chunk_id
stringlengths
44
45
chunk_content
stringlengths
21
448
filename
stringlengths
36
36
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_5
fy the model name (either a Hub model repository id or a path to a directory containing the model), language and language abbreviation to train on, the task type, and the dataset name: Copied import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" model_name_or_path = "openai/whisper-large-v2" language = "Marathi" language_abbr = "mr" task = "transcribe" dataset_name = "mozilla-foundation/common_voice_11_0" You can also log in to your Hugging Fa
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_6
age_abbr = "mr" task = "transcribe" dataset_name = "mozilla-foundation/common_voice_11_0" You can also log in to your Hugging Face account to save and share your trained model on the Hub if you’d like: Copied from huggingface_hub import notebook_login notebook_login() Load dataset and metric The Common Voice 11.0 dataset contains many hours of recorded speech in many different languages. This guide uses the Marathi language as an example
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_7
0 dataset contains many hours of recorded speech in many different languages. This guide uses the Marathi language as an example, but feel free to use any other language you’re interested in. Initialize a DatasetDict structure, and load the train (load both the train+validation split into train) and test splits from the dataset into it: Copied from datasets import load_dataset from datasets import load_dataset, DatasetDict common_voice = D
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_8
he dataset into it: Copied from datasets import load_dataset from datasets import load_dataset, DatasetDict common_voice = DatasetDict() common_voice["train"] = load_dataset(dataset_name, language_abbr, split="train+validation", use_auth_token=True) common_voice["test"] = load_dataset(dataset_name, language_abbr, split="test", use_auth_token=True) common_voice["train"][0] Preprocess dataset Let’s prepare the dataset for training. Load a
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_9
split="test", use_auth_token=True) common_voice["train"][0] Preprocess dataset Let’s prepare the dataset for training. Load a feature extractor, tokenizer, and processor. You should also pass the language and task to the tokenizer and processor so they know how to process the inputs: Copied from transformers import AutoFeatureExtractor, AutoTokenizer, AutoProcessor feature_extractor = AutoFeatureExtractor.from_pretrained(model_name_or_pa
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_10
rt AutoFeatureExtractor, AutoTokenizer, AutoProcessor feature_extractor = AutoFeatureExtractor.from_pretrained(model_name_or_path) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, language=language, task=task) processor = AutoProcessor.from_pretrained(model_name_or_path, language=language, task=task) You’ll only be training on the sentence and audio columns, so you can remove the rest of the metadata with remove_columns: Copied
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_11
ll only be training on the sentence and audio columns, so you can remove the rest of the metadata with remove_columns: Copied common_voice = common_voice.remove_columns( ["accent", "age", "client_id", "down_votes", "gender", "locale", "path", "segment", "up_votes"] ) common_voice["train"][0] { "audio": { "path": "/root/.cache/huggingface/datasets/downloads/extracted/f7e1ef6a2d14f20194999aad5040c5d4bb3ead1377de3e1bbc6e9dba34d1
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_12
"path": "/root/.cache/huggingface/datasets/downloads/extracted/f7e1ef6a2d14f20194999aad5040c5d4bb3ead1377de3e1bbc6e9dba34d18a8a/common_voice_mr_30585613.mp3", "array": array( [1.13686838e-13, -1.42108547e-13, -1.98951966e-13, ..., 4.83472422e-06, 3.54798703e-06, 1.63231743e-06] ), "sampling_rate": 48000, }, "sentence": "आईचे आजारपण वाढत चालले, तसतशी मथीही नीट खातपीतनाशी झाली.", } If you look at t
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_13
"sampling_rate": 48000, }, "sentence": "आईचे आजारपण वाढत चालले, तसतशी मथीही नीट खातपीतनाशी झाली.", } If you look at the sampling_rate, you’ll see the audio was sampled at 48kHz. The Whisper model was pretrained on audio inputs at 16kHZ which means you’ll need to downsample the audio inputs to match what the model was pretrained on. Downsample the audio by using the cast_column method on the audio column, and set the sampling_rate to
