|
|
--- |
|
|
license: cc-by-sa-4.0 |
|
|
task_categories: |
|
|
- text-classification |
|
|
- question-answering |
|
|
- zero-shot-classification |
|
|
- sentence-similarity |
|
|
language: |
|
|
- ja |
|
|
pretty_name: The Lightweight Version of JMTEB |
|
|
size_categories: |
|
|
- 100M<n<1B |
|
|
--- |
|
|
# JMTEB-lite: The Lightweight Version of JMTEB |
|
|
|
|
|
JMTEB-lite is a lightweight version of [JMTEB](https://huggingface.co/datasets/sbintuitions/JMTEB). |
|
|
It makes agile evaluation possible by reaching an average of **5x** faster evaluation comparing with JMTEB. |
|
|
The result of JMTEB-lite is proved to be highly relevant with that of JMTEB, making it a faithful preview of JMTEB. |
|
|
|
|
|
## TL;DR |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
|
|
|
dataset = load_dataset("sbintuitions/JMTEB-lite", name="<dataset_name>", split="<split>") |
|
|
|
|
|
SPLITS = ("train", "validation", "test", "corpus") |
|
|
JMTEB_LITE_DATASET_NAMES = ( |
|
|
'livedoor_news', |
|
|
'mewsc16_ja', |
|
|
'sib200_japanese_clustering', |
|
|
'amazon_review_classification', |
|
|
'amazon_counterfactual_classification', |
|
|
'massive_intent_classification', |
|
|
'massive_scenario_classification', |
|
|
'japanese_sentiment_classification', |
|
|
'sib200_japanese_classification', |
|
|
'wrime_classification', |
|
|
'jsts', |
|
|
'jsick', |
|
|
'jaqket-query', |
|
|
'jaqket-corpus', # lightweight |
|
|
'mrtydi-query', |
|
|
'mrtydi-corpus', # lightweight |
|
|
'jagovfaqs_22k-query', |
|
|
'jagovfaqs_22k-corpus', |
|
|
'nlp_journal_title_abs-query', |
|
|
'nlp_journal_title_abs-corpus', |
|
|
'nlp_journal_title_intro-query', |
|
|
'nlp_journal_title_intro-corpus', |
|
|
'nlp_journal_abs_intro-query', |
|
|
'nlp_journal_abs_intro-corpus', |
|
|
'nlp_journal_abs_article-query', |
|
|
'nlp_journal_abs_article-corpus', |
|
|
'jacwir-retrieval-query', |
|
|
'jacwir-retrieval-corpus', # lightweight |
|
|
'miracl-retrieval-query', |
|
|
'miracl-retrieval-corpus', # lightweight |
|
|
'mldr-retrieval-query', |
|
|
'mldr-retrieval-corpus', |
|
|
'mintaka-retrieval-query', |
|
|
'mintaka-retrieval-corpus', |
|
|
'esci-query', |
|
|
'esci-corpus', |
|
|
'jqara-query', |
|
|
'jqara-corpus', |
|
|
'jacwir-reranking-query', # lightweight |
|
|
'jacwir-reranking-corpus', # lightweight |
|
|
'miracl-reranking-query', # lightweight |
|
|
'miracl-reranking-corpus', # lightweight |
|
|
'mldr-reranking-query', |
|
|
'mldr-reranking-corpus', |
|
|
) |
|
|
``` |
|
|
|
|
|
## Introduction |
|
|
|
|
|
We introduced [JMTEB](https://huggingface.co/datasets/sbintuitions/JMTEB) (Japanese Massive Text Embedding Benchmark), a comprehensive evaluation benchmark of Japanese text embedding models. |
|
|
However, the massive size of JMTEB makes evaluation slow and resource demanding. |
|
|
To address this, we now introduce **JMTEB-lite**, a lightweight version of JMTEB constructed by substaintially reducing corpus size in retrieval and reranking tasks. |
|
|
We have also verified that JMTEB-lite significantly accelerates evaluation while maintaining high fidelity to the full JMTEB. |
|
|
|
|
|
We recommand to use JMTEB-lite to obtain the preview evaluation results in agile development, and use JMTEB for full and final evaluation. |
|
|
|
|
|
JMTEB-lite is compatible with the evaluation script of JMTEB: <https://github.com/sbintuitions/JMTEB>. |
|
|
|
|
|
## Tasks and Datasets |
|
|
|
|
|
Here is an overview of the tasks and datasets currently included in JMTEB-lite. |
|
|
|
|
|
Note that only datasets in **bold** are lightweight, and the rest are exactly the same with the counterparts in JMTEB. |
|
|
|
|
|
|Task|Dataset|Train|Dev|Test|Document (Retrieval)| |
