Dataset Viewer
Auto-converted to Parquet
chunk_id
stringlengths
44
45
chunk_content
stringlengths
21
448
filename
stringlengths
36
36
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_1
Semantic segmentation using LoRA This guide demonstrates how to use LoRA, a low-rank approximation technique, to finetune a SegFormer model variant for semantic segmentation. By using LoRA from πŸ€— PEFT, we can reduce the number of trainable parameters in the SegFormer model to only 14% of the original trainable parameters. LoRA achieves this reduction by adding low-rank β€œupdate matrices” to specific blocks of the model, such as the attention b
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_2
ters. LoRA achieves this reduction by adding low-rank β€œupdate matrices” to specific blocks of the model, such as the attention blocks. During fine-tuning, only these matrices are trained, while the original model parameters are left unchanged. At inference time, the update matrices are merged with the original model parameters to produce the final classification result. For more information on LoRA, please refer to the original LoRA paper. Ins
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_3
rameters to produce the final classification result. For more information on LoRA, please refer to the original LoRA paper. Install dependencies Install the libraries required for model training: Copied !pip install transformers accelerate evaluate datasets peft -q Authenticate to share your model To share the finetuned model with the community at the end of the training, authenticate using your πŸ€— token. You can obtain your token from
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_4
finetuned model with the community at the end of the training, authenticate using your πŸ€— token. You can obtain your token from your account settings. Copied from huggingface_hub import notebook_login notebook_login() Load a dataset To ensure that this example runs within a reasonable time frame, here we are limiting the number of instances from the training set of the SceneParse150 dataset to 150. Copied from datasets import load_da
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_5
iting the number of instances from the training set of the SceneParse150 dataset to 150. Copied from datasets import load_dataset ds = load_dataset("scene_parse_150", split="train[:150]") Next, split the dataset into train and test sets. Copied ds = ds.train_test_split(test_size=0.1) train_ds = ds["train"] test_ds = ds["test"] Prepare label maps Create a dictionary that maps a label id to a label class, which will be useful when set
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_6
t_ds = ds["test"] Prepare label maps Create a dictionary that maps a label id to a label class, which will be useful when setting up the model later: label2id: maps the semantic classes of the dataset to integer ids. id2label: maps integer ids back to the semantic classes. Copied import json from huggingface_hub import cached_download, hf_hub_url repo_id = "huggingface/label-files" filename = "ade20k-hf-doc-builder.json" id2label = json
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_7
import cached_download, hf_hub_url repo_id = "huggingface/label-files" filename = "ade20k-hf-doc-builder.json" id2label = json.load(open(cached_download(hf_hub_url(repo_id, filename, repo_type="dataset")), "r")) id2label = {int(k): v for k, v in id2label.items()} label2id = {v: k for k, v in id2label.items()} num_labels = len(id2label) Prepare datasets for training and evaluation Next, load the SegFormer image processor to prepare the imag
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_8
els = len(id2label) Prepare datasets for training and evaluation Next, load the SegFormer image processor to prepare the images and annotations for the model. This dataset uses the zero-index as the background class, so make sure to set reduce_labels=True to subtract one from all labels since the background class is not among the 150 classes. Copied from transformers import AutoImageProcessor checkpoint = "nvidia/mit-b0" image_processor
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_9
not among the 150 classes. Copied from transformers import AutoImageProcessor checkpoint = "nvidia/mit-b0" image_processor = AutoImageProcessor.from_pretrained(checkpoint, reduce_labels=True) Add a function to apply data augmentation to the images, so that the model is more robust against overfitting. Here we use the ColorJitter function from torchvision to randomly change the color properties of an image. Copied from torchvision.trans
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_10
the ColorJitter function from torchvision to randomly change the color properties of an image. Copied from torchvision.transforms import ColorJitter jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1) Add a function to handle grayscale images and ensure that each input image has three color channels, regardless of whether it was originally grayscale or RGB. The function converts RGB images to array as is, and for
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_11
lor channels, regardless of whether it was originally grayscale or RGB. The function converts RGB images to array as is, and for grayscale images that have only one color channel, the function replicates the same channel three times using np.tile() before converting the image into an array. Copied import numpy as np def handle_grayscale_image(image): np_image = np.array(image) if np_image.ndim == 2: tiled_image = np.tile(np
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_12
def handle_grayscale_image(image): np_image = np.array(image) if np_image.ndim == 2: tiled_image = np.tile(np.expand_dims(np_image, -1), 3) return Image.fromarray(tiled_image) else: return Image.fromarray(np_image) Finally, combine everything in two functions that you’ll use to transform training and validation data. The two functions are similar except data augmentation is applied only to the training dat
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_13
