blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
2
327
content_id
stringlengths
40
40
detected_licenses
sequencelengths
0
91
license_type
stringclasses
2 values
repo_name
stringlengths
5
134
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
46 values
visit_date
timestamp[us]date
2016-08-02 22:44:29
2023-09-06 08:39:28
revision_date
timestamp[us]date
1977-08-08 00:00:00
2023-09-05 12:13:49
committer_date
timestamp[us]date
1977-08-08 00:00:00
2023-09-05 12:13:49
github_id
int64
19.4k
671M
star_events_count
int64
0
40k
fork_events_count
int64
0
32.4k
gha_license_id
stringclasses
14 values
gha_event_created_at
timestamp[us]date
2012-06-21 16:39:19
2023-09-14 21:52:42
gha_created_at
timestamp[us]date
2008-05-25 01:21:32
2023-06-28 13:19:12
gha_language
stringclasses
60 values
src_encoding
stringclasses
24 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
7
9.18M
extension
stringclasses
20 values
filename
stringlengths
1
141
content
stringlengths
7
9.18M
53a8896e8ffd467a6930601f220ab40e66e9da9b
2dd0350d1b7d79a54aa88a58e1e259b9f35f69de
/energy.R
90e9c45b781edea714f29d85776a10e993ee82b7
[]
no_license
hannyh/Time-Series
75541bf508db0ae5e34a19b0233f30f686a78e19
3afedb974048aa92ebce075fb5f0ae6ffdce6aab
refs/heads/master
2020-03-25T12:12:21.834685
2018-08-06T18:00:00
2018-08-06T18:00:00
143,761,655
0
0
null
null
null
null
UTF-8
R
false
false
3,024
r
energy.R
# US Residential energy consumption #Data from site: https://www.eia.gov/totalenergy/data/browser/?tbl=T02.02#/?f=M #accessed Jan 12, 2018 data1 <- read.csv(file="/Users/hannahward/Documents/School/Winter 2018/Regression/Time Series/energy.csv", header=TRUE) head(data1) #Subset to TERCBUS Total Energy Consumed by the Residential Sector data2 <- subset(data1, MSN=="TERCBUS") #Subset to my lifetime data3 <- subset(data2, data2$YYYYMM > 199100) #Removes yearly total (coded month 13) data4 <- subset(data3, data3$YYYYMM%%100 != 13) energy <- as.numeric(data4$Value) head(energy) tail(energy) #EDA: plot data to look for monthly patterns plot(energy~as.factor(data4$YYYYMM), pch=19) #or plot(energy, type="b") #There appears to be a cyclical trend going on with the months. Some months of the year have high energy #consumption, while others months have lower energy consumption. This business/economic trend could be #caused by the weather in the United States. Many states are much colder in the winter, requiring more #energy to keep a house warm. It is also very warm in the summer in some states, and many use air # conditioning to keep their homes cool, which also increases energy use within the residential sector. T <- length(energy) #Analysis #Fit Model ARIMA (1,1,1)x(1,1,1)12 # Features month to month correllation as well as year to year correllation library(astsa) energy.out <- sarima(energy,1,1,1,1,1,1,12) #Report of Parameter Estimates and Stantard Errors energy.out$ttable #Note ar1 is lower case phi, ma1 is lower case theta, sar1 is capital phi, and sma1 is capital theta #Predictions for the next 24 Months energy.future <- sarima.for(energy, n.ahead=24,1,1,1,1,1,1,12) # compute 95% prediction intervals L <- energy.future$pred - 2*energy.future$se U <- energy.future$pred + 2*energy.future$se #Table of predictions and prediction intervals cbind(energy.future$pred, L, U) #Graphic plot(energy[290:T], type="b", xlim=c(0,T-290+24), main="24 Month Prediction of US Residential Energy Consumption", ylab="Energy Consumption (in trillion Btu)", pch=19) lines((T+1-290):(T-290+length(energy.future$pred)), energy.future$pred, col="red",type="b",pch=19) lines((T+1-290):(T-290+length(energy.future$pred)), L, col="darkgray",lty=2) lines((T+1-290):(T-290+length(energy.future$pred)), U ,col="darkgray",lty=2) #Research Task: Predict US Residential energy consumption for the next 2 years (24 months) #Data Features: Month to Month correlation as well as year over year correlation. We expect the #pattern to continue for the next 24 months. # Analysis Weaknesses: # Doesn't account for long long term trends and changes, such as global warming. # Doesn't account for a changes in the demand for energy due to the increase of alternative energy # sources that people can provide for themselves. #Challenge ##Research Task: Predict the Daily High Temperature at the Salt Lake City Airport for the next year ##Data found at https://www.wunderground.com/history/airport/
1af050355212715518eca1a29ee7919ad0dd223f
6334b663b9508cf0cda2d992f3efdffc4b4ec2cf
/man/predict.textmining.Rd
4bcaf1fe710e217cbffbdef19aab1a5a66015bd3
[]
no_license
cran/fdm2id
40f7fb015f3ae231ca15ea7f5c5626187f753e1b
c55e577541b49e878f581b44dd2a8bae205779d0
refs/heads/master
2023-06-29T00:54:58.024554
2023-06-12T12:10:02
2023-06-12T12:10:02
209,820,600
1
0
null
null
null
null
UTF-8
R
false
true
1,016
rd
predict.textmining.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/text.R \name{predict.textmining} \alias{predict.textmining} \title{Model predictions} \usage{ \method{predict}{textmining}(object, test, fuzzy = FALSE, ...) } \arguments{ \item{object}{The classification model (of class \code{\link{textmining-class}}, created by \code{\link{TEXTMINING}}.} \item{test}{The test set (a \code{data.frame})} \item{fuzzy}{A boolean indicating whether fuzzy classification is used or not.} \item{...}{Other parameters.} } \value{ A vector of predicted values (\code{factor}). } \description{ This function predicts values based upon a model trained for text mining. } \examples{ \dontrun{ require (text2vec) data ("movie_review") d = movie_review [, 2:3] d [, 1] = factor (d [, 1]) d = splitdata (d, 1) model = TEXTMINING (d$train.x, NB, labels = d$train.y, mincount = 50) pred = predict (model, d$test.x) evaluation (pred, d$test.y) } } \seealso{ \code{\link{TEXTMINING}}, \code{\link{textmining-class}} }
092ff7757e99e41937fd01c15a64a7eaa7098bf8
09d9809daccc4a15453bd699383e002780847c49
/cachematrix.R
a60bccc2356e9da7c6b99fd4f1e942cef595af6b
[]
no_license
chadpmcd/ProgrammingAssignment2
6e5c1f51713d4040f724fdd52ad2745e807bdda8
9dceb616767d328ebda4ce2f945fb795f2acdb32
refs/heads/master
2021-01-12T19:24:21.040533
2015-06-21T02:04:11
2015-06-21T02:04:11
37,774,042
0
0
null
2015-06-20T15:13:53
2015-06-20T15:13:52
null
UTF-8
R
false
false
1,483
r
cachematrix.R
## -------------- ## The set of functions in this file allow one to get an inverse matrix using the ## solve function. The inverse matrix is cached in the makeCacheMatrix environment ## and can be updated and pulled from the cacheSolve function environment. ## -------------- ## -------------- ## makeCacheMatrix ## This function creates sub functions for setting a matrix, getting a matrix, ## setting the inverse of a matrix, and getting the inverse of a matrix. ## The inverse matrix is stored in memory for later use. ## -------------- makeCacheMatrix <- function(x = matrix()) { i <- NULL set <- function(y) { x <<- y i <<- NULL } get <- function() x setinverse <- function(solve) i <<- solve getinverse <- function() i list(set = set, get = get, setinverse = setinverse, getinverse = getinverse) } ## -------------- ## cacheSolve ## Using the functions defined in makeCacheMatrix, checks to see if the inverse ## has been set/cached and returns it if it has or it will calculate the ## inverse matrix and set it in cache. ## -------------- cacheSolve <- function(x, ...) { ## Return a matrix that is the inverse of 'x' i <- x$getinverse() if(!is.null(i)) { message("getting cached data") return(i) } data <- x$get() i <- solve(data, ...) x$setinverse(i) i }
6dd4bc7c7457aaa7fbabc7b0454c291dcf6f38f9
e1635e481a60c783abf3fc4575da2d81713dfd49
/R/get_gap_index_raster.R
2f6941bf237b5253370b1757cd52483ac2feffae
[ "MIT" ]
permissive
traitecoevo/mortality_bci
e5b7b7b7bf712458a42aac58258a5749c16268a4
ff38c77011f36dcd27452f9e8fd84e5842e3e336
refs/heads/master
2021-03-27T18:23:54.635511
2019-01-07T23:36:43
2019-01-07T23:36:43
20,089,381
7
3
null
2018-08-26T23:28:47
2014-05-23T06:40:30
R
UTF-8
R
false
false
1,526
r
get_gap_index_raster.R
#' Creates gap index raster for BCI plot for censuses 1985 to 1990 and 1990 to 1995 #' #' Creates gap index raster for BCI plot for censuses 1985 to 1990 and 1990 to 1995 #' @param canopy_data Dataframe containing canopy data. #' @param weight_matrix Integer matrix. A weight to be applied to both focal cell and those surround it. #' Default: matrix(c(1, 1, 1, 1, 8, 1, 1, 1, 1), 3, 3) weights the focal cell as the sum of all immediate neighbouring cells #' @return List of rasters #' @author James Camac (\email{[email protected]}) & Daniel Falster (\email{[email protected]}) #' @export get_gap_index_raster <- function(canopy_data,weight_matrix = matrix(c(1, 1, 1, 1, 8, 1, 1, 1, 1), 3, 3)) { `%>%` <- magrittr::`%>%` gap_data(canopy_data) %>% raster::as.data.frame(.) %>% # converts to df for sp package {sp::coordinates(.) <- ~x+y; .} %>% raster::shift(x=2.5, y=2.5) %>% # centers coordinates on cell mid point sp::split(.$censusid) %>% # splits by census lapply(function(x) { # Converts to raster raster::rasterFromXYZ(raster::as.data.frame(x)[c('x','y','gap_index')], res = c(5,5)) }) %>% # calculates mean gap index value using weights lapply(raster::focal, weight_matrix, mean) %>% # calculates mean gap index value using weights lapply(setNames, 'gap_index') %>% # Names the gap index column lapply(function(x) x/raster::maxValue(x)) %>% # Converts to binary scale 0 = no gap 1 = full gap. {names(.) <- c("1985 to 1990", "1990 to 1995"); .} }
2050f47390f3cd4187507ffe435d47641a81bb0c
5e42a668e417fd55fe28ecee719c759016f963b9
/R/make_linter_from_regex.R
ed98441a3efb3a6b7f500b703d29b1b3c9f8ef9c
[ "MIT" ]
permissive
cordis-dev/lintr
2120e22820e8499ca3066fa911572fd89c49d300
cb694d5e4da927f56c88fa5d8972594a907be59a
refs/heads/main
2023-08-05T08:50:42.679421
2023-07-25T13:21:29
2023-07-25T13:21:29
225,583,354
0
0
NOASSERTION
2019-12-03T09:41:30
2019-12-03T09:41:30
null
UTF-8
R
false
false
3,388
r
make_linter_from_regex.R
make_linter_from_regex <- function(regex, lint_type, lint_msg, ignore_strings = TRUE) { # If a regex-based linter is found, only flag those lints that occur within # a relevant section of source code .in_ignorable_position <- function(source_expression, line_number, match) { ignore_strings && in_string(source_expression, line_number, match) } function() { Linter(function(source_expression) { if (!is_lint_level(source_expression, "expression")) { return(list()) } all_matches <- re_matches( source_expression[["lines"]], regex, locations = TRUE, global = TRUE ) line_numbers <- as.integer(names(source_expression[["lines"]])) lints <- Map( function(line_matches, line_number) { lapply( split(line_matches, seq_len(nrow(line_matches))), function(.match) { if ( is.na(.match[["start"]]) || .in_ignorable_position(source_expression, line_number, .match) ) { return() } start <- .match[["start"]] end <- .match[["end"]] Lint( filename = source_expression[["filename"]], line_number = line_number, column_number = start, type = lint_type, message = lint_msg, line = source_expression[["lines"]][[as.character(line_number)]], ranges = list(c(start, end)) ) } ) }, all_matches, line_numbers ) Filter(function(x) any(lengths(x) > 0L), lints) }) } } #' Determine if a regex match is covered by an expression in a source_expression #' #' @param source_expression A source_expression #' @param line_number,match The position where a regex match was observed. #' match must have entries "start" and "end". #' @param token_type Restrict analysis to tokens of this type, for example, #' with token_type = "STR_CONST" you can check that a regex match occurs #' within a string #' @noRd is_match_covered <- function(source_expression, line_number, match, token_type = NULL) { pc <- source_expression[["parsed_content"]] if (!is.null(token_type)) { pc <- pc[pc[["token"]] == token_type, ] } covering_rows <- pc[["line1"]] <= line_number & pc[["line2"]] >= line_number pc_cover <- pc[covering_rows, ] any_single_line_covers <- function() { x <- pc_cover[pc_cover[["line1"]] == pc_cover[["line2"]], ] any( x[["col1"]] <= match[["start"]] & x[["col2"]] >= match[["end"]] ) } any_multi_line_covers <- function() { x <- pc_cover[pc_cover[["line1"]] < pc_cover[["line2"]], ] any( (x[["line1"]] < line_number & x[["line2"]] > line_number) | (x[["line1"]] == line_number & x[["col1"]] <= match[["start"]]) | (x[["line2"]] == line_number & x[["col2"]] >= match[["end"]]) ) } any_single_line_covers() || any_multi_line_covers() } in_string <- function(source_expression, line_number, match) { # do any of the strings in the parsed content contain the matched regex? is_match_covered(source_expression, line_number, match, "STR_CONST") }
9da9b2827e015a0d9645021f9a7d34f89d3458ed
4970a3f8a4ca8a42a6fb22f454265691544f1810
/man/ca125.Rd
00764d84c8cfe6ed2158d36a2c919b466442dc61
[]
no_license
Penncil/xmeta
d2ee5b14843d88f1b28c3e3755816269103cbbcd
832b3f244648818cf2df2691ec5dd7bfa21bc810
refs/heads/master
2023-04-08T17:04:05.411553
2023-04-04T17:05:36
2023-04-04T17:05:36
249,091,838
4
1
null
2020-03-22T01:27:08
2020-03-22T01:27:07
null
UTF-8
R
false
false
1,120
rd
ca125.Rd
\name{ca125} \alias{ca125} \docType{data} \title{Recurrent ovarian carcinoma study} \description{A meta-analysis of 52 studies that were reported between January 1995 and November 2007.} \format{ The data frame contains the following columns: \describe{ \item{n}{total number of subjects} \item{PiY}{disease prevalence} \item{SeY}{true positive} \item{n1}{subjects with disease} \item{SpY}{true negative} \item{n1}{health individuals} } } \references{ Chen, Y., Liu, Y., Chu, H., Lee, M. and Schmid, C. (2017) A simple and robust method for multivariate meta-analysis of diagnostic test accuracy, Statistics in Medicine, 36, 105-121. Gu P, Pan L, Wu S, Sun L, Huang G. CA 125, PET alone, PET-CT, CT and MRI in diagnosing recurrent ovarian carcinoma: a systematic review and meta-analysis. European journal of radiology 2009; 71(1):164-174. } \note{ The dataset \code{ca125} is used to conduct multivariate meta-analysis of diagnostic test accuracy. } \seealso{ \code{\link{mmeta}}, \code{\link{summary.mmeta}} } \examples{ data(ca125) summary(ca125) } \keyword{datasets}
958c114dc04d6fa481e667ec4668e1e137915b18
192fd3dbc491d3c36bd9351f02cf9b5957ea56d1
/R Packages/icdcoder/man/getChildrenICD10.Rd
ad9eb9ae010509c3ab5b4fb92858c2ea6bd38d37
[]
no_license
ryerex/Research_and_Methods
d4d211defdbee83e47ecc72c59944c3f60a3bcca
4010b75a5521c2c18ee624d48257ee99b29a7777
refs/heads/master
2023-05-26T01:54:17.048907
2020-08-05T16:14:29
2020-08-05T16:14:29
91,369,271
0
0
null
null
null
null
UTF-8
R
false
false
411
rd
getChildrenICD10.Rd
% Generated by roxygen2 (4.1.0): do not edit by hand % Please edit documentation in R/utils.r \name{getChildrenICD10} \alias{getChildrenICD10} \title{Get's all children for a single icd10 code (i.e., those under the current hierarchy)} \usage{ getChildrenICD10(icd10) } \arguments{ \item{icd10}{icd10 code} } \description{ Get's all children for a single icd10 code (i.e., those under the current hierarchy) }
1e4305d2a19b45010e456ff7c9dbbd5afca06a6b
4f2e87dfbb407fc5f2510622ca048401de67adf3
/diversification_analysis/mammals/orders/cetacea/run_TESS.R
852af64299c987fa5aab3e4be3b6c662218883df
[]
no_license
naturalis/RiseAndFall
2bd5d1f2c4afac54237ffafc5eefca87257c720b
fb612a80a2b68ee61ce228e3c6e47ced6a47458b
refs/heads/master
2021-03-27T08:52:57.679485
2017-08-30T13:00:05
2017-08-30T13:00:05
52,791,083
0
0
null
null
null
null
UTF-8
R
false
false
2,622
r
run_TESS.R
# Diversification rates using TESS library(tools) library(optparse) library(TESS) option_list <- list( make_option("--i", type="integer", default=200000, help=("Number of MCMC iterations to run [default %default]."), metavar="Iterations"), make_option("--rho", type="double", default=1, help="Sampling fraction [default %default]", metavar="rho"), make_option("--E_shifts", type="integer", default=2, help="Expected numebr of rate shifts [default %default]", metavar="E_shifts"), make_option("--E_me", type="integer", default=2, help="Expected number of mass extinctions [default %default]", metavar="E_me") ) parser_object <- OptionParser(usage = "Usage: %prog [Options] [TREE]\n\n [TREE] Tree file with full path \n", option_list=option_list, description="") opt <- parse_args(parser_object, args = commandArgs(trailingOnly = TRUE), positional_arguments=TRUE) setwd(dirname(basename(opt$args[1]))) tree <- read.nexus(opt$args[1]) times <- as.numeric( branching.times(tree) ) #plot(tree,show.tip.label=FALSE) #ltt.plot(tree,log="y") # Sampling fraction samplingFraction <- opt$options$rho print( opt$options$i) out_dir = sprintf("tess_empirical_hp_%s", file_path_sans_ext(basename(opt$args[1]))) out_file = sprintf("%s_RTT.pdf", file_path_sans_ext(basename(opt$args[1]))) pdf(file=out_file,width=0.6*20, height=0.6*20) # Estimated hyper-priors tess.analysis(tree, empiricalHyperPriors = TRUE, samplingProbability = samplingFraction, numExpectedRateChanges = opt$options$E_shifts, numExpectedMassExtinctions = opt$options$E_me, pMassExtinctionPriorShape1 = 1, pMassExtinctionPriorShape2 = 1, MAX_ITERATIONS = opt$options$i, dir = out_dir) # Plot output library(TESS) output <- tess.process.output(out_dir, numExpectedRateChanges = opt$options$E_shifts, numExpectedMassExtinctions = opt$options$E_me) layout.mat <- matrix(1:6,nrow=3,ncol=2,byrow=TRUE) layout(layout.mat) tess.plot.output(output,las=2, fig.types = c("speciation rates", "speciation shift times", "extinction rates", "extinction shift times", "mass extinction Bayes factors", "mass extinction times")) n<- dev.off()
305de3bcce250360d56324e910cd9bdd5bd993fc
0839e73a99c2113c2fee5cce53101efbc65ad8bc
/tests/testthat/test-fitmethod.R
1882afd248a1c59558a9291dfd6bdb684f599572
[]
no_license
harobledo/fixest
cf7abd46e07f3c6113958bc9b8de414bf13d7813
5af3eb32e019768932fed8be07f110e9efcd90b8
refs/heads/master
2023-09-02T01:18:49.311081
2021-09-12T17:08:02
2021-09-12T17:08:02
390,754,772
0
1
null
2021-11-22T18:50:20
2021-07-29T14:40:33
R
UTF-8
R
false
false
981
r
test-fitmethod.R
fitmethod.cases <- fitmethod_cases()[-c(4:6), ] # Eliminating ols with fmly (makes no sense) with_parameters_test_that("feols.fit works properly", { fmla <- paste(y_dep, "-1 + x1 + x2 + x3", sep = " ~ ") res <- feols.fit(y = ev_par(paste0("base$", y_dep)), X = base[, 2:4]) res_bis <- feols(fml = as.formula(fmla), data = base) expect_equal(coef(res), coef(res_bis)) }, .cases = fitmethod.cases[1:3, ] ) with_parameters_test_that("feglm.fit works properly", { fmla <- paste(y_dep, "-1 + x1 + x2 + x3", sep = " ~ ") if (isTRUE(with_fmly)) { res <- feglm.fit(y = ev_par(paste0("base$", y_dep)), X = base[, 2:4], family = fmly) res_bis <- feglm(fml = as.formula(fmla), data = base, family = fmly) } else { res <- feglm.fit(y = ev_par(paste0("base$", y_dep)), X = base[, 2:4]) res_bis <- feglm(fml = as.formula(fmla), data = base) } expect_equal(coef(res), coef(res_bis)) }, .cases = fitmethod.cases[4:6, ] )
84c16e8912632bcec92d866939ea239fcf42a8a0
f7fa230362cd752d4e114b0423385e2ec59e9e8b
/diamonds_dataset.R
7b19e0257a28d7b4229d6dc08e5f992659dbf163
[]
no_license
shinjjune/R-Visual-ML-DL
6aa79721b1e136231547b401e02685da58f1ff1d
ed0feff66f823317f7d52e8e30ae9d4aeb9a6c93
refs/heads/master
2020-05-31T13:05:34.298856
2020-01-22T08:58:21
2020-01-22T08:58:21
190,295,112
0
0
null
null
null
null
UTF-8
R
false
false
316
r
diamonds_dataset.R
library("ggplot2") str(diamonds) library("ggplot2") library("ggthemes") ggplot(diamonds, aes(x=x, y=price, color=clarity)) +geom_point(alpha=0.03)+ geom_hline(yintercept=mean(diamonds$price), color="turquoise3",alpha=.8)+ guides(color=guide_legend(override.aes=list(alpha=1)))+ xlim(3,9)+theme_solarized_2()
a77bbea16c6f9782cbf7ac1a766b2a1b47995a5a
7f72ac13d08fa64bfd8ac00f44784fef6060fec3
/RGtk2/man/gFileHasUriScheme.Rd
16b89ae10e5e261f6213d3b0b184a840a89915fe
[]
no_license
lawremi/RGtk2
d2412ccedf2d2bc12888618b42486f7e9cceee43
eb315232f75c3bed73bae9584510018293ba6b83
refs/heads/master
2023-03-05T01:13:14.484107
2023-02-25T15:19:06
2023-02-25T15:20:41
2,554,865
14
9
null
2023-02-06T21:28:56
2011-10-11T11:50:22
R
UTF-8
R
false
false
623
rd
gFileHasUriScheme.Rd
\alias{gFileHasUriScheme} \name{gFileHasUriScheme} \title{gFileHasUriScheme} \description{Checks to see if a \code{\link{GFile}} has a given URI scheme.} \usage{gFileHasUriScheme(object, uri.scheme)} \arguments{ \item{\verb{object}}{input \code{\link{GFile}}.} \item{\verb{uri.scheme}}{a string containing a URI scheme.} } \details{This call does no blocking i/o.} \value{[logical] \code{TRUE} if \code{\link{GFile}}'s backend supports the given URI scheme, \code{FALSE} if URI scheme is \code{NULL}, not supported, or \code{\link{GFile}} is invalid.} \author{Derived by RGtkGen from GTK+ documentation} \keyword{internal}
dfed6dd5f442d508835a02ef19b8109c446afe99
331e7816d55b9d3de50253d1b096e8707859a11c
/R/calibration.R
d84021eab550f8ab3fe3e37e39c4816ed09f37ac
[]
no_license
haroine/icarus
e515732a69d82614bb248807f882559188d291a7
bd51ecf29bc7f07111219534dbd401f78c1daa84
refs/heads/master
2023-06-09T19:41:26.432469
2023-05-27T15:42:26
2023-05-27T15:42:26
38,872,499
10
5
null
null
null
null
UTF-8
R
false
false
12,885
r
calibration.R
# copyright (C) 2014-2023 A.Rebecq # This function executes easy calibration with just data and matrix of margins ######### #' Calibration on margins #' @description #' Performs calibration on margins with several methods and customizable parameters #' @param data The dataframe containing the survey data #' @param marginMatrix The matrix giving the margins for each column variable included #' in the calibration problem #' @param colWeights The name of the column containing the initial weights in the survey #' dataframe #' @param method The method used to calibrate. Can be "linear", "raking", "logit" #' @param bounds Two-element vector containing the lower and upper bounds for bounded methods #' ("logit") #' @param q Vector of q_k weights described in Deville and Sarndal (1992) #' @param costs The penalized calibration method will be used, using costs defined by this #' vector. Must match the number of rows of marginMatrix. Negative of non-finite costs are given #' an infinite cost (coefficient of C^-1 matrix is 0) #' @param gap Only useful for penalized calibration. Sets the maximum gap between max and min #' calibrated weights / initial weights ratio (and thus is similar to the "bounds" #' parameter used in regular calibration) #' @param popTotal Precise the total population if margins are defined by relative value in #' marginMatrix (percentages) #' @param pct If TRUE, margins for categorical variables are considered to #' be entered as percentages. popTotal must then be set. (FALSE by default) #' @param scale If TRUE, stats (including bounds) on ratio calibrated weights / initial weights are #' done on a vector multiplied by the weighted non-response ratio (ratio population total / #' total of initial weights). Has same behavior as "ECHELLE=0" in Calmar. #' @param description If TRUE, output stats about the calibration process as well as the #' graph of the density of the ratio calibrated weights / initial weights #' @param maxIter The maximum number of iterations before stopping #' @param check performs a few check about the dataframe. TRUE by default #' @param calibTolerance Tolerance for the distance to an exact solution. #' Could be useful when there is a huge number of margins as the risk of #' inadvertently setting incompatible constraints is higher. Set to 1e-06 by default. #' @param uCostPenalized Unary cost by which every cost is "costs" column is multiplied #' @param lambda The initial ridge lambda used in penalized calibration. By default, the initial #' lambda is automatically chosen by the algorithm, but you can speed up the search for the optimum #' if you already know a lambda close to the lambda_opt corresponding to the gap you set. Be careful, #' the search zone is reduced when a lambda is set by the user, so the program may not converge #' if the lambda set is too far from the lambda_opt. #' @param precisionBounds Only used for calibration on minimum bounds. Desired precision #' for lower and upper reweighting factor, both bounds being as close to 1 as possible #' @param forceSimplex Only used for calibration on tight bounds.Bisection algorithm is used #' for matrices whose size exceed 1e8. forceSimplex = TRUE forces the use of the simplex algorithm #' whatever the size of the problem (you might want to set this parameter to TRUE if you #' have a large memory size) #' @param forceBisection Only used for calibration on tight bounds. Forces the use of the bisection #' algorithm to solve calibration on tight bounds #' @param colCalibratedWeights Deprecated. Only used in the scope of calibration function #' @param exportDistributionImage File name to which the density plot shown when #' description is TRUE is exported. Requires package "ggplot2" #' @param exportDistributionTable File name to which the distribution table of before/after #' weights shown when description is TRUE is exported. Requires package "xtable" #' #' @examples #' N <- 300 ## population total #' ## Horvitz Thompson estimator of the mean: 1.666667 #' weightedMean(data_employees$movies, data_employees$weight, N) #' ## Enter calibration margins: #' mar1 <- c("category",3,80,90,60) #' mar2 <- c("sex",2,140,90,0) #' mar3 <- c("department",2,100,130,0) #' mar4 <- c("salary", 0, 470000,0,0) #' margins <- rbind(mar1, mar2, mar3, mar4) #' ## Compute calibrated weights with raking ratio method #' wCal <- calibration(data=data_employees, marginMatrix=margins, colWeights="weight" #' , method="raking", description=FALSE) #' ## Calibrated estimate: 2.471917 #' weightedMean(data_employees$movies, wCal, N) #' #' @references Deville, Jean-Claude, and Carl-Erik Sarndal. "Calibration estimators in survey sampling." #' Journal of the American statistical Association 87.418 (1992): 376-382. #' @references Bocci, J., and C. Beaumont. "Another look at ridge calibration." #' Metron 66.1 (2008): 5-20. #' @references Vanderhoeft, Camille. Generalised calibration at statistics Belgium: SPSS Module G-CALIB-S and current practices. #' Inst. National de Statistique, 2001. #' @references Le Guennec, Josiane, and Olivier Sautory. "Calmar 2: Une nouvelle version #' de la macro calmar de redressement d'echantillon par calage." Journees de Methodologie Statistique, #' Paris. INSEE (2002). #' @return column containing the final calibrated weights #' #' @export calibration = function(data, marginMatrix, colWeights, method="linear", bounds=NULL, q=NULL , costs=NULL, gap=NULL, popTotal=NULL, pct=FALSE, scale=NULL, description=TRUE , maxIter=2500, check=TRUE, calibTolerance=1e-06 , uCostPenalized=1, lambda=NULL , precisionBounds=1e-4, forceSimplex=FALSE, forceBisection=FALSE , colCalibratedWeights, exportDistributionImage=NULL, exportDistributionTable=NULL) { ## Deprecate an argument that is only used in the scope ## of this function if (!missing(colCalibratedWeights)) { warning("argument colCalibratedWeights is deprecated; now private and defaults to 'calWeights'", call. = FALSE) } colCalibratedWeights <- "calWeights" # By default, scale is TRUE when popTotal is not NULL, false otherwise if(is.null(popTotal)) { scale <- FALSE } else { scale <- TRUE } if(check) { ## Check if all weights are not NA and greater than zero. checkWeights <- as.numeric(data.matrix(data[colWeights])) if( length(checkWeights) <= 0 ) { stop("Weights column has length zero") } if( any((is.na(checkWeights)) ) ) { stop("Some weights are NA") } if( any((checkWeights <= 0) ) ) { stop("Some weights are negative or zero") } # Check NAs on calibration variables matrixTestNA = missingValuesMargins(data, marginMatrix) testNA = as.numeric(matrixTestNA[,2]) if(sum(testNA) > 0) { print(matrixTestNA) stop("NAs found in calibration variables") } # check if number of modalities in calibration variables matches marginMatrix if(!checkNumberMargins(data, marginMatrix)) stop("Error in number of modalities.") # check that method is specified if(is.null(method)) { warning('Method not specified, raking method selected by default') method <- "raking" } ## Basic checks on vector q: if(!is.null(q)) { if( length(q) != nrow(data) ) { stop("Vector q must have same length as data") } if(!is.null(costs)) { stop("q weights not supported with penalized calibration yet") } if(method == "min") { stop("q weights not supported with calibration on min bounds yet") } } } marginCreation <- createFormattedMargins(data, marginMatrix, popTotal, pct) matrixCal = marginCreation[[2]] formattedMargins = marginCreation[[1]] # Same rule as in "Calmar" for SAS : if scale is TRUE, # calibration is done on weights adjusted for nonresponse # (uniform adjustment) weights <- as.numeric(data.matrix(data[colWeights])) if(scale) { if(is.null(popTotal)) { stop("When scale is TRUE, popTotal cannot be NULL") } weights <- weights*(popTotal / sum(data.matrix(data[colWeights])) ) } if(is.null(costs)) { g <- NULL if( (is.numeric(bounds)) || (method != "min") ) { g <- calib(Xs=matrixCal, d=weights, total=formattedMargins, q=q, method=method, bounds=bounds, maxIter=maxIter, calibTolerance=calibTolerance) } else { if( (any(identical(bounds,"min"))) || (method == "min")) { g <- minBoundsCalib(Xs=matrixCal, d=weights, total=formattedMargins , q=rep(1,nrow(matrixCal)), maxIter=maxIter, description=description, precisionBounds=precisionBounds, forceSimplex=forceSimplex, forceBisection=forceBisection) } } if(is.null(g)) { stop(paste("No convergence in", maxIter, "iterations.")) } data[colCalibratedWeights] = g*weights } else { # Forbid popTotal null when gap is selected if(!is.null(gap) && is.null(popTotal)) { warning("popTotal NULL when gap is selected is a risky setting !") } ## Format costs costsFormatted <- formatCosts(costs, marginMatrix, popTotal) wCal = penalizedCalib(Xs=matrixCal, d=weights, total=formattedMargins, method=method , bounds=bounds, costs=costsFormatted, uCostPenalized=uCostPenalized , maxIter=maxIter, lambda=lambda, gap=gap) data[colCalibratedWeights] = data.matrix(wCal) g = wCal / weights } if(description) { writeLines("") writeLines("################### Summary of before/after weight ratios ###################") } # popTotalComp is popTotal computed from sum of calibrated weights popTotalComp <- sum(data[colCalibratedWeights]) weightsRatio = g if(description) { writeLines(paste("Calibration method : ",method, sep="")) if(! (method %in% c("linear","raking")) && ! is.null(bounds) ) { if(is.numeric(bounds)) { writeLines(paste("\t L bound : ",bounds[1], sep="")) writeLines(paste("\t U bound : ",bounds[2], sep="")) } if( (any(identical(bounds,"min"))) || (method == "min") ) { writeLines(paste("\t L bound : ",round(min(g),4), sep="")) writeLines(paste("\t U bound : ",round(max(g),4), sep="")) } } writeLines(paste("Mean : ",round(mean(weightsRatio),4), sep="")) quantileRatio <- round(stats::quantile(weightsRatio, probs=c(0,0.01,0.1,0.25,0.5,0.75,0.9,0.99,1)),4) print(quantileRatio) } ## Export in TeX if(!is.null(exportDistributionTable)) { if (!requireNamespace("xtable", quietly = TRUE)) { stop("Package xtable needed for exportDistributionTable to work. Please install it.", call. = FALSE) } # Linear or raking ratio if(is.null(bounds)) { newNames <- names(quantileRatio) newNames <- c(newNames,"Mean") statsRatio <- c(quantileRatio,mean(quantileRatio)) names(statsRatio) <- newNames } else { newNames <- names(quantileRatio) newNames <- c("L",newNames,"U","Mean") statsRatio <- c(bounds[1],quantileRatio,bounds[2],mean(quantileRatio)) names(statsRatio) <- newNames } latexQuantiles <- xtable::xtable(as.data.frame(t(statsRatio))) # Notice that there is one extra column in align(latexQuantiles) # since we haven't specified yet to exclide rownames if(is.null(bounds)) { xtable::align(latexQuantiles) <- "|c|ccccccccc||c|" } else { xtable::align(latexQuantiles) <- "|c|c|ccccccccc|c||c|" } print(latexQuantiles, include.rownames = FALSE, include.colnames = TRUE, floating = FALSE, file=exportDistributionTable) } if(description) { writeLines("") writeLines("################### Comparison Margins Before/After calibration ###################") print(calibrationMarginStats(data=data, marginMatrix=marginMatrix, popTotal=popTotal, pct=pct, colWeights=colWeights, colCalibratedWeights=colCalibratedWeights)) } # Plot density of weights ratio if(description) { if(requireNamespace("ggplot2")) { densityPlot = ggplot2::ggplot(data.frame(weightsRatio), ggplot2::aes(x=weightsRatio)) + ggplot2::geom_density(alpha=0.5, fill="#FF6666", size=1.25, adjust=2) + ggplot2::theme_bw() print(densityPlot) if(!is.null(exportDistributionImage)) { ggplot2::ggsave(densityPlot, file=exportDistributionImage) } } else { warning("Require package ggplot2 to plot weights ratio") } } return(g*weights) }
c955ec533fdcdb36da8b39bf4b3f85a71af02caa
8e044458ebb6dcb51a711c51c33a9b54bbf9fd8e
/R/cox.ipw.r
82a8d54f8928a76101d35c9f86ef1540cb8b86d4
[]
no_license
scheike/timereg
a051e085423d3a3fd93db239c33210f60270d290
5807b130fbbda218e23d5c80ddc845973cae9dfc
refs/heads/master
2023-01-28T19:38:18.528022
2023-01-17T06:28:35
2023-01-17T06:28:35
35,535,708
28
4
null
null
null
null
UTF-8
R
false
false
4,523
r
cox.ipw.r
#' Missing data IPW Cox #' #' Fits an Cox-Aalen survival model with missing data, with glm specification #' of probability of missingness. #' #' Taylor expansion of Cox's partial likelihood in direction of glm parameters #' using num-deriv and iid expansion of Cox and glm paramters (lava). #' #' @aliases cox.ipw summary.cox.ipw print.cox.ipw coef.cox.ipw #' @param survformula a formula object with the response on the left of a '~' #' operator, and the independent terms on the right as regressors. The response #' must be a survival object as returned by the `Surv' function. #' #' Adds the prop() wrapper internally for using cox.aalen function for fitting #' Cox model. #' @param glmformula formula for "being" observed, that is not missing. #' @param d data frame. #' @param max.clust number of clusters in iid approximation. Default is all. #' @param ipw.se if TRUE computes standard errors based on iid decompositon of #' cox and glm model, thus should be asymptotically correct. #' @param tie.seed if there are ties these are broken, and to get same break #' the seed must be the same. Recommend to break them prior to entering the #' program. #' @return returns an object of type "cox.aalen". With the following arguments: #' \item{iid}{iid decomposition.} \item{coef}{missing data estiamtes for #' weighted cox. } \item{var}{robust pointwise variances estimates. } #' \item{se}{robust pointwise variances estimates. } \item{se.naive}{estimate #' of parametric components of model. } \item{ties}{list of ties and times #' with random noise to break ties.} \item{cox}{output from weighted cox #' model.} #' @author Thomas Scheike #' @references Paik et al. #' @keywords survival #' @examples #' #' #' ### fit <- cox.ipw(Surv(time,status)~X+Z,obs~Z+X+time+status,data=d,ipw.se=TRUE) #' ### summary(fit) #' #' ##' @export cox.ipw <- function(survformula,glmformula,d=parent.frame(),max.clust=NULL,ipw.se=FALSE,tie.seed=100) { ## {{{ ggl <- glm(glmformula,family='binomial',data=d) mat <- model.matrix(glmformula,data=d); glmcovs <- attr(ggl$terms,"term.labels") d$ppp <- predict(ggl,type='response') ### d1 <- d[,survcovs] ### dcc <- na.omit(d) ## {{{ checking and breaking ties ties <- FALSE survtimes <- all.vars(update(survformula,.~0)) if (length(survtimes)==2) {itime <- 1; time2 <- d[,survtimes[1]]; status <- d[,survtimes[2]]; } if (length(survtimes)==3) {itime <- 2; time2 <- d[,survtimes[2]]; status <- d[,survtimes[3]]; } jtimes <- time2[status==1]; dupli <- duplicated(jtimes) if (sum(dupli)>0) { set.seed(tie.seed) jtimes[dupli] <- jtimes[dupli]+runif(sum(dupli))*0.01 time2[status==1] <- jtimes d[,survtimes[itime]] <- time2 ties <- TRUE } ## }}} dcc <- d[ggl$y==1,] ppp <- dcc$ppp timeregsurvformula <- timereg.formula(survformula) udca <- cox.aalen(timeregsurvformula,data=dcc,weights=1/ppp,n.sim=0,max.clust=max.clust) ### iid of beta for Cox model coxiid <- udca$gamma.iid if (ipw.se==TRUE) { ## {{{ ###requireNamespace("lava"); requireNamespace("NumDeriv"); glmiid <- lava::iid(ggl) mat <- mat[ggl$y==1,] par <- coef(ggl) coxalpha <- function(par) { ## {{{ rr <- mat %*% par pw <- c(exp(rr)/(1+exp(rr))) assign("pw",pw,envir=environment(survformula)) ### if (coxph==FALSE) ud <- cox.aalen(timeregsurvformula,data=dcc,weights=1/pw,beta=udca$gamma,Nit=1,n.sim=0,robust=0) ### else { ud <- coxph(survformula,data=dcc,weights=1/pw,iter.max=1,init=udca$gamma) ### ud <- coxph.detail(ud,data=dcc) ### } ud$score } ## }}} DU <- numDeriv::jacobian(coxalpha,par,) IDU <- udca$D2linv %*% DU alphaiid <-t( IDU %*% t(glmiid)) ### iidfull <- alphaiid ### iidfull[ggl$y==1,] <- coxiid + alphaiid[ggl$y==1,] ### var2 <- t(iidfull) %*% iidfull se <- cbind(diag(var2)^.5); colnames(se) <- "se" } else { iidfull <- NULL; var2 <- NULL; se <- NULL} ## }}} se.naive=coef(udca)[,3,drop=FALSE]; colnames(se.naive) <- "se.naive" res <- list(iid=iidfull,coef=udca$gamma,var=var2,se=se,se.naive=se.naive,ties=list(ties=ties,time2=time2,cox=udca)) class(res) <- "cox.ipw" return(res) } ## }}} ##' @export summary.cox.ipw <- function(object,digits=3,...) { tval <- object$coef/object$se pval <- 2*(1-pnorm(abs(tval))) res <- cbind(object$coef,object$se,object$se.naive,pval) colnames(res) <- c("coef","se","se.naive","pval") return(res) } ##' @export coef.cox.ipw<- function(object,digits=3,...) { summary.cox.ipw(object) } ##' @export print.cox.ipw <- function(x,...) { summary.cox.ipw(x) }
ec641a0dd6725f44b1099decbe6b758fac2844b9
c857e04d82512de09d7541bd99b6a8bd990a23f9
/plot2.R
aff7ef905211cfcf6f50ec4093d93a26b67c8fb7
[]
no_license
bisybackson/ExData_Plotting1
cdfca1db79cf24b3a1f19d97d7a26b882ea24835
60e4a2057d13f4dce970839960b84e3d6d2f5c7e
refs/heads/master
2021-06-05T12:19:59.256589
2016-10-31T16:21:55
2016-10-31T16:21:55
72,365,019
0
0
null
2016-10-30T17:43:27
2016-10-30T17:43:25
null
UTF-8
R
false
false
557
r
plot2.R
library(data.table) library(dplyr) library(lubridate) consumption <- fread("household_power_consumption.txt",sep=";",header=TRUE,na.strings = "?",stringsAsFactors = FALSE) consumption$DateTime <- dmy_hms(paste(consumption$Date, consumption$Time)) consumed <- filter(consumption, date(consumption$DateTime) == "2007-02-01" | date(consumption$DateTime) == "2007-02-02") rm(consumption) plot(Global_active_power ~ DateTime, consumed, type="l", xlab="", ylab="Global Active Power (kilowatts)") dev.copy(png, file="plot2.png", width = 480, height=480) dev.off()
f231e496c6ebf214a3048c09e988f616a0ed96e5
f4e2f6a4bd24753ce2522a19da2bc4d870d71a67
/man/qsmoothData.Rd
a0319579315e518287390f60e0fbf70466cb3503
[]
no_license
Feigeliudan01/qsmooth
2be0fbfe65769a0fc0746a363b89542fa4c10ad0
58f23c44ef6a63fb40080231d4177e6eb74e62f2
refs/heads/master
2020-04-15T04:58:44.359789
2017-02-15T19:42:13
2017-02-15T19:42:13
null
0
0
null
null
null
null
UTF-8
R
false
true
550
rd
qsmoothData.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/AllGenerics.R, R/methods.R \docType{methods} \name{qsmoothData} \alias{qsmoothData} \alias{qsmoothData,qsmooth-method} \alias{qsmoothData.qsmooth} \title{Accessors for the 'qsmoothData' slot of a qsmooth object.} \usage{ qsmoothData(object) \S4method{qsmoothData}{qsmooth}(object) \S4method{qsmoothData}{qsmooth}(object) } \arguments{ \item{object}{a \code{qsmooth} object} \item{...}{other} } \description{ Accessors for the 'qsmoothData' slot of a qsmooth object. }
fd5a4612e500ecb7adde336520cfcdfa6fe08a98
0a906cf8b1b7da2aea87de958e3662870df49727
/bravo/inst/testfiles/colSumSq_matrix/libFuzzer_colSumSq_matrix/colSumSq_matrix_valgrind_files/1609959020-test.R
362751728cf381d1f4e381cd973cba6c6506cc25
[]
no_license
akhikolla/updated-only-Issues
a85c887f0e1aae8a8dc358717d55b21678d04660
7d74489dfc7ddfec3955ae7891f15e920cad2e0c
refs/heads/master
2023-04-13T08:22:15.699449
2021-04-21T16:25:35
2021-04-21T16:25:35
360,232,775
0
0
null
null
null
null
UTF-8
R
false
false
400
r
1609959020-test.R
testlist <- list(x = structure(c(5.04442971419527e+180, 3.1111403385324e+174, 1.51741194999287e-152, 2.71034819479614e-164, 1.93112249337219e-308, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), .Dim = c(10L, 6L))) result <- do.call(bravo:::colSumSq_matrix,testlist) str(result)
b5f935643c4d4b0ea19e2b6933884ea768d2268b
ffdea92d4315e4363dd4ae673a1a6adf82a761b5
/data/genthat_extracted_code/psych/examples/omega.graph.Rd.R
1b3acd2e5f6b444f86cd288a37b65aab22ceb118
[]
no_license
surayaaramli/typeRrh
d257ac8905c49123f4ccd4e377ee3dfc84d1636c
66e6996f31961bc8b9aafe1a6a6098327b66bf71
refs/heads/master
2023-05-05T04:05:31.617869
2019-04-25T22:10:06
2019-04-25T22:10:06
null
0
0
null
null
null
null
UTF-8
R
false
false
423
r
omega.graph.Rd.R
library(psych) ### Name: omega.graph ### Title: Graph hierarchical factor structures ### Aliases: omega.diagram omega.graph ### Keywords: multivariate ### ** Examples #24 mental tests from Holzinger-Swineford-Harman if(require(GPArotation) ) {om24 <- omega(Harman74.cor$cov,4) } #run omega # #example hierarchical structure from Jensen and Weng if(require(GPArotation) ) {jen.omega <- omega(make.hierarchical())}
37c7bafae236854145fd87f88865ba0caabfb30e
f58d0680a57f8c62d0d10431f6a747e4b81eae19
/R/add_tech_intensity.R
6b951d6bd612dd4ccdfe64895a156f07d743ee96
[]
no_license
awekim/WIODnet
fc99cb1cf1272bd73ac2ee5b90e44a2901b1a638
07966a9e856820667ef069be4a1f19592d7be3ae
refs/heads/master
2020-08-13T15:25:17.406570
2019-10-14T12:31:47
2019-10-14T12:31:47
214,992,045
0
0
null
2019-10-14T08:42:33
2019-10-14T08:42:33
null
UTF-8
R
false
false
815
r
add_tech_intensity.R
#' Join the tech intensity data frame to the yearly WIOD #' #' @description Join the created technology intensity data frame to the #' yearly raw WIOD wide table so that similar country and technology #' intensity manufacturing industies can be aggregated. #' #' @param yearly.raw yearly raw data from the downloaded zip such as WIOT2011_October16_ROW.RData #' #' @return data frame #' #' @import dplyr #' #' @import magrittr #' addTechIntensity <- function(yearly.raw) { industry.RNr <<- getTechIntensity(yearly.raw) ## changing the IndustryCode column wihtin the main df yearly.raw %<>% left_join(industry.RNr, yearly.raw, by = c("RNr")) ## cleaning the data frame yearly.raw %<>% select(-IndustryCode) %>% rename(IndustryCode = NewIndustryCode) return(yearly.raw) }
5929f02a9fd62ae39788f35ba10e2164035088b2
669cdf8cabbe9269122c8a2e012df7d4b06bd895
/R/oauth-has-expired.r
35fc3118898ba8b0843b3942cf189c262e8aa470
[]
no_license
jdeboer/httr
660e85f54bd29ccbb4431370eed344fd24809762
eb27bd57decc5fb37de51d52466a4b229a11f793
refs/heads/master
2021-01-18T12:10:22.328699
2013-06-01T16:15:25
2013-06-01T16:15:25
null
0
0
null
null
null
null
UTF-8
R
false
false
424
r
oauth-has-expired.r
#' Check if an OAuth 2.0 access token has past its use by. #' #' @param access_token the access token to check use_by of #' @param margin the number of seconds before use_by to use as the expiration threshold (default of 5 seconds) #' @family OAuth #' @export oauth2.0_has_expired <- function(access_token, margin = 30) { stopifnot( length(access_token$use_by) == 1 ) (access_token$use_by - margin) < Sys.time() }
37b793b06bfa4716c877a8595f899d6f6457d150
f6912c71c408619f65692f4824300e6be46c1b2f
/my-variation.R
9e8a75f3d8acad27fe7fb8351d2251698e5dcfb1
[]
no_license
Vassar-COGS282-2017/3-B1ngB0ng
1c428572a28e391abd7e5bfb652d0d4d61977985
7b83a9888edf30fbb353333b66ac2ba888cd7c66
refs/heads/master
2021-07-11T12:01:21.963678
2017-10-06T02:07:55
2017-10-06T02:07:55
103,571,847
0
0
null
null
null
null
UTF-8
R
false
false
9,753
r
my-variation.R
###################################################### #DISCUSSION ###################################################### #My variation of the Schelling model adds property cost #and income inequality to the mix. The model assumes that #property in the center of the city is most expensive, and #that cost decreases as you move outwards. It introduces #several new parameters, but most of these exist to ensure #there will be equilibrium, and have been tuned accordingly. #For the most part, the innequality.ratio and the min.similarity #are the parameters worth tweaking. #What is most interesting about this model is that even a slight #income advantage given to one color causes it to dominate the center #assuming a min.similarity of 3/8. This model can help explain the way #that income interacts with bais to enforce segregation and supress #social mobility. ###################################################### #PARAMETERS ###################################################### rows <- 50 #number of rows in matrix cols <- 50 #number of columns in matrix #a distribution that determines how sharply property prices #decay as you expand outward from the center of the map property.dist <- function(x) { return(x^(0.6)) } proportion.group.1 <- .5 # proportion of red agents empty <- .2 # proportion of grid that will be empty space min.similarity <- 3/8 # minimum proportion of neighbors that are the same type to not move inequality.ratio <- c(3,2) #a simple metric to set the income ineqality. #Keep the first digit higher than the second to give red a higher income #income distribution of the red population distgrp1 <- quote(rbeta(1, inequality.ratio[1], inequality.ratio[2])) #income distribution of the blue population distgrp2 <- quote(rbeta(1, inequality.ratio[2], inequality.ratio[1])) overprice.tolerance <- 0.2 #number between 0 and 1, determines how far above someone's means # they are willing to live underprice.tolerance <- 0.5 #number between 0 and 1, determines how far below someone's means # they are willing to live ###################################################### #FUNCTIONS ###################################################### #_________create.grid_________### # generates a rows x column matrix and randomly places the initial population # values in the matrix are either 0, 1, or 2 # if 0, the space is empty # 1 and 2 represent the two different groups create.grid <- function(rows, cols, proportion.group.1, empty){ pop.size.group.1 <- (rows*cols)*(1-empty)*proportion.group.1 pop.size.group.2 <- (rows*cols)*(1-empty)*(1-proportion.group.1) initial.population <- sample(c( rep(1, pop.size.group.1), rep(2, pop.size.group.2), rep(0, (rows*cols)-pop.size.group.1-pop.size.group.2) )) grid <- matrix(initial.population, nrow=rows, ncol=cols) } #_________visualize.grid_________#### # outputs a visualization of the grid, with red squares representing group 1, # blue squares group 2, and black squares empty locations. visualize.grid <- function(grid){ image(grid, col=c('black','red','blue'), xaxs=NULL, yaxs=NULL, xaxt='n', yaxt='n') } #_________empty.locations_________#### # returns all the locations in the grid that are empty # output is an N x 2 array, with N equal to the number of empty locations # the 2 columns contain the row and column of the empty location. empty.locations <- function(grid){ return(which(grid==0, arr.ind=T)) } #_________similarity.to.center_________#### # takes a grid and the center.val of that grid and returns # the proportion of cells that are the same as the center, # ignoring empty cells. the center.val must be specified # manually in case the grid has an even number of rows or # columns similarity.to.center <- function(grid.subset, center.val){ if(center.val == 0){ return(NA) } same <- sum(grid.subset==center.val) - 1 not.same <- sum(grid.subset!=center.val) - sum(grid.subset==0) return(same/(same+not.same)) } #_________segregation_________#### # computes the proportion of neighbors who are from the same group segregation <- function(grid){ same.count <- 0 diff.count <- 0 for(row in 1:(nrow(grid)-1)){ for(col in 1:(ncol(grid)-1)){ if(grid[row,col] != 0 && grid[row+1,col+1] != 0){ if(grid[row,col] != grid[row+1,col+1]){ diff.count <- diff.count + 1 } else { same.count <- same.count + 1 } } } } return(same.count / (same.count + diff.count)) } #_________match.means_________#### #This is a fucntion that determines whether or not an individual #will want to move because they are living either too far above #or too far below their means match.means <- function(row, col) { return((property.grid[row,col] - overprice.tolerance < wealth.grid[row,col])&(wealth.grid[row,col] < property.grid[row,col] + underprice.tolerance)) } #_________unhappy.agents_________#### # takes a grid and a minimum similarity threshold and computes # a list of all of the agents that are unhappy with their # current location. the output is N x 2, with N equal to the # number of unhappy agents and the columns representing the # location (row, col) of the unhappy agent in the grid unhappy.agents <- function(grid, min.similarity){ grid.copy <- grid for(row in 1:rows){ for(col in 1:cols){ similarity.score <- similarity.to.center(grid[max(0, row-1):min(rows,row+1), max(0,col-1):min(cols,col+1)], grid[row,col]) if(is.na(similarity.score)){ grid.copy[row,col] <- NA } else { #also call the match.means function to see if they need to move grid.copy[row,col] <- similarity.score >= min.similarity & match.means(row,col) } } } return(which(grid.copy==FALSE, arr.ind = T)) } #_________Assign property cost_________### #This function creates the spread of property #values assuming the property in the center is more #expensive than the property on the outskirts assign.property.cost <- function(rows, cols, current.index, dist) { #calculate the center center <- c((rows%/%2),(cols%/%2)) rowDif <- abs((center[1] - current.index[1])) colDif <- abs((center[2] - current.index[2])) unscalledDif <- rowDif + colDif scalledDif <- 1- (dist(unscalledDif)/(dist(cols))) #return function of the total difference return(scalledDif) } #_________Create property matrix_________### #assigns property cost to every square and stores #it in a matrix create.property.matrix <- function(rows, cols) { #initialize the property grid property.grid <<- matrix(nrow=rows, ncol=cols) #mutate it for(i in 1:rows) { for(j in 1:cols) { property.grid[i,j] <<- assign.property.cost(rows, cols, c(i,j), property.dist) } } } #Create a function to assign the disposable income based #on the income distribution of the group assign.wealth <- function(distgrp1, distgrp2, type) { if(type==0){return(0)} if(type==1){return(distgrp1)} if(type==2){return(distgrp2)} } #Create income matrix create.income.matrix <- function(distgrp1, distgrp2, matrix) { #initialize the wealth grid wealth.grid <<- matrix for(i in 1:rows) { for(j in 1:cols) { wealth.grid[i,j] <<- assign.wealth(eval(distgrp1), eval(distgrp2), matrix[i,j]) } } } #_________one.round_________#### # runs a single round of the simulation. the round starts by finding # all of the unhappy agents and empty spaces. then unhappy agents are randomly # assigned to a new empty location. a new grid is generated to reflect all of # the moves that took place. one.round <- function(grid, min.similarity){ #find all the empty spaces empty.spaces <- empty.locations(grid) #find all the unhappy agents unhappy <- unhappy.agents(grid, min.similarity) #shuffle empty spaces to create random assignement empty.spaces <- empty.spaces[sample(1:nrow(empty.spaces)), ] #go through the empty spaces list and assign an agent to each for(i in 1:nrow(empty.spaces)) { #if we run out of unhappy dudes we wanna end the for loop then if(i > nrow(unhappy)){ break; } #make the switch by copying an unhappy index from grid to the corresponding #index in empty spaces. grid[empty.spaces[i, 1], empty.spaces[i,2]] <- grid[unhappy[i,1], unhappy[i,2]] #make sure the wealth grid stays synced with the grid (sloppy code...mutate the global envrt) #would have done differenctly if I was starting this now wealth.grid[empty.spaces[i, 1], empty.spaces[i,2]] <<- wealth.grid[unhappy[i,1], unhappy[i,2]] # grid[unhappy[i,1], unhappy[i,2]] <- 0 #keep wealth grid synced wealth.grid[unhappy[i,1], unhappy[i,2]] <<- 0 } return(grid) } ###################################################### #RUNNING THE SIMULATION ###################################################### done <- FALSE # a variable to keep track of whether the simulation is complete grid <- create.grid(rows, cols, proportion.group.1, empty) seg.tracker <- c(segregation(grid)) # keeping a running tally of the segregation scores for each round create.property.matrix(rows, cols) create.income.matrix(distgrp1, distgrp2, grid) while(!done){ new.grid <- one.round(grid, min.similarity) # run one round of the simulation, and store output in new.grid seg.tracker <- c(seg.tracker, segregation(grid)) # calculate segregation score and add to running list if(all(new.grid == grid)){ # check if the new.grid is identical to the last grid done <- TRUE # if it is, simulation is over -- no agents want to move } else { grid <- new.grid # otherwise, replace grid with new.grid, and loop again. } } layout(1:2) # change graphics device to have two plots visualize.grid(grid) # show resulting grid plot(seg.tracker) # plot segregation over time