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_14
model was pretrained on. Downsample the audio by using the cast_column method on the audio column, and set the sampling_rate to 16kHz. The audio input is resampled on the fly the next time you call it: Copied from datasets import Audio common_voice = common_voice.cast_column("audio", Audio(sampling_rate=16000)) common_voice["train"][0] { "audio": { "path": "/root/.cache/huggingface/datasets/downloads/extracted/f7e1ef6a2d14f20194
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_15
mon_voice["train"][0] { "audio": { "path": "/root/.cache/huggingface/datasets/downloads/extracted/f7e1ef6a2d14f20194999aad5040c5d4bb3ead1377de3e1bbc6e9dba34d18a8a/common_voice_mr_30585613.mp3", "array": array( [-3.06954462e-12, -3.63797881e-12, -4.54747351e-12, ..., -7.74800901e-06, -1.74738125e-06, 4.36312439e-06] ), "sampling_rate": 16000, }, "sentence": "आईचे आजारपण वाढत चालले, तसतशी मथ
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_16
4738125e-06, 4.36312439e-06] ), "sampling_rate": 16000, }, "sentence": "आईचे आजारपण वाढत चालले, तसतशी मथीही नीट खातपीतनाशी झाली.", } Once you’ve cleaned up the dataset, you can write a function to generate the correct model inputs. The function should: Resample the audio inputs to 16kHZ by loading the audio column. Compute the input features from the audio array using the feature extractor. Tokenize the sentence column t
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_17
ng the audio column. Compute the input features from the audio array using the feature extractor. Tokenize the sentence column to the input labels. Copied def prepare_dataset(batch): audio = batch["audio"] batch["input_features"] = feature_extractor(audio["array"], sampling_rate=audio["sampling_rate"]).input_features[0] batch["labels"] = tokenizer(batch["sentence"]).input_ids return batch Apply the prepare_dataset function to
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_18
_features[0] batch["labels"] = tokenizer(batch["sentence"]).input_ids return batch Apply the prepare_dataset function to the dataset with the map function, and set the num_proc argument to 2 to enable multiprocessing (if map hangs, then set num_proc=1): Copied common_voice = common_voice.map(prepare_dataset, remove_columns=common_voice.column_names["train"], num_proc=2) Finally, create a DataCollator class to pad the labels in each b
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_19
remove_columns=common_voice.column_names["train"], num_proc=2) Finally, create a DataCollator class to pad the labels in each batch to the maximum length, and replace padding with -100 so they’re ignored by the loss function. Then initialize an instance of the data collator: Copied import torch from dataclasses import dataclass from typing import Any, Dict, List, Union @dataclass class DataCollatorSpeechSeq2SeqWithPadding: processor:
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_20
port dataclass from typing import Any, Dict, List, Union @dataclass class DataCollatorSpeechSeq2SeqWithPadding: processor: Any def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: input_features = [{"input_features": feature["input_features"]} for feature in features] batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt") label_fe
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_21
feature in features] batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt") label_features = [{"input_ids": feature["labels"]} for feature in features] labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt") labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) if (labels[:, 0] == self.processor.tokenizer.bos_token_id
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_22
ut_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item(): labels = labels[:, 1:] batch["labels"] = labels return batch data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor) Train Now that the dataset is ready, you can turn your attention to the model. Start by loading the pretrained openai/whisper-la
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_23
ain Now that the dataset is ready, you can turn your attention to the model. Start by loading the pretrained openai/whisper-large-v2 model from AutoModelForSpeechSeq2Seq, and make sure to set the load_in_8bit argument to True to enable int8 quantization. The device_map=auto argument automatically determines how to load and store the model weights: Copied from transformers import AutoModelForSpeechSeq2Seq model = AutoModelForSpeechSeq2Seq.