ansform training and validation data. The two functions are similar except data augmentation is applied only to the training data. Copied from PIL import Image def train_transforms(example_batch): images = [jitter(handle_grayscale_image(x)) for x in example_batch["image"]] labels = [x for x in example_batch["annotation"]] inputs = image_processor(images, labels) return inputs def val_transforms(example_batch): image
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_14
tch["annotation"]] inputs = image_processor(images, labels) return inputs def val_transforms(example_batch): images = [handle_grayscale_image(x) for x in example_batch["image"]] labels = [x for x in example_batch["annotation"]] inputs = image_processor(images, labels) return inputs To apply the preprocessing functions over the entire dataset, use the πŸ€— Datasets set_transform function: Copied train_ds.set_transform(t
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_15
e preprocessing functions over the entire dataset, use the πŸ€— Datasets set_transform function: Copied train_ds.set_transform(train_transforms) test_ds.set_transform(val_transforms) Create evaluation function Including a metric during training is helpful for evaluating your model’s performance. You can load an evaluation method with the πŸ€— Evaluate library. For this task, use the mean Intersection over Union (IoU) metric (see the πŸ€— Evaluate
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_16
uation method with the πŸ€— Evaluate library. For this task, use the mean Intersection over Union (IoU) metric (see the πŸ€— Evaluate quick tour to learn more about how to load and compute a metric): Copied import torch from torch import nn import evaluate metric = evaluate.load("mean_iou") def compute_metrics(eval_pred): with torch.no_grad(): logits, labels = eval_pred logits_tensor = torch.from_numpy(logits) logits
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_17
d): with torch.no_grad(): logits, labels = eval_pred logits_tensor = torch.from_numpy(logits) logits_tensor = nn.functional.interpolate( logits_tensor, size=labels.shape[-2:], mode="bilinear", align_corners=False, ).argmax(dim=1) pred_labels = logits_tensor.detach().cpu().numpy() # currently using _compute instead of compute # see this i
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_18
pred_labels = logits_tensor.detach().cpu().numpy() # currently using _compute instead of compute # see this issue for more info: https://github.com/huggingface/evaluate/pull/328#issuecomment-1286866576 metrics = metric._compute( predictions=pred_labels, references=labels, num_labels=len(id2label), ignore_index=0, reduce_labels=image_processor.reduce_labels,
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_19
ls, num_labels=len(id2label), ignore_index=0, reduce_labels=image_processor.reduce_labels, ) per_category_accuracy = metrics.pop("per_category_accuracy").tolist() per_category_iou = metrics.pop("per_category_iou").tolist() metrics.update({f"accuracy_{id2label[i]}": v for i, v in enumerate(per_category_accuracy)}) metrics.update({f"iou_{id2label[i]}": v for i, v in enu
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_20
{id2label[i]}": v for i, v in enumerate(per_category_accuracy)}) metrics.update({f"iou_{id2label[i]}": v for i, v in enumerate(per_category_iou)}) return metrics Load a base model Before loading a base model, let’s define a helper function to check the total number of parameters a model has, as well as how many of them are trainable. Copied def print_trainable_parameters(model): """ Prints the number of trainable
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_21
l as how many of them are trainable. Copied def print_trainable_parameters(model): """ Prints the number of trainable parameters in the model. """ trainable_params = 0 all_param = 0 for _, param in model.named_parameters(): all_param += param.numel() if param.requires_grad: trainable_params += param.numel() print( f"trainable params: {trainable_params} || all params: {all_param}
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_22
trainable_params += param.numel() print( f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param:.2f}" ) Choose a base model checkpoint. For this example, we use the SegFormer B0 variant. In addition to the checkpoint, pass the label2id and id2label dictionaries to let the AutoModelForSemanticSegmentation class know that we’re interested in a custom base mode
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_23
2id and id2label dictionaries to let the AutoModelForSemanticSegmentation class know that we’re interested in a custom base model where the decoder head should be randomly initialized using the classes from the custom dataset. Copied from transformers import AutoModelForSemanticSegmentation, TrainingArguments, Trainer model = AutoModelForSemanticSegmentation.from_pretrained( checkpoint, id2label=id2label, label2id=label2id, ignore_misma
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_24
er model = AutoModelForSemanticSegmentation.from_pretrained( checkpoint, id2label=id2label, label2id=label2id, ignore_mismatched_sizes=True ) print_trainable_parameters(model) At this point you can check with the print_trainable_parameters helper function that all 100% parameters in the base model (aka model) are trainable. Wrap the base model as a PeftModel for LoRA training To leverage the LoRa method, you need to wrap the base model
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_25
trainable. Wrap the base model as a PeftModel for LoRA training To leverage the LoRa method, you need to wrap the base model as a PeftModel. This involves two steps: Defining LoRa configuration with LoraConfig Wrapping the original model with get_peft_model() using the config defined in the step above. Copied from peft import LoraConfig, get_peft_model config = LoraConfig( r=32, lora_alpha=32, target_modules=["query", "value
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_26