|
|
|----|-------|----:|--:|---:|--:| |
|
|
|Clustering|Livedoor-News|5,163|1,106|1,107|-| |
|
|
||MewsC-16-ja|-|992|992|-| |
|
|
||SIB200 Japanese Clustering|701|99|204|-| |
|
|
|Classification|AmazonCounterfactualClassification|5,600|466|934|-| |
|
|
||AmazonReviewClassification|200,000|5,000|5,000|-| |
|
|
||MassiveIntentClassification|11,514|2,033|2,974|-| |
|
|
||MassiveScenarioClassification|11,514|2,033|2,974|-| |
|
|
||Japanese Sentiment Classification|9,831|1,677|2,552|-| |
|
|
||SIB200 Japanese Classification|701|99|204|-| |
|
|
||WRIME Classification|30,000|2,500|2,500|-| |
|
|
|STS|JSTS|12,451|-|1,457|-| |
|
|
||JSICK|5,956|1,985|1,986|-| |
|
|
|Retrieval|**JAQKET**|13,061|995|997|**65,802**| |
|
|
||**Mr.TyDi-ja**|3,697|928|720|**93,382**| |
|
|
||NLP Journal title-abs|-|127|510|637| |
|
|
||NLP Journal title-intro|-|127|510|637| |
|
|
||NLP Journal abs-intro|-|127|510|637| |
|
|
||NLP Journal abs-abstract|-|127|510|637| |
|
|
||JaGovFaqs-22k|15,955|3,419|3,420|22,794| |
|
|
||**JaCWIR-Retrieval**|-|1,000|4,000|**302,638**| |
|
|
||**MIRACL-Retrieval**|2,433|1,044|860|**105,064**| |
|
|
||MLDR-Retrieval|2,262|200|200|10,000| |
|
|
||Mintaka-Retrieval|-|2,313[^1]|2,313|2,313| |
|
|
|Reranking|Esci|10,141|1,790|4,206|149,999| |
|
|
||**JaCWIR-Reranking**|-|1,000|4,000|**188,033**| |
|
|
||**JQaRA**|498|1,737|1,667|**172,897**| |
|
|
||MIRACL-Reranking|2,433|1,044|860|37,124| |
|
|
||MLDR-Reranking|2,262|200|200|5,339| |
|
|
|
|
|
[^1]: To keep consistent with [MTEB](https://github.com/embeddings-benchmark/mteb/blob/5a8ccec9017742f6c3246519d2a92bd03f218a6d/mteb/tasks/Retrieval/multilingual/MintakaRetrieval.py) where Mintaka-Retrieval doesn't have a validation set, we set our validation set the same as the test set. |
|
|
|
|
|
## Construction Process |
|
|
|
|
|
For the 4 retrieval datasets (JAQKET, Mr.TyDi, JaCWIR-Retrieval, MIRACL-Retrieval), we use 5 highly performant models to predict hard negative documents for each query (the query's most 50 semantically similar documents in the corpus), and merge these hard negatives along with golden documents. |
|
|
|
|
|
For the 2 reranking datasets (JQaRA, JaCWIR-Reranking), we use 5 highly performant models to rerank the documents for each query, and retain top-50 hard negative documents for each query. Then we merge these hard negatives with golden documents. |
|
|
|
|
|
For the rest, they are kept exactly the same with their counterparts in JMTEB. |
|
|
|
|
|
## Reference |
|
|
|
|
|
``` |
|
|
@misc{jmteb_lite, |
|
|
author = {Li, Shengzhe and Ohagi, Masaya and Ri, Ryokan and Fukuchi, Akihiko and Shibata, Tomohide and Kawahara, Daisuke}, |
|
|
title = {{J}{M}{T}{E}{B}-lite: {T}he {L}ightweight {V}ersion of {JMTEB}}, |
|
|
howpublished = {\url{https://huggingface.co/datasets/sbintuitions/JMTEB-lite}}, |
|
|
year = {2025}, |
|
|
} |
|
|
|
|
|
@techreport{jmteb_lite, |
|
|
author = {Li, Shengzhe and Ohagi, Masaya and Ri, Ryokan and Fukuchi, Akihiko and Shibata, Tomohide and Kawahara, Daisuke}, |
|
|
title = {{JMTEB} and {JMTEB}-lite: {J}apanese {M}assive {T}ext {E}mbedding {B}enchmark and {I}ts {L}ightweight {V}ersion}, |
|
|
institution = {SB Intuitions / Waseda University}, |
|
|
number = {IPSJ SIG Technical Reports Vol.2025-NL-265 No.3}, |
|
|
year = {2025}, |
|
|
month = {07}, |
|
|
} |
|
|
``` |
|
|
|
|
|
## License |
|
|
|
|
|
Our code is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International License](http://creativecommons.org/licenses/by-sa/4.0/). |
|
|
|
|
|
<a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a><br /> |
|
|
|
|
|
Regarding the license information of datasets, please refer to the individual datasets. |
|
|
|