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_24
ad and store the model weights: Copied from transformers import AutoModelForSpeechSeq2Seq model = AutoModelForSpeechSeq2Seq.from_pretrained(model_name_or_path, load_in_8bit=True, device_map="auto") You should configure forced_decoder_ids=None because no tokens are used before sampling, and you won’t need to suppress any tokens during generation either: Copied model.config.forced_decoder_ids = None model.config.suppress_tokens = [] To get
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_25
s any tokens during generation either: Copied model.config.forced_decoder_ids = None model.config.suppress_tokens = [] To get the model ready for int8 quantization, use the utility function prepare_model_for_int8_training to handle the following: casts all the non int8 modules to full precision (fp32) for stability adds a forward hook to the input embedding layer to calculate the gradients of the input hidden states enables gradient checkpoi
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_26
adds a forward hook to the input embedding layer to calculate the gradients of the input hidden states enables gradient checkpointing for more memory-efficient training Copied from peft import prepare_model_for_int8_training model = prepare_model_for_int8_training(model) Let’s also apply LoRA to the training to make it even more efficient. Load a LoraConfig and configure the following parameters: r, the dimension of the low-rank matrices lo
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_27
e it even more efficient. Load a LoraConfig and configure the following parameters: r, the dimension of the low-rank matrices lora_alpha, scaling factor for the weight matrices target_modules, the name of the attention matrices to apply LoRA to (q_proj and v_proj, or query and value in this case) lora_dropout, dropout probability of the LoRA layers bias, set to none 💡 The weight matrix is scaled by lora_alpha/r, and a higher lora_alpha value as
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_28
probability of the LoRA layers bias, set to none 💡 The weight matrix is scaled by lora_alpha/r, and a higher lora_alpha value assigns more weight to the LoRA activations. For performance, we recommend setting bias to None first, and then lora_only, before trying all. Copied from peft import LoraConfig, PeftModel, LoraModel, LoraConfig, get_peft_model config = LoraConfig(r=32, lora_alpha=64, target_modules=["q_proj", "v_proj"], lora_dropout=
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_29
raModel, LoraConfig, get_peft_model config = LoraConfig(r=32, lora_alpha=64, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none") After you set up the LoraConfig, wrap it and the base model with the get_peft_model() function to create a PeftModel. Print out the number of trainable parameters to see how much more efficient LoRA is compared to fully training the model! Copied model = get_peft_model(model, config) model.print_t
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_30
much more efficient LoRA is compared to fully training the model! Copied model = get_peft_model(model, config) model.print_trainable_parameters() "trainable params: 15728640 || all params: 1559033600 || trainable%: 1.0088711365810203" Now you’re ready to define some training hyperparameters in the Seq2SeqTrainingArguments class, such as where to save the model to, batch size, learning rate, and number of epochs to train for. The PeftModel d
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_31
guments class, such as where to save the model to, batch size, learning rate, and number of epochs to train for. The PeftModel doesn’t have the same signature as the base model, so you’ll need to explicitly set remove_unused_columns=False and label_names=["labels"]. Copied from transformers import Seq2SeqTrainingArguments training_args = Seq2SeqTrainingArguments( output_dir="your-name/int8-whisper-large-v2-asr", per_device_train_bat
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_32
uments training_args = Seq2SeqTrainingArguments( output_dir="your-name/int8-whisper-large-v2-asr", per_device_train_batch_size=8, gradient_accumulation_steps=1, learning_rate=1e-3, warmup_steps=50, num_train_epochs=3, evaluation_strategy="epoch", fp16=True, per_device_eval_batch_size=8, generation_max_length=128, logging_steps=25, remove_unused_columns=False, label_names=["labels"], ) It is a
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_33
e=8, generation_max_length=128, logging_steps=25, remove_unused_columns=False, label_names=["labels"], ) It is also a good idea to write a custom TrainerCallback to save model checkpoints during training: Copied from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR class SavePeftModelCallback(TrainerCallback): def on_save( self, args: TrainingArguments, state: TrainerState, control
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_34
k(TrainerCallback): def on_save( self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs, ): checkpoint_folder = os.path.join(args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}") peft_model_path = os.path.join(checkpoint_folder, "adapter_model") kwargs["model"].save_pretrained(peft_model_path) pytorch_model_path = os.path.