om peft import LoraConfig, get_peft_model config = LoraConfig( r=32, lora_alpha=32, target_modules=["query", "value"], lora_dropout=0.1, bias="lora_only", modules_to_save=["decode_head"], ) lora_model = get_peft_model(model, config) print_trainable_parameters(lora_model) Let’s review the LoraConfig. To enable LoRA technique, we must define the target modules within LoraConfig so that PeftModel can update the necessary m
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_27
nfig. To enable LoRA technique, we must define the target modules within LoraConfig so that PeftModel can update the necessary matrices. Specifically, we want to target the query and value matrices in the attention blocks of the base model. These matrices are identified by their respective names, β€œquery” and β€œvalue”. Therefore, we should specify these names in the target_modules argument of LoraConfig. After we wrap our base model model with Pe
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_28
herefore, we should specify these names in the target_modules argument of LoraConfig. After we wrap our base model model with PeftModel along with the config, we get a new model where only the LoRA parameters are trainable (so-called β€œupdate matrices”) while the pre-trained parameters are kept frozen. These include the parameters of the randomly initialized classifier parameters too. This is NOT we want when fine-tuning the base model on our cu
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_29
parameters of the randomly initialized classifier parameters too. This is NOT we want when fine-tuning the base model on our custom dataset. To ensure that the classifier parameters are also trained, we specify modules_to_save. This also ensures that these modules are serialized alongside the LoRA trainable parameters when using utilities like save_pretrained() and push_to_hub(). In addition to specifying the target_modules within LoraConfig,
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_30
when using utilities like save_pretrained() and push_to_hub(). In addition to specifying the target_modules within LoraConfig, we also need to specify the modules_to_save. When we wrap our base model with PeftModel and pass the configuration, we obtain a new model in which only the LoRA parameters are trainable, while the pre-trained parameters and the randomly initialized classifier parameters are kept frozen. However, we do want to train the
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_31
the pre-trained parameters and the randomly initialized classifier parameters are kept frozen. However, we do want to train the classifier parameters. By specifying the modules_to_save argument, we ensure that the classifier parameters are also trainable, and they will be serialized alongside the LoRA trainable parameters when we use utility functions like save_pretrained() and push_to_hub(). Let’s review the rest of the parameters: r: The dim
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_32
ters when we use utility functions like save_pretrained() and push_to_hub(). Let’s review the rest of the parameters: r: The dimension used by the LoRA update matrices. alpha: Scaling factor. bias: Specifies if the bias parameters should be trained. None denotes none of the bias parameters will be trained. When all is configured, and the base model is wrapped, the print_trainable_parameters helper function lets us explore the number of trainabl
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_33
configured, and the base model is wrapped, the print_trainable_parameters helper function lets us explore the number of trainable parameters. Since we’re interested in performing parameter-efficient fine-tuning, we should expect to see a lower number of trainable parameters from the lora_model in comparison to the original model which is indeed the case here. You can also manually verify what modules are trainable in the lora_model. Copied f
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_34
inal model which is indeed the case here. You can also manually verify what modules are trainable in the lora_model. Copied for name, param in lora_model.named_parameters(): if param.requires_grad: print(name, param.shape) This confirms that only the LoRA parameters appended to the attention blocks and the decode_head parameters are trainable. Train the model Start by defining your training hyperparameters in TrainingArguments
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_35
he decode_head parameters are trainable. Train the model Start by defining your training hyperparameters in TrainingArguments. You can change the values of most parameters however you prefer. Make sure to set remove_unused_columns=False, otherwise the image column will be dropped, and it’s required here. The only other required parameter is output_dir which specifies where to save your model. At the end of each epoch, the Trainer will evalua
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_36
her required parameter is output_dir which specifies where to save your model. At the end of each epoch, the Trainer will evaluate the IoU metric and save the training checkpoint. Note that this example is meant to walk you through the workflow when using PEFT for semantic segmentation. We didn’t perform extensive hyperparameter tuning to achieve optimal results. Copied model_name = checkpoint.split("/")[-1] training_args = TrainingArgument
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_37
rparameter tuning to achieve optimal results. Copied model_name = checkpoint.split("/")[-1] training_args = TrainingArguments( output_dir=f"{model_name}-scene-parse-150-lora", learning_rate=5e-4, num_train_epochs=50, per_device_train_batch_size=4, per_device_eval_batch_size=2, save_total_limit=3, evaluation_strategy="epoch", save_strategy="epoch", logging_steps=5, remove_unused_columns=False, push
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_38
it=3, evaluation_strategy="epoch", save_strategy="epoch", logging_steps=5, remove_unused_columns=False, push_to_hub=True, label_names=["labels"], ) Pass the training arguments to Trainer along with the model, dataset, and compute_metrics function. Call train() to finetune your model. Copied trainer = Trainer( model=lora_model, args=training_args, train_dataset=train_ds, eval_dataset=test_ds, comput