99a2e84ef992df3b7a9b251f219b08c1644c1993
bc4c037c476201ec33a36d5476d5ce759bb60afe
/corr_and_LM.r
da487ad26c7f1a4f2859d40445768dd9ffcf9128
[]
no_license
marlonglopes/RTests
f006e9996f0085de778c1b25c45dc10f27e78cf9
571cede14a857b745e196624d10941790b0585cc
refs/heads/master
2020-05-29T15:41:39.256246
2016-11-07T09:48:29
2016-11-07T09:48:29
61,497,403
0
0
null
null
null
null
UTF-8
R
false
false
4,776
r
corr_and_LM.r
# The vectors `A` and `B` have already been loaded # Take a quick peek at both vectors A = c(1,2,4) B = c(3,6,7) N = length(A)-1 # Save the differences of each vector element with the mean in a new variable diff_A <- A - mean(A) diff_B <- B - mean(B) # Do the summation of the elements of the vectors and divide by N-1 in order to acquire the covariance between the two vectors cov <- sum(diff_A*diff_B) / N cov cov(A,B) #R function # Your workspace still contains the results of the previous exercise # Square the differences that were found in the previous step sq_diff_A <- diff_A^2 sq_diff_B <- diff_B^2 # Take the sum of the elements, divide them by N-1 and consequently take the square root to acquire the sample standard deviations sd_A <- sqrt(sum(sq_diff_A)/(N)) sd_B <- sqrt(sum(sq_diff_B)/(N)) # Your workspace still contains the results of the previous exercise # Combine all the pieces of the puzzle correlation <- cov / (sd_A * sd_B) correlation # Check the validity of your result with the cor() command cor(A,B) #R function Regression y = m + bx + e y = linear function of x m = interception b = slope e = error (residual) Regression Y = B0 + b1X1 + e y = linear function of X1 B0 = interception = Regression CONSTANT B1 = slope = Regression COEFFICIENT e = error (residual) ################################### #build regression equation #For our simple regression model we will take Symptom Score (sym2) as our dependent variable #and Impulse Control (ic2) as our independent variable. These are variables from the impact dataset, which is still loaded in your workspace. #The regression equation would then be # The dataset `impact` is already loaded. # Calculate the required means, standard deviations and correlation coefficient mean_sym2 <- mean(impact$sym2) mean_ic2 <- mean(impact$ic2) sd_sym2 <- sd(impact$sym2) sd_ic2 <- sd(impact$ic2) r <- cor(impact$ic2,impact$sym2) # Calculate the slope B_1 <- r * (sd_sym2 )/( sd_ic2 ) # Calculate the intercept B_0 <- mean_sym2 - B_1 * mean_ic2 # Plot of ic2 against sym2 plot(impact$ic2,impact$sym2, main = "Scatterplot", ylab = "Symptoms", xlab = "Impulse Control") # Add the regression line abline(B_0, B_1, col = "red") ######Equivalente############################################################################################### # The dataset impact is still loaded # Construct the regression model model_1 <- lm(sym2 ~ ic2, data = impact) # Look at the results of the regression by using the summary function summary(model_1) # Create a scatter plot of Impulse Control against Symptom Score plot(impact$sym2 ~ impact$ic2, main = "Scatterplot", ylab = "Symptoms", xlab = "Impulse Control") # Add a regression line abline(model_1, col = "red") ################################################## # The impact dataset is already loaded # Multiple Regression model_2 <- lm(impact$sym2 ~ impact$ic2 + impact$vermem2) # Examine the results of the regression summary(model_2) # Extract the predicted values predicted <- fitted(model_2) # Plotting predicted scores against observed scores plot(predicted ~ impact$sym2, main = "Scatterplot", ylab = "Predicted Scores", xlab = "Observed Scores") abline(lm(predicted ~ impact$sym2), col = "green") ########################################## # The `impact` dataset is already loaded # Create a linear regression with `ic2` and `vismem2` as regressors model_1 <- lm(impact$sym2 ~ impact$ic2 + impact$vismem2) # Extract the predicted values predicted_1 <- fitted(model_1) # Calculate the squared deviation of the predicted values from the observed values deviation_1 <- (impact$sym2 - predicted_1)^2 # Sum the squared deviations SSR_1 <- sum(deviation_1) # Create a linear regression with `ic2` and `vermem2` as regressors model_2 <- lm(impact$sym2 ~ impact$ic2 + impact$vermem2) # Extract the predicted values predicted_2 <- fitted(model_2) # Calculate the squared deviation of the predicted values from the observed values deviation_2 <- (impact$sym2 - predicted_2)^2 # Sum the squared deviations SSR_2 <- sum(deviation_2) #Compare the sum of squared residuals of these two models SSR_1 SSR_2 ###### Assumptions assumption of homoscedasticity. Anscombes quartet Test save residuals plot against original x should not have any relationship = Homosquedasticity # Extract the residuals from the model residual <- resid(model_2) # Draw a histogram of the residuals hist(residual) # Extract the predicted symptom scores from the model predicted <- fitted(model_2) # Plot the predicted symptom scores against the residuals plot(residual ~ predicted, main = "Scatterplot", xlab = "Model 2 Predicted Scores", ylab = "Model 2 Residuals") abline(lm(residual ~ predicted), col="red")
f6f8b075bab024aca70beefa5d27b4adcc6b96c0
907af44f17d7246e7fb2b967adddb937aa021efb
/man/fslfill2.Rd
22d0f372185dd661f030ff4c45d1444431c02868
[]
no_license
muschellij2/fslr
7a011ee50cfda346f44ef0167a0cb52420f67e59
53276dfb7920de666b4846d9d8fb05f05aad4704
refs/heads/master
2022-09-21T07:20:18.002654
2022-08-25T14:45:12
2022-08-25T14:45:12
18,305,477
38
23
null
2019-01-10T20:57:47
2014-03-31T19:35:03
R
UTF-8
R
false
true
1,262
rd
fslfill2.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/fslfill2.R \name{fslfill2} \alias{fslfill2} \title{Fill image holes with dilation then erosion} \usage{ fslfill2( file, outfile = NULL, kopts = "", remove.ends = TRUE, refill = TRUE, retimg = TRUE, reorient = FALSE, intern = FALSE, verbose = TRUE, ... ) } \arguments{ \item{file}{(character) filename of image to be filled} \item{outfile}{(character) name of resultant filled file} \item{kopts}{(character) Options passed for kernel before erosion/dilation} \item{remove.ends}{(logical) Remove top and bottom dilation.} \item{refill}{(logical) Run \code{\link{fslfill}} after dilation/erosion.} \item{retimg}{(logical) return image of class nifti} \item{reorient}{(logical) If retimg, should file be reoriented when read in? Passed to \code{\link{readnii}}.} \item{intern}{(logical) pass to \code{\link{system}}} \item{verbose}{(logical) print out command before running} \item{...}{additional arguments passed to \code{\link{readnii}}.} } \value{ character or logical depending on intern } \description{ This function calls \code{fslmaths} to dilate an image, then calls it again to erode it. } \note{ This function binarizes the image before running. }
e9751467e93ce01a2dde0a7c617cb01126fc3561
59004c819451c7f552159ec5b2ce500fa365d70d
/R/QRNLMM.R
f01f5d7008943421c662c28a9d11faf7703bab38
[]
no_license
cran/qrNLMM
168ca22144c733fa192ef9bda53e93917a46279b
ac1d52d97a4f81205151895054cd553a3c5fd608
refs/heads/master
2022-09-05T00:17:55.503771
2022-08-18T11:40:05
2022-08-18T11:40:05
30,884,909
1
1
null
null
null
null
UTF-8
R
false
false
22,114
r
QRNLMM.R
QRNLMM = function(y,x,groups,initial,exprNL,covar=NA,p=0.5, precision=0.0001,MaxIter=500,M=20,cp=0.25, beta=NA,sigma=NA,Psi=NA, show.convergence=TRUE,CI=95, verbose=TRUE) { if(any(is.na(groups)==TRUE)) stop("There are some NA's values in groups") if(length(y) != length(groups)) stop("groups does not match with the provided data. (length(y) != length(groups))") resexp = validate_str(exprNL) if(nchar(resexp)>0) { cat('\n') cat('Some defined variables or maths expressions not recognized:\n') cat('\n') cat(resexp,'\n') cat('\n') cat('* For the NL function just "x", "covar", "fixed" and "random" can be defined.\n') cat('\n') cat('* For derivating the deriv R function recognizes the arithmetic operators +, -, *, / and ^, and the single-variable functions exp, log, sin, cos, tan, sinh, cosh, sqrt, pnorm, dnorm, asin, acos, atan, gamma, lgamma, digamma and trigamma, as well as psigamma for one or two arguments (but derivative only with respect to the first).') stop(paste("Expression/s \"",resexp,"\" do/es not defined. More details above.",sep="")) } nj = c(as.data.frame(table(groups))[,2]) dqnc = countall(exprNL) d = dqnc[1] q = dqnc[2] nc = dqnc[3] if(all(is.na(covar)==FALSE)){ if(any(is.na(covar)==TRUE)) stop("There are some NA's values in covar") covar = as.matrix(covar) if(nc != dim(covar)[2]){stop("The number of declared covariates in exprNL must coincide with the column number of covar.")} } if(length(p)==1) { ## Verify error at parameters specification #No data if( (length(x) == 0) | (length(y) == 0)) stop("All parameters must be provided.") #Validating if exists NA's if(sum(y[is.na(y)==TRUE]) > 0) stop("There are some NA's values in y") if(sum(y[is.na(x)==TRUE]) > 0) stop("There are some NA's values in x") if(any(is.na(covar)==TRUE) && all(is.na(covar))==FALSE) stop("There are some NA's values in covar") #Validating dims data set if(ncol(as.matrix(y)) > 1) stop("y must have just one column") if( length(y) != sum(nj) ) stop("nj does not match with the provided data. (length(y) != sum(nj))") if( length(y) != nrow(as.matrix(x)) ) stop("x variable does not have the same number of lines than y") if(length(y) != nrow(as.matrix(covar)) && is.na(covar)==FALSE) stop("covar variable does not have the same number of lines than y") if(is.character(exprNL)==FALSE && is.expression(exprNL)==FALSE) stop("exprNL must be of class expression or character.") if(length(initial) != d) stop("The vector of initial parameter must have dimensions equal to the number of fixed effects declared in exprNL.") if(is.numeric(initial) == FALSE) stop("The vector of initial parameter must be of class numeric.") #Validating supports if(p > 1 | p < 0) stop("p must be a real number in (0,1)") if(precision <= 0) stop("precision must be a positive value (suggested to be small)") if(MaxIter <= 0 |MaxIter%%1!=0) stop("MaxIter must be a positive integer value") if(M <= 0 |M%%1!=0) stop("M must be a positive integer value >= 10") if(cp > 1 | cp < 0) stop("cp must be a real number in [0,1]") if(is.logical(show.convergence) == FALSE) stop("show.convergence must be TRUE or FALSE.") #Matrix column labels namesz <- ('b1') if(q>1){ for(i in 2:q){namesz <- c(namesz, paste("b",i,sep=""))} } #No data if(is.na(beta) == FALSE) {if(length(beta) != d) stop("beta must have dimensions equal to the number of fixed effects declared in exprNL.")} if(is.na(sigma) == FALSE) {if(sigma <= 0 | length(sigma)!=1) stop("sigma must be a positive real number")} if(is.na(Psi) == FALSE) { if(ncol(as.matrix(Psi)) != q | nrow(as.matrix(Psi)) != q) stop("Psi must be a square matrix of dims equal to the number of random effects declared in exprNL.") if(det(Psi)<=0) stop("Psi must be a square symmetrical real posite definite matrix.") } exprNL0 = exprNL inter = paste("function(x,fixed,random,covar=NA){resp = ",exprNL0,";return(resp)}",sep="") nlmodel0 = nlmodel = eval(parse(text = inter)) if(nc > 0){ exprNL = gsub('covar\\[','covar\\[,',as.character(exprNL)) inter = paste("function(x,fixed,random,covar){resp = ", exprNL,";return(resp)}",sep="") nlmodel = eval(parse(text = inter)) } #intial values if(is.na(beta) == TRUE && is.na(sigma) == TRUE) { OPT = optim(par = initial,fn = minbeta,y=y,x=x,covar=covar,p=p,q=q,nlmodel=nlmodel) beta = OPT$par sigmae = (1/length(y))*OPT$value } if(is.na(beta) == TRUE && is.na(sigma) == FALSE) { OPT = optim(par = initial,fn = minbeta,y=y,x=x,covar=covar,p=p,q=q,nlmodel=nlmodel) beta = OPT$par } if(is.na(beta) == FALSE && is.na(sigma) == TRUE) { OPT = optim(par = beta,fn = minbeta,y=y,x=x,covar=covar,p=p,q=q,nlmodel=nlmodel) sigmae = (1/length(y))*OPT$value } if(is.na(Psi) == TRUE){Psi = diag(q)} #Running the algorithm out <- QSAEM_NL(y = y,x = x,nj = nj,initial = initial,exprNL = exprNL0,covar = covar,p = p,precision = precision,M=M,pc=cp,MaxIter=MaxIter,beta = beta,sigmae = sigmae,D=Psi,nlmodel=nlmodel0,d=d,q=q) if(verbose){ cat('\n') cat('---------------------------------------------------\n') cat('Quantile Regression for Nonlinear Mixed Model\n') cat('---------------------------------------------------\n') cat('\n') cat("Quantile =",p) cat('\n') cat("Subjects =",length(nj),";",'Observations =',sum(nj), ifelse(sum(nj==nj[1])==length(nj),'; Balanced =',""), ifelse(sum(nj==nj[1])==length(nj),nj[1],"")) cat('\n') cat('\n') cat('- Nonlinear function \n') cat('\n') cat('nlmodel = \n') cat(as.character(inter)) cat('\n') cat("return(resp)}") cat('\n') cat('\n') cat('-----------\n') cat('Estimates\n') cat('-----------\n') cat('\n') cat('- Fixed effects \n') cat('\n') print(round(out$res$table,5)) cat('\n') cat('sigma =',round(out$res$sigmae,5),'\n') cat('\n') cat('Random effects \n') cat('\n') cat('i) Weights \n') print(head(round(out$res$weights,5))) cat('\n') cat('ii) Variance-Covariance Matrix \n') dimnames(out$res$D) <- list(namesz,namesz) print(round(out$res$D,5)) cat('\n') cat('------------------------\n') cat('Model selection criteria\n') cat('------------------------\n') cat('\n') critFin <- c(out$res$loglik, out$res$AIC, out$res$BIC, out$res$HQ) critFin <- round(t(as.matrix(critFin)),digits=3) dimnames(critFin) <- list(c("Value"),c("Loglik", "AIC", "BIC","HQ")) print(critFin) cat('\n') cat('-------\n') cat('Details\n') cat('-------\n') cat('\n') cat("Convergence reached? =",(out$res$iter < MaxIter)) cat('\n') cat('Iterations =',out$res$iter,"/",MaxIter) cat('\n') cat('Criteria =',round(out$res$criterio,5)) cat('\n') cat('MC sample =',M) cat('\n') cat('Cut point =',cp) cat('\n') cat("Processing time =",out$res$time,units(out$res$time)) } if(show.convergence == TRUE) { cpl = cp*MaxIter ndiag = (q*(1+q)/2) npar = d+1+ndiag labels = list() for(i in 1:d){labels[[i]] = bquote(beta[.(i)])} labels[[d+1]] = bquote(sigma) for(i in 1:ndiag){labels[[i+d+1]] = bquote(psi[.(i)])} par(mar=c(4, 4.5, 1, 0.5)) op <- par(mfrow=c(ifelse(npar%%3==0,npar%/%3,(npar%/%3)+1),3)) for(i in 1:npar) { plot.ts(out$conv$teta[i,],xlab="Iteration",ylab=labels[[i]]) abline(v=cpl,lty=2) } } par(mfrow=c(1,1)) par(mar= c(5, 4, 4, 2) + 0.1) fitted.values = rep(NA,sum(nj)) if(nc == 0){ for (j in 1:length(nj)){ pos = (sum(nj[1:j-1])+1):(sum(nj[1:j])) rand = as.matrix(out$res$weights)[j,] fitted.values[pos] = nlmodel(x = x[pos], fixed = out$res$beta, random = rand) } }else{ covar = as.matrix(covar) for (j in 1:length(nj)){ pos = (sum(nj[1:j-1])+1):(sum(nj[1:j])) rand = as.matrix(out$res$weights)[j,] fitted.values[pos] = nlmodel(x = x[pos], fixed = out$res$beta, random = rand, covar = covar[pos,,drop = FALSE]) } } res = list(p = p, iter = out$res$iter, criteria = out$res$criterio, nlmodel = nlmodel, beta = out$res$beta, weights = out$res$weights, sigma= out$res$sigmae, Psi = out$res$D, SE=out$res$EP, table = out$res$table, loglik=out$res$loglik, AIC=out$res$AIC, BIC=out$res$BIC, HQ=out$res$HQ, fitted.values = fitted.values, residuals = fitted.values - y, time = out$res$time) par(mfrow=c(1,1)) par(mar= c(5, 4, 4, 2) + 0.1) obj.out = list(conv=out$conv,res = res) class(obj.out) = "QRNLMM" return(obj.out) } else { p = sort(unique(p)) obj.out = vector("list", length(p)) ## Verify error at parameters specification #No data if( (length(x) == 0) | (length(y) == 0)) stop("All parameters must be provided.") #Validating if exists NA's if(sum(y[is.na(y)==TRUE]) > 0) stop("There are some NA's values in y") if(sum(y[is.na(x)==TRUE]) > 0) stop("There are some NA's values in x") if(any(is.na(covar)==TRUE) && all(is.na(covar))==FALSE) stop("There are some NA's values in covar") #Validating dims data set if(ncol(as.matrix(y)) > 1) stop("y must have just one column") if( length(y) != sum(nj) ) stop("nj does not match with the provided data. (length(y) != sum(nj))") if( length(y) != nrow(as.matrix(x)) ) stop("x variable does not have the same number of lines than y") if(length(y) != nrow(as.matrix(covar)) && is.na(covar)==FALSE) stop("covar variable does not have the same number of lines than y") if(is.character(exprNL)==FALSE && is.expression(exprNL)==FALSE) stop("exprNL must be of class expression or character.") if(length(initial) != d) stop("The vector of initial parameter must have dimensions equal to the number of fixed effects declared in exprNL.") if(is.numeric(initial) == FALSE) stop("The vector of initial parameter must be of class numeric.") #Validating supports if(all(p > 0 && p < 1) == FALSE) stop("p vector must contain real values in (0,1)") if(precision <= 0) stop("precision must be a positive value (suggested to be small)") if(MaxIter <= 0 |MaxIter%%1!=0) stop("MaxIter must be a positive integer value") if(M <= 0 |M%%1!=0) stop("M must be a positive integer value >= 10") if(cp > 1 | cp < 0) stop("cp must be a real number in [0,1]") if(is.logical(show.convergence) == FALSE) stop("show.convergence must be TRUE or FALSE.") #Matrix column labels namesz <- ('b1') if(q>1){ for(i in 2:q){namesz <- c(namesz, paste("b",i,sep=""))} } #pb2 = tkProgressBar(title = "QRNLMM for several quantiles", # min = 0,max = length(p), width = 300) cat("\n") pb2 <- progress_bar$new( format = ":what [:bar] :percent eta: :eta \n", total = length(p), clear = TRUE, width= 60, show_after = 0) #pb2$tick(len = 0,tokens = list(what = "QRNLMM: Preparing")) #No data if(is.na(beta) == FALSE) {if(length(beta) != d) stop("beta must have dimensions equal to the number of fixed effects declared in exprNL.")} if(is.na(sigma) == FALSE) {if(sigma <= 0 | length(sigma)!=1) stop("sigma must be a positive real number")} #Load required libraries if(is.na(Psi) == FALSE) { if(ncol(as.matrix(Psi)) != q | nrow(as.matrix(Psi)) != q) stop("Psi must be a square matrix of dims equal to the number of random effects declared in exprNL.") if(det(Psi)<=0) stop("Psi must be a square symmetrical real posite definite matrix.") } exprNL0 = exprNL inter = paste("function(x,fixed,random,covar=NA){resp = ",exprNL0,";return(resp)}",sep="") nlmodel0 = nlmodel = eval(parse(text = inter)) if(nc > 0){ exprNL = gsub('covar\\[','covar\\[,',as.character(exprNL)) inter = paste("function(x,fixed,random,covar){resp = ", exprNL,";return(resp)}",sep="") nlmodel = eval(parse(text = inter)) } #nlmodel = eval(parse(text = paste("function(x,fixed,random,covar=NA){resp = ",exprNL,";return(resp)}",sep=""))) #intial values if(is.na(beta) == TRUE && is.na(sigma) == TRUE) { OPT = optim(par = initial,fn = minbeta,y=y,x=x,covar=covar,p=p[1],q=q,nlmodel=nlmodel) beta = OPT$par sigmae = (1/length(y))*OPT$value } if(is.na(beta) == TRUE && is.na(sigma) == FALSE) { OPT = optim(par = initial,fn = minbeta,y=y,x=x,covar=covar,p=p[1],q=q,nlmodel=nlmodel) beta = OPT$par } if(is.na(beta) == FALSE && is.na(sigma) == TRUE) { OPT = optim(par = beta,fn = minbeta,y=y,x=x,covar=covar,p=p[1],q=q,nlmodel=nlmodel) sigmae = (1/length(y))*OPT$value } if(is.na(Psi) == TRUE){Psi = diag(q)} for(k in 1:length(p)) { #setTkProgressBar(pb2, k-1, label=paste("Running quantile ",p[k]," - ",k-1,"/",length(p),sep = "")) #Running the algorithm pb2$tick(k-1,tokens = list(what = "QRNLMM: Total progress ")) out <- QSAEM_NL(y = y,x = x,nj = nj,initial = initial,exprNL = exprNL0,covar = covar,p = p[k],precision = precision,M=M,pc=cp,MaxIter=MaxIter,beta = beta,sigmae = sigmae,D=Psi,nlmodel=nlmodel0,d=d,q=q) if(verbose){ cat('\n') cat('---------------------------------------------------\n') cat('Quantile Regression for Nonlinear Mixed Model\n') cat('---------------------------------------------------\n') cat('\n') cat("Quantile =",p[k]) cat('\n') cat("Subjects =",length(nj),";",'Observations =',sum(nj), ifelse(sum(nj==nj[1])==length(nj),'; Balanced =',""), ifelse(sum(nj==nj[1])==length(nj),nj[1],"")) cat('\n') cat('\n') cat('- Nonlinear function \n') cat('\n') cat('nlmodel = \n') cat(as.character(inter)) cat('\n') cat("return(resp)}") cat('\n') cat('\n') cat('-----------\n') cat('Estimates\n') cat('-----------\n') cat('\n') cat('- Fixed effects \n') cat('\n') print(round(out$res$table,5)) cat('\n') cat('sigma =',round(out$res$sigmae,5),'\n') cat('\n') cat('Random effects \n') cat('\n') cat('i) Weights \n') print(head(round(out$res$weights,5))) cat('\n') cat('ii) Variance-Covariance Matrix \n') dimnames(out$res$D) <- list(namesz,namesz) print(round(out$res$D,5)) cat('\n') cat('------------------------\n') cat('Model selection criteria\n') cat('------------------------\n') cat('\n') critFin <- c(out$res$loglik, out$res$AIC, out$res$BIC, out$res$HQ) critFin <- round(t(as.matrix(critFin)),digits=3) dimnames(critFin) <- list(c("Value"),c("Loglik", "AIC", "BIC","HQ")) print(critFin) cat('\n') cat('-------\n') cat('Details\n') cat('-------\n') cat('\n') cat("Convergence reached? =",(out$res$iter < MaxIter)) cat('\n') cat('Iterations =',out$res$iter,"/",MaxIter) cat('\n') cat('Criteria =',round(out$res$criterio,5)) cat('\n') cat('MC sample =',M) cat('\n') cat('Cut point =',cp) cat('\n') cat("Processing time =",out$res$time,units(out$res$time)) cat('\n') } fitted.values = rep(NA,sum(nj)) if(nc == 0){ for (j in 1:length(nj)){ pos = (sum(nj[1:j-1])+1):(sum(nj[1:j])) rand = as.matrix(out$res$weights)[j,] fitted.values[pos] = nlmodel(x = x[pos], fixed = out$res$beta, random = rand) } }else{ covar = as.matrix(covar) for (j in 1:length(nj)){ pos = (sum(nj[1:j-1])+1):(sum(nj[1:j])) rand = as.matrix(out$res$weights)[j,] fitted.values[pos] = nlmodel(x = x[pos], fixed = out$res$beta, random = rand, covar = covar[pos,,drop = FALSE]) } } res = list(p = p[k], iter = out$res$iter, criteria = out$res$criterio, nlmodel = nlmodel, beta = out$res$beta, weights = out$res$weights, sigma= out$res$sigmae, Psi = out$res$D, SE=out$res$EP, table = out$res$table, loglik=out$res$loglik, AIC=out$res$AIC, BIC=out$res$BIC, HQ=out$res$HQ, fitted.values = fitted.values, residuals = fitted.values - y, time = out$res$time) obj.outk = list(conv=out$conv,res = res) obj.out[[k]] = obj.outk beta = out$res$beta sigmae = out$res$sigmae Psi = out$res$D } pb2$terminate() #close(pb2) par(mfrow=c(1,1)) betas = eps = matrix(NA,length(p),d+1) for (i in 1:length(p)) { j = p[i] betas[i,] = rbind(obj.out[[i]]$res$beta,obj.out[[i]]$res$sigma) eps[i,] = obj.out[[i]]$res$SE[1:(d+1)] } LIMSUP = t(betas + qnorm(1-((1-(CI/100))/2))*eps) LIMINF = t(betas - qnorm(1-((1-(CI/100))/2))*eps) labels = list() for(i in 1:d){labels[[i]] = bquote(beta[.(i)])} labels[[d+1]] = bquote(sigma) par(mar=c(4, 4.5, 1, 0.5)) op <- par(mfrow=c(ifelse((d+1)%%2==0,(d+1)%/%2,((d+1)%/%2)+1),2),oma=c(0,0,2,0)) for(i in 1:(d+1)){ if(length(p)<4) { ymin = min(betas[,i],LIMSUP[i,],LIMINF[i,]) ymax = max(betas[,i],LIMSUP[i,],LIMINF[i,]) plot(p,betas[,i],ylim=c(ymin-2*mean(eps[,i]),ymax+2*mean(eps[,i])),xaxt='n', type='n',xlab='quantiles',ylab=labels[[i]]) axis(side=1, at=p) polygon(c(p,rev(p)),c(LIMSUP[i,],rev(LIMINF[i,])), col = "gray50", border = NA) lines(p,betas[,i]) lines(p,LIMSUP[i,]) lines(p,LIMINF[i,]) } else { smoothingSpline = smooth.spline(p, betas[,i], spar=0.1) smoothingSplineU = smooth.spline(p, betas[,i]+(qnorm(1-((1-(CI/100))/2)))*eps[,i], spar=0.1) smoothingSplineL = smooth.spline(p, betas[,i]-(qnorm(1-((1-(CI/100))/2)))*eps[,i], spar=0.1) plot(p, betas[,i], type='n',xaxt='n',xlab='quantiles',lwd=2,ylim=c(min(smoothingSplineL$y)-2*mean(eps[,i]),max(smoothingSplineU$y)+2*mean(eps[,i])),ylab=labels[[i]]) axis(side=1, at=p) #create filled polygon in between the lines polygon(c(smoothingSplineL$x,rev(smoothingSplineU$x)),c(smoothingSplineU$y,rev(smoothingSplineL$y)), col = "gray50", border = NA) #plot lines for high and low range lines(p, betas[,i], type='l',lwd=1) lines(smoothingSplineU,lwd=1) lines(smoothingSplineL,lwd=1) } } title("Point estimative and 95% CI for model parameters", outer=TRUE) if(show.convergence=="TRUE") { cpl = cp*MaxIter ndiag = (q*(1+q)/2) npar = d+1+ndiag labels = list() for(i in 1:d){labels[[i]] = bquote(beta[.(i)])} labels[[d+1]] = bquote(sigma) for(i in 1:ndiag){labels[[i+d+1]] = bquote(psi[.(i)])} for(k in 1:length(p)) { cat('\n') cat('-------------------------------\n') cat("Press [ENTER] to see next plot:") line <- readline() par(mar=c(4, 4.5, 1, 0.5)) op <- par(mfrow=c(ifelse(npar%%3==0,npar%/%3,(npar%/%3)+1),3),oma=c(0,0,2,0)) for(i in 1:npar) { plot.ts(obj.out[[k]]$conv$teta[i,],xlab="Iteration",ylab=labels[[i]]) abline(v=cpl,lty=2) } title(paste("Convergence plots for quantile",p[k]), outer=TRUE) } } par(mfrow=c(1,1)) par(mar= c(5, 4, 4, 2) + 0.1) class(obj.out) = "QRNLMM" return(obj.out) } par(mfrow=c(1,1)) par(mar= c(5, 4, 4, 2) + 0.1) }
6c596e132d33148ba2b4f06f7394912bf6dbe3e2
e7cd1e33a146924f27531249060780ea160b1b1e
/variant_analysis/LOH_analysis.R
b99ee52bbd0d634de9df2ea520565e848ead190c
[]
no_license
rj67/germVar
a92abbf86f4f7d6118202735e33e88f8c689c83a
612d90a480eac286644e9ddd9626cfca2036aada
refs/heads/master
2016-09-10T14:34:04.348001
2015-04-05T16:35:09
2015-04-05T16:35:09
16,005,171
2
0
null
null
null
null
UTF-8
R
false
false
2,301
r
LOH_analysis.R
ASCAT_stat <- read.table("Results/ASCAT_out/ploidy_purity.txt", fill=T) colnames(ASCAT_stat) <- c("Patient", "ploidy", "purity") ASCAT_stat <- subset(ASCAT_stat, !is.na(purity)) seq_lengths<- data.frame(CHROM = c(seq(1:22), "x"), length=seqlengths(seqinfo(nonsyn_GT))[1:23]) parse_ascat <- function(Patient){ ascat_file <- paste("Results/ASCAT_out/", Patient, ".segments_withSize.txt", sep="") ascat_df <- read.csv(ascat_file, strip.white = T) # some file have the "Different chromosome boundaries!" error message, remove them ascat_df <- subset(ascat_df, !grepl("Different", Segment..)) ascat_grange <- GRanges( seqnames = Rle(ascat_df$chromosome), ranges = IRanges(start = ascat_df$startBP, end = ascat_df$endBP, names = ascat_df$Segment..)) return(list(df=ascat_df, grange=ascat_grange)) } ASCAT <-lapply(ASCAT_stat$Patient, parse_ascat) A tmp<-subset(nsSNP_GT, uid %in% subset(nsSNP_rv, pred_patho=="tier1")$uid) tmp<-plyr::join(tmp, nsSNP_vr[c("uid", "aa_uid")]) tmp$uid <- as.character(levels(tmp$uid)[tmp$uid]) tmp2<-mapply(query_ascat, tmp$Patient, tmp$uid) tmp2<-as.data.frame(t(tmp2)) df<-ASCAT[[25]]$df plot_ASCAT <- function(df){ library(grid) # reorder chrmomosome level df$chromosome <- factor(df$chromosome, levels=c(seq(1, 22), "X")) # for small segments, extend both end to achieve at least size_thresh size_thresh <- 500000 df$startBP[df$size<size_thresh] <- df$startBP[df$size<size_thresh] - (size_thresh -df$size[df$size<size_thresh])/2 df$endBP[df$size<size_thresh] <- df$endBP[df$size<size_thresh] + (size_thresh -df$size[df$size<size_thresh])/2 # cap nA at threshold nA_thresh <- 5 # offset nA nB for plotting nAB_offset <- 0.09 df$nA[df$nA>nA_thresh] <- nA_thresh df$nA <- df$nA - nAB_offset df$nB <- df$nB + nAB_offset p <- ggplot(df) + geom_segment(aes(x=startBP, xend=endBP, y=nA, yend=nA), size=5, color="#d7191c") p <- p + geom_segment(aes(x=startBP, xend=endBP, y=nB, yend=nB), size=5, color="#2c7bb6") p <- p + facet_grid(.~chromosome, scales="free_x", space="free") p <- p + theme_few() + ylab("") + xlab("") + theme(axis.text.x=element_blank()) p <- p + scale_y_continuous(breaks=seq(0, 5)) + scale_x_continuous(breaks=NULL) p } ggsave(filename="tmp.png", width=10, height=5)
37a8a24705eb6726e724a8e21ca7f98a41946d3f
0306af700c92c891df42b645e24270f86c950681
/man/plot_lof.Rd
66e57900b1b249589b522bb2f51bed0c1203f17e
[]
no_license
ngwalton/iec
0fb0f1a0a8d1b293b32edab4eda103f95d50c33b
8c84b9e260c298745ded8f2f89a6baf8c836e2b6
refs/heads/master
2020-05-21T00:07:00.050610
2015-11-09T23:29:55
2015-11-09T23:29:55
25,713,988
1
1
null
2016-11-02T22:00:40
2014-10-25T00:13:27
R
UTF-8
R
false
false
723
rd
plot_lof.Rd
% Generated by roxygen2 (4.1.1): do not edit by hand % Please edit documentation in R/plot_functions.R \name{plot_lof} \alias{plot_lof} \title{Plot BRC lack-of-fit (LOF).} \usage{ plot_lof(brc, min_lof = 1) } \arguments{ \item{brc}{BRC data frame generated by \code{\link{est_brc}}.} \item{min_lof}{numeric value indicating minimum LOF to label.} } \description{ \code{plot_lof} plots the LOF of for each taxon in a BRC data frame. } \details{ The LOF for each taxon in a BRC data frame (generated by \code{\link{est_brc}}) is plotted on a single frame by index. This can be helpful for spotting taxa with large LOF relative to other taxa. This is intended as a heuristic plot only. } \seealso{ \code{\link{est_brc}} }
b8e27799e260a4a83adf3a02173abf5add33a447
235f2010472122f049f0d6c044f5dd574d493c2b
/rveg/tests/testthat.R
000281a2086c53d7cddbf9c7176fb450ac919bf5
[ "MIT" ]
permissive
chenzheng1996/monitoring-ecosystem-resilience
11aff1aeb6f469be61db397b50ae94e8e8cb7b95
387b038fa8d8ac5f0c4541afa7478db9d18701c5
refs/heads/master
2023-08-11T23:32:22.115685
2021-09-28T09:45:22
2021-09-28T09:45:22
null
0
0
null
null
null
null
UTF-8
R
false
false
73
r
testthat.R
library(testthat) #devtools::load_all() library(rveg) test_check("rveg")
88af398900e12475a9fd8df52d4049bdfe3ab1ac
0bc2798ed0bd2279da3d84e1f992ec602eb04dca
/Tree Models/HR Analytics/hr_analytics.R
b9bd1e64992b6225cfb7d049fcd18c0e6ee830c8
[]
no_license
ramkrishnaa32/PGDDS-Projects
39dec0ba6af05ff7b693507c2b8cfb39f359274c
bbb996fbccd1e3e5c783594996ea83f306d613f3
refs/heads/master
2021-05-01T09:44:24.105661
2018-02-13T08:26:00
2018-02-13T08:26:00
121,098,296
0
0
null
null
null
null
UTF-8
R
false
false
4,262
r
hr_analytics.R
# File Impoting hr_analytics <- read.csv("hr_analytics.csv") str(hr_analytics) # baseline accuracy prop.table(table(hr_analytics$salary)) # divide into train and test set set.seed(123) split.indices <- sample(nrow(hr_analytics), nrow(hr_analytics)*0.8, replace = F) train <- hr_analytics[split.indices, ] test <- hr_analytics[-split.indices, ] # Classification Trees library(rpart) library(rpart.plot) library(caret) #1 build tree model- default hyperparameters tree.model <- rpart(salary ~ ., # formula data = train, # training data method = "class") # classification or regression # display decision tree prp(tree.model) # make predictions on the test set tree.predict <- predict(tree.model, test, type = "class") # evaluate the results confusionMatrix(tree.predict, test$salary) #2 Changing the algorithm to "information gain" instead of default "gini" tree.model <- rpart(salary ~ ., # formula data = train, # training data method = "class", # classification or regression parms = list(split = "information") ) # display decision tree prp(tree.model) # make predictions on the test set tree.predict <- predict(tree.model, test, type = "class") # evaluate the results confusionMatrix(tree.predict, test$salary) #3 Tune the hyperparameters ---------------------------------------------------------- tree.model <- rpart(salary ~ ., # formula data = train, # training data method = "class", # classification or regression control = rpart.control(minsplit = 1000, # min observations for node minbucket = 1000, # min observations for leaf node cp = 0.05)) # complexity parameter # display decision tree prp(tree.model) # make predictions on the test set tree.predict <- predict(tree.model, test, type = "class") # evaluate the results confusionMatrix(tree.predict, test$salary) #4 A more complex tree ----------------------------------------------------------------- tree.model <- rpart(salary ~ ., # formula data = train, # training data method = "class", # classification or regression control = rpart.control(minsplit = 1, # min observations for node minbucket = 1, # min observations for leaf node cp = 0.001)) # complexity parameter # display decision tree prp(tree.model) # make predictions on the test set tree.predict <- predict(tree.model, test, type = "class") # evaluate the results confusionMatrix(tree.predict, test$salary) #5 Cross test to choose CP ------------------------------------------------------------ library(caret) # set the number of folds in cross test to 5 tree.control = trainControl(method = "cv", number = 5) # set the search space for CP tree.grid = expand.grid(cp = seq(0, 0.02, 0.0025)) # train model tree.model <- train(salary ~ ., data = train, method = "rpart", metric = "Accuracy", trControl = tree.control, tuneGrid = tree.grid, control = rpart.control(minsplit = 50, minbucket = 20)) # cross validated model results tree.model # look at best value of hyperparameter tree.model$bestTune # make predictions on test set tree.predict <- predict.train(tree.model, test) # accuracy confusionMatrix(tree.predict, test$salary) # plot CP vs Accuracy library(ggplot2) accuracy_graph <- data.frame(tree.model$results) ggplot(data = accuracy_graph, aes(x = cp, y = Accuracy*100)) + geom_line() + geom_point() + labs(x = "Complexity Parameter (CP)", y = "Accuracy", title = "CP vs Accuracy")
5b44eef8366dd98c6a207a075eaa07d499c137e2
b99559c092f9a112435087bfc67e199aede2e469
/clustering1.R
d481ebc5db88076519903e2e99118359fa57f601
[]
no_license
luaburto/machine-learning
26d17317e07e713ad16c1fe4c12d7648ce91b685
a4ffe1f2525ca82f15135ec24d1ae98404db5f97
refs/heads/master
2022-01-16T07:30:14.777662
2019-07-23T09:40:37
2019-07-23T09:40:37
198,096,501
0
1
null
null
null
null
UTF-8
R
false
false
3,897
r
clustering1.R
n <- 3 # no. of centroids set.seed(1415) # set seed for reproducibility M1 <- matrix(round(runif(100, 1, 5), 1), ncol = 2) M2 <- matrix(round(runif(100, 7, 12), 1), ncol = 2) M3 <- matrix(round(runif(100, 20, 25), 1), ncol = 2) M <- rbind(M1, M2, M3) C <- M[1:n, ] # define centroids as first n objects obs <- length(M) / 2 A <- sample(1:n, obs, replace = TRUE) # assign objects to centroids at random colors <- seq(10, 200, 25) clusterplot <- function(M, C, txt) { plot(M, main = txt, xlab = "", ylab = "") for(i in 1:n) { points(C[i, , drop = FALSE], pch = 23, lwd = 3, col = colors[i]) points(M[A == i, , drop = FALSE], col = colors[i]) } } clusterplot(M, C, "Initialization") repeat { # calculate Euclidean distance between objects and centroids D <- matrix(data = NA, nrow = n, ncol = obs) for(i in 1:n) { for(j in 1:obs) { D[i, j] <- sqrt((M[j, 1] - C[i, 1])^2 + (M[j, 2] - C[i, 2])^2) } } O <- A ## E-step: parameters are fixed, distributions are optimized A <- max.col(t(-D)) # assign objects to centroids if(all(O == A)) break # if no change stop clusterplot(M, C, "E-step") ## M-step: distributions are fixed, parameters are optimized # determine new centroids based on mean of assigned objects for(i in 1:n) { C[i, ] <- apply(M[A == i, , drop = FALSE], 2, mean) } clusterplot(M, C, "M-step") } cl <- kmeans(M, n) clusterplot(M, cl$centers, "Base R") (custom <- C[order(C[ , 1]), ]) ## [,1] [,2] ## [1,] 3.008 2.740 ## [2,] 9.518 9.326 ## [3,] 22.754 22.396 (base <- cl$centers[order(cl$centers[ , 1]), ]) ## [,1] [,2] ## 2 3.008 2.740 # from http://blog.ephorie.de/learning-data-science-understanding-and-using-k-means-clustering ## 1 9.518 9.326 ## 3 22.754 22.396 round(base - custom, 13) ## [,1] [,2] ## 2 0 0 ## 1 0 0 ## 3 0 0 data <- read.csv("<a class="vglnk" href="https://archive.ics.uci.edu/ml/machine-learning-databases/00292/Wholesale" rel="nofollow"><span>https</span><span>://</span><span>archive</span><span>.</span><span>ics</span><span>.</span><span>uci</span><span>.</span><span>edu</span><span>/</span><span>ml</span><span>/</span><span>machine</span><span>-</span><span>learning</span><span>-</span><span>databases</span><span>/</span><span>00292</span><span>/</span><span>Wholesale</span></a> customers data.csv", header = TRUE) head(data) ## Channel Region Fresh Milk Grocery Frozen Detergents_Paper Delicassen ## 1 2 3 12669 9656 7561 214 2674 1338 ## 2 2 3 7057 9810 9568 1762 3293 1776 ## 3 2 3 6353 8808 7684 2405 3516 7844 ## 4 1 3 13265 1196 4221 6404 507 1788 ## 5 2 3 22615 5410 7198 3915 1777 5185 ## 6 2 3 9413 8259 5126 666 1795 1451 set.seed(123) k <- kmeans(data[ , -c(1, 2)], centers = 4) # remove columns 1 and 2, create 4 clusters (centers <- k$centers) # display cluster centers ## Fresh Milk Grocery Frozen Detergents_Paper Delicassen ## 1 8149.837 18715.857 27756.592 2034.714 12523.020 2282.143 ## 2 20598.389 3789.425 5027.274 3993.540 1120.142 1638.398 ## 3 48777.375 6607.375 6197.792 9462.792 932.125 4435.333 ## 4 5442.969 4120.071 5597.087 2258.157 1989.299 1053.272 round(prop.table(centers, 2) * 100) # percentage of sales per category ## Fresh Milk Grocery Frozen Detergents_Paper Delicassen ## 1 10 56 62 11 76 24 ## 2 25 11 11 22 7 17 ## 3 59 20 14 53 6 47 ## 4 7 12 13 13 12 11 table(k$cluster) # number of customers per cluster ## ## 1 2 3 4 ## 49 113 24 254
bfa06425856db566dd5b9c9511f6d57fb72a4774
f6a1375e6453107cba75567ec0c3ba23a5ac7958
/R/aggregate_list.R
cfce3dd15247db3f06d9824ac8e1f7de48912459
[]
no_license
UW-GAC/analysis_pipeline
7c04b61c9cafa2bcf9ed1b25c47c089f4aec0646
df9f8ca64ddc9995f7aef118987553b3c31301a1
refs/heads/master
2023-04-07T03:13:52.185334
2022-03-23T21:15:46
2022-03-23T21:15:46
57,252,920
42
30
null
2023-03-23T20:13:40
2016-04-27T22:25:56
R
UTF-8
R
false
false
1,955
r
aggregate_list.R
library(argparser) library(TopmedPipeline) library(SeqVarTools) sessionInfo() argp <- arg_parser("Parse table of variants of regions to a list") argp <- add_argument(argp, "config", help="path to config file") argp <- add_argument(argp, "--chromosome", help="chromosome (1-24 or X,Y)", type="character") argp <- add_argument(argp, "--version", help="pipeline version number") argv <- parse_args(argp) cat(">>> TopmedPipeline version ", argv$version, "\n") config <- readConfig(argv$config) chr <- intToChr(argv$chromosome) required <- c("variant_group_file") optional <- c("aggregate_type"="allele", "group_id"="group_id", "out_file"="aggregate_list.RData") config <- setConfigDefaults(config, required, optional) print(config) writeConfig(config, paste0(basename(argv$config), ".aggregate_list.params")) ## file can have two parts split by chromosome identifier outfile <- config["out_file"] varfile <- config["variant_group_file"] if (!is.na(chr)) { outfile <- insertChromString(outfile, chr, err="out_file") varfile <- insertChromString(varfile, chr) } groups <- getobj(varfile) ## rename columns if necessary names(groups)[names(groups) %in% config["group_id"]] <- "group_id" names(groups)[names(groups) %in% c("chromosome", "CHROM")] <- "chr" names(groups)[names(groups) %in% c("position", "POS")] <- "pos" names(groups)[names(groups) %in% "REF"] <- "ref" names(groups)[names(groups) %in% "ALT"] <- "alt" ## subset groups by chromosome groups <- groups[groups$chr == chr,] if (!is.character(groups$chr)) groups$chr <- as.character(groups$chr) if (config["aggregate_type"] == "allele") { aggVarList <- aggregateGRangesList(groups) } else if (config["aggregate_type"] == "position") { aggVarList <- aggregateGRanges(groups) } else { stop("aggregrate_type must be 'allele' or 'position'") } save(aggVarList, file=outfile) # mem stats ms <- gc() cat(">>> Max memory: ", ms[1,6]+ms[2,6], " MB\n")
61a0631573295a9fe2823d5145f0ff21252e6ac9
b1e812ebd76a7d344340c65ddebc52758745b95b
/man/getDataPSQL.Rd
a482dc6dd47409e43e5194690a0e8dcbc5031d4a
[]
no_license
DevProgress/RVertica
71a03ffbedc13e7f1f6cdeef135c6cb25f37ebf6
30d2f6d60b22018e68d6ca1d61ea25ccdf9ada93
refs/heads/master
2020-04-06T06:49:07.788645
2016-08-25T21:47:04
2016-08-25T21:47:04
64,185,049
2
3
null
2016-08-25T21:47:04
2016-07-26T02:58:15
R
UTF-8
R
false
true
461
rd
getDataPSQL.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/queries.R \name{getDataPSQL} \alias{getDataPSQL} \title{Run Sample Query via \code{psql}} \usage{ getDataPSQL(sqlquery) } \arguments{ \item{sqlquery}{A SQL query as character string} } \value{ The dataset corresponding to the query. } \description{ Run a sample query against Vertica using \code{psql}. } \details{ The \code{psql} binary is required. } \author{ Dirk Eddelbuettel }
f3bbc19989e67f9660937a64705a6530edcd3f72
0a907d48703647ba34d5d01cb2652fe974bc155e
/man/ncc.ci.sr.Rd
55165b2d188760e3a45a4481c167049d1a590eb9
[]
no_license
simonvandekar/Reproducible
b111b60ea1c86c008a037bbdc1f5bb3513f5ca58
3f2d88d70c8ec33ec416c5c2ad38f1351526871c
refs/heads/master
2021-07-11T11:36:04.702407
2020-11-16T19:14:56
2020-11-16T19:14:56
219,840,544
1
0
null
null
null
null
UTF-8
R
false
true
494
rd
ncc.ci.sr.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/ncc.R \name{ncc.ci.sr} \alias{ncc.ci.sr} \title{Symmetric range confidence interval for chi-square noncentrality parameter.} \usage{ ncc.ci.sr(y, p, alpha = 0.05) } \arguments{ \item{y}{numeric, value of chi random variable.} \item{p}{integer, degrees of freedom.} \item{alpha}{probability for confidence interval.} } \description{ Code taken by SNV from https://www1.maths.leeds.ac.uk/~john/software/ncc/ncc.r. }
f19c1d139fe73d4f98a15b0b3fb1c19d41c31040
c54f712c4ddfe909de08dd0b52639d1af1a5f0e4
/exercise-6-code (1).R
2d4480bd3f8323767dc3f36afa69603a682e659e
[]
no_license
JEMunson/PS811-Excercises
61a1cbd0249c414934888e8c87de72e8052833aa
42ff0b8cb2162383ddd486837445fdb2939889f1
refs/heads/master
2023-01-19T22:26:52.670835
2020-12-03T22:16:27
2020-12-03T22:16:27
294,452,738
0
2
null
2020-11-15T00:45:06
2020-09-10T15:43:40
TeX
UTF-8
R
false
false
3,872
r
exercise-6-code (1).R
--- title: 'Exercise 6: Base R vs. Tidyverse' author: "Jessie Munson" date: "10/22/2020" output: pdf_document --- # load packages library("here") library("haven") library("magrittr") library("tidyverse") library("tidyr") library("dplyr") # setup folders and directories here("data") here("code") #read in data victual <- read_csv(here("data", "food_coded.csv")) #make data frame just in case as.data.frame(victual) #view for reference head(victual) #extract the first 95 rows, named extracted data frame "victuals" victuals<- victual[1:95,] #look at variables view(victuals$GPA) view(victuals$calories_chicken) view(victuals$drink) view(victuals$fav_cuisine) view(victuals$father_profession) view(victuals$mother_profession) #Create a new variable for how healthy each person feels but convert the scale from 1 to 10 to 1 to 100. print(victuals$healthy_feeling2) #Filter to students who are female and have GPAs that are above 3.0. fem3<- filter(victuals, GPA > 3.0, Gender == 1) fem3 #arrange favorite cuisine alphabetically fem3c<- arrange(fem3, fem3$fav_cuisine) fem3c fem3cdta<- tibble(fem3c) #Find the mean and standard deviation for the following variables, and summarize them in a data frame. mean(fem3c$calories_chicken) mean(fem3c$tortilla_calories) mean(fem3c$turkey_calories) mean(fem3c$waffle_calories) sd(fem3c$calories_chicken) sd(fem3c$tortilla_calories) sd(fem3c$turkey_calories) sd(fem3c$waffle_calories) #summarize in new data frame fem3_data <- tibble(c( mean(fem3c$calories_chicken), mean(fem3c$tortilla_calories), mean(fem3c$turkey_calories), mean(fem3c$waffle_calories), sd(fem3c$calories_chicken), sd(fem3c$tortilla_calories), sd(fem3c$turkey_calories), sd(fem3c$waffle_calories))) #summarize GPA -> I'm not sure this is right summary(fem3cdta$GPA, fem3cdta$weight) #now to tidyverse stuff #read in the csv veracity<- read.csv(here("data", "facebook-fact-check.csv")) #extract the last 500 rows veracity2<- veracity %>% top_n(-500) #Look at the even-numbered column indices only. Identify them by name. #I don't understand this #make new coded post type variable post_type_coded <- mutate(veracity2, Post.Type = case_when( Post.Type == "link" ~ 1, Post.Type == "photo" ~ 2, Post.Type == "text" ~ 3, Post.Type == "video" ~ 4)) #page names in reverse order arrange(veracity2, desc(Page)) #Find the mean and standard deviation for the following variables, and summarize them. summarise(veracity2, share_count.mean = mean(share_count, na.rm = TRUE), share_count.sd = sd(share_count, na.rm = TRUE), reaction_count.mean = mean(reaction_count), reaction_count.sd = sd(reaction_count), comment_count.mean = mean(comment_count), comment_count.sd = sd(comment_count)) #na.rm removed the NAs I was getting in the summary. #Summarize the mean and standard deviations in Question 7 with the #"mainstream" values in the `category` variable. veracity2 %>% group_by("mainstream", Category) %>% summarise(veracity2, share_count.mean = mean(share_count, na.rm = TRUE), share_count.sd = sd(share_count, na.rm = TRUE), reaction_count.mean = mean(reaction_count), reaction_count.sd = sd(reaction_count), comment_count.mean = mean(comment_count), comment_count.sd = sd(comment_count)) #Jess helped me with the last two as I don't understand the tidyverse yet. #Do you know of any good tidyverse primers I could refer to? Especially one that talks #about piping?