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_35
ckpoint_folder, "adapter_model") kwargs["model"].save_pretrained(peft_model_path) pytorch_model_path = os.path.join(checkpoint_folder, "pytorch_model.bin") if os.path.exists(pytorch_model_path): os.remove(pytorch_model_path) return control Pass the Seq2SeqTrainingArguments, model, datasets, data collator, tokenizer, and callback to the Seq2SeqTrainer. You can optionally set model.config.use_cache = F
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_36
model, datasets, data collator, tokenizer, and callback to the Seq2SeqTrainer. You can optionally set model.config.use_cache = False to silence any warnings. Once everything is ready, call train to start training! Copied from transformers import Seq2SeqTrainer, TrainerCallback, Seq2SeqTrainingArguments, TrainerState, TrainerControl trainer = Seq2SeqTrainer( args=training_args, model=model, train_dataset=common_voice["train"],
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_37
, TrainerControl trainer = Seq2SeqTrainer( args=training_args, model=model, train_dataset=common_voice["train"], eval_dataset=common_voice["test"], data_collator=data_collator, tokenizer=processor.feature_extractor, callbacks=[SavePeftModelCallback], ) model.config.use_cache = False trainer.train() Evaluate Word error rate (WER) is a common metric for evaluating ASR models. Load the WER metric from 🤗 Evaluate:
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_38
.train() Evaluate Word error rate (WER) is a common metric for evaluating ASR models. Load the WER metric from 🤗 Evaluate: Copied import evaluate metric = evaluate.load("wer") Write a loop to evaluate the model performance. Set the model to evaluation mode first, and write the loop with torch.cuda.amp.autocast() because int8 training requires autocasting. Then, pass a batch of examples to the model to evaluate. Get the decoded prediction
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_39
because int8 training requires autocasting. Then, pass a batch of examples to the model to evaluate. Get the decoded predictions and labels, and add them as a batch to the WER metric before calling compute to get the final WER score: Copied from torch.utils.data import DataLoader from tqdm import tqdm import numpy as np import gc eval_dataloader = DataLoader(common_voice["test"], batch_size=8, collate_fn=data_collator) model.eval() for st
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_40
as np import gc eval_dataloader = DataLoader(common_voice["test"], batch_size=8, collate_fn=data_collator) model.eval() for step, batch in enumerate(tqdm(eval_dataloader)): with torch.cuda.amp.autocast(): with torch.no_grad(): generated_tokens = ( model.generate( input_features=batch["input_features"].to("cuda"), decoder_input_ids=batch["labels"][:, :4].to("cuda")
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_41
input_features=batch["input_features"].to("cuda"), decoder_input_ids=batch["labels"][:, :4].to("cuda"), max_new_tokens=255, ) .cpu() .numpy() ) labels = batch["labels"].cpu().numpy() labels = np.where(labels != -100, labels, tokenizer.pad_token_id) decoded_preds = tokenizer.batch_decode(generated_tokens,
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_42
= np.where(labels != -100, labels, tokenizer.pad_token_id) decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) metric.add_batch( predictions=decoded_preds, references=decoded_labels, ) del generated_tokens, labels, batch gc.collect() wer = 100 * metric.co
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_43
references=decoded_labels, ) del generated_tokens, labels, batch gc.collect() wer = 100 * metric.compute() print(f"{wer=}") Share model Once you’re happy with your results, you can upload your model to the Hub with the push_to_hub method: Copied model.push_to_hub("your-name/int8-whisper-large-v2-asr") Inference Let’s test the model out now! Instantiate the model configuration from PeftConfig, and from here,
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_44
er-large-v2-asr") Inference Let’s test the model out now! Instantiate the model configuration from PeftConfig, and from here, you can use the configuration to load the base and PeftModel, tokenizer, processor, and feature extractor. Remember to define the language and task in the tokenizer, processor, and forced_decoder_ids: Copied from peft import PeftModel, PeftConfig peft_model_id = "smangrul/openai-whisper-large-v2-LORA-colab" langua
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_45
oder_ids: Copied from peft import PeftModel, PeftConfig peft_model_id = "smangrul/openai-whisper-large-v2-LORA-colab" language = "Marathi" task = "transcribe" peft_config = PeftConfig.from_pretrained(peft_model_id) model = WhisperForConditionalGeneration.from_pretrained( peft_config.base_model_name_or_path, load_in_8bit=True, device_map="auto" ) model = PeftModel.from_pretrained(model, peft_model_id) tokenizer = WhisperTokenizer.from_pr
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_46
d_in_8bit=True, device_map="auto" ) model = PeftModel.from_pretrained(model, peft_model_id) tokenizer = WhisperTokenizer.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task) processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, language=language, task=task) feature_extractor = processor.feature_extractor forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task)
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_47
ure_extractor = processor.feature_extractor forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task=task) Load an audio sample (you can listen to it in the Dataset Preview) to transcribe, and the AutomaticSpeechRecognitionPipeline: Copied from transformers import AutomaticSpeechRecognitionPipeline audio = "https://huggingface.co/datasets/stevhliu/dummy/resolve/main/mrt_01523_00028548203.wav" pipeline = AutomaticSpeechR
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_48
ine audio = "https://huggingface.co/datasets/stevhliu/dummy/resolve/main/mrt_01523_00028548203.wav" pipeline = AutomaticSpeechRecognitionPipeline(model=model, tokenizer=tokenizer, feature_extractor=feature_extractor) Then use the pipeline with autocast as a context manager on the audio sample: Copied with torch.cuda.amp.autocast(): text = pipe(audio, generate_kwargs={"forced_decoder_ids": forced_decoder_ids}, max_new_tokens=255)["text"]
3348d37e0cea1a003c3eb2670c82d8c3.txt
3348d37e0cea1a003c3eb2670c82d8c3.txt_chunk_49
a.amp.autocast(): text = pipe(audio, generate_kwargs={"forced_decoder_ids": forced_decoder_ids}, max_new_tokens=255)["text"] text "मी तुमच्यासाठी काही करू शकतो का?"