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_39
rainer = Trainer( model=lora_model, args=training_args, train_dataset=train_ds, eval_dataset=test_ds, compute_metrics=compute_metrics, ) trainer.train() Save the model and run inference Use the save_pretrained() method of the lora_model to save the LoRA-only parameters locally. Alternatively, use the push_to_hub() method to upload these parameters directly to the Hugging Face Hub (as shown in the Image classification us
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_40
se the push_to_hub() method to upload these parameters directly to the Hugging Face Hub (as shown in the Image classification using LoRA task guide). Copied model_id = "segformer-scene-parse-150-lora" lora_model.save_pretrained(model_id) We can see that the LoRA-only parameters are just 2.2 MB in size! This greatly improves the portability when using very large models. Copied !ls -lh {model_id} total 2.2M -rw-r--r-- 1 root root 369 Feb
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_41
improves the portability when using very large models. Copied !ls -lh {model_id} total 2.2M -rw-r--r-- 1 root root 369 Feb 8 03:09 adapter_config.json -rw-r--r-- 1 root root 2.2M Feb 8 03:09 adapter_model.bin Let’s now prepare an inference_model and run inference. Copied from peft import PeftConfig config = PeftConfig.from_pretrained(model_id) model = AutoModelForSemanticSegmentation.from_pretrained( checkpoint, id2label=id2label,
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_42
eftConfig.from_pretrained(model_id) model = AutoModelForSemanticSegmentation.from_pretrained( checkpoint, id2label=id2label, label2id=label2id, ignore_mismatched_sizes=True ) inference_model = PeftModel.from_pretrained(model, model_id) Get an image: Copied import requests url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/semantic-seg-image.png" image = Image.open(requests.get(url, stream=True).raw) im
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_43
/huggingface/documentation-images/resolve/main/semantic-seg-image.png" image = Image.open(requests.get(url, stream=True).raw) image Preprocess the image to prepare for inference. Copied encoding = image_processor(image.convert("RGB"), return_tensors="pt") Run inference with the encoded image. Copied with torch.no_grad(): outputs = inference_model(pixel_values=encoding.pixel_values) logits = outputs.logits upsampled_logits = nn.f
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_44
o_grad(): outputs = inference_model(pixel_values=encoding.pixel_values) logits = outputs.logits upsampled_logits = nn.functional.interpolate( logits, size=image.size[::-1], mode="bilinear", align_corners=False, ) pred_seg = upsampled_logits.argmax(dim=1)[0] Next, visualize the results. We need a color palette for this. Here, we use ade_palette(). As it is a long array, so we don’t include it in this guide, please copy
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_45
d a color palette for this. Here, we use ade_palette(). As it is a long array, so we don’t include it in this guide, please copy it from the TensorFlow Model Garden repository. Copied import matplotlib.pyplot as plt color_seg = np.zeros((pred_seg.shape[0], pred_seg.shape[1], 3), dtype=np.uint8) palette = np.array(ade_palette()) for label, color in enumerate(palette): color_seg[pred_seg == label, :] = color color_seg = color_seg[..., ::
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_46
de_palette()) for label, color in enumerate(palette): color_seg[pred_seg == label, :] = color color_seg = color_seg[..., ::-1] # convert to BGR img = np.array(image) * 0.5 + color_seg * 0.5 # plot the image with the segmentation map img = img.astype(np.uint8) plt.figure(figsize=(15, 10)) plt.imshow(img) plt.show() As you can see, the results are far from perfect, however, this example is designed to illustrate the end-to-end workflow o
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_47
ow() As you can see, the results are far from perfect, however, this example is designed to illustrate the end-to-end workflow of fine-tuning a semantic segmentation model with LoRa technique, and is not aiming to achieve state-of-the-art results. The results you see here are the same as you would get if you performed full fine-tuning on the same setup (same model variant, same dataset, same training schedule, etc.), except LoRA allows to achie
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_48
full fine-tuning on the same setup (same model variant, same dataset, same training schedule, etc.), except LoRA allows to achieve them with a fraction of total trainable parameters and in less time. If you wish to use this example and improve the results, here are some things that you can try: Increase the number of training samples. Try a larger SegFormer model variant (explore available model variants on the Hugging Face Hub). Try different
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
67f2c0a9b6ab4f4cb1294820fa4c0028.txt_chunk_49
raining samples. Try a larger SegFormer model variant (explore available model variants on the Hugging Face Hub). Try different values for the arguments available in LoraConfig. Tune the learning rate and batch size.
67f2c0a9b6ab4f4cb1294820fa4c0028.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_1
Tuners Each tuner (or PEFT method) has a configuration and model. LoRA For finetuning a model with LoRA. class peft.LoraConfig < source > ( peft_type: typing.Union[str, peft.utils.config.PeftType] = None auto_mapping: typing.Optional[dict] = None base_model_name_or_path: str = None revision: str = None task_type: typing.Union[str, peft.utils.config.TaskType] = None inference_mode: bool = False r: int = 8 target_modules: typing.Union[typi
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_2