5c2e0b5047e96d9eacd8c841b0bf02c9491d1ea8
2d662871298fadd5de7dd030257c8d6614369d9e
/Yapay sinir ağları.R
bdf2dca7ceaa8662378e8a18c01062b6b4409495
[]
no_license
CemRoot/R-Language
64091cee31346f92ed951f989f06fc267975353f
62c1dca0bae747eca09874a34e2b7b6131ec158d
refs/heads/main
2023-04-11T02:38:54.744005
2021-04-12T19:28:43
2021-04-12T19:28:43
353,489,620
1
0
null
null
null
null
ISO-8859-9
R
false
false
2,205
r
Yapay sinir ağları.R
#YAPAY SİNİR AĞLARI # Boston veri seti icin install.packages("MASS") library(MASS) # neural networks fonksiyonu icin install.packages("neuralnet") library(neuralnet) # yapay sinir aglarini kullanmak icin verimizi olceklendirmemiz gerekiyor. # tahmin edecegimiz degiskeni tam olarak 0 ile 1 arasina cekmemiz gerekiyor. # tum degerleri 0 ile 1 arasina cekmek icin minumum degerlerinden cikartip # maximum ile minumum'un farkina boluyoruz. # diger degerleri ise ortalama degerlerinden cikartip standard sapmalarina boluyoruz. Boston.scaled <- as.data.frame(scale(Boston)) min.medv <- min(Boston$medv) max.medv <- max(Boston$medv) Boston.scaled$medv <- scale(Boston$medv , center = min.medv , scale = max.medv - min.medv) # tahmin edecegimiz degisken olan medv degiskeni bu sekilde olceklendirildi. # Train-test ayrimi Boston.train.scaled <- Boston.scaled[1:400, ] Boston.test.scaled <- Boston.scaled[401:506, ] # neural networks fonksiyonunun kullaniminda butun degiskenleri tek tek yazmamiz gerekiyor. # !!! NEURAL NETWORKS KULLANIRKEN TUM DEGISKENLER SAYISAL OLMALIDIR !!!! # eger birden cok kategoriye sahip bir degiskeniniz var ise model.matrix fonksiyonunu # kullanin. ?model.matrix yazarak detaylari inceleyebilirsiniz. Boston.nn.5.3 <- neuralnet(medv~crim+zn+indus+chas+nox+rm+age+dis+rad+tax+ptratio+black+lstat , data=Boston.train.scaled , hidden=c(5,3) , linear.output=TRUE) plot(Boston.nn.5.3) # plot fonksiyonu ile kolayca yarattigimiz yapay sinir agini gorsellestirebiliriz. Boston.nn.8 <- neuralnet(Boston.nn.fmla , data=Boston.train.scaled , hidden=8 , linear.output=TRUE) plot(Boston.nn.8) # boylece iki farkli sinir agi olusturduk. # sonucu eski formatinda gormek icin sadece olceklendirmeyi tersine uygulamamiz gerekiyor.
5acfe332648e5f68e198c70659abd32aa15166bb
0d74c6026340636cb7a73da2b53fe9a80cd4d5a5
/simsem/man/SimSem-class.Rd
0a56092fadf51f4fa42062761d9d0d2f6e6d8c39
[]
no_license
simsem/simsem
941875bec2bbb898f7e90914dc04b3da146954b9
f2038cca482158ec854a248fa2c54043b1320dc7
refs/heads/master
2023-05-27T07:13:55.754257
2023-05-12T11:56:45
2023-05-12T11:56:45
4,298,998
42
23
null
2015-06-02T03:50:52
2012-05-11T16:11:35
R
UTF-8
R
false
false
1,615
rd
SimSem-class.Rd
\name{SimSem-class} \Rdversion{1.1} \docType{class} \alias{SimSem-class} \alias{summary,SimSem-method} \title{Class \code{"SimSem"}} \description{ The template containing data-generation and data-analysis specification } \section{Objects from the Class}{ Objects can be created by \code{\link{model}}. } \section{Slots}{ \describe{ \item{\code{pt}:}{ Parameter table used in data analysis } \item{\code{dgen}:}{ Data generation template } \item{\code{modelType}:}{ Type of models (CFA, Path, or SEM) contained in this object } \item{\code{groupLab}:}{ The label of grouping variable } \item{\code{con}:}{ The list of defined parameters, equality constraints, or inequality constraints specified in the model } } } \section{Methods}{ \describe{ \item{summary}{Get the summary of model specification } } } \author{ Patrick Miller (University of Notre Dame; \email{[email protected]}), Sunthud Pornprasertmanit (\email{[email protected]}) } \seealso{ \itemize{ \item Create an object this class by CFA, Path Analysis, or SEM model by \code{\link{model}}. } } \examples{ showClass("SimSem") loading <- matrix(0, 6, 2) loading[1:3, 1] <- NA loading[4:6, 2] <- NA loadingValues <- matrix(0, 6, 2) loadingValues[1:3, 1] <- 0.7 loadingValues[4:6, 2] <- 0.7 LY <- bind(loading, loadingValues) summary(LY) latent.cor <- matrix(NA, 2, 2) diag(latent.cor) <- 1 RPS <- binds(latent.cor, 0.5) # Error Correlation Object error.cor <- matrix(0, 6, 6) diag(error.cor) <- 1 RTE <- binds(error.cor) CFA.Model <- model(LY = LY, RPS = RPS, RTE = RTE, modelType="CFA") summary(CFA.Model) }
b90c97eef2a6ead6cc14de575d86463a72490795
ffdea92d4315e4363dd4ae673a1a6adf82a761b5
/data/genthat_extracted_code/rpf/examples/rpf.logprob.Rd.R
f0ff09048c8f68c34ae56145e7b7d24ec49b79fb
[]
no_license
surayaaramli/typeRrh
d257ac8905c49123f4ccd4e377ee3dfc84d1636c
66e6996f31961bc8b9aafe1a6a6098327b66bf71
refs/heads/master
2023-05-05T04:05:31.617869
2019-04-25T22:10:06
2019-04-25T22:10:06
null
0
0
null
null
null
null
UTF-8
R
false
false
599
r
rpf.logprob.Rd.R
library(rpf) ### Name: rpf.logprob ### Title: Map an item model, item parameters, and person trait score into ### a probability vector ### Aliases: rpf.logprob rpf.logprob,rpf.1dim,numeric,numeric-method ### rpf.logprob,rpf.1dim,numeric,matrix-method ### rpf.logprob,rpf.mdim,numeric,matrix-method ### rpf.logprob,rpf.mdim,numeric,numeric-method ### rpf.logprob,rpf.mdim,numeric,NULL-method rpf_logprob_wrapper ### ** Examples i1 <- rpf.drm() i1.p <- rpf.rparam(i1) rpf.logprob(i1, c(i1.p), -1) # low trait score rpf.logprob(i1, c(i1.p), c(0,1)) # average and high trait score
a60bd783b633ce96bfc46b4fcb5c585fabc69e2f
b400255589a974e4fb8a7c468f7a967649c10c25
/man/pkg_dev.Rd
9da87900be9aa0e56086280d48da8f1d61dd8489
[ "MIT" ]
permissive
cmil/ghactions
701730602d785a7e313e9550dde5ee68dff69f1a
10d3c3a41b2de651589aed91d06388579b6a3d2a
refs/heads/master
2020-12-05T17:59:58.736614
2020-01-06T22:56:10
2020-01-06T22:56:10
232,199,293
0
0
MIT
2020-01-06T22:49:33
2020-01-06T22:49:32
null
UTF-8
R
false
true
2,029
rd
pkg_dev.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/steps.R \name{pkg_dev} \alias{pkg_dev} \alias{rcmd_check} \alias{covr} \title{CI/CD steps for a package at the repository root} \usage{ rcmd_check(name = "Check Package") covr(name = "Run Code Coverage") } \arguments{ \item{name}{\verb{[character(1)]} giving additional options for the step. Multiline strings are not supported. Defaults to \code{NULL}.} \item{...}{ Arguments passed on to \code{\link[=step]{step}} \describe{ \item{\code{id}}{\verb{[character(1)]} giving additional options for the step. Multiline strings are not supported. Defaults to \code{NULL}.} \item{\code{if}}{\verb{[character(1)]} giving additional options for the step. Multiline strings are not supported. Defaults to \code{NULL}.} \item{\code{shell}}{\verb{[character(1)]} giving additional options for the step. Multiline strings are not supported. Defaults to \code{NULL}.} \item{\code{with}}{\verb{[list()]} giving a named list of additional parameters. Defaults to \code{NULL}.} \item{\code{env}}{\verb{[list()]} giving a named list of additional parameters. Defaults to \code{NULL}.} \item{\code{working-directory}}{\verb{[character(1)]} giving the default working directory. Defaults to \code{NULL}.} \item{\code{continue-on-error}}{\verb{[logical(1)]} giving whether to allow a job to pass when this step fails. Defaults to \code{NULL}.} \item{\code{timeout-minutes}}{\verb{[integer(1)]} giving the maximum number of minutes to run the step before killing the process. Defaults to \code{NULL}.} }} } \description{ CI/CD steps for a package at the repository root } \section{Functions}{ \itemize{ \item \code{rcmd_check}: \code{\link[rcmdcheck:rcmdcheck]{rcmdcheck::rcmdcheck()}} \item \code{covr}: \code{\link[covr:codecov]{covr::codecov()}} }} \seealso{ Other steps: \code{\link{checkout}()}, \code{\link{deploy_static}}, \code{\link{install_deps}()}, \code{\link{rscript}()} } \concept{pkg_development} \concept{steps}
6d7ef664e7b44a149556c7b81516dde4070bc65c
bfb23bde5d451fdbe5b66482083656afe311510d
/tests/testthat/test_compile_report.R
8a2747fd54c93a07c2ff692b1a6b2e66f2a904c1
[]
no_license
vfulco/reportfactory
b96cb9961ff16c819bcb20fcb2c117c1df451347
1cca5b9e6241469377c4a9047a5a7580185551b9
refs/heads/master
2020-03-22T08:05:55.466548
2018-06-29T15:55:14
2018-06-29T15:55:14
null
0
0
null
null
null
null
UTF-8
R
false
false
543
r
test_compile_report.R
context("Test report compilation") test_that("Compilation can handle multiple outputs", { skip_on_cran() setwd(tempdir()) random_factory() compile_report(list_reports(pattern = "foo")[1], quiet = TRUE) outputs <- sub("([[:alnum:]_-]+/){2}", "", list_outputs()) outputs <- sort(outputs) ref <- c("figures/boxplots-1.pdf", "figures/boxplots-1.png", "figures/violins-1.pdf", "figures/violins-1.png", "foo_2018-06-29.html", "outputs_base.csv" ) expect_identical(ref, outputs) })
99c551547fd77c37277e0108ec39f21cca0043e3
cbb37354c93299164fc2b88e5a74901a48ae9551
/R/tablefilter.R
f1aa7319bf12c114333e103152b7c874cf30f9fb
[]
no_license
skranz/shinyEventsUI
2de099b12a05e313f94df5919a32ffc44cde4565
e05f1eb202f15174f054be914aed9920aa60148b
refs/heads/master
2021-07-12T05:23:36.408108
2021-04-01T11:18:40
2021-04-01T11:18:40
53,415,508
0
0
null
null
null
null
UTF-8
R
false
false
1,001
r
tablefilter.R
example.table.filter = function() { library(SeminarMatching) script.dir = "D:/libraries/shinyEventsUI/shinyEventsUI/inst/www" app = eventsApp() n = 10 df = data.frame(a = sample(1:2,n, replace = TRUE), x = runif(n)) html = html.table(df,id="mytab") app$ui = bootstrapPage( HTML(html), add.table.filter("mytab", filter.type="select", num.cols=5) ) viewApp(app) } table.filter.header = function() { addShinyEventsUIRessourcePath() singleton(tags$head(tags$script(src="shinyEventsUI/tablefilter_all_min.js"))) } add.table.filter = function(table.id, filter.type = "select", num.cols=10, add.header=TRUE) { restore.point("add.table.filter") inner = paste0("col_",seq_len(num.cols)-1,': "', filter.type,'"', collapse=",\n" ) js = paste0(' var myfilter = { ',inner,', }; var tf = setFilterGrid("',table.id,'",myfilter); ') if (add.header) { return(tagList( table.filter.header(), tags$script(HTML(js)) )) } tags$script(HTML(js)) }
8ec94acca5dc1bd6495d21eb66429d580ba3cc3d
3803bb7b319c8b37910d0fa42e20b73d4f40e031
/data.R
2d4703b6a4d1662efe250b26bec1c7a484010fa7
[]
no_license
kartbilon/csv
d79a4e70f32bea52ff993e60c824ac07c4040ca7
2920c4569510e71285e159ef2363b8c1c80b788b
refs/heads/master
2020-12-03T23:07:15.359026
2020-01-03T05:14:03
2020-01-03T05:14:03
231,516,434
0
0
null
null
null
null
UTF-8
R
false
false
4,191
r
data.R
library(httr) library(rvest) library(RSelenium) # 3.7초만큼 딜레이를 주는 코드 # testit <- function(x) # { # p1 <- proc.time() # Sys.sleep(x) # proc.time() - p1 # The cpu usage should be negligible # } # testit(3.7) remD <- remoteDriver(port = 4445, # 포트번호 입력 browserName = "safari") #사용할 브라우저 remD$open() remD$navigate("https://www.youtube.com/user/bokyemtv/videos") remD$executeScript("window.scrollTo(0,100)") testit <- function(x) { p1 <- proc.time() Sys.sleep(x) proc.time() - p1 # The cpu usage should be negligible } testit(0.5) remD$executeScript("window.scrollTo(100,200)") testit <- function(x) { p1 <- proc.time() Sys.sleep(x) proc.time() - p1 # The cpu usage should be negligible } testit(0.5) remD$executeScript("window.scrollTo(200,300)") testit <- function(x) { p1 <- proc.time() Sys.sleep(x) proc.time() - p1 # The cpu usage should be negligible } testit(0.5) remD$executeScript("window.scrollTo(300,400)") testit <- function(x) { p1 <- proc.time() Sys.sleep(x) proc.time() - p1 # The cpu usage should be negligible } testit(0.5) remD$executeScript("window.scrollTo(400,500)") testit <- function(x) { p1 <- proc.time() Sys.sleep(x) proc.time() - p1 # The cpu usage should be negligible } testit(0.5) remD$executeScript("window.scrollTo(500,600)") testit <- function(x) { p1 <- proc.time() Sys.sleep(x) proc.time() - p1 # The cpu usage should be negligible } testit(0.5) remD$executeScript("window.scrollTo(600,700)") testit <- function(x) { p1 <- proc.time() Sys.sleep(x) proc.time() - p1 # The cpu usage should be negligible } testit(0.5) remD$executeScript("window.scrollTo(700,800)") testit <- function(x) { p1 <- proc.time() Sys.sleep(x) proc.time() - p1 # The cpu usage should be negligible } testit(0.5) remD$executeScript("window.scrollTo(800,900)") testit <- function(x) { p1 <- proc.time() Sys.sleep(x) proc.time() - p1 # The cpu usage should be negligible } testit(0.5) remD$executeScript("window.scrollTo(900,1000)") testit <- function(x) { p1 <- proc.time() Sys.sleep(x) proc.time() - p1 # The cpu usage should be negligible } testit(0.5) remD$executeScript("window.scrollTo(1000,1100)") testit <- function(x) { p1 <- proc.time() Sys.sleep(x) proc.time() - p1 # The cpu usage should be negligible } testit(0.5) remD$executeScript("window.scrollTo(1100,1200)") testit <- function(x) { p1 <- proc.time() Sys.sleep(x) proc.time() - p1 # The cpu usage should be negligible } testit(0.5) remD$executeScript("window.scrollTo(2400,2500)") testit <- function(x) { p1 <- proc.time() Sys.sleep(x) proc.time() - p1 # The cpu usage should be negligible } testit(0.5) remD$executeScript("window.scrollTo(2600,2700)") testit <- function(x) { p1 <- proc.time() Sys.sleep(x) proc.time() - p1 # The cpu usage should be negligible } testit(0.5) remD$executeScript("window.scrollTo(2800,2900)") testit <- function(x) { p1 <- proc.time() Sys.sleep(x) proc.time() - p1 # The cpu usage should be negligible } testit(0.5) remD$executeScript("window.scrollTo(3000,3100)") testit <- function(x) { p1 <- proc.time() Sys.sleep(x) proc.time() - p1 # The cpu usage should be negligible } testit(0.5) html <- remD$getPageSource()[[1]] html <- read_html(html) youtube_title = c() youtube_thumbnail = c() youtube_url = c() youtubevideo = "youtube.com" title_css = "div#items a#video-title" thumbnail_css ="div#items img#img" title_node = html_nodes(html,title_css) thumbnail_node = html_nodes(html, thumbnail_css) title_part = html_text(title_node) thumbnail_part = html_attr(thumbnail_node, "src") url_part = html_attr(title_node, "href") url_part2= paste0(youtubevideo,url_part ) title_part = title_part [1:100] thumbnail_part = thumbnail_part [1:100] url_part2 = url_part2 [1:100] youtube_title = c(youtube_title,title_part) youtube_thumbnail=c(youtube_thumbnail,thumbnail_part) youtube_url = c(youtube_url,url_part2) earloflemongrab31 = cbind(youtube_title, youtube_thumbnail,youtube_url) write.csv (earloflemongrab31,"/Users/hwanghyeon-u/Desktop/bk.csv", fileEncoding = "utf8")
b229d10e9bda7aca52d0e5bdf176762bb85b8438
b47d0dee49601b05b9b7fa01b10717d1cd9564ee
/_site/tests/test-pairs.R
257cce51def7805ff9aaa950c3bd130a41649fc5
[ "MIT" ]
permissive
dchudz/predcomps
445760dd4c33b0795ea97d8c219c12e1dbf8ab46
cc3bf1155cc01f496da231af4facfc47d986d046
refs/heads/master
2021-01-02T09:26:13.537651
2018-06-26T12:31:36
2018-06-26T12:31:36
14,263,610
16
11
MIT
2018-06-26T12:31:37
2013-11-09T19:35:23
R
UTF-8
R
false
false
1,022
r
test-pairs.R
MakeComparable <- function(df) { df <- round(df, digits = 5) return(df[do.call(order, df), ]) } test_that("GetPairs works right in a small example", { df <- data.frame(X = rep(c(1,2),2), Y = rep(c(2,4),2)) pairsActual <- GetPairs(df, "X", "Y") pairsExpected <- data.frame(OriginalRowNumber = c(1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L), X = c(1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2), Y = c(2, 2, 2, 4, 4, 4, 2, 2, 2, 4, 4, 4), X.B = c(2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1), Weight = c(0.166666666666667, 0.666666666666667, 0.166666666666667, 0.166666666666667, 0.166666666666667, 0.666666666666667, 0.666666666666667, 0.166666666666667, 0.166666666666667, 0.166666666666667, 0.666666666666667, 0.166666666666667)) pairsActual <- pairsActual[names(pairsExpected)] expect_that(all.equal(MakeComparable(pairsActual), MakeComparable(pairsExpected)), is_true()) })
c08e529005e721b9f5b33cf3dd2b1fad49d31ac5
7d840154a12fc1012ea72cdba3032bcdd2ebfeee
/man/wbw.Rd
a22a76986cdca657faf4a24eef916f787b6e55df
[ "MIT" ]
permissive
bandyopd/cenROC
b875d2fb1b4dcae8e8eb682d71dba699b4393ff3
98bf995accc633fd6e5990abee65936233ea9ba2
refs/heads/master
2022-04-12T18:09:17.015754
2020-03-31T14:12:20
2020-03-31T14:12:20
null
0
0
null
null
null
null
UTF-8
R
false
true
1,405
rd
wbw.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/bw.R \name{wbw} \alias{wbw} \title{Function to select the bandwidth parameter needed for smoothing the time-dependent ROC curve.} \usage{ wbw(X, wt, bw = "NR", ktype = "normal") } \arguments{ \item{X}{The numeric data vector.} \item{wt}{The non-negative weight vector.} \item{bw}{A character string specifying the bandwidth selection method. The possible options are "\code{NR}" for the normal reference, the plug-in "\code{PI}" and cross-validation "\code{CV}".} \item{ktype}{A character string indicating the type of kernel function: "\code{normal}", "\code{epanechnikov}", "\code{biweight}", or "\code{triweight}". Default is "\code{normal}" kernel.} } \value{ Returns the estimated value for the bandwith parameter. } \description{ This function computes the data-driven bandwidth value for smoothing the ROC curve. It contains three methods: the normal refrence, the plug-in and the cross-validation methods. } \references{ Beyene, K. M. and El Ghouch A. (2019). Smoothed time-dependent ROC curves for right-censored survival data. <\url{https://dial.uclouvain.be/pr/boreal/object/boreal:219643}>. } \author{ Kassu Mehari Beyene, Catholic University of Louvain. \code{<[email protected]>} Anouar El Ghouch, Catholic University of Louvain. \code{<[email protected]>} } \keyword{internal}
80701ef07afa5c867844b9ce8c9df44a2373a839
19c861d31f78661a83c38a133edd8c4f6eac0336
/man/revgray.Rd
66cf3e5964c49ee4c0eceda0bcef162804d96dfa
[]
no_license
cran/broman
8db38ff459ffda1645c01cb145b15aa4ea8e3647
90ae16237e25ee75600b31d61757f09edf72ad91
refs/heads/master
2022-07-30T16:46:40.198509
2022-07-08T14:30:09
2022-07-08T14:30:09
17,694,892
0
0
null
null
null
null
UTF-8
R
false
true
693
rd
revgray.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/revgray.R \name{revgray} \alias{revgray} \title{Create vector of colors from white to black} \usage{ revgray(n = 256, ...) } \arguments{ \item{n}{Number of colors.} \item{...}{Passed to \code{\link[grDevices:gray]{grDevices::gray()}}.} } \value{ Vector of colors, from white to black } \description{ Calls \code{\link[grDevices:gray]{grDevices::gray()}} then \code{\link[base:rev]{base::rev()}} } \details{ There's not much to this. It's just \verb{gray((n:0)/n))} } \examples{ x <- matrix(rnorm(100), ncol=10) image(x, col=revgray()) } \seealso{ \code{\link[grDevices:gray]{grDevices::gray()}} } \keyword{color}
11e36eea63a1862524f20e488d674ddd166fc940
7d42b047a927c159e9e0a417eefdea85860c80c6
/project/p3.R
5c82beb2f15581096d680c79b6f42aa809d04198
[]
no_license
gdwangh/coursera-dataScientists-8-Practical-Machine-Learning
b465ae76846b95a6639e45078377215665797d86
f682e79d509b07f0669f8ada1d9a5c8af81c55b0
refs/heads/master
2020-05-20T05:54:00.153360
2014-12-07T15:25:15
2014-12-07T15:25:15
26,563,358
0
1
null
null
null
null
UTF-8
R
false
false
1,895
r
p3.R
library(caret) library(randomForest) setwd("./project") tmp_ds<-read.csv("pml-training.csv", na.strings=c("NA","","#DIV/0!")) test_ds<-read.csv("pml-testing.csv", na.strings=c("NA","","#DIV/0!")) set.seed(12345) inTrain = createDataPartition(tmp_ds$classe, p = 0.75)[[1]] train_ds = tmp_ds[ inTrain, ] valid_ds = tmp_ds[-inTrain, ] var_list<-c(8:11,37:45,46:49,60:68,84:86,102,113:121,122:124,140,151:159) train_classe<-train_ds[,160] train_ds<-train_ds[,var_list] valid_classe<-valid_ds[,160] valid_ds<-valid_ds[,var_list] # 先删去近似于常量的变量 zerovar <- nearZeroVar(x1) # 再删去相关度过高的自变量 highCorr<-findCorrelation(cor(train_ds), 0.90) train_ds<-train_ds[,-highCorr] # 数据预处理步骤(标准化,缺失值处理) Process <- preProcess(train_ds) trainPC <- predict(Process, train_ds) # tuning the parameter trCtrl=trainControl(method = "cv", returnResamp="all", repeats=3) fit<-train(train_ds, train_classe, method = "rf", trControl=trCtrl) # cross-valaid, 10 folder which is default ctrl<-rfeControl(functions=rfFuncs, returnResamp="all", method="cv") rfProfile <- rfe(trainPC, train_classe, sizes=c(1:ncol(trainPC)), rfeControl=ctrl) rfProfile # get a text string of variable names that were picked in the final model predictors(rfProfile) # predict pred<-predict(rfProfile, valid_ds) # Calculates performance postResample(pred, valid_classe) confusionMatrix(pred$pred,valid_classe) # produces the performance profile across different subset sizes trellis.par.set(caretTheme()) plot(rfProfile,type=c('o','g')) xyplot(rfProfile, type = c("g", "p", "smooth")) http://topepo.github.io/caret/featureselection.html train_1<-train_ds[,c("yaw_belt", "magnet_dumbbell_z", "pitch_belt", "magnet_dumbbell_y", "pitch_forearm")] rffit<-randomForest(train_classe~., train_1) pred<-predict(rffit, valid_ds) confusionMatrix(pred, valid_classe)
88d7ad05fc76c61a30e176d61c1c810f969b7385
b1dfc3a819693c0cd4e840b741fb70a312383a44
/animate_circadian_4cseq_again.R
14069393a9b2adbbe11797683259147dad565542
[]
no_license
jakeyeung/Circadian4Cseq
36db093c7c1965bd86525b11d09afff0b749aa22
65d190e488d2e1720560b10b4991c36bd2e85524
refs/heads/master
2020-09-22T01:39:36.746885
2020-08-07T17:08:47
2020-08-07T17:08:47
225,005,564
2
0
null
null
null
null
UTF-8
R
false
false
5,200
r
animate_circadian_4cseq_again.R
# Jake Yeung # Date of Creation: 2018-10-28 # File: ~/projects/4c_seq/scripts/primetime_animations/animate_around_the_clock.R # Animate batch 3 around the clock # Stolen from: ~/projects/4c_seq/scripts/batch3_4cseq_analysis/load_robj_plot_summary.batch3.WT_vs_Cry1intronKO.R rm(list=ls()) jstart <- Sys.time() library(here) library(ggplot2) library(gganimate) library(tweenr) library(transformr) library(dplyr) library(PhaseHSV) library(Circadian4Cseq) MakeAnimation <- function(jsub.orig, nf = 20, ks = 0, jfps = 20, vline = -28000, plot.base = "/Users/yeung/projects/4c_seq_analysis/WT_plot"){ plot.out <- paste0(plot.base, ".fixed.pdf") anim.out <- paste0(plot.base, ".fps.", jfps, ".fixed_rotated.11.5.gif") jsub <- split(jsub.orig, jsub.orig$time) # Here comes tweenr jsub_tween <- jsub$ZT00 %>% tween_state(jsub$ZT04, ease = 'linear', nframes = nf) %>% keep_state(ks) %>% tween_state(jsub$ZT08, ease = 'linear', nframes = nf) %>% keep_state(ks) %>% tween_state(jsub$ZT12, ease = 'linear', nframes = nf) %>% keep_state(ks) %>% tween_state(jsub$ZT16, ease = 'linear', nframes = nf) %>% keep_state(ks) %>% tween_state(jsub$ZT20, ease = 'linear', nframes = nf) %>% keep_state(ks) %>% tween_state(jsub$ZT00, ease = 'linear', nframes = nf) # plot ltype <- "solid"; jtitle <- "ZT" jaspect.ratio <- 0.25 zts <- seq(0, 20, 4) rotate.hrs <- -8 zts.rotated <- RotatePhase(zts, rotate.hr = rotate.hrs) hex.cols <- hsv(PhaseToHsv(zts.rotated, 0, 24), 1, 1) # change yellow to darker yellow zt11.rotated <- RotatePhase(11.5, rotate.hr = rotate.hrs) zt11.col <- hsv(PhaseToHsv(zt11.rotated, 0, 24), 1, 1) # hex.cols[which(hex.cols == "#FFFF00")] <- "#FFD500" hex.cols[which(hex.cols == "#FFFF00")] <- zt11.col p.orig <- ggplot(jsub.orig, aes(x = pos, y = A, colour = time)) + geom_line(data = subset(jsub.orig, LR == "Left"), aes(x = pos, y = A, colour = time), linetype = ltype) + geom_line(data = subset(jsub.orig, LR == "Right"), aes(x = pos, y = A, colour = time), linetype = ltype) + theme(aspect.ratio = 0.25) + geom_hline(aes(yintercept=0)) + theme_bw() + ggtitle(jtitle) + geom_vline(aes(xintercept=vline), linetype="dotted") + theme(legend.position = "bottom") + xlab("Position relative to bait") + ylab("Log10 Signal") + theme(aspect.ratio = jaspect.ratio, strip.background = element_blank(),strip.text.y = element_blank()) + scale_color_manual(values = hex.cols) + scale_x_continuous(labels=bToKb()) + labs(x = "Position relative to bait [kb]", y = expression('4C signal [log'[10]*']')) + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank()) ggsave(filename = plot.out) jsub_tween <- jsub_tween %>% mutate(.ZT = signif(.frame * ((2 * pi) / 120) * (24 / (2 * pi)), digits = 2)) # hex.cols.blue <- rep("#0000ff", 6) p <- ggplot(jsub_tween, aes(x = pos, y = A, colour = time)) + geom_line(data = subset(jsub_tween, LR == "Left"), aes(x = pos, y = A, colour = time), linetype = ltype) + geom_line(data = subset(jsub_tween, LR == "Right"), aes(x = pos, y = A, colour = time), linetype = ltype) + theme(aspect.ratio = 0.25) + geom_hline(aes(yintercept=0)) + theme_bw() + ggtitle(jtitle) + geom_vline(aes(xintercept=-28000), linetype="dotted") + theme(legend.position = "bottom") + xlab("Position relative to bait") + ylab("Log10 Signal") + theme(aspect.ratio = jaspect.ratio, strip.background = element_blank(),strip.text.y = element_blank()) + scale_color_manual(values = hex.cols) + scale_x_continuous(labels=bToKb()) + labs(x = "Position relative to bait [kb]", y = expression('4C signal [log'[10]*']'), # title = "ZT: {closest_state}") + title = "ZT: {frame_time}") + theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank()) + transition_time(.ZT) + # transition_states(.ZT, transition_length = 1, state_length = 0) + ease_aes('linear') animate(p, renderer = gifski_renderer(), fps = jfps) anim_save(filename = anim.out) return(p) } # Try to animate ---------------------------------------------------------- # load("/Users/yeung/projects/4c_seq_analysis/counts.long.merged.Robj", v=T) data(counts.long.merged.Robj) jsig <- 2500 pos.max <- 1e5 jsub.orig <- subset(counts.long.merged, sig == jsig & genotype == "Liver_WT" & abs(pos) < pos.max) nf <- 20 ks <- 0 jfps <- 22 outdir <- "gifs_outputs_test" dir.create(outdir) p.WT <- MakeAnimation(subset(counts.long.merged, sig == jsig & genotype == "Liver_WT" & abs(pos) < pos.max), nf = nf, ks = ks, jfps = jfps, plot.base = file.path(outdir, "WT_plot")) p.KO <- MakeAnimation(subset(counts.long.merged, sig == jsig & genotype == "Liver_Cry1intronKO" & abs(pos) < pos.max), nf = nf, ks = ks, jfps = jfps, plot.base = file.path(outdir, "KO_plot")) # print(p.WT) # print(p.KO) # animate(p.WT, fps = 50, renderer = gifski_renderer()) # animate(p.KO, fps = 50, renderer = gifski_renderer())
eb7d279731de129c703bab4ebe3dca032aa8b2c2
ffdea92d4315e4363dd4ae673a1a6adf82a761b5
/data/genthat_extracted_code/broom/examples/tidy.kde.Rd.R
93c6ec366289dd822ec17353440f34c79a874b0b
[]
no_license
surayaaramli/typeRrh
d257ac8905c49123f4ccd4e377ee3dfc84d1636c
66e6996f31961bc8b9aafe1a6a6098327b66bf71
refs/heads/master
2023-05-05T04:05:31.617869
2019-04-25T22:10:06
2019-04-25T22:10:06
null
0
0
null
null
null
null
UTF-8
R
false
false
488
r
tidy.kde.Rd.R
library(broom) ### Name: tidy.kde ### Title: Tidy a(n) kde object ### Aliases: tidy.kde kde_tidiers ks_tidiers ### ** Examples if (requireNamespace("ks", quietly = TRUE)) { library(ks) dat <- replicate(2, rnorm(100)) k <- kde(dat) td <- tidy(k) td library(ggplot2) ggplot(td, aes(x1, x2, fill = estimate)) + geom_tile() + theme_void() # also works with 3 dimensions dat3 <- replicate(3, rnorm(100)) k3 <- kde(dat3) td3 <- tidy(k3) td3 }
99855d150e23192ca801ed45f051c46655b72b79
085377a522b1a43fe6cbb073ca61bcc8f0eadef6
/R_course_updated.R
c56854feb26f8f5be13622e0fbee92b25f75beef
[]
no_license
aojgbenga/plymouth_r_machine_learning
78c6fb89b86977fccad9e06cc96d34d91f75ad95
aa93d29ca073b96d5d102182c7e98b2eb97dd0a5
refs/heads/master
2022-05-30T20:41:27.448597
2020-05-03T10:54:32
2020-05-03T10:54:32
260,251,102
0
0
null
null
null
null
UTF-8
R
false
false
5,936
r
R_course_updated.R
library(dplyr) library(ggplot2) library(caret) library(e1071) library(class) library(randomForest) library(tree) orchid <- read.table(url("https://gist.githubusercontent.com/CptnCrumble/e01af3b83ffc463f4bb5776d0213f14b/raw/5382eee21b6e5b796541fd8053c5f733fd6eb9c7/orchids.txt")) attach(orchid) #Plotting the boxplots of the data boxplot(X1 ~ loc, xlab = "Location", ylab = "Petal length", col = c("#f54242", "#d4f542", "#42f56f")) boxplot(X2 ~ loc, xlab = "Location", ylab = "Leaf width", col = c("#f54242", "#d4f542", "#42f56f")) boxplot(X3 ~ loc, xlab = "Location", ylab = "Petal width", col = c("#f54242", "#d4f542", "#42f56f")) aggregate(X1 ~ loc, FUN = mean, 2) # The mean of the petal length (X1) shows there is difference between the three locations aggregate(X2 ~ loc, FUN = mean) # The mean of the leaf width also shows there is a difference between the three locations aggregate(X3 ~ loc, FUN = mean) # The mean of the petal width are very close and cannot be used to differenciate # between the locations of the data # From the data provided only the Petal length (X1) and Leaf width (X2) would be # Reliable to differenciate between the data # Orchids bivariate scatter plots ggplot(orchid, aes( x = X1, y = X2)) + geom_point(aes (color = factor(loc)), shape = 16, size = 2)+ theme_classic()+ labs(title ="Orchids graph", x = "Petal length (mm)", y = "Leaf width (mm)", color = "Orchids Location\n") # Creating Training data and test data set.seed(1) data.subset <- sample(270, 210) model.train <- orchid[data.subset,] model.test <- orchid[-data.subset,] set.seed(1) ########################################################################## # KNN method set.seed(1) model.knn <- train(loc~.-X3, data = model.train, method = "knn", trControl = trainControl(method = "LOOCV"), preProcess = c("center", "scale"), # Normalize the data tuneLength = 10) # Number of possible K values to evaluate plot(model.knn) model.knn$bestTune predict.knn <- model.knn %>% predict(model.test) # Plotting the KNN graph pl = seq(min(model.test$X1), max(model.test$X1), by=0.1) pw = seq(min(model.test$X2), max(model.test$X2), by=0.1) # generates the boundaries for the graph lgrid <- expand.grid(X1=pl, X2=pw, X3=19.73) knnPredGrid <- predict(model.knn, newdata=lgrid) knnPredGrid <- model.knn %>% predict(lgrid) knnPredGrid = as.numeric(knnPredGrid) predict.knn <- as.numeric(predict.knn) model.test$loc <- predict.knn probs <- matrix(knnPredGrid, length(pl), length(pw)) contour(pl, pw, probs, labels="", xlab="Petal length (mm)", ylab="leaf width (mm)", main="K-Nearest Neighbor", axes=T) gd <- expand.grid(x=pl, y=pw) points(gd, pch=3, col=probs, cex = 0.1) # add the test points to the graph points(model.test$X1, model.test$X2, col= model.test$loc, cex= 2, pch = 20) #################################################################################### # Random forest Bagging method set.seed(1) bag.tree <- randomForest(loc ~ . -X3, data = orchid, subset = data.subset, mtry = 2, importance = TRUE) round(importance(bag.tree), 2) varImpPlot(bag.tree) bag_predict <- predict(bag.tree, model.test, type = "class") # Creating plot for Bagging method using base R plot lgrid <- expand.grid(X1=pl, X2=pw, X3=19.73) bagPredGrid <- predict(bag.tree, newdata=lgrid) bagPredGrid <- bag.tree %>% predict(lgrid) bagPredGrid = as.numeric(bagPredGrid) predict.bag <- as.numeric(bag_predict) model.test$loc <- predict.bag probs <- matrix(bagPredGrid, length(pl), length(pw)) contour(pl, pw, probs, labels="", xlab="Petal length (mm)", ylab="leaf width (mm)", main="Random forest Bagging method", axes=T) gd <- expand.grid(x=pl, y=pw) points(gd, pch=3, col=probs) # add the test points to the graph points(model.test$X1, model.test$X2, col= model.test$loc, cex= 2, pch = 20) ###################################################################### # Support vector machine set.seed(1) tune.out = tune(svm, loc ~ X1 + X2, data = orchid[data.subset,], kernel ="linear", ranges = list(cost = seq(from = 0.01,to = 2, length = 40) )) plot(tune.out$performances$cost, tune.out$performances$error) summary(tune.out) tune.out$best.model$cost bestmod = tune.out$best.model summary(bestmod) plot(bestmod, data = model.test, X2~X1) ypred_linear = predict(bestmod, model.test) # Support vector machine polynomial kernels set.seed(1) tune.out_poly = tune(svm, loc ~ X1 + X2, data = orchid[data.subset,], kernel ="polynomial", ranges = list(cost = seq(from = 0.01,to = 3, length = 30))) plot(tune.out_poly$performances$cost, tune.out_poly$performances$error) summary(tune.out_poly) bestmod_poly = tune.out_poly$best.model summary(bestmod_poly) tune.out_poly$best.model$cost plot(bestmod_poly, data = model.test, X2~X1) ypred = predict(bestmod_poly, model.test) # Which kernal is more suitable # Calculating Test Errors # KNN method tab <- table(predict.knn,model.test$loc) tab 1-(sum(tab) - sum(diag(tab))) / sum(tab) # Random forest bagging method tab.bag <- table(bag_predict,model.test$loc) tab.bag 1-(sum(tab.bag) - sum(diag(tab.bag))) / sum(tab.bag) # Support vector machine Linear tab.linear <- table(ypred_linear,model.test$loc) tab 1-(sum(tab.linear) - sum(diag(tab.linear))) / sum(tab.linear) # Support vector machine Polynomial kernel tab.poly <- table(ypred,model.test$loc) tab.poly 1-(sum(tab.poly) - sum(diag(tab.poly))) / sum(tab.poly)
483712ce9ec283e43ec9bbc55551b7955bb6b3f9
a94308678716ab60f03956e503f554a767e73733
/ExampleCode/Chapter 2 Observed Score Methods/08_DIF Logistic Regression Polytomous.R
22a91b48c9deb64858f86381f78eb00348a6dbf1
[]
no_license
cswells1/MeasInv
9f9cb20da68b695cc1f65fc5c80f92ea31b030e7
b74acffcf8ec0d6886f7081882aa3965306eb4af
refs/heads/master
2023-07-14T21:35:32.915150
2021-09-12T22:50:49
2021-09-12T22:50:49
405,707,567
0
0
null
null
null
null
UTF-8
R
false
false
1,815
r
08_DIF Logistic Regression Polytomous.R
################################################################################################# # The following code uses Logistic Regression to test for DIF using the DIF.Logistic # # function. # ################################################################################################# # Load rms package: It performs logistic (binary and ordinal) that is used by # # the DIF.Logistic function. # library(rms) # Read data: The data are in in a csv file in which first 30 columns # # represent item responses and the last column contains the grouping # # variable. # myfile <- system.file("extdata", "LikertData.csv", package = "MeasInv") Likert.data <- read.csv(myfile, sep=",", header=T) Likert.data$group <- factor(Likert.data$group) # Convert the grouping variable, "group", to a factor # # which means R treats it as an unordered-categorical # # (i.e., grouping) variable. # # Use logistic regression to test for DIF using the lrm function which is in the rms package. # raw.score <- apply(X = Likert.data[,1:12], MARGIN = 1, FUN = sum) # Compute raw score # grp <- Likert.data$group lrm(Likert.data[,1] ~ raw.score + grp + raw.score*grp) # Perform logistic regression: Model 3 # lrm(Likert.data[,1] ~ raw.score) # Perform logistic regression: Model 1 # # Perform DIF using logistic regression via the DIF.Logistic function. # Logistic.results <- DIF.Logistic(data = Likert.data[,1:12], group = Likert.data$group, sig.level = .05, purify = TRUE, output.filename = "LogReg Output")
141b87962a14d7d43cf619567b58c8bb9fb7ffeb
48155a2d7a1a7614aff7b2d123a5347398590e03
/docs/maps_for_pubs/map_for_pub.R
ecad688d2160c6efa30a48058d5deeb990624390
[ "MIT" ]
permissive
remi-daigle/MarxanConnect
6e5faee774c4adaf9444266a39cbe9ae00be05ca
c88658413beaeebff03a8a4831f1fddd2cc0c618
refs/heads/master
2021-12-22T18:06:51.292239
2021-10-20T13:29:47
2021-10-20T13:29:47
96,797,881
9
6
MIT
2020-10-27T02:01:06
2017-07-10T16:19:25
Python
UTF-8
R
false
false
11,782
r
map_for_pub.R
library(sf) library(raster) library(gridExtra) library(tidyverse) library(magick) BIORE <- read.csv("maps_for_pubs/input/spec.dat") %>% select(name) %>% filter(grepl("BIORE_",name)) %>% mutate(name=gsub("BIORE_","",name)) %>% unlist() %>% as.numeric() proj <- "+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +wktext +no_defs" bioregions <- st_read("maps_for_pubs/bioregion_short.shp",stringsAsFactors = FALSE) %>% filter(BIOREGI %in% BIORE) %>% mutate(BIOREGI=paste0("BIORE_",BIOREGI)) %>% st_transform(proj) pu <- read.csv("maps_for_pubs/output/pu_no_connect.csv") %>% mutate(geometry=st_as_sfc(geometry,"+proj=longlat +datum=WGS84"), best_solution = as.logical(best_solution)) %>% st_as_sf()%>% st_transform(proj) %>% select(pu_id) # st_write(bioregions,"maps_for_pubs/bioregion_filtered.shp") # intersection <- st_intersection(pu,bioregions) # intersection$row <- 1:nrow(intersection) # distances <- st_distance(intersection) %>% # data.frame(check.names = FALSE) %>% # mutate(row=row.names(.)) %>% # gather(key="column",value="value",-row) # # distances$row <- as.numeric(distances$row) # distances$column <- as.numeric(distances$column) # # con_list <- distances # # con_list <- distances %>% # left_join(data.frame(intersection),by=c("row"="row")) %>% # mutate(id1=as.numeric(pu_id), # from_BIO=BIOREGI) %>% # select(row,column,id1,from_BIO,value) %>% # left_join(data.frame(intersection),by=c("column"="row")) %>% # mutate(id2=as.numeric(pu_id), # to_BIO=BIOREGI) %>% # select(id1,from_BIO,id2,to_BIO,value) %>% # filter(from_BIO==to_BIO, # as.numeric(value)>0) %>% # mutate(habitat=to_BIO) %>% # group_by(habitat,id1,id2) %>% # summarize(value=1/mean(as.numeric(value))^2) %>% # group_by(habitat,id1) %>% # mutate(value=as.numeric(value)/sum(as.numeric(value))) # # write.csv(con_list,"maps_for_pubs/IsolationByDistance.csv",quote=FALSE,row.names = FALSE) # # con_list_mean <- con_list %>% # group_by(id1,id2) %>% # summarize(value=mean(value)) %>% # mutate(habitat="mean") %>% # as.data.frame() %>% # complete(habitat,id1,id2,fill=list(value = 0)) %>% # as.data.frame() # # write.csv(con_list_mean,"maps_for_pubs/IsolationByDistance_mean.csv",quote=FALSE,row.names = FALSE) # CF_landscape maps for publication # set default projection for leaflet proj <- "+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +wktext +no_defs" proj_rotated <- "+proj=omerc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +wktext +no_defs +alpha=-73.00000" spec <- read.csv("maps_for_pubs/input/spec.dat") puvspr <- read.csv("maps_for_pubs/input/puvspr2.dat") pu <- read.csv("maps_for_pubs/input/pu.dat") puvspr_wide <- puvspr %>% left_join(select(spec,"id","name"), by=c("species"="id")) %>% select(-species) %>% spread(key="name",value="amount") # planning units with output output <- read.csv("maps_for_pubs/output/pu_no_connect.csv") %>% mutate(geometry=st_as_sfc(geometry,"+proj=longlat +datum=WGS84"), best_solution = as.logical(best_solution)) %>% st_as_sf() %>% left_join(puvspr_wide,by=c("pu_id"="pu"))%>% st_transform(proj) output_rotated <- st_transform(output,proj_rotated) output_connect <- read.csv("maps_for_pubs/output/pu_connect.csv") %>% mutate(geometry=st_as_sfc(geometry,"+proj=longlat +datum=WGS84"), best_solution = as.logical(best_solution)) %>% st_as_sf() %>% left_join(puvspr_wide,by=c("pu_id"="pu"))%>% st_transform(proj) bioregions <- st_read("maps_for_pubs/bioregion_short.shp",stringsAsFactors = FALSE) %>% st_transform(proj) %>% mutate(BIOREGI=paste0("BIORE_",BIOREGI)) %>% filter(BIOREGI %in% spec$name) %>% group_by(BIOREGI,SHORT_D,ALT_LAB) %>% summarize() %>% data.frame() %>% mutate(BIOREGI=as.character(BIOREGI), SHORT_D=unlist(lapply(lapply(strsplit(SHORT_D," "),tail,-1),paste,collapse=" "))) %>% st_as_sf(crs=proj) # bioregions[nrow(bioregions)+1,] <- st_as_sf(data.frame(BIOREGI="Planning Units", # SHORT_D="Planning Units", # geometry=st_combine(output))) # bioregions$BIOREGI[nrow(bioregions)]="Planning Units" # get basemap outline of AUS bb <- output %>% st_bbox() %>% st_as_sfc() %>% st_transform(proj) AUS <- getData(country="AUS",level=0) %>% st_as_sf() %>% st_transform(proj) %>% st_intersection(st_buffer(bb,100000)) #### 3 panel ##### p1 <- ggplot(output_connect)+ geom_sf(data=AUS,fill="grey",colour="darkgrey")+ geom_sf(aes(fill=between_cent_land_pu_mean),colour="transparent",size=0.25)+ scale_fill_distiller("Betweeness\nCentrality",palette="Oranges",direction = 1)+ coord_sf(xlim=st_bbox(output_rotated)[c(1,3)], ylim=st_bbox(output_rotated)[c(2,4)], crs=proj_rotated, expand = FALSE)+ theme_dark()+ theme(legend.position = "bottom", legend.direction = "vertical", legend.background = element_rect(fill="transparent"), plot.title = element_text(size=10)) + ggtitle("A) Connect. Feature") p2 <- ggplot(output)+ geom_sf(data=AUS,fill="grey",colour="darkgrey")+ geom_sf(aes(fill=select_freq),colour="transparent",size=0.25)+ scale_fill_distiller("Selection\nFrequency",palette="Purples",direction = 1,limits=c(0,100))+ coord_sf(xlim=st_bbox(output_rotated)[c(1,3)], ylim=st_bbox(output_rotated)[c(2,4)], crs=proj_rotated, expand = FALSE)+ theme_dark()+ theme(legend.position = "bottom", legend.direction = "vertical", legend.background = element_rect(fill="transparent"), plot.title = element_text(size=10))+ ggtitle("B) Without Connectivity") p3 <- ggplot(output_connect)+ geom_sf(data=AUS,fill="grey",colour="darkgrey")+ geom_sf(aes(fill=select_freq),colour="transparent",size=0.25)+ scale_fill_distiller("Selection\nFrequency",palette="Purples",direction = 1,limits=c(0,100))+ coord_sf(xlim=st_bbox(output_rotated)[c(1,3)], ylim=st_bbox(output_rotated)[c(2,4)], crs=proj_rotated, expand = FALSE)+ theme_dark()+ theme(legend.position = "bottom", legend.direction = "vertical", legend.background = element_rect(fill="transparent"), plot.title = element_text(size=10))+ ggtitle("C) With Connectivity") ggsave("maps_for_pubs/maps.png", grid.arrange(p1, p2, p3, ncol=3),width=7.25,height=8,dpi=600) #### difference #### output_connect$diff <- output_connect$select_freq-output$select_freq output_connect$rep_select_freq <- output$select_freq oc_greater90 <- output_connect %>% filter(rep_select_freq>quantile(rep_select_freq,probs=0.9), select_freq>quantile(select_freq,probs=0.9)) oc_bottom5 <- output_connect %>% filter(rep_select_freq<5, select_freq<5) oc_sfcon <- output_connect %>% filter(diff>5) oc_sfrep <- output_connect %>% filter(diff<(-5)) base <- ggplot(oc_sfrep)+ geom_sf(data=AUS,fill="grey",colour="darkgrey")+ geom_sf(aes(fill=diff),colour="transparent")+ scale_fill_distiller("Selection frequency\nhigher without\nconnectivity",palette=c("Purples"),limits=c(-100,-5), labels=c("100","75","50", "25", "5"))+ coord_sf(xlim=st_bbox(output_rotated)[c(1,3)], ylim=st_bbox(output_rotated)[c(2,4)], crs=proj_rotated, expand = FALSE)+ theme_dark()+ theme(legend.position = c(1.64,0.2), legend.direction = "vertical", plot.margin = margin(t=5.5,b=5.5,l=0,r=140,unit = "pt"), legend.title = element_text(size=10))+ guides(fill = guide_legend(title.position = "right", reverse = TRUE)) ggsave("maps_for_pubs/base.png",base,height=6,width=4,dpi=600) connect <- ggplot(oc_sfcon)+ geom_sf(aes(fill=diff),colour="transparent")+ scale_fill_distiller("Selection frequency\nhigher with\nconnectivity",palette=c("Oranges"),direction=1,limits=c(5,100))+ coord_sf(xlim=st_bbox(output_rotated)[c(1,3)], ylim=st_bbox(output_rotated)[c(2,4)], crs=proj_rotated, expand = FALSE)+ theme_dark()+ theme(legend.position = c(1.64,0.8), legend.direction = "vertical", plot.margin = margin(t=5.5,b=5.5,l=0,r=140,unit = "pt"), legend.title = element_text(size=10), legend.background = element_rect(fill="transparent"), rect = element_rect(fill = "transparent"), panel.grid = element_line(colour="transparent"), panel.background = element_rect("transparent"), axis.ticks = element_line("transparent"), axis.text.x = element_text(colour="transparent"), axis.text.y = element_text(colour="transparent"))+ guides(fill = guide_legend(title.position = "right", reverse = TRUE)) ggsave("maps_for_pubs/connect.png",connect,bg="transparent",height=6,width=4,dpi=600) categorical <- ggplot()+ geom_sf(data=oc_greater90, aes(fill="A",colour="A"),size=0.3)+ geom_sf(data=oc_bottom5, aes(fill="B",colour="B"),size=0.3)+ scale_fill_manual("",values=c("#549b16","white"),labels=c("Always prioritized","Rarely selected"))+ scale_colour_manual("",values=c("#549b16","black"),labels=c("Always prioritized","Rarely selected"))+ coord_sf(xlim=st_bbox(output_rotated)[c(1,3)], ylim=st_bbox(output_rotated)[c(2,4)], crs=proj_rotated, expand = FALSE)+ theme_dark()+ theme(legend.position = c(1.535,0.5), legend.direction = "vertical", plot.margin = margin(t=5.5,b=5.5,l=0,r=140,unit = "pt"), legend.text = element_text(size=10), legend.background = element_rect(fill="transparent"), rect = element_rect(fill = "transparent",colour="transparent"), panel.grid = element_line(colour="transparent"), panel.background = element_rect("transparent"), plot.background = element_rect("transparent"), axis.ticks = element_line("transparent"), axis.text.x = element_text(colour="transparent"), axis.text.y = element_text(colour="transparent"))+ guides(fill = guide_legend(title.position = "right")) ggsave("maps_for_pubs/categorical.png",categorical,bg="transparent",height=6,width=4,dpi=600) categorical <- image_read("maps_for_pubs/categorical.png") con <- image_read("maps_for_pubs/connect.png") base <- image_read("maps_for_pubs/base.png") composite <- image_composite(image_composite(base,con),categorical) composite image_write(composite,"maps_for_pubs/diff.png") #### bioregions #### bio <- ggplot()+ geom_sf(data=AUS,fill="grey",colour="transparent")+ geom_sf(data=bioregions,aes(fill="A",colour="A"))+ geom_sf(data=output_rotated,size=0.05,aes(fill="red",colour="red"))+ facet_wrap(~ALT_LAB,nrow=2)+ scale_fill_manual("",values=c("#1f78b4","transparent"),labels=c("Bioregion","Planning Units"))+ scale_colour_manual("",values=c("transparent","black"),labels=c("Bioregion","Planning Units"))+ coord_sf(xlim=st_bbox(output_rotated)[c(1,3)], ylim=st_bbox(output_rotated)[c(2,4)], crs=proj_rotated, expand = FALSE)+ theme_dark()+ theme(legend.position = "bottom", legend.direction = "horizontal") ggsave("maps_for_pubs/bio_maps.png", bio,width=8.25,height=7.5,dpi=600)