3348d37e0cea1a003c3eb2670c82d8c3.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_1
Semantic segmentation using LoRA This guide demonstrates how to use LoRA, a low-rank approximation technique, to finetune a SegFormer model variant for semantic segmentation. By using LoRA from 🤗 PEFT, we can reduce the number of trainable parameters in the SegFormer model to only 14% of the original trainable parameters. LoRA achieves this reduction by adding low-rank “update matrices” to specific blocks of the model, such as the attention b
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_2
ters. LoRA achieves this reduction by adding low-rank “update matrices” to specific blocks of the model, such as the attention blocks. During fine-tuning, only these matrices are trained, while the original model parameters are left unchanged. At inference time, the update matrices are merged with the original model parameters to produce the final classification result. For more information on LoRA, please refer to the original LoRA paper. Ins
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_3
rameters to produce the final classification result. For more information on LoRA, please refer to the original LoRA paper. Install dependencies Install the libraries required for model training: Copied !pip install transformers accelerate evaluate datasets peft -q Authenticate to share your model To share the finetuned model with the community at the end of the training, authenticate using your 🤗 token. You can obtain your token from
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_4
finetuned model with the community at the end of the training, authenticate using your 🤗 token. You can obtain your token from your account settings. Copied from huggingface_hub import notebook_login notebook_login() Load a dataset To ensure that this example runs within a reasonable time frame, here we are limiting the number of instances from the training set of the SceneParse150 dataset to 150. Copied from datasets import load_da
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_5
iting the number of instances from the training set of the SceneParse150 dataset to 150. Copied from datasets import load_dataset ds = load_dataset("scene_parse_150", split="train[:150]") Next, split the dataset into train and test sets. Copied ds = ds.train_test_split(test_size=0.1) train_ds = ds["train"] test_ds = ds["test"] Prepare label maps Create a dictionary that maps a label id to a label class, which will be useful when set
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_6
t_ds = ds["test"] Prepare label maps Create a dictionary that maps a label id to a label class, which will be useful when setting up the model later: label2id: maps the semantic classes of the dataset to integer ids. id2label: maps integer ids back to the semantic classes. Copied import json from huggingface_hub import cached_download, hf_hub_url repo_id = "huggingface/label-files" filename = "ade20k-hf-doc-builder.json" id2label = json
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_7
import cached_download, hf_hub_url repo_id = "huggingface/label-files" filename = "ade20k-hf-doc-builder.json" id2label = json.load(open(cached_download(hf_hub_url(repo_id, filename, repo_type="dataset")), "r")) id2label = {int(k): v for k, v in id2label.items()} label2id = {v: k for k, v in id2label.items()} num_labels = len(id2label) Prepare datasets for training and evaluation Next, load the SegFormer image processor to prepare the imag
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_8
els = len(id2label) Prepare datasets for training and evaluation Next, load the SegFormer image processor to prepare the images and annotations for the model. This dataset uses the zero-index as the background class, so make sure to set reduce_labels=True to subtract one from all labels since the background class is not among the 150 classes. Copied from transformers import AutoImageProcessor checkpoint = "nvidia/mit-b0" image_processor
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_9
not among the 150 classes. Copied from transformers import AutoImageProcessor checkpoint = "nvidia/mit-b0" image_processor = AutoImageProcessor.from_pretrained(checkpoint, reduce_labels=True) Add a function to apply data augmentation to the images, so that the model is more robust against overfitting. Here we use the ColorJitter function from torchvision to randomly change the color properties of an image. Copied from torchvision.trans
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_10
the ColorJitter function from torchvision to randomly change the color properties of an image. Copied from torchvision.transforms import ColorJitter jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1) Add a function to handle grayscale images and ensure that each input image has three color channels, regardless of whether it was originally grayscale or RGB. The function converts RGB images to array as is, and for
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_11