: typing.Union[str, peft.utils.config.TaskType] = None inference_mode: bool = False r: int = 8 target_modules: typing.Union[typing.List[str], str, NoneType] = None lora_alpha: int = 8 lora_dropout: float = 0.0 fan_in_fan_out: bool = False bias: str = 'none' modules_to_save: typing.Optional[typing.List[str]] = None init_lora_weights: bool = True layers_to_transform: typing.Union[typing.List, int, NoneType] = None layers_pattern: typing.Optional[
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_3
_lora_weights: bool = True layers_to_transform: typing.Union[typing.List, int, NoneType] = None layers_pattern: typing.Optional[str] = None ) Parameters r (int) β€” Lora attention dimension. target_modules (Union[List[str],str]) β€” The names of the modules to apply Lora to. lora_alpha (int) β€” The alpha parameter for Lora scaling. lora_dropout (float) β€” The dropout probability for Lora layers. fan_in_fan_out (bool) β€” Set this to True i
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_4
for Lora scaling. lora_dropout (float) β€” The dropout probability for Lora layers. fan_in_fan_out (bool) β€” Set this to True if the layer to replace stores weight like (fan_in, fan_out). For example, gpt-2 uses Conv1D which stores weights like (fan_in, fan_out) and hence this should be set to True. β€” bias (str) β€” Bias type for Lora. Can be β€˜none’, β€˜all’ or β€˜lora_only’. If β€˜all’ or β€˜lora_only’, the corresponding biases will be updated duri
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_5
Bias type for Lora. Can be β€˜none’, β€˜all’ or β€˜lora_only’. If β€˜all’ or β€˜lora_only’, the corresponding biases will be updated during training. Be aware that this means that, even when disabling the adapters, the model will not produce the same output as the base model would have without adaptation. modules_to_save (List[str]) β€”List of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint. layers_to_transform
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_6
t[str]) β€”List of modules apart from LoRA layers to be set as trainable and saved in the final checkpoint. layers_to_transform (Union[List[int],int]) β€” The layer indexes to transform, if this argument is specified, it will apply the LoRA transformations on the layer indexes that are specified in this list. If a single integer is passed, it will apply the LoRA transformations on the layer at this index. layers_pattern (str) β€” The layer patter
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_7
integer is passed, it will apply the LoRA transformations on the layer at this index. layers_pattern (str) β€” The layer pattern name, used only if layers_to_transform is different from None and if the layer pattern is not in the common layers pattern. This is the configuration class to store the configuration of a LoraModel. class peft.LoraModel < source > ( model config adapter_name ) β†’ torch.nn.Module Parameters model (PreTrainedMo
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_8
LoraModel. class peft.LoraModel < source > ( model config adapter_name ) β†’ torch.nn.Module Parameters model (PreTrainedModel) β€” The model to be adapted. config (LoraConfig) β€” The configuration of the Lora model. Returns torch.nn.Module The Lora model. Creates Low Rank Adapter (Lora) model from a pretrained transformers model. Example: Copied >>> from transformers import AutoModelForSeq2SeqLM >>> from peft import LoraModel,
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_9
ined transformers model. Example: Copied >>> from transformers import AutoModelForSeq2SeqLM >>> from peft import LoraModel, LoraConfig >>> config = LoraConfig( ... task_type="SEQ_2_SEQ_LM", ... r=8, ... lora_alpha=32, ... target_modules=["q", "v"], ... lora_dropout=0.01, ... ) >>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base") >>> lora_model = LoraModel(model, config, "default") Copied >>> import transfor
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_10
ModelForSeq2SeqLM.from_pretrained("t5-base") >>> lora_model = LoraModel(model, config, "default") Copied >>> import transformers >>> from peft import LoraConfig, PeftModel, get_peft_model, prepare_model_for_int8_training >>> target_modules = ["q_proj", "k_proj", "v_proj", "out_proj", "fc_in", "fc_out", "wte"] >>> config = LoraConfig( ... r=4, lora_alpha=16, target_modules=target_modules, lora_dropout=0.1, bias="none", task_type="CAUSAL
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_11
config = LoraConfig( ... r=4, lora_alpha=16, target_modules=target_modules, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM" ... ) >>> model = transformers.GPTJForCausalLM.from_pretrained( ... "kakaobrain/kogpt", ... revision="KoGPT6B-ryan1.5b-float16", # or float32 version: revision=KoGPT6B-ryan1.5b ... pad_token_id=tokenizer.eos_token_id, ... use_cache=False, ... device_map={"": rank}, ... torch_dtype=torch.f
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_12
... pad_token_id=tokenizer.eos_token_id, ... use_cache=False, ... device_map={"": rank}, ... torch_dtype=torch.float16, ... load_in_8bit=True, ... ) >>> model = prepare_model_for_int8_training(model) >>> lora_model = get_peft_model(model, config) Attributes: model (PreTrainedModel) β€” The model to be adapted. peft_config (LoraConfig): The configuration of the Lora model. add_weighted_adapter < source > ( adapters weights ad
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_13
adapted. peft_config (LoraConfig): The configuration of the Lora model. add_weighted_adapter < source > ( adapters weights adapter_name combination_type = 'svd' ) Parameters adapters (list) β€” List of adapter names to be merged. weights (list) β€” List of weights for each adapter. adapter_name (str) β€” Name of the new adapter. combination_type (str) β€” Type of merging. Can be one of [svd, linear] This method adds a new adapter by me
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_14
the new adapter. combination_type (str) β€” Type of merging. Can be one of [svd, linear] This method adds a new adapter by merging the given adapters with the given weights. delete_adapter < source > ( adapter_name ) Parameters adapter_name (str) β€” Name of the adapter to be deleted. Deletes an existing adapter. merge_adapter < source > ( ) This method merges the LoRa layers into the base model. merge_and_unload < source > (