7bf0ca90fb54c437312e74f803736c0a1990b909
3f69b19b3720a81fb37070fc31304de639785ed7
/man/Traj3DResampleTime.Rd
3d3ffaff42705479d9844d73f613515817443c4a
[]
no_license
JimMcL/trajr
42b0150b26dc2d3d7d3992cff4b4aca51dbd7d25
6998b877f258030df345c7d114e07c41158f3d8e
refs/heads/master
2023-07-21T16:17:33.511137
2023-07-10T00:53:39
2023-07-10T00:53:39
111,262,381
21
7
null
null
null
null
UTF-8
R
false
true
1,059
rd
Traj3DResampleTime.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/3D.R \name{Traj3DResampleTime} \alias{Traj3DResampleTime} \title{Resample a 3D trajectory to a constant time interval} \usage{ Traj3DResampleTime(trj3d, stepTime, newFps = NULL) } \arguments{ \item{trj3d}{The 3-dimensional trajectory to be resampled.} \item{stepTime}{The resampled trajectory step time. Each step in the new trajectory will have this duration.} \item{newFps}{Value to be stored as the FPS value in the new trajectory (see \code{\link{TrajGetFPS}}). It is not otherwise used by this function.} } \value{ A new 3-dimensional trajectory with a constant time interval for each step. Points in the new trajectory are calculated by linearly interpolating along \code{trj3d}. } \description{ Constructs a new 3-dimensional trajectory by resampling the input trajectory to a fixed time interval. Points are linearly interpolated along the trajectory. Spatial and time units are preserved. } \seealso{ \code{\link{Traj3DFromCoords}}, \code{\link{TrajResampleTime}} }
597771969653d62b0cfc64e57c8993d9d9b4c2ca
f5addbf749dd8bba26d15b891fc1e51ad95072f6
/plot4.R
cda44e2a6f5d2156b7905aaf712ab2c27661af2b
[]
no_license
Layla-ElAsri/ExData_Plotting1
95aee14bb9fa083a9ecfe124d0712aba25c33f1a
40d522819427b41a1e1e65d3cdb85ad56bf87057
refs/heads/master
2021-01-20T21:44:50.858410
2014-07-13T12:00:25
2014-07-13T12:00:25
null
0
0
null
null
null
null
UTF-8
R
false
false
1,166
r
plot4.R
file = "household_power_consumption.txt" data = subset(data.frame(read.table(file, header = TRUE, sep=";", na.strings="?")), Date=="1/2/2007" | Date=="2/2/2007") dateTime = paste(data$Date, data$Time) dateTime = strptime(dateTime, format='%d/%m/%Y %H:%M:%S') png(file="plot4.png", width=480, height=480, bg = "transparent") par(mfrow = c(2, 2)) with(data, plot(dateTime, Global_active_power, type="l", ylab="Global Active Power", xlab = "")) with(data, plot(dateTime, Voltage, type="l", ylab="Voltage", xlab = "datetime")) maxS = max(c(data$Sub_metering_1, data$Sub_metering_2, data$Sub_metering_3)) with(data, plot(dateTime, Sub_metering_1, type="l", ylab="Energy sub metering", xlab = "", ylim = c(0,maxS))) par(new = T) with(data, plot(dateTime, Sub_metering_2, col = "blue", type="l", ylab="", xlab = "", ylim = c(0,maxS))) par(new = T) with(data, plot(dateTime, Sub_metering_3, col = "red", type="l", ylab="", xlab = "", ylim = c(0,maxS))) legend("topright", lty = 1, col = c("black", "blue", "red"), legend = c("Sub_metering_1", "Sub_metering_2", "Sub_metering_3")) with(data, plot(dateTime, Global_reactive_power, type="l", xlab = "datetime")) dev.off()
e68d82d398dd20e1c6e1af981daff90bbab7afe1
04616643c5da76e475506c7fa96e40c25bd36555
/R/init_queue.R
49bae52239ed684a71121654ec754d510ba741eb
[]
no_license
edonnachie/queuer
3139410cb8917922a75a42107b19481d47837cff
c255c35384f53e919db74d33b629ddac4f236b0e
refs/heads/master
2021-01-10T12:30:13.101914
2017-08-18T15:47:07
2017-08-18T15:47:07
44,825,642
4
0
null
null
null
null
UTF-8
R
false
false
243
r
init_queue.R
#' Initialise a queue directory #' #' @param queue Directory in which queue should be created #' @return Nothing init_queue <- function(queue){ if(!dir.exists(queue)){ dir.create(paste0(queue, "/archive"), recursive = TRUE) } }
fca747d456d7f0ee5e62e110dd4ff56cf874e5bb
489e56df1993b3d3cb56011ce79e1130f24c5dae
/subsetting_a_matrix.R
f46f1c08507f2f389718de1111ff727e170a08d5
[]
no_license
adalee2future/learn-R
b50d84948861b95cf24919e3789773fcae94d36e
8002acf15371271401428f7b3fcd8b37d96abfe7
refs/heads/master
2021-01-10T21:22:52.921444
2015-06-15T02:25:59
2015-06-15T02:25:59
23,581,876
0
0
null
null
null
null
UTF-8
R
false
false
96
r
subsetting_a_matrix.R
x <- matrix(1: 6, 2, 3) x[1, 2] x[2, 1] x[1, ] x[, 2] x[1, 2, drop = FALSE] x[1, , drop = FALSE]
f1509a19cadb4f7700f62b788a45c3893e0c26f7
76abe33b0dac505b1f7d771c799e18b57a8f4417
/shiny/Change the appearance of the dashboard.R
808ce8921b68a2a239af2530db7d576b48180519
[]
no_license
jyeazell/DataCamp_practice
4ddaf889b07a2ef3fcd0965bee7d71372e3eb2f3
de4443e01d5414913aa555a5771d5eadc9f83700
refs/heads/master
2022-12-19T23:27:19.410533
2020-10-09T20:31:07
2020-10-09T20:31:07
183,300,581
0
0
null
null
null
null
UTF-8
R
false
false
444
r
Change the appearance of the dashboard.R
##'Change the appearance of the dashboard ##' ##'Walt Disney's favorite color is purple (mine too!). Using the application ##'you've just created, let's change the color by updating the skin parameter ##'to "purple". The body you just created is already loaded. # Update the skin ui <- dashboardPage( skin = "purple", header = dashboardHeader(), sidebar = dashboardSidebar(), body = body) # Run the app shinyApp(ui, server)
014c8003a3612ce7fb53507c273c02226044f08f
3bf5ba75fd0e5044c0d1bc60f53bf6de2a439965
/complete.R
415d20847a71a7814debd76e97c654a7a301ff1e
[]
no_license
YChekalin/ds-repo
51af396e0420909e267c7a0191a56690ec5008c7
690ede515f1eaeac5f175c445e53cee076a5fce6
refs/heads/master
2021-01-13T02:06:53.792602
2015-02-19T04:06:34
2015-02-19T04:06:34
30,549,922
0
0
null
null
null
null
UTF-8
R
false
false
457
r
complete.R
complete <- function(directory, id = 1:332) { data <- data.frame() nobs <- data.frame(id=id,"nobs"=0) file_list <- list.files(directory, full.names=TRUE) for(fname in file_list) { tmp <- read.table(fname, header = TRUE, sep = ",") tmp <- subset(tmp, ID %in% id) data <- rbind(data,tmp) } for(id2 in id) { tmp2 <- complete.cases(data[data$ID==id2,]) nobs[id==id2,2] <- length(tmp2[tmp2==TRUE]) } return(nobs) }
7a8245c3bf484b4b85cdb91eef227fe0f92dcc4c
469614d19085ebac7158d06fb10078707a0e5061
/OxBS_processing.R
b3587d854acd977d9fc249c0f95c1c518cfc96c6
[ "MIT" ]
permissive
estoyanova/EStoyanova_eLife_2021
9781fa68abb8ea1997de97b94fceac839a586997
4c2fa6c102e4f868fc91e0dcb0b8c7155b8f8712
refs/heads/main
2023-07-02T14:50:58.195174
2021-10-27T01:57:19
2021-10-27T01:57:19
null
0
0
null
null
null
null
UTF-8
R
false
false
801
r
OxBS_processing.R
# QC and trimming of FastQ Files trim_galore --stringency 3 --fastqc --paired --clip_R1 5 --clip_R2 $R1.fastq $R2.fastq # Alignment with Bismark bismark --bowtie2 -p 4 --multicore 4 bismark_genome_build/ -1 R1.fq -2 R2.fq deduplicate_bismark -p --bam inputfile.bam # Sequencing quality control with CEGX custom docker run -v=`pwd`:/Data -it cegx_bsexpress_0.6 auto_bsExpress # Downstream processing with Methpipe from Smith lab to-mr -o bismark.deduplicated.bam.mr -m bismark deduplicated.bam LC_ALL=C sort -k 1,1 -k 3,3n -k 2,2n -k 6,6 -o out.mr.sorted bismark.deduplicated.bam.mr methcounts -c genome.fa -o output.allC.meth *.sorted.mr & mlml -u *BS*.meth -m *OX*.meth -o *.mlml.txt #Merging symmetric CpGs, necessary for MethylSeekR symmetric-cpgs -o symmetric*.meth -v -m input.meth &
5f581845d623a9575b0da58f63e4892ec0286024
f5722d02cdd053c95eb3e5feb64b4e1338564f5f
/rb.R
827cfd56d433a49c1cd252b0d2d40973ced28f17
[]
no_license
sethf26/NFLSuccessFromCollegeStats
1976a4884f72d9235a2299fc280b26c5b1b7b4e7
d913bd2842b3cf60d2c08420e5b7444a466ad32b
refs/heads/main
2023-02-04T11:13:16.099004
2020-12-14T23:36:17
2020-12-14T23:36:17
304,743,450
0
0
null
null
null
null
UTF-8
R
false
false
2,964
r
rb.R
tabPanel( sidebarPanel( h3("Regression of Running Backs prior Stats on NFL Value and Statistics"), selectInput(inputId = "selection2", label = "Choose a position", choices = c("NFLYPC" = "RB$NFLYPC ~ RB$College.YPC + RB$college.rushattmpt.pg + RB$college.rushtd.pg + RB$College.Rushing.Yards + RB$Rnd + RB$College.Receptions + RB$College.Receiving.TDs + RB$College.Receiving.Yards + RB$College.AVGYFS", "Rushing Attempts" = "RB$NFL.rushattmpt.pg ~ RB$College.YPC + RB$college.rushattmpt.pg + RB$college.rushtd.pg + RB$College.Rushing.Yards + RB$Rnd + RB$College.Receptions + RB$College.Receiving.TDs + RB$College.Receiving.Yards + RB$College.AVGYFS", "Rushing Yards" = "RB$NFL.rushyrds.pg ~ RB$College.YPC + RB$college.rushattmpt.pg + RB$college.rushtd.pg + RB$College.Rushing.Yards + RB$Rnd + RB$College.Receptions + RB$College.Receiving.TDs + RB$College.Receiving.Yards + RB$College.AVGYFS", "Rushing TDs" = "RB$College.Rushing.TDs ~ RB$College.YPC + RB$college.rushattmpt.pg + RB$college.rushtd.pg + RB$College.Rushing.Yards + RB$Rnd + RB$College.Receptions + RB$College.Receiving.TDs + RB$College.Receiving.Yards + RB$College.AVGYFS", "Value Per Year" = "RB$ValuePerYear ~ RB$College.YPC + RB$college.rushattmpt.pg + RB$college.rushtd.pg + RB$College.Rushing.Yards + RB$Rnd + RB$College.Receptions + RB$College.Receiving.TDs + RB$College.Receiving.Yards + RB$College.AVGYFS", "Receptions" = "RB$college.receptions.pg ~ RB$College.YPC + RB$college.rushattmpt.pg + RB$college.rushtd.pg + RB$College.Rushing.Yards + RB$Rnd + RB$College.Receptions + RB$College.Receiving.TDs + RB$College.Receiving.Yards + RB$College.AVGYFS", "Receiving Yards" = "RB$college.receivingyrds.pg ~ RB$College.YPC + RB$college.rushattmpt.pg + RB$college.rushtd.pg + RB$College.Rushing.Yards + RB$Rnd + RB$College.Receptions + RB$College.Receiving.TDs + RB$College.Receiving.Yards + RB$College.AVGYFS", "Receiving TDs" = "RB$`Receiving TD` ~ RB$College.YPC + RB$college.rushattmpt.pg + RB$college.rushtd.pg + RB$College.Rushing.Yards + RB$Rnd + RB$College.Receptions + RB$College.Receiving.TDs + RB$College.Receiving.Yards + RB$College.AVGYFS", "Yards From Scrimmage" = "RB$College.AVGYFS ~ RB$College.YPC + RB$college.rushattmpt.pg + RB$college.rushtd.pg + RB$College.Rushing.Yards + RB$Rnd + RB$College.Receptions + RB$College.Receiving.TDs + RB$College.Receiving.Yards + RB$College.AVGYFS") ))), gt_output("model5") output$model5 <- render_gt({ model_5 <- stan_glm(formula = input$selection2, data = RB, refresh = 0) model_5 %>% tidy %>% gt() %>% tab_header(title = "Runningbacks NFL Stat predictions from College Stats") })
93610ecfb4399863d421d74fad1faecf9cb455d4
7f72ac13d08fa64bfd8ac00f44784fef6060fec3
/RGtk2/man/cairoScaledFontGlyphExtents.Rd
f50363fbb957a00edef1dc56a5c758565358941f
[]
no_license
lawremi/RGtk2
d2412ccedf2d2bc12888618b42486f7e9cceee43
eb315232f75c3bed73bae9584510018293ba6b83
refs/heads/master
2023-03-05T01:13:14.484107
2023-02-25T15:19:06
2023-02-25T15:20:41
2,554,865
14
9
null
2023-02-06T21:28:56
2011-10-11T11:50:22
R
UTF-8
R
false
false
1,303
rd
cairoScaledFontGlyphExtents.Rd
\alias{cairoScaledFontGlyphExtents} \name{cairoScaledFontGlyphExtents} \title{cairoScaledFontGlyphExtents} \description{Gets the extents for a list of glyphs. The extents describe a user-space rectangle that encloses the "inked" portion of the glyphs, (as they would be drawn by \code{\link{cairoShowGlyphs}} if the cairo graphics state were set to the same font_face, font_matrix, ctm, and font_options as \code{scaled.font}). Additionally, the x_advance and y_advance values indicate the amount by which the current point would be advanced by \code{\link{cairoShowGlyphs}}.} \usage{cairoScaledFontGlyphExtents(scaled.font, glyphs, num.glyphs)} \arguments{ \item{\verb{scaled.font}}{[\code{\link{CairoScaledFont}}] a \code{\link{CairoScaledFont}}} \item{\verb{glyphs}}{[\code{\link{CairoGlyph}}] a list of glyph IDs with X and Y offsets.} \item{\verb{num.glyphs}}{[integer] the number of glyphs in the \code{glyphs} list} } \details{Note that whitespace glyphs do not contribute to the size of the rectangle (extents.width and extents.height). } \value{ A list containing the following elements: \item{\verb{extents}}{[\code{\link{CairoTextExtents}}] a \code{\link{CairoTextExtents}} which to store the retrieved extents.} } \author{Derived by RGtkGen from GTK+ documentation} \keyword{internal}
3b7e8273e0abf7c33b18c6bb77142f4772a05a91
2b75a4b36bcdf7ca3bc1a80b8ee391e25318bfca
/man/read.moleculelist_thunderstorm.Rd
6659368d7a00818fb59278408086639a313315c2
[ "MIT" ]
permissive
keithschulze/supr
c67374d737ef8e77966ae057e8f6219490ce6a6a
27902504757e33d1e4e3c7d3ba6baf0d7b808848
refs/heads/master
2022-12-03T07:02:25.029644
2022-11-23T07:21:50
2022-11-23T07:21:50
43,782,983
0
0
null
2016-05-12T03:34:19
2015-10-06T22:41:46
R
UTF-8
R
false
true
634
rd
read.moleculelist_thunderstorm.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/io.R \name{read.moleculelist_thunderstorm} \alias{read.moleculelist_thunderstorm} \title{Thunderstorm molecule list reader} \usage{ read.moleculelist_thunderstorm(filepath) } \arguments{ \item{filepath}{string denoting the path to the file to be read.} } \value{ \code{\link{ppp}} object containing the coordinates for single molecule localisations and other parameters/columns in original csv file attached as marks. } \description{ Reader function for comma separated molecule list output of the Thunderstorm plugin for ImageJ/Fiji. }
a8e3f47da86550528b50c4d44eda7da64ff82cf4
04efe01489384e0babe71e1a0548e9d589c32166
/Heping/S7MLR2.R
1514794e6eccf67296550d60dd0f402432d896cb
[]
no_license
hpzheng/sys6021_codes
5749645527373bd6c86b05f1bddfdcb791f04cc3
13f87e0bec8e5f198f8cdee157b65d6e61d2d753
refs/heads/master
2021-01-10T10:07:40.921116
2015-10-14T17:59:38
2015-10-14T17:59:38
44,264,256
0
0
null
null
null
null
UTF-8
R
false
false
4,257
r
S7MLR2.R
# Session 7 # # Multiple Linear Regression 2 # #****************************************************** #load data source("AccidentInput.R") setwd(traindir) my.path <- getwd() setwd(my.path) acts <- file.inputl(my.path) sapply(acts, dim) dim(acts[[12]]) setdiff(colnames(acts[[1]]), colnames(acts[[8]])) comvar <- intersect(colnames(acts[[1]]),colnames(acts[[8]])) totacts <- combine.data(acts, comvar) ##Build a data frame xdmg with only extreme accidents for ACCDMG # Remove duplicates from xdmg and call new data frame xdmgnd ##******************************************* ## Build linear regression models in R: lm ## ##******************************************* # Linear regression models with quantitative predictors xdmgnd.lm1<-lm(ACCDMG~TEMP,data=xdmgnd) xdmgnd.lm2<-lm(ACCDMG~TEMP+TRNSPD,data=xdmgnd) xdmgnd.lm3<-lm(ACCDMG~TEMP+TRNSPD+TONS,data=xdmgnd) # The next two lines of R code are equivalent xdmgnd.lm4<-lm(ACCDMG~TEMP+TRNSPD+TONS+CARS,data=xdmgnd) xdmgnd.lm4<-lm(ACCDMG~.,data=xdmgnd[,c('ACCDMG','TEMP','TRNSPD','TONS','CARS')]) # Display regression results: summary(xdmgnd.lm1) # You should be able to find: estimated coefficients, residuals, t-test results, F test results, R^2, adjusted R^2, names(xdmgnd.lm1) ##What are the coefficients of each of the linear models? coef(xdmgnd.lm1) ##what is the sum of the residuals squared? sum(xdmgnd.lm1$res^2) ################################################ Metrics and Variable Selection ################################################ ##******************************* ## Criterion based assessments ## ##******************************* # Adjusted R^2: summary(xdmgnd.lm1)$adj.r.squared # AIC: AIC(xdmgnd.lm1) #BIC: AIC(xdmgnd.lm1,k=log(nrow(totacts))) # Assess the 4 models using criterion based assessment approaches. Which performs better based on each criterion? ##************************ ## Stepwise Regression ## ##************************ xdmgnd.lm4.step<-step(xdmgnd.lm4) # If you have many predictors, it will take some time to get results. To save time, you can set 'trace=F' to get reults without showing each step: xdmgnd.lm4.step<-step(xdmgnd.lm4, trace=F) summary(xdmgnd.lm4.step) # What predictors are left in your stepwise model? ##****************** ## Partial F Test ## ##****************** # Recall that we can only compare two nested models by partial F test: anova(xdmgnd.lm1,xdmgnd.lm2) # Compare your stepwise model to model 4 using the partial F test. ##****************** ## Test Sets ## ##****************** setwd(sourcedir) source("TestSet.R") #set test sets size: test.size<-1/3 # generate training sets and test sets from original data: xdmgnd.data<-test.set(xdmgnd,test.size) # Check distribution of ACCDMG of test set, training set: par(mfrow=c(2,2)) hist(xdmgnd.data$train$ACCDMG) hist(xdmgnd.data$test$ACCDMG) hist(xdmgnd$ACCDMG) par(mfrow=c(1,1)) # Are the training and test sets representative of total data? # Build model with train set: xdmgnd.lm4.train<-lm(ACCDMG~TEMP+TRNSPD+TONS+CARS,data=xdmgnd.data$train) # Recall that we need to measure predicted MSE. # First, how to predict with lm models: xdmgnd.lm4.pred<-predict(xdmgnd.lm4.train,newdata=xdmgnd.data$test) # Next, compute PMSE: pmse.xdmgnd.lm4<-mse(xdmgnd.lm4.pred,xdmgnd.data$test$ACCDMG) pmse.xdmgnd.lm4 # Compare xdmgnd.lm4 and xdmgnd.lm3 based on PMSE. Which model performs better? ##******************** ## Cross-Validation ## ##******************** # Need the boot library library(boot) # You need to use glm (a funciton to estimate generalized linear model) instead of lm. Don't be confused by generalized linear models. # Because lm is a special case of glm, glm function can be used to estimate lm models as long as you set parameters correctly. xdmgnd.lm4.cv<-glm(ACCDMG~TEMP+TRNSPD+TONS+CARS,data=xdmgnd) # Cross-validation: xdmgnd.lm4.err<-cv.glm(xdmgnd,xdmgnd.lm4.cv,K=10) xdmgnd.lm4.err$delta #There are two components for estimated errors: the first is the raw cross-validation estimate of prediction error; the second is the adjusted cross-validation estimate. # Compare xdmgnd.lm4 and xdmgnd.lm3 based on adjusted cross-validation estimate. Which model performs better?
a253824479514c0f59a4d3bde88bc75c786bd4ab
ffdea92d4315e4363dd4ae673a1a6adf82a761b5
/data/genthat_extracted_code/PLRModels/examples/plrm.ci.Rd.R
0451962195e7cbc2181b9c1f9f4cfe80a8b84f56
[]
no_license
surayaaramli/typeRrh
d257ac8905c49123f4ccd4e377ee3dfc84d1636c
66e6996f31961bc8b9aafe1a6a6098327b66bf71
refs/heads/master
2023-05-05T04:05:31.617869
2019-04-25T22:10:06
2019-04-25T22:10:06
null
0
0
null
null
null
null
UTF-8
R
false
false
1,000
r
plrm.ci.Rd.R
library(PLRModels) ### Name: plrm.ci ### Title: Confidence intervals estimation in partial linear regression ### models ### Aliases: plrm.ci ### Keywords: Statistical Inference Regression Time Series ### ** Examples # EXAMPLE 1: REAL DATA data(barnacles1) data <- as.matrix(barnacles1) data <- diff(data, 12) data <- cbind(data,1:nrow(data)) b.h <- plrm.gcv(data)$bh.opt b1 <- b.h[1] ## Not run: plrm.ci(data, b1=b1, b2=b1, a=c(1,0), CI="all") ## Not run: plrm.ci(data, b1=b1, b2=b1, a=c(0,1), CI="all") # EXAMPLE 2: SIMULATED DATA ## Example 2a: dependent data set.seed(123) # We generate the data n <- 100 t <- ((1:n)-0.5)/n m <- function(t) {t+0.5} f <- m(t) beta <- c(0.5, 2) x <- matrix(rnorm(200,0,3), nrow=n) sum <- x%*%beta sum <- as.matrix(sum) eps <- arima.sim(list(order = c(1,0,0), ar=0.7), sd = 0.1, n = n) eps <- as.matrix(eps) y <- sum + f + eps data_plrmci <- cbind(y,x,t) ## Not run: plrm.ci(data, a=c(1,0), CI="all") ## Not run: plrm.ci(data, a=c(0,1), CI="all")
68b23b8bb3f951e5d3eb2afaa6a6a7b0b019891a
96a66b3b1e65e1a25951349d03bf122c1879f08d
/man/analyze.Rd
0d222c719c0a1120def33b897c0668cb55111134
[]
no_license
cran/LN3GV
66ed033943771074f9c1252d7ccdf4d4656d227c
6945374aa31fe40d2c06fda296290f58b58c3151
refs/heads/master
2016-08-04T08:25:25.833761
2011-07-26T00:00:00
2011-07-26T00:00:00
null
0
0
null
null
null
null
UTF-8
R
false
false
3,943
rd
analyze.Rd
% File src/library/LN3GV/man/analyze.Rd \name{analyze} \alias{analyze} \title{Fit a hierarchical model to matrix of normalized microarray data} \description{ Analyze microarray data using the methods detailed in Lund and Nettleton, 2011. This is the main function of the LN3GV package.} \usage{ analyze(dat,pats,method,log.scale=TRUE,MaxIt=30, parm.conv=.005,prob.conv=.0005,parm.init=NULL,prob.init=NULL) } \arguments{ \item{dat}{microarray data matrix of normalized intensities from microarray experiment. Each row contains observations from a single gene. Each column contains observations from a single experimental unit.} \item{pats}{matrix in which each row describes a unique expression pattern. Must have same number of columns as \code{dat}. For each pattern, experimental units sharing a common integer are assumed to be equivalently expressed.} \item{method}{method used to analyze data. Must be one of "LNNMV*", "LNNGV", "LN3", "LN3MV*", or "LN3GV"} \item{log.scale}{logical. If false, function will perform analysis using \code{log(dat)}} \item{MaxIt}{maximum number of EM algorithm iterations used to estimate prior probabilities for expression patterns and model parameters.} \item{parm.conv}{Until iteration \code{MaxIt}, EM algorithm will not stop while the difference between consecutive iterations in estimates for any parameter is greater than \code{parm.cov} times the updated parameter estimate. May be specified as single number or a vector with length equal to number of model parameters (see details).} \item{prob.conv}{Until iteration \code{MaxIt}, EM algorithm will not stop while the difference between consecutive iterations in prior probability estimates for any pattern is greater than \code{prob.conv}. May be specified as single number or a vector with length equal to \code{nrow(pats)}.} \item{parm.init}{Optional. Provides initial estimates for model parameters. See details. } \item{prob.init}{Optional. Provides initial estimates of prior probabilities (or mixing proportions) for expression patterns.} } \details{ Order of model parameters optimized using EM algorithm for each method: LNNMV* and LNNGV: Treatment variance (vt), mu. Error variance parameter values are not chosen using EM algorithm for these methods. LN3: Gene variance (vg), Treatment variance (vt), Error variance (vr), mu LN3MV* and LN3GV: Gene variance (vg), Treatment variance (vt), mu. Error variance parameter values are not chosen using EM algorithm for these methods. When estimating error variances, experimental units for which the corresponding columns of \code{pats} are identical are assumed to be replicates. } \value{list containing: \item{"Pattern Probs"}{matrix the describes posterior probabilities for expression patterns for each gene} \item{"Parameter Estimates"}{vector providing estimated prior probabilities for expression patterns and model parameters.} } \author{Steve Lund \email{[email protected]}} \examples{ ### Create example data set from LN3MV model. dat<-matrix(rnorm(500),50,10)*rgamma(50,.5,1)+rnorm(50,0,2); ### Make first 25 example genes differentially expressed. ### Suppose 2 conditions with 4 and 6 reps, respectively. dat[1:25,1:4]<-dat[1:25,1:4]+rnorm(25) dat[1:25,5:10]<-dat[1:25,5:10]+rnorm(25) dat[26:50,]<-dat[26:50,]+rnorm(25) ### Create matrix defining possible expression patterns. ### First row is pattern for equivalent expression. ### Second row is pattern for differential expression across conditions. pats<-rbind(rep(1,10),rep(1:2,c(4,6))) ### Analyze data using each method analyze(dat,pats,method="LN3GV") analyze(dat,pats,method="LN3MV*") analyze(dat,pats,method="LN3") analyze(dat,pats,method="LNNGV") analyze(dat,pats,method="LNNMV*") } \keyword{microarray, differential expression}
75775ad2cbe47ecdad8e58cfd5aa768ee067a5ec
a8c5d8db03159c81e0b296f18179d3cd1c56ae00
/man/package_glob.Rd
d683af383acdb9414404e00a8e816df9f5e98d39
[]
no_license
cran/deepredeff
a42ccc7e75ae2d903496d31715a17bf01a94e3ea
9b2888b98bf1c4143f499768355ab058d4703cde
refs/heads/master
2023-06-18T04:24:21.440705
2021-07-16T08:30:02
2021-07-16T08:30:02
307,944,271
0
0
null
null
null
null
UTF-8
R
false
true
325
rd
package_glob.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/utils.R \name{package_glob} \alias{package_glob} \title{Wildcard Expansion on File Paths} \usage{ package_glob(..., pattern) } \arguments{ \item{...}{Path} \item{pattern}{Pattern} } \value{ Glob } \description{ Wildcard Expansion on File Paths }
cfe87a13f160ea5a70754970eb8f1db04818e081
ffdea92d4315e4363dd4ae673a1a6adf82a761b5
/data/genthat_extracted_code/powdR/examples/fps.Rd.R
918a76fcf46d313c215b297527222c84456b645c
[]
no_license
surayaaramli/typeRrh
d257ac8905c49123f4ccd4e377ee3dfc84d1636c
66e6996f31961bc8b9aafe1a6a6098327b66bf71
refs/heads/master
2023-05-05T04:05:31.617869
2019-04-25T22:10:06
2019-04-25T22:10:06
null
0
0
null
null
null
null
UTF-8
R
false
false
984
r
fps.Rd.R
library(powdR) ### Name: fps ### Title: Full pattern summation ### Aliases: fps ### ** Examples #Load the minerals library data(minerals) # Load the soils data data(soils) #Since the reference library is relatively small, #the whole library can be used at once to get an #estimate of the phases within each sample. ## Not run: ##D fps_sand <- fps(lib = minerals, ##D smpl = soils$sandstone, ##D refs = minerals$phases$phase_id, ##D std = "QUA.1", ##D align = 0.2) ##D ##D fps_lime <- fps(lib = minerals, ##D smpl = soils$limestone, ##D refs = minerals$phases$phase_id, ##D std = "QUA.1", ##D align = 0.2) ##D ##D fps_granite <- fps(lib = minerals, ##D smpl = soils$granite, ##D refs = minerals$phases$phase_id, ##D std = "QUA.1", ##D align = 0.2) ## End(Not run)
e73c1b2a31609b50c2de9cae5857dae002d4d3f0
ffdea92d4315e4363dd4ae673a1a6adf82a761b5
/data/genthat_extracted_code/nor1mix/examples/rnorMix.Rd.R
ce735873c1b589ed935e670ae87369f86ac4bea1
[]
no_license
surayaaramli/typeRrh
d257ac8905c49123f4ccd4e377ee3dfc84d1636c
66e6996f31961bc8b9aafe1a6a6098327b66bf71
refs/heads/master
2023-05-05T04:05:31.617869
2019-04-25T22:10:06
2019-04-25T22:10:06
null
0
0
null
null
null
null
UTF-8
R
false
false
344
r
rnorMix.Rd.R
library(nor1mix) ### Name: rnorMix ### Title: Generate 'Normal Mixture' Distributed Random Numbers ### Aliases: rnorMix ### Keywords: distribution ### ** Examples x <- rnorMix(5000, MW.nm10) hist(x)# you don't see the claw plot(density(x), ylim = c(0,0.6), main = "Estim. and true 'MW.nm10' density") lines(MW.nm10, col = "orange")
a1fa00b26aa825069bf7790adfc5f15aab3919bf
6c1926b99503f6304d35ba383538c9c365242bb1
/man/get.var.Rd
f636a01b8bdb8c2fed30ceb83d0fa239041bfe80
[]
no_license
smorisseau/dhstools
56e1451de1124ac0f7943c7710a03a13b5fcca22
a8ba0addb7cae06cf085ebe08e9136bef04ed87f
refs/heads/master
2021-01-17T15:33:10.641739
2014-03-25T15:37:50
2014-03-25T15:37:50
null
0
0
null
null
null
null
UTF-8
R
false
false
1,008
rd
get.var.Rd
\name{get.var} \alias{get.var} \title{helper fns for dhstools} \usage{ get.var(survey.data, var, default = NA) } \arguments{ \item{survey.data}{the survey dataset} \item{var}{either NULL, a column name, or a vector of values} \item{default}{the default value to fill in if the variable is not found} } \value{ a vector of values whose length is the same as the number of rows in survey.data; if var is NULL, this has the default values } \description{ (NB: get.var and get.weights are taken from the networkreporting package) } \details{ get a variable from a dataframe or vector this function was written because a few of the estimator functions need to use weights, and there are several cases to handle: the user could pass in a column name, a vector of weights, or nothing (in which case, the weights should default to 1 for each row in the dataset). for the special case of getting weights, look at the curried fn get.weights (right below) } \keyword{internal}
197980e3a6c7f78789225305351fa0bbbc0e0cf7
8dc8fc6b022a02db14ed39d82cd222a4c17df3eb
/scripts/mir_gene_families.R
33af2ced701ab2f1e4cff2d4740bb9638d316514
[ "MIT" ]
permissive
BleekerLab/small-rna-seq-pipeline
977c9da4bde224726beaae5599ec1331d2430e62
bbd9ef8c6741dc59f3cdafc35da9cb6ea48b31f9
refs/heads/master
2022-09-10T04:12:24.630033
2022-08-01T18:01:12
2022-08-01T18:01:12
172,049,835
5
2
MIT
2020-11-17T13:26:02
2019-02-22T10:51:51
Perl
UTF-8
R
false
false
1,001
r
mir_gene_families.R
suppressPackageStartupMessages(library(tidyverse)) suppressPackageStartupMessages(library(data.table)) suppressPackageStartupMessages(library(RColorBrewer)) suppressPackageStartupMessages(library(svglite)) # capture the command-line arguments after --args (e.g. the shortstack results directory) args <- commandArgs(trailingOnly = TRUE) blast_file = args[1] output_png = args[2] output_svg = args[3] # read the blast result file df = read.delim(file = blast_file,header = T,stringsAsFactors = F) # count occurences MIR.freqs = as.data.frame(table(df$subject_id)) colnames(MIR.freqs)=c("MIR","Counts") # plot N clusters = f(DicerCall) g <- ggplot(data = MIR.freqs,aes(x=MIR,y=Counts,fill=MIR)) + geom_bar(stat="identity",color="black") + scale_fill_brewer(palette="Set3") + labs(x = "MIR gene family",y="Counts") # save the plots ggsave(filename = output_png,plot = g,width = 7,height = 5,dpi = 400,device = "png") ggsave(filename = output_svg,plot = g,width = 7,height = 5,device = "svg")
be45656e6a0bb4aea149b698e34513ef5aeb4bb3
7dd51c0c6137f8a32a6e2f265874acfcb0c0b5f8
/old20200619/code/02_MDSC_MAC1.R
49ccee081876c63cc0f7aa87c296ebc47ae9ef4f
[]
no_license
Winnie09/GBM_myeloid
7d3c657f9ec431da43b026570e5684b552dedcee
a931f18556b509073e5592e13b93b8cf7e32636d
refs/heads/master
2023-02-04T04:29:50.274329
2020-12-20T21:16:16
2020-12-20T21:16:16
268,260,236
0
0
null
null
null
null
UTF-8
R
false
false
1,556
r
02_MDSC_MAC1.R
library(Matrix) source('/home-4/[email protected]/scratch/Wenpin/trajectory_variability/function/01_function.R') # pseudotime <- readRDS('/home-4/[email protected]/scratch/Wenpin/GBM_myeloid/data/order/MDSC_MAC3_NEU1.rds') pseudotime <- readRDS('/home-4/[email protected]/scratch/Wenpin/GBM_myeloid/data/order/MDSC_MAC1.rds') rdir <- '/home-4/[email protected]/scratch/Wenpin/GBM_myeloid/result/M_MDSC/MDSC_MAC1/' dir.create(rdir, showWarnings = F, recursive = T) setwd(rdir) cnt <- readRDS('/home-4/[email protected]/data2/whou10/GBM/singleObject/M/M.rds') # # ### subset a small test set # set.seed(12345) # id1 = sample(rownames(cnt),3) # cnt <- cnt[id1, ] ##### meta <- readRDS('/home-4/[email protected]/data2/whou10/GBM/singleObject/M/meta.rds') cnt <- cnt[, pseudotime] cellanno <- data.frame(cell = colnames(cnt), sample = sapply(colnames(cnt), function(i) sub('_.*','',sub('.*-','',i))), stringsAsFactors = FALSE) mdsc <- read.csv('/home-4/[email protected]/data2/whou10/GBM/meta/mdsc_proportions.csv', header = T) design <- data.frame(MdscProp = mdsc[,8]) ## 3 is E-MDSC, 8 is M-MDSC rownames(design) <- as.character(mdsc[,2]) cellanno <- cellanno[cellanno[,2] %in% rownames(design),] cnt <- cnt[, cellanno[,1]] pseudotime = pseudotime[pseudotime %in% cellanno[,1]] cnt <- as.matrix(cnt) cnt <- cnt[rowMeans(cnt>0.1)>0.01,] ## filter genes ### algo psn <- seq(1, length(pseudotime)) names(psn) <- pseudotime design = cbind(1, design) res <- testpt(expr=cnt,cellanno=cellanno,pseudotime=psn,design=design,ncores=8, permuiter=100) saveRDS(res, 'final.rds')
fac822ee49fa0b6f8d4a51339caf370af8ca41e3
c28c69b1600f046e15824b810deedb5461182b3f
/inst/shiny/global.r
e509d1153c3b292c52b7115673d37708eba250f7
[]
no_license
choi-phd/TestDesign
14bd43139f54d377e96d5d0ee3d12427736cd8a6
58b5fb1c09b0dc8264173fe485e3de5f251f0715
refs/heads/main
2023-04-19T20:42:23.427342
2023-03-18T20:46:52
2023-03-18T20:46:52
174,591,899
4
6
null
2023-01-27T01:20:16
2019-03-08T18:52:45
R
UTF-8
R
false
false
1,253
r
global.r
library(shiny, quietly = TRUE) library(shinythemes, quietly = TRUE) library(shinyWidgets, quietly = TRUE) suppressPackageStartupMessages(library(shinyjs, quietly = TRUE, warn.conflicts = FALSE)) library(DT, quietly = TRUE, warn.conflicts = FALSE) library(TestDesign, quietly = TRUE) solvers <- c("lpSolve", "Rsymphony", "gurobi", "Rglpk") accepted_files <- c("text/csv", "text/comma-separated-values,text/plain", ".csv") css_y <- "overflow-y:scroll; max-height: 65vh" parseText <- function(arg_text) { # Limit text to only have legit values txt <- gsub("[^0-9\\., \\-]", "", arg_text) return(txt == arg_text) } parseObject <- function(arg_object) { if (is.null(arg_object)) { return(NULL) } return(arg_object) } first_obj <- TRUE assignObject <- function(obj, objname, desc) { if (first_obj) { first_obj <<- FALSE message("\nRefresh the environment tab to see the objects in the list.") } assign(objname, obj, envir = .GlobalEnv) tmp <- sprintf("%-48s assigned to : %s", desc, objname) message(tmp) } updateLogs <- function(v, newlog) { v$logs <- c(v$logs, newlog) v$logs_text <- paste0(v$logs, collapse = "\n") return(v) } getTempFilePath <- function(fname) { return(file.path(tempdir(), fname)) }
78ca2563f01d63edb285bea73fffa27c942915b5
2cbc1106a7ed4b57df979a267bd8ee3cd7f6c2c7
/man/wiki_graph.Rd
43ca10d5105b3378c214a18bbd5ebaae810edf98
[]
no_license
Dap246/Lab03
24b9f474f4d9728c55914de7d7112ee4476af426
e659ea696fc5ed2a70707a4cc3dedb1e06c0e9c3
refs/heads/master
2023-08-26T03:49:58.811515
2021-09-14T20:08:05
2021-09-14T20:08:05
406,218,948
0
0
null
null
null
null
UTF-8
R
false
true
613
rd
wiki_graph.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/data.R \docType{data} \name{wiki_graph} \alias{wiki_graph} \title{Graph for Dijkstra's algorithm.} \format{ A data frame for a graph of 6 nodes and the distance/weight between them: \describe{ \item{v1}{vertices 1-6} \item{v2}{vertices 1-6} \item{w}{weight or distance for all vertices} } } \source{ https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm } \usage{ data(wiki_graph) } \description{ A dataset containing the prices and other attributes of almost 54,000 diamonds. } \examples{ data(wiki_graph) } \keyword{datasets}
20b5966637365cb1e14fc4f21f9c10555fc0b3ab
d4747fe5f7b17988c292573faeecb13e3b4f235e
/R/multiple.R
cb0de01fe6adbf912b3e68f6b829ada25d234c0c
[]
no_license
ElieLP/MultipleR
e85865fb200288aed61cd00ef027f02cec937bb9
23ff9ec300b66555b767b19787bf3d9c3326875a
refs/heads/master
2020-03-15T13:42:37.935214
2018-05-04T18:27:54
2018-05-04T18:27:54
null
0
0
null
null
null
null
UTF-8
R
false
false
519
r
multiple.R
#' Double #' #' @param x Number #' #' @return The double of x #' @export #' #' @examples #' Double(2) #' 4 Double <- function(x = 1) { return(x*2) } #' Triple #' #' @param x Number #' #' @return The triple of x #' @export #' #' @examples #' Triple(3) #' 9 Triple <- function(x = 1) { return(x*3) } #' Multiple #' #' @param x First number being multiplied #' @param n Second number being multiplied #' #' @return x times n #' @export #' #' @examples Multiple(3,6) #' 18 Multiple <- function(x,n) { return(x*n) }
23c536d375cd03ead23e6a8f102bb319df73904d
be1a186d90ed7435615b3b10b97a16168dee2498
/R/generate_packets.R
891c63f7f2f76226d4a5e6299bbfb6ef08882bf4
[]
no_license
paulmeinz/lrdatapacket
505a7999464ff01d343ce8b1226c88cb3dd0ae9f
801d4f96b0c0b8936aacf154183d609bc686c0d4
refs/heads/master
2021-01-21T13:34:01.186764
2016-05-03T16:13:43
2016-05-03T16:13:43
47,354,736
0
0
null
null
null
null
UTF-8
R
false
false
10,480
r
generate_packets.R
generate_packets <- function(data, path, use_subject = 'TRUE', program = '', program_short = '') { subjects <- unique(data$subject_long) if (use_subject) { for (i in subjects) { plot_data <- data[data$subject_long == i,] subject <- plot_data[1, 'subject'] # Headcount Plots (duplicated and unduplicated) title <- paste(i,':','\n', 'Duplicated Headcount by Academic Term', sep = '') save <- paste(path, subject,'.jpg', sep = '') plot_headcounts(plot_data, save, title, undup = FALSE) title <- paste(i,':','\n', 'Unuplicated Headcount by Academic Term', sep = '') save <- paste(path, subject, '1.jpg', sep = '') plot_headcounts(plot_data, save, title) # Disaggregated Headcount Plots....Age Range title <- paste(i,':','\n', 'Headcount by Age Range', sep = '') save <- paste(path, subject, '2.jpg', sep = '') disag_hc_plot(plot_data, 'age', save, 'Age Range', title) # Collapsed Age Range title <- paste(i,':','\n', 'Headcount by Age Range (Collapsed)', sep = '') save <- paste(path, subject, '3.jpg', sep = '') disag_hc_plot(plot_data, 'agecol', save, 'Age Range', title) # Gender title <- paste(i,':','\n', 'Headcount by Gender', sep = '') save <- paste(path, subject, '4.jpg', sep = '') disag_hc_plot(plot_data, 'gender', save, 'Gender', title) # Ethnicity title <- paste(i,':','\n', 'Headcount by Ethnicity', sep = '') save <- paste(path, subject, '5.jpg', sep = '') disag_hc_plot(plot_data, 'ethnicity', save, 'Ethnicity', title) # Educational Goal title <- paste(i,':','\n', 'Headcount by Ed Goal', sep = '') save <- paste(path, subject, '6.jpg', sep = '') disag_hc_plot(plot_data, 'matr_goal', save, 'Educational Goal', title) # Educational Level title <- paste(i,':','\n', 'Headcount by Ed Level', sep = '') save <- paste(path, subject, '7.jpg', sep = '') disag_hc_plot(plot_data, 'matr_goal', save, 'Educational Level', title) # Instructional Mode title <- paste(i,':','\n', 'Headcount by Instructional Mode', sep = '') save <- paste(path, subject, '8.jpg', sep = '') disag_hc_plot(plot_data, 'inst_mode', save, 'Instructional Mode', title) # Course Level title <- paste(i,':','\n', 'Headcount by Course Level', sep = '') save <- paste(path, subject, '9.jpg', sep = '') disag_hc_plot(plot_data, 'course_number', save, 'Course Level', title) # Freshman Status title <- paste(i,':','\n', 'Headcount by Freshman Status', sep = '') save <- paste(path, subject, '10.jpg', sep = '') disag_hc_plot(plot_data, 'enroll_status', save, 'Freshman Status', title) # Primary Language title <- paste(i,':','\n', 'Headcount by Primary Language', sep = '') save <- paste(path, subject, '11.jpg', sep = '') disag_hc_plot(plot_data, 'language', save, 'Primary Language', title) # Success Rate Plots...Age Range title <- paste(i,':','\n', 'Success Rate by Age Range', sep = '') save <- paste(path, subject, '12.jpg', sep = '') disag_scs_plot(plot_data, 'age', save, 'Age Range', title) # Age Range Collapsed title <- paste(i,':','\n', 'Success Rate by Age Range (Collapsed)', sep = '') save <- paste(path, subject, '13.jpg', sep = '') disag_scs_plot(plot_data, 'agecol', save, 'Age Range', title) # Gender title <- paste(i,':','\n', 'Success Rate by Gender', sep = '') save <- paste(path, subject, '14.jpg', sep = '') disag_scs_plot(plot_data, 'gender', save, 'Gender', title) # Ethnicity title <- paste(i,':','\n', 'Success Rate by Ethnicity', sep = '') save <- paste(path, subject, '15.jpg', sep = '') disag_scs_plot(plot_data, 'ethnicity', save, 'Ethnicity', title) # Educational Goal title <- paste(i,':','\n', 'Success Rate by Ed Goal', sep = '') save <- paste(path, subject, '16.jpg', sep = '') disag_scs_plot(plot_data, 'matr_goal', save, 'Educational Goal', title) # Educational Level title <- paste(i,':','\n', 'Success Rate by Ed Level', sep = '') save <- paste(path, subject, '17.jpg', sep = '') disag_scs_plot(plot_data, 'matr_goal', save, 'Educational Level', title) # Instructional Mode title <- paste(i,':','\n', 'Success Rate by Instructional Mode', sep = '') save <- paste(path, subject, '18.jpg', sep = '') disag_scs_plot(plot_data, 'inst_mode', save, 'Instructional Mode', title) # Course Level title <- paste(i,':','\n', 'Success Rate by Course Level', sep = '') save <- paste(path, subject, '19.jpg', sep = '') disag_scs_plot(plot_data, 'course_number', save, 'Course Level', title) # Freshman Status title <- paste(i,':','\n', 'Success Rate by Freshman Status', sep = '') save <- paste(path, subject, '20.jpg', sep = '') disag_scs_plot(plot_data, 'enroll_status', save, 'Freshman Status', title) # Primary Language title <- paste(i,':','\n', 'Success Rate by Primary Language', sep = '') save <- paste(path, subject, '21.jpg', sep = '') disag_scs_plot(plot_data, 'language', save, 'Primary Language', title) } } if (use_subject) { program <- 'Collegewide' program_short <- 'CRCC' } # I don't like how this code repeats... # Headcount Plots (duplicated and unduplicated) title <- paste(program,':','\n', 'Duplicated Headcount by Academic Term', sep = '') save <- paste(path, program_short,'.jpg', sep = '') plot_headcounts(data, save, title, undup = FALSE) title <- paste(program,':','\n', 'Unuplicated Headcount by Academic Term', sep = '') save <- paste(path, program_short, '1.jpg', sep = '') plot_headcounts(data, save, title) # Disaggregated Headcount Plots....Age Range title <- paste(program,':','\n', 'Headcount by Age Range', sep = '') save <- paste(path, program_short, '2.jpg', sep = '') disag_hc_plot(data, 'age', save, 'Age Range', title) # Collapsed Age Range title <- paste(program,':','\n', 'Headcount by Age Range (Collapsed)', sep = '') save <- paste(path, program_short, '3.jpg', sep = '') disag_hc_plot(data, 'agecol', save, 'Age Range', title) # Gender title <- paste(program,':','\n', 'Headcount by Gender', sep = '') save <- paste(path, program_short, '4.jpg', sep = '') disag_hc_plot(data, 'gender', save, 'Gender', title) # Ethnicity title <- paste(program,':','\n', 'Headcount by Ethnicity', sep = '') save <- paste(path, program_short, '5.jpg', sep = '') disag_hc_plot(data, 'ethnicity', save, 'Ethnicity', title) # Educational Goal title <- paste(program,':','\n', 'Headcount by Ed Goal', sep = '') save <- paste(path, program_short, '6.jpg', sep = '') disag_hc_plot(data, 'matr_goal', save, 'Educational Goal', title) # Educational Level title <- paste(program,':','\n', 'Headcount by Ed Level', sep = '') save <- paste(path, program_short, '7.jpg', sep = '') disag_hc_plot(data, 'matr_goal', save, 'Educational Level', title) # Instructional Mode title <- paste(program,':','\n', 'Headcount by Instructional Mode', sep = '') save <- paste(path, program_short, '8.jpg', sep = '') disag_hc_plot(data, 'inst_mode', save, 'Instructional Mode', title) # Course Level title <- paste(program,':','\n', 'Headcount by Course Level', sep = '') save <- paste(path, program_short, '9.jpg', sep = '') disag_hc_plot(data, 'course_number', save, 'Course Level', title) # Freshman Status title <- paste(program,':','\n', 'Headcount by Freshman Status', sep = '') save <- paste(path, program_short, '10.jpg', sep = '') disag_hc_plot(data, 'enroll_status', save, 'Freshman Status', title) # Primary Language title <- paste(program,':','\n', 'Headcount by Primary Language', sep = '') save <- paste(path, program_short, '11.jpg', sep = '') disag_hc_plot(data, 'language', save, 'Primary Language', title) # Success Rate Plots...Age Range title <- paste(program,':','\n', 'Success Rate by Age Range', sep = '') save <- paste(path, program_short, '12.jpg', sep = '') disag_scs_plot(data, 'age', save, 'Age Range', title) # Age Range Collapsed title <- paste(program,':','\n', 'Success Rate by Age Range (Collapsed)', sep = '') save <- paste(path, program_short, '13.jpg', sep = '') disag_scs_plot(data, 'agecol', save, 'Age Range', title) # Gender title <- paste(program,':','\n', 'Success Rate by Gender', sep = '') save <- paste(path, program_short, '14.jpg', sep = '') disag_scs_plot(data, 'gender', save, 'Gender', title) # Ethnicity title <- paste(program,':','\n', 'Success Rate by Ethnicity', sep = '') save <- paste(path, program_short, '15.jpg', sep = '') disag_scs_plot(data, 'ethnicity', save, 'Ethnicity', title) # Educational Goal title <- paste(program,':','\n', 'Success Rate by Ed Goal', sep = '') save <- paste(path, program_short, '16.jpg', sep = '') disag_scs_plot(data, 'matr_goal', save, 'Educational Goal', title) # Educational Level title <- paste(program,':','\n', 'Success Rate by Ed Level', sep = '') save <- paste(path, program_short, '17.jpg', sep = '') disag_scs_plot(data, 'matr_goal', save, 'Educational Level', title) # Instructional Mode title <- paste(program,':','\n', 'Success Rate by Instructional Mode', sep = '') save <- paste(path, program_short, '18.jpg', sep = '') disag_scs_plot(data, 'inst_mode', save, 'Instructional Mode', title) # Course Level title <- paste(program,':','\n', 'Success Rate by Course Level', sep = '') save <- paste(path, program_short, '19.jpg', sep = '') disag_scs_plot(data, 'course_number', save, 'Course Level', title) # Freshman Status title <- paste(program,':','\n', 'Success Rate by Freshman Status', sep = '') save <- paste(path, program_short, '20.jpg', sep = '') disag_scs_plot(data, 'enroll_status', save, 'Freshman Status', title) # Primary Language title <- paste(program,':','\n', 'Success Rate by Primary Language', sep = '') save <- paste(path, program_short, '21.jpg', sep = '') disag_scs_plot(data, 'language', save, 'Primary Language', title) }
