonDateCols(df_temp) df_temp }) ## ............................................................................ ## Table output ## ............................................................................ output$rendered.table <- renderDataTable({ if (input$selected_graph == 'Cases'){ df.render <- cases.df() } else if (input$selected_graph == 'Hospitalization'){ df.render <- hospitalization.df() } else{ df.render <- resource.df() } df.render$date <- format(df.render$date, format="%B %d, %Y") datatable(data=df.render, escape=F, selection = 'single', options = list(pageLength = 10, lengthChange = FALSE, searching = FALSE), rownames = FALSE) }) observeEvent(input$rendered.table_row_last_clicked,{ row.id <- input$rendered.table_row_last_clicked if (input$selected_graph == 'Cases'){ df.table = cases.df() } else if (input$selected_graph == 'Hospitalization'){ df.table = hospitalization.df() } else{ df.table = resource.df() } select.date <- df.table[row.id,'date'] plot_day(select.date) }) ## ............................................................................ ## Graphs ## ............................................................................ plot_day <- reactiveVal(NULL) observeEvent(input$curr_date, { plot_day(input$curr_date) }) observeEvent(input$plot_click, { plot_day(as.Date(round(input$plot_click$x), origin = "1970-01-01")) proxy <- dataTableProxy( 'rendered.table', session = shiny::getDefaultReactiveDomain(), deferUntilFlush = TRUE ) selectRows(proxy, plot_day() - input$curr_date + 1) selectPage(proxy, ceiling((plot_day() - input$curr_date + 1) / 10)) }) observeEvent(input$goright, { if (plot_day() != input$curr_date + input$proj_num_days){ plot_day(plot_day() + 1) proxy <- dataTableProxy( 'rendered.table', session = shiny::getDefaultReactiveDomain(), deferUntilFlush = TRUE ) selectRows(proxy, plot_day() - input$curr_date + 1) selectPage(proxy, ceiling((plot_day() - input$curr_date + 1) / 10)) } }) observeEvent(input$goleft, { if (plot_day() != input$curr_date){ plot_day(plot_day() - 1) proxy <- dataTableProxy( 'rendered.table', session = shiny::getDefaultReactiveDomain(), deferUntilFlush = TRUE ) selectRows(proxy, plot_day() - input$curr_date + 1) selectPage(proxy, ceiling((plot_day() - input$curr_date + 1) / 10)) } }) output$hospitalization.plot <- renderPlot({ df.to.plot <- hospitalization.df() df.to.plot$day <- NULL if (length(input$selected_hosp) != 0){ cols <- c('date', input$selected_hosp) df.to.plot <- df.to.plot[,cols] df_melt <- melt(df.to.plot, 'date') ggplot(df_melt, aes(x = date, y = value, col = variable)) + geom_point() + geom_line( ) + geom_vline(xintercept=input$curr_date) + theme(text = element_text(size=20) ) + geom_vline(xintercept=plot_day(), color = 'red') + ylab('') } }) output$resource.plot <- renderPlot({ df.to.plot <- resource.df() df.to.plot$day <- NULL if (length(input$selected_res) != 0){ cols <- c('date', input$selected_res) df.to.plot <- df.to.plot[,cols] df_melt <- melt(df.to.plot, 'date') ggplot(df_melt, aes(x = date, y = value, col = variable)) + geom_point() + geom_line( ) + geom_vline(xintercept=input$curr_date) + theme(text = element_text(size=20) ) + geom_vline(xintercept=plot_day(), color = 'red') + geom_hline(yintercept = 0) + ylab('') } }) output$cases.plot <- renderPlot({ df.to.plot <- cases.df() df.to.plot$day <- NULL if (length(input$selected_cases) != 0){ cols <- c('date', input$selected_cases) df.to.plot <- df.to.plot[,cols] df_melt <- melt(df.to.plot, 'date') ggplot(df_melt, aes(x = date, y = value, col = variable)) + geom_point( ) + geom_line() + geom_vline(xintercept=input$curr_date) + theme(text = element_text(size=20) ) + geom_vline(xintercept=plot_day(), color = 'red') + ylab('') } }) ## ............................................................................ ## Natural Language Outputs ## ............................................................................ # Estimated number of infections output$infected_ct <- renderUI({ infected <- curr.day.list()['infection.estimate'] cases <- as.numeric(curr.day.list()['infection.estimate']) + as.numeric(curr.day.list()['recovered.estimate']) curr_date <- format(input$curr_date, format="%B %d, %Y") HTML(sprintf('<h4>On %s (Day 0), we estimate there have been <u>%s total cases</u> of COVID-19 in the region, with <u>%s people actively infected</u>.</h4>', curr_date, cases, infected)) }) # Word description output$description <- renderUI({ df_temp <- sir.output.df() select.row <- df_temp[df_temp$date == plot_day(),] select.date <- format(select.row$date, format="%B %d, %Y") select.day <- select.row$days.shift if (input$selected_graph == 'Cases'){ cases <- round(select.row$I + select.row$R) active <- floor(select.row$I) if (length(select.day) != 0){ if (select.day == 0){ HTML(sprintf('<h4>On %s (Day <b>%s</b>), there are <b>%s COVID-19 cases</b> in the region, with <b>%s actively infected</b>.</h4>', select.date, select.day, cases, active)) } else{ HTML(sprintf('<h4>On %s (Day <b>%s</b>), there will be <b>%s COVID-19 cases</b> in the region, with <b>%s actively infected</b>.</h4>', select.date, select.day, cases, active)) } } } else if (input$selected_graph == 'Hospitalization'){ hosp <- round(select.row$hosp) icu <- round(select.row$icu) vent <- round(select.row$vent) if (select.day == 0){ HTML(sprintf('<h4>On %s (Day <b>%s</b>), there are <b>%s hospitalized from COVID-19</b> in the region, with <b>%s in ICU care</b> and <b>%s on ventilators</b>.</h4>', select.date, select.day, hosp, icu, vent)) } else{ HTML(sprintf('<h4>On %s (Day <b>%s</b>), there will be <b>%s hospitalized from COVID-19</b> in the region, with <b>%s in ICU care</b> and <b>%s on ventilators</b>.</h4>', select.date, select.day, hosp, icu, vent)) } } else{ hosp_res <- input$hosp_cap - round(select.row$hosp) icu_res <- input$icu_cap - round(select.row$icu) vent_res <- input$vent_cap - round(select.row$vent) if (select.day == 0){ HTML(sprintf('<h4>On %s (Day <b>%s</b>), there are <b>%s hospital beds available</b> in the region, with <b>%s available ICU beds</b> and <b>%s available ventilators</b>.</h4>', select.date, select.day, hosp_res, icu_res, vent_res)) } else{ HTML(sprintf('<h4>On %s (Day <b>%s</b>), there will be <b>%s hospital beds available</b> in the region, with <b>%s available ICU beds</b> and <b>%s available ventilators</b>.</h4>', select.date, select.day, hosp_res, icu_res, vent_res)) } } }) ## ............................................................................ ## Download Data ## ............................................................................ output$downloadData <- downloadHandler( filename <- function() { paste(input$selected_graph, '-', Sys.Date(), '.csv', sep='') }, content <- function(file) { if (input$selected_graph == 'Cases'){ data <- cases.df() } else if (input$selected_graph == 'Hospitalization'){ data <- hospitalization.df() } else{ data <- resource.df() } write.csv(data.frame(data), file, row.names = FALSE) } ) } )
6c1a96aabe5417b2926e87929a842fee397a2749
80a2e57ee2b6e1465fcb88f677a7075140acd0c9
/MovieLens_Final project.R
688d5aae56b4454bc426ba31ece90d66d5ffb168
[]
no_license
SUBRAMANIANKN/movielens
5016e70eb89e6cf0b632a9e9bb48d10d53fbe96f
3fc53988e391b6d2621ec5cf841f3411122366fb
refs/heads/master
2020-04-22T22:09:24.719239
2019-10-07T11:56:49
2019-10-07T11:56:49
170,698,049
0
0
null
null
null
null
UTF-8
R
false
false
16,856
r
MovieLens_Final project.R
## Data Loading and Preparation ############################################################# # Create edx set, validation set, and submission file ############################################################# # Note: this process could take a couple of minutes if(!require(tidyverse)) install.packages("tidyverse", repos = "http://cran.us.r-project.org") if(!require(caret)) install.packages("caret", repos = "http://cran.us.r-project.org") if(!require(ggplot2)) install.packages("ggplot2", repos = "http://cran.us.r-project.org") # Add the required libraries library(caret) library(tidyverse) library(lubridate) # MovieLens 10M dataset: # https://grouplens.org/datasets/movielens/10m/ # http://files.grouplens.org/datasets/movielens/ml-10m.zip dl <- tempfile() download.file("http://files.grouplens.org/datasets/movielens/ml-10m.zip", dl) ratings <- read.table(text = gsub("::", "\t", readLines(unzip(dl, "ml-10M100K/ratings.dat"))), col.names = c("userId", "movieId", "rating", "timestamp")) movies <- str_split_fixed(readLines(unzip(dl, "ml-10M100K/movies.dat")), "\\::", 3) colnames(movies) <- c("movieId", "title", "genres") movies <- as.data.frame(movies) %>% mutate(movieId = as.numeric(levels(movieId))[movieId], title = as.character(title), genres = as.character(genres)) movielens <- left_join(ratings, movies, by = "movieId") # Validation set will be 10% of MovieLens data set.seed(1) test_index <- createDataPartition(y = movielens$rating, times = 1, p = 0.1, list = FALSE) edx <- movielens[-test_index,] temp <- movielens[test_index,] # Make sure userId and movieId in validation set are also in edx set validation <- temp %>% semi_join(edx, by = "movieId") %>% semi_join(edx, by = "userId") # Add rows removed from validation set back into edx set removed <- anti_join(temp, validation) edx <- rbind(edx, removed) rm(dl, ratings, movies, test_index, temp, movielens, removed) # Extract the year of release information from the title column and add that info to a new column year_release edx <- edx %>% mutate(year_release = as.numeric(str_sub(title,-5,-2))) validation <- validation %>% mutate(year_release = as.numeric(str_sub(title,-5,-2))) # Add a new column called year_eval and update it with year of Evaluation information from the timestamp column edx <- edx %>% mutate(year_eval = year(as_datetime(timestamp))) validation <- validation %>% mutate(year_eval = year(as_datetime(timestamp))) # To save memory remove the timestamp & title columns from both the training and validation data set edx <- edx %>% select(-c(timestamp,title)) validation <- validation %>% select(-c(timestamp, title)) # Summary details of the data set summary(edx) summary(validation) # Unique list of values across different fields edx %>% summarize(UnqGenre = n_distinct(genres), UnqMid = n_distinct(movieId) , UnqUid = n_distinct(userId), UnqYRls = n_distinct(year_release), UnqYEva = n_distinct(year_eval)) # Analysing how many times different Movies have been rated edx %>% count(movieId) %>% ggplot(aes(n)) + geom_histogram(fill = "darkblue") + scale_x_log10() + labs(title = "Movie Data Distribution", subtitle = "Movie distribution by count", x = "Movies ratingn count", y = "Frequency") #Top 5 movies which has more review rating than others top5Movies <- edx %>% group_by(movieId) %>% summarize(count = n()) %>% arrange(desc(count)) %>% head(5) top5Movies # Analysing how many times different user have rated movies edx %>% count(userId) %>% ggplot(aes(n)) + geom_histogram(fill = "darkblue" , bins=30) + scale_x_log10() + labs(title = "Movie Data Distribution", subtitle = " User distribution by count", x = "Users", y = "Frequency") # Top 5 users who rated more movies than others top5Users <- edx %>% group_by(userId) %>% summarize(count = n()) %>% arrange(desc(count)) %>% head(5) top5Users # Analysing how many times different movies have scored similar ratings edx %>% ggplot(aes(rating)) + geom_histogram(fill = "darkblue") + labs(title = "Movie Data Distribution", subtitle = "Rating distribution by count", x = "Rating", y = "Frequency") # Ratings which has more count during movie review top5Rating <- edx %>% group_by(rating) %>% summarize(count = n()) %>% arrange(desc(count)) %>% head(5) top5Rating # Analysing how old the different movies are that were rated. edx %>% ggplot(aes(year_release)) + geom_histogram(fill = "darkblue") + labs(title = "Movie Data Distribution", subtitle = "Movie release year distribution by count", x = "Release YEAR", y = "Frequency") # The top 5 year where there are more movie releases top5YrRls <- edx %>% group_by(year_release) %>% summarize(count = n()) %>% arrange(desc(count)) %>% head(5) top5YrRls # Analysing how many ovies were rated during different years edx %>% ggplot(aes(year_eval)) + geom_histogram(fill = "darkblue") + labs(title = "Movie Data Distribution", subtitle = "Movie evaluation distribution by count", x = "Evaluation Year", y = "Frequency") #Top 5 years when more movies were evaluated when compared to rest of the period top5YrEval <- edx %>% group_by(year_eval) %>% summarize(count = n()) %>% arrange(desc(count)) %>% head(5) top5YrEval # We shall also look at the top 5 movie Genres which were reviewed more than others top5Genres <- edx %>% group_by(genres) %>% summarize(count = n()) %>% arrange(desc(count)) %>% head(5) top5Genres # Model deveopment # Creating Baseline model mu_edx_rating <- mean(edx$rating) model_baseline <- RMSE(validation$rating, mu_edx_rating) rmse_report <- tibble(method = "Base Line average Model", RMSE = model_baseline) rmse_report%>%knitr::kable() # Creating model based on impact of Movie genre movieGenres_avgs_norm <- edx %>% group_by(genres) %>% summarize(b_movieGenres = mean(rating - mu_edx_rating)) predicted_movieGenres_norm <- validation %>% left_join(movieGenres_avgs_norm, by='genres') %>% mutate(rating = mu_edx_rating + b_movieGenres ) model_movieGenres_rmse <- RMSE(predicted_movieGenres_norm$rating , validation$rating) rmse_report <- rbind(rmse_report, tibble(method = "Movie Genre Model", RMSE = model_movieGenres_rmse)) rmse_report%>%knitr::kable() # Creating model based on impact of Movie genre & User impact movieGenres_userId_avgs_norm <- edx %>% left_join(movieGenres_avgs_norm, by='genres') %>% group_by(userId) %>% summarize(b_movieGenres_userId = mean(rating - mu_edx_rating - b_movieGenres)) predicted_movieGenres_userId_norm <- validation %>% left_join(movieGenres_avgs_norm, by='genres') %>% left_join(movieGenres_userId_avgs_norm, by='userId') %>% mutate(rating = mu_edx_rating + b_movieGenres + b_movieGenres_userId ) model_movieGenres_userId_rmse <- RMSE(predicted_movieGenres_userId_norm$rating , validation$rating) rmse_report <- rbind(rmse_report, tibble(method = "Movie Genre & User effect Model", RMSE = model_movieGenres_userId_rmse)) rmse_report%>%knitr::kable() # Creating model based on impact of Movie genre, User & Year Release impact model movieGenres_userId_yearRelease_avgs_norm <- edx %>% left_join(movieGenres_avgs_norm, by='genres') %>% left_join(movieGenres_userId_avgs_norm, by='userId') %>% group_by(year_release) %>% summarize(b_movieGenres_userId_yearRelease = mean(rating - mu_edx_rating - b_movieGenres - b_movieGenres_userId)) predicted_movieGenres_userId_yearRelease_norm <- validation %>% left_join(movieGenres_avgs_norm, by='genres') %>% left_join(movieGenres_userId_avgs_norm, by='userId') %>% left_join(movieGenres_userId_yearRelease_avgs_norm, by='year_release') %>% mutate(rating = mu_edx_rating + b_movieGenres + b_movieGenres_userId + b_movieGenres_userId_yearRelease ) model_movieGenres_userId_yearRelease_rmse <- RMSE(predicted_movieGenres_userId_yearRelease_norm$rating , validation$rating) rmse_report <- rbind(rmse_report, tibble(method = "Movie Genre, User & Release Year effect Model", RMSE = model_movieGenres_userId_yearRelease_rmse)) rmse_report%>%knitr::kable() # Creating model based on impact of Movie genre, User, Release Year & Evaluation year impact model movieGenres_userId_yearRelease_yearEval_avgs_norm <- edx %>% left_join(movieGenres_avgs_norm, by='genres') %>% left_join(movieGenres_userId_avgs_norm, by='userId') %>% left_join(movieGenres_userId_yearRelease_avgs_norm, by='year_release') %>% group_by(year_eval) %>% summarize(b_movieGenres_userId_yearRelease_yearEval = mean(rating - mu_edx_rating - b_movieGenres - b_movieGenres_userId - b_movieGenres_userId_yearRelease)) predicted_movieGenres_userId_yearRelease_yearEval_norm <- validation %>% left_join(movieGenres_avgs_norm, by='genres') %>% left_join(movieGenres_userId_avgs_norm, by='userId') %>% left_join(movieGenres_userId_yearRelease_avgs_norm, by='year_release') %>% left_join(movieGenres_userId_yearRelease_yearEval_avgs_norm, by='year_eval') %>% mutate(rating = mu_edx_rating + b_movieGenres + b_movieGenres_userId + b_movieGenres_userId_yearRelease + b_movieGenres_userId_yearRelease_yearEval ) model_movieGenres_userId_yearRelease_yearEval_rmse <- RMSE(predicted_movieGenres_userId_yearRelease_yearEval_norm$rating , validation$rating) rmse_report <- rbind(rmse_report, tibble(method = "Movie Genre, User, Release Year & Evaluation Year effect Model", RMSE = model_movieGenres_userId_yearRelease_yearEval_rmse)) rmse_report%>%knitr::kable() # There is no significant impact by including the year of evaluation in the model # So far we tried model based on Movie Genre as it will help if in future we get any new movie (not in training set but belongs to genre available in training set) to be predicted for rating . # Now we shall slightly change track and try model based on the Movie Id to see whether we can improve the RMSE further though this model will not be able to help if a new movie which is not in the existing data set has to be predicted for rating even thought it belongs to existing genre # Creating model based on Movie Id impact movieId_avgs_norm <- edx %>% group_by(movieId) %>% summarize(b_movieId = mean(rating - mu_edx_rating)) predicted_movieId_norm <- validation %>% left_join(movieId_avgs_norm, by='movieId') %>% mutate(rating = mu_edx_rating + b_movieId ) model_movieId_rmse <- RMSE(predicted_movieId_norm$rating , validation$rating) rmse_report <- rbind(rmse_report, tibble(method = "Movie effect Model", RMSE = model_movieId_rmse)) rmse_report%>%knitr::kable() # Creating model based on Movie Id & User impact movieId_userId_avgs_norm <- edx %>% left_join(movieId_avgs_norm, by='movieId') %>% group_by(userId) %>% summarize(b_movieId_userId = mean(rating - mu_edx_rating - b_movieId)) predicted_movieId_userId_norm <- validation %>% left_join(movieId_avgs_norm, by='movieId') %>% left_join(movieId_userId_avgs_norm, by='userId') %>% mutate(rating = mu_edx_rating + b_movieId + b_movieId_userId ) model_movieId_userId_rmse <- RMSE(predicted_movieId_userId_norm$rating , validation$rating) rmse_report <- rbind(rmse_report, tibble(method = "Movie & User effect Model", RMSE = model_movieId_userId_rmse)) rmse_report%>%knitr::kable() # Creating model based on Movie Id, User & Year Release impact movieId_userId_yearRelease_avgs_norm <- edx %>% left_join(movieId_avgs_norm, by='movieId') %>% left_join(movieId_userId_avgs_norm, by='userId') %>% group_by(year_release) %>% summarize(b_movieId_userId_yearRelease = mean(rating - mu_edx_rating - b_movieId - b_movieId_userId)) predicted_movieId_userId_yearRelease_norm <- validation %>% left_join(movieId_avgs_norm, by='movieId') %>% left_join(movieId_userId_avgs_norm, by='userId') %>% left_join(movieId_userId_yearRelease_avgs_norm, by='year_release') %>% mutate(rating = mu_edx_rating + b_movieId + b_movieId_userId + b_movieId_userId_yearRelease ) model_movieId_userId_yearRelease_rmse <- RMSE(predicted_movieId_userId_yearRelease_norm$rating , validation$rating) rmse_report <- rbind(rmse_report, tibble(method = "Movie, User & Release Year effect Model ", RMSE = model_movieId_userId_yearRelease_rmse)) rmse_report%>%knitr::kable() # Creating model based on Movie Id, User & Year Release & Evaluation Year impact movieId_userId_yearRelease_yearEval_avgs_norm <- edx %>% left_join(movieId_avgs_norm, by='movieId') %>% left_join(movieId_userId_avgs_norm, by='userId') %>% left_join(movieId_userId_yearRelease_avgs_norm, by='year_release') %>% group_by(year_eval) %>% summarize(b_movieId_userId_yearRelease_yearEval = mean(rating - mu_edx_rating - b_movieId - b_movieId_userId - b_movieId_userId_yearRelease)) predicted_movieId_userId_yearRelease_yearEval_norm <- validation %>% left_join(movieId_avgs_norm, by='movieId') %>% left_join(movieId_userId_avgs_norm, by='userId') %>% left_join(movieId_userId_yearRelease_avgs_norm, by='year_release') %>% left_join(movieId_userId_yearRelease_yearEval_avgs_norm, by='year_eval') %>% mutate(rating = mu_edx_rating + b_movieId + b_movieId_userId + b_movieId_userId_yearRelease + b_movieId_userId_yearRelease_yearEval) model_movieId_userId_yearRelease_yearEval_rmse <- RMSE(predicted_movieId_userId_yearRelease_yearEval_norm$rating , validation$rating) rmse_report <- rbind(rmse_report, tibble(method = "Movie, User, Release Year & Evaluation Year effect Model", RMSE = model_movieId_userId_yearRelease_yearEval_rmse)) rmse_report%>%knitr::kable() # Creating model based on Regularziation of Movie Id, User & Year Release & Evaluation Year & Evaluation Year lambdas <- seq(0, 10, 0.25) rmses <- sapply(lambdas, function(l){ movieId_avgs_norm <- edx %>% group_by(movieId) %>% summarize(b_movieId = sum(rating - mu_edx_rating)/(n()+l)) movieId_userId_avgs_norm <- edx %>% left_join(movieId_avgs_norm, by='movieId') %>% group_by(userId) %>% summarize(b_movieId_userId = sum(rating - mu_edx_rating - b_movieId)/(n()+l)) movieId_userId_yearRelease_avgs_norm <- edx %>% left_join(movieId_avgs_norm, by='movieId') %>% left_join(movieId_userId_avgs_norm, by='userId') %>% group_by(year_release) %>% summarize(b_movieId_userId_yearRelease = sum(rating - mu_edx_rating - b_movieId - b_movieId_userId)/(n()+l)) movieId_userId_yearRelease_yearEval_avgs_norm <- edx %>% left_join(movieId_avgs_norm, by='movieId') %>% left_join(movieId_userId_avgs_norm, by='userId') %>% left_join(movieId_userId_yearRelease_avgs_norm, by='year_release') %>% group_by(year_eval) %>% summarize(b_movieId_userId_yearRelease_yearEval = sum(rating - mu_edx_rating - b_movieId - b_movieId_userId - b_movieId_userId_yearRelease)/(n()+l)) predicted_movieId_userId_yearRelease_yearEval_norm <- validation %>% left_join(movieId_avgs_norm, by='movieId') %>% left_join(movieId_userId_avgs_norm, by='userId') %>% left_join(movieId_userId_yearRelease_avgs_norm, by='year_release') %>% left_join(movieId_userId_yearRelease_yearEval_avgs_norm, by='year_eval') %>% mutate(rating = mu_edx_rating + b_movieId + b_movieId_userId + b_movieId_userId_yearRelease + b_movieId_userId_yearRelease_yearEval) return(RMSE(predicted_movieId_userId_yearRelease_yearEval_norm$rating , validation$rating)) }) qplot(lambdas, rmses) lambda <- lambdas[which.min(rmses)] lambda rmse_report <- rbind(rmse_report, tibble(method = " Regularized Movie, User, Release Year & Evaluation Year effect Model", RMSE = min(rmses))) rmse_report%>%knitr::kable()
75dbed5dcd0c32da98beae424376effb617cf13f
9083fbc538fc22e5deef1c38238cbb98eec0eca9
/GENESIS_R/GENESIS/nullModelTestPrep.R
7db785fe44b993cc178b479b01f57de9c614b4e0
[]
no_license
drjingma/REHE
8e75c988d10171cd37a49bc7630f0e62d4cfcfeb
13490695d3035e2af80011066272a672cb79e531
refs/heads/master
2023-03-17T09:33:15.836142
2020-12-15T05:57:11
2020-12-15T05:57:11
null
0
0
null
null
null
null
UTF-8
R
false
false
2,915
r
nullModelTestPrep.R
## takes a null model and prepare specific arguments to streamline the testing nullModelTestPrep <- function(nullmod){ Y <- nullmod$workingY X <- nullmod$model.matrix C <- nullmod$cholSigmaInv if (length(C) > 1) { ## n by n cholSigmaInv (may be Diagonal) if (is(C, "Matrix")) X <- Matrix(X) CX <- crossprod(C, X) CXCXI <- tcrossprod(CX, chol2inv(chol(crossprod(CX)))) # qrmod <- base::qr(CX) # Ytilde <- base::qr.resid(qrmod, as.matrix(crossprod(C, Y))) CY <- crossprod(C, Y) Ytilde <- CY - tcrossprod(CXCXI, crossprod(CY, CX)) resid <- C %*% Ytilde # resid <- tcrossprod(C, crossprod(nullmod$resid.marginal, C)) } else { ## cholSigmaInv is a scalar CX <- C*X CXCXI <- tcrossprod(CX, chol2inv(chol(crossprod(CX)))) # qrmod <- base::qr(CX) # Ytilde <- base::qr.resid(qrmod, as.matrix(C*Y)) CY <- C*Y Ytilde <- CY - tcrossprod(CXCXI, crossprod(CY, CX)) resid <- C*Ytilde # resid <- nullmod$resid.marginal*C^2 } # compute residual sum of squares under the null model RSS0 <- as.numeric(crossprod(Ytilde)) return(list(Ytilde = Ytilde, resid = resid, CX = CX, CXCXI = CXCXI, RSS0 = RSS0)) # return(list(Ytilde = Ytilde, resid = resid, CX = CX, CXCXI = CXCXI, qr = qrmod)) } ## adjust genotypes for correlation structure and fixed effects ## this replaces calcXtilde; changed the name to be less confusing; X is covariates and G is genotypes calcGtilde <- function(nullmod, G){ C <- nullmod$cholSigmaInv if(length(C) > 1){ # n by n cholSigmaInv (may be Diagonal) CG <- crossprod(C, G) }else{ # cholSigmaInv is a scalar CG <- C*G } # calculate Gtilde nrowG <- as.numeric(nrow(CG)) ncolG <- as.numeric(ncol(CG)) if(length(C) == 1 || nrowG*ncolG <= 2^31){ Gtilde <- CG - tcrossprod(nullmod$CXCXI, crossprod(CG, nullmod$CX)) # base::qr.resid(nullmod$qr, CG) # QR seems to be slower unexpectedly }else{ # too large when G sparse; break into multiple blocks nblock <- ceiling(nrowG*ncolG/2^31) blocks <- unname(split(1:ncolG, cut(1:ncolG, nblock))) Gtilde <- list() for(i in 1:length(blocks)){ Gtilde[[i]] <- as.matrix(CG[,blocks[[i]]] - tcrossprod(nullmod$CXCXI, crossprod(CG[,blocks[[i]]], nullmod$CX))) } Gtilde <- do.call(cbind, Gtilde) } return(Gtilde) } ## adjust genotypes for correlation structure and fixed effects # calcXtilde <- function(nullmod, G){ # C <- nullmod$cholSigmaInv # if (length(C) > 1) { ## n by n cholSigmaInv (may be Diagonal) # M1 <- crossprod(C, G) # } else { ## cholSigmaInv is a scalar # M1 <- G * C # } # rm(G) # Xtilde <- M1 - tcrossprod(nullmod$CXCXI, crossprod(M1, nullmod$CX)) # return(Xtilde) # }
bc6755b3a0ec8205d3aadf259caad1c8f7a0013e
3cc46de0679d5d63bed8eacd7db453ba122aa4c3
/R/t1_analysis.R
2a8916edce906e88f8e7243449f83be7b3802d21
[]
no_license
fontikar/egerniasl
af8aaeb0f5eca77e741edaa7d5e5fc0efabfc31c
367ee5ebf668e5008e90843fc0fe111190e6f66f
refs/heads/master
2020-12-12T17:06:43.931493
2016-12-09T03:30:08
2016-12-09T03:30:08
52,262,907
0
0
null
null
null
null
UTF-8
R
false
false
14,416
r
t1_analysis.R