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_15
pter. merge_adapter < source > ( ) This method merges the LoRa layers into the base model. merge_and_unload < source > ( ) This method merges the LoRa layers into the base model. This is needed if someone wants to use the base model as a standalone model. Example: Copied >>> from transformers import AutoModelForCausalLM >>> from peft import PeftModel >>> base_model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-40b") >>> p
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_16
odelForCausalLM >>> from peft import PeftModel >>> base_model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-40b") >>> peft_model_id = "smangrul/falcon-40B-int4-peft-lora-sfttrainer-sample" >>> model = PeftModel.from_pretrained(base_model, peft_model_id) >>> merged_model = model.merge_and_unload() unload < source > ( ) Gets back the base model by removing all the lora modules without merging. This gives back the original base model
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_17
urce > ( ) Gets back the base model by removing all the lora modules without merging. This gives back the original base model. unmerge_adapter < source > ( ) This method unmerges the LoRa layers from the base model. class peft.tuners.lora.LoraLayer < source > ( in_features: int out_features: int **kwargs ) class peft.tuners.lora.Linear < source > ( adapter_name: str in_features: int out_features: int r: int = 0 lora_alpha: int =
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_18
class peft.tuners.lora.Linear < source > ( adapter_name: str in_features: int out_features: int r: int = 0 lora_alpha: int = 1 lora_dropout: float = 0.0 fan_in_fan_out: bool = False is_target_conv_1d_layer: bool = False **kwargs ) P-tuning class peft.PromptEncoderConfig < source > ( peft_type: typing.Union[str, peft.utils.config.PeftType] = None auto_mapping: typing.Optional[dict] = None base_model_name_or_path: str = None revision
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_19
[str, peft.utils.config.PeftType] = None auto_mapping: typing.Optional[dict] = None base_model_name_or_path: str = None revision: str = None task_type: typing.Union[str, peft.utils.config.TaskType] = None inference_mode: bool = False num_virtual_tokens: int = None token_dim: int = None num_transformer_submodules: typing.Optional[int] = None num_attention_heads: typing.Optional[int] = None num_layers: typing.Optional[int] = None encoder_reparame
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_20
g.Optional[int] = None num_attention_heads: typing.Optional[int] = None num_layers: typing.Optional[int] = None encoder_reparameterization_type: typing.Union[str, peft.tuners.p_tuning.PromptEncoderReparameterizationType] = <PromptEncoderReparameterizationType.MLP: 'MLP'> encoder_hidden_size: int = None encoder_num_layers: int = 2 encoder_dropout: float = 0.0 ) Parameters encoder_reparameterization_type (Union[PromptEncoderReparameterizatio
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_21
rs: int = 2 encoder_dropout: float = 0.0 ) Parameters encoder_reparameterization_type (Union[PromptEncoderReparameterizationType, str]) β€” The type of reparameterization to use. encoder_hidden_size (int) β€” The hidden size of the prompt encoder. encoder_num_layers (int) β€” The number of layers of the prompt encoder. encoder_dropout (float) β€” The dropout probability of the prompt encoder. This is the configuration class to store the c
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_22
er. encoder_dropout (float) β€” The dropout probability of the prompt encoder. This is the configuration class to store the configuration of a PromptEncoder. class peft.PromptEncoder < source > ( config ) Parameters config (PromptEncoderConfig) β€” The configuration of the prompt encoder. The prompt encoder network that is used to generate the virtual token embeddings for p-tuning. Example: Copied >>> from peft import PromptEncod
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_23
network that is used to generate the virtual token embeddings for p-tuning. Example: Copied >>> from peft import PromptEncoder, PromptEncoderConfig >>> config = PromptEncoderConfig( ... peft_type="P_TUNING", ... task_type="SEQ_2_SEQ_LM", ... num_virtual_tokens=20, ... token_dim=768, ... num_transformer_submodules=1, ... num_attention_heads=12, ... num_layers=12, ... encoder_reparameterization_type="MLP", ...
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_24
nsformer_submodules=1, ... num_attention_heads=12, ... num_layers=12, ... encoder_reparameterization_type="MLP", ... encoder_hidden_size=768, ... ) >>> prompt_encoder = PromptEncoder(config) Attributes: embedding (torch.nn.Embedding) β€” The embedding layer of the prompt encoder. mlp_head (torch.nn.Sequential) β€” The MLP head of the prompt encoder if inference_mode=False. lstm_head (torch.nn.LSTM) β€” The LSTM head of the prompt enc
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_25
ntial) β€” The MLP head of the prompt encoder if inference_mode=False. lstm_head (torch.nn.LSTM) β€” The LSTM head of the prompt encoder if inference_mode=False and encoder_reparameterization_type="LSTM". token_dim (int) β€” The hidden embedding dimension of the base transformer model. input_size (int) β€” The input size of the prompt encoder. output_size (int) β€” The output size of the prompt encoder. hidden_size (int) β€” The hidden size of the prompt e
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_26
e prompt encoder. output_size (int) β€” The output size of the prompt encoder. hidden_size (int) β€” The hidden size of the prompt encoder. total_virtual_tokens (int): The total number of virtual tokens of the prompt encoder. encoder_type (Union[PromptEncoderReparameterizationType, str]): The encoder type of the prompt encoder. Input shape: (batch_size, total_virtual_tokens) Output shape: (batch_size, total_virtual_tokens, token_dim) Prefix tuning
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_27