93ccc292a4eb4a9b237d44671da6366db598cec7
75f8a0d750aa880f5eaf72aafe9acba8746d9656
/lectures/12/scripts/beeline.R
5eff024d7d574f737d96e8c772f666819b9d35a7
[]
no_license
dkhramov/iad_2020
abe75b34c5fb422b1eb7ad320827a7253a7fb03d
701b9eb08f65c0262808717549c369b270883a14
refs/heads/master
2021-02-06T22:43:27.924767
2020-03-20T12:19:24
2020-03-20T12:19:24
243,954,164
2
1
null
null
null
null
UTF-8
R
false
false
6,435
r
beeline.R
#### Предварительная обработка данных #### По мотивам статьи "Как я победил в конкурсе BigData от Beeline" #### https://habrahabr.ru/post/270367/ train <- read.table(unzip("../data/train.zip"), header = T, sep=",") str(train) # x8 # x23-x61 ## Шаг 1. Предварительный просмотр факторов # факторы - переменные в номинальной шкале class(train[,4]) # Смотрим уровни фактора levels(train[,4]) # перекодировка z.tmp <- as.numeric(train[,4]) # Сколько всего уникальных значений? length(unique(train[,4])) # Сколько раз встречается каждый из уровней? table(train[,4]) ## Шаг 2. Предварительный просмотр переменных, ## заданных в количественной шкале # Как распределены числовые данные? hist(train[,25]) # Не слишком ли мало столбцов? hist(train[,25],breaks=100) # Осмотрим на предмет выбросов boxplot(train[,25]) # Выполним логарифмическое преобразование # Сохраним неизменным исходный столбец данных zzz <- train[,25] # Исключим отрицательные значения и ноль zzz2 <- zzz - min(zzz, na.rm = T) + 0.01 # Посмотрим на результаты логарифмирования hist(log(zzz2)) # Стандартизируем (шкалируем) данные к [0;1] # после нормализации # maxs <- apply(train[ , с(25)], 2, max) # mins <- apply(train[ , с(25)], 2, min) # train.sc <- scale(train[ , с(25)], center = mins, scale = maxs - mins) # Разберемся, кто является выбросом # Есть ли выбросы? boxplot(log(zzz2)) ## Преобразование Бокса-Кокса library(forecast) # Поиск оптимальной lambda lambda <- BoxCox.lambda(zzz) # Преобразование данных zzz3 <- BoxCox(zzz, lambda) hist(zzz3) # Попробуем другой столбец. zzz <- train[,31] hist(zzz) # Поиск оптимальной lambda lambda <- BoxCox.lambda(zzz) # Преобразование данных zzz3 <- BoxCox(zzz, lambda) hist(zzz3) ## Контроль отрицательных значений # Необходим для выполнения сдвига данных в положительную область # перед логарифмированием логнормального распределения. hist(train[,26]) boxplot(train[,26]) sum((train[!is.na(train[,26]),26]<0)) ## Шаг 3. Определение выбросов # Правило 3-х сигм # Индикатор выброса: zzz4 <- as.numeric(abs(zzz2 - mean(zzz2, na.rm = T)) > 3*sd(zzz2, na.rm = T)) # Распределение значений индикатора выброса table(zzz4) # Места выбросов заполянются NA zzz[zzz4==1] <- NA # Добавим индикатор выбросов zzz4 в данные, как новую колонку ## Автоматизация преобразования количественных переменных (шагов 2-3) ## Не рекомендуется: внутри используется преобразования Бокса-Кокса length(c(9,24:62)) # Матрица индикаторов выбросов extremes.ind <- matrix(rep(-99, 50000*40), nrow=50000, ncol=40) j <- 1 for (i in c(9,24:62)){ # Поиск оптимальной lambda lambda <- BoxCox.lambda( train[,i] ) # Преобразование данных zzz3 <- BoxCox(train[,i], lambda) zzz4 <- as.numeric(abs(zzz3 - mean(zzz3, na.rm = T)) > 3*sd(zzz3, na.rm = T)) zzz4[is.na(zzz4)] <- 0 train[zzz4==1,i] <- NA extremes.ind[ , j] <- zzz4 j <- j+1 } summary(extremes.ind) ## Шаг 4. Преобразование категориальных переменных: редкие значения. # Это - хеши x0 <- as.character(train$x0) # Всего их 50000, но уникальных гораздо меньше. # table() добавляет нам имена категорий zzz <- table(x0) # Уникальные хеши names(zzz) # Сколько их? length(zzz) # Находим хеши, встречающиеся реже чем в 0.5% случаев zzz.1 <- names(zzz)[which( as.numeric(zzz)/nrow(train)*100 < 0.5 )] # Помечаем их как редкие x0[x0 %in% zzz.1 ] <- "Rare" # В одну строчку # x0[x0 %in% names(zzz)[as.numeric(zzz)/nrow(train)*100 < 0.5 ] ] <- "Rare" # Отступление: поэтапное формирование условия "редкости" plot(as.numeric(zzz)) plot(as.numeric(zzz)/nrow(train)*100) which( as.numeric(zzz)/nrow(train)*100 < 0.5 ) ## Шаг 5. Преобразование категориальных переменных: индикаторы значений. # Процедура class.ind из пакета nnet x0.class <- nnet::class.ind(factor(x0)) # Новым столбцам нужны более красивые имена x0.class <- as.data.frame(x0.class) # иначе имена не назначатся names(x0.class)[1:9] <- paste("x0.0", 1:9, sep= "") names(x0.class)[10:ncol(x0.class)] <- paste("x0.", 10:ncol(x0.class), sep= "") ## Шаг 6. Feature engineering thr_top <- 0.9 thr_bottom <- 0.05 # names(train) %in% c("x55", "x56", "x57", "x58", "x59", "x60") # # for col in ["x55", "x56", "x57", "x58", "x59", "x60"]: # data["mostly_"+col] = (data[col] >= thr_top)*1 # data["no_"+col] = (data[col] <= thr_bottom)*1 # paste(n[!n %in% "y1"], collapse = " + ") # paste("y1 ~", paste(n[!n %in% "y1"], collapse = " + ")) # ------------------------------------------------ one<-data.frame(train[,56:61]) sum(one[5,]) check<-data.frame(rep(0,50000),rep(0,50000)) a<-(one[,1]) table(as.numeric(a<0.05)) head(a1) for (i in 1:6) { a<-one[,i] a<-as.numeric(a<0.05) check[,i]<-a } for (i in 1:6) { a<-one[,i] a<-as.numeric(a>0.90) check[,i+6]<-a } # ------------------------------------------------ ?match
8b6dec9831683b1b7c0d55a1e452759e302ab939
730ec6f7b8046c842ee4b7d35bdace9cfd75f202
/man/dada.Rd
a71711ac33e9d90bde608486a77f98feb350d8f9
[]
no_license
cmsmoo/dada2
e0a4d8a4eef1727bc0bfaf155a57a2c30a812111
0c99d4e6cf6d71c8733cd46fa31ada5df683fa3d
refs/heads/master
2021-01-22T16:13:42.488161
2016-02-23T01:42:05
2016-02-23T01:42:05
null
0
0
null
null
null
null
UTF-8
R
false
true
5,103
rd
dada.Rd
% Generated by roxygen2: do not edit by hand % Please edit documentation in R/dada.R \name{dada} \alias{dada} \title{High resolution sample inference from amplicon data.} \usage{ dada(derep, err, errorEstimationFunction = loessErrfun, selfConsist = FALSE, aggregate = FALSE, ...) } \arguments{ \item{derep}{(Required). A derep-class object, the output of \code{\link{derepFastq}}. A list of derep objects can be provided, in which case each will be independently denoised with a shared error model.} \item{err}{(Required). 16xN numeric matrix. Each entry must be between 0 and 1. The matrix of estimated rates for each possible nucleotide transition (from sample nucleotide to read nucleotide). Rows correspond to the 16 possible transitions (t_ij) indexed as so... 1:A->A, 2:A->C, 3:A->G, 4:A->T, 5:C->A, 6:C->C, 7:C->G, 8:C->T, 9:G->A, 10:G->C, 11:G->G, 12:G->T, 13:T->A, 14:T->C, 15:T->G, 16:T->T Columns correspond to consensus quality scores. Typically there are 41 columns for the quality scores 0-40. However, if USE_QUALS=FALSE, the matrix must have only one column. If selfConsist = TRUE, this argument can be passed in as NULL and an initial error matrix will be estimated from the data by assuming that all reads are errors away from one true sequence.} \item{errorEstimationFunction}{(Optional). Function. Default loessErrfun. If USE_QUALS = TRUE, \code{errorEstimationFunction(dada()$trans_out)} is computed after sample inference finishes and the return value is used as the new estimate of the err matrix. If USE_QUALS = FALSE, this argument is ignored, and transition rates are estimated by maximum likelihood (t_ij = n_ij/n_i).} \item{selfConsist}{(Optional). \code{logical(1)}. Default FALSE. If selfConsist = TRUE, the algorithm will alternate between sample inference and error rate estimation until convergence. Error rate estimation is performed by the errorEstimationFunction, which is required for selfConsist mode. If dada is run in selfConsist mode without specifying this function, the default loessErrfun will be used. If selfConsist=FALSE the algorithm performs one round of sample inference based on the provided err matrix.} \item{aggregate}{(Optional). \code{logical(1)}. Default is FALSE. If aggregate = TRUE, the algorithm will pool together all samples prior to sample inference. If aggregate = FALSE (default), sample inference is performed on each sample individually. aggregate has no effect if only 1 sample is provided, and aggregate does not affect error rate estimation in selfConsist mode, which always pools the observed transitions across samples.} \item{...}{(Optional). All dada_opts can be passed in as arguments to the dada() function. See \code{\link{setDadaOpt}} for a discussion of the various dada options.} } \value{ A \code{\link{dada-class}} object or list of such objects of a list of derep objects was provided. } \description{ The dada function takes as input dereplicated amplicon sequencing reads and returns the inferred composition of the sample (or samples). Put another way, dada removes all sequencing errors to reveal the members of the sequenced community. If dada is run in selfConsist=TRUE mode, the algorithm will infer both the sample composition and the parameters of its error model from the data. } \details{ Briefly, DADA implements a statiscal test for the notion that a specific sequence was seen too many times to have been caused by amplicon errors from currently inferred sample sequences. Overly-abundant sequences are used as the seeds of new clusters of sequencing reads, and the final set of clusters is taken to represent the denoised composition of the sample. A more detailed explanation of the algorithm is found in two publications: \itemize{ \item{Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J., & Holmes, S. P. (2015). DADA2: High resolution sample inference from amplicon data. bioRxiv, 024034.} \item{Rosen, M. J., Callahan, B. J., Fisher, D. S., & Holmes, S. P. (2012). Denoising PCR-amplified metagenome data. BMC bioinformatics, 13(1), 283.} } DADA depends on a parametric error model of substitutions. Thus the quality of its sample inference is affected by the accuracy of the estimated error rates. DADA's selfConsist mode allows these error rates to be inferred from the data. All of DADA's comparisons between sequences depend on pairwise alignments. This step is the most computationally intensive part of the algorithm, and two alignment heuristics have been implemented for speed: A kmer-distance screen and a banded Needleman-Wunsch alignmemt. See \code{\link{setDadaOpt}}. } \examples{ derep1 = derepFastq(system.file("extdata", "sam1F.fastq.gz", package="dada2")) derep2 = derepFastq(system.file("extdata", "sam2F.fastq.gz", package="dada2")) dada(derep1, err=tperr1) dada(list(sam1=derep1, sam2=derep2), err=tperr1, selfConsist=TRUE) dada(derep1, err=inflateErr(tperr1,2), BAND_SIZE=32, OMEGA_A=1e-20) } \seealso{ \code{\link{derepFastq}} \code{\link{setDadaOpt}} }
6e68586f630ff2f5a4d3f2aca722049aa0ac0ee3
5dc8f146c468481e8fbda425d4a71a0fe0182f63
/chap03/qplot.R
0305843865a2889d725600e1ecc84fe04782e17d
[]
no_license
kyh8874/R
12fe23f129c726dd3a360fd780f96416a0d70ab8
b435c030691e013df5386d049dcc79b09ac6f17e
refs/heads/master
2020-04-28T04:05:57.329401
2019-05-01T03:02:38
2019-05-01T03:02:38
174,964,608
0
0
null
null
null
null
UTF-8
R
false
false
515
r
qplot.R
sample(seq(1,10, length.out=100), replace = T, size = 1000) -> data1 length(data1) str(data1) table(data1) qplot(data1) sample(c('a','b','c','d'),100,replace=T, prob=c(0.2,0.5,0.9,0.3))->data2 table(data2) qplot(data2) library(sqldf) c(80, 60, 70, 50, 90)-> exam exam sum(exam)/5 -> avg_exam avg_exam mean(exam) seq(1,45,length.out=6) seq() sample(seq(1,45,length.out=100), replace=T,size=1000) -> loo loo sample(seq(1,45,length.out=45), replace=T,size=1000) -> lo lo%/%1 ->to table(to) qplot(to)
6e316f16f5ca33c9306f0c5a4018e8ae012ff843
05d2e2061c8a8383b6ff43f646b635a5b34eb413
/Splicing_Workflow/CPM_feature_table.R
9898407f35d1244c968930a4fe9b441aca0056c5
[]
no_license
cwarden45/RNAseq_templates
6a0a971985bff86e405582a441313517f478e192
281ecf76ce852a3b9302ea89674f65fe7b68292f
refs/heads/master
2022-06-18T05:15:17.374337
2022-06-09T21:19:45
2022-06-09T21:19:45
60,568,054
1
2
null
null
null
null
UTF-8
R
false
false
2,556
r
CPM_feature_table.R
normalizeTotalExpression = function (geneExpr, totalReads) { return(geneExpr / totalReads) }#end def normalizeTotalExpression param.table = read.table("parameters.txt", header=T, sep="\t") sample.description.file = as.character(param.table$Value[param.table$Parameter == "sample_description_file"]) count.folder=as.character(param.table$Value[param.table$Parameter == "QoRTs_Merged_Folder"]) comp.name=as.character(param.table$Value[param.table$Parameter == "comp_name"]) user.folder = as.character(param.table$Value[param.table$Parameter == "Result_Folder"]) count.file = paste(user.folder,"/QoRTS_JunctionSeq_feature_counts.txt",sep="") CPM.file = paste(user.folder,"/QoRTS_JunctionSeq_feature_CPM.txt",sep="") stat.file = paste(user.folder,"/DSG/feature_stats_",comp.name,".txt",sep="") stat.table = read.table(stat.file, head=T, sep="\t") feature.info = stat.table[,1:7] rm(stat.table) sample.description.table = read.table(sample.description.file,head=T, sep="\t") sampleIDs = as.character(sample.description.table$sample.ID) sample.label = as.character(sample.description.table$userID) total.million.aligned.reads = as.numeric(sample.description.table$aligned.reads) / 1000000 countFiles = paste(count.folder,"/",sampleIDs,"/QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt",sep="") for (i in 1:length(countFiles)){ if(!file.exists(countFiles[i])){ gzFile = paste(countFiles[i],".gz",sep="") command = paste("gunzip -c ",gzFile," > ",countFiles[i],sep="") system(command) }#end if(!file.exists(countFiles[i])) }#end for (i in 1:length(countFiles)) #some loss of overlapping features, but mostly covered for (i in 1:length(countFiles)){ coverage.table = read.table(countFiles[i],head=F, sep="\t") feature.name = coverage.table[,1] feature.count = coverage.table[,2] sample.counts = feature.count[match(feature.info[,1], feature.name)] if(i == 1){ count.mat = data.frame(sampleID = sample.counts) }else{ count.mat = data.frame(count.mat, sample.counts) } }#end for (i in 1:length(countFiles)) colnames(count.mat) = sample.label annotated.count.table = data.frame(feature.info, count.mat) write.table(annotated.count.table, count.file, quote=F, sep="\t", row.names=F) CPM = round(t(apply(count.mat, 1, normalizeTotalExpression, totalReads = total.million.aligned.reads)), digits=1) colnames(CPM) = sample.label annotated.CPM.table = data.frame(feature.info, CPM) write.table(annotated.CPM.table, CPM.file, quote=F, sep="\t", row.names=F)
4ed8efc6fe88316fd40e8d5787adb53876bf2152
2b9b26a5aee3dd3bf9ec492ec0d53f7a9d76d7ec
/in-work/gadgets/gadget_clean_rows.R
74d4bc911500ea70d26bec5dd41364b56354f6f0
[]
no_license
whaleshark16/teachingApps
808d7cb282aaedbcd7d3c389bd5f7f01ebbac7ff
47f9f5275719087575565d5facfb6c94a5ff5d53
refs/heads/master
2021-09-07T17:06:21.479444
2018-02-26T15:22:00
2018-02-26T15:22:00
118,481,453
0
0
null
2018-02-22T18:27:25
2018-01-22T16:12:55
HTML
UTF-8
R
false
false
3,088
r
gadget_clean_rows.R
#' Subset data using column values #' #' @description Shiny gadget used to visually inspect column values in a data set #' and subset rows by specifying column values #' #' @param data A data set #' @param colorBy \code{character} Column by which the \code{parcoords} plot should be colored #' @param theme \code{character} A bootswatch theme provided to \code{shinythemes::shinytheme} #' @param width \code{character} Width of the gadget (in valid css units) #' @param height \code{character} Height of the gadget (in valid css units) #' @param css \code{character} Path to a custom css file #' #' @import crosstalk #' @importFrom shinythemes shinytheme #' @importFrom shiny runGadget browserViewer #' @importFrom shiny fluidPage tags includeCSS sidebarLayout sidebarPanel #' @importFrom shiny uiOutput selectizeInput actionButton reactive h4 #' @importFrom shiny stopApp observeEvent mainPanel #' @importFrom data.table as.data.table #' @importFrom DT renderDataTable dataTableOutput datatable #' #' @return A \code{list} of length 2 #' \item{data}{A \code{data.frame} containing the columns that were not removed} #' \item{script}{A line of code that can be used to replicate cleaning performed in the gadget} #' #' @examples \dontrun{clean_rows(mtcars)} #' #' @family shinygadgets #' @return A printed shiny app #' @export gadget_clean_rows <- function(data, theme = "flatly", colorBy = NULL, width = '100%', height = '600px', css = NULL) { pacman::p_load_gh('timelyportfolio/parcoords') ui = navbarPage(title = 'Data Cleaning App', collapsible = T, position = 'fixed-top', theme = shinythemes::shinytheme(theme = theme), header = if(is.null(css)) teachingApps::add_css(), tabPanel(h4('Parcoords'), fluidRow( parcoordsOutput('DiamondPlot'))), tabPanel(h4('Selected Data'), sidebarLayout( sidebarPanel(width = 3, actionButton('done',h4('Finish'), width = '100%')), mainPanel(width = 9, DT::dataTableOutput('SelectedData'))))) server = function(input, output) { output$DiamondPlot <- renderParcoords({ parcoords(data, rownames= T, color = list(colorScale = htmlwidgets::JS('d3.scale.category10()'), colorBy = colorBy), autoresize = T, reorderable = T, width = NULL, height = 800, brushMode = "1D") }) ###Here we can access the variable input$id_rows to determine which are selected ###we display these results in a table ids <- reactive({ rownames(data) %in% input$DiamondPlot_brushed_row_names }) output$SelectedData <- DT::renderDataTable({ DT::datatable(data[ids(),]) }) observeEvent(input$done, { stopApp(list(data = as.data.frame( data[ids(),] ))) }) } runGadget(app = ui, server = server, viewer = browserViewer(browser = getOption("browser"))) }
10af5a3813dd1df1f1ffad30bfb5a6af77168255
57ed22671d2c348fe35c7832fd008c3a51de039c
/R/lea_prep.R
4fce69aa14028eeaa6f03df737276a7c755fc19b
[ "MIT" ]
permissive
datalorax/leaidr
694c4d1d6d7773454673876d3c982d0db49f80b7
26f4672c98cae96a6ecc96e9c705890ed7a8ecb7
refs/heads/master
2022-11-20T13:38:44.794448
2020-07-27T21:42:36
2020-07-27T21:42:36
281,791,912
1
0
null
2020-07-22T22:02:47
2020-07-22T22:02:46
null
UTF-8
R
false
false
1,138
r
lea_prep.R
#' Prep State- or Nation-Wide District Shapefile #' #' @name lea_prep #' @aliases lea_prep #' @export lea_prep #' #' @description #' `lea_prep()` creates your desired shapefile. #' @usage #' lea_prep(path = NULL, fips = NULL) #' #' @param path A character vector specifying a file path, such as: path = "./test". #' @param fips A character vector specifying a FIPS code for a state. A reference table is available [here](https://www.mcc.co.mercer.pa.us/dps/state_fips_code_listing.htm). #' #' @rdname lea_prep #' @export lea_prep #' #' @return #' A shapefile. lea_prep <- function(path = NULL, fips = NULL){ if(is.null(path)){ stop("Please designate where the shapefiles from `lea_get()` exist, like this: `path = './test'`.") } if(is.null(fips)){ stop("Please designate which fip(s) you would like. If you would like the whole U.S., please write `fips = 'All'`.") } dis_map <- readOGR(dsn = file.path(path, "schooldistrict_sy1819_tl19.shp"), layer = "schooldistrict_sy1819_tl19") if(fips == "All"){ dis_map } else { dis_map <- dis_map[which(dis_map$STATEFP %in% fips),] } }
0c6cf68803dc8670d9eb13c15d1222b1489ef1ce
1b3e04e8978911acdad27507efe9c7f7bc6d68d3
/R_Differences_Met31Met32.R
463826ff83d76fbb9168141cc2160172fd490fbc
[]
no_license
r-scott-m/TimeSeriesFitting-R
9a2f8249afa4b0b2719b7835315389ea28cd978e
dbeec39f1024d6c6641cba73bebb0d24e48769f7
refs/heads/master
2020-04-15T04:29:35.612004
2019-01-07T06:04:37
2019-01-07T06:04:37
164,385,757
0
0
null
null
null
null
UTF-8
R
false
false
6,336
r
R_Differences_Met31Met32.R
require("qvalue") require("gplots") #Allegra <- read.table("Allgera_M31M32Different.txt",header=FALSE) #row.names(Allegra) = Allegra$V2 WD = "/Users/smcisaac/Downloads" setwd(WD) y <-read.table("DataMetLimitedMerged_2011_1122_pruned_knn_clustered_SVDsubtract_RECLUSTER.txt",header =TRUE, row.names = 1, sep ="\t") #only get Met31 and Met32 data y <- y[,9:24] #remove genes that are 0 at each timepoint Check <- apply(y,1,function(x){sum(x==0)==16}) #indices of zero rows y <- y[!Check,] Input <- y #we want there to be variation between the initial time points (0-5 minutes) and the later timepoints when we expect real action from the TF. Require that there is at least a 1.5-fold change between timepoints at(15-90) and either 2.5 and 5. Dim <- dim(y)[1] Cut <- log(1.5,base=2) y2 <-y for(i in seq(Dim,1)){ vec1 = y[i,c(2,4,5,6,7,8)] vec2 = y[i,3:8] vec3 = y[i,c(10,12,13,14,15,16)] vec4 = y[i,3:8] vec1 <- vec1 - vec1[[1]] vec2 <- vec2 - vec2[[1]] vec3 <- vec3 - vec3[[1]] vec4 <- vec4 - vec4[[1]] val1 <- max(abs(vec1 - vec1[[1]])) val2 <- max(abs(vec2 - vec2[[1]])) val3 <- max(abs(vec3 - vec3[[1]])) val4 <- max(abs(vec4 - vec4[[1]])) if(val1 < Cut && val2 < Cut && val3 < Cut && val4 < Cut){ y <- y[-i,] } } #do regression on just Met31 and Met32 to check for genes that have significant time dependence. #Significance is determined by computing the p-value of the F-statistic. If the p-value is less than 0.05 #in at least 1 of the time courses keep it. Met31 <- y[,1:8] Met32 <- y[,9:16] Dim = dim(Met31)[1] t1 <- c(0,2.5,5,15,30,45,60,90) model.Met31 <- apply(Met31,1,function(x){lm(x ~ -1 + t1 + I(t1^2))}) model.Met32 <- apply(Met32,1,function(x){lm(x ~ -1 + t1 + I(t1^2))}) fpval.Met31 <- rep(0,dim(Met31)[1]) #store pvalues of the f-statistic fpval.Met32 <- rep(0,dim(Met31)[1]) #store pvalues of the f-statistic fpval.keep <- rep(0,dim(Met31)[1]) for(i in seq(1,Dim)){ temp.Met31 <- summary(model.Met31[[i]]) temp.Met32 <- summary(model.Met32[[i]]) fpval.Met31[i] <- pf(temp.Met31$fstatistic[1],temp.Met31$fstatistic[2],temp.Met31$fstatistic[3],lower.tail=FALSE) fpval.Met32[i] <- pf(temp.Met32$fstatistic[1],temp.Met32$fstatistic[2],temp.Met32$fstatistic[3],lower.tail=FALSE) if(is.nan(fpval.Met31[i])){ fpval.Met31[i] = .1 } if(is.nan(fpval.Met32[i])){ fpval.Met32[i] = .1 } if(fpval.Met31[i]<0.05 | fpval.Met32[i]<0.05){ fpval.keep[i] = 1 } } y <- y[!!fpval.keep,] Met31 <- Met31[!!fpval.keep,] Met32 <- Met32[!!fpval.keep,] #time points t <- c(0,2.5,5,15,30,45,60,90,0,2.5,5,15,30,45,60,90) #genes that are different between Met31 and Met32 Ds <- c(0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1) #Model A A <- apply(y,1,function(x){lm(x ~ -1 + t + I(t^2) + (Ds:t) + (Ds:I(t^2)))}) #Model B B <- apply(y,1,function(x){lm(x ~ -1 + t + I(t^2))}) #Log-likelihoods LA <- sapply(A,function(x){logLik(x)}) LB <- sapply(B,function(x){logLik(x)}) #log-likelihood test statistic D <- -2*LB + 2*LA Pval <- pchisq(D,df = 2, lower.tail = F) #is it 3 or 2? Q <- qvalue(Pval,lambda = 0) #get the qvalues for each row Q2 <- Q$qvalues DistStore <- rep(0,dim(Met31)[1]) #find maximum distance between genes by timepoint for(i in seq(1,dim(Met31)[1])){ temp <- dist(rbind(as.vector(data.matrix(Met31[i,])),as.vector(data.matrix(Met32[i,]))),method="maximum")[1] DistStore[i] = temp } names(DistStore) = row.names(y) #Store Q-values + distances, and find if Q < 0.05 + dist >0.585 (1.5-fold) QD <- t(rbind(DistStore,Q2)) QD2 <- cbind(QD,rep(0,dim(Met31)[1])) for(i in seq(1,dim(Met31)[1])){ if(QD2[i,1]>log(1.5,base=2) && QD2[i,2]<0.05){ QD2[i,3] = 1 } } Output <- y[!!as.vector(QD2[,3]),] #compare to genes that are different from Allegra's experiments. Row <- row.names(Output) Z <- sapply(Row,function(x){strsplit(x," ")}) Z2 <- as.vector(sapply(Z,function(x){x[[3]]})) intersect(Z2,row.names(Allegra)) notchosen <- Input[!(row.names(Input) %in% row.names(Output)),] View(notchosen) pairs.breaks <- c(seq(-2, 0, length.out=50),seq(0, 2, length.out=50)) pairs.breaks[51] = 0.01 mycol <- colorpanel(n=99,low="green",mid="black",high="red") ClusterInfo <- heatmap.2(data.matrix(Output),breaks=pairs.breaks,Colv = FALSE,trace="none",scale="none",col=mycol,distfun=function(x) as.dist((1-cor(t(x)))/2),dendrogram = "none",density.info = "none",labCol="",cexRow=0.15) ClusterInfo <- heatmap.2(data.matrix(notchosen),breaks=pairs.breaks,Colv = FALSE,trace="none",scale="none",col=mycol,distfun=function(x) as.dist((1-cor(t(x)))/2),dendrogram = "none",density.info = "none",labCol="",cexRow=0.15) write.table(Output, file=paste(WD,'LinearModeling_Met31Met32_Big.txt', sep='/'), sep='\t', col.names=NA, row.names = TRUE, quote=FALSE) ########### two-sided t-test to compare Met31 and Met32 Dim = dim(Met31)[1] Pval.ttest = rep(0,Dim) for(i in seq(1,Dim)){ temp <- t.test(as.vector(data.matrix(Met31[i,])),as.vector(data.matrix(Met32[i,])),alternative="two.sided",paired = TRUE, conf.level = 0.95) Pval.ttest[i] <- temp$p.value } Q.ttest <- qvalue(Pval.ttest) Q2.ttest <- Q.ttest$qvalues ####what if we just took the means? Met31 = Input[1:8,] Met32 = Input[9:16,] A <- as.numeric(apply(Input,1,function(x) {t.test(x[1:8],x[9:16])$p.value})) mychoose <- A < 0.01 Input_thresholded = Input[mychoose,] ClusterInfo <- heatmap.2(data.matrix(Input_thresholded),breaks=pairs.breaks,Colv = FALSE,trace="none",scale="none",col=mycol,distfun=function(x) as.dist((1-cor(t(x)))/2),dendrogram = "none",density.info = "none",labCol="",cexRow=0.15) ###do regression in tidy format! g <- as.numeric(as.vector(Output[20,])) df <- tibble(gene = rep(strsplit(row.names(Output[20,])," ")[[1]][3],16), g = g, t=t, TF = c(rep("MET31",8),rep("MET32",8)), Ds = Ds) all_gene_fits = df %>% group_by(gene) %>% do(fit = lm(g ~ -1 + t + I(t^2) + (Ds:t) + (Ds:I(t^2)), data = .)) %>% tidy(fit) df %>% group_by(gene) %>% do(fit = lm(g ~ -1 + t + I(t^2) + (Ds:t) + (Ds:I(t^2)), data = .)) %>% tidy(fit) df %>% group_by(gene) %>% do(fit = lm(g ~ -1 + t + I(t^2) + (Ds:t) + (Ds:I(t^2)), data = .)) %>% glance(fit) #return f-statistic? # can we do nested model? plot(lm(g ~ -1 + t + I(t^2) + (Ds:t) + (Ds:I(t^2))))
3e2804f9bfd4d85da99d8c1da9b9c5e756ab75a7
00372f4ec66183c56629cf49be73faa016cc651b
/man/svyglmParallel.rd
0b8612174182e616da944e5aca38181588928197
[]
no_license
kevinblighe/RegParallel
9427d66904a3965a3e82197cd0569ab6c83afeff
818b7b4c60d3e8a49549cbd02fb8a3009e6fe6f9
refs/heads/master
2021-11-06T15:16:32.386110
2021-10-01T23:16:39
2021-10-01T23:16:39
103,679,101
36
8
null
null
null
null
UTF-8
R
false
false
2,474
rd
svyglmParallel.rd
\name{svyglmParallel} \alias{svyglmParallel} \title{Standard regression functions in R enabled for parallel processing over large data-frames - generalised linear model, with survey weights} \description{This is a non-user function that is managed by RegParallel, the primary function.} \usage{ svyglmParallel( data, design, formula.list, FUN, variables, terms, startIndex, blocksize, blocks, APPLYFUN, conflevel, excludeTerms, excludeIntercept) } \arguments{ \item{data}{A data-frame that contains all model terms to be tested. Variables that have all zeros will, automatically, be removed. REQUIRED.} \item{design}{A survey design, created by survey::svydesign. REQUIRED.} \item{formula.list}{A list containing formulae that can be coerced to formula class via as.formula(). REQUIRED.} \item{FUN}{Regression function. Must be of form, for example: function(formula, data) glm(formula = formula, family = binomial, data = data). REQUIRED.} \item{variables}{Vector of variable names in data to be tested independently. Each variable will have its own formula in formula.list. REQUIRED.} \item{terms}{Vector of terms used in the formulae in formula.list, excluding the primary variable of interest. REQUIRED.} \item{startIndex}{Starting column index in data object from which processing can commence. REQUIRED.} \item{blocksize}{Number of variables to test in each foreach loop. REQUIRED.} \item{blocks}{Total number of blocks required to complete analysis. REQUIRED.} \item{APPLYFUN}{The apply function to be used within each block during processing. Will be one of: 'mclapply(...)', system=linux/mac and nestedParallel=TRUE; 'parLapply(cl, ...)', system=windows and nestedParallel=TRUE; 'lapply(...)', nestedParallel=FALSE. REQUIRED.} \item{conflevel}{Confidence level for calculating odds or hazard ratios. REQUIRED.} \item{excludeTerms}{Remove these terms from the final output. These will simply be grepped out. REQUIRED.} \item{excludeIntercept}{Remove intercept terms from the final output. REQUIRED.} } \details{ This is a non-user function that is managed by RegParallel, the primary function. } \value{ A \code{\link{data.table}} object. } \author{ Kevin Blighe <[email protected]> } \examples{ require(survey) data(nhanes) design <- svydesign(id = ~ SDMVPSU, strata = ~ SDMVSTRA, weights = ~ WTMEC2YR, nest = TRUE, data = nhanes) }
784e2ba856ea64a9b9c2a09ff00cbbfa5a592adf
17e9b666d8447caa58381f2502980b8f3ec7f466
/R/RInAction/4-1.r
eece0cba9f85a0b8789ccb088f3ece7fc6922cbb
[]
no_license
hangyan/Code
079ac796a309abc0a1d8b8a61baeac645c5b791e
2a43a676a00f41afc05d7a5c8aa52b714195e8c9
refs/heads/master
2021-08-01T04:15:52.828481
2021-07-26T05:32:09
2021-07-26T05:32:09
25,571,986
6
16
null
null
null
null
UTF-8
R
false
false
1,765
r
4-1.r
manager <- c(1, 2, 3, 4, 5) date <- c("10/24/08", "10/28/08", "10/1/08", "10/12/08", "5/1/09") country <- c("US", "US", "UK", "UK", "UK") gender <- c("M", "F", "F", "M", "F") age <- c(32, 45, 25, 39, 99) q1 <- c(5, 3, 3, 3, 2) q2 <- c(4, 5, 5, 3, 2) q3 <- c(5, 2, 5, 4, 1) q4 <- c(5, 5, 5, NA, 2) q5 <- c(5, 5, 2, NA, 1) leadership <- data.frame(manager, date, country, gender, age, q1, q2, q3, q4, q5, stringsAsFactors = FALSE) mydata <- data.frame(x1 = c(2, 2, 6, 4), x2 = c(3, 4, 2, 8)) mydata$sumx <- mydata$x1 + mydata$x2 mydata$meanx <- (mydata$x1 + mydata$x2) / 2 mydata <- transform(mydata, sumx = x1 + x2, meanx = (x1 + x2) / 2) leadership$age[leadership$age == 99] <- NA leadership$agecat[leadership$age > 75] <- "Elder" leadership$agecat[leadership$age >= 55 & leadership$age <= 75] <- "Middle Aged" leadership$agecat[leadership$age < 55] <- "Young" leadership <- within(leadership, { agecat <- NA agecat[age > 75] <- "Elder" agecat[age >= 55 & age <= 75] <- "Middle Aged" agecat[age < 55] <- "Young" }) newdata <- na.omit(leadership) mydates <- as.Date(c("2007-06-22", "2004-02-13")) myformat <- "%m/%d/%y" leadership$date <- as.Date(leadership$date, myformat) newdata <- leadership[order(leadership$age),] leadership$date <- as.Date(leadership$date, "%m/%d/%y") startdate <- as.Date("2009-01-01") enddate <- as.Date("2009-10-31") newdata <- leadership[which(leadership$date >= startdate & leadership$age <= enddate),] newdata newdata <- subset(leadership, age >= 35 | age < 24, select = c(q1,q2,q3,q4)) newdata newdata <- subset(leadership, gender == "M" & age > 25, select = gender:q4) mysample <- leadership[sample(1:nrow(leadership),3,replace = FALSE),]
232bdeb4a2f64827dcc13569e82a044b76de2fa6
0f96b45966da3fd162b7d1810f413d23da242139
/PackageCH/R/ComputeGManually.R
6b4f5aa89095f6b81afce293153532894fb07c8e
[]
no_license
duvaneljulien/PackageCH
0e281ba39edb0fd87678e96341f391661a7b57f8
9c127f8c5a0a33918cee76e3413a6b9fdade4328
refs/heads/master
2020-05-07T22:14:09.540087
2015-01-15T03:30:26
2015-01-15T03:30:26
29,278,853
0
0
null
null
null
null
UTF-8
R
false
false
1,334
r
ComputeGManually.R
library(doMC) library(foreach) build_matrix_G_manually <- function(path.snps = "data/SNPs_14102014_145630.raw") { N <- 20 # Get results (stored into SNPS_datetime.stamp.raw) Phenotypes <- read.table(path.snps, header = TRUE) # Remove rows with NA's Phenotypes <- Phenotypes[complete.cases(Phenotypes), ] # We must have "famid" and "id" as the two first columns colnames(Phenotypes) <- c("famid", "id") # Value of SNPs are stored in the last N columns snps <- Phenotypes[, (ncol(Phenotypes)-N+1):ncol(Phenotypes)] # Way (!) faster than doing two for loop G <- dist(snps) } HeritabilityEstimation <- function(P, G) { P <- as.matrix(P) ### We keep one phenotype and normalize its V <- matrix(P, nrow = nrow(P), ncol = ncol(P)) V <- t(t(V) - colMeans(V)) V.sd <- colSds(V) # Return V <- t(t(V) * (1/V.sd)) # Get data for the specific phenotype Y.distance.carre <- matrix(rep(V^2,nrow(V)), ncol = nrow(V)) + t(matrix(rep(V^2,nrow(V)), ncol = nrow(V))) - 2 * V %*%t(V) Y.distance <- sqrt(Y.distance.carre) dcov(Y.distance, G) / (sqrt(dcov(G, G)) * sqrt(dcov(Y.distance, Y.distance))) }
573d0c2db25a90a8f80f7712e7b59cb6703c4623
7d4841b039093f3009eb72a65ec0d506a1244082
/figures/Figure 4/plot_UE3_heatmap.R
530e9d6bb2cafed101a163003450cf8ee4779c81
[]
no_license
sturkarslan/evolution-of-syntrophy
dfd18b1ec0181c5b64ef54f358aa246ca945475b
5867dc719bdbdc4e4c98a12b8131e397b671b29f
refs/heads/master
2021-08-08T22:03:47.013067
2020-06-23T05:31:37
2020-06-23T05:31:37
194,342,169
0
0
null
null
null
null
UTF-8
R
false
false
13,395
r
plot_UE3_heatmap.R
############# Serdar Turkarslan / Institute for Systems Biology ############### # Last update: 06/05/2020 ############################################################################### # Plot heatmap for comparing mutations for UE3 line of Dv and Mm # ############################################################################### library('ggplot2'); library('reshape2');library(gridExtra);library(gplots);library('pheatmap') source("~/Documents/Github/evolution-of-syntrophy/scripts/extractLegend.R") # load early generation mutations data mut.data.dv <- read.delim("~/Documents/GitHub/evolution-of-syntrophy/data/dvh_mutations_allsamples_attributes_3112020.txt", header=T, sep="\t", stringsAsFactors=FALSE) mut.data.mm <- read.delim("~/Documents/GitHub/evolution-of-syntrophy/data/mmp_mutations_allsamples_attributes_3112020.txt", header=T, sep="\t", stringsAsFactors=FALSE) ci.names <- read.delim("~/Documents/GitHub/evolution-of-syntrophy/data/clonal_isolate_pairs_IDs.txt", header=T, sep="\t") # get DV Clones ci.names.dv <- ci.names[grep("D", ci.names$isolate),] mut.data.dv$sample.name <- mut.data.dv$sample mut.data.dv <- mut.data.dv[grep("CI_00", mut.data.dv$sample, invert = T),] # get Mm Clones ci.names.mm <- ci.names[grep("M", ci.names$isolate),] mut.data.mmsample.name <- mut.data.mm$sample mut.data.mm <- mut.data.mm[grep("(CI_00|CI_36|CI_37)", mut.data.mm$sample, invert = T),] mut.data.mm <- mut.data.mm[grep("WT", mut.data.mm$sample, invert = T),] ### replace geneid for intergenic mutations with IG for DV and translate clonal isolate names for(row in 1:length(mut.data.dv$variant_id)){ variant <- mut.data.dv[row,"variant_id"] locus_name <- strsplit(as.character(variant), split = "-", fixed=T)[[1]][2] position <- strsplit(as.character(variant), split = "-", fixed=T)[[1]][3] #copy sample names into a new column sample <- mut.data.dv[row,"sample"] sample.type <- strsplit(as.character(sample), split = "_", fixed=T)[[1]][1] sample.no <- strsplit(as.character(sample), split = "_", fixed=T)[[1]][2] if(sample.type == "CI"){ sample.name <- paste(as.character(ci.names.dv[which(ci.names.dv$pair == sample.no),"isolate"]), sep = "") } else { sample.name <- sample } if(locus_name == "IG"){ locus_name <- paste("IG", as.character(position), sep="_") } mut.data.dv[row,"locus_name"] <- locus_name mut.data.dv[row,"sample.name"] <- sample.name } ### replace geneid for intergenic mutations with IG for Mm and translate clonal isolate names for(row in 1:length(mut.data.mm$variant_id)){ variant <- mut.data.mm[row,"variant_id"] locus_name <- strsplit(as.character(variant), split = "-", fixed=T)[[1]][2] position <- strsplit(as.character(variant), split = "-", fixed=T)[[1]][3] #copy sample names into a new column sample <- mut.data.mm[row,"sample"] sample.type <- strsplit(as.character(sample), split = "_", fixed=T)[[1]][1] sample.no <- strsplit(as.character(sample), split = "_", fixed=T)[[1]][2] if(sample.type == "CI" & !(sample.no %in% c("36","37"))){ sample.name <- paste(as.character(ci.names.mm[which(ci.names.mm$pair == sample.no),"isolate"]), sep = "") } else { sample.name <- sample } if(locus_name == "IG"){ locus_name <- paste("IG", as.character(position), sep="_") } mut.data.mm[row,"locus_name"] <- locus_name mut.data.mm[row,"sample.name"] <- sample.name } ###### format early generations mutations data for dvh mut.data.eg.dv <- mut.data.dv[grep(c("(AN_Dv-Ancestor-1|_UE3|CI(_2_|_6_|_8_|_20_|_21_|_1(1_|3_|4_)|_37_))"), mut.data.dv$sample),] mut.data.eg.dv$transfer <- sapply(mut.data.eg.dv$sample, function(i) strsplit(as.character(i), split = "-")[[1]][2]) mut.data.eg.dv$line <- sapply(mut.data.eg.dv$sample, function(i) strsplit(as.character(i), split = "-")[[1]][1]) mut.data.eg.dv$freq2 <- as.numeric(as.character(sub("%", "",mut.data.eg.dv$freq))) mut.data.eg.dv[is.na(mut.data.eg.dv$transfer),"transfer"] <- 152 ## select UA3 line (change it if you want to filter for the line) mut.data.ua3.dv <- mut.data.eg.dv[grep("", mut.data.eg.dv$sample),] # order based on transfer mut.data.ua3.dv <- mut.data.ua3.dv[order(as.numeric(as.character(mut.data.ua3.dv$transfer))),] # add line info mut.data.ua3.dv$eline <- sapply(mut.data.ua3.dv$line, function(i) strsplit(as.character(i), split = "_", fixed = T)[[1]][2]) # get ancestral mutations ancestor.mutations <- mut.data.dv[which(mut.data.dv$sample == "AN_Dv-Ancestor-1"),"variant_id"] for(variant in unique(mut.data.ua3.dv$variant_id)){ if(variant %in% ancestor.mutations){ mut.data.ua3.dv[which(mut.data.ua3.dv$variant_id == variant),"ancestor"] <- "ancestral" } else { mut.data.ua3.dv[which(mut.data.ua3.dv$variant_id == variant),"ancestor"] <- "non-ancestral" } } ###### format early generations mutations data for mmp mut.data.eg.mm <- mut.data.mm[grep(c("(AN_Coculture-Ancestor|_UE3|CI(_3_|_7_|_20_|_27_|_29_|_3(1_|2_|4_)|_10_))"), mut.data.mm$sample),] mut.data.eg.mm$transfer <- sapply(mut.data.eg.mm$sample, function(i) strsplit(as.character(i), split = "-")[[1]][2]) mut.data.eg.mm$line <- sapply(mut.data.eg.mm$sample, function(i) strsplit(as.character(i), split = "-")[[1]][1]) mut.data.eg.mm$freq2 <- as.numeric(as.character(sub("%", "",mut.data.eg.mm$freq))) mut.data.eg.mm[is.na(mut.data.eg.mm$transfer),"transfer"] <- 152 ## select UA3 line (change it if you want to filter for the line) mut.data.ua3.mm <- mut.data.eg.mm[grep("", mut.data.eg.mm$sample),] # order based on transfer mut.data.ua3.mm <- mut.data.ua3.mm[order(as.numeric(as.character(mut.data.ua3.mm$transfer))),] # add line info mut.data.ua3.mm$eline <- sapply(mut.data.ua3.mm$line, function(i) strsplit(as.character(i), split = "_", fixed = T)[[1]][2]) # get ancestral mutations ancestor.mutations.mm <- mut.data.mm[which(mut.data.mm$sample == "AN_Coculture-Ancestor"),"variant_id"] for(variant in unique(mut.data.ua3.mm$variant_id)){ if(variant %in% ancestor.mutations.mm){ mut.data.ua3.mm[which(mut.data.ua3.mm$variant_id == variant),"ancestor"] <- "ancestral" } else { mut.data.ua3.mm[which(mut.data.ua3.mm$variant_id == variant),"ancestor"] <- "non-ancestral" } } #slect non-ancestral mutations only dvh #mutations.1000.dv <- mut.data.ua3.dv[which(mut.data.ua3.dv$ancestor != "ancestral"),] mutations.1000.dv <- mut.data.ua3.dv #slect non-ancestral mutations only Mm #mutations.1000.mm <- mut.data.ua3.mm[which(mut.data.ua3.mm$ancestor != "ancestral"),] ## if you keep ancestral mutations for plotting mutations.1000.mm <- mut.data.ua3.mm plot.line.pheatmap <-function(org=c("dvh","mmp")){ library(RColorBrewer) library(viridis) dv.order <- c("TG_UE3", "EP_UE3_03","UA3.152.03.D01","UA3.152.03.D02","UA3.152.03.D03", "EP_UE3_10","UA3.152.10.D02","UA3.152.10.D03",#"UA3.152.10.D01", removed clone 1 "EP_UE3_09","UA3.152.09.D01","UA3.152.09.D02","UA3.152.09.D03" ) #dv.order <- sub("UA3", "UE3", dv.order) mm.order <- c("TG_UE3", "EP_UE3_03","UA3.152.03.M01","UA3.152.03.M02","UA3.152.03.M03", "EP_UE3_10","UA3.152.10.M02","UA3.152.10.M03",#"UA3.152.10.M01", removed clone 1 "EP_UE3_09","UA3.152.09.M01","UA3.152.09.M02","UA3.152.09.M03" ) #mm.order <- sub("UA3", "UE3", mm.order) ## Select samples if(org == "dvh"){ sample.order <- dv.order mutations.file <- mutations.1000.dv mutations.file$variant_id <- sub("Chr-", "", mutations.file$variant_id) mutations.file$variant_id <- sub("pDV-", "", mutations.file$variant_id) } if(org == "mmp"){ sample.order <- mm.order mutations.file <- mutations.1000.mm mutations.file$variant_id <- sub("BX950229-", "", mutations.file$variant_id) } ## select samples for freq heatmap my.samples.freq <- subset(mutations.file, sample.name %in% sample.order) ## create matrix for freq my.matrix.freq <- matrix( nrow = length(unique(my.samples.freq$variant_id)), ncol = length(unique(my.samples.freq$sample.name)), dimnames = list(unique(my.samples.freq$variant_id), unique(my.samples.freq$sample.name)) ) ## fill the matrix for(variant in unique(my.samples.freq$variant_id)){ for(sample in my.samples.freq$sample.name){ my.data <- my.samples.freq[which(my.samples.freq$variant_id == variant & my.samples.freq$sample.name == sample),"freq2"] if(length(my.data) != 0){ my.matrix.freq[variant,sample] <- my.data }else{ my.matrix.freq[variant,sample] <- 0 } } } ## custom sort matrix my.matrix.freq <- my.matrix.freq[,order(factor(colnames(my.matrix.freq), levels=sample.order))] colnames(my.matrix.freq) <- sub("UA3","UE3",colnames(my.matrix.freq)) ## annotations for the sample type #annotations <- data.frame(Type = c("Early-Gen","Early-Gen","Early-Gen","Early-Gen","1K","EPD","Clonal","Clonal","Clonal","EPD","Clonal","Clonal","Clonal","EPD","Clonal","Clonal","Clonal")) col.annot <- unique(data.frame(my.samples.freq[,c("sample.name","experiment")])) row.names(col.annot) <- sub("UA3","UE3", col.annot$sample.name) col.annot <- col.annot[-1] ## plot heatmap pheatmap(my.matrix.freq,cluster_cols = F, annotation_legend = F, treeheight_row = 0, scale = "none", color = viridis(30),border_color = "#333333", annotation_col = col.annot,drop_levels = F) } ## multiple plotting mm <- list(plot.line.pheatmap(org = "dvh")[[4]]) mm[[2]] <- plot.line.pheatmap(org = "mmp")[[4]] z <- do.call(grid.arrange,mm) plot(z) #### dv matrix for SiFit sifit_files_dv <- function() { my.samples <- subset( mutations.1000.dv, sample.name %in% c( "TG_UE3", "EP_UE3_03", "UA3.152.03.D01", "UA3.152.03.D02", "UA3.152.03.D03", "EP_UE3_10", # "UA3.152.10.D01", # removed clone 1 due to coverage "UA3.152.10.D02", "UA3.152.10.D03", "EP_UE3_09", "UA3.152.09.D01", "UA3.152.09.D02", "UA3.152.09.D03" ) ) # create matrix my.matrix <- matrix( nrow = length(unique(my.samples$variant_id)), ncol = length(unique(my.samples$sample.name)), dimnames = list( unique(my.samples$variant_id), unique(my.samples$sample.name) ) ) ## Fill the matrix for (variant in unique(my.samples$variant_id)) { for (sample in my.samples$sample.name) { my.data <- my.samples[which(my.samples$variant_id == variant & my.samples$sample.name == sample), "freq2"] if (length(my.data) != 0) { my.matrix[variant, sample] <- 1 } else{ my.matrix[variant, sample] <- 0 } } } ## Write matrix files for SiFIt analysis # mutation names write.table( row.names(my.matrix), file = "~/Documents/GitHub/evolution-of-syntrophy/Clonal-Isolates/siFit/ue3_dv_mutation_names.txt", sep = " ", row.names = F, col.names = F, quote = F ) # sample names writeLines(colnames(my.matrix), con = "~/Documents/GitHub/evolution-of-syntrophy/Clonal-Isolates/siFit/ue3_dv_sample_names.txt", sep = " ") # mutation matrix my.matrix <- cbind(id = seq(1, dim(my.matrix)[1]), my.matrix) write.table( my.matrix, file = "~/Documents/GitHub/evolution-of-syntrophy/Clonal-Isolates/siFit/ue3_dv_mutation_matrix.txt", sep = " ", row.names = F, col.names = F, quote = F ) } #### mm matrix for SiFit sifit_files_mm <- function() { my.samples.mm <- subset( mutations.1000.mm, sample.name %in% c( "TG_UE3", "EP_UE3_03", "UA3.152.03.M01", "UA3.152.03.M02", "UA3.152.03.M03", "EP_UE3_10", "UA3.152.10.M01", "UA3.152.10.M02", "UA3.152.10.M03", "EP_UE3_09", "UA3.152.09.M01", "UA3.152.09.M02", "UA3.152.09.M03" ) ) ## create matrix my.matrix.mm <- matrix( nrow = length(unique(my.samples.mm$variant_id)), ncol = length(unique(my.samples.mm$sample.name)), dimnames = list( unique(my.samples.mm$variant_id), unique(my.samples.mm$sample.name) ) ) ## Fill the matrix for (variant in unique(my.samples.mm$variant_id)) { for (sample in my.samples.mm$sample.name) { my.data <- my.samples.mm[which(my.samples.mm$variant_id == variant & my.samples.mm$sample.name == sample), "freq2"] if (length(my.data) != 0) { my.matrix.mm[variant, sample] <- 1 } else{ my.matrix.mm[variant, sample] <- 0 } } } ## Write matrix files for SiFIt analysis # mutation names write.table( row.names(my.matrix.mm), file = "~/Documents/GitHub/evolution-of-syntrophy/Clonal-Isolates/siFit/ue3_mm_mutation_names.txt", sep = " ", row.names = F, col.names = F, quote = F ) # sample names writeLines(colnames(my.matrix.mm), con = "~/Documents/GitHub/evolution-of-syntrophy/Clonal-Isolates/siFit/ue3_mm_sample_names.txt", sep = " ") # matrix my.matrix.mm <- cbind(id = seq(1, dim(my.matrix.mm)[1]), my.matrix.mm) write.table( my.matrix.mm, file = "~/Documents/GitHub/evolution-of-syntrophy/Clonal-Isolates/siFit/ue3_mm_mutation_matrix.txt", sep = " ", row.names = F, col.names = F, quote = F ) }