#Setting working directory getwd() #setwd("C:/Users/xufeng/Dropbox/social learning/output/data/") setwd("~/Dropbox/Egernia striolata social learning/") #load library you need library(plyr) library(MASS) library(lme4) library(plyr) library(survival) #Read data instrumdat <- read.csv("output/data/task1_finaldat.csv", stringsAsFactors = FALSE) head(instrumdat) #261 obs str(instrumdat) #Changing variable types instrumdat$LizardID <- as.factor(instrumdat$LizardID) instrumdat$Batch <- as.factor(instrumdat$Batch) instrumdat$Treatment <- as.factor(instrumdat$Treatment) instrumdatlt <- as.factor(instrumdat$lt) instrumdat$Date <-as.Date(instrumdat$Date, format="%m/%d/%Y") instrumdat$Time <- as.factor(instrumdat$Time) #Getting Batch variable #batchinfo <- assocdat[,1:2] #str(batchinfo) #str(instrumdat) #batchinfo<-unique(batchinfo) #length(unique(batchinfo$LizardID)) == length(unique(instrumdat$LizardID)) #sort(unique(batchinfo$LizardID)) == sort(unique(instrumdat$LizardID)) #instrumdat <- merge(instrumdat, batchinfo, by = "LizardID") #str(instrumdat) #write.csv(instrumdat, file ="task1_finaldat.csv") # Exploration plots hist(instrumdat$Latency) instrumdat$log.latency<-log(instrumdat$Latency) hist(instrumdat$log.latency) #Descriptive statistics length((unique(instrumdat[instrumdat$Treatment == "SL",2]))) #n = 15 for social learning treatment lizards length((unique(instrumdat[instrumdat$Treatment == "C",2]))) # n = 13 for control lizards #Proportion of lizards that learnt per trial instrumdat[instrumdat$learnt == "0",] table(instrumdat$Trial) library(plyr) instrum_proplearndat<- ddply(.data=instrumdat, .(Trial, Treatment), summarise, learnt = sum((lt==0)), sample_size = length(LizardID), proportion = round(learnt/sample_size, 2)) instrum_proplearndat$Treatment <- as.character(instrum_proplearndat$Treatment) instrum_proplearndat$Treatment[instrum_proplearndat$Treatment == "SL"] <- "1" instrum_proplearndat$Treatment[instrum_proplearndat$Treatment == "C"] <- "0" instrum_proplearndat$Treatment <- as.factor(instrum_proplearndat$Treatment) instrum_proplearndat <-instrum_proplearndat[with(instrum_proplearndat, order(Treatment)), ] in_condata <-instrumdat[instrumdat$Treatment == "C",] length(unique(in_condata$LizardID)) in_con_vec <-as.vector(table(in_condata$lt, in_condata$Trial)[1,]) in_socdata <-instrumdat[instrumdat$Treatment == "SL",] length(unique(in_socdata$LizardID)) in_soc_vec <-as.vector(table(in_socdata$lt, in_socdata$Trial)[1,]) instrum_proplearndat$numlearnt <- append(in_con_vec, in_soc_vec) instrum_proplearndat$proportion <- instrum_proplearndat$numlearnt/instrum_proplearndat$sample_size SLprop <-instrum_proplearndat[instrum_proplearndat$Treatment == "1",] Cprop <-instrum_proplearndat[instrum_proplearndat$Treatment == "0",] #Plotting figure propportion learnt over trials pdf("Figure1A-B.pdf", 13,7) par(mfrow=c(1,2), mar = c(4, 5, 1.5, 1.5), cex.axis=1.5, mai=c(1,1,0.6,0.2), las=1) plot(proportion~Trial, data=instrum_proplearndat, pch=c(1,19), col=("black"), cex=1.5, ylim = c(0,1), ann=F, xaxt = "n", type="n") axis(1, at=c(1:10)) title(ylab = list("Proportion of sample that learnt", cex=1.5),line=3) title(xlab = list("Trial", cex=1.5),line=2.5) points(proportion~Trial, data=SLprop, cex=1.5, col="black", pch=19) points(proportion~Trial, data=Cprop, cex=1.5, pch=1) lines(proportion~Trial, data=SLprop, lwd=2) lines(proportion~Trial, data=Cprop, lwd=2, lty=5) legend(7.5, 0.1, c("Control", "Social"), lty= c(1, 5), pch=c(1,19), cex=1.2, bty='n') mtext("a)", adj = -0.15, padj = -0.20, cex=1.4) ####Cox Proportional Hazard analysis instrum_surv_dat<- ddply(.data=instrumdat, .(LizardID, Treatment, Batch), summarise, Time = sum(lt), Event = unique(learnt)) instrum_surv_dat$Treatment <- as.character(instrum_surv_dat$Treatment) instrum_surv_dat[instrum_surv_dat$Treatment == "SL", 2] <- "1" instrum_surv_dat[instrum_surv_dat$Treatment == "C", 2] <- "0" instrum_surv_dat$Treatment <- as.factor(instrum_surv_dat$Treatment) insurv.fit1 <- coxph(Surv(Time, Event)~strata(Treatment)*Batch, data=instrum_surv_dat) summary(insurv.fit1) insurv.fit2 <- coxph(Surv(Time, Event)~strata(Treatment)+Batch, data=instrum_surv_dat) summary(insurv.fit2) summary(survfit(insurv.fit2)) insurv.fit2a <- coxph(Surv(Time, Event)~Treatment+Batch, data=instrum_surv_dat) summary(insurv.fit2a) cox.zph(insurv.fit2) cox.zph(insurv.fit2a) cox.zph(insurv.fit1) #Plotting these curves pdf("Figure1A-B.pdf", 13,7) par(mfrow=c(1,2), mar = c(4, 5, 1.5, 1.5), cex.axis=1.5, mai=c(1,1,0.6,0.2), las=1) plot(survfit(insurv.fit2), lty=c(2,1), lwd=2) #Control con_x_trial <- c(6, 6, 8) summary(survfit(insurv.fit2)) con_y_up <- c(1,0.615, 0.615) con_y_low <- c(1, 0.066, 0.066) #lines(con_x_trial, con_y_low) #lines(con_x_trial, con_y_up) #Social soc_x_trial <- c(8,8,10,10,15,15) summary(survfit(insurv.fit2))$time[11:13] soc_y_up <- c(1, round(rep(summary(survfit(insurv.fit2))$upper[11:13], each =2)[1:5],2)) soc_y_low <- c(1,round(rep(summary(survfit(insurv.fit2))$lower[11:13], each =2)[1:5],2)) lines(soc_x_trial, soc_y_low, lty= 3) lines(soc_x_trial, soc_y_up, lty= 3) #legend(0.3,0.1, c("Control", "Social"), lty= c(2, 1), bty='n', cex=1.2, lwd = 2, x.intersp = 1.5) title(ylab = list("Proportion of lizards that have not learnt", cex=1.5), line =3) title(xlab = list("Trial Number", cex=1.5)) mtext("a)", adj = -0.15, padj = -0.20, cex=1.4) #dev.off() # Mean number of trials taken to learn sumdat2 <-ddply(.data=instrumdat, .(LizardID, Treatment, Batch), summarise, trials_to_learn=sum((lt)), total_trials=length(lt)) sumdat2 sumdat2$Treatment <-as.character(sumdat2$Treatment) sumdat2$Treatment[sumdat2$Treatment == "SL"] <- "1" sumdat2$Treatment[sumdat2$Treatment == "C"] <- "0" sumdat2$Treatment <-as.factor(sumdat2$Treatment) str(sumdat2) task1mod.1<-glm.nb(trials_to_learn~Treatment+Batch, data=sumdat2) Table.1A <- data.frame(matrix(nrow = 3, ncol=2)) rownames(Table.1A) <- c("Intercept", "Treatment (SOC)", "Batch (2)") colnames(Table.1A) <- c("Est", "SE") summary(task1mod.1)$coefficients #Est Table.1A[1,1] <- round(summary(task1mod.1)$coefficients[1,1],2) Table.1A[2,1] <- round(summary(task1mod.1)$coefficients[2,1],2) Table.1A[3,1] <- round(summary(task1mod.1)$coefficients[3,1],2) #SE Table.1A[1,2] <- round(summary(task1mod.1)$coefficients[1,2],2) Table.1A[2,2] <- round(summary(task1mod.1)$coefficients[2,2],2) Table.1A[3,2] <- round(summary(task1mod.1)$coefficients[3,2],2) write.csv(Table.1A, file = "Table.1A.csv") ################## newdat <-data.frame(Treatment = c(0, 1), Batch = c(1,1)) newdat$Treatment <- as.factor(newdat$Treatment) newdat$Batch <- as.factor(newdat$Batch) trials_pred <-predict.glm(task1mod.1, type= "response", se.fit = T,newdata=newdat) newdat$trials_pred <- trials_pred$fit newdat$trials_pred_SE <- trials_pred$se.fit newdat$trials_pred_U <- trials_pred$fit + trials_pred$se.fit newdat$trials_pred_L <- trials_pred$fit - trials_pred$se.fit #Plotting figure Mean number of trials to learn #setwd("~/Dropbox/Egernia striolata social learning/output/fig/") #pdf("Task1_Meantrials.pdf", 7.66, 7.55) #par(xaxt="n", mar = c(4, 4.5, 1.5, 2), cex.axis=1.5, mai=c(0.5,0.7,0.5,0.5)) barplot(newdat$trials_pred, ylim = c(0, 10), xlim =c(0,3.5), space=0.5, col=c("white", "grey")) box() title(ylab = list("Mean number of trials taken to learn", cex=1.5)) mtext("Control", at= 1, side = 1, line = 1.2 ,cex = 1.5) mtext("Social", at=2.5, side =1,line = 1.2, cex= 1.5) up.x<-c(1,2.5) low.x<-up.x arrows(x0 = up.x, y0 = newdat$trials_pred, x1 = up.x, y1 = newdat$trials_pred_U, length = 0.2, angle = 90, lwd=2) arrows(x0 = low.x, y0 = newdat$trials_pred, x1 = low.x, y1 = newdat$trials_pred_L, length = 0.2, angle = 90, lwd=2) segments(x0 =1, y0=8, x1 = 2.6, y1 =8, lwd= 2) text(x=1.8, y=8.5, labels="n.s.", cex=1.5, font=1) mtext("b)", adj = -0.15, padj = -0.2, cex=1.4) dev.off() #Plotting figure Mean number of trials to learn par(xaxt="n", mar=c(3,6,3,3)) pdf("Task1_Meantrials.pdf", 7.66, 7.55) barplot(sumdat3$mean_number_trials, ylim = c(0, 10), xlim =c(0,3.5), space=0.5, col=c("white", "grey"), cex.axis = 1.5) box() title(ylab = list("Mean number of trials taken to learn", cex=1.5)) mtext("Control", at= 1, side = 1, line = 1 ,cex = 1.5) mtext("Social", at=2.5, side =1,line =1, cex= 1.5) up.x<-c(1,2.5) low.x<-up.x arrows(x0 = up.x, y0 = sumdat3$mean_number_trials, x1 = up.x, y1 = sumdat3$upper, length = 0.2, angle = 90, lwd=2) arrows(x0 = low.x, y0 = sumdat3$mean_number_trials, x1 = low.x, y1 = sumdat3$lower, length = 0.2, angle = 90, lwd=2) segments(x0 =1, y0=7, x1 = 2.6, y1 =7, lwd= 2) text(x=1.8, y=7.5, labels="n.s.", cex=1.5, font=1) dev.off() #Mean latency stderror<-function(x){ sd(x)/(sqrt(length(x))) } latdat <-ddply(.data = instrumdat, .(LizardID, Treatment), summarise, mean_latency = mean(Latency, na.rm=T)) latdat2 <-ddply(.data = latdat, .(Treatment), summarise, mean_latency2 = mean(mean_latency), SE = stderror(mean_latency), upper = mean_latency2+SE, lower = mean_latency2-SE ) latdat2$value <- c(1.5,3.5) latdat2 #Model testing difference in latency between treatment latfit<-glm(mean_latency~Treatment, data=latdat) summary(latfit) par(xaxt="n", mar=c(3,6,3,3)) barplot(latdat2$mean_latency2, ylim = c(0, 1000), xlim =c(0,3.5), space=0.5, col=c("white", "grey"), cex.axis =1.5) box() title(ylab = list("Mean latency to flip lid (s)", cex=1.5), line = 3) mtext("Control", at= 1, side = 1, line = 1 ,cex = 1.5) mtext("Social", at=2.5, side =1,line =1, cex= 1.5) up.value<-c(1, 2.5) down.value<-up.value arrows(x0 = up.value, y0 = latdat2$mean_latency2, x1 = up.value, y1 = latdat2$upper, length = 0.2, angle = 90, lwd=2) arrows(x0 = down.value, y0 = latdat2$mean_latency2,, x1 = down.value, y1 = latdat2$lower, length = 0.2, angle = 90, lwd=2) segments(x0 =1, y0=850, x1 = 2.6, y1 =850, lwd= 2) text(x=1.8, y=900, labels="P < 0.001", cex=1.5, font=1) ############## #Number of successful attempts learningphase<-instrumdat[instrumdat$lt == 1, ] learningphase$LizardID<-factor(learningphase$LizardID) str(learningphase) incordat<-ddply(.data=learningphase, .(LizardID,Treatment), summarise, correct_choice=sum((Correct==1)), total=length(Correct), incorrect_choice=total-correct_choice) incordat stderror<-function(x){ sd(x)/(sqrt(length(x))) } meandat<-ddply(.data=incordat, .(Treatment), summarise, mean_corr=mean(correct_choice), se_corr=stderror(correct_choice)) meandat$value <- c(1.5, 3.5) newdat <- data.frame(Treatment = c("C", "SL")) incorfit<-glm.nb(correct_choice~Treatment, data=incordat) summary(incorfit) incordpred<-predict.glm(incorfit, newdata=newdat, se.fit = TRUE, type = "response") meandat$se_corr<- incordpred$se.fit meandat$upper <- meandat$mean_corr+meandat$se_corr meandat$lower <- meandat$mean_corr-meandat$se_corr par(xaxt="n", mar=c(3,6,3,3)) barplot(meandat$mean_corr, ylim = c(0, 10), xlim =c(0,3.5), space=0.5, col=c("white", "grey"), cex.axis=1.5) box() title(ylab = list("Mean number of successful attempts", cex=1.5)) mtext("Control", at= 1, side = 1, line = 1 ,cex = 1.5) mtext("Social", at=2.5, side =1,line =1, cex= 1.5) up.value<-c(1, 2.5) down.value<-up.value arrows(x0 = up.value, y0 = meandat$mean_corr, x1 = up.value, y1 = meandat$upper, length = 0.2, angle = 90, lwd=2) arrows(x0 = down.value, y0 = meandat$mean_corr,, x1 = down.value, y1 = meandat$lower, length = 0.2, angle = 90, lwd=2) segments(x0 =1, y0=8, x1 = 2.6, y1 =8, lwd= 2) text(x=1.8, y=8.5, labels="n.s.", cex=1.5, font=1) ####### trialdat<-ddply(.data=instrumdat, .(LizardID, Treatment), summarise, Number_of_Trials=max(Trial)) write.csv(trialdat, "Instrumental_Table.csv") ##### # Robustness of learning criteria split1<-split(instrumdat, instrumdat$LizardID) Robust<-function(x){ { start<-sum(x$lt == 1)+1 test_1<-x[start:nrow(x),"Correct"] aftertrials<-length(test_1) correct_after<-sum(test_1 == 1) propcorrect_after<-round((sum(test_1 == 1))/(length(test_1)),2) } vec<-data.frame(start,aftertrials,correct_after,propcorrect_after) } Criteria_robust<-lapply(split1, function(x) Robust(x))# 3 lizards below 80% mark split1 #Motivation unprocessed1 <-read.csv("data/Task1.csv") unprocessed1$TubID <- as.factor(unprocessed1$TubID) unprocessed1$LizardID <- as.factor(unprocessed1$LizardID) str(unprocessed1) rawdat1 <- split(unprocessed1, unprocessed1$LizardID) NaTest <-function(x){ { { { { NoAttempt<-sum(is.na(x$Correct)) } TrialsGiven<-max(x$Trial) } PropAttempt<-round(((TrialsGiven-NoAttempt)/TrialsGiven),2) } ReachCriteria<-PropAttempt>=0.85 } checking<-data.frame(NoAttempt,TrialsGiven,PropAttempt,ReachCriteria) } motivdat1 <- as.vector(lapply(rawdat1, function(x) NaTest(x))) ################### #Survival analysis# ################### instrum_learndat <- ddply(.data=instrumdat, .(LizardID, Trial, Treatment), summarise, lt = lt, did.it.learn = learnt) instrum_learndat instrum_surv_dat <- ddply(.data=instrum_learndat, .(LizardID, Treatment), summarise, Time = sum(lt), Event = unique(did.it.learn)) str(instrum_surv_dat) instrum_surv_dat$Treatment <- as.character(instrum_surv_dat$Treatment) instrum_surv_dat[instrum_surv_dat$Treatment == "SL", 2] <- "1" instrum_surv_dat[instrum_surv_dat$Treatment == "C", 2] <- "0" instrum_surv_dat$Treatment <- as.factor(instrum_surv_dat$Treatment) #Data for control group fit_instru_con<-survfit(Surv(Time[Treatment == "0"],Event[Treatment == "0"])~1,data=instrum_surv_dat) par(mfrow=c(1,1), mar = c(4, 5, 1.5, 1.5), cex.axis=1.5, mai=c(1,1,0.6,0.2), cex.lab=1.5) plot(fit_instru_con, xlab="Trial Number") title(ylab = list("Probability of NOT learning", cex=1.5), line =3.5) #plotting lines for social learning group fit_instru_sock<-survfit(Surv(Time[Treatment == "1"],Event[Treatment == "1"])~1,data=instrum_surv_dat) summary(fit_instru_sock) plot(fit_instru_sock, xlab="Trial Number") x<-c( seq(0,6), 6, seq(6,7)) length(x) y<-c(1,1,1,1,1,1,1,0.0667,0.0667, 0.0667) length(y) lines(x,y,col="orange2",lwd=2) up<-c(1,1,1,1,1,1,1,0.443,0.443, 0.443) length(up) lines(x,up,col="orange2",lwd=2, lty= 3) lo<-c(1,1,1,1,1,1,1,0.01 ,0.01, 0.01 ) length(lo) lines(x,lo,col="orange2",lwd=2, lty= 3) ################### wilcox.test(0.15384615,0.06666667) # W=1, p=1