lor channels, regardless of whether it was originally grayscale or RGB. The function converts RGB images to array as is, and for grayscale images that have only one color channel, the function replicates the same channel three times using np.tile() before converting the image into an array. Copied import numpy as np def handle_grayscale_image(image): np_image = np.array(image) if np_image.ndim == 2: tiled_image = np.tile(np
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_12
def handle_grayscale_image(image): np_image = np.array(image) if np_image.ndim == 2: tiled_image = np.tile(np.expand_dims(np_image, -1), 3) return Image.fromarray(tiled_image) else: return Image.fromarray(np_image) Finally, combine everything in two functions that you’ll use to transform training and validation data. The two functions are similar except data augmentation is applied only to the training dat
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_13
ansform training and validation data. The two functions are similar except data augmentation is applied only to the training data. Copied from PIL import Image def train_transforms(example_batch): images = [jitter(handle_grayscale_image(x)) for x in example_batch["image"]] labels = [x for x in example_batch["annotation"]] inputs = image_processor(images, labels) return inputs def val_transforms(example_batch): image
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_14
tch["annotation"]] inputs = image_processor(images, labels) return inputs def val_transforms(example_batch): images = [handle_grayscale_image(x) for x in example_batch["image"]] labels = [x for x in example_batch["annotation"]] inputs = image_processor(images, labels) return inputs To apply the preprocessing functions over the entire dataset, use the 🤗 Datasets set_transform function: Copied train_ds.set_transform(t
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_15
e preprocessing functions over the entire dataset, use the 🤗 Datasets set_transform function: Copied train_ds.set_transform(train_transforms) test_ds.set_transform(val_transforms) Create evaluation function Including a metric during training is helpful for evaluating your model’s performance. You can load an evaluation method with the 🤗 Evaluate library. For this task, use the mean Intersection over Union (IoU) metric (see the 🤗 Evaluate
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_16
uation method with the 🤗 Evaluate library. For this task, use the mean Intersection over Union (IoU) metric (see the 🤗 Evaluate quick tour to learn more about how to load and compute a metric): Copied import torch from torch import nn import evaluate metric = evaluate.load("mean_iou") def compute_metrics(eval_pred): with torch.no_grad(): logits, labels = eval_pred logits_tensor = torch.from_numpy(logits) logits
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_17
d): with torch.no_grad(): logits, labels = eval_pred logits_tensor = torch.from_numpy(logits) logits_tensor = nn.functional.interpolate( logits_tensor, size=labels.shape[-2:], mode="bilinear", align_corners=False, ).argmax(dim=1) pred_labels = logits_tensor.detach().cpu().numpy() # currently using _compute instead of compute # see this i
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_18
pred_labels = logits_tensor.detach().cpu().numpy() # currently using _compute instead of compute # see this issue for more info: https://github.com/huggingface/evaluate/pull/328#issuecomment-1286866576 metrics = metric._compute( predictions=pred_labels, references=labels, num_labels=len(id2label), ignore_index=0, reduce_labels=image_processor.reduce_labels,
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_19
ls, num_labels=len(id2label), ignore_index=0, reduce_labels=image_processor.reduce_labels, ) per_category_accuracy = metrics.pop("per_category_accuracy").tolist() per_category_iou = metrics.pop("per_category_iou").tolist() metrics.update({f"accuracy_{id2label[i]}": v for i, v in enumerate(per_category_accuracy)}) metrics.update({f"iou_{id2label[i]}": v for i, v in enu
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_20
{id2label[i]}": v for i, v in enumerate(per_category_accuracy)}) metrics.update({f"iou_{id2label[i]}": v for i, v in enumerate(per_category_iou)}) return metrics Load a base model Before loading a base model, let’s define a helper function to check the total number of parameters a model has, as well as how many of them are trainable. Copied def print_trainable_parameters(model): """ Prints the number of trainable
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_21
l as how many of them are trainable. Copied def print_trainable_parameters(model): """ Prints the number of trainable parameters in the model. """ trainable_params = 0 all_param = 0 for _, param in model.named_parameters(): all_param += param.numel() if param.requires_grad: trainable_params += param.numel() print( f"trainable params: {trainable_params} || all params: {all_param}
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_22
trainable_params += param.numel() print( f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param:.2f}" ) Choose a base model checkpoint. For this example, we use the SegFormer B0 variant. In addition to the checkpoint, pass the label2id and id2label dictionaries to let the AutoModelForSemanticSegmentation class know that we’re interested in a custom base mode