7606a692e6ddce794bd065dc4d98bfa9acf64056
c85471f60e9d5c462de6c60c880d05898ec81411
/cache/gdatascience|tidytuesday|tv_ratings.R
1c23a74ccdd0e528b8b7c04fc92abf67a3e9922a
[ "CC-BY-4.0", "MIT" ]
permissive
a-rosenberg/github-content-scraper
2416d644ea58403beacba33349ee127e4eb42afe
ed3340610a20bb3bd569f5e19db56008365e7ffa
refs/heads/master
2020-09-06T08:34:58.186945
2019-11-15T05:14:37
2019-11-15T05:14:37
220,376,154
0
0
null
null
null
null
UTF-8
R
false
false
2,957
r
gdatascience|tidytuesday|tv_ratings.R
## ----setup, include=FALSE------------------------------------------------ knitr::opts_chunk$set(echo = TRUE) ## ------------------------------------------------------------------------ library(tidyverse) theme_set(theme_light()) tv_ratings <- readr::read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2019/2019-01-08/IMDb_Economist_tv_ratings.csv") summary(tv_ratings) ## ------------------------------------------------------------------------ # unique titleId summary(unique(tv_ratings$titleId)) # unique title summary(unique(tv_ratings$title)) ## ------------------------------------------------------------------------ same_title <- tv_ratings %>% group_by(title, titleId) %>% summarise(avg_share = mean(share)) %>% group_by(title) %>% summarise(n = n()) %>% filter(n > 1) %>% pull(title) tv_ratings %>% filter(title %in% same_title) %>% group_by(titleId, title) %>% summarise(start_date = min(date)) %>% arrange(title, start_date) %>% ungroup() %>% select(-titleId) ## ------------------------------------------------------------------------ tv_ratings_tidy <- tv_ratings %>% mutate(genre = strsplit(genres, ",")) %>% unnest(genre) tv_ratings_tidy %>% group_by(genre) %>% summarise(avg_rating = mean(av_rating)) %>% ungroup() %>% mutate(genre = fct_reorder(genre, avg_rating)) %>% ggplot(aes(genre, avg_rating, fill = genre)) + geom_col(show.legend = FALSE) + coord_flip() + labs(x = "", y = "Average rating", title = "What genres have the best ratings?", subtitle = "Reality-TV gets the worst ratings by far", caption = "Designer: Tony Galvan @gdatascience1 | Source: IMDb") ## ------------------------------------------------------------------------ tv_ratings_tidy %>% group_by(genre) %>% summarise(avg_share = mean(share)) %>% ungroup() %>% mutate(genre = fct_reorder(genre, avg_share)) %>% ggplot(aes(genre, avg_share, fill = genre)) + geom_col(show.legend = FALSE) + coord_flip() + labs(x = "", y = "Average share", title = "What genres have the biggest share", subtitle = "Adventure and Sci-Fi shows get a 3 share on average", caption = "Designer: Tony Galvan @gdatascience1 | Source: IMDb") ## ------------------------------------------------------------------------ tv_shows <- tv_ratings %>% group_by(titleId, title) %>% summarise(tot_seasons = n(), max_season = max(seasonNumber), min_date = min(date), max_date = max(date), avg_rating = mean(av_rating), max_rating = max(av_rating), min_rating = min(av_rating), tot_share = sum(share), avg_share = mean(share), max_share = max(share), min_share = min(share)) ## ------------------------------------------------------------------------ tv_ratings %>% arrange(desc(av_rating)) %>% head(5)
bbf09f92f36f03e66da756313aa1ab916ce604db
e6c710bca8f7ff0addbbb1e6b59d4c374e778a47
/tests/testthat/test-genbody.R
95f5b9713bf8fb9653b0768ffc2cd23678e5bb3e
[]
no_license
liubianshi/tabreg
480017c09221339ff8928121672613b14d62532d
364ad6c5bbf4ae3c1c786295049dfa18194e2ba2
refs/heads/master
2023-02-16T19:53:17.074809
2021-01-05T03:57:04
2021-01-05T03:57:04
223,850,140
0
0
null
null
null
null
UTF-8
R
false
false
2,775
r
test-genbody.R
context("generate body data.table from estimate result") l.reg <- local({ ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14) trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69) group <- gl(2, 10, 20, labels = c("Ctl","Trt")) weight <- c(ctl, trt) lm.D9 <- lm(weight ~ group) lm.D90 <- lm(weight ~ group - 1) # omitting intercept clotting <- data.frame( u = c(5,10,15,20,30,40,60,80,100), lot1 = c(118,58,42,35,27,25,21,19,18), lot2 = c(69,35,26,21,18,16,13,12,12) ) glm.1 <- glm(lot1 ~ log(u), data = clotting, family = Gamma) glm.2 <- glm(lot2 ~ log(u), data = clotting, family = Gamma) l <- list(lm.D9, lm.D90, glm.1, glm.2) names(l) <- paste0("R", seq_along(l)) l }) test_that("adjust variable list", { expect_identical(adjvari(NULL, NULL)$name, character(0)) expect_identical(adjvari(NULL, NULL)$label, character(0)) result <- adjvari(NULL, l.reg) expect_length(result, 2L) expect_identical(result$name, result$label) vari = list(name = c("groupTrt", "log(u)"), label = list("log(u)" = "u_ln")) result2 <- adjvari(vari, l.reg) expect_equal(result2$label, c("groupTrt", "u_ln")) expect_error(adjvari(list(label = "N"), l.reg)) }) test_that("generate body table", { esti <- list(estimate = 3L, std.error = "(3)", singlerow = T) star = adjstar(list(0.01, "*")) vari <- list(c("groupTrt", "log(u)"), list("log(u)" = "log_u")) result <- genbody(esti, l.reg, vari, star, "text") expect_equal(result$term, c("groupTrt", "log_u")) expect_equal(result[1, R1], "-0.371 (0.311)") expect_equal(result[2, R3], "0.015* (0.000)") esti$singlerow <- FALSE result2 <- genbody(esti, l.reg, vari, star, "text") expect_equal(result2$term, c("groupTrt", "", "log_u", "")) expect_equal(result2[1:2, R1], c("-0.371", "(0.311)")) }) test_that("test custom function", { .genesti <- function(reg, m = 1L) { reg_coef <- summary(reg)$coefficients coef_df <- as.data.frame(reg_coef, row.names = FALSE) coefnames <- c("estimate", "std.error", "statistic", "p.value") names(coef_df) <- coefnames coef_df$estimate <- coef_df$estimate * m coef_df$std.error <- coef_df$std.error * m coef_df$term <- row.names(reg_coef) coef_df[c("term", coefnames)] } esti <- list(estimate = 3L, std.error = "(3)", singlerow = T, fun = .genesti, fun.args = list(m = 10L)) star = adjstar(list(0.01, "*")) vari <- list(c("groupTrt", "log(u)"), list("log(u)" = "log_u")) result <- genbody(esti, l.reg, vari, star, "text") expect_equal(result[1, R1], "-3.710 (3.114)") expect_equal(result[2, R3], "0.153* (0.004)") })
24d5b505c0269ee1e8cad294858365bf14eef92c
288cd32888512c1f309bf32410ab27eebfd19745
/Code/Other_plots/Experimental_data.R
f900c2d92f432fc16e9b393b809e98a22d187211
[]
no_license
sebapersson/SUC2_paper
297e8ea8357bf08208071bae374ec5cc083f195d
3bc8bfe91d39139c2e1e9c4eb1da818bd574da54
refs/heads/master
2023-01-01T07:39:53.611278
2020-10-15T12:56:35
2020-10-15T12:56:35
255,879,152
0
0
null
null
null
null
UTF-8
R
false
false
3,261
r
Experimental_data.R
library(tidyverse) library(ggthemes) library(stringr) # This file produces the plots for the invertase experimental data. To keep a consistent # graphical profile through the paper, all results are plotted (including non model results # are plotted in R). # Outputs: # A bar-chart showing invertase activity in high and low glucose # General plotting parameters my_theme <- theme_tufte(base_size = 16) + theme(plot.title = element_text(hjust = 0.5, size = 14, face="bold"), plot.subtitle = element_text(hjust = 0.5)) + theme(axis.title=element_text(size=18)) my_colors <- c("#1f78b4", "#33a02c", "#08519c", "#006d2c", "#ff7f00", "#a6cee3") BASE_HEIGHT <- 5 BASE_WIDTH <- 7.0 # Function that processes the invertase data and outputs the result in a bar-chart # Args: # void # Returns: # void process_invertase_data <- function() { data_values_low <- tibble(value = c(714.0953, 752.4738, 18.52177), sd = c(24.76474, 94.90088, 4.324993), type = as.factor(c("wt", "dreg1", "dreg1dsnf1")), glc = as.factor(c("low", "low", "low"))) %>% mutate(frame = c(0, 0, 850)) data_high <- tibble(value = c(158.1396, 714.0953, 33.55298, 31.47122), sd = c(24.76474, 8.004206629, 19.09195, 8.117907953), type = as.factor(c("wt", "wt", "dsnf1", "dsnf1")), glc = as.factor(c("high", "low", "high", "low"))) %>% mutate(frame = c(0, 0, 850, 0)) p1 <- ggplot(data_values_low, aes(type, value)) + geom_bar(stat='identity', position='dodge', color ="black", fill = my_colors[6]) + geom_errorbar(aes(ymin = value-sd, ymax = value+sd), width=0.2, position=position_dodge(.9)) + scale_x_discrete(limit = c("wt", "dreg1", "dreg1dsnf1"), labels = c("wt", "reg1", "reg1_snf1")) + geom_rangeframe(aes(type, frame), sides = "l") + labs(y = "Invertase activity [mU/mg]", x = "") + ylim(0, 850) + my_theme + theme(legend.position = "none", axis.title.x = element_blank(), axis.text.x = element_blank()) p2 <- ggplot(data_high, aes(type, value, fill = glc)) + geom_bar(stat='identity', position='dodge', color ="black") + geom_errorbar(aes(ymin = value-sd, ymax = value+sd), width=0.2, position=position_dodge(.9)) + scale_x_discrete(limit = c("wt", "dsnf1"), labels = c("wt", "snf1")) + geom_rangeframe(aes(type, frame), sides = "l") + labs(y = "Invertase activity [mU/mg]", x = "") + scale_fill_manual(values = my_colors[c(1, 6)]) + ylim(0, 850) + my_theme + theme(legend.position = "none", axis.title.x = element_blank(), axis.text.x = element_blank()) dir_save <- "../../Result/Experimental_data/" if(!dir.exists(dir_save)) dir.create(dir_save) path_save1 <- str_c(dir_save, "Invertase_activity_low.pdf") path_save2 <- str_c(dir_save, "Invertase_activity_high.pdf") ggsave(path_save1, plot = p1, width = BASE_WIDTH, height = BASE_HEIGHT) ggsave(path_save2, plot = p2, width = BASE_WIDTH, height = BASE_HEIGHT) return(0) } process_invertase_data()
40ca5e3e704da4bd645c67188a5460cfcf85e601
f3f5b8a3ee512ac1d3e540eb9e293642a2373ce7
/creditmodel_필요한함수선정.R
33c2cbd66505a64bfe467bd1843cf665ff4f39a2
[]
no_license
Yang-Munil/diabetes_related_occupation_in_Korean_population
184abc2440f2c9a7dee28f2524692524de19d218
36ce066fb6dc794068d56bcccc4091f5a13e2fa4
refs/heads/main
2023-07-08T14:55:10.525942
2021-08-12T10:42:56
2021-08-12T10:42:56
346,424,723
0
0
null
null
null
null
UTF-8
R
false
false
10,145
r
creditmodel_필요한함수선정.R
library(creditmodel) library(ggplot2) # equal sample size breaks equ_breaks = cut_equal(dat = UCICreditCard[, "PAY_AMT2"], g = 10) # select best bins bins_control = list(bins_num = 10, bins_pct = 0.02, b_chi = 0.02, b_odds = 0.1, b_psi = 0.05, b_or = 0.15, mono = 0.3, odds_psi = 0.1, kc = 1) select_best_breaks(dat = UCICreditCard, x = "PAY_AMT2", breaks = equ_breaks, target = "default.payment.next.month", occur_time = "apply_date", sp_values = NULL, bins_control = bins_control) # fast_high_cor_filter In a highly correlated variable group, select the variable with the highest IV. # high_cor_filter In a highly correlated variable group, select the variable with the highest IV. # calculate iv for each variable. iv_list = feature_selector(dat_train = UCICreditCard[1:1000,], dat_test = NULL, target = "default.payment.next.month", occur_time = "apply_date", filter = c("IV"), cv_folds = 1, iv_cp = 0.01, ex_cols = "ID$|date$|default.payment.next.month$", save_data = FALSE, vars_name = FALSE) high_cor_list = fast_high_cor_filter(dat = UCICreditCard[1:1000,], com_list = iv_list, save_data = FALSE, ex_cols = "ID$|date$|default.payment.next.month$", p = 0.9, cor_class = FALSE ,var_name = FALSE) # get_breaks is for generating optimal binning for numerical and nominal variables. The get_breaks_all is a simpler wrapper for get_breaks. #controls "## tree_control the list of tree parameters. • p the minimum percent of observations in any terminal <leaf> node. 0 < p< 1; 0.01 to 0.1 usually work. • cp complexity parameter. the larger, the more conservative the algorithm will be. 0 < cp< 1 ; 0.0001 to 0.0000001 usually work. • xval number of cross-validations.Default: 5 • max_depth maximum depth of a tree. Default: 10 ## bins_control the list of parameters. • bins_num The maximum number of bins. 5 to 10 usually work. Default: 10 • bins_pct The minimum percent of observations in any bins. 0 < bins_pct < 1 , 0.01 to 0.1 usually work. Default: 0.02 • b_chi The minimum threshold of chi-square merge. 0 < b_chi< 1; 0.01 to 0.1 usually work. Default: 0.02 • b_odds The minimum threshold of odds merge. 0 < b_odds < 1; 0.05 to 0.2 usually work. Default: 0.1 • b_psi The maximum threshold of PSI in any bins. 0 < b_psi < 1 ; 0 to 0.1 usually work. Default: 0.05 • b_or The maximum threshold of G/B index in any bins. 0 < b_or < 1 ; 0.05 to 0.3 usually work. Default: 0.15" tree_control = list(p = 0.02, cp = 0.000001, xval = 5, maxdepth = 10) bins_control = list(bins_num = 10, bins_pct = 0.02, b_chi = 0.02, b_odds = 0.1, b_psi = 0.05, b_or = 15, mono = 0.2, odds_psi = 0.1, kc = 5) # get categrory variable breaks b = get_breaks(dat = UCICreditCard[1:1000,], x = "MARRIAGE", target = "default.payment.next.month", occur_time = "apply_date", sp_values = list(-1, "missing"), tree_control = tree_control, bins_control = bins_control) # get numeric variable breaks b2 = get_breaks(dat = UCICreditCard[1:1000,], x = "PAY_2", target = "default.payment.next.month", occur_time = "apply_date", sp_values = list(-1, "missing"), tree_control = tree_control, bins_control = bins_control) # get breaks of all predictive variables b3 = get_breaks_all(dat = UCICreditCard[1:10000,], target = "default.payment.next.month", x_list = c("MARRIAGE","PAY_2"), occur_time = "apply_date", ex_cols = "ID", sp_values = list(-1, "missing"), tree_control = tree_control, bins_control = bins_control, save_data = FALSE) b3 # get_bins_table is used to generates summary information of varaibles. get_bins_table_all can generates bins table for all specified independent variables. (중요) breaks_list = get_breaks_all(dat = UCICreditCard, x_list = names(UCICreditCard)[3:4], target = "default.payment.next.month", equal_bins =TRUE,best = FALSE, g=5, ex_cols = "ID|apply_date", save_data = FALSE) get_bins_table <- get_bins_table_all(dat = UCICreditCard, breaks_list = breaks_list, target = "default.payment.next.month") head(get_bins_table) get_bins_table <- as.data.frame(get_bins_table) ################# 본격적인 스코어카드 생성 ################ #woe transforming train_woe = woe_trans_all(dat = dat_train, target = "target", breaks_list = breaks_list, woe_name = FALSE) test_woe = woe_trans_all(dat = dat_test, target = "target", breaks_list = breaks_list, note = FALSE) Formula = as.formula(paste("target", paste(x_list, collapse = ' + '), sep = ' ~ ')) set.seed(46) lr_model = glm(Formula, data = train_woe[, c("target", x_list)], family = binomial(logit)) #get LR coefficient dt_imp_LR = get_logistic_coef(lg_model = lr_model, save_data = FALSE) bins_table = get_bins_table_all(dat = dat_train, target = "target", x_list = x_list,dat_test = dat_test, breaks_list = breaks_list, note = FALSE) #score card LR_score_card = get_score_card(lg_model = lr_model, bins_table, target = "target") #scoring train_pred = dat_train[, c("ID", "apply_date", "target")] test_pred = dat_test[, c("ID", "apply_date", "target")] train_pred$pred_LR = score_transfer(model = lr_model, tbl_woe = train_woe, save_data = TRUE)[, "score"] test_pred$pred_LR = score_transfer(model = lr_model, tbl_woe = test_woe, save_data = FALSE)[, "score"] train_pred$target <- as.factor(train_pred$target) ggplot(train_pred, aes(x=pred_LR, fill = target, color = target)) + geom_histogram(aes(y=..density..), alpha=0.5, position = "dodge", binwidth = 20) + theme(legend.position = "top") + theme_minimal() + theme(legend.position = "top") + ggtitle("스코어 분포") + theme(plot.title = element_text(family = "serif", face = "bold", hjust = 0.5, size = 20, color = "black")) + labs(x="스코어", y="인원수") + theme(axis.title = element_text(family = "serif", face = "bold", hjust = 0.5, size = 20, color = "black")) test_pred$target <- as.factor(test_pred$target) ggplot(test_pred, aes(x=pred_LR, fill = target, color = target)) + geom_histogram(aes(y=..density..), alpha=0.5, position = "dodge", binwidth = 20) + theme(legend.position = "top") + theme_minimal() + theme(legend.position = "top") + ggtitle("스코어 분포") + theme(plot.title = element_text(family = "serif", face = "bold", hjust = 0.5, size = 20, color = "black")) + labs(x="스코어", y="인원수") + theme(axis.title = element_text(family = "serif", face = "bold", hjust = 0.5, size = 20, color = "black")) ############## 모델 매월 평가할 때 쓰일 패키지 함수 ############### # model result plots model_result_plot is a wrapper of following: # 1. perf_table is for generating a model performance table. # 2. ks_plot is for K-S. # 3. roc_plot is for ROC. # 4. lift_plot is for Lift Chart. # 5. score_distribution_plot is for ploting the score distribution. sub = cv_split(UCICreditCard, k = 30)[[1]] dat = UCICreditCard[sub,] dat = re_name(dat, "default.payment.next.month", "target") x_list = c("PAY_0", "LIMIT_BAL", "PAY_AMT5", "PAY_3", "PAY_2") dat = data_cleansing(dat, target = "target", obs_id = "ID",x_list = x_list, occur_time = "apply_date", miss_values = list("", -1)) dat = process_nas(dat,default_miss = TRUE) train_test = train_test_split(dat, split_type = "OOT", prop = 0.7, occur_time = "apply_date") dat_train = train_test$train dat_test = train_test$test Formula = as.formula(paste("target", paste(x_list, collapse = ' + '), sep = ' ~ ')) set.seed(46) lr_model = glm(Formula, data = dat_train[, c("target", x_list)], family = binomial(logit)) dat_train$pred_LR = round(predict(lr_model, dat_train[, x_list], type = "response"), 5) dat_test$pred_LR = round(predict(lr_model, dat_test[, x_list], type = "response"), 5) dat_train$Score <- p_to_score(p = dat_train$pred_LR, PDO = 20, base = 1000, ratio = 1) dat_test$Score <- p_to_score(p = dat_test$pred_LR, PDO = 20, base = 1000, ratio = 1) # model evaluation perf_table <- perf_table(train_pred = dat_train, test_pred = dat_test, target = "target", score = "pred_LR") head(perf_table) ks_plot(train_pred = dat_train, test_pred = dat_test, target = "target", score = "Score") roc_plot(train_pred = dat_train, test_pred = dat_test, target = "target", score = "Score") lift_plot(train_pred = dat_train, test_pred = dat_test, target = "target", score = "Score") score_distribution_plot(train_pred = dat_train, test_pred = dat_test, target = "target", score = "Score") model_result_plot(train_pred = dat_train, test_pred = dat_test, target = "target", score = "Score") library(InformationValue) data('ActualsAndScores') optimalCutoff(actuals=ActualsAndScores$Actuals, predictedScores=ActualsAndScores$PredictedScores, optimiseFor="Both", returnDiagnostics=TRUE) ks data('ActualsAndScores') plotROC(actuals=ActualsAndScores$Actuals, predictedScores=ActualsAndScores$PredictedScores) somersD(actuals=ActualsAndScores$Actuals, predictedScores=ActualsAndScores$PredictedScores)
ea9ba0543ff85a236dc896205289b8a773c60c36
35f2d27328ea1ce21fe6b88e4581784195d5b6d9
/Shiny/Plots/test.r
106a2a66ea565754598b0c2df81705eada0a606d
[]
no_license
alfcrisci/devium
a5430872af7b60d4c68b858f84506f7627cd6190
2d0f342fa50d9d9b45affea04743f21844134ff9
refs/heads/master
2021-01-18T19:14:59.333668
2013-09-25T22:52:54
2013-09-25T22:52:54
13,155,442
1
0
null
null
null
null
UTF-8
R
false
false
136
r
test.r
install.packages("shiny") library(shiny) runGitHub("Devium", username = "dgrapov",ref = "master", subdir = "Shiny/Plots", port = 8100)
db213aa6a8e16dfc64474e086bec87d687b86598
04c2710db9de87bff22def23f926c3ef7d804614
/r_plotting.R
aeb0ea50867f1297f2dcd0812711d4424c0ee412
[]
no_license
jhess90/classification_scripts
840b76372954f876903af1ffc46467c0d698ca8b
ab3501b21b3f40f9d138493c6beda9fbf2b4a3ee
refs/heads/master
2021-01-21T14:24:47.783155
2019-04-02T16:43:18
2019-04-02T16:43:18
59,316,441
1
0
null
null
null
null
UTF-8
R
false
false
30,217
r
r_plotting.R
library(openxlsx) library(ggplot2) library(reshape2) #source("~/dropbox/mult_rp_files/r_test/multiplot.R") source("~/Dropbox/mult_rp_files/r_test/multiplot.R") library(zoo) library(gplots) library(RColorBrewer) library(abind) library(gridGraphics) library(grid) library(gridExtra) saveAsPng <- T file_list <- c('nl_avg_data_M1_dict_total.xlsx','nl_avg_data_S1_dict_total.xlsx','nl_avg_data_PmD_dict_total.xlsx') catch_file_list <- c('catch_nl_avg_data_M1_dict_total.xlsx','catch_nl_avg_data_S1_dict_total.xlsx','catch_nl_avg_data_PmD_dict_total.xlsx') region_list <- c('M1','S1','PmD') time <- seq(from=-0.35,to=1.0,by=0.05) gf_total <- read.xlsx('gf_avg_data_M1_dict_total.xlsx',sheet=1,colNames=T) gf_time <- seq(-0.35,1.0,by=0.005) ######### plot_gf <- function(gf_value,std_value,key){ png(paste(key,"_gf.png",sep=""),width=6,height=4,units="in",res=500) #cat(key,'\n') gf_avg <- rollmeanr(gf_value,3) gf_std <- rollmeanr(std_value,3) #align with rollmeanr binned data gf_avg <- gf_avg[28:298] gf_std <- gf_std[28:298] #gf_avg <- gf_value[10:50] #gf_std <- std_value[10:50] #gf_time <- seq(-0.45,0-.25,by=0.005) upper <- gf_avg + gf_std lower <- gf_avg - gf_std gf_df <- data.frame(gf_time,gf_avg,upper,lower) gf_melt <- melt(gf_df,id.vars="gf_time",variable_name="value") p <- ggplot(data=gf_melt$gf_avg,aes(x=gf_time,y=gf_avg)) + geom_line() + theme(plot.margin=unit(c(0.5,1.5,0.5,3.0),"cm")) #margin order: top,right,btm,left p <- p + geom_ribbon(aes(ymin=gf_df$lower,ymax=gf_df$upper,alpha=0.15),show.legend = F) + geom_vline(xintercept=0) p <- p + labs(title=paste("gripforce",key),y="unit", x="time(s)") plot(p) dev.off() } for(region_index in 1:length(file_list)){ cat("\nplotting region:",region_list[region_index]) filename = file_list[region_index] wb <- loadWorkbook(filename) num_sheets <- length(sheets(wb)) total_array_name <- paste(region_list[region_index],"_unit_info",sep="") total_array <- array(NA,dim=c(28,32,num_sheets)) r0_succ_cue_name <- paste(region_list[region_index],"_r0_succ_cue_all",sep="") r1_succ_cue_name <- paste(region_list[region_index],"_r1_succ_cue_all",sep="") r2_succ_cue_name <- paste(region_list[region_index],"_r2_succ_cue_all",sep="") r3_succ_cue_name <- paste(region_list[region_index],"_r3_succ_cue_all",sep="") r0_succ_result_name <- paste(region_list[region_index],"_r0_succ_result_all",sep="") r1_succ_result_name <- paste(region_list[region_index],"_r1_succ_result_all",sep="") r2_succ_result_name <- paste(region_list[region_index],"_r2_succ_result_all",sep="") r3_succ_result_name <- paste(region_list[region_index],"_r3_succ_result_all",sep="") r0_fail_cue_name <- paste(region_list[region_index],"_r0_fail_cue_all",sep="") r1_fail_cue_name <- paste(region_list[region_index],"_r1_fail_cue_all",sep="") r2_fail_cue_name <- paste(region_list[region_index],"_r2_fail_cue_all",sep="") r3_fail_cue_name <- paste(region_list[region_index],"_r3_fail_cue_all",sep="") r0_fail_result_name <- paste(region_list[region_index],"_r0_fail_result_all",sep="") r1_fail_result_name <- paste(region_list[region_index],"_r1_fail_result_all",sep="") r2_fail_result_name <- paste(region_list[region_index],"_r2_fail_result_all",sep="") r3_fail_result_name <- paste(region_list[region_index],"_r3_fail_result_all",sep="") p0_succ_cue_name <- paste(region_list[region_index],"_p0_succ_cue_all",sep="") p1_succ_cue_name <- paste(region_list[region_index],"_p1_succ_cue_all",sep="") p2_succ_cue_name <- paste(region_list[region_index],"_p2_succ_cue_all",sep="") p3_succ_cue_name <- paste(region_list[region_index],"_p3_succ_cue_all",sep="") p0_succ_result_name <- paste(region_list[region_index],"_p0_succ_result_all",sep="") p1_succ_result_name <- paste(region_list[region_index],"_p1_succ_result_all",sep="") p2_succ_result_name <- paste(region_list[region_index],"_p2_succ_result_all",sep="") p3_succ_result_name <- paste(region_list[region_index],"_p3_succ_result_all",sep="") p0_fail_cue_name <- paste(region_list[region_index],"_p0_fail_cue_all",sep="") p1_fail_cue_name <- paste(region_list[region_index],"_p1_fail_cue_all",sep="") p2_fail_cue_name <- paste(region_list[region_index],"_p2_fail_cue_all",sep="") p3_fail_cue_name <- paste(region_list[region_index],"_p3_fail_cue_all",sep="") p0_fail_result_name <- paste(region_list[region_index],"_p0_fail_result_all",sep="") p1_fail_result_name <- paste(region_list[region_index],"_p1_fail_result_all",sep="") p2_fail_result_name <- paste(region_list[region_index],"_p2_fail_result_all",sep="") p3_fail_result_name <- paste(region_list[region_index],"_p3_fail_result_all",sep="") all_r_succ_cue_name <- paste(region_list[region_index],"_all_r_succ_cue",sep="") all_r_fail_cue_name <- paste(region_list[region_index],"_all_r_fail_cue",sep="") all_r_succ_result_name <- paste(region_list[region_index],"_all_r_succ_result",sep="") all_r_fail_result_name <- paste(region_list[region_index],"_all_r_fail_result",sep="") all_p_succ_cue_name <- paste(region_list[region_index],"_all_p_succ_cue",sep="") all_p_fail_cue_name <- paste(region_list[region_index],"_all_p_fail_cue",sep="") all_p_succ_result_name <- paste(region_list[region_index],"_all_p_succ_result",sep="") all_p_fail_result_name <- paste(region_list[region_index],"_all_p_fail_result",sep="") no_r_succ_cue_name <- paste(region_list[region_index],"_no_r_succ_cue",sep="") no_r_fail_cue_name <- paste(region_list[region_index],"_no_r_fail_cue",sep="") no_r_succ_result_name <- paste(region_list[region_index],"_no_r_succ_result",sep="") no_r_fail_result_name <- paste(region_list[region_index],"_no_r_fail_result",sep="") no_p_succ_cue_name <- paste(region_list[region_index],"_no_p_succ_cue",sep="") no_p_fail_cue_name <- paste(region_list[region_index],"_no_p_fail_cue",sep="") no_p_succ_result_name <- paste(region_list[region_index],"_no_p_succ_result",sep="") no_p_fail_result_name <- paste(region_list[region_index],"_no_p_fail_result",sep="") r0_succ_cue_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) r1_succ_cue_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) r2_succ_cue_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) r3_succ_cue_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) r0_succ_result_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) r1_succ_result_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) r2_succ_result_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) r3_succ_result_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) r0_fail_cue_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) r1_fail_cue_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) r2_fail_cue_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) r3_fail_cue_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) r0_fail_result_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) r1_fail_result_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) r2_fail_result_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) r3_fail_result_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) p0_succ_cue_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) p1_succ_cue_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) p2_succ_cue_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) p3_succ_cue_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) p0_succ_result_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) p1_succ_result_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) p2_succ_result_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) p3_succ_result_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) p0_fail_cue_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) p1_fail_cue_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) p2_fail_cue_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) p3_fail_cue_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) p0_fail_result_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) p1_fail_result_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) p2_fail_result_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) p3_fail_result_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) all_r_succ_cue_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) all_r_fail_cue_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) all_r_succ_result_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) all_r_fail_result_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) all_p_succ_cue_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) all_p_fail_cue_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) all_p_succ_result_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) all_p_fail_result_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) no_r_succ_cue_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) no_r_fail_cue_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) no_r_succ_result_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) no_r_fail_result_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) no_p_succ_cue_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) no_p_fail_cue_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) no_p_succ_result_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) no_p_fail_result_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) for (j in 1:num_sheets){ #cat('plotting unit', j,"\n") tmp <- read.xlsx(filename,sheet = j, colNames=T) png(paste(region_list[region_index],"unit_",j,".png",sep=""),width=8,height=6,units="in",res=500) tmp2 <- tmp[1:28,1:32] tmp2$p3_fail_cue <- rollmeanr(tmp$p3_fail_cue,3) tmp2$p2_fail_cue <- rollmeanr(tmp$p2_fail_cue,3) tmp2$p1_fail_cue <- rollmeanr(tmp$p1_fail_cue,3) tmp2$p0_fail_cue <- rollmeanr(tmp$p0_fail_cue,3) tmp2$r0_succ_cue <- rollmeanr(tmp$r0_succ_cue,3) tmp2$r1_succ_cue <- rollmeanr(tmp$r1_succ_cue,3) tmp2$r2_succ_cue <- rollmeanr(tmp$r2_succ_cue,3) tmp2$r3_succ_cue <- rollmeanr(tmp$r3_succ_cue,3) tmp2$p3_fail_result <- rollmeanr(tmp$p3_fail_result,3) tmp2$p2_fail_result <- rollmeanr(tmp$p2_fail_result,3) tmp2$p1_fail_result <- rollmeanr(tmp$p1_fail_result,3) tmp2$p0_fail_result <- rollmeanr(tmp$p0_fail_result,3) tmp2$r0_succ_result <- rollmeanr(tmp$r0_succ_result,3) tmp2$r1_succ_result <- rollmeanr(tmp$r1_succ_result,3) tmp2$r2_succ_result <- rollmeanr(tmp$r2_succ_result,3) tmp2$r3_succ_result <- rollmeanr(tmp$r3_succ_result,3) tmp2$p3_succ_cue <- rollmeanr(tmp$p3_succ_cue,3) tmp2$p2_succ_cue <- rollmeanr(tmp$p2_succ_cue,3) tmp2$p1_succ_cue <- rollmeanr(tmp$p1_succ_cue,3) tmp2$p0_succ_cue <- rollmeanr(tmp$p0_succ_cue,3) tmp2$r0_fail_cue <- rollmeanr(tmp$r0_fail_cue,3) tmp2$r1_fail_cue <- rollmeanr(tmp$r1_fail_cue,3) tmp2$r2_fail_cue <- rollmeanr(tmp$r2_fail_cue,3) tmp2$r3_fail_cue <- rollmeanr(tmp$r3_fail_cue,3) tmp2$p3_succ_result <- rollmeanr(tmp$p3_succ_result,3) tmp2$p2_succ_result <- rollmeanr(tmp$p2_succ_result,3) tmp2$p1_succ_result <- rollmeanr(tmp$p1_succ_result,3) tmp2$p0_succ_result <- rollmeanr(tmp$p0_succ_result,3) tmp2$r0_fail_result <- rollmeanr(tmp$r0_fail_result,3) tmp2$r1_fail_result <- rollmeanr(tmp$r1_fail_result,3) tmp2$r2_fail_result <- rollmeanr(tmp$r2_fail_result,3) tmp2$r3_fail_result <- rollmeanr(tmp$r3_fail_result,3) total_array[1:28,1:32,j] = data.matrix(tmp2) #making array to compare between units r0_succ_cue_matrix[j,] <- tmp2$r0_succ_cue r1_succ_cue_matrix[j,] <- tmp2$r1_succ_cue r2_succ_cue_matrix[j,] <- tmp2$r2_succ_cue r3_succ_cue_matrix[j,] <- tmp2$r3_succ_cue r0_succ_result_matrix[j,] <- tmp2$r0_succ_result r1_succ_result_matrix[j,] <- tmp2$r1_succ_result r2_succ_result_matrix[j,] <- tmp2$r2_succ_result r3_succ_result_matrix[j,] <- tmp2$r3_succ_result r0_fail_cue_matrix[j,] <- tmp2$r0_fail_cue r1_fail_cue_matrix[j,] <- tmp2$r1_fail_cue r2_fail_cue_matrix[j,] <- tmp2$r2_fail_cue r3_fail_cue_matrix[j,] <- tmp2$r3_fail_cue r0_fail_result_matrix[j,] <- tmp2$r0_fail_result r1_fail_result_matrix[j,] <- tmp2$r1_fail_result r2_fail_result_matrix[j,] <- tmp2$r2_fail_result r3_fail_result_matrix[j,] <- tmp2$r3_fail_result p0_succ_cue_matrix[j,] <- tmp2$p0_succ_cue p1_succ_cue_matrix[j,] <- tmp2$p1_succ_cue p2_succ_cue_matrix[j,] <- tmp2$p2_succ_cue p3_succ_cue_matrix[j,] <- tmp2$p3_succ_cue p0_succ_result_matrix[j,] <- tmp2$p0_succ_result p1_succ_result_matrix[j,] <- tmp2$p1_succ_result p2_succ_result_matrix[j,] <- tmp2$p2_succ_result p3_succ_result_matrix[j,] <- tmp2$p3_succ_result p0_fail_cue_matrix[j,] <- tmp2$p0_fail_cue p1_fail_cue_matrix[j,] <- tmp2$p1_fail_cue p2_fail_cue_matrix[j,] <- tmp2$p2_fail_cue p3_fail_cue_matrix[j,] <- tmp2$p3_fail_cue p0_fail_result_matrix[j,] <- tmp2$p0_fail_result p1_fail_result_matrix[j,] <- tmp2$p1_fail_result p2_fail_result_matrix[j,] <- tmp2$p2_fail_result p3_fail_result_matrix[j,] <- tmp2$p3_fail_result all_r_succ_cue_matrix[j,] = (tmp2$r1_succ_cue + tmp2$r2_succ_cue + tmp2$r3_succ_cue)/3 all_r_fail_cue_matrix[j,] = (tmp2$r1_fail_cue + tmp2$r2_fail_cue + tmp2$r3_fail_cue)/3 all_r_succ_result_matrix[j,] = (tmp2$r1_succ_result + tmp2$r2_succ_result + tmp2$r3_succ_result)/3 all_r_fail_result_matrix[j,] = (tmp2$r1_fail_result + tmp2$r2_fail_result + tmp2$r3_fail_result)/3 all_p_succ_cue_matrix[j,] = (tmp2$p1_succ_cue + tmp2$p2_succ_cue + tmp2$p3_succ_cue)/3 all_p_fail_cue_matrix[j,] = (tmp2$p1_fail_cue + tmp2$p2_fail_cue + tmp2$p3_fail_cue)/3 all_p_succ_result_matrix[j,] = (tmp2$p1_succ_result + tmp2$p2_succ_result + tmp2$p3_succ_result)/3 all_p_fail_result_matrix[j,] = (tmp2$p1_fail_result + tmp2$p2_fail_result + tmp2$p3_fail_result)/3 no_r_succ_cue_matrix[j,] <- tmp2$r0_succ_cue no_r_fail_cue_matrix[j,] <- tmp2$r0_fail_cue no_r_succ_result_matrix[j,] <- tmp2$r0_succ_result no_r_fail_result_matrix[j,] <- tmp2$r0_fail_result no_p_succ_cue_matrix[j,] <- tmp2$p0_succ_cue no_p_fail_cue_matrix[j,] <- tmp2$p0_fail_cue no_p_succ_result_matrix[j,] <- tmp2$p0_succ_result no_p_fail_result_matrix[j,] <- tmp2$p0_fail_result #plotting individual unit df_cue <- data.frame(time,p3_fail=tmp2$p3_fail_cue,p2_fail=tmp2$p2_fail_cue,p1_fail=tmp2$p1_fail_cue,p0_fail=tmp2$p0_fail_cue,r0_succ=tmp2$r0_succ_cue,r1_succ=tmp2$r1_succ_cue,r2_succ=tmp2$r2_succ_cue,r3_succ=tmp2$r3_succ_cue) #TODO melt not renaming variable name df_cue <- melt(df_cue, id.vars="time", variable_name="level") plt_cue <- ggplot(df_cue, aes(time,value)) + geom_line(aes(colour=variable)) plt_cue <- plt_cue + scale_color_brewer(palette="RdYlGn") +labs(title=paste(region_list[region_index],"unit",j,"cue"),y="normalized firing rate", x="time(s)") + geom_vline(xintercept=0) df_result <- data.frame(time,p3_fail=tmp2$p3_fail_result,p2_fail=tmp2$p2_fail_result,p1_fail=tmp2$p1_fail_result,p0_fail=tmp2$p0_fail_result,r0_succ=tmp2$r0_succ_result,r1_succ=tmp2$r1_succ_result,r2_succ=tmp2$r2_succ_result,r3_succ=tmp2$r3_succ_result) df_result <- melt(df_result, id.vars="time", variable_name="level") plt_result <- ggplot(df_result, aes(time,value)) + geom_line(aes(colour=variable)) plt_result <- plt_result + scale_color_brewer(palette="RdYlGn") +labs(title='result',y="normalized firing rate", x="time(s)") + geom_vline(xintercept=0) multiplot(plt_cue,plt_result,cols=1) dev.off() rm(tmp) } assign(r0_succ_cue_name,r0_succ_cue_matrix) assign(r1_succ_cue_name,r1_succ_cue_matrix) assign(r2_succ_cue_name,r2_succ_cue_matrix) assign(r3_succ_cue_name,r3_succ_cue_matrix) assign(r0_succ_result_name,r0_succ_result_matrix) assign(r1_succ_result_name,r1_succ_result_matrix) assign(r2_succ_result_name,r2_succ_result_matrix) assign(r3_succ_result_name,r3_succ_result_matrix) assign(r0_fail_cue_name,r0_fail_cue_matrix) assign(r1_fail_cue_name,r1_fail_cue_matrix) assign(r2_fail_cue_name,r2_fail_cue_matrix) assign(r3_fail_cue_name,r3_fail_cue_matrix) assign(r0_fail_result_name,r0_fail_result_matrix) assign(r1_fail_result_name,r1_fail_result_matrix) assign(r2_fail_result_name,r2_fail_result_matrix) assign(r3_fail_result_name,r3_fail_result_matrix) assign(p0_succ_cue_name,p0_succ_cue_matrix) assign(p1_succ_cue_name,p1_succ_cue_matrix) assign(p2_succ_cue_name,p2_succ_cue_matrix) assign(p3_succ_cue_name,p3_succ_cue_matrix) assign(p0_succ_result_name,p0_succ_result_matrix) assign(p1_succ_result_name,p1_succ_result_matrix) assign(p2_succ_result_name,p2_succ_result_matrix) assign(p3_succ_result_name,p3_succ_result_matrix) assign(p0_fail_cue_name,p0_fail_cue_matrix) assign(p1_fail_cue_name,p1_fail_cue_matrix) assign(p2_fail_cue_name,p2_fail_cue_matrix) assign(p3_fail_cue_name,p3_fail_cue_matrix) assign(p0_fail_result_name,p0_fail_result_matrix) assign(p1_fail_result_name,p1_fail_result_matrix) assign(p2_fail_result_name,p2_fail_result_matrix) assign(p3_fail_result_name,p3_fail_result_matrix) assign(all_r_succ_cue_name,all_r_succ_cue_matrix) assign(all_r_fail_cue_name,all_r_fail_cue_matrix) assign(all_r_succ_result_name,all_r_succ_result_matrix) assign(all_r_fail_result_name,all_r_fail_result_matrix) assign(all_p_succ_cue_name,all_p_succ_cue_matrix) assign(all_p_fail_cue_name,all_p_fail_cue_matrix) assign(all_p_succ_result_name,all_p_succ_result_matrix) assign(all_p_fail_result_name,all_p_fail_result_matrix) assign(no_r_succ_cue_name,no_r_succ_cue_matrix) assign(no_r_fail_cue_name,no_r_fail_cue_matrix) assign(no_r_succ_result_name,no_r_succ_result_matrix) assign(no_r_fail_result_name,no_r_fail_result_matrix) assign(no_p_succ_cue_name,no_p_succ_cue_matrix) assign(no_p_fail_cue_name,no_p_fail_cue_matrix) assign(no_p_succ_result_name,no_p_succ_result_matrix) assign(no_p_fail_result_name,no_p_fail_result_matrix) assign(total_array_name,total_array) } for(region_index in 1:length(catch_file_list)){ cat("\nplotting region (catch):",region_list[region_index]) filename = catch_file_list[region_index] wb <- loadWorkbook(filename) num_sheets <- length(sheets(wb)) total_array_name <- paste(region_list[region_index],"_catch_unit_info",sep="") total_array <- array(NA,dim=c(28,20,num_sheets)) r_all_catch_cue_name <- paste(region_list[region_index],"_r_all_catch_cue",sep="") r_all_catch_result_name <- paste(region_list[region_index],"_r_all_catch_result",sep="") p_all_catch_cue_name <- paste(region_list[region_index],"_p_all_catch_cue",sep="") p_all_catch_result_name <- paste(region_list[region_index],"_p_all_catch_result",sep="") r_all_catch_cue_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) r_all_catch_result_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) p_all_catch_cue_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) p_all_catch_result_matrix <- matrix(NA,nrow=num_sheets,ncol=28,dimnames=list(1:num_sheets,time)) for (j in 1:num_sheets){ #cat('plotting unit', j,"catch trials\n") tmp <- read.xlsx(filename,sheet = j, colNames=T) tmp2 <- tmp[1:28,1:20] tmp2$p3_catch_cue <- rollmean(tmp$p3_catch_cue,3) tmp2$p2_catch_cue <- rollmean(tmp$p2_catch_cue,3) tmp2$p1_catch_cue <- rollmean(tmp$p1_catch_cue,3) tmp2$p0_catch_cue <- rollmean(tmp$p0_catch_cue,3) tmp2$r0_catch_cue <- rollmean(tmp$r0_catch_cue,3) tmp2$r1_catch_cue <- rollmean(tmp$r1_catch_cue,3) tmp2$r2_catch_cue <- rollmean(tmp$r2_catch_cue,3) tmp2$r3_catch_cue <- rollmean(tmp$r3_catch_cue,3) tmp2$r_all_catch_cue <- rollmean(tmp$r_all_catch_cue,3) tmp2$p_all_catch_cue <- rollmean(tmp$p_all_catch_cue,3) tmp2$p3_catch_result <- rollmean(tmp$p3_catch_result,3) tmp2$p2_catch_result <- rollmean(tmp$p2_catch_result,3) tmp2$p1_catch_result <- rollmean(tmp$p1_catch_result,3) tmp2$p0_catch_result <- rollmean(tmp$p0_catch_result,3) tmp2$r0_catch_result <- rollmean(tmp$r0_catch_result,3) tmp2$r1_catch_result <- rollmean(tmp$r1_catch_result,3) tmp2$r2_catch_result <- rollmean(tmp$r2_catch_result,3) tmp2$r3_catch_result <- rollmean(tmp$r3_catch_result,3) tmp2$r_all_catch_result <- rollmean(tmp$r_all_catch_result,3) tmp2$p_all_catch_result <- rollmean(tmp$p_all_catch_result,3) total_array[1:28,1:20,j] <- data.matrix(tmp2) r_all_catch_cue_matrix[j,] <- tmp2$r_all_catch_cue r_all_catch_result_matrix[j,] <- tmp2$r_all_catch_result p_all_catch_cue_matrix[j,] <- tmp2$p_all_catch_cue p_all_catch_result_matrix[j,] <- tmp2$p_all_catch_result df_cue <- data.frame(time,p3_catch=tmp2$p3_catch_cue,p2_catch=tmp2$p2_catch_cue,p1_catch=tmp2$p1_catch_cue,p0_catch=tmp2$p0_catch_cue,r0_catch=tmp2$r0_catch_cue,r1_catch=tmp2$r1_catch_cue,r2_catch=tmp2$r2_catch_cue,r3_catch=tmp2$r3_catch_cue) #TODO melt not renaming variable name df_cue <- melt(df_cue, id.vars="time", variable_name="level") plt_cue <- ggplot(df_cue, aes(time,value)) + geom_line(aes(colour=variable)) plt_cue <- plt_cue + scale_color_brewer(palette="RdYlGn") +labs(title=paste(region_list[region_index],"unit",j,"cue"),y="normalized firing rate", x="time(s)") + geom_vline(xintercept=0) df_result <- data.frame(time,p3_catch=tmp2$p3_catch_result,p2_catch=tmp2$p2_catch_result,p1_catch=tmp2$p1_catch_result,p0_catch=tmp2$p0_catch_result,r0_catch=tmp2$r0_catch_result,r1_catch=tmp2$r1_catch_result,r2_catch=tmp2$r2_catch_result,r3_catch=tmp2$r3_catch_result) df_result <- melt(df_result, id.vars="time", variable_name="level") plt_result <- ggplot(df_result, aes(time,value)) + geom_line(aes(colour=variable)) plt_result <- plt_result + scale_color_brewer(palette="RdYlGn") +labs(title='result',y="normalized firing rate", x="time(s)") + geom_vline(xintercept=0) df_catch_all_cue <- data.frame(time,r_all_catch=tmp2$r_all_catch_cue,p_all_catch=tmp2$p_all_catch_cue) df_catch_all_cue <- melt(df_catch_all_cue,id.vars="time",variable_name="level") plt_catch_cue <- ggplot(df_catch_all_cue,aes(time,value)) + geom_line(aes(colour=variable)) plt_catch_cue <- plt_catch_cue + labs(title=paste(region_list[region_index],'unit',j,'cue catch all'),y='normalized firing rate',x="time(s)") + geom_vline(xintercept=0) df_catch_all_result <- data.frame(time,r_all_catch=tmp2$r_all_catch_result,p_all_catch=tmp2$p_all_catch_result) df_catch_all_result <- melt(df_catch_all_result,id.vars="time",variable_name="level") plt_catch_result <- ggplot(df_catch_all_result,aes(time,value)) + geom_line(aes(colour=variable)) plt_catch_result <- plt_catch_result + labs(title='result catch all',y='normalized firing rate',x="time(s)") + geom_vline(xintercept=0) png(paste(region_list[region_index],"_catch_multilevels_unit_",j,".png",sep=""),width=8,height=6,units="in",res=500) multiplot(plt_cue,plt_result,cols=1) dev.off() png(paste(region_list[region_index],"_catch_all_unit_",j,".png",sep=""),width=8,height=6,units="in",res=500) multiplot(plt_catch_cue,plt_catch_result,cols=1) dev.off() rm(tmp) } assign(r_all_catch_cue_name,r_all_catch_cue_matrix) assign(r_all_catch_result_name,r_all_catch_result_matrix) assign(p_all_catch_cue_name,p_all_catch_cue_matrix) assign(p_all_catch_result_name,p_all_catch_result_matrix) assign(total_array_name,total_array) } M1_matrices <- abind(M1_r3_succ_cue_all,M1_r3_succ_result_all,M1_p3_fail_cue_all,M1_p3_fail_result_all,M1_all_r_succ_cue,M1_all_r_fail_cue,M1_all_r_succ_result,M1_all_r_fail_result,M1_all_p_succ_cue,M1_all_p_fail_cue,M1_all_p_succ_result,M1_all_p_fail_result,M1_no_r_succ_cue,M1_no_r_fail_cue,M1_no_r_succ_result,M1_no_r_fail_result,M1_no_p_succ_cue,M1_no_p_fail_cue,M1_no_p_succ_result,M1_no_p_fail_result,M1_r_all_catch_cue,M1_r_all_catch_result,M1_p_all_catch_cue,M1_p_all_catch_result,along=3) M1_matrix_keys <- c('M1_r3_succ_cue','M1_r3_succ_result','M1_p3_fail_cue','M1_p3_fail_result','M1_all_r_succ_cue','M1_all_r_fail_cue','M1_all_r_succ_result','M1_all_r_fail_result','M1_all_p_succ_cue','M1_all_p_fail_cue','M1_all_p_succ_result','M1_all_p_fail_result','M1_no_r_succ_cue','M1_no_r_fail_cue','M1_no_r_succ_result','M1_no_r_fail_result','M1_no_p_succ_cue','M1_no_p_fail_cue','M1_no_p_succ_result','M1_no_p_fail_result','M1_r_all_catch_cue','M1_r_all_catch_result','M1_p_all_catch_cue','M1_p_all_catch_result') S1_matrices <- abind(S1_r3_succ_cue_all,S1_r3_succ_result_all,S1_p3_fail_cue_all,S1_p3_fail_result_all,S1_all_r_succ_cue,S1_all_r_fail_cue,S1_all_r_succ_result,S1_all_r_fail_result,S1_all_p_succ_cue,S1_all_p_fail_cue,S1_all_p_succ_result,S1_all_p_fail_result,S1_no_r_succ_cue,S1_no_r_fail_cue,S1_no_r_succ_result,S1_no_r_fail_result,S1_no_p_succ_cue,S1_no_p_fail_cue,S1_no_p_succ_result,S1_no_p_fail_result,S1_r_all_catch_cue,S1_r_all_catch_result,S1_p_all_catch_cue,S1_p_all_catch_result,along=3) S1_matrix_keys <- c('S1_r3_succ_cue','S1_r3_succ_result','S1_p3_fail_cue','S1_p3_fail_result','S1_all_r_succ_cue','S1_all_r_fail_cue','S1_all_r_succ_result','S1_all_r_fail_result','S1_all_p_succ_cue','S1_all_p_fail_cue','S1_all_p_succ_result','S1_all_p_fail_result','S1_no_r_succ_cue','S1_no_r_fail_cue','S1_no_r_succ_result','S1_no_r_fail_result','S1_no_p_succ_cue','S1_no_p_fail_cue','S1_no_p_succ_result','S1_no_p_fail_result','S1_r_all_catch_cue','S1_r_all_catch_result','S1_p_all_catch_cue','S1_p_all_catch_result') PmD_matrices <- abind(PmD_r3_succ_cue_all,PmD_r3_succ_result_all,PmD_p3_fail_cue_all,PmD_p3_fail_result_all,PmD_all_r_succ_cue,PmD_all_r_fail_cue,PmD_all_r_succ_result,PmD_all_r_fail_result,PmD_all_p_succ_cue,PmD_all_p_fail_cue,PmD_all_p_succ_result,PmD_all_p_fail_result,PmD_no_r_succ_cue,PmD_no_r_fail_cue,PmD_no_r_succ_result,PmD_no_r_fail_result,PmD_no_p_succ_cue,PmD_no_p_fail_cue,PmD_no_p_succ_result,PmD_no_p_fail_result,PmD_r_all_catch_cue,PmD_r_all_catch_result,PmD_p_all_catch_cue,PmD_p_all_catch_result,along=3) PmD_matrix_keys <- c('PmD_r3_succ_cue','PmD_r3_succ_result','PmD_p3_fail_cue','PmD_p3_fail_result','PmD_all_r_succ_cue','PmD_all_r_fail_cue','PmD_all_r_succ_result','PmD_all_r_fail_result','PmD_all_p_succ_cue','PmD_all_p_fail_cue','PmD_all_p_succ_result','PmD_all_p_fail_result','PmD_no_r_succ_cue','PmD_no_r_fail_cue','PmD_no_r_succ_result','PmD_no_r_fail_result','PmD_no_p_succ_cue','PmD_no_p_fail_cue','PmD_no_p_succ_result','PmD_no_p_fail_result','PmD_r_all_catch_cue','PmD_r_all_catch_result','PmD_p_all_catch_cue','PmD_p_all_catch_result') cat("\nM1 heatmaps") for (i in 1:length(M1_matrix_keys)){ if (any(is.na(M1_matrices[,,i]))){ M1_matrices[,,i][is.na(M1_matrices[,,i])] = 0 cat("\nna in",M1_matrix_keys[i]) } png(paste(M1_matrix_keys[i],".png",sep=""),width=8,height=6,units="in",res=500) heatmap.2(M1_matrices[,,i],Colv=F,dendrogram="row",scale="row",col=rev(brewer.pal(11,"RdBu")),main=M1_matrix_keys[i],trace="none",cexRow=0.5,ylab="unit",xlab="time (s)",colsep=9) dev.off() } cat("\nS1 heatmaps") for (i in 1:length(S1_matrix_keys)){ if (any(is.na(S1_matrices[,,i]))){ S1_matrices[,,i][is.na(S1_matrices[,,i])] = 0 cat("\nna in",S1_matrix_keys[i]) } png(paste(S1_matrix_keys[i],".png",sep=""),width=8,height=6,units="in",res=500) heatmap.2(S1_matrices[,,i],Colv=F,dendrogram="row",scale="row",col=rev(brewer.pal(11,"RdBu")),main=S1_matrix_keys[i],trace="none",cexRow=0.5,ylab="unit",xlab="time (s)",colsep=9) dev.off() } cat("\nPmD heatmaps") for (i in 1:length(PmD_matrix_keys)){ if (any(is.na(PmD_matrices[,,i]))){ PmD_matrices[,,i][is.na(PmD_matrices[,,i])] = 0 cat("\nna in",PmD_matrix_keys[i]) } png(paste(PmD_matrix_keys[i],".png",sep=""),width=8,height=6,units="in",res=500) heatmap.2(PmD_matrices[,,i],Colv=F,dendrogram="row",scale="row",col=rev(brewer.pal(11,"RdBu")),main=PmD_matrix_keys[i],trace="none",cexRow=0.5,ylab="unit",xlab="time (s)",colsep=9) dev.off() } cat("\ngripforce plots") gf_matrix_keys <- c('r3_succ_cue','r3_succ_result','p3_fail_cue','p3_fail_result','ra_succ_cue','ra_fail_cue','ra_succ_result','ra_fail_result','pa_succ_cue','pa_fail_cue','pa_succ_result','pa_fail_result','r0_succ_cue','r0_fail_cue','r0_succ_result','r0_fail_result','p0_succ_cue','p0_fail_cue','p0_succ_result','p0_fail_result','r_all_catch_cue','r_all_catch_result','p_all_catch_cue','p_all_catch_result') for (i in 1:length(gf_matrix_keys)){ avg_key <- paste(gf_matrix_keys[i],'_avg',sep="") std_key <- paste(gf_matrix_keys[i],'_std',sep="") #cat("\n",avg_key) #cat("\n",std_key) gf <- gf_total[[avg_key]] std <- gf_total[[std_key]] plot_gf(gf,std,gf_matrix_keys[i]) } cat("\nsaving") # save.image(file="rearranged_data.RData") rm(list=ls())