314e75dbebd8c66c4d9247beab5c3f1a885dccf5
cdf7ceb2b0aeb8e5ab46e2ffdf8358682b725b08
/0.3 Fit simple GP model to simulated data.R
d79eef8d834084b5d413721b3cd6d98b6ff3cf16
[]
no_license
jburos/explore-GP-models
69aa7cdfe342ef2284bae8a349ea2a83a945d293
590f8a9f7d485a15a3fd174955d7cc37e661bc6d
refs/heads/master
2021-01-13T14:56:22.099918
2016-12-16T14:46:38
2016-12-16T14:46:38
76,661,277
0
0
null
null
null
null
UTF-8
R
false
false
1,030
r
0.3 Fit simple GP model to simulated data.R
library(rstan) library(tidyverse) library(ggplot2) library(lazyeval) source('sim_data.function.R') gp2 <- " data { int<lower=1> N; vector[N] x; vector[N] y; } transformed data { vector[N] mu; for (i in 1:N) mu[i] = 0; } parameters { real<lower=0> eta_sq; real<lower=0> inv_rho_sq; real<lower=0> sigma_sq; } transformed parameters { real<lower=0> rho_sq; rho_sq = inv(inv_rho_sq); } model { matrix[N, N] Sigma; // off-diagonal elements for (i in 1:(N-1)) { for (j in (i+1):N) { Sigma[i, j] = eta_sq * exp(-rho_sq * pow(x[i] - x[j],2)); Sigma[j, i] = Sigma[i, j]; } } // diagonal elements for (k in 1:N) Sigma[k, k] = eta_sq + sigma_sq; // + jitter eta_sq ~ cauchy(0, 5); inv_rho_sq ~ cauchy(0, 5); sigma_sq ~ cauchy(0, 5); y ~ multi_normal(mu, Sigma); } " df <- sim_data(n=1000, sigma_sq=0.1, eta_sq=10, rho_sq=0.1) ggplot(df, aes(x=x, y=y)) + geom_line() standata <- list(N=nrow(df), x=df$x, y=df$y) fit <- rstan::stan(model_code=gp2, data=standata) print(fit)
e5a6fc954d5bf467479582bcb879a04fe50140a9
1ff5948cc363d8a195697c5ea3ae3e8505c7898d
/R/createGif.R
b93e5d7d5c2691c5a9e9a5ec92ffdca11417a0d2
[]
no_license
MazamaScience/TBCellGrowth
35399ef9918343145144c4330915f403d135a0b8
92e258ea7414361ad65136f3493e9ab9fdf16495
refs/heads/master
2020-12-11T03:32:19.119655
2016-04-19T22:00:30
2016-04-19T22:00:30
38,266,687
0
0
null
2015-06-29T19:25:26
2015-06-29T19:25:26
null
UTF-8
R
false
false
1,816
r
createGif.R
#' @export #' @title Creates a gif animation. #' @param dir the directory of images to read #' @param filename name of output gif. #' @param ext the image file extension to read. #' @param framerate the number of frames per second in the output gif. #' @param rescale dimensions of gif frames as a percent of original image size. #' @description Creates an animated .gif file from a list of images using ImageMagick. #' @return none createGif <- function(dir, filename, ext="jpg", framerate=2, rescale=80) { delay <- 100 / framerate inPath <- paste0(normalizePath(path.expand(dir)), '/*.', ext) outPath <- paste0(normalizePath(path.expand(dir)), '/', filename) inPath <- gsub(" ", "\\\\ ", inPath) outPath <- gsub(" ", "\\\\ ", outPath) if ( Sys.info()['sysname'] == "Windows" ) { shell(paste0('convert -resize "', rescale, '%" -delay ', delay, ' ', inPath, ' ', outPath)) } else { system(paste0('convert -resize "', rescale, '%" -delay ', delay, ' ', inPath, ' ', outPath)) } } # Accepts a list of matrices and creates a gif createGifFromList <- function(images, filename, delay=15, rescale=100) { # Temporary directory location. We store images here ###tempDir <- "temp2234g12hdq5gp/" tempDir <- tempdir() # Create the directory. Hide warnings if it already exists. dir.create(tempDir, showWarnings = FALSE) # Save each frame as a .tiff file for (i in 1:length(images)) { j <- ifelse(i<10,paste0("0",i),i) images[[i]][is.na(images[[i]])] <- 0 EBImage::writeImage(images[[i]],paste0(tempDir,j,".tiff")) } # Convert images to gif using a system call to ImageMagick system(paste0('convert -resize "', rescale, '%" -delay ', delay, ' ', tempDir, '*.tiff ', filename)) # Delete temporary directory unlink(tempDir, recursive=TRUE) }
0cde6d528fd0ff7c2e5ebbb6020a7e7322822e12
ffdea92d4315e4363dd4ae673a1a6adf82a761b5
/data/genthat_extracted_code/GLDEX/examples/fun.RMFMKL.ml.m.Rd.R
8bd5aac3cc6856f96689b617278962ff158c5587
[]
no_license
surayaaramli/typeRrh
d257ac8905c49123f4ccd4e377ee3dfc84d1636c
66e6996f31961bc8b9aafe1a6a6098327b66bf71
refs/heads/master
2023-05-05T04:05:31.617869
2019-04-25T22:10:06
2019-04-25T22:10:06
null
0
0
null
null
null
null
UTF-8
R
false
false
323
r
fun.RMFMKL.ml.m.Rd.R
library(GLDEX) ### Name: fun.RMFMKL.ml.m ### Title: Fit RS generalised lambda distribution to data set using maximum ### likelihood estimation ### Aliases: fun.RMFMKL.ml.m ### Keywords: smooth ### ** Examples ## Fitting the normal distribution # fun.RMFMKL.ml.m(data=rnorm(1000,2,3),fmkl.init=c(-0.25,1.5),leap=3)
70a77289f1d652bed6472ff576572b48d4d93c5e
8f4687e2fd3c7fed3af1d443903d604921d2f289
/R/centroidAssigner.R
e87a34e33c5754a0e06780f33383331191a6413f
[]
no_license
LuisLauM/ruisu
c446ae644abacc8f00cf6b64fea76891e111c683
76d8476586d5259f7014dfb3a7cc29b6efe2e017
refs/heads/master
2023-07-09T19:19:53.394787
2023-07-07T15:20:31
2023-07-07T15:20:31
41,390,085
0
0
null
null
null
null
UTF-8
R
false
false
2,317
r
centroidAssigner.R
# Main fx ----------------------------------------------------------------- #' @name centroidAssigner #' @aliases centroidAssigner #' @title Returns centroid values from grid codes. #' #' @description This function takes a vector of grid codes and returns centroids (center of mass) in lon-lat values. #' #' @param code Vector with grid codes. #' @param what \code{character} indicating whether AIP or Marsden squares are going to be used as reference. #' @param ... Extra arguments passed to selected method. #' #' @details For \code{what = "isoparalitoral"} (default), it allows to use argument \code{old}, for specifying whether #' to use old AIP shape (\code{AIPShapefile_old}) o the new (\code{AIPShapefile_new}). #' #' @export #' #' @examples #' isopCodes <- c(1050, 4043, 17073, 27103) #' centroidAssigner(code = isopCodes, what = "isoparalitoral") #' #' marsdenCodes <- c("A6", "B8", "c12") #' centroidAssigner(code = marsdenCodes, what = "marsden") centroidAssigner <- function(code, what = "isoparalitoral", ...){ output <- switch(what, isoparalitoral = centroidAssigner_isop(code = code, ...), marsden = centroidAssigner_marsden(code = tolower(code), ...), "Incorrect value for 'what'. See help for checking available methods.") colnames(output) <- c("code", "lon", "lat") rownames(output) <- seq(nrow(output)) return(output) } # Auxiliar fx ------------------------------------------------------------- centroidAssigner_isop <- function(code, old = TRUE){ isoAreas <- if(isTRUE(old)) ruisu::AIPData_old else ruisu::AIPData_new index <- match(code, isoAreas$code) output <- data.frame(code, isoAreas[index, c("x", "y")]) return(output) } centroidAssigner_marsden <- function(code){ code <- gsub(x = code, pattern = "[[:space:]]|[[:punct:]]", replacement = "", perl = TRUE) letterCode <- gsub(x = code, pattern = "[0-9]", replacement = "", perl = TRUE) numberCode <- an(gsub(x = code, pattern = "[a-z]", replacement = "", perl = TRUE)) letterCode <- -seq(3.5, 19.5)[sapply(letterCode, function(x) match(letters[1:17], x = x))] numberCode <- -(numberCode + 69.5) numberCode[is.na(letterCode)] <- NA output <- data.frame(toupper(code), numberCode, letterCode, stringsAsFactors = FALSE) return(output) }
df485889e9a58d67c18684b6ca7cb62cdb8c9a37
05b2d51dc5c9b4e3845d9c92223ab65f15d21450
/examMarks/R/generateAnswerSheets.R
f3ad0fd8228bc8cc433e6f6ad253fc977ee38b0c
[]
no_license
ddavis3739/examMarks-R-package
ba83d37970d2f7d9893c0267ba25f638d0388113
4cd4e6a4c372beacc98ba210a4d8d066d1a4dde1
refs/heads/master
2020-07-30T09:31:07.897957
2019-09-22T16:50:15
2019-09-22T16:50:15
210,173,690
0
0
null
null
null
null
UTF-8
R
false
false
12,761
r
generateAnswerSheets.R
#' @title Student Answers for Specific Student #' #' @description Outputs a students random answers to a multiple choice exam in #' the form of a dataframe given the number of questions asked and total number #' of questions available. Answers can be from a to e, with NA's indicating the #' question was not answered. If writeToFile = TRUE, then studentID and moduleID #' must be provided so that the appropriate file name can be created. Files are #' created as .tsv's. #' #' @param totalNumberofQuestions the total number of questions in an exam #' #' @param numberOfQuestionsToAnswer the amount of questions that the student is #' asked #' #' @param writeToFile if TRUE, a file is created with the dataframe inside. The #' default value is set to FALSE. #' #' @param molduleID a string identifying the name of the module. Only #' needed if a file is being written. #' #' @param studentID a string or value identifying the student that took the exam #' Only needed if a file is being written. #' #' @return a dataframe with a question and answer column with the option to #' write dataframe to a file #' #' @examples #' ## create answers for an exam with 100 questions and 30 questions asked #' generateStudentAnswersForExam(100, 30) #' #' ## write the student's randomized answers to a file "BS281_answers_12.tsv" #' generateStudentAnswersForExam(100, 30, writeToFile = TRUE, #' moduleID = 'BS281', studentID = '12') #' #' @author Andrew Davis \email{[email protected]} generateStudentAnswersForExam = function(totalNumberofQuestions, numberOfQuestionsToAnswer, writeToFile = FALSE, moduleID, studentID){ # make sure numberOfQuestionsToAnswer < totalNumberofQuestions stopifnot(numberOfQuestionsToAnswer < totalNumberofQuestions) # grab a random subset of questions from the total number of questions # number grabbed depends on numberOfQuestionsToAnswer question = sort(sample.int(totalNumberofQuestions, numberOfQuestionsToAnswer)) # randomly generate the students answers for the questions asked # NA values are included for questiosn that the student skipped answer = sample(c(letters[1:5], NA), numberOfQuestionsToAnswer, replace = TRUE) # merge question and answer into dataframe for output stuAnswers = data.frame(question, answer) # write dataframe to file using moduleID and studentID if(writeToFile == TRUE) { filename = paste0(moduleID, '_answers_', studentID, '.tsv') write.table(stuAnswers, file = filename, row.names = F, quote = F, col.names = T) } # or just ourput dataframe to console return(stuAnswers) } #' @title All Student Answers for a Given Exam #' #' @description Outputs random answers to a multiple choice exam for a given #' module for all students. Answers can be from a to e, with NA's indicating the #' question was not answered. If writeToFile = TRUE, then a folder is created #' with all of the student answers. A file is also created with the list of #' students that took a given exam. Files are created as .tsv's. If #' readFromFiles = TRUE, then the arguements numberOfQuestions, allStudentIDs, #' and examsPerSubject are read from files instead of from dataframes. #' #' @param molduleID a string identifying the name of the module. #' #' @param numberOfQuestions the dataframe that contains the amount of questions #' each student needs to answer for each exam. The defualt value, questions, is #' a dataframe included in the package. #' #' @param allStudentIDs the dataframe that contains the ID for each student and #' what degree course they are on. The defualt value, students, is a dataframe #' included in the package. #' #' @param examsPerSubject the dataframe that contains a dataframe that lists #' what modules a given degree course takes. The first column should list #' modules, the second column should list the options for options for #' degree 1, and the third column should list options for #' degree 2. The possible options are "Yes", "No", and "Optional". If a string #' is supplied that is not one of the three then it is evaluated as "Yes". if a #' module is "Optional", then a random amount of students is picked to take the #' exam, with a higher number of students being more likely. The defualt value, #' exams, is a dataframe included in the package, with degree 1 being #' "Biological Sciences" and degree 2 being "Genetics". #' #' @param writeToFile if TRUE, a folder, named based on the moduleID is created #' with a file for each student's answers. A file is also created that lists all #' of the students that took the exam. The default value is set to FALSE. #' #' @param readFromFiles if TRUE, filenames are used to read in data for the #' relevant arguements instead of dataframes within R. #' #' @param degreeNames if degree names are not "Biological Sciences" and #' "Genetics" then a string should be entered with the two degree courses that #' the student set belongs to. #' #' @return A list with 2 elements, a data frame of students that took the module #' and a list of answers by each student. If writeToFile = TRUE, then files are #' written instead. #' #' @examples #' ## create answers for BS284 and output to console #' generateAllStudentsAnswersForExam('BS284', writeToFile = FALSE) #' #' ## create files with student answer files and a list of students taking exam #' generateAllStudentsAnswersForExam('BS284', writeToFile = TRUE) #' #' @author Andrew Davis \email{[email protected]} generateAllStudentsAnswersForExam = function(moduleID, numberOfQuestions = questions, allStudentIDs = students, examsPerSubject = exams, writeToFile = FALSE, readFromFiles = FALSE, degreeNames = NULL){ # read in files from arguements if arguements are interpreted as filenames if(readFromFiles == TRUE){ numberOfQuestions = read.table(file = number_of_questions, header = T) # add total number fo questions asked for each exam to numberOfQuestions totalQuestions = NULL for(i in 1:5){ totalQuestions[i] = length(readLines( paste0('correct_answers_BS28', i, '.dat'))) } numberOfQuestions = cbind(numberOfQuestions, totalQuestions) allStudentIDs = read.table(file = allStudentIDs, header = T) examsPerSubject = read.table(file = examsPerSubject, header = T) } # otherwise just interpret arguements as objects else{ } # edit degree names if degreeNames is not NULL if(!is.null(degreeNames)) degree = degreeNames else degree = c("Biological Sciences", "Genetics") colnames(examsPerSubject) =c('module', degree[1], degree[2]) # add in stop and warning statements to ensure data is ran correctly if(moduleID %in% examsPerSubject[,1] == FALSE){ stop('moduleID not listed in examsPerSubject') } stopifnot(names(examsPerSubject) == c("module", degree[1], degree[2])) stopifnot(unique(allStudentIDs[,2]) == degree) if(numberOfQuestions[numberOfQuestions[,1] == moduleID, 2] > numberOfQuestions[numberOfQuestions[,1] == moduleID, 3]){ stop('Number of questions asked is more than in module exam answer key') } # subset students if only genetic students in module if(examsPerSubject[examsPerSubject[,1] == moduleID, 2] == 'No'){ allStudentIDs = allStudentIDs[allStudentIDs[,2] == degree[2],] } # subset students if only biological sciences in module else if(examsPerSubject[examsPerSubject[,1] == moduleID, 3] == 'No'){ allStudentIDs = allStudentIDs[allStudentIDs[,2] == degree[1],] } # subset students if optional for genetics # select all biological sciences and a random subset of genetics else if(examsPerSubject[examsPerSubject[,1] == moduleID, 3] == 'Optional'){ bioStudents = allStudentIDs[allStudentIDs[,2] == degree[1],] geneticsOpt = allStudentIDs[allStudentIDs[,2] == degree[2],] geneticsOpt = geneticsOpt[sample(1:nrow(geneticsOpt), sample(1:nrow(geneticsOpt), 1, prob = seq(.2, .8, .6/ (nrow(geneticsOpt) - 1)))),] allStudentIDs = rbind(bioStudents, geneticsOpt) } # subset students if optional for biological sciences # select all genetics and a random subset of biological sciences else if(examsPerSubject[examsPerSubject[,1] == moduleID, 2] == 'Optional'){ geneticsStudents = allStudentIDs[allStudentIDs[,2] == degree[1],] bioOpt = allStudentIDs[allStudentIDs[,2] == degree[2],] bioOpt = bioOpt[sample(1:nrow(bioOpt), sample(1:nrow(bioOpt), 1, prob = seq(.2, .8, .6/ (nrow(bioOpt) - 1)))),] allStudentIDs = rbind(geneticsStudents, bioOpt) } # select random number fo students if module is optional for both degrees else if(examsPerSubject[examsPerSubject[,1] == moduleID, 2] == 'Optional' & examsPerSubject[examsPerSubject[,1] == moduleID, 3] == 'Optional'){ allStudentIDs = allStudentIDs[sample(1:nrow(allStudentIDs), sample(1:nrow(allStudentIDs), 1, prob = seq(.2, .8, .6/ (nrow(allStudentIDs) - 1)))),] } # if both degrees take course, then no need to subset students else { } # write student answers to files in a folder if(writeToFile == TRUE) { # create directory and change working directory to place files inside dir.create(paste0(moduleID, 'studentAnswerFiles')) setwd(paste0(moduleID, 'studentAnswerFiles')) # use generateStudentAnswersForExam function to create student answers for # all students for(i in allStudentIDs[,1]) { generateStudentAnswersForExam( numberOfQuestions[numberOfQuestions == moduleID, 3], numberOfQuestions[numberOfQuestions == moduleID, 2], TRUE, moduleID, i) } # reset workign directory to original location setwd('../') # create file with list of students to be able to check what students were # randomly selected filename = paste('studentList_', moduleID, '.tsv', sep = '') write.table(allStudentIDs, file = filename, col.names = TRUE, row.names = FALSE) } # otherwise output student answers to console else { # use generateStudentAnswersForExam to create list of answers for each # student with exact number of answers and questions contingent on moduleID allStuAnswers = lapply(allStudentIDs[,1], generateStudentAnswersForExam, totalNumberofQuestions = numberOfQuestions[numberOfQuestions ==moduleID, 3], numberOfQuestionsToAnswer = numberOfQuestions[numberOfQuestions == moduleID, 2]) names(allStuAnswers) = allStudentIDs[,1] # create list with the dataframe of all students taking exam and the list of # student answers allStuAnswers = list(allStudentIDs, allStuAnswers) names(allStuAnswers) = c('student list', 'answers') return(allStuAnswers) } } #' @title Generate Exam Answer Key #' #' @description Outputs a randomized answer key for a given exam based on #' number of questions. If writeToFile = TRUE, then moduleID must be prodived to #' create the file name. #' #' @param numberOfQuestions a numerica value that specifies how many answers #' should be generated for the key. #' #' @param writeToFile if TRUE, a file, named based on the moduleID, is created #' with the answer key inside. #' #' @param moduleID a string that designates what the name of the module is. If #' writeToFile = TRUE, then this arguement must be specified. #' #' @param ansOptions the possible answers in the multiple choice exam key. The #' default value, letters[1:5], specifies that there are 5 different options for #' each question, a, b, c, d, and e. #' #' @return a vector that contains a randomized answer for each question number. #' If writeToFile = TRUE, then this vector is written to a file. #' #' @examples #' ## create 100 question answer key #' createAnswerKey(100) #' #' ## write answer to key yot file #' createAnswerKey(100, writeToFile = TRUE, 'BS281') #' #' @author Andrew Davis \email{[email protected]} createAnswerKey = function(numberOfQuestions, writeToFile = FALSE, moduleID, ansOptions = letters[1:5]){ answer = sample(ansOptions, numberOfQuestions, replace = TRUE) if(writeToFile == TRUE){ write.table(answer, file = paste0('correct_answers_', moduleID, '.dat'), row.names = F, quote = F, col.names = 'answer') } else return(answer) }
fd63363d44cbdd24f3e06954977123dc65a836e5
85b32dcd701ddf5ea9e95454fceb10687c03b2bb
/R/plot.rpsftm.R
4b241c6d2db8040ab17d9cbbed9454f7e48762eb
[]
no_license
arallison/rpsftm
4cdb97a9fc58bd60f9d8ad03d718d9611956025e
466ad85e26949b8990f0fa704d20cfa0e9c7cb87
refs/heads/master
2021-01-17T22:20:52.103628
2016-01-05T17:25:34
2016-01-05T17:25:34
47,696,890
0
0
null
2015-12-09T14:39:52
2015-12-09T14:39:51
null
UTF-8
R
false
false
668
r
plot.rpsftm.R
#'Function used to plot the KM curves of the treatment-free transformed times #' #'@export #'@title Plot Method #'@name plot.rpsftm #' @param x an object returned from the \code{\link{rpsftm}} function #' @return a ggplot plot of the fitted KM curves #' @author Simon Bond #' plot.rpsftm=function(x){ fit=x$fit df=data.frame(Time=fit$time, Survival=fit$surv, upper=fit$upper, lower=fit$lower ) df$Group=rep(names(fit$strata),fit$strata) ggplot2::ggplot( data=df,ggplot2::aes(x=Time, y=Survival, group=Group, lty=Group) )+ ggplot2::geom_step()+ ggplot2::ylim(0,1)+ ggplot2::labs(title="KM Plots of Transformed Treatment-Free Time") }
66e7febb083ab853bb62498e6921410eb4cde2b7
406863c152cebfe70acd9a1d23cf063aed08cfd4
/4. guardian_text_analysis.R
78b1f9cdf174c2b72f614ea4a44e2a6a4ec43443
[]
no_license
lopesmf/R-Projects
cdb19faa2c25cecc9cdba5a5d68a18c921926456
d7ae205169e1d4eb8a986d45577218ecbd1ffcfd
refs/heads/main
2023-04-20T10:25:18.701726
2021-05-10T18:34:54
2021-05-10T18:34:54
366,140,270
0
0
null
null
null
null
UTF-8
R
false
false
6,268
r
4. guardian_text_analysis.R
# Topic Analysis in news about AfD in The Guardian Newspaper # Maria Fernanda Lopes Ferreira Del Ducca # au516257 201400917 # Clean list rm(list = ls()) # Set Working Directory setwd("~/Documents/Masters'/2.2018/Political Data Science/Final Exam/The Guardian") # Install necessary packages library(tm) library(quanteda) # Load data load("~/Documents/Masters'/2.2018/Political Data Science/Final Exam/The Guardian/afd_guardian_articles_full_text.RData") ############### ### Organizing data ### #Formatting dates: Transforming factor to Date afd$my_dates <- as.Date(afd$my_dates, format = "%Y-%m-%d") ## I need to divide my data into the 4 phases identified in the literature. ## This phases will serve as a way to analyse better the content I extracted from The Guardian website ## To have the 4 phases to analyse, I need to do two procedures. #Selecting the phases in the timeline to do the analysis by period phase_1 <- afd[afd$my_dates >="2013-01-01" & afd$my_dates <= "2014-05-31",] phase_2 <- afd[afd$my_dates >="2014-06-01" & afd$my_dates <= "2015-07-30",] phase_3 <- afd[afd$my_dates >="2015-08-01" & afd$my_dates <= "2017-09-30",] phase_4 <- afd[afd$my_dates >="2017-10-01",] ############### ### Text Organization and Formatting ### # Extract from my dataframe, as a value, only the texts from The Guardian articles.guardian <- gsub(":", " ", afd$full_text, fixed = T) # Using tokens to remove symbols, punctuation, separators, urls from the words in the texts articles.guardian <- tokens(articles.guardian, what = "word", remove_punct = T, remove_symbols = T, remove_separators = T, remove_url = T, remove_hyphens = T, verbose = T) # Transforming all words to lower case articles.guardian <- tokens_tolower(articles.guardian) # Removing english stopwords articles.guardian <- tokens_remove(articles.guardian, stopwords("english")) # Stem words articles.guardian <- tokens_wordstem(articles.guardian) # Remove stopwords after stem the text articles.guardian <- tokens_remove(articles.guardian, stopwords("english")) # Creating a dfm (document feature matrix) with the tokenized articles guardian.dfm <- dfm(articles.guardian) ############# ##### 1st Analysis ##### #### Main Goal: Analyse the text from the entire data set from The Guardian ### After Procedure: Compare to the results I will get by analysing the text phase by phase ## Top Features Observation ## # Check the top features in the document feature matrix # This is to observe if there is any other non-wanted object in the to be analysed dataframe topfeatures(guardian.dfm) # Keep in the dfm only words that appear more than 4 articles guardian.dfm <- dfm_trim(guardian.dfm, min_termfreq = 4) # Selecting specific words (words that are not useful for my analysis) to be removed from my dataframe matrix wordstoremove <- c("afd", "germani", "german", "said", "year", "link", "post", "guardian", "merkel", "parti", "leader", "say", "AfD", "germany", "german", "twitter", "tweet", "said", "year", "merkel", "say", "around", "although", "though", "allow", "alpha", "blame", "call", "ago", "airless", "afd", "found", "tag", "facebook", "instagram", "monday", "tuesday", "wednesday", "thursday", "friday", "saturday", "sunday") guardian.dfm <- dfm_remove(guardian.dfm, wordstoremove) #Checking the top features after removing non-wanted words topfeatures(guardian.dfm) ## Selecting features by importance in a document ## # Create tf_idf-weighted dfm # (The Tf-idf is the frequency of a term adjusted for how rarely it is used) guardian.tfidf <- dfm_tfidf(guardian.dfm) # Select from main dfm using its top features guardian.dfm <- dfm_keep(guardian.dfm, names(topfeatures(guardian.tfidf, n = 1000))) ## Run the topic models ## # Goal: Want to observe the words appearing in the topic models, where I have 4 randomized clusters # Convert 'quanteda dfm' to 'tm dtm' #better to run the topic models guardian.dtm <- convert(guardian.dfm, to = "topicmodels") # Using Latent Dirichlet Allocation (LDA) to run the topic model (Choice of 4 clusters) guardian.lda <- LDA(guardian.dtm, k = 4) # review terms by topic terms(guardian.lda, 15) ############# # randomly sample test data set.seed(45) select <- sample(1:nrow(guardian.dtm), size = 10) test <- guardian.dtm[select, ] train <- guardian.dtm[!(1:nrow(guardian.dtm) %in% select), ] n.tops <- 2:10 metrics <- data.frame(topics = n.tops, perplexity = NA) for(i in n.tops) { # NB: takes awhile to run print(i) est <- LDA(train, k = i) metrics[(i - 1), "perplexity"] <- perplexity(est, newdata = test) } save(metrics, file = "lda_perplexity.RData") qplot(data = metrics, x = topics, y = perplexity, geom = "line", xlab = "Number of topics", ylab = "Perplexity on test data") + theme_bw() ############################################################ ## RERUN WITH BETTER CHOICE OF k ############################################################ # run lda with 10 topics lda <- LDA(guardian.dtm, k = 10) save(lda, file = "dr_ft_keep.RData") # examine output terms(lda, 10) # put topics into original data afd$topics <- topics(lda) # simple frequency qplot(data = dat, x = topic, geom = "bar") # add labels dat$topic_lab <- factor(dat$topic, levels = 1:14, labels = c("Topic 1", "Topic 2", "Topic 3", "Topic 4", "Topic 5", "Topic 6", "Topic 7", "Topic 8", "Topic 9", "Topic 10", "Topic 11", "Topic 12", "Topic 13", "Topic 14")) # better frequency qplot(data = dat, x = topic_lab, geom = "bar", xlab = "", ylab = "Frequency", main = "DR Politics topic frequencies December 2017") + theme_bw() + theme(axis.text.x = element_text(angle = 90))
11838687f092ddf05938cdf01ef6dc31c2a1309c