oder. Input shape: (batch_size, total_virtual_tokens) Output shape: (batch_size, total_virtual_tokens, token_dim) Prefix tuning class peft.PrefixTuningConfig < source > ( peft_type: typing.Union[str, peft.utils.config.PeftType] = None auto_mapping: typing.Optional[dict] = None base_model_name_or_path: str = None revision: str = None task_type: typing.Union[str, peft.utils.config.TaskType] = None inference_mode: bool = False num_virtual_tok
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_28
evision: str = None task_type: typing.Union[str, peft.utils.config.TaskType] = None inference_mode: bool = False num_virtual_tokens: int = None token_dim: int = None num_transformer_submodules: typing.Optional[int] = None num_attention_heads: typing.Optional[int] = None num_layers: typing.Optional[int] = None encoder_hidden_size: int = None prefix_projection: bool = False ) Parameters encoder_hidden_size (int) β€” The hidden size of the prom
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_29
idden_size: int = None prefix_projection: bool = False ) Parameters encoder_hidden_size (int) β€” The hidden size of the prompt encoder. prefix_projection (bool) β€” Whether to project the prefix embeddings. This is the configuration class to store the configuration of a PrefixEncoder. class peft.PrefixEncoder < source > ( config ) Parameters config (PrefixTuningConfig) β€” The configuration of the prefix encoder. The torch.nn mod
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_30
< source > ( config ) Parameters config (PrefixTuningConfig) β€” The configuration of the prefix encoder. The torch.nn model to encode the prefix. Example: Copied >>> from peft import PrefixEncoder, PrefixTuningConfig >>> config = PrefixTuningConfig( ... peft_type="PREFIX_TUNING", ... task_type="SEQ_2_SEQ_LM", ... num_virtual_tokens=20, ... token_dim=768, ... num_transformer_submodules=1, ... num_attention_hea
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_31
2_SEQ_LM", ... num_virtual_tokens=20, ... token_dim=768, ... num_transformer_submodules=1, ... num_attention_heads=12, ... num_layers=12, ... encoder_hidden_size=768, ... ) >>> prefix_encoder = PrefixEncoder(config) Attributes: embedding (torch.nn.Embedding) β€” The embedding layer of the prefix encoder. transform (torch.nn.Sequential) β€” The two-layer MLP to transform the prefix embeddings if prefix_projection is True. pre
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_32
ncoder. transform (torch.nn.Sequential) β€” The two-layer MLP to transform the prefix embeddings if prefix_projection is True. prefix_projection (bool) β€” Whether to project the prefix embeddings. Input shape: (batch_size, num_virtual_tokens) Output shape: (batch_size, num_virtual_tokens, 2*layers*hidden) Prompt tuning class peft.PromptTuningConfig < source > ( peft_type: typing.Union[str, peft.utils.config.PeftType] = None auto_mapping: typi
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_33
class peft.PromptTuningConfig < source > ( peft_type: typing.Union[str, peft.utils.config.PeftType] = None auto_mapping: typing.Optional[dict] = None base_model_name_or_path: str = None revision: str = None task_type: typing.Union[str, peft.utils.config.TaskType] = None inference_mode: bool = False num_virtual_tokens: int = None token_dim: int = None num_transformer_submodules: typing.Optional[int] = None num_attention_heads: typing.Optional
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_34
s: int = None token_dim: int = None num_transformer_submodules: typing.Optional[int] = None num_attention_heads: typing.Optional[int] = None num_layers: typing.Optional[int] = None prompt_tuning_init: typing.Union[peft.tuners.prompt_tuning.PromptTuningInit, str] = <PromptTuningInit.RANDOM: 'RANDOM'> prompt_tuning_init_text: typing.Optional[str] = None tokenizer_name_or_path: typing.Optional[str] = None ) Parameters prompt_tuning_init (Unio
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_35
text: typing.Optional[str] = None tokenizer_name_or_path: typing.Optional[str] = None ) Parameters prompt_tuning_init (Union[PromptTuningInit, str]) β€” The initialization of the prompt embedding. prompt_tuning_init_text (str, optional) β€” The text to initialize the prompt embedding. Only used if prompt_tuning_init is TEXT. tokenizer_name_or_path (str, optional) β€” The name or path of the tokenizer. Only used if prompt_tuning_init is TEXT.
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_36
is TEXT. tokenizer_name_or_path (str, optional) β€” The name or path of the tokenizer. Only used if prompt_tuning_init is TEXT. This is the configuration class to store the configuration of a PromptEmbedding. class peft.PromptEmbedding < source > ( config word_embeddings ) Parameters config (PromptTuningConfig) β€” The configuration of the prompt embedding. word_embeddings (torch.nn.Module) β€” The word embeddings of the base transform
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_37
ig) β€” The configuration of the prompt embedding. word_embeddings (torch.nn.Module) β€” The word embeddings of the base transformer model. The model to encode virtual tokens into prompt embeddings. Attributes: embedding (torch.nn.Embedding) β€” The embedding layer of the prompt embedding. Example: Copied >>> from peft import PromptEmbedding, PromptTuningConfig >>> config = PromptTuningConfig( ... peft_type="PROMPT_TUNING", ... task
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_38
eft import PromptEmbedding, PromptTuningConfig >>> config = PromptTuningConfig( ... peft_type="PROMPT_TUNING", ... task_type="SEQ_2_SEQ_LM", ... num_virtual_tokens=20, ... token_dim=768, ... num_transformer_submodules=1, ... num_attention_heads=12, ... num_layers=12, ... prompt_tuning_init="TEXT", ... prompt_tuning_init_text="Predict if sentiment of this review is positive, negative or neutral", ... toke
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_39
nit="TEXT", ... prompt_tuning_init_text="Predict if sentiment of this review is positive, negative or neutral", ... tokenizer_name_or_path="t5-base", ... ) >>> # t5_model.shared is the word embeddings of the base model >>> prompt_embedding = PromptEmbedding(config, t5_model.shared) Input Shape: (batch_size, total_virtual_tokens) Output Shape: (batch_size, total_virtual_tokens, token_dim) IA3 class peft.IA3Config < source > ( peft_