af1be1e7a89cdc544ab33e52dd3059c3b7ca95a0
7218dd41cbe126a617485cd463f9d6a93dfc1eb9
/man/sgp_small_multiples.Rd
a074743be33f8667a3042ade1a197be54af57262
[]
no_license
almartin82/MAP-visuals
0c171b37978cefed94d46336457e0ef8a672c669
28102126dc4b40c6566a6f20248d4f871613253a
refs/heads/master
2021-01-10T19:22:04.324129
2015-06-11T18:38:42
2015-06-11T18:38:42
10,979,358
1
1
null
2015-02-05T19:41:56
2013-06-26T21:16:19
R
UTF-8
R
false
false
514
rd
sgp_small_multiples.Rd
% Generated by roxygen2 (4.1.0): do not edit by hand % Please edit documentation in R/sgp_small_multiples.R \name{sgp_small_multiples} \alias{sgp_small_multiples} \title{SGP small multiples} \usage{ sgp_small_multiples(df, stu_per_row = 12) } \arguments{ \item{df}{long data frame in TEAM canonical style} \item{stu_per_row}{how many kids wide?} } \value{ returns a ggplot object } \description{ \code{sgp_small_multiples} returns a ggplot facet_grid with a box for every kid, showing their SGP and rit change }
15a521bf5de7ec92a793bba50d34e4fd662ff45e
82b4ac6a93625c4b73a3792fd338c1f6744213d6
/figures/figures.r
fadaeba4be14d58eeca2f9dccbe6554ebbe305cc
[]
no_license
kroppheather/larix_density_ecohydro
0f2c55dc6390947e1d143b7397b3931a0af4b9c7
58c2b1312e43daffe69631ad9bce588608fbf01b
refs/heads/master
2020-04-10T20:44:51.926019
2019-02-01T15:06:14
2019-02-01T15:06:14
124,288,800
0
0
null
null
null
null
UTF-8
R
false
false
32,669
r
figures.r
########################################################################### ########################################################################### ############## Created by Heather Kropp in October 2017 ############## ############## This script creates figures for all time ############## ############## series data. ############## ########################################################################### ########################################################################### ############## Input files: ############## ############## from sapflux calc: ############## ############## Transpiration: El.L,El.L17,El.H,El.H17 ############## ############## stomatal conductance:gc.L, gc.L17, gc.H, gc.H17############# ############## tree info: datTreeL, datTreeL17, datTreeH, ############# ############## datTreeH17 ############# ############## from thaw depth: TDall ############# ########################################################################### ################################################################# ####read in sapflow data ####### ################################################################# source("c:\\Users\\hkropp\\Documents\\GitHub\\larix_density_ecohydro\\sapflux_process.r") #libraries loaded from source #plyr, lubridate,caTools #set the plotting directory plotDI <- "c:\\Users\\hkropp\\Google Drive\\Viper_Ecohydro\\time_plot" ################################################################# ####read in thaw depth data ####### ################################################################# source("c:\\Users\\hkropp\\Documents\\GitHub\\larix_density_ecohydro\\thaw_depth_process.r") ################################################################# ####read in datafiles ####### ################################################################# #read in precip data datAirP <- read.csv("c:\\Users\\hkropp\\Google Drive\\viperSensor\\airport\\airport.csv") #read in continuous soil data datSW <- read.csv("c:\\Users\\hkropp\\Google Drive\\viperSensor\\soil\\vwc.GS3.csv") #canopy rh and temperature datRH <- read.csv("c:\\Users\\hkropp\\Google Drive\\viperSensor\\met\\RH.VP4.csv") datTC <- read.csv("c:\\Users\\hkropp\\Google Drive\\viperSensor\\met\\TempC.VP4.csv") #PAR datPAR <- read.csv("c:\\Users\\hkropp\\Google Drive\\viperSensor\\met\\PAR.QSOS PAR.csv") #read in leaf and sapwood area datLSA <- read.csv("c:\\Users\\hkropp\\Google Drive\\Viper_Ecohydro\\sapflux_diag\\tables\\treeSummary.csv") ################################################################# ####calculate daily transpiration ####### ################################################################# #El is in g m-2 s-1 #convert to g m-2 half hour-1 #and reorganize E.temp <- list(El.L,El.L17,El.H,El.H17) E.dim <- numeric(0) E.temp2 <- list() E.temp3 <- list() E.tempwork <- list() for(i in 1:4){ E.dim[i] <- dim(E.temp[[i]])[2] E.temp2[[i]] <- data.frame(E.temp[[i]][,1:3], E.temp[[i]][,4:E.dim[i]]*60*30) E.temp3[[i]] <- data.frame(doy=rep(E.temp2[[i]]$doy,times=E.dim[i]-3), year=rep(E.temp2[[i]]$year,times=E.dim[i]-3), hour=rep(E.temp2[[i]]$hour,times=E.dim[i]-3), E.hh = as.vector(data.matrix(E.temp2[[i]][,4:E.dim[i]])), tree = rep(seq(1,E.dim[i]-3), each=dim(E.temp2[[i]])[1])) E.temp3[[i]] <- na.omit(E.temp3[[i]]) E.tempwork[[i]] <- E.temp3[[i]] E.tempwork[[i]]$E.ss <- E.temp3[[i]]$E.hh/(30*60) E.tempwork[[i]]$dataset <- rep(i,dim(E.tempwork[[i]])[1]) } Esshh <- ldply(E.tempwork,data.frame) #convert to mols Esshh$E.mmols <- (Esshh$E.ss/18)*1000 #now aggregate to see how many observations in a day #and pull out data on days that have at least 3 trees #and those trees have all 48 measurements in a day ELength <- list() EdayL <- list() E.temp4 <- list() for(i in 1:4){ ELength[[i]] <- aggregate(E.temp3[[i]]$E.hh, by=list(E.temp3[[i]]$doy,E.temp3[[i]]$year,E.temp3[[i]]$tree), FUN="length") ELength[[i]] <- ELength[[i]][ELength[[i]]$x==48,] colnames(ELength[[i]]) <- c("doy","year","tree","count") #find out how many tree observations on each day EdayL[[i]] <- aggregate(ELength[[i]]$tree, by=list(ELength[[i]]$doy,ELength[[i]]$year), FUN="length") colnames(EdayL[[i]])<- c("doy","year", "ntree") #subset to only use days with at least 3 trees EdayL[[i]] <- EdayL[[i]][EdayL[[i]]$ntree>=3,] #join to only include days with enough sensors ELength[[i]] <- join(ELength[[i]],EdayL[[i]], by=c("doy","year"), type="inner") #create a tree, day id ELength[[i]]$treeDay <- seq(1, dim(ELength[[i]])[1]) ELength[[i]]$dataset <- rep(i, dim(ELength[[i]])[1]) #ELength now has the list of each sensor and day that should be included #subset the data to only do the calculations on the trees that meet the minimum criteria E.temp4[[i]] <- join(E.temp3[[i]],ELength[[i]], by=c("doy", "year", "tree"), type="inner") } #turn back into a dataframe EtempALL <- ldply(E.temp4,data.frame) EInfo <- ldply(ELength,data.frame) #get the daily integration of the transpiration EdayT <- numeric(0) EdayTemp <- list() for(i in 1:dim(EInfo)[1]){ EdayTemp[[i]] <- data.frame(x=EtempALL$hour[EtempALL$treeDay==EInfo$treeDay[i]&EtempALL$dataset==EInfo$dataset[i]], y=EtempALL$E.hh[EtempALL$treeDay==EInfo$treeDay[i]&EtempALL$dataset==EInfo$dataset[i]]) EdayT[i] <- trapz(EdayTemp[[i]]$x,EdayTemp[[i]]$y) } #add daily value into Einfo EInfo$T.day <- EdayT #in g per day now EInfo$T.Lday <- EdayT/1000 #add stand labels to the datasets EInfo$stand <- ifelse(EInfo$dataset==1|EInfo$dataset==2,"ld","hd") #get the stand averages of daily transpiration across day EdayLm <- aggregate(EInfo$T.Lday, by=list(EInfo$doy,EInfo$year,EInfo$stand), FUN="mean") EdayLsd <- aggregate(EInfo$T.Lday, by=list(EInfo$doy,EInfo$year,EInfo$stand), FUN="sd") EdayLl <- aggregate(EInfo$T.Lday, by=list(EInfo$doy,EInfo$year,EInfo$stand), FUN="length") Eday <- EdayLm colnames(Eday) <- c("doy","year","site","T.L.day") Eday$T.sd <- EdayLsd$x Eday$T.n <- EdayLl$x Eday$T.se <- Eday$T.sd/sqrt(Eday$T.n) #aggrate to half hourly Esshh$site <-ifelse(Esshh$dataset==1|Esshh$dataset==2, "ld", "hd") #filter unrealistic values Esshh <- Esshh[Esshh$E.mmols<quantile(Esshh$E.mmols,.975),] EHHave <- aggregate(Esshh$E.mmols, by=list(Esshh$hour,Esshh$doy,Esshh$year,Esshh$site), FUN="mean" ) colnames(EHHave) <- c("hour","doy", "year","site", "E.hh") EHHsd <- aggregate(Esshh$E.mmols, by=list(Esshh$hour,Esshh$doy,Esshh$year,Esshh$site), FUN="sd" ) EHHn <- aggregate(Esshh$E.mmols, by=list(Esshh$hour,Esshh$doy,Esshh$year,Esshh$site), FUN="length" ) EHHave$E.sd <- EHHsd$x EHHave$E.n <- EHHn$x EHHave$E.se <- EHHave$E.sd /sqrt(EHHave$E.n) ################################################################# ####calculate gc daily values across all tree ####### ################################################################# #reoranize into data frames gctemp <- list(gc.L, gc.L17, gc.H, gc.H17) gcdim <- numeric(0) gctemp2 <- list() for(i in 1:4){ gcdim[i] <- dim(gctemp[[i]])[2] gctemp2[[i]] <- data.frame(doy=rep(gctemp[[i]]$doy,times=gcdim[i]-3), year=rep(gctemp[[i]]$year,times=gcdim[i]-3), hour=rep(gctemp[[i]]$hour,times=gcdim[i]-3), gc.h = as.vector(data.matrix(gctemp[[i]][,4:gcdim[i]])), tree = rep(seq(1,gcdim[i]-3), each=dim(gctemp[[i]])[1]), datset=rep(i, each=dim(gctemp[[i]])[1]) ) gctemp2[[i]] <- na.omit(gctemp2[[i]]) } gctemp3 <- ldply(gctemp2, data.frame) #check that there aren't days with too few observations gclength <- list() gcLday1 <- list() gcLday2 <- list() for(i in 1:4){ #how many observations in days and trees gclength[[i]] <- aggregate(gctemp2[[i]]$gc.h, by=list(gctemp2[[i]]$doy,gctemp2[[i]]$year,gctemp2[[i]]$tree), FUN="length") #subset to exclude trees that only have one obs in a day gclength[[i]] <- gclength[[i]][gclength[[i]]$x>3,] #how many trees in days gcLday1[[i]] <- aggregate(gclength[[i]]$Group.3, by=list(gclength[[i]]$Group.1,gclength[[i]]$Group.2),FUN="length") } # alot of observations so no need to subset more # half hourly average across all trees gcHHave <-aggregate(gctemp3$gc.h, by=list(gctemp3$hour,gctemp3$doy,gctemp3$year,gctemp3$datset), FUN="mean") colnames(gcHHave) <- c("hour","doy", "year", "dataset","gc.mmol.s") gcHHsd <-aggregate(gctemp3$gc.h, by=list(gctemp3$hour,gctemp3$doy,gctemp3$year,gctemp3$datset), FUN="sd") gcHHn <-aggregate(gctemp3$gc.h, by=list(gctemp3$hour,gctemp3$doy,gctemp3$year,gctemp3$datset), FUN="length") gcHHave$gc.sd <- gsHHsd$x gcHHave$gc.n <- gsHHn$x gcHHave$gc.se <- gsHHave$gc.sd/sqrt(gsHHave$gc.n) gcHHave$site <- ifelse(gcHHave$dataset==1|gcHHave$dataset==2,"ld","hd") #get the average daily gc across all trees gsDave <- aggregate(gctemp3$gc.h, by=list(gctemp3$doy,gctemp3$year,gctemp3$datset), FUN="mean") gsDsd <- aggregate(gctemp3$gc.h, by=list(gctemp3$doy,gctemp3$year,gctemp3$datset), FUN="sd") gsDn <- aggregate(gctemp3$gc.h, by=list(gctemp3$doy,gctemp3$year,gctemp3$datset), FUN="length") colnames(gsDave) <- c("doy", "year", "dataset","gc.mmol.s") gsDave$gc.sd <- gsDsd$x gsDave$gc.n <- gsDn$x gsDave$gc.se <- gsDave$gc.sd/sqrt(gsDave$gc.n) gsHHave <- aggregate(gctemp3$gc.h, by=list(gctemp3$hour,gctemp3$doy,gctemp3$year,gctemp3$datset), FUN="mean") gsHHsd <- aggregate(gctemp3$gc.h, by=list(gctemp3$hour,gctemp3$doy,gctemp3$year,gctemp3$datset), FUN="sd") gsHHn <- aggregate(gctemp3$gc.h, by=list(gctemp3$hour,gctemp3$doy,gctemp3$year,gctemp3$datset), FUN="length") colnames(gsHHave) <- c("hour","doy", "year", "dataset","gc.mmol.s") gsHHave$gc.sd <- gsHHsd$x gsHHave$gc.n <- gsHHn$x gsHHave$gc.se <- gsHHave$gc.sd/sqrt(gsHHave$gc.n) #label the site gsDave$site <- ifelse(gsDave$dataset==1|gsDave$dataset==2,"ld","hd") gsHHave$site <- ifelse(gsHHave$dataset==1|gsHHave$dataset==2,"ld","hd") ################################################################# ####aggregate and organize met ####### ################################################################# #subset and match datLRHmet <- data.frame(datRH[datRH$site=="ld",1:3], RH=datRH$RH.VP4[datRH$site=="ld"]) datLTCmet <- data.frame(datTC[datTC$site=="ld",1:3], Temp=datTC$TempC.VP4[datTC$site=="ld"]) datHRHmet <- data.frame(datRH[datRH$site=="hd",1:3], RH=datRH$RH.VP4[datRH$site=="hd"]) datHTCmet <- data.frame(datTC[datTC$site=="hd",1:3], Temp=datTC$TempC.VP4[datTC$site=="hd"]) #join temp and RH datLmet <- join(datLRHmet, datLTCmet, by=c("doy","year","hour"),type="inner") datHmet <- join(datHRHmet, datHTCmet, by=c("doy","year","hour"),type="inner") #calculate VPD datLe.sat<-0.611*exp((17.502*datLmet$Temp)/(datLmet$Temp+240.97)) datHe.sat<-0.611*exp((17.502*datHmet$Temp)/(datHmet$Temp+240.97)) datLRHfix<-ifelse(datLmet$RH>=1,.999,datLmet$RH) datHRHfix<-ifelse(datHmet$RH>=1,.999,datHmet$RH) datLmet$D<-(datLe.sat-(datLRHfix*datLe.sat)) datHmet$D<-(datHe.sat-(datHRHfix*datHe.sat)) #join PAR to the dataframes datPARL <- data.frame(doy=datPAR$doy[datPAR$site=="ld"], year=datPAR$year[datPAR$site=="ld"], hour=datPAR$hour[datPAR$site=="ld"], PAR=datPAR$PAR.QSOS.Par[datPAR$site=="ld"]) datPARH <- data.frame(doy=datPAR$doy[datPAR$site=="hd"], year=datPAR$year[datPAR$site=="hd"], hour=datPAR$hour[datPAR$site=="hd"], PAR=datPAR$PAR.QSOS.Par[datPAR$site=="hd"]) #join into met datLmet <- join(datLmet, datPARL, by=c("doy","year","hour"), type="left") datHmet <- join(datHmet, datPARH, by=c("doy","year","hour"), type="left") #pull out daily means dayLD <- aggregate(datLmet$D, by=list(datLmet$doy,datLmet$year), FUN="mean") colnames(dayLD) <- c("doy","year","D") dayLT <- aggregate(datLmet$Temp, by=list(datLmet$doy,datLmet$year), FUN="mean") colnames(dayLT) <- c("doy","year","T") dayL <- join(dayLT,dayLD, by=c("doy","year"),type="full") dayHD <- aggregate(datHmet$D, by=list(datHmet$doy,datHmet$year), FUN="mean") colnames(dayHD) <- c("doy","year","D") dayHT <- aggregate(datHmet$Temp, by=list(datHmet$doy,datHmet$year), FUN="mean") colnames(dayHT) <- c("doy","year","T") dayH <- join(dayHT,dayHD, by=c("doy","year"),type="full") dayLP <-aggregate(datLmet$PAR, by=list(datLmet$doy,datLmet$year), FUN="max") dayHP <-aggregate(datHmet$PAR, by=list(datHmet$doy,datHmet$year), FUN="max") colnames(dayLP)<- c("doy","year","PARmax") colnames(dayHP)<- c("doy","year","PARmax") dayL <- join(dayL,dayLP, by=c("doy","year"),type="full") dayH <- join(dayH,dayHP, by=c("doy","year"),type="full") ################################################################# ####filter gc to exclude measurements when D is too low ####### ################################################################# #filter gc when D is less than 6 #first combine met and include a site id datLmet1 <- datLmet datHmet1 <- datHmet datLmet1$site <- rep("ld", dim(datLmet)[1]) datHmet1$site <- rep("hd", dim(datHmet)[1]) datAj <- rbind(datLmet1, datHmet1) gcHHave <- join(gcHHave, datAj, by=c("doy","year","hour","site"), type="left") gcHHave$gc.mmol.sf <- ifelse(gcHHave$D<.6|gcHHave$PAR<5,NA,gcHHave$gc.mmol.s) ################################################################# ####make a panel of daily met and T and gc calc ####### ################################################################# #filter out point that seems to have an erroneous meas Eday <- Eday[Eday$T.L.day<.4,] #day range for x axis xl2016 <- 1 xh2016 <- 245 xl2017 <- 155 xh2017 <- 230 #subset precip prec2016 <- datAirP[datAirP$doy<=xh2016&datAirP$doy>=xl2016&datAirP$year==2016,] prec2017 <- datAirP[datAirP$doy<=xh2017&datAirP$doy>=xl2017&datAirP$year==2017,] #set up plot widths wd <- 35 hd <-17 colL <- "royalblue" colH <- "tomato3" colHt <- rgb(205/255,79/255,57/255, .5) colLt <- rgb(65/255,105/255,225/255,.5) ylT <- 0 yhT <- .3 ylG <- 0 yhG <- 300 ylA <- 0 yhA <- 25 ylD <- 0 yhD <- 1.6 axisC <- 5 TDmax <- 75 TDscale <- yhA/TDmax Prmax <- 40 Prscale <- yhD/Prmax jpeg(paste0(plotDI , "\\daily_summary.jpg"), width=2600, height=2200, units="px") ab <- layout(matrix(seq(1,8), ncol=2, byrow=TRUE), width=rep(lcm(wd),8), height=rep(lcm(hd),8)) par(mai=c(0,0,0,0)) plot(c(0,1),c(0,1), xlim=c(xl2016,xh2016), ylim=c(ylT,yhT),type="n", axes=FALSE, xlab=" ", ylab=" ", yaxs="i", xaxs="i") points(Eday$doy[Eday$site=="ld"&Eday$year==2016], Eday$T.L.day[Eday$site=="ld"&Eday$year==2016],pch=19, col=colL,cex=5 ) points(Eday$doy[Eday$site=="hd"&Eday$year==2016], Eday$T.L.day[Eday$site=="hd"&Eday$year==2016],pch=19, col=colH,cex=5 ) arrows(Eday$doy[Eday$year==2016], Eday$T.L.day[Eday$year==2016]- Eday$T.se[Eday$year==2016], Eday$doy[Eday$year==2016], Eday$T.L.day[Eday$year==2016]+ Eday$T.se[Eday$year==2016],lwd=3, code=0) axis(2, seq(ylT,yhT, by=.1 ), las=2, cex.axis=axisC, lwd.ticks=3) legend(220,yhT,c("low density", "high density"), col=c(colL,colH), pch=19, cex=4, bty="n") mtext("Daily transpiraiton", side=2, line=18, cex=4) mtext(expression(paste("(L m"^"-2","day"^"-1",")")), side=2, line=10, cex=4) mtext("2016", side=3, line=5, cex=4) box(which="plot") par(mai=c(0,0,0,0)) plot(c(0,1),c(0,1), xlim=c(xl2017,xh2017), ylim=c(ylT,yhT),type="n", axes=FALSE, xlab=" ", ylab=" ", yaxs="i", xaxs="i") points(Eday$doy[Eday$site=="ld"&Eday$year==2017], Eday$T.L.day[Eday$site=="ld"&Eday$year==2017],pch=19, col=colL,cex=5 ) points(Eday$doy[Eday$site=="hd"&Eday$year==2017], Eday$T.L.day[Eday$site=="hd"&Eday$year==2017],pch=19, col=colH,cex=5 ) arrows(Eday$doy[Eday$year==2017], Eday$T.L.day[Eday$year==2017]- Eday$T.se[Eday$year==2017], Eday$doy[Eday$year==2017], Eday$T.L.day[Eday$year==2017]+ Eday$T.se[Eday$year==2017],lwd=3, code=0) axis(4, seq(ylT,yhT, by=.1 ), las=2, cex.axis=axisC, lwd.ticks=3) mtext("2017", side=3, line=5, cex=4) box(which="plot") par(mai=c(0,0,0,0)) plot(c(0,1),c(0,1), xlim=c(xl2016,xh2016), ylim=c(ylG,yhG),type="n", axes=FALSE, xlab=" ", ylab=" ", yaxs="i", xaxs="i") points(gsDave$doy[gsDave$site=="ld"&gsDave$year==2016], gsDave$gc.mmol.s[gsDave$site=="ld"&gsDave$year==2016],pch=19, col=colL,cex=5, type="b", lwd=3 ) points(gsDave$doy[gsDave$site=="hd"&gsDave$year==2016], gsDave$gc.mmol.s[gsDave$site=="hd"&gsDave$year==2016],pch=19, col=colH,cex=5, type="b", lwd=3 ) arrows(gsDave$doy[gsDave$year==2016], gsDave$gc.mmol.s[gsDave$year==2016]- gsDave$gc.se[gsDave$year==2016], gsDave$doy[gsDave$year==2016], gsDave$gc.mmol.s[gsDave$year==2016]+ gsDave$gc.se[gsDave$year==2016],lwd=3, code=0) mtext("Daily average gc", side=2, line=18, cex=4) mtext(expression(paste("(mmol m"^"-2","s"^"-1",")")), side=2, line=10, cex=4) axis(2, seq(0, yhG-50, by=50), las=2, cex.axis=axisC, lwd.ticks=3) box(which="plot") par(mai=c(0,0,0,0)) plot(c(0,1),c(0,1), xlim=c(xl2017,xh2017), ylim=c(ylG,yhG),type="n", axes=FALSE, xlab=" ", ylab=" ", yaxs="i", xaxs="i") points(gsDave$doy[gsDave$site=="ld"&gsDave$year==2017], gsDave$gc.mmol.s[gsDave$site=="ld"&gsDave$year==2017],pch=19, col=colL,cex=5, type="b", lwd=3 ) points(gsDave$doy[gsDave$site=="hd"&gsDave$year==2017], gsDave$gc.mmol.s[gsDave$site=="hd"&gsDave$year==2017],pch=19, col=colH,cex=5, type="b", lwd=3 ) arrows(gsDave$doy[gsDave$year==2017], gsDave$gc.mmol.s[gsDave$year==2017]- gsDave$gc.se[gsDave$year==2017], gsDave$doy[gsDave$year==2017], gsDave$gc.mmol.s[gsDave$year==2017]+ gsDave$gc.se[gsDave$year==2017],lwd=3, code=0) axis(4, seq(0, yhG-50, by=50), las=2, cex.axis=axisC, lwd.ticks=3) box(which="plot") par(mai=c(0,0,0,0)) plot(c(0,1),c(0,1), xlim=c(xl2016,xh2016), ylim=c(ylA,yhA),type="n", axes=FALSE, xlab=" ", ylab=" ", yaxs="i", xaxs="i") points(dayH$doy[dayH$doy<=xh2016&dayH$doy>=xl2016&dayH$year==2016], dayH$T[dayH$doy<=xh2016&dayH$doy>=xl2016&dayH$year==2016], type="l", lwd=6, col=colH) points(dayL$doy[dayL$doy<=xh2016&dayL$doy>=xl2016&dayL$year==2016], dayL$T[dayL$doy<=xh2016&dayL$doy>=xl2016&dayL$year==2016], type="l", lwd=6, col=colLt) axis(2, seq(0,20, by=5), las=2, cex.axis=axisC, lwd.ticks=3) points(TDall$doy[TDall$year==2016&TDall$site=="ld"],TDall$TDday[TDall$year==2016&TDall$site=="ld"]*TDscale, type="l", col=colL, lty=4, lwd=6) points(TDall$doy[TDall$year==2016&TDall$site=="hd"],TDall$TDday[TDall$year==2016&TDall$site=="hd"]*TDscale, type="l", col=colHt, lty=4, lwd=6) mtext("Daily average air temp", side=2, line=18, cex=4) mtext("(C)", side=2, line=10, cex=4) box(which="plot") par(mai=c(0,0,0,0)) plot(c(0,1),c(0,1), xlim=c(xl2017,xh2017), ylim=c(ylA,yhA),type="n", axes=FALSE, xlab=" ", ylab=" ", yaxs="i", xaxs="i") points(dayH$doy[dayH$doy<=xh2017&dayH$doy>=xl2017&dayH$year==2017], dayH$T[dayH$doy<=xh2017&dayH$doy>=xl2017&dayH$year==2017], type="l", lwd=6, col=colH) points(dayL$doy[dayL$doy<=xh2017&dayL$doy>=xl2017&dayL$year==2017], dayL$T[dayL$doy<=xh2017&dayL$doy>=xl2017&dayL$year==2017], type="l", lwd=6, col=colLt) points(TDall$doy[TDall$year==2017&TDall$site=="ld"],TDall$TDday[TDall$year==2017&TDall$site=="ld"]*TDscale, type="l", col=colL, lty=4, lwd=6) points(TDall$doy[TDall$year==2017&TDall$site=="hd"],TDall$TDday[TDall$year==2017&TDall$site=="hd"]*TDscale, type="l", col=colHt, lty=4, lwd=6) axis(4, seq(0,20,by=5),seq(0,20,by=5)*3, las=2, cex.axis=axisC, lwd.ticks=3) legend(165,26, c("low density TD", "high density TD", "low density Ta", "high density Ta"), col=c(colL,colHt,colLt,colH), lwd=6, lty=c(4,4,1,1), bty="n", cex=4) mtext("Thaw depth", side=4, line=10, cex=4) mtext("(cm)", side=4, line=18, cex=4) box(which="plot") par(mai=c(0,0,0,0)) plot(c(0,1),c(0,1), xlim=c(xl2016,xh2016), ylim=c(ylD,yhD),type="n", axes=FALSE, xlab=" ", ylab=" ", yaxs="i", xaxs="i") for(i in 1:dim(prec2016)[1]){ polygon(c(prec2016$doy[i]-.5,prec2016$doy[i]-.5,prec2016$doy[i]+.5,prec2016$doy[i]+.5), c(0,prec2016$Pr.mm[i]*Prscale,prec2016$Pr.mm[i]*Prscale,0), col="grey60", border=FALSE) } points(dayH$doy[dayH$doy<=xh2016&dayH$doy>=xl2016&dayH$year==2016], dayH$D[dayH$doy<=xh2016&dayH$doy>=xl2016&dayH$year==2016], type="l", lwd=6, col=colH) points(dayL$doy[dayL$doy<=xh2016&dayL$doy>=xl2016&dayL$year==2016], dayL$D[dayL$doy<=xh2016&dayL$doy>=xl2016&dayL$year==2016], type="l", lwd=6, col=colLt) axis(2, seq(0,1.2, by=.4), las=2, cex.axis=axisC, lwd.ticks=3) mtext(seq(xl2016,xh2016, by=10),at=seq(xl2016,xh2016, by=10), line=4, side=1, cex=3) axis(1, seq(xl2016,xh2016, by=10), rep(" ", length(seq(xl2016,xh2016, by=10))) ,cex.axis=axisC, lwd.ticks=3) mtext("Daily average VPD", side=2, line=18, cex=4) mtext("(kPa)", side=2, line=10, cex=4) box(which="plot") par(mai=c(0,0,0,0)) plot(c(0,1),c(0,1), xlim=c(xl2017,xh2017), ylim=c(ylD,yhD),type="n", axes=FALSE, xlab=" ", ylab=" ", yaxs="i", xaxs="i") for(i in 1:dim(prec2017)[1]){ polygon(c(prec2017$doy[i]-.5,prec2017$doy[i]-.5,prec2017$doy[i]+.5,prec2017$doy[i]+.5), c(0,prec2017$Pr.mm[i]*Prscale,prec2017$Pr.mm[i]*Prscale,0), col="grey60", border=FALSE) } points(dayH$doy[dayH$doy<=xh2017&dayH$doy>=xl2017&dayH$year==2017], dayH$D[dayH$doy<=xh2017&dayH$doy>=xl2017&dayH$year==2017], type="l", lwd=6, col=colH) points(dayL$doy[dayL$doy<=xh2017&dayL$doy>=xl2017&dayL$year==2017], dayL$D[dayL$doy<=xh2017&dayL$doy>=xl2017&dayL$year==2017], type="l", lwd=6, col=colLt) legend(165,1.6, c("low density VPD", "high density VPD", "Precipitaiton"), col=c(colLt, colH, "grey60"), lty=c(1,1,NA), pch=c(NA,NA,15), bty="n", lwd=c(6,6,NA), cex=4) axis(4,seq(0,1.2, by=.4),seq(0,1.2, by=.4)*25, las=2, cex.axis=axisC, lwd.ticks=3) mtext(seq(xl2017,xh2017, by=10),at=seq(xl2017,xh2017, by=10), line=4, side=1, cex=3) axis(1, seq(xl2017,xh2017, by=10), rep(" ", length(seq(xl2017,xh2017, by=10))) ,cex.axis=axisC, lwd.ticks=3) mtext("Precipitation", side=4, line=10, cex=4) mtext("(mm)", side=4, line=18, cex=4) mtext("Day of year", side=1, outer=TRUE, line=-3, cex=4) box(which="plot") dev.off() ################################################################# ####make a panel of subset of half hourly ####### ####met and T and gc calc ####### ################################################################# #datHmet and datLmet #EHHave and gcHHave #set up plot widths gcHHave$site <-ifelse(gcHHave$dataset==1|gcHHave$dataset==2,"ld","hd") wd <- 50 hd <-20 colL <- "royalblue" colH <- "tomato3" colHt <- rgb(205/255,79/255,57/255, .5) colLt <- rgb(65/255,105/255,225/255,.5) #specify year to plot yrS <- 2017 xS <- 160 xE <- 168 ylG <- 0 yhG <- 100 ylT <- 0 yhT <- 0.75 ylD <- 0 yhD <- 3 ylP <- 0 yhP <- 1500 jpeg(paste0(plotDI , "\\hh__summary6.jpg"), width=2800, height=2600, units="px") ab <- layout(matrix(seq(1,4), ncol=1, byrow=TRUE), width=rep(lcm(wd),8), height=rep(lcm(hd),8)) par(mai=c(0,0,0,0)) plot(c(0,1),c(0,1), xlim=c(xS,xE), ylim=c(ylG,yhG),type="n", axes=FALSE, xlab=" ", ylab=" ", yaxs="i", xaxs="i") points(gcHHave$doy[gcHHave$doy>=xS&gcHHave$doy<=xE&gcHHave$year==yrS&gcHHave$site=="hd"]+ (gcHHave$hour[gcHHave$doy>=xS&gcHHave$doy<=xE&gcHHave$year==yrS&gcHHave$site=="hd"]/24), gcHHave$gc.mmol.sf[gcHHave$doy>=xS&gcHHave$doy<=xE&gcHHave$year==yrS&gcHHave$site=="hd"], col=colH, pch=19, cex=3, type="b", lwd=3) points(gcHHave$doy[gcHHave$doy>=xS&gcHHave$doy<=xE&gcHHave$year==yrS&gcHHave$site=="ld"]+ (gcHHave$hour[gcHHave$doy>=xS&gcHHave$doy<=xE&gcHHave$year==yrS&gcHHave$site=="ld"]/24), gcHHave$gc.mmol.sf[gcHHave$doy>=xS&gcHHave$doy<=xE&gcHHave$year==yrS&gcHHave$site=="ld"], col=colL, pch=19, cex=3, type="b", lwd=3) mtext("Canopy", side=2, line=32, cex=5) mtext("stomatal conductance", side=2, line=22, cex=5) mtext(expression(paste("(mmol m"^"-2","s"^"-1",")")), side=2, line=12, cex=5) mtext(paste(yrS), side=3, line=7, cex=5) axis(2, seq(0,300,by=50), las=2, cex.axis=axisC, lwd.ticks=3) legend(xS+1,yhG, c("low density", "high density"), col=c(colL,colH), pch=19, lwd=3,bty="n", cex=5) box(which="plot") par(mai=c(0,0,0,0)) plot(c(0,1),c(0,1), xlim=c(xS,xE), ylim=c(ylT,yhT),type="n", axes=FALSE, xlab=" ", ylab=" ", yaxs="i", xaxs="i") points(EHHave$doy[EHHave$doy>=xS&EHHave$doy<=xE&EHHave$year==yrS&EHHave$site=="hd"]+ (EHHave$hour[EHHave$doy>=xS&EHHave$doy<=xE&EHHave$year==yrS&EHHave$site=="hd"]/24), EHHave$E.hh[EHHave$doy>=xS&EHHave$doy<=xE&EHHave$year==yrS&EHHave$site=="hd"], col=colH, pch=19, cex=3, type="b", lwd=3) points(EHHave$doy[EHHave$doy>=xS&EHHave$doy<=xE&EHHave$year==yrS&EHHave$site=="ld"]+ (EHHave$hour[EHHave$doy>=xS&EHHave$doy<=xE&EHHave$year==yrS&EHHave$site=="ld"]/24), EHHave$E.hh[EHHave$doy>=xS&EHHave$doy<=xE&EHHave$year==yrS&EHHave$site=="ld"], col=colL, pch=19, cex=3, type="b", lwd=3) axis(2, seq(0,.6,by=.1), las=2, cex.axis=axisC, lwd.ticks=3) mtext("Canopy", side=2, line=32, cex=5) mtext("transpiration", side=2, line=22, cex=5) mtext(expression(paste("(mmol m"^"-2","s"^"-1",")")), side=2, line=12, cex=5) box(which="plot") par(mai=c(0,0,0,0)) plot(c(0,1),c(0,1), xlim=c(xS,xE), ylim=c(ylD,yhD),type="n", axes=FALSE, xlab=" ", ylab=" ", yaxs="i", xaxs="i") points(datLmet$doy[datLmet$doy>=xS&datLmet$doy<=xE&datLmet$year==yrS]+ (datLmet$hour[datLmet$doy>=xS&datLmet$doy<=xE&datLmet$year==yrS]/24), datLmet$D[datLmet$doy>=xS&datLmet$doy<=xE&datLmet$year==yrS], col=colL, type="l", lwd=6) points(datHmet$doy[datHmet$doy>=xS&datHmet$doy<=xE&datHmet$year==yrS]+ (datHmet$hour[datHmet$doy>=xS&datHmet$doy<=xE&datHmet$year==yrS]/24), datHmet$D[datHmet$doy>=xS&datHmet$doy<=xE&datHmet$year==yrS], col=colH, type="l", lwd=6) mtext("Vapor pressure", side=2, line=32, cex=5) mtext("deficit", side=2, line=22, cex=5) mtext("(kPa)", side=2, line=12, cex=5) axis(2, seq(0,2.5, by=.5) , las=2, cex.axis=axisC, lwd.ticks=3) box(which="plot") par(mai=c(0,0,0,0)) plot(c(0,1),c(0,1), xlim=c(xS,xE), ylim=c(ylP,yhP),type="n", axes=FALSE, xlab=" ", ylab=" ", yaxs="i", xaxs="i") points(datHmet$doy[datHmet$doy>=xS&datHmet$doy<=xE&datHmet$year==yrS]+ (datHmet$hour[datHmet$doy>=xS&datHmet$doy<=xE&datHmet$year==yrS]/24), datHmet$PAR[datHmet$doy>=xS&datHmet$doy<=xE&datHmet$year==yrS], col=colH, type="l", lwd=6) points(datLmet$doy[datLmet$doy>=xS&datLmet$doy<=xE&datLmet$year==yrS]+ (datLmet$hour[datLmet$doy>=xS&datLmet$doy<=xE&datLmet$year==yrS]/24), datLmet$PAR[datLmet$doy>=xS&datLmet$doy<=xE&datLmet$year==yrS], col=colLt, type="l", lwd=6) axis(2, seq(0,1200, by=300) , las=2, cex.axis=axisC, lwd.ticks=3) axis(1, seq(xS,xE, by=1),rep(" ", length(seq(xS,xE, by=1))), las=2, cex.axis=axisC, lwd.ticks=3) mtext(seq(xS,xE, by=1),at=seq(xS,xE, by=1), line=4, side=1, cex=3) box(which="plot") mtext("Day of year", side=1, line=10, cex=5) mtext("Photosynthetically", side=2, line=32, cex=5) mtext("active radiation", side=2, line=22, cex=5) mtext(expression(paste("(",mu,"mol m"^"-2","s"^"-1",")")), side=2, line=12, cex=5) dev.off() ################################################################# ####make a panel of daily met ####### ################################################################# plotDI wd <- 45 hd <-25 #day range for x axis xl2016 <- 182 xh2016 <- 245 xl2017 <- 155 xh2017 <- 230 Tmin <- 0 Tmax<- 30 Dmin <- 0 Dmax <- 2.75 TDmin <- 90 TDmax <- 0 cx.p <- 7 lwp <- 6 cx.a <- 7 lwt <- 6 cx.m <- 6 #subset precip prec2016 <- datAirP[datAirP$doy<=xh2016&datAirP$doy>=xl2016&datAirP$year==2016,] prec2017 <- datAirP[datAirP$doy<=xh2017&datAirP$doy>=xl2017&datAirP$year==2017,] #just plot day L for the presentation jpeg(paste0(plotDI , "\\daily_met_fig_for_Utica.jpg"), width=3300, height=2600, units="px",quality=100) layout(matrix(seq(1,6), ncol=2, byrow=TRUE), width=rep(lcm(wd),6), height=rep(lcm(hd),6)) #plot 1 par(mai=c(0,0,0,0)) plot(c(0,1),c(0,1), xlim=c(xl2016, xh2016), ylim=c(Tmin,Tmax), xaxs="i", yaxs="i", axes=FALSE, xlab =" ", ylab=" ") points(datLmet$doy[datLmet$year==2016]+(datLmet$hour[datLmet$year==2016]/24), datLmet$Temp[datLmet$year==2016], col="royalblue3", pch=19, cex=cx.p, lwd=lwp, type="l") box(which="plot") axis(2,seq(Tmin,Tmax,by=5), cex.axis=cx.a,las=2,lwd.ticks=lwt) mtext("Average daily", side=2, cex=cx.m, line=25) mtext("air temperature (C)", side=2, cex=cx.m, line=14) mtext("2016",side=3,cex=cx.m,line=5) #plot 2 par(mai=c(0,0,0,0)) plot(c(0,1),c(0,1), xlim=c(xl2017, xh2017), ylim=c(Tmin,Tmax), xaxs="i", yaxs="i", axes=FALSE, xlab =" ", ylab=" ") points(datLmet$doy[datLmet$year==2017]+(datLmet$hour[datLmet$year==2017]/24), datLmet$Temp[datLmet$year==2017], col="royalblue3", pch=19, cex=cx.p, lwd=lwp, type="l") box(which="plot") mtext("2017",side=3,cex=cx.m,line=5) #plot 3 par(mai=c(0,0,0,0)) plot(c(0,1),c(0,1), xlim=c(xl2016, xh2016), ylim=c(Dmin,Dmax), xaxs="i", yaxs="i", axes=FALSE, xlab =" ", ylab=" ") points(datLmet$doy[datLmet$year==2016]+(datLmet$hour[datLmet$year==2016]/24), datLmet$D[datLmet$year==2016], col="royalblue3", pch=19, cex=cx.p, lwd=lwp, type="l") box(which="plot") axis(2,seq(Dmin+.5,Dmax-0.25,by=.5), cex.axis=cx.a,las=2,lwd.ticks=lwt) mtext("Average daily vapor", side=2, cex=cx.m, line=25) mtext("pressure deficit (KPa)", side=2, cex=cx.m, line=14) #plot 4 par(mai=c(0,0,0,0)) plot(c(0,1),c(0,1), xlim=c(xl2017, xh2017), ylim=c(Dmin,Dmax), xaxs="i", yaxs="i", axes=FALSE, xlab =" ", ylab=" ") points(datLmet$doy[datLmet$year==2017]+(datLmet$hour[datLmet$year==2017]/24), datLmet$D[datLmet$year==2017], col="royalblue3", pch=19, cex=cx.p, lwd=lwp, type="l") box(which="plot") #plot 5 par(mai=c(0,0,0,0)) plot(c(0,1),c(0,1), xlim=c(xl2016, xh2016), ylim=c(TDmin,TDmax), xaxs="i", yaxs="i", axes=FALSE, xlab =" ", ylab=" ") points(TDall$doy[TDall$year==2016&TDall$site=="ld"], TDall$TDday[TDall$year==2016&TDall$site=="ld"], col="royalblue3" , lwd=lwp, type="l") points(TDall$doy[TDall$year==2016&TDall$site=="hd"], TDall$TDday[TDall$year==2016&TDall$site=="hd"], col="tomato3" , lwd=lwp, type="l") box(which="plot") axis(2,seq(TDmin,TDmax,by=-10), cex.axis=cx.a,las=2,lwd.ticks=lwt) axis(1, seq(185,235, by=10),rep(" ",length(seq(185,235, by=10))), cex.axis=cx.a,lwd.ticks=lwt) mtext(seq(185,235, by=10), at=seq(185,235, by=10), cex=5, side=1,line=5) mtext("Permafrost", side=2, cex=cx.m, line=25) mtext("thaw depth(cm)", side=2, cex=cx.m, line=14) mtext("Day of year",outer=TRUE, side=1, cex=cx.m, line=-10) legend(215,5, c("low density", "high density"), col=c("royalblue3", "tomato3"), cex=8, lwd=lwp,bty="n") #plot 6 par(mai=c(0,0,0,0)) plot(c(0,1),c(0,1), xlim=c(xl2017, xh2017), ylim=c(TDmin,TDmax), xaxs="i", yaxs="i", axes=FALSE, xlab =" ", ylab=" ") points(TDall$doy[TDall$year==2017&TDall$site=="ld"], TDall$TDday[TDall$year==2017&TDall$site=="ld"], col="royalblue3", lwd=lwp, type="l") points(TDall$doy[TDall$year==2017&TDall$site=="hd"], TDall$TDday[TDall$year==2017&TDall$site=="hd"], col="tomato3" , lwd=lwp, type="l") box(which="plot") axis(1, seq(160,230, by=10),rep(" ",length(seq(160,230, by=10))), cex.axis=cx.a,lwd.ticks=lwt) mtext(seq(160,230, by=10), at=seq(160,230, by=10), cex=5, side=1,line=5) dev.off() ######################################################################################################## ##### make a plot of leaf area to sapwood area wd <- 40 hd <- 40 jpeg(paste0(plotDI , "\\leaf_sap_comp.jpg"), width=1500, height=1500, units="px",quality=100) layout(matrix(c(1),ncol=1), width=lcm(wd), height=lcm(hd)) plot(c(0,1),c(0,1), xlim=c(-.5,5.5), ylim=c(0,2), xlab=" ", ylab=" ", xaxs="i",yaxs="i", axes=FALSE, type="n") polygon(c(0,0,2,2), c(0,datLSA$LSrat[1],datLSA$LSrat[1],0), col="royalblue3") polygon(c(3,3,5,5), c(0,datLSA$LSrat[2],datLSA$LSrat[2],0), col="tomato3") arrows(c(1,4), datLSA$LSrat-(datLSA$LSrat.sd/sqrt(datLSA$LSrat.n)), c(1,4),datLSA$LSrat+(datLSA$LSrat.sd/sqrt(datLSA$LSrat.n)), code=0, lwd=4) axis(1, c(-1,1,4,6), c(" ", " "," ", " "), cex.axis=3, lwd.ticks=4) mtext(c("low density", "high density"), side=1,at=c(1,4), line=2, cex=3) axis(2, seq(0,2, by=.5), cex.axis=3, lwd.ticks=4,las=2) legend(3.5,2, c("1 se"), lwd=4, bty="n", cex=4) mtext("Stand", side=1, line=6, cex=5) mtext(expression(paste("Leaf area : sapwood area ratio (m"^"2"~"cm"^"-2"~")")), side=2, cex=5, line=7) dev.off()
a4310c6544f253330d218a0d4a696438ab02b6aa
388bda89408c41d303d4ded330323a0edabfd8cc
/Scripts/server.R
1e2c0d1f2dc9015ebca3d89daaf92dbdfdcd6976
[]
no_license
edwardhalimm/DrugSeizure
51efe4603b09dbdbebe3f42d284496046c39ef1c
6a262c5f7bc8a7bd5a9de2f8af2d4edae8df8e3c
refs/heads/master
2020-04-06T17:37:48.704358
2019-01-29T21:29:57
2019-01-29T21:29:57
157,667,264
0
0
null
null
null
null
UTF-8
R
false
false
11,025
r
server.R