ffdea92d4315e4363dd4ae673a1a6adf82a761b5
/data/genthat_extracted_code/satellite/examples/plot.Rd.R
2c311a4ff0e6a77688ba2a2d9798ba0a29e8e96b
[]
no_license
surayaaramli/typeRrh
d257ac8905c49123f4ccd4e377ee3dfc84d1636c
66e6996f31961bc8b9aafe1a6a6098327b66bf71
refs/heads/master
2023-05-05T04:05:31.617869
2019-04-25T22:10:06
2019-04-25T22:10:06
null
0
0
null
null
null
null
UTF-8
R
false
false
485
r
plot.Rd.R
library(satellite) ### Name: plot ### Title: Plot a Satellite object ### Aliases: plot plot,Satellite,ANY-method plot,Satellite-method ### ** Examples ## Not run: ##D ## sample data ##D path <- system.file("extdata", package = "satellite") ##D files <- list.files(path, pattern = glob2rx("LC08*.TIF"), full.names = TRUE) ##D sat <- satellite(files) ##D ##D ## display data without quality flag layer ##D bds <- getSatBCDE(sat)[1:11] ##D plot(sat, bcde = bds) ## End(Not run)
4682ce2936f667f6c11e916217eac01f0ac7a345
f20c8919a5a46ec2503ec02807877c1e96a9cee0
/CPR by Nationality.R
9bc27ede4ae31c4822786faf15177eac59609d86
[ "MIT", "CC-BY-4.0" ]
permissive
Track20/JordanFertilityFP
78aceac6560091530c80805198119c87dec02799
4f7d4cd2f7421386bef1d5e1cd299751d590efd9
refs/heads/master
2022-12-22T17:09:02.702079
2020-09-29T14:17:34
2020-09-29T14:17:34
null
0
0
null
null
null
null
UTF-8
R
false
false
3,233
r
CPR by Nationality.R
# Jordan Feritlity and Family Planning # Kristin Bietsch # 09/18/20 # CPR by Nationality library(survey) library(tibble) library(dplyr) library(tidyr) library(haven) library(xlsx) library(stringr) library(questionr) library(jtools) library(huxtable) library(broom) library(ggplot2) setwd("C:/Users/KristinBietsch/files/DHS Data/Jordan") women17 <- read_dta("JOIR73FL.DTA") women12 <- read_dta("JOIR6CFL.DTA") nationality2012 <- read_dta("nationality2012.DTA") women12 <- left_join(women12, nationality2012, by=c("v000", "v001", "v002", "v003")) # just comparing jordanians to syrians women17 <- women17 %>% mutate(syrian=case_when(s123a==3 ~ 1, s123a==1 ~ 0), cpr=case_when(v312!=0 ~ 1, v312==0 ~ 0), year=1) women12 <- women12 %>% mutate(syrian=case_when(sh07==3 ~ 1, sh07==1 ~ 0), cpr=case_when(v312!=0 ~ 1, v312==0 ~ 0), year=0) women17$sampleweights <- women17$v005/1000000 women12$sampleweights <- women12$v005/1000000 design.women17 <- svydesign(ids=~v021, strata=~v025, weights=~sampleweights, data=women17, nest=TRUE) options(survey.lonely.psu="adjust") design.women12 <- svydesign(ids=~v021, strata=~v025, weights=~sampleweights, data=women12, nest=TRUE) options(survey.lonely.psu="adjust") # JOINT joint_women <- bind_rows(women17, women12) joint_women <- joint_women %>% mutate(v001_joint=case_when(year==1 ~ v001, year==0 ~ v001 + 1000), v023_joint=case_when(year==1 ~ v023, year==0 ~ v023 + 100)) sel <- select(joint_women, v001, v023, v001_joint, v023_joint, year) design.womenjoint <- svydesign(ids=~v001_joint, strata=~v023_joint, weights=~sampleweights, data=joint_women, nest=TRUE) options(survey.lonely.psu="adjust") svyby( ~cpr , ~ syrian , subset(design.women17, v502==1), svymean) summ(svyglm( cpr ~ + syrian , subset(design.women17, v502==1), family=quasibinomial() ), confint=TRUE) svyby( ~cpr , ~ syrian , subset(design.women12, v502==1), svymean) summ(svyglm( cpr ~ + syrian , subset(design.women12, v502==1), family=quasibinomial() ), confint=TRUE) svyby( ~cpr , ~ year , subset(design.womenjoint, v502==1), svymean) svyby( ~cpr , ~ year , subset(design.womenjoint, v502==1 & syrian==0), svymean) svyby( ~cpr , ~ year , subset(design.womenjoint, v502==1 & syrian==1), svymean) summ(svyglm( cpr ~ + year , subset(design.womenjoint, v502==1), family=quasibinomial() ), confint=TRUE) summ(svyglm( cpr ~ + year , subset(design.womenjoint, v502==1 & syrian==0), family=quasibinomial() ), confint=TRUE) summ(svyglm( cpr ~ + year , subset(design.womenjoint, v502==1 & syrian==1), family=quasibinomial() ), confint=TRUE) summ(svyglm( cpr ~ + year + syrian , subset(design.womenjoint, v502==1), family=quasibinomial() ), confint=TRUE)
df97f1f4b577ffd3b7a41c516268d2c0168c0f3c
bc88ee08398aa52f9eab0c4f608f45156f9551f3
/tidytuesday_2020_week16/tidytuesday_2020_week16.r
7ba2b701a1062fafbd2f04e9f1a1d33408c68238
[]
no_license
lmaxfield/TidyTuesday
df432698acfb1311f53cc5c081d6c7021ba14299
999ee128c925ff39a9596d3ee8f4fd8a934a04c5
refs/heads/master
2020-09-14T16:45:28.588273
2020-04-18T17:08:59
2020-04-18T17:08:59
223,189,027
0
0
null
null
null
null
UTF-8
R
false
false
2,101
r
tidytuesday_2020_week16.r
library(tidyverse) library(extrafont) #library(here) polls <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-04-14/polls.csv') rankings <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-04-14/rankings.csv') my_theme <- function() { fun <- theme(text = element_text(family = "Roboto Condensed"), rect = element_blank(), legend.position = 'none', panel.grid.major.x = element_blank(), panel.grid.major.y = element_line(colour = "grey"), panel.grid.minor.y = element_blank(), axis.ticks.x = element_line(colour = "grey"), axis.ticks.y = element_blank(), axis.title = element_text(size = 12), plot.title = element_text(size = 14), axis.title.y = element_blank() ) } top_artists <- rankings %>% group_by(artist) %>% summarise(total_points = sum(points), num_songs = n()) %>% mutate(points_per_song = total_points/num_songs) %>% arrange(desc(total_points)) %>% head(10) rankings %>% select(ID, title, artist, year, points) %>% right_join(top_artists, by = c("artist")) %>% arrange(artist, desc(points)) %>% group_by(artist) %>% mutate(artist_song_number = row_number()) %>% ggplot(aes(x=reorder(artist, (.$total_points)), y=points)) + geom_bar(aes(fill=reorder(artist_song_number, (points))), stat = "identity", colour = 'grey') + scale_fill_viridis_d(direction = -1) + scale_x_discrete(labels = function(x) str_wrap(str_replace_all(x, 'foo', ' '), width = 20)) + labs(title = "Hip Hop Artists with Top Ranking Songs", subtitle = "Spot the one-hit-wonder") + ylab('Points awarded by critics') + annotate('text', "JAY-Z", 120, label = "16 JAY-Z songs \n were voted for!", size = 2.5, family = "Roboto Condensed") + my_theme() + coord_flip() + theme(axis.title.y = element_blank()) #ggsave(filename = here("plots/tidy_tuesday_2020_week16.png"), width = 14, height = 11, units = "cm")
f0b976b6be91b97476cb9dcc824448e5f699dff3
c7bc2076579a554bca7ddb1c91c5c5197dd3e4d4
/Scripts/Analysis/plotDemographics.R
d3e2f2d493a267fcafeb3f413ff31a7902c618f9
[]
no_license
ntustison/CrossLong
c55bf03fe3e85ea0f9c7267e4ebb76243940aaff
e6cdd22a7c950b2a68c3075c893ed1b74489bc61
refs/heads/master
2021-12-15T15:24:49.733578
2021-12-13T22:16:37
2021-12-13T22:16:37
62,259,676
9
3
null
2021-12-13T17:37:50
2016-06-29T21:39:39
R
UTF-8
R
false
false
1,748
r
plotDemographics.R
library( ggplot2 ) # Questions of interest: # * Age ranges, male and females (https://rpubs.com/walkerke/pyramids_ggplot2) # * Number of CN, LMCI, and AD # * How many time points? Missing time points? # baseDirectory <- '/Users/ntustison/Data/Public/CrossLong/' baseDirectory <- '/Users/ntustison/Documents/Academic/InProgress/CrossLong/' dataDirectory <- paste0( baseDirectory, 'Data/' ) adniData <- read.csv( paste0( dataDirectory, 'reconciled_ANTsCross.csv' ) ) adniData$DIAGNOSIS <- factor( adniData$DIAGNOSIS, levels = c( "CN", "LMCI", "AD" ) ) demoPlot <- ggplot( data = adniData, aes( VISIT ) ) + geom_bar( aes( fill = SEX ), position = "dodge" ) + facet_wrap( ~ DIAGNOSIS ) + labs( y = "Count", x = "Visit" ) + # scale_fill_manual( values = alpha( c( "navyblue", "darkred" ), 1.0 ) ) + guides( fill = guide_legend( title = "Gender" ) ) ggsave( "demoPlot.png", plot = demoPlot, width = 8, height = 2.5, units = 'in', dpi = 300 ) # Create 2D histograms of AGE vs. MMSE at m12 (since it has the highest count) adniDataFrame12 <- adniData[which( adniData$VISIT == 12 ),] gg_color_hue <- function( n ) { hues = seq(15, 375, length = n + 1) hcl(h = hues, l = 65, c = 100)[1:n] } demoPlot2 <- ggplot( data = adniDataFrame12 ) + stat_bin2d( aes( x = AGE, y = MMSCORE ), binwidth = c( 1.00, 1.75 ) ) + facet_wrap( ~ DIAGNOSIS ) + labs( y = "Mini-Mental State Examination", x = "Age" ) + # scale_fill_gradientn( limits = c( 1, 15 ), colours = gg_color_hue( 10 ) ) + guides( fill = guide_legend( title = "Count" ) ) ggsave( "demoPlot2.png", plot = demoPlot2, width = 8, height = 2.5, units = 'in', dpi = 300 )
f6c1ca88e29480dae81335162b4a60b573d5bb98
ddf87d7410f5f63747758b8beaf0a4fe7c297796
/man/ed_input_dir.Rd
16fcf7afea5238fbaa56076436ab4adfb5d1c9fe
[ "MIT" ]
permissive
ashiklom/fortebaseline
3142ff38f305906489cf6e012a8f55fa3efaa51e
513ea9353c133b47f67b3023a78e56abb6384847
refs/heads/master
2021-07-23T16:30:12.074804
2020-04-30T17:15:43
2020-04-30T17:15:43
157,924,482
3
3
NOASSERTION
2023-01-22T10:39:45
2018-11-16T21:42:24
R
UTF-8
R
false
true
241
rd
ed_input_dir.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/run-ed.R \name{ed_input_dir} \alias{ed_input_dir} \title{Directory containing ED2 inputs} \usage{ ed_input_dir() } \description{ Directory containing ED2 inputs }
61eff8e13145a514d39167f0ed901605e333a51d
e1302be32d3fdd297dcf5182dd437188f43923f0
/GOTApriori.R
130df2bb63adffde1b89acf8b22d3d2d359fc9a2
[]
no_license
kritishaw/imdb-database-mining
d5d4928a52ff3058b4faf0d562985374c4e1619d
d12590af7ae7249a289a547f73f5ed83825071f7
refs/heads/master
2021-01-01T04:45:13.823482
2016-05-19T20:02:50
2016-05-19T20:02:50
59,238,436
0
0
null
null
null
null
UTF-8
R
false
false
895
r
GOTApriori.R
library(arules) westeros <- read.csv("game_of_thrones.csv", header = TRUE) westeros <- merge(westeros[, 2:3], as.data.frame(sapply(westeros[,4:10], as.logical)), by="row.names") westeros <- as.data.frame(sapply(westeros, gsub,pattern="House ",replacement="")) westeros <- westeros[, 2:10] Grules <- apriori(westeros) inspect(Grules) #westeros <- as.data.frame(sapply(westeros, gsub,pattern="House ",replacement="")) gc_rules <- apriori(westeros, parameter = list(supp = 0.01, conf = 0.9), appearance = list(rhs=c("Survives=TRUE", "Survives=FALSE"), default = "lhs")) inspect(gc_rules) gotrules_sorted <- sort(gc_rules, by = "lift") subset.matrix <- is.subset(gotrules_sorted, gotrules_sorted) subset.matrix[lower.tri(subset.matrix, diag = TRUE)] <- NA red_gotrules <- colSums(subset.matrix, na.rm = TRUE) >= 1 pruned_gotrules <- gotrules_sorted[!red_gotrules] inspect(pruned_gotrules)
58bf8d26f6e168e6944b7d0f89460c299a228e37
53aa1a158928b60ddf4195da23b9c72206be3005
/man/getQtlMap.Rd
ee4b6664594b348f1791ed9d3e388ec7fbd6deb9
[]
no_license
hickeyjohn/AlphaSimR
55b202591506bbae31f7ddadecb333075a9d8c9e
1cedc22e022b2a628da3e9e5bb1ca0394ea2078f
refs/heads/master
2023-01-05T19:52:32.118965
2020-05-19T08:30:02
2020-05-19T08:30:02
299,920,977
0
0
null
null
null
null
UTF-8
R
false
true
858
rd
getQtlMap.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/pullGeno.R \name{getQtlMap} \alias{getQtlMap} \title{Get QTL genetic map} \usage{ getQtlMap(trait = 1, gender = "A", simParam = NULL) } \arguments{ \item{trait}{an integer for the} \item{gender}{determines which gender specific map is returned. Options are "A" for average map, "F" for female map, and "M" for male map. All options are equivalent if not using gender specific maps.} \item{simParam}{an object of \code{\link{SimParam}}} } \value{ Returns a data.frame for the SNP map. } \description{ Retrieves the genetic map for the QTL of a given trait. } \examples{ #Create founder haplotypes founderPop = quickHaplo(nInd=10, nChr=1, segSites=10) #Set simulation parameters SP = SimParam$new(founderPop) SP$addTraitA(5) #Pull SNP map getQtlMap(trait=1, simParam=SP) }
c6a7e00056bf95f5df4bfdcc2a088c29e5f3ec41
d22a3a98441edc4713e16deff79bd6fef3e550b1
/R/CBI_mapCreation.R
4c62edbaac6339473e0e484fcbc116cabcce271b
[]
no_license
mxblsdl/CBREC_Maps
c0f559be659e3a1a3119a15f9e6536aa3a0367f3
9b357954b689272d48f9c43a0c2beaac1c4f7092
refs/heads/master
2022-12-11T05:19:43.830142
2020-09-10T02:29:50
2020-09-10T02:29:50
286,899,437
0
0
null
null
null
null
UTF-8
R
false
false
1,712
r
CBI_mapCreation.R
# bind data into data table function; works with specific list structure of outputs bindDataTable <- function(data) { require(data.table) tr <- lapply(data, function(d) { # simplify list structure d <- unlist(d, recursive = F) # bind together as data table d <- rbindlist(d) return(d) }) return(tr) } # for use in subsetting the scenario matrix based on map specifications scenario_function <- function(scenario_matrix, piled, # will be the same for use and reference use_collection, use_burn, ref_collection = "No", ref_burn, negate_ref = F){ use <- subset(scenario_matrix, Fraction_Piled == piled & Biomass_Collection == use_collection & Burn_Type == use_burn) # allow for no reference case burn to be explicitly defined if(negate_ref) { ref <- subset(scenario_matrix, Fraction_Piled == piled & Biomass_Collection == ref_collection & Burn_Type != ref_burn) } else { ref <- subset(scenario_matrix, Fraction_Piled == piled & Biomass_Collection == ref_collection & Burn_Type == ref_burn) } return(list("use_id" = use$ID, "ref_id"= ref$ID)) } ## ggplot theme mxblsdl <- theme_minimal(base_size = 12) + theme(legend.position = "bottom", #legend.title = element_blank(), strip.text = element_text(size = 12), axis.text = element_text(size = 12), legend.text = element_text(size = 12))
826197c4f2ec9578ba6488b2d9ed5800c6e5182f