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_40
tal_virtual_tokens) Output Shape: (batch_size, total_virtual_tokens, token_dim) IA3 class peft.IA3Config < source > ( peft_type: typing.Union[str, peft.utils.config.PeftType] = None auto_mapping: typing.Optional[dict] = None base_model_name_or_path: str = None revision: str = None task_type: typing.Union[str, peft.utils.config.TaskType] = None inference_mode: bool = False target_modules: typing.Union[typing.List[str], str, NoneType] = None
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_41
.utils.config.TaskType] = None inference_mode: bool = False target_modules: typing.Union[typing.List[str], str, NoneType] = None feedforward_modules: typing.Union[typing.List[str], str, NoneType] = None fan_in_fan_out: bool = False modules_to_save: typing.Optional[typing.List[str]] = None init_ia3_weights: bool = True ) Parameters target_modules (Union[List[str],str]) β€” The names of the modules to apply (IA)^3 to. feedforward_modules (Un
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_42
) Parameters target_modules (Union[List[str],str]) β€” The names of the modules to apply (IA)^3 to. feedforward_modules (Union[List[str],str]) β€” The names of the modules to be treated as feedforward modules as in the original paper. β€” fan_in_fan_out (bool) β€” Set this to True if the layer to replace stores weight like (fan_in, fan_out). For example, gpt-2 uses Conv1D which stores weights like (fan_in, fan_out) and hence this should be
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_43
ht like (fan_in, fan_out). For example, gpt-2 uses Conv1D which stores weights like (fan_in, fan_out) and hence this should be set to True. β€” modules_to_save (List[str]) β€”List of modules apart from (IA)^3 layers to be set as trainable and saved in the final checkpoint. init_ia3_weights (bool) β€” Whether to initialize the vectors in the (IA)^3 layers, defaults to True. This is the configuration class to store the configuration of a IA3Mo
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_44
ize the vectors in the (IA)^3 layers, defaults to True. This is the configuration class to store the configuration of a IA3Model. class peft.IA3Model < source > ( model config adapter_name ) β†’ torch.nn.Module Parameters model (PreTrainedModel) β€” The model to be adapted. config (IA3Config) β€” The configuration of the (IA)^3 model. Returns torch.nn.Module The (IA)^3 model. Creates a Infused Adapter by Inhibiting and Amplifying I
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_45
of the (IA)^3 model. Returns torch.nn.Module The (IA)^3 model. Creates a Infused Adapter by Inhibiting and Amplifying Inner Activations ((IA)^3) model from a pretrained transformers model. The method is described in detail in https://arxiv.org/abs/2205.05638 Example: Copied >>> from transformers import AutoModelForSeq2SeqLM, ia3Config >>> from peft import IA3Model, IA3Config >>> config = IA3Config( ... peft_type="IA3", ...
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_46
oModelForSeq2SeqLM, ia3Config >>> from peft import IA3Model, IA3Config >>> config = IA3Config( ... peft_type="IA3", ... task_type="SEQ_2_SEQ_LM", ... target_modules=["k", "v", "w0"], ... feedforward_modules=["w0"], ... ) >>> model = AutoModelForSeq2SeqLM.from_pretrained("t5-base") >>> ia3_model = IA3Model(config, model) Attributes: model (PreTrainedModel) β€” The model to be adapted. peft_config (ia3Config): The configuration of
1d2528daa742bd1848ac231296d2db45.txt
1d2528daa742bd1848ac231296d2db45.txt_chunk_47
odel(config, model) Attributes: model (PreTrainedModel) β€” The model to be adapted. peft_config (ia3Config): The configuration of the (IA)^3 model. merge_and_unload < source > ( ) This method merges the (IA)^3 layers into the base model. This is needed if someone wants to use the base model as a standalone model.
1d2528daa742bd1848ac231296d2db45.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_1
int8 training for automatic speech recognition Quantization reduces the precision of floating point data types, decreasing the memory required to store model weights. However, quantization degrades inference performance because you lose information when you reduce the precision. 8-bit or int8 quantization uses only a quarter precision, but it does not degrade performance because it doesn’t just drop the bits or data. Instead, int8 quantizatio
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_2
quarter precision, but it does not degrade performance because it doesn’t just drop the bits or data. Instead, int8 quantization rounds from one data type to another. πŸ’‘ Read the LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale paper to learn more, or you can take a look at the corresponding blog post for a gentler introduction. This guide will show you how to train a openai/whisper-large-v2 model for multilingual automatic spe
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_3
for a gentler introduction. This guide will show you how to train a openai/whisper-large-v2 model for multilingual automatic speech recognition (ASR) using a combination of int8 quantization and LoRA. You’ll train Whisper for multilingual ASR on Marathi from the Common Voice 11.0 dataset. Before you start, make sure you have all the necessary libraries installed: Copied !pip install -q peft transformers datasets accelerate evaluate jiwer bit
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_4
u have all the necessary libraries installed: Copied !pip install -q peft transformers datasets accelerate evaluate jiwer bitsandbytes Setup Let’s take care of some of the setup first so you can start training faster later. Set the CUDA_VISIBLE_DEVICES to 0 to use the first GPU on your machine. Then you can specify the model name (either a Hub model repository id or a path to a directory containing the model), language and language abbrev
3348d37e0cea1a003c3eb2670c82d8c3.txt
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
32