# # This is the server logic of a Shiny web application. You can run the # application by clicking 'Run App' above. # # Find out more about building applications with Shiny here: # # http://shiny.rstudio.com/ # library(leaflet) library(httr) library(dplyr) library(readxl) library(shiny) library(shinydashboard) library(graphics) library(googleVis) library(ggplot2) #Read in original data set and set useful columns data <- suppressWarnings(read_xlsx("data/IDSReport.xlsx", sheet = 6, col_names = TRUE)) data <- select(data, SUBREGION , COUNTRY, SEIZURE_DATE, DRUG_NAME, AMOUNT, DRUG_UNIT, PRODUCING_COUNTRY, DEPARTURE_COUNTRY, DESTINATION_COUNTRY) #Read in coordinates data sets coords <- read.csv("data/coords.csv", stringsAsFactors = FALSE) names(coords) <- c("iso2c", "lat", "lng", "name") match_table <- read.csv("data/country_codes.csv", stringsAsFactors = FALSE) match_table <- select(match_table,country_name,iso2c) #Join coordinate columns to data #loses a few that do not exist in both(useful) match_and_coords <- inner_join(coords, match_table, by = "iso2c") %>% select(country_name, lat, lng) names(match_and_coords) <- c("COUNTRY","LAT_COUNTRY","LNG_COUNTRY") data <- left_join(data, match_and_coords, by = c("COUNTRY")) names(match_and_coords) <- c("COUNTRY","LAT_PRODUCING","LNG_PRODUCING") data <- left_join(data, match_and_coords, by = c("PRODUCING_COUNTRY" = "COUNTRY")) names(match_and_coords) <- c("COUNTRY","LAT_DEPARTURE","LNG_DEPARTURE") data <- left_join(data, match_and_coords, by = c("DEPARTURE_COUNTRY" = "COUNTRY")) names(match_and_coords) <- c("COUNTRY","LAT_DESTINATION","LNG_DESTINATION") data <- left_join(data, match_and_coords, by = c("DESTINATION_COUNTRY" = "COUNTRY")) names(match_and_coords) <- c("country", "lat", "long") coords <- match_and_coords #arrow_chart <- read.csv("../data/arrow_chart.csv", stringsAsFactors = FALSE) #arrow_chart$long <- as.numeric(arrow_chart$long) #arrow_chart$lat <- as.numeric(arrow_chart$lat) # token <- pk.eyJ1IjoiamFuZXR0ZWN3ayIsImEiOiJjanA2ZHJwcW0wOHk3M3BvNmNlYWE2dGJ5In0.ZsZjug12tYHP1K_751NFWA #maptile <- "https://api.mapbox.com/v4/mapbox.emerald/page.html?access_token=pk.eyJ1IjoiamFuZXR0ZWN3ayIsImEiOiJjanA2ZHJwcW0wOHk3M3BvNmNlYWE2dGJ5In0.ZsZjug12tYHP1K_751NFWA" shinyServer(function(input, output) { getData <- reactive({ input_data <- filter(data, DRUG_NAME == input$drug) }) output$seizures_map <- renderLeaflet({ input_data <- getData() leaflet() %>% addTiles() %>% setView(lat = 49.81749 ,lng = 15.47296,zoom = 3) %>% addCircles( lng = input_data$LNG_COUNTRY, lat = input_data$LAT_COUNTRY, weight = 1, radius = input_data$AMOUNT / 5, color = "#FF2500", popup = paste("Country: ", input_data$COUNTRY, "<br>Drug Name: ", input_data$DRUG_NAME, "<br>Amount: ", input_data$AMOUNT, input_data$DRUG_UNIT)) %>% #Button to zoom out addEasyButton((easyButton( icon = "fa-globe", title = "Zoom to Level 1", onClick = JS("function(btn, map){map.setZoom(1); }") ))) %>% #Button to locate user addEasyButton(easyButton( icon = "fa-crosshairs", title = "Locate Me", onClick = JS("function(btn,map){ map.locate({setView:true}); }") )) }) # delete? output$relationship_map <- renderLeaflet({ leaflet() %>% addTiles() }) output$relationship_map <- renderLeaflet({ drug_data <- read_xlsx("data/IDSReport.xlsx", sheet = 6, col_names = TRUE) location_data <- read_xlsx("data/Location_longitude_latitude.xlsx", col_names = TRUE) val <- 0 df <- data.frame(lat=numeric(0), lng=numeric(0), stringsAsFactors=FALSE) selected_country <- filter(drug_data, input$country2 == COUNTRY) as.data.frame(selected_country) coordinates <- filter(location_data, input$country2 == name) select_lat <- coordinates$latitude[1] select_lng <- coordinates$longitude[1] for(row in 1:nrow(selected_country)) { if(!is.na(selected_country$PRODUCING_COUNTRY[row]) & selected_country$PRODUCING_COUNTRY[row] != "Unknown") { coordinates <- filter(location_data, selected_country$PRODUCING_COUNTRY[row] == name) df[nrow(df)+1,] <- c(coordinates$latitude[1], coordinates$longitude[1]) if (input$country2== selected_country$PRODUCING_COUNTRY[row]) { val <- 1 } } } icon <- awesomeIcons(icon = 'flag', iconColor = 'red') if(val == 0) { na.omit(df) df %>% leaflet() %>% addTiles() %>% addMarkers(popup="Producing Country") %>% addAwesomeMarkers(lat = select_lat, lng = select_lng, icon = icon, popup="Seizure Country") } else { df %>% leaflet() %>% addTiles() %>% addMarkers(popup="Producing Country") %>% addAwesomeMarkers(lat = select_lat, lng = select_lng, icon = icon, popup="Seizure and Producing Country") } }) #Subregion Data subregionCoords <- read.csv("data/subregion_coords.csv", stringsAsFactors = FALSE) #Icon skullIcon <- iconList( skull = makeIcon("skull.png", "data/skull.png", 40, 40) ) #Amount of drug seizure each subregion count_subregion <- group_by(data, SUBREGION) %>% summarise(count = n()) #Amount of drug type each subregion drug_type_count <- reactive({ drug_in_each_subregion <- filter(data, data$SUBREGION == input$subregion) drug_type_in_subregion <- filter(drug_in_each_subregion, drug_in_each_subregion$DRUG_NAME == input$drugType) count_drug_in_subregion <- group_by(drug_type_in_subregion, DRUG_NAME) %>% summarise(count = n()) number_of_the_drug <- count_drug_in_subregion$count number_of_the_drug }) #Number of total drug seizure in each subregion (There is this much of drug seizure in this subregion) content <- paste(sep = "<br/>", count_subregion$count) #Subregion Set View LATITUDE view_latitude <- reactive({ finding_lat <- filter(subregionCoords, subregionCoords$subregion == input$subregion) the_lat <- finding_lat$latitude }) #Subregion Set View LONGITUDE view_longitude <- reactive({ finding_long <- filter(subregionCoords, subregionCoords$subregion == input$subregion) the_long <- finding_long$longitude }) #Leaflet most_region_map output$most_region_map <- renderLeaflet({ drug_in_the_region <- paste("The number of ", input$drugType, " seizure in this region: ", drug_type_count(), sep="") num_long <- view_longitude() num_lat <- view_latitude() leaflet(data = subregionCoords[1:13,]) %>% addTiles() %>% setView(lng = num_long, lat = num_lat, zoom = 5) %>% addMarkers(lng = subregionCoords$longitude, lat = subregionCoords$latitude, icon = ~skullIcon, label = "Press Me", labelOptions = labelOptions(direction = "bottom", style = list( "color" = "red", "font-family" = "serif", "font-style" = "italic", "box-shadow" = "3px 3px rgba(0,0,0,0.25)", "font-size" = "12px", "border-color" = "rgba(0,0,0,0.5)")), popup = paste ("<b>", subregionCoords$subregion,"</b>", "<br>", "Amount of drug seizure in this region: ", content, "<br>", drug_in_the_region) ) %>% addEasyButton((easyButton( icon = "fa-globe", title = "Zoom out", onClick = JS("function(btn, map){map.setZoom(1); }") ))) %>% addMeasure( position = "bottomleft", primaryLengthUnit = "meters", primaryAreaUnit = "sqmeters", activeColor = "#3D535D", completedColor = "#7D4479") }) drug_data <- data get_filtered <- function(current_country, relationship, current_drug) { if (current_drug == "ALL"){ selected_country <- filter(drug_data, COUNTRY == current_country) } else { selected_country <- filter(drug_data, COUNTRY == current_country & DRUG_NAME == current_drug) } if(relationship == "Country of Origin") { df <- data.frame(COUNTRY = as.character(), PRODUCING_COUNTRY = as.character(), stringsAsFactors=FALSE) for(row in 1:nrow(selected_country)) { if(!is.na(selected_country$PRODUCING_COUNTRY[row]) & selected_country$PRODUCING_COUNTRY[row] != "Unknown") { df[nrow(df)+1,] <- c(current_country, selected_country$PRODUCING_COUNTRY[row] %>% as.character()) } } df } else if (relationship == "Destination Country") { df <- data.frame(COUNTRY = as.character(), DESTINATION_COUNTRY = as.character(), stringsAsFactors=FALSE) for(row in 1:nrow(selected_country)) { if(!is.na(selected_country$DESTINATION_COUNTRY[row]) & selected_country$DESTINATION_COUNTRY[row] != "Unknown") { df[nrow(df)+1,] <- c(current_country, selected_country$DESTINATION_COUNTRY[row] %>% as.character()) } } df } } get_country_plot <- function(input) { data_for_plot <- get_filtered(input$country, input$relationship, input$drug) my_angle <- numeric() if(input$angle == "Vertical") { my_angle <- 90 } else if (input$angle == "Horizontal") { my_angle <- 0 } if (input$relationship == "Country of Origin") { ggplot(data_for_plot, aes(x = PRODUCING_COUNTRY)) + geom_bar(stat = "count", fill = "darkgreen") + labs(title = "Counts of Seizures for a Given Country Produced in or Destined for Another Country") + theme(text = element_text(size=15), axis.text.x = element_text(angle=my_angle, hjust=1), plot.margin=unit(c(1,1,1.5,1.5),"cm")) } else if (input$relationship == "Destination Country") { ggplot(data_for_plot, aes(x = DESTINATION_COUNTRY)) + geom_bar(stat = "count", fill = "orangered") + labs(title = "Counts of Seizures for a Given Country Produced in or Destined for Another Country") + theme(text = element_text(size=15), axis.text.x = element_text(angle=my_angle, hjust=1), plot.margin=unit(c(1,1,1.5,1.5),"cm")) } } output$country_chart <- renderPlot({ get_country_plot(input) }) output$summary <- renderPrint({ "Navigate the draggable menu to investigate drug trafficking trends based on data from the United Nations Office on Drugs and Crime. NOTE: Data is not available for all countries." }) })
3f16eaf6f9c0b378410efa25960e3925060354fe
65d97a10d91455337de2d04160a2d88e32fef34f
/package/pathtemp/R/pathsample.R
40569ccb108c0b6e580079b7dc0fffe410a221e6
[]
no_license
yao-yl/path-tempering
1552c9da8575c8af45350c39a45c6966d9085e94
21778401020b6820d7c38bbc062534f50d5efd8b
refs/heads/master
2022-12-20T19:12:24.064577
2020-10-05T04:06:43
2020-10-05T04:06:43
286,168,339
7
1
null
null
null
null
UTF-8
R
false
false
4,037
r
pathsample.R
#' Adaptive path sampling #' #' Run path sampling with adaptations. #' #' @export #' @param sampling_model The stan model generated from \code{\link{code_temperature_augmented}}. #' @param data_list The list of data used in the original stan model. #' @param N_loop The max adaptations. The default is 10. #' @param max_sample_store The max sample to store from previous adaptaions. The default is #' 4000. #' @param iter The number of iterations for the augmented stan program. #' @param iter_final The number of iterations during the final adaptation. #' @param max_treedepth The max tree depth for the augmented stan program. A smaller #' max_treedepth may increase exploration. efficiency in early adaptations. #' @param thin The number of thining for the augmented stan program. #' @param a_lower The lower bound of the quadrature. When a < a_lower, the inverse #' temperature is 0 and the sample is from the base. #' @param a_upper The upper bound of the quadrature. When a > a_upper, the inverse #' temperature is 1 and the sample is from the target. #' @param K_logit An integer, the length of the logit kernels. The default is 20. #' @param K_gaussian An integer, the length of the Gaussian kernels. The default is 20. #' @param N_grid The number of internal interpolations in parametric estimation #' The default is 100. #' @param visualize_progress whether to visualize the progress. #' #' @details The function fits one adaptations of path sampling with given #' parameters and pseudo priors that are specified by \code{b}. It runs the stan program, #' run path sampling to compute the log normalization constants and log marginal, #' and these two estimations with extra parametric regularization. #' #' #' #' @examples #' \dontrun{ #' library(rstan) #' rstan_options(auto_write = TRUE) #' sampling_model=stan_model(file_new) #' path_sample_fit=path_sample(sampling_model=sampling_model, #' iter_final=6000, iter=2000, #' data=list(gap=10), N_loop = 6, #' visualize_progress = TRUE) #' sim_cauchy=extract(path_sample_fit$fit_main) #' in_target= sim_cauchy$lambda==1 #' in_prior = sim_cauchy$lambda==0 #' # sample from the target #' hist(sim_cauchy$theta[in_target]) #' # sample from the base #' hist(sim_cauchy$theta[in_prior]) # the joint "path" #' plot(sim_cauchy$a, sim_cauchy$theta) # the normalization constant #' plot(g_lambda(path_sample_fit$path_post_a), path_sample_fit$path_post_z) #'} #' #' #' @return a \code{\link{path_fit}} object. #' #' @seealso \code{\link{path_quadrature}}, \code{\link{path_gradients}}, \code{\link{path_fit}}. #' #' # path_sample=function(sampling_model,data_list, visualize_progress=FALSE, N_loop =10, max_sample_store=4000, a_lower =.1, a_upper = .8, K_logit = 20, K_gaussian=20, N_grid=100, thin=2, iter=2000, max_treedepth=10, iter_final=4000){ # initialization: b <- rep(0, 1 + K_logit + K_gaussian) mu_logit <- a_lower + (a_upper - a_lower)*seq(1,2*K_logit-1,2)/(2*K_logit-1) sigma_logit <- 2*rep((a_upper - a_lower)/K_logit, K_logit) mu_gaussian <- mu_logit sigma_gaussian <- sigma_logit all_a=NULL all_log_lik=NULL if(visualize_progress==TRUE) par(mfrow=c(N_loop,3), mar=c(2,2,2,1), mgp=c(1.5,.5,0), tck=-.01) for (i in 1:N_loop){ fit <- path_fit(sampling_model=sampling_model, data_list=data_list, a_lower, a_upper, b, K_logit, mu_logit, sigma_logit, K_gaussian, mu_gaussian, sigma_gaussian, all_a, all_log_lik, N_grid=N_grid,iter=ifelse(i==N_loop, iter_final, iter), max_treedepth=max_treedepth, thin=thin, visualize_progress=visualize_progress) b <- -fit$b all_a <- fit$all_a all_log_lik <- fit$all_log_lik if(length(all_a)> max_sample_store ) { discard=length(all_a)- max_sample_store all_a=all_a[-c(1:discard)] all_log_lik=all_log_lik[-c(1:discard)] } print( paste("------ adaptation=", i,"---------fit measure = ", fit$fit_measure,"---------")) } return(fit) }
2168fe9518ce3ced757013ff1a2c5bd0d94617d1
6d9ab08f20be79379b2975f7162789229a4d838d
/R/con_zs_holland.R
0f0878cd8a582a25d632d5145627071c15558b83
[]
no_license
cran/holland
7189a58a79d78614158fc5ca0a7433734422a870
9d49ebdc45998936b6934c92b68a5c418cc529a3
refs/heads/master
2023-07-15T11:10:44.038514
2021-09-01T07:30:02
2021-09-01T07:30:02
379,600,021
0
0
null
null
null
null
UTF-8
R
false
false
3,646
r
con_zs_holland.R
#' @title Congruence Index according to Zener & Schnuelle (1976) #' @keywords congruence #' @export con_zs_holland #' @description The function computes the congruence index according to Zener & Schnuelle (1976). #' @details The function finds the congruence according to Zener & Schnuelle (1976) between the three-letter Holland-codes given in argument a, which is the person code, and argument b, which is the environment code. The Index as defined by Zener & Schnuelle (1976) targets (only) three letters from the Holland code. The degree of congruence is output, according to its definition by Zener & Schnuelle (1976), as a reciprocal value of a distance. This means, for example, that a value of '6' is the result for a perfect fit of two three-letter codes ! #' @param a a character vector with person Holland codes. #' @param b a character vector with environment Holland codes. #' @return a numeric with value for congruence. #' @references Holland, J.L. 1963. A theory of vocational choice. I. Vocational images and choice. \emph{Vocational Guidance Quarterly, 11}(4), 232–239. #' @references Zener, T. B. & Schnuelle, L. (1976). Effects of the self-directed search on high school students. \emph{Journal of Counseling Psychology, 23}(4), 353–359. #' @examples #' con_zs_holland(a="RIA",b="SEC") # max. difference #' con_zs_holland(a="RIA",b="RIA") # max. similarity ################################################################################ # func. by joerg-henrik heine jhheine(at)googlemail.com con_zs_holland <- function(a,b) # kongruenzindex nach Zener-Schnuelle(1976) # zur Bestimmung der Übereinstimmung für jede zeile der matrix X==Personencodes mit # dem Vector V==Umweltcode diese Reihenfolge ist bei der Eingabe W I C H T I G !!! # (vgl. Joerin-Fux, Simone "Persö. & Berufst.: Theor. & Instrum. v. J. Holland") # (vgl. Sageder,J. in Abel, J.& Tarnai, Ch. 19xx) { a <- toupper(unlist(strsplit(a,split = "",fixed = TRUE))) # um auch z.B. "RIA" eingeben zu können b <- toupper(unlist(strsplit(b,split = "",fixed = TRUE))) # um auch z.B. "RIA" eingeben zu können if(length(a) != length(b)) stop("a and b must have the same number of characters in Holland-code") if(length(a) > 3) stop("the zs index is in this function limited to three-letter Holland-codes") collapse<-function (x, sep = "") {paste(x, collapse = sep)}# abgewandelt aus # library(BBmisc) erg1 <- collapse(as.character(charmatch(a,b,nomatch=0 ))) erg1[erg1=="123"]<-6 # alle 3 gleich (in richtiger reihenfolge) erg1[erg1=="120"]<-5 # erste 2 gleich (in richtiger reihenfolge) erg1[erg1=="321"]<-4 # 3 gleich bel. reihenfolge (ohne 123) erg1[erg1=="312"]<-4 # 3 gleich bel. reihenfolge (ohne 123) erg1[erg1=="231"]<-4 # 3 gleich bel. reihenfolge (ohne 123) erg1[erg1=="213"]<-4 # 3 gleich bel. reihenfolge (ohne 123) erg1[erg1=="132"]<-4 # 3 gleich bel. reihenfolge (ohne 123) erg1[erg1=="100"]<-3 # nur erster gleich erg1[erg1=="130"]<-2 # ersten 2 gleich bel. reihenfolge (ohne 120) erg1[erg1=="210"]<-2 # ersten 2 gleich bel. reihenfolge (ohne 120) erg1[erg1=="230"]<-2 # ersten 2 gleich bel. reihenfolge (ohne 120) erg1[erg1=="310"]<-2 # ersten 2 gleich bel. reihenfolge (ohne 120) erg1[erg1=="320"]<-2 # ersten 2 gleich bel. reihenfolge (ohne 120) erg1[erg1=="100"]<-1 # nur erster an bel. stelle gleich erg1[erg1=="200"]<-1 # nur erster an bel. stelle gleich erg1[erg1=="300"]<-1 # nur erster an bel. stelle gleich erg1[erg1=="000"]<-0 # keine gleich erg1[erg1!="0"&erg1!="1"&erg1!="2"&erg1!="3"&erg1!="4"&erg1!="5"&erg1!="6"]<-0 erg1<-as.numeric(erg1) return (erg1) }
25ae077478a2b86bbe959a22d0998cca998f8505
cf09008185b813e272bbe208120852ebfb277fe8
/GCD_quiz_4.R
e0353155554548f0f2c8d751f47b73e1ba6ceb5a
[]
no_license
AnkurDesai11/datascienceJHUcoursera
efd1eedd5ab29c8835ac0cf129fa1b9e68b88719
4a36448fb2827d4f5048c8b21c210684cf363746
refs/heads/master
2023-02-09T21:29:26.288860
2021-01-11T04:26:39
2021-01-11T04:26:39
255,146,982
0
0
null
null
null
null
UTF-8
R
false
false
1,374
r
GCD_quiz_4.R
#question 1 urlq1<-"https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Fss06hid.csv" download.file(urlq1, destfile="GCD_quiz4_dataset1.csv") ds1<-read.csv("GCD_quiz4_dataset1.csv") splitnames<-strsplit(names(ds1), "wgtp") splitnames[[123]] #question 2 urlq2<-"https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2FGDP.csv" download.file(urlq2, destfile="GCD_quiz4_dataset2.csv") ds2<-read.csv("GCD_quiz4_dataset2.csv") names(ds2) ds2gdp<-suppressWarnings(as.numeric(gsub("\\,", "", ds2$X.3))) sum(ds2gdp, na.rm=TRUE)/nrow(ds2) #question 4 - using ds2 from before urlq3<-"https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2FEDSTATS_Country.csv" download.file(urlq3, destfile="GCD_quiz4_dataset3.csv") ds3<-read.csv("GCD_quiz4_dataset3.csv") ds4 <- ds2[-(1:4), ] colnames(ds4) = c("CountryCode", "rank", "x1", "name", "GDP", "abc", "x5", "x6", "x7", "x8") ds5<-merge(ds3, ds4, by.x = "CountryCode", by.y = "CountryCode") length(grep("^(Fiscal year end: June)", ds5$Special.Notes)) #question 5 library(lubridate) library(quantmod) amzn = getSymbols("AMZN",auto.assign=FALSE) sampleTimes = index(amzn) length(grep("^2012", sampleTimes)) sampletimes2012<-sampleTimes[grep("^2012", sampleTimes)] sampletimes2012<-ymd(sampletimes2012) sampletimes2012weekday<-wday(sampletimes2012) length(sampletimes2012weekday[sampletimes2012weekday==2])
b761222ea452c2926ac24179f0aded8d4af3f1b4
690c3c3e583094011d339d20a819b0fbe11a2bf8
/stream_flow.R
2aad1975440142b876e9989a4c0b72d048dcd3f2
[]
no_license
AllisonVincent/StarFM-code
a0f907e2931460b7867600bd1566cb39a600338b
eac755b6ef61af5d1925b3b65d02269c846e79e1
refs/heads/master
2021-06-17T15:02:43.013841
2021-04-20T17:19:42
2021-04-20T17:19:42
194,706,294
0
0
null
null
null
null
UTF-8
R
false
false
15,633
r
stream_flow.R
setwd('C:/Users/Allison and Brian/Documents/Research/STARFM/STARFMtest/Analysis_Tests/Stream_data') library(sp) library(sf) library(ggplot2) library(rgdal) library(raster) library(dplyr) library(caret) library(data.table) library(stats) library(fields) library(hydroTSM) library(SpatialTools) library(foreign) library(rasterVis) library(RColorBrewer) library(viridis) ### Read in the csv file df_2008<- read.csv(file = 'wy_2008.csv') df_2010<- read.csv(file = 'wy_2010.csv') df_2012<- read.csv(file = 'wy_2012.csv') ### Convert dates from characters to dates df_2008$Date<- as.Date(df_2008$Date, format = "%m/%d/%Y") df_2010$Date<- as.Date(df_2010$Date, format = "%m/%d/%Y") df_2012$Date<- as.Date(df_2012$Date, format = "%m/%d/%Y") ### Map discharge from individual water years ggplot(data = df_2008, mapping = aes(x = Date, y = cfs)) + geom_line() + labs( x = "Date", y = "Discharge (cfs)", title = "Water Year 2008" ) ggplot(data = df_2010, mapping = aes(x = Date, y = cfs)) + geom_line() + labs( x = "Date", y = "Discharge (cfs)", title = "Water Year 2010" ) ggplot(data = df_2012, mapping = aes(x = Date, y = cfs)) + geom_line() + labs( x = "Date", y = "Discharge (cfs)", title = "Water Year 2012" ) ###### Plot all discharge data together df_all<- read.csv(file = 'all_wys.csv') DOWY<- df_all$DOWY wy2008_q<- df_all$X2008 wy2010_q<- df_all$X2010 wy2012_q<- df_all$X2012 ggplot(df_all) + geom_line(aes(x = DOWY, y = wy2008_q, color = "blue")) + geom_line(aes(x = DOWY, y = wy2010_q, color = "black")) + geom_line(aes(x = DOWY, y = wy2012_q, color = "red")) + theme(axis.text = element_text(size = 11), axis.title.x = element_text(size = 13), axis.title.y = element_text(size = 13), legend.text = element_text(size = 12), legend.title = element_text(size = 14), plot.title = element_text(size = 15)) + scale_color_identity(name = "Water Year", breaks = c("blue", "black", "red"), labels = c("WY 2008", "WY 2010", "WY 2012"), guide = "legend") + ggtitle("Discharge at Watershed Outlet by Water Year") + xlab("Day of Water Year") + ylab("Discharge (cfs)") ##### Create cumulative discharge plots for individual water years df_2008[, "cum_Q"] <- cumsum(df_2008$cfs) df_2010[, "cum_Q"] <- cumsum(df_2010$cfs) df_2012[, "cum_Q"] <- cumsum(df_2012$cfs) ggplot(data = df_2008, mapping = aes(x = Date, y = cum_Q)) + geom_line() + labs( x = "Date", y = "Cumulative Discharge (cfs)", title = "Water Year 2008" ) ggplot(data = df_2010, mapping = aes(x = Date, y = cum_Q)) + geom_line() + labs( x = "Date", y = "Cumulative Discharge (cfs)", title = "Water Year 2010" ) ggplot(data = df_2012, mapping = aes(x = Date, y = cum_Q)) + geom_line() + labs( x = "Date", y = "Cumulative Discharge (cfs)", title = "Water Year 2012" ) ####### Create cumulative sum discharge plot with all water years ## Two of our WYs are leap years, so they contain one extra value than WY 2010. To do a cumulative sum, we need to replace the NA for this day with a value of 0 temp_wy2010<- df_all$X2010 temp_wy2010[is.na(temp_wy2010)] = 0 df_all[, "cum_Q_2008"] <- cumsum(df_all$X2008) df_all[, "cum_Q_2010"] <- cumsum(temp_wy2010) df_all[, "cum_Q_2012"] <- cumsum(df_all$X2012) cumsum_2008<- df_all$cum_Q_2008 cumsum_2010<- df_all$cum_Q_2010 cumsum_2012<- df_all$cum_Q_2012 ggplot(df_all) + geom_line(aes(x = DOWY, y = cumsum_2008, color = "blue")) + geom_line(aes(x = DOWY, y = cumsum_2010, color = "black")) + geom_line(aes(x = DOWY, y = cumsum_2012, color = "red")) + theme(axis.text = element_text(size = 11), axis.title.x = element_text(size = 13), axis.title.y = element_text(size = 13), legend.text = element_text(size = 12), legend.title = element_text(size = 14), plot.title = element_text(size = 13)) + scale_color_identity(name = "Water Year", breaks = c("blue", "black", "red"), labels = c("WY 2008", "WY 2010", "WY 2012"), guide = "legend") + ggtitle("Discharge Cumulative Sums at Watershed Outlet by Water Year") + xlab("Day of Water Year") + ylab("Discharge (cfs)") ### Find the center of mass, or when 50% of discharge has passed (doing this manually because I'm not sure how else to do it) com_2008<- cumsum_2008[366]/2 ## according to the cumsum values, 50% of discharge passes through on day 253 com_2010<- cumsum_2010[366]/2 ## according to the cumsum values, 50% of discharge passes through on day 246 (subtract 1 for the leap year) com_2012<- cumsum_2012[366]/2 ## according to the cumsum values, 50% of discharge passes through on day 221 ########### Combine the percent pixel snow covered data with the hydrographs for their respective years ### Load the table that has the total number of snow-covered pixels by date and percentage of the watershed that is snow covered setwd('C:/Users/Allison and Brian/Documents/Research/STARFM/STARFMtest/Analysis_Tests') ## load the snow percent by day data wy2008_total<- read.csv("./WY2008/WY2008_snow_sum_by_day.csv") wy2010_total<- read.csv("./WY2010/WY2010_snow_sum_by_day.csv") wy2012_total<- read.csv("./WY2012/WY2012_snow_sum_by_day.csv") wy2008_total$Date<- as.Date(wy2008_total$Date, format = "%m/%d/%Y") wy2010_total$Date<- as.Date(wy2010_total$Date, format = "%m/%d/%Y") wy2012_total$Date<- as.Date(wy2012_total$Date, format = "%m/%d/%Y") ggplot(data = wy2008_total, mapping = aes(x = Date, y = perc.of.watershed)) + geom_line() + labs( x = "Date", y = "Perc of snow covered pixels", title = "Water Year 2008" ) ggplot(data = wy2010_total, mapping = aes(x = Date, y = perc.of.watershed)) + geom_line() + labs( x = "Date", y = "Perc of snow covered pixels", title = "Water Year 2010" ) ggplot(data = wy2012_total, mapping = aes(x = Date, y = perc.of.watershed)) + geom_line() + labs( x = "Date", y = "Perc of snow covered pixels", title = "Water Year 2012" ) ##### Use the function below to find the moving average for each water year # x: the vector # n: the number of samples # centered: if FALSE, then average current sample and previous (n-1) samples # if TRUE, then average symmetrically in past and future. (If n is even, use one more sample from future.) movingAverage <- function(x, n=1, centered=FALSE) { if (centered) { before <- floor ((n-1)/2) after <- ceiling((n-1)/2) } else { before <- n-1 after <- 0 } # Track the sum and count of number of non-NA items s <- rep(0, length(x)) count <- rep(0, length(x)) # Add the centered data new <- x # Add to count list wherever there isn't a count <- count + !is.na(new) # Now replace NA_s with 0_s and add to total new[is.na(new)] <- 0 s <- s + new # Add the data from before i <- 1 while (i <= before) { # This is the vector with offset values to add new <- c(rep(NA, i), x[1:(length(x)-i)]) count <- count + !is.na(new) new[is.na(new)] <- 0 s <- s + new i <- i+1 } # Add the data from after i <- 1 while (i <= after) { # This is the vector with offset values to add new <- c(x[(i+1):length(x)], rep(NA, i)) count <- count + !is.na(new) new[is.na(new)] <- 0 s <- s + new i <- i+1 } # return sum divided by count s/count } #### Plot the daily percent snow values as bars and the moving average as a line on top perc_all_wy<- read.csv(file = './inter_annual/snow_perc_all_years.csv') DOWY<- perc_all_wy$DOWY wy2008_perc<- perc_all_wy$X2008_perc wy2010_perc<- perc_all_wy$X2010_perc wy2012_perc<- perc_all_wy$X2012_perc ### create plot for WY 2008 wy_2008_avg<- movingAverage(wy2008_perc, 10, TRUE) ## A 10-day centered moving average seems to be the minimum for a smoother curve perc_all_wy$mvg_avg_2008<- wy_2008_avg ### find the latest day of the water year when percent snow cover is 50% or greater which(wy_2008_avg >= 50) ## gives all position where the value is above 50%. Take the last one in the array ggplot(perc_all_wy) + geom_col(aes(x = DOWY, y = wy2008_perc, fill = "sky blue"), color = "sky blue") + ## snow cover percent geom_line(aes(x = DOWY, y = wy_2008_avg, color = "firebrick"), size = 1.0) + ## moving avg line geom_line(aes(x = DOWY, y = wy2008_q/10, color = "black"), size = 1.0) + ## stream discharge geom_vline(aes(xintercept = 253, color = "purple"), size = 1) + ## the line that indicates the center of mass geom_vline(aes(xintercept = 208, color = "dark green"), size = 1) + ## the line that indicates the last day when the mvg avg of snow cover percent is 59% or greater scale_y_continuous( name = "Percent", sec.axis = sec_axis(~.*10, name = "Discharge (cfs)") ) + theme(axis.text = element_text(size = 11), axis.title.x = element_text(size = 13), axis.title.y = element_text(size = 13), legend.text = element_text(size = 11), legend.title = element_text(size = 14), plot.title = element_text(size = 13)) + scale_fill_identity(name = NULL, breaks = c("sky blue"), labels = c("SCA(%)"), guide = "legend") + scale_color_identity(name = NULL, breaks = c("firebrick", "black", "purple", "dark green"), labels = c("SCA Moving Avg", "Stream Discharge", "Q center of mass", "Last day of 50% SCA"), guide = "legend") + ggtitle("Percent Snow Cover and Stream Discharge for WY 2008") + xlab("Day of Water Year") ### create plot for WY 2010 temp_wy2010<- wy2010_perc temp_wy2010[is.na(temp_wy2010)] = 0 wy_2010_avg<- movingAverage(temp_wy2010, 10, TRUE) perc_all_wy$mvg_avg_2010<- wy_2010_avg ### find the latest day of the water year when percent snow cover is 50% or greater which(wy_2010_avg >= 50) ## gives all position where the value is above 50%. Take the last one in the array ggplot(perc_all_wy) + geom_col(aes(x = DOWY, y = wy2010_perc, fill = "sky blue"), color = "sky blue") + geom_line(aes(x = DOWY, y = wy_2010_avg, color = "firebrick"), size = 1.0) + geom_line(aes(x = DOWY, y = wy2010_q/10, color = "black"), size = 1.0) + geom_vline(aes(xintercept = 246, color = "purple"), size = 1) + geom_vline(aes(xintercept = 120, color = "dark green"), size = 1) + scale_y_continuous( name = "Percent", sec.axis = sec_axis(~.*10, name = "Discharge (cfs)") ) + theme(axis.text = element_text(size = 11), axis.title.x = element_text(size = 13), axis.title.y = element_text(size = 13), legend.text = element_text(size = 11), legend.title = element_text(size = 14), plot.title = element_text(size = 13)) + scale_fill_identity(name = NULL, breaks = c("sky blue"), labels = c("SCA(%)"), guide = "legend") + scale_color_identity(name = NULL, breaks = c("firebrick", "black", "purple", "dark green"), labels = c("SCA Moving Avg", "Stream Discharge", "Q center of mass", "Last day of 50% SCA"), guide = "legend") + ggtitle("Percent Snow Cover and Stream Discharge for WY 2010") + xlab("Day of Water Year") ### create plot for WY 2012 wy_2012_avg<- movingAverage(wy2012_perc, 30, TRUE) perc_all_wy$mvg_avg_2012<- wy_2012_avg which(wy_2012_avg >= 50) ## gives all position where the value is above 50%. Take the last one in the array ggplot(perc_all_wy) + geom_col(aes(x = DOWY, y = wy2012_perc, fill = "sky blue"), color = "sky blue") + geom_line(aes(x = DOWY, y = wy_2012_avg, color = "firebrick"), size = 1.0) + geom_line(aes(x = DOWY, y = wy2012_q/10, color = "black"), size = 1.0) + geom_vline(aes(xintercept = 221, color = "purple"), size = 1) + geom_vline(aes(xintercept = 165, color = "dark green"), size = 1) + scale_y_continuous( name = "Percent", sec.axis = sec_axis(~.*10, name = "Discharge (cfs)") ) + theme(axis.text = element_text(size = 11), axis.title.x = element_text(size = 13), axis.title.y = element_text(size = 13), legend.text = element_text(size = 11), legend.title = element_text(size = 14), plot.title = element_text(size = 13)) + scale_fill_identity(name = NULL, breaks = c("sky blue"), labels = c("SCA(%)"), guide = "legend") + scale_color_identity(name = NULL, breaks = c("firebrick", "black", "purple", "dark green"), labels = c("SCA Moving Avg", "Stream Discharge", "Q center of mass", "Last day of 50% SCA"), guide = "legend") + ggtitle("Percent Snow Cover and Stream Discharge for WY 2012") + xlab("Day of Water Year") #### Plot the above, but without the legend ggplot(perc_all_wy) + geom_col(aes(x = DOWY, y = wy2008_perc), color = "sky blue") + ## snow cover percent geom_line(aes(x = DOWY, y = wy_2008_avg), color = "firebrick", size = 1.0) + ## moving avg line geom_line(aes(x = DOWY, y = wy2008_q/10), color = "black", size = 1.0) + ## stream discharge geom_vline(aes(xintercept = 253), color = "purple", size = 1) + ## the line that indicates the center of mass geom_vline(aes(xintercept = 208), color = "dark green", size = 1) + ## the line that indicates the last day when the mvg avg of snow cover percent is 59% or greater scale_y_continuous( name = "Percent", sec.axis = sec_axis(~.*10, name = "Discharge (cfs)") ) + theme(axis.text = element_text(size = 11), axis.title.x = element_text(size = 13), axis.title.y = element_text(size = 13), plot.title = element_text(size = 13)) + ggtitle("Percent Snow Cover and Stream Discharge for WY 2008") + xlab("Day of Water Year") ggplot(perc_all_wy) + geom_col(aes(x = DOWY, y = wy2010_perc), color = "sky blue") + geom_line(aes(x = DOWY, y = wy_2010_avg), color = "firebrick", size = 1.0) + geom_line(aes(x = DOWY, y = wy2010_q/10), color = "black", size = 1.0) + geom_vline(aes(xintercept = 246), color = "purple", size = 1) + geom_vline(aes(xintercept = 120), color = "dark green", size = 1) + scale_y_continuous( name = "Percent", sec.axis = sec_axis(~.*10, name = "Discharge (cfs)") ) + theme(axis.text = element_text(size = 11), axis.title.x = element_text(size = 13), axis.title.y = element_text(size = 13), plot.title = element_text(size = 13)) + ggtitle("Percent Snow Cover and Stream Discharge for WY 2010") + xlab("Day of Water Year") ggplot(perc_all_wy) + geom_col(aes(x = DOWY, y = wy2012_perc), color = "sky blue") + geom_line(aes(x = DOWY, y = wy_2012_avg), color = "firebrick", size = 1.0) + geom_line(aes(x = DOWY, y = wy2012_q/10), color = "black", size = 1.0) + geom_vline(aes(xintercept = 221), color = "purple", size = 1) + geom_vline(aes(xintercept = 165), color = "dark green", size = 1) + scale_y_continuous( name = "Percent", sec.axis = sec_axis(~.*10, name = "Discharge (cfs)") ) + theme(axis.text = element_text(size = 11), axis.title.x = element_text(size = 13), axis.title.y = element_text(size = 13), plot.title = element_text(size = 13)) + ggtitle("Percent Snow Cover and Stream Discharge for WY 2012") + xlab("Day of Water Year")
74e4ecb7b463d9b07ac72ea42bed392318aa427a
368249e4edaaeb71b02075abcbaf46a2a9d8f997
/R/udregninger opg5.R
f6310f03d7e5e4ffb644e004161c5665996cc41f
[]
no_license
Blikdal/Examchha511
256167c42cd1cc078fa50f1ca8b2d6b5fc713486
47b70e106cec785efae47def4b21070997ac9b63
refs/heads/master
2021-01-17T19:18:23.917600
2016-06-10T11:29:41
2016-06-10T11:29:41
60,843,165
0
0
null
null
null
null
UTF-8
R
false
false
230
r
udregninger opg5.R
getDataPart(faithful) #the required data eruption <- faithful[,1] #specifying eruption KDE(eruption, method="naive" ) KDE(eruption, method="gaussian" ) densityplot(eruption, n=200) densityplot(eruption, n=200, method="gaussian")
a30bc53fd4d3d10118d9d39a66e473bfabf8a76b
587b2d1b95c14d4587c3a0210f0cf604140d9727
/scripts/long/long_data.R
5da7fce1984f0e5722f09d9cc0dd9f9d7c6273e4
[]
no_license
mt-edwards/data-compression
881c098b1acdc0110fb3208baa3ca98f13b2e623
3ada1b978ff5f9ad0a9920771cabbe3b6ac63120
refs/heads/master
2021-07-13T13:43:01.427051
2019-02-01T14:24:27
2019-02-01T14:24:27
139,557,116
0
0
null
null
null
null
UTF-8
R
false
false
1,103
r
long_data.R
############################ # Long Data. # ############################ # Command line arguments # ======================= # - 1) Variable name. # - 2) Ensemble size. # - 3) AR order. # - 4) MA order. args = commandArgs(TRUE) # Libraries. # ======================= package_names = c("tidyverse", "plyr") lapply(package_names, library, character.only = TRUE) # Set Working Directory (bash scripts). # ======================== setwd("/Users/matthewedwards/Sync/Projects/data-compression") # Source functions. # ======================= source("scripts/long/long_fun.R") # Load data. # ======================= load(paste0("data/", args[1], "/smf.r", args[2], ".p", args[3], ".q", args[4], ".R")) load(paste0("data/", args[1], "/spec.r", args[2], ".p", args[3], ".q", args[4], ".R")) # Normalised spectrum. # ======================== nspec = aaply(spec, 1:2, long_nspec, smf = smf) # Save files. # ======================= save(nspec, file = paste0("data/", args[1], "/nspec.r", args[2], ".p", args[3], ".q", args[4], ".R")) # Clear workspace. # ======================= rm(list = ls())
065e1b39003548270cbf6c053444f8aeea6e2bc0
c20ba83fc17b3db4b5ffec96a55e1a48a9e03796
/fars_functions.R
7495d3c9d8d15776f649dccff5475d7f1476a86e
[]
no_license
RG9303/Project-RG-Week2
27959fe374a17c58071b0f5b81cf4d561548b6c8
6e6e1c5b2602bcb1364b1cc99c04d83fd21cf644
refs/heads/master
2022-09-22T23:42:01.642521
2020-06-07T02:50:09
2020-06-07T02:50:09
270,108,092
0
0
null
null
null
null
UTF-8
R
false
false
5,057
r
fars_functions.R
library(roxygen2) #' @title fars_read #' @description The function \code{fars_read} read a csv file if it exists and forwards the argument a data frame. #' @param filename to enter a database with format csv. #' @return if file exists, this function read the file and return a database as a data frame. If the extension #' is diferent to csv, it can not read the file. #' @details you need install packages like dplyr and readr before this or it may result in an error #' @importFrom readr read_csv #' @importFrom dplyr tbl_df #' @example fars_read(filename = x) #' @export fars_read <- function(filename) { if(!file.exists(filename)) stop("file '", filename, "' does not exist") data <- suppressMessages({ readr::read_csv(filename, progress = FALSE) }) dplyr::tbl_df(data) } #' @title make_filename #' @description The function \code{make_file} transform a variable as a integer and print a character vector #' containing a formatted combination of text and variable value. #' @param year as a variable to tranform it in an integer value. #' @return a character vector containing a formatted combination of text and variable value. #' @details you need enter a number or it return a NA. #' @importFrom base as.integer sprintf #' @examples make_filename(2014) #' @export make_filename <- function(year) { year <- as.integer(year) sprintf("accident_%d.csv.bz2", year) } #' @title fars_read_years #' @description The function \code{fars_read_years} save the name of a specific data base according to a year, #' read the ddatabase and transmute it drops existing variables as year. #' @param years as a variable to tranform it in an integer value accross \code{make_filename}. It will be used #' when it generate the name of a file with the function \code{fars_read}. #' @return if the year is in the set: 2013, 2014 or 2015, it will transmute a database in a new data frame depending #' on a specific month. Otherwise it will print a warning. #' @details you need enter a number as a year contained in the set: 2013, 2014 or 2015 or it will return a warning #' as a message. #' @importFrom dplyr mutate select #' @examples fars_read_years(2014) #' @export fars_read_years <- function(years) { lapply(years, function(year) { file <- make_filename(year) tryCatch({ dat <- fars_read(file) dplyr::mutate(dat, year = year) %>% dplyr::select(MONTH, year) }, error = function(e) { warning("invalid year: ", year) return(NULL) }) }) } #' @title fars_summarize_years #' @description The function \code{fars_summarize_years} transmute the data frame by group, summarize and #' spread a key-value pair across the variables year and n. #' @param years as a variable to read the other functions and transmute the data frame. #' @return a data frame by group of year and month, and summarize by count. It will print the head of the database. #' @details you need install the library tidyr and conserve the format of the variables. #' @importFrom dplyr bind_rows group_by summarize #' @importFrom tidyr spread #' @examples fars_summarize_years(2014) #' @export fars_summarize_years <- function(years) { dat_list <- fars_read_years(years) dplyr::bind_rows(dat_list) %>% dplyr::group_by(year, MONTH) %>% dplyr::summarize(n = n()) %>% tidyr::spread(year, n) } #' @title fars_map_state #' @description The function \code{fars_map_state} transform the principal database and add #' conditionals for some variables. Plot a map with a specific lat and long. #' @param state.num as a variable that represent a state. #' @param year as a variable to tranform it in an integer value. #' @return if number of a state is unique and it is contained in the variable STATE of the data #' it will make a data frame with this filter, with conditionals to transform NAs in the #' variables LONGITUD AND LATITUDE and print a map with this location. Otherwise print a #' message "no accidents to plot" and return an invisible object. #' @details you need to install the package "map" and specify a number of a state. #' @importFrom dplyr filter #' @importFrom base message invisible #' @importFrom maps map #' @importFrom graphics points #' @examples fars_map_state(19, 2014) #' @export fars_map_state <- function(state.num, year) { filename <- make_filename(year) data <- fars_read(filename) state.num <- as.integer(state.num) if(!(state.num %in% unique(data$STATE))) stop("invalid STATE number: ", state.num) data.sub <- dplyr::filter(data, STATE == state.num) if(nrow(data.sub) == 0L) { message("no accidents to plot") return(invisible(NULL)) } is.na(data.sub$LONGITUD) <- data.sub$LONGITUD > 900 is.na(data.sub$LATITUDE) <- data.sub$LATITUDE > 90 with(data.sub, { maps::map("state", ylim = range(LATITUDE, na.rm = TRUE), xlim = range(LONGITUD, na.rm = TRUE)) graphics::points(LONGITUD, LATITUDE, pch = 46) }) }
d88663824c883a75adc8be7163c05939c461ba82
27b68e887cbba98bab7d90ba6839f69cbd138720
/adp_analysis/xfp_boxplot.R
2478e9ec57a38dd490b190c8398eb07a62efbe02
[]
no_license
lbuckheit/nfl
2266f954618608778045db86afc6bea0504241ee
e972aa3af3b6640fa32c484622d145b0cd012d8b
refs/heads/master
2023-08-20T15:26:08.065041
2021-09-19T07:40:02
2021-09-19T07:40:02
301,013,241
1
0
null
null
null
null
UTF-8
R
false
false
4,845
r
xfp_boxplot.R
library(tidyverse) library(ggrepel) library(ggimage) library(nflfastR) library(dplyr) library(ggplot2) library(ggrepel) library(stringr) options(scipen = 9999) source("utils/nfl_utils.R") ### Generate boxplots of expected FP ### # TODO - Split this into RB and WR files ### Background Work ### # Define variables SEASON_TO_ANALYZE <- 2020 START_WEEK <- 1 # TODO - Remember that now seasons have 18 weeks END_WEEK <- 17 PTS_PER_RECEPTION <- 1 # Load ADP data adp_data <- read.csv(file = "helpful_csvs/2021_clean_adp_data.csv") %>% select(gsis_id, adp) # Grab the rosters for use in filtering by position players <- nflfastR::fast_scraper_roster(SEASON_TO_ANALYZE) %>% subset(select = c(team, position, first_name, last_name, gsis_id)) # Load annual PBP Data pbp_df <- load_pbp(SEASON_TO_ANALYZE) %>% filter(season_type == "REG", week >= START_WEEK, week <= END_WEEK) ### Expected points from rushing, grouped by game ### xfp_rushes <- calculate_rush_xfp_by_game(pbp_df) ### Expected points from receiving ### # Add xyac data to pbp pbp_with_xyac <- add_xyac_to_pbp(pbp_df) # Calculate xfp using xyac data xfp_targets <- calculate_rec_xfp_by_game(pbp_with_xyac, PTS_PER_RECEPTION) # Prune the dataframe only to what's necessary concise_xfp_targets <- xfp_targets %>% select( game_id, player = receiver, gsis_id = receiver_id, rec_games = games, exp_rec_pts = exp_pts, actual_rec_pts = pts ) ## Boxplots for receivers # Grab only the receivers above a certain season points threshold relevant_players <- concise_xfp_targets %>% group_by(gsis_id) %>% summarize(total_xfp = sum(exp_rec_pts)) %>% filter(total_xfp > 50) # Filter by receiver type if you wish relevant_receivers <- merge(relevant_players, players) %>% filter(position == "TE") # Create list of season-long/other data to merge with the game-by-game data relevant_receivers_with_adp <- merge(relevant_receivers, adp_data) # Create a df of all the games by relevant receivers receivers_to_plot = merge(concise_xfp_targets, relevant_receivers_with_adp) # Plot # To order by avg. xfp per game use reorder(player, -exP-rec_pts) # To order by total season xfp, use reorder(player, -total_xfp) # To order by IQR size use reorder(player, exp_rec_pts, IQR) # To order by ADP use reorder(player, adp) ggplot(receivers_to_plot, aes(x=reorder(player, adp), y=exp_rec_pts, label=player)) + geom_boxplot() + theme(axis.text.x = element_text(angle = -90)) + labs(x = "Player", y = str_glue("Exp.{PTS_PER_RECEPTION}PPR Pts."), title = str_glue("{SEASON_TO_ANALYZE} Expected {PTS_PER_RECEPTION}PPR Pts. Boxplots"), caption = "Via nflFastR" ) ## Boxplots for RBs # Prune the dataframe only to what's necessary concise_xfp_rushes <- xfp_rushes %>% select( player = rusher, gsis_id, game_id, rush_games = games, exp_rush_pts, actual_rush_pts ) # Get the total (season-long) combined rush/rec xfp for players (for use in determining relevant players and graph ordering) combined_xfp_aggregate <- dplyr::bind_rows(concise_xfp_rushes, concise_xfp_targets) %>% group_by(gsis_id, player) %>% summarise(total_xfp = sum(exp_rec_pts, exp_rush_pts, na.rm=TRUE)) # Capture only players above a certain threshold for eventual graphing players_meeting_points_threshold <- combined_xfp_aggregate %>% filter(total_xfp > 125) %>% select(player, total_xfp) # Create list of season-long/other data to merge with the game-by-game data rbs_to_merge <- merge(players_meeting_points_threshold, adp_data) # Build a list of each player's combined rush/rec xfp on a game-by-game basis combined_xfp_by_game <- dplyr::bind_rows(concise_xfp_rushes, concise_xfp_targets) %>% group_by(gsis_id, player, game_id) %>% summarise( xfp = sum(exp_rec_pts, exp_rush_pts, na.rm=TRUE) ) # Combine a list of all running back with a list of all players meeting the graphing threshold # to produce a list of all running backs that will be graphed relevant_rbs <- merge(rbs_to_merge, players) %>% filter(position == "RB") %>% select(gsis_id, player, total_xfp, adp) # Then merge the above list with the list of all games to get all games played by relevant RBs rb_xfp_by_game <- merge(combined_xfp_by_game, relevant_rbs) # Plot # To order by avg. xfp per game use reorder(player, -xfp) # To order by total season xfp, use reorder(player, -total_xfp) # To order by IQR size use reorder(player, xfp, IQR) # To order by ADP use reorder(player, adp) ggplot(rb_xfp_by_game, aes(x=reorder(player, -xfp), y=xfp, label=player)) + geom_boxplot() + theme(axis.text.x = element_text(angle = -90)) + labs(x = "Player", y = str_glue("Exp.{PTS_PER_RECEPTION}PPR Pts."), title = str_glue("{SEASON_TO_ANALYZE} Expected {PTS_PER_RECEPTION}PPR Pts. Boxplots"), caption = "Via nflFastR" )
b8694448c65e770641fdfaffc1478a8a2d7568bf
fe906038c1bb5cd91cea4cba996d99822bbf3a33
/prophet_test.R
117ec51e07d1828903a438b95e32f6623e301fe4
[]
no_license
m0hits/prophet_exploration_R
a3352bae5df27b2fa8b0f1ded1afcbfd86449900
5ed027df17f519b2092d49bddf2c4db1539b988c
refs/heads/master
2020-07-31T18:14:47.881311
2019-09-24T22:23:45
2019-09-24T22:23:45
210,706,999
0
0
null
null
null
null
UTF-8
R
false
false
1,926
r
prophet_test.R
#### Session Setup ---- rm(list = ls()) gc() set.seed(786) Time = Sys.time() #### Packages ---- list.of.packages <- c("tidyverse", "forecast", "purrr", "broom", "readxl", "writexl", "lubridate", "prophet", "dygraphs") new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"] )] if(length(new.packages)) install.packages(new.packages) for(i in list.of.packages){ library(i, character.only = TRUE) } #### Input variables ---- test_period = 5 #### Read Input data ---- raw <- read_xlsx("Raw_Data.xlsx") #### Data Processing ---- # raw <- raw %>% # spread(key = Period, value = Sales, fill = 0) %>% # gather(key = "Period", value = "Sales", 2:ncol(.)) raw_nest <- raw %>% group_by(Id) %>% nest(-Id) #### Generate ts objects ---- ts_create <- function(x){ ts(x$Sales, start = c(str_sub(x$Period[[1]], 1, 4) %>% as.numeric(), str_sub(x$Period[[1]], 5, 6) %>% as.numeric()), frequency = 12) } raw_nest <- raw_nest %>% mutate(data_ts = map(data, ts_create)) #### Model Definition ---- f_prophet <- function(x, h){ dat = data.frame(ds = as_date(time(x)), y = as.matrix(x)) prophet(dat) } #### Apply model ---- raw_nest <- raw_nest %>% mutate(prophet_fit = map(data_ts, f_prophet)) #### Forecasting using the model ---- f_predict <- function(x){ df <- make_future_dataframe(x, 24, freq = 'month', include_history = T) predict(x, df) } raw_nest <- raw_nest %>% mutate(forecast = map(prophet_fit, f_predict)) #### Visualization ---- dyplot.prophet(raw_nest$prophet_fit[[1]], raw_nest$forecast[[1]]) dyplot.prophet(raw_nest$prophet_fit[[2]], raw_nest$forecast[[2]]) dyplot.prophet(raw_nest$prophet_fit[[3]], raw_nest$forecast[[3]])