53a5427633aaad81b865b71133b017d262a733be
/Kalman_test.R
89eedd94743cd60ee72e7e581903ab81fbe3053c
[]
no_license
xindd/TestModels
9529ab8a354e3f4bb6e0cdd8365ee184d903a61d
ff4e642eedfe64683ddd7eebd54f319a8ced273c
refs/heads/main
2022-12-25T04:12:00.403632
2020-10-10T00:18:40
2020-10-10T00:18:40
302,779,531
0
0
null
null
null
null
UTF-8
R
false
false
1,571
r
Kalman_test.R
kl <- function(P_data, T_data, p_dot, t_dot, PL_data, t_time, tL){ #t_time = c(0, 1/6, 1/3, 1/2, 1, 2, 4, 8, 16) #tL = 1/6 num_data = length(t_time) true_a = PL_data/tL Z = matrix(c(p_dot-true_a, t_dot-true_a), nrow = num_data, byrow=FALSE) GG <- diag(1,2) FF <- matrix(c(1, 3, 3, 2),nrow=2,byrow=TRUE) m0 <- c(0,0) C0 <- diag(1,2) W <- diag(1,2) V <- diag(1,2) X = matrix(c(-P_data,P_data-T_data, rep(0,num_data)),nrow=num_data,byrow=FALSE) my_dlm <- dlm(X=X,JFF=FF,FF=FF,V=V,GG=GG,W=W,m0=m0, C0=C0) y0 <- dlmFilter(Z,my_dlm) y <- dlmSmooth(y0) pre_Z = matrix(c(0,0),nrow = 1) for(k in 1:num_data){ pre_Z=rbind(pre_Z,t(matrix(c(-P_data[k],0,0,(P_data[k]-T_data[k])),nrow=2,byrow=TRUE)%*%as.matrix(y$s[k+1,],nrow=2))) } pre_Z = dropFirst(pre_Z) df <- data.frame(y=Z, s=dropFirst(y$s),pre=pre_Z) df$id <- t_time ggplot(data=df,aes(x=id,y=y.1))+ # P geom_point()+ geom_point(aes(y=y.2),color="red")+ # T geom_line(linetype=1,aes(y=pre.1),color="orange")+ #pre_P geom_line(linetype=1,aes(y=pre.2),color="darkred") # pre_T ggplot(data=df,aes(x=id,y=s.1))+ # P geom_line()+ geom_line(linetype=1,aes(y=s.2),color="darkred") # b } num_data = 100 t_time = seq(0.1,10,0.1) P_data = rpkms$total_introns['77595',] T_data = rpkms$total_exons['77595',] p_dot = t_dot = PL_data = rpkms$foursu_exons['77595',] t_time = c(0, 1/6, 1/3, 1/2, 1, 2, 4, 8, 16) tL = 1/6 kl(P_data, T_data, p_dot, t_dot, PL_data, t_time, tL)
3c33a0232101a0b0c90fb9aa10819e0b031973e6
18bdef50ddaf2647ddec6308bf5d883dc6ebd995
/NolaR/R/nola.R
d125b98008af21e13b8886e9d17d0b1d032a91f3
[]
no_license
jsomekh/Nola
0cdf40dc2353c7f21d0b8fe84eae4689b558e7c5
15a643b2736ef6b3467d64883b1306ffe9e8ac0c
refs/heads/master
2020-03-09T18:30:32.338451
2018-04-11T10:11:24
2018-04-11T10:11:24
128,934,814
0
0
null
null
null
null
UTF-8
R
false
false
171
r
nola.R
#' A Nola Function #' #' This function allows you to print hi Nola. #' @param no params. #' @keywords nola myNola<-function() { print("Hi Nola") print("Hi Jinjit") }
d508ac209b72aeb49ecda6bb2fbf8cb6a71e45b7
15b43be459adec4f54507aafe759f61f1eadd5d5
/man/rtimes-package.Rd
962983ac9351f84e965e44581fc2fa8fd9cd175b
[ "MIT" ]
permissive
jpiaskowski/rtimes
7d5c5ffe3bc250f2ee1d5bee98a10dbd98c141b6
4eaef46ca60a35c879db68edba6a697418693850
refs/heads/master
2022-01-28T10:42:27.313696
2019-07-19T17:12:07
2019-07-19T17:12:07
null
0
0
null
null
null
null
UTF-8
R
false
true
2,668
rd
rtimes-package.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/rtimes-package.R \docType{package} \name{rtimes-package} \alias{rtimes-package} \alias{rtimes} \title{rtimes} \description{ Interface to the Congress and Campaign Finance APIs from Propublica, and the Article Search and Geographic 'APIs' from the New York Times. } \details{ Backstory is that the Congress and Campaign finance APIs used to be part of NYTimes, but were taken over by Propublica. } \section{rtimes API}{ Functions that wrap these sets of APIs are prefixed by two letter acronyms fo reach API endpoint + the function name itself as for example \code{cg} + \code{fxn} \itemize{ \item as - for the Article Search API (Docs: \url{http://developer.nytimes.com/article_search_v2.json}) \item geo - for the Geographic API (Docs: \url{http://developer.nytimes.com/geo_api_v2.json}) \item cg - for the Congress API (Docs: \url{https://projects.propublica.org/api-docs/congress-api/}) \item cf - for the Campaign Finance API (Docs: \url{https://propublica.github.io/campaign-finance-api-docs/}) } See the vignette for help. } \section{Authentication}{ Get your own API keys for NYTimes APIs at \url{https://developer.nytimes.com/accounts/create} - you can use one API key for both the article search and geo NYTimes APIs. Get your Propublica API key for Congress and Campaign Finance APIs at either \url{https://www.propublica.org/datastore/api/propublica-congress-api} or \url{https://www.propublica.org/datastore/api/campaign-finance-api} - as far as I know, you can use the same key for both APIs We set up the functions so that you can put the key in your \code{.Renviron} file, which will be called on startup of R, and then you don't have to enter your API key for each run of a function. Add entries for an R session like \itemize{ \item \code{Sys.setenv(NYTIMES_API_KEY = "YOURKEYHERE")} \item \code{Sys.setenv(PROPUBLICA_API_KEY = "YOURKEYHERE")} } Or set them across sessions by putting entries in your \code{.Renviron} file like \itemize{ \item \code{NYTIMES_API_KEY=<yourkey>} \item \code{PROPUBLICA_API_KEY=<yourkey>} } You can also pass in your key in a function call, but be careful not to expose your keys in code committed to public repositories. If you do pass in a function call, use e.g., \code{Sys.getenv("NYTIMES_API_KEY")} } \section{Rate limits}{ Rate limits vary for the different APIs: \itemize{ \item Article Search API: 1/sec, 1,000/day \item Geographic API: 5/sec, 1,000/day \item Congress API: 2/sec, 5,000/day \item Campaign Finance API: 50/sec, 5,000/day } } \author{ Scott Chamberlain \email{[email protected]} } \keyword{package}
8a494f981fa90f9be2e80e21b86d6d8d785d28e5
1e35733da24e026b16f7f82a4c3cd703abc0391b
/Diamond price prediction/Vector operations.R
547006d75216b22033416622fda5b63225e4be1f
[]
no_license
deboshas/R-Handson
ec7a1a9b92c0125929b1d108b1e58ae9d2fbebcd
48782b1965a6f2162a9553c7c57d038861084d49
refs/heads/master
2020-06-30T08:09:11.631045
2019-09-04T04:49:31
2019-09-04T04:49:31
200,773,280
0
0
null
null
null
null
UTF-8
R
false
false
792
r
Vector operations.R
x <- c(10,20,30,40,45) y <-c(1,2,3,4) #repeat the vector until it matches the x vector z <- x+y s <- x-y logicalvector <- x > y multiplicationvector <- x * 10 #operations randomvector<- rnorm(5) #R specific iteration, i is a vector for ( i in randomvector){ print(i) } # # print(randomvector[1]) # print(randomvector[2]) # print(randomvector[3]) # print(randomvector[4]) # print(randomvector[5]) #convential programming for (j in 1:5){ print(randomvector[j]) } #--------------------------------# N<- 10000000 a<- rnorm(N) b <- rnorm(N) #multiplication in R way shorther tha traditiona way,and faster than traditioanl way c <- a *b d <- rep(NA,N) #Multiplication in traditional way,takes more code to and takes more time than R way for( i in 1:N){ d[i]=a[i]*b[i] }
3b5b21b795c6047437c13ac29d3c30227e06339d
6e1ed64a0769a0776a01f2db6c42510477acc13f
/inst/doc/introduction.R
7a53e389ecbcb5ecdfc8b76b26fcc54926a1de96
[]
no_license
cran/creditmodel
f9e008df63f25cdaefebe79a82aaf9aad3598c8c
a4f07950173e6e0f6c6565a08fc564ec2075cb36
refs/heads/master
2022-01-19T11:26:07.485897
2022-01-07T10:32:41
2022-01-07T10:32:41
183,883,743
4
2
null
null
null
null
UTF-8
R
false
false
2,853
r
introduction.R
## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set(echo = FALSE) library(creditmodel) ## ----fig.width = 10----------------------------------------------------------- B_model = training_model(dat = UCICreditCard, model_name = "UCICreditCard", target = "default.payment.next.month", x_list = NULL, occur_time = "apply_date", obs_id = "ID", dat_test = NULL, preproc = TRUE, miss_values = list(-1, -2,"\"\"\"\"",""), missing_proc = TRUE, outlier_proc = TRUE, trans_log = TRUE, feature_filter = list(filter = c("IV", "COR"), cv_folds = 1, iv_cp = 0.01, psi_cp = 0.2, cor_cp = 0.7, xgb_cp = 0, hopper = F), vars_plot = FALSE, algorithm = list("LR"), breaks_list = NULL, LR.params = lr_params( iter = 2, method = 'random_search', tree_control = list(p = 0.02, cp = c(0.00001, 0.00000001), xval = 5, maxdepth = c(10, 15)), bins_control = list(bins_num = 10, bins_pct = c(0.02, 0.03, 0.05), b_chi = c(0.01, 0.02, 0.03), b_odds = 0.1, b_psi = c(0.02, 0.06), b_or = c(.05, 0.1, 0.15, 0.2), mono = c(0.1, 0.2, 0.4, 0.5), odds_psi = c(0.1, 0.15, 0.2), kc = 1), f_eval = 'ks', lasso = TRUE, step_wise = FALSE), parallel = FALSE, cores_num = NULL, save_pmml = FALSE, plot_show = TRUE, model_path = tempdir(), seed = 46)
db1f1688967fbfff29864620d95d8f9bce416152
1f71bcffe9b3b1cb424702b3bdda1e7f161da9de
/man/NPP.Rd
e40798acd6c1b1346b0965fc398c80bb2261510f
[]
no_license
Mavbegg/MIAMI
55abab9d8048cacba9a2ed22ce5a6b6f0c70b525
8e4e24670cb32ea7aa16bd145ef5422f115fe0ef
refs/heads/master
2021-01-21T17:38:32.567589
2017-05-21T17:13:05
2017-05-21T17:22:39
91,974,117
0
1
null
null
null
null
UTF-8
R
false
true
452
rd
NPP.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/NPP.R \name{NPP} \alias{NPP} \title{Net primary productivity (NPP) estimation from temperature and precipitation data} \usage{ NPP(temp, pre) } \arguments{ \item{temp}{temperture precipitation vector} \item{pre}{precipitation vector} } \description{ This function allows you to estimate NPP from average annual temperture and cummulative precpitation data. } \keyword{NPP}
0bbde597c97d6b6bc680bf6a1b785307185aca04
39378092783a6f25aad182f44beb4f6b3197daf8
/templates/save.R
7c8807548ba14d169e64169bdf94101d4f239580
[]
no_license
mariafiruleva/automated_processing_scrnaseq
0216522a692ad6a6fb7d869aa8a746f8d614a633
86376dcb84d70ed8269df0579e6562621e4ed13b
refs/heads/master
2020-07-25T08:15:39.658441
2019-09-14T07:07:26
2019-09-14T07:07:26
208,227,463
0
0
null
null
null
null
UTF-8
R
false
false
591
r
save.R
file_out <- paste0("{{ RunName }}", '.RData') save(list = c('whole', 'whole.markers'), file = file_out) write.table(top50_log_fc, "top50_log_fc.tsv", sep="\t", quote=F, row.names=F) write.table(top100_log_fc, "top100_log_fc.tsv", sep="\t", quote=F, row.names=F) write.table(top200_log_fc, "top200_log_fc.tsv", sep="\t", quote=F, row.names=F) write.table(top50_adj_pval, "top50_adj_pval.tsv", sep="\t", quote=F, row.names=F) write.table(top100_adj_pval, "top100_adj_pval.tsv", sep="\t", quote=F, row.names=F) write.table(top200_adj_pval, "top200_adj_pval.tsv", sep="\t", quote=F, row.names=F)
22a8551e5c40e3d6de4e743699dbf8427aa07421
a5e538a9125dcdd90bae6bf44cb1d67ea87f33b9
/man/getDataset.Rd
1984744bd78ea68dd52def1d4a7f21f67c8dfcb5
[ "Apache-2.0" ]
permissive
mrhelmus/data.world-r
3d45003aa13d1d7b596f9456306cc24ac0e49b6f
81a648878d7ee68cb91e7cee82aa8156c59770b9
refs/heads/master
2021-01-21T19:05:32.717425
2017-03-28T20:28:50
2017-03-28T20:28:50
null
0
0
null
null
null
null
UTF-8
R
false
true
653
rd
getDataset.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/getDataset.R \name{getDataset} \alias{getDataset} \title{Retrieve a dataset via data.world public api} \usage{ getDataset(connection, dataset) } \arguments{ \item{connection}{the connection to data.world} \item{dataset}{the "agentid/datasetid" for the dataset against which to execute the query} } \value{ the data.world dataset's metadata } \description{ Retrieve a dataset via data.world public api } \examples{ connection <- data.world(token = "YOUR_API_TOKEN_HERE") getDataset(connection, dataset="user/dataset") } \seealso{ https://docs.data.world/documentation/api/ }
2d27cdf7fc2a2da7dfa8b95aa80cd36eea6c63cc
83d93f6ff2117031ba77d8ad3aaa78e099657ef6
/man/gframe.Rd
7cc21f87995298e6bef6eae62203142b1e9a5ec6
[]
no_license
cran/gWidgets2
64733a0c4aced80a9722c82fcf7b5e2115940a63
831a9e6ac72496da26bbfd7da701b0ead544dcc1
refs/heads/master
2022-02-15T20:12:02.313167
2022-01-10T20:12:41
2022-01-10T20:12:41
17,696,220
0
0
null
null
null
null
UTF-8
R
false
true
1,457
rd
gframe.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/gframe.R \name{gframe} \alias{gframe} \alias{.gframe} \title{Constructor for framed box container with label} \usage{ gframe( text = "", markup = FALSE, pos = 0, horizontal = TRUE, spacing = 5, container = NULL, ..., toolkit = guiToolkit() ) .gframe( toolkit, text = "", markup = FALSE, pos = 0, horizontal = TRUE, spacing = 5, container = NULL, ... ) } \arguments{ \item{text}{frame label} \item{markup}{does label use markup (toolkit specific)} \item{pos}{position of label: 0=left, 1=right, some toolkit allow values in between} \item{horizontal}{logical. If TRUE, left to right layout, otherwise top to bottom} \item{spacing}{spacing aroud widget} \item{container}{parent container} \item{...}{passed through} \item{toolkit}{toolkit} } \description{ The framed box container inherits from \code{ggroup}. The main addition is a label, which is accessed via the \code{name} method. } \note{ to include a scrollwindow, place a \code{ggroup} within this window. } \examples{ \dontrun{ w <- gwindow("gformlayout", visible=FALSE) f <- gframe("frame", horizontal=FALSE, container=w) glabel("Lorem ipsum dolor sit amet, \nconsectetur adipiscing elit.", container=f) gbutton("change name", container=f, handler=function(h,...) { names(f) <- "new name" }) visible(w) <- TRUE } } \seealso{ \code{\link{ggroup}} and \code{\link{gexpandgroup}} }