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_23
2id and id2label dictionaries to let the AutoModelForSemanticSegmentation class know that we’re interested in a custom base model where the decoder head should be randomly initialized using the classes from the custom dataset. Copied from transformers import AutoModelForSemanticSegmentation, TrainingArguments, Trainer model = AutoModelForSemanticSegmentation.from_pretrained( checkpoint, id2label=id2label, label2id=label2id, ignore_misma
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_24
er model = AutoModelForSemanticSegmentation.from_pretrained( checkpoint, id2label=id2label, label2id=label2id, ignore_mismatched_sizes=True ) print_trainable_parameters(model) At this point you can check with the print_trainable_parameters helper function that all 100% parameters in the base model (aka model) are trainable. Wrap the base model as a PeftModel for LoRA training To leverage the LoRa method, you need to wrap the base model
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_25
trainable. Wrap the base model as a PeftModel for LoRA training To leverage the LoRa method, you need to wrap the base model as a PeftModel. This involves two steps: Defining LoRa configuration with LoraConfig Wrapping the original model with get_peft_model() using the config defined in the step above. Copied from peft import LoraConfig, get_peft_model config = LoraConfig( r=32, lora_alpha=32, target_modules=["query", "value
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_26
om peft import LoraConfig, get_peft_model config = LoraConfig( r=32, lora_alpha=32, target_modules=["query", "value"], lora_dropout=0.1, bias="lora_only", modules_to_save=["decode_head"], ) lora_model = get_peft_model(model, config) print_trainable_parameters(lora_model) Let’s review the LoraConfig. To enable LoRA technique, we must define the target modules within LoraConfig so that PeftModel can update the necessary m
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_27
nfig. To enable LoRA technique, we must define the target modules within LoraConfig so that PeftModel can update the necessary matrices. Specifically, we want to target the query and value matrices in the attention blocks of the base model. These matrices are identified by their respective names, “query” and “value”. Therefore, we should specify these names in the target_modules argument of LoraConfig. After we wrap our base model model with Pe
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_28
herefore, we should specify these names in the target_modules argument of LoraConfig. After we wrap our base model model with PeftModel along with the config, we get a new model where only the LoRA parameters are trainable (so-called “update matrices”) while the pre-trained parameters are kept frozen. These include the parameters of the randomly initialized classifier parameters too. This is NOT we want when fine-tuning the base model on our cu
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_29
parameters of the randomly initialized classifier parameters too. This is NOT we want when fine-tuning the base model on our custom dataset. To ensure that the classifier parameters are also trained, we specify modules_to_save. This also ensures that these modules are serialized alongside the LoRA trainable parameters when using utilities like save_pretrained() and push_to_hub(). In addition to specifying the target_modules within LoraConfig,
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_30
when using utilities like save_pretrained() and push_to_hub(). In addition to specifying the target_modules within LoraConfig, we also need to specify the modules_to_save. When we wrap our base model with PeftModel and pass the configuration, we obtain a new model in which only the LoRA parameters are trainable, while the pre-trained parameters and the randomly initialized classifier parameters are kept frozen. However, we do want to train the
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_31
the pre-trained parameters and the randomly initialized classifier parameters are kept frozen. However, we do want to train the classifier parameters. By specifying the modules_to_save argument, we ensure that the classifier parameters are also trainable, and they will be serialized alongside the LoRA trainable parameters when we use utility functions like save_pretrained() and push_to_hub(). Let’s review the rest of the parameters: r: The dim
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_32
ters when we use utility functions like save_pretrained() and push_to_hub(). Let’s review the rest of the parameters: r: The dimension used by the LoRA update matrices. alpha: Scaling factor. bias: Specifies if the bias parameters should be trained. None denotes none of the bias parameters will be trained. When all is configured, and the base model is wrapped, the print_trainable_parameters helper function lets us explore the number of trainabl
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_33