778aeb7c2ce716b31b798cceb17e6b487856bcf2
d2eda24acceb35dc11263d2fa47421c812c8f9f6
/man/run.advection.Rd
fae747ec478f8b6703ef2aef123c935ae331e40e
[]
no_license
tbrycekelly/TheSource
3ddfb6d5df7eef119a6333a6a02dcddad6fb51f0
461d97f6a259b18a29b62d9f7bce99eed5c175b5
refs/heads/master
2023-08-24T05:05:11.773442
2023-08-12T20:23:51
2023-08-12T20:23:51
209,631,718
5
1
null
null
null
null
UTF-8
R
false
true
692
rd
run.advection.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/source.lagrangian.r \name{run.advection} \alias{run.advection} \title{Advect Lagrangian Particle} \usage{ run.advection(particles, model, advection, zlim = c(-6000, 0), verbose = T) } \arguments{ \item{particles}{a particle release dataframe such as that generated by `init.lagrangian.particles()`} \item{model}{a model list such as that generated by `init.lagrangian.model()`} \item{advection}{An advection list, such as one generated by `load.oscar.advection()`, that contains U V and W} \item{dt}{Time step for RK4 advection scheme} } \description{ Advect Lagrangian Particle } \author{ Thomas Bryce Kelly }
19ef7cec3e7eabdd23abfc64880e8feb319c6df4
27453005e827f25ee1f4299ed40bd5f16873cb54
/man/soft_threshold.Rd
93726105c44bcbb611fb874d52786693e7efb936
[ "MIT" ]
permissive
seanigami/stpca
9bb4bece7113f9729e2fd6cf7e5afec1511cec0d
a8eebfc6f1bff0a4457a23b975238afa3ae664c2
refs/heads/master
2022-01-13T19:04:21.702988
2018-08-16T15:01:01
2018-08-16T15:01:01
null
0
0
null
null
null
null
UTF-8
R
false
true
416
rd
soft_threshold.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/sparse-W.R \name{soft_threshold} \alias{soft_threshold} \title{Soft-thresholding operator.} \usage{ soft_threshold(x, threshold) } \arguments{ \item{x}{the vector/matrix of values to be soft thresholded} \item{threshold}{the threshold lambda} } \description{ The soft-thresholding operator S_\\lambda(x) = sign(x)(abs(x) - \\lambda)_+ }
c958ca7b4a1a18bb7b38da4314b16c71dac42064
d6bcbdfbc175110d2dffcc8518e066601c39539f
/software/binda/download/dorothea-analysis.R
f0bbe97d12375b992e8096fab7798b2af038915f
[]
no_license
strimmerlab/strimmerlab.github.io
1b322732a8d73e1509a067012e3720bfd2e58b1b
e8fcdd763eee6dbed58b955c0d16fe85742df351
refs/heads/master
2023-08-31T22:15:35.651056
2023-08-28T17:04:48
2023-08-28T17:04:48
23,162,223
0
2
null
2023-02-08T21:15:23
2014-08-20T19:59:27
HTML
UTF-8
R
false
false
3,127
r
dorothea-analysis.R
# /* # This is an R script containing R markdown comments. It can be run as is in R. # To generate a document containing the formatted R code, R output and markdown # click the "Compile Notebook" button in R Studio, or run the command # rmarkdown::render() - see http://rmarkdown.rstudio.com/r_notebook_format.html # */ #' --- #' title: "Analysis of Dorothea Data Set" #' output: pdf_document #' author: "Sebastian Gibb and Korbinian Strimmer" #' date: 30 April 2015 #' --- #' #' # Dorothea data set #' #' The Dorothea data set in R data format can be downloaded from #' https://strimmerlab.github.io/data/dorothea.rda #' #' Load data set load("dorothea.rda") #' Training data: dim(x.train) # 800 samples, 100000 features table(y.train) #' Validation data: dim(x.valid) # 350 samples, 100000 features table(y.valid) #' #' # Ranking of features according to binda #' Load binda R package library("binda") #' Compute ranking: br = binda.ranking(x.train, y.train, verbose=TRUE) #' List the 20 top ranking predictors br[1:20,] plot(br, top=20) #' Plot ranks: par(mfrow=c(1,2)) plot(br[,"score"], type="l", ylab="Ranking Score", xlab = "Rank (1 to 100000)") plot(br[,"score"], type="l", xlim=c(1, 1000), ylab="Ranking Score", xlab = "Rank (1 to 1000)") par(mfrow=c(1,1)) #' #' # Cross-validation analysis #' Function zo compute test accuracy: predfun = function(Xtrain, Ytrain, Xtest, Ytest) { # learn predictor binda.fit = binda(Xtrain, Ytrain, lambda.freq=0, verbose=FALSE) # predict classes using new test data yhat = predict(binda.fit, Xtest, verbose=FALSE)$class acc = ( sum( yhat == Ytest )/length(yhat) ) return(acc) } #' Use cross-validation to find optimal number of predictors: library("crossval") set.seed(12345) numPreds = c(1:10,20, 50, 100 ) simFun = function(numpred) { cat("Number of Predictors:", numpred, "\n") predlist = br[1:numpred, "idx"] x.train2 = x.train[,predlist, drop=FALSE ] x.valid2 = x.valid[,predlist, drop=FALSE ] valError = predfun(x.train2, y.train, x.valid2, y.valid) cv.out = crossval(predfun, x.train2, y.train, K=5, B=20, verbose=FALSE) return( c(valError=valError, ACC=cv.out$stat, ACC.se = cv.out$stat.se) ) } #' This may take some time: cvsim = lapply(numPreds, simFun) cvsim = do.call(rbind, cvsim) binda.sim = cbind(numPreds,cvsim) binda.sim #' Validation error if all 100000 predictors are included: valErrorAll = predfun(x.train, y.train, x.valid, y.valid) valErrorAll #' #' # Comparison with Random Forest library("randomForest") if( file.exists("rf.rda") ) { load("rf.rda") # load precomputed random forest } if( !file.exists("rf.rda") ) { set.seed(12345) rf.fit = randomForest(x.train, y=as.factor(y.train), ntree=100, importance=TRUE) save(rf.fit, file="rf.rda") } #' Ranking of predictors using training data varimp = rf.fit$importance[,4] # MeanDecreaseGini names(varimp) = NULL ovi = order(varimp, decreasing=TRUE) idx = ovi[1:20] cbind(idx, MeanDecreaseGini=varimp[idx]) #' Test error yhat = predict(rf.fit, x.valid) acc = ( sum( yhat == y.valid )/length(yhat) ) acc
e76b882513df30b546540710d71db0acdf7ff39e
0c266c36fb25113e35afebdf6a037ade43b0e3da
/man/Wishbone.Rd
62eccb585302f956ddd16328887a95a1899f5945
[]
no_license
dynverse/Wishbone
1c684546f7a9f21bdb4abedb07503c34cc2d51dd
7f9ff10806ec5b959f76ab4aa1e513891581e5ba
refs/heads/master
2021-01-23T20:07:18.058856
2018-06-06T12:58:05
2018-06-06T12:58:05
102,852,835
0
0
null
2018-06-06T12:58:06
2017-09-08T11:08:37
R
UTF-8
R
false
true
974
rd
Wishbone.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/Wishbone.R \name{Wishbone} \alias{Wishbone} \title{Execute Wishbone} \usage{ Wishbone(counts, start_cell_id, knn = 10, n_diffusion_components = 2, n_pca_components = 15, markers = "~", branch = TRUE, k = 15, num_waypoints = 50, normalize = TRUE, epsilon = 1, verbose = FALSE, num_cores = 1) } \arguments{ \item{counts}{Counts} \item{start_cell_id}{ID of start cell} \item{knn}{k nearest neighbours for diffusion} \item{n_diffusion_components}{number of diffusion components} \item{n_pca_components}{number of pca components} \item{markers}{markers to use} \item{branch}{whether or not to branch or linear} \item{k}{k param} \item{num_waypoints}{number of waypoints} \item{normalize}{whether or not to normalize} \item{epsilon}{epsilon param} \item{verbose}{whether or not to print the wishbone output} \item{num_cores}{number of cores to use} } \description{ Execute Wishbone }
59834a69ef133638e7782f9b26266dbc1d349a6f
8b42ce326b7641a6b14c1a6d42e6e2a3ff0a5ca0
/model_ann1.R
58142b6a589948576f45e8b5190d237a5fe45410
[]
no_license
coldfir3/boston_ma
8ce5819a843214ae1f6b4b0781ac07939112d3a5
98e5e3250939ee3dabc0cb6db2ab56432cd6f6c4
refs/heads/master
2020-03-25T21:51:41.144726
2018-08-10T14:35:46
2018-08-10T14:35:46
144,193,281
0
0
null
null
null
null
UTF-8
R
false
false
1,929
r
model_ann1.R
rm(list = ls()) library(keras) library(tidyverse) dataset <- dataset_boston_housing() c(c(x_train, y_train), c(x_test, y_test)) %<-% dataset rm(dataset) save(x_train, y_train, x_test, y_test, file = 'dataset.data') mean <- apply(x_train, 2, mean) std <- apply(x_train, 2, sd) save(mean, std, file = 'scale.data') x_train <- scale(x_train, center = mean, scale = std) x_test <- scale(x_test, center = mean, scale = std) model_ann1 <- keras_model_sequential() %>% layer_dense(units = 64, activation = "relu", input_shape = dim(x_train)[2]) %>% layer_dense(units = 64, activation = "relu") %>% layer_dense(units = 1) %>% compile( optimizer = "rmsprop", loss = "mse", metrics = c("mae") ) ann1_weights <- get_weights(model_ann1) k <- 4 indices <- sample(1:nrow(x_train)) folds <- cut(indices, breaks = k, labels = FALSE) num_epochs <- 100 scores <- NULL for (i in 1:k) { cat("processing fold #", i, "\n") val_indices <- which(folds == i, arr.ind = TRUE) val_data <- x_train[val_indices,] val_targets <- y_train[val_indices] partial_x_train <- x_train[-val_indices,] partial_y_train <- y_train[-val_indices] model_ann1 %>% set_weights(ann1_weights) model_ann1 %>% fit(partial_x_train, partial_y_train, epochs = num_epochs, batch_size = 10, verbose = 0) results <- model_ann1 %>% evaluate(val_data, val_targets, verbose = 0) scores <- c(scores, results$mean_absolute_error) } mean(scores)/diff(range(y_train))*100 callbacks_list <- list( callback_early_stopping( monitor = "mae", patience = 1 ), callback_model_checkpoint( filepath = "model_ann1.h5", monitor = "val_loss", save_best_only = TRUE ) ) model_ann1 %>% set_weights(ann1_weights) model_ann1 %>% fit(x_train, y_train, epochs = num_epochs, batch_size = 10, validation_data = list(x_test, y_test), callbacks = callbacks_list)
f191bd881bbdcb878a82420c74d3abc2643fc8b9
e915168439022365a3f84cd995bca3808c6acaa7
/sim-stuff/HD-settings/test3.R
007ddfb3660ea73587b4418e68e99df18f62c49d
[]
no_license
samperochkin/learning-block-exchangeability
675e79b6b5f2ee17ef1524a05329ba3f208ba443
a45142de8137f19620f95e372aa1284eafca1a57
refs/heads/master
2023-03-10T02:37:50.353800
2023-02-22T15:23:42
2023-02-22T15:23:42
104,235,865
2
0
null
2018-03-28T16:05:11
2017-09-20T15:48:00
R
UTF-8
R
false
false
1,659
r
test3.R
dim(X) n <- 150 X <- rmvnorm(n,rep(0,d),Sigma) Delta <- constructMatrix(rep(1,length(d.vec)),d.vec) Th1 <- cor.fk(X[1:125,]) Th2 <- cor.fk(X[126:150,]) Tt2 <- (Delta %*% (Th2-diag(d)) %*% Delta)/(Delta %*% (1-diag(d)) %*% Delta) sum((Tt2-Th1)^2)/sum((Th2-Th1)^2) sum((Tt2-Tau)^2)/sum((Th2-Tau)^2) n <- 200 X <- rmvnorm(n,rep(0,d),Sigma) Delta <- constructMatrix(rep(1,length(d.vec)),d.vec) Ths <- lapply(1:2, function(k){ print(k) cor.fk(X[1:100 + (k-1)*100,]) }) # Tts <- lapply(Ths, function(Th){ # (Delta %*% (Th-diag(d)) %*% Delta)/(Delta %*% (1-diag(d)) %*% Delta) # }) # pairs <- t(combn(1:50,2)) # # par(mar = c(2,2,1,1)) # hist(sapply(1:nrow(pairs), function(k){ # sum((Ths[[pairs[k,1]]]-Tts[[pairs[k,2]]])^2)/sum((Ths[[pairs[k,1]]]-Ths[[pairs[k,2]]])^2) # }), breaks=10) hc <- hclust(dist(Ths[[1]]),method="ward.D2") Ds <- lapply(1:100, function(k){ print(k) clus <- cutree(hc,k) D <- sapply(1:k, function(i){ vec <- rep(0,d) vec[which(clus==i)] <- 1 vec }) tcrossprod(D) }) Tts <- lapply(Ds, function(D){ print("hey") (D %*% (Ths[[1]]-diag(d)) %*% D)/(D %*% (1-diag(d)) %*% D) }) Tts <- lapply(Tts, function(Tt){ diag(Tt) <- 1 Tt }) # clus <- cutree(hc,6) # D <- sapply(1:6, function(i){ # vec <- rep(0,d) # vec[which(clus==i)] <- 1 # vec # }) # D <- tcrossprod(D) # Tts.hc[[6]] <- (D %*% (Ths[[1]]-diag(d)) %*% D)/(D %*% (1-diag(d)) %*% D) par(mar = c(2,2,1,1)) SS2 <- sapply(seq_along(Tts[-1]), function(i){ sum((Ths[[2]]-Tts[[1+i]])^2) }) SS1 <- sapply(seq_along(Tts[-1]), function(i){ sum((Tau-Tts[[1+i]])^2) }) plot(SS1) which.min(SS2) plot(SS2) which.min(SS2)
1c5be82e3d96a085bfb858b957e132e984636213
fe17217bf85ed660a1fa3173f6078133c5bc49e0
/man/lm.WZ.Rd
bc56ca8a85f768283b96d85564b1eb15b89d7f77
[]
no_license
rgcstats/ODS
5a4ba2107328175174b4874e10d8e47733c33397
0290071546fdd8dff1c8e9e6d8bc5920d1c04491
refs/heads/master
2020-12-10T10:30:36.232624
2020-01-13T10:20:29
2020-01-13T10:20:29
77,803,517
0
0
null
null
null
null
UTF-8
R
false
true
1,320
rd
lm.WZ.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/lm_WZ.R \name{lm.WZ} \alias{lm.WZ} \title{Linear model fitting for stratified survey data by maximising the estimated likelihood of yu and xs} \usage{ lm.WZ(ys, yr, xs, cutoffs, pi.s) } \arguments{ \item{ys}{vector of sample values of the dependent variable} \item{yr}{vector of non-sample values of the dependent variable} \item{xs}{matrix of covariate values (number of rows must equal n where n is length of ys). Intercept is not assumed, so xs should contain a column of 1s if you want an intercept in the model.} \item{cutoffs}{A vector of finite cutoffs defining the strata. If there are H cutoffs there are H+1 strata.} \item{pi.s}{n-vector (where n=length(y)) of probabilities of selection for the sample units} } \value{ a vector containing p estimated coefficients (where p=ncol(xs)) and the estimated error standard deviation. No variance estimates provided. } \description{ This function fits a linear model to survey data stratified by the dependent variable, by maximising the estimated likelihood from Weaver and Zhou (2012). } \examples{ data(population_example) lm.WZ(ys=sample.example$y,yr=population.example$y[population.example$s.indicators==0], xs=cbind(1,sample.example$x),cutoffs=c(1,2,3),pi.s=sample.example$pi) }