configured, and the base model is wrapped, the print_trainable_parameters helper function lets us explore the number of trainable parameters. Since we’re interested in performing parameter-efficient fine-tuning, we should expect to see a lower number of trainable parameters from the lora_model in comparison to the original model which is indeed the case here. You can also manually verify what modules are trainable in the lora_model. Copied f
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_34
inal model which is indeed the case here. You can also manually verify what modules are trainable in the lora_model. Copied for name, param in lora_model.named_parameters(): if param.requires_grad: print(name, param.shape) This confirms that only the LoRA parameters appended to the attention blocks and the decode_head parameters are trainable. Train the model Start by defining your training hyperparameters in TrainingArguments
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_35
he decode_head parameters are trainable. Train the model Start by defining your training hyperparameters in TrainingArguments. You can change the values of most parameters however you prefer. Make sure to set remove_unused_columns=False, otherwise the image column will be dropped, and it’s required here. The only other required parameter is output_dir which specifies where to save your model. At the end of each epoch, the Trainer will evalua
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_36
her required parameter is output_dir which specifies where to save your model. At the end of each epoch, the Trainer will evaluate the IoU metric and save the training checkpoint. Note that this example is meant to walk you through the workflow when using PEFT for semantic segmentation. We didn’t perform extensive hyperparameter tuning to achieve optimal results. Copied model_name = checkpoint.split("/")[-1] training_args = TrainingArgument
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_37
rparameter tuning to achieve optimal results. Copied model_name = checkpoint.split("/")[-1] training_args = TrainingArguments( output_dir=f"{model_name}-scene-parse-150-lora", learning_rate=5e-4, num_train_epochs=50, per_device_train_batch_size=4, per_device_eval_batch_size=2, save_total_limit=3, evaluation_strategy="epoch", save_strategy="epoch", logging_steps=5, remove_unused_columns=False, push
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_38
it=3, evaluation_strategy="epoch", save_strategy="epoch", logging_steps=5, remove_unused_columns=False, push_to_hub=True, label_names=["labels"], ) Pass the training arguments to Trainer along with the model, dataset, and compute_metrics function. Call train() to finetune your model. Copied trainer = Trainer( model=lora_model, args=training_args, train_dataset=train_ds, eval_dataset=test_ds, comput
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_39
rainer = Trainer( model=lora_model, args=training_args, train_dataset=train_ds, eval_dataset=test_ds, compute_metrics=compute_metrics, ) trainer.train() Save the model and run inference Use the save_pretrained() method of the lora_model to save the LoRA-only parameters locally. Alternatively, use the push_to_hub() method to upload these parameters directly to the Hugging Face Hub (as shown in the Image classification us
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_40
se the push_to_hub() method to upload these parameters directly to the Hugging Face Hub (as shown in the Image classification using LoRA task guide). Copied model_id = "segformer-scene-parse-150-lora" lora_model.save_pretrained(model_id) We can see that the LoRA-only parameters are just 2.2 MB in size! This greatly improves the portability when using very large models. Copied !ls -lh {model_id} total 2.2M -rw-r--r-- 1 root root 369 Feb
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_41
improves the portability when using very large models. Copied !ls -lh {model_id} total 2.2M -rw-r--r-- 1 root root 369 Feb 8 03:09 adapter_config.json -rw-r--r-- 1 root root 2.2M Feb 8 03:09 adapter_model.bin Let’s now prepare an inference_model and run inference. Copied from peft import PeftConfig config = PeftConfig.from_pretrained(model_id) model = AutoModelForSemanticSegmentation.from_pretrained( checkpoint, id2label=id2label,
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_42
eftConfig.from_pretrained(model_id) model = AutoModelForSemanticSegmentation.from_pretrained( checkpoint, id2label=id2label, label2id=label2id, ignore_mismatched_sizes=True ) inference_model = PeftModel.from_pretrained(model, model_id) Get an image: Copied import requests url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/semantic-seg-image.png" image = Image.open(requests.get(url, stream=True).raw) im
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_43
/huggingface/documentation-images/resolve/main/semantic-seg-image.png" image = Image.open(requests.get(url, stream=True).raw) image Preprocess the image to prepare for inference. Copied encoding = image_processor(image.convert("RGB"), return_tensors="pt") Run inference with the encoded image. Copied with torch.no_grad(): outputs = inference_model(pixel_values=encoding.pixel_values) logits = outputs.logits upsampled_logits = nn.f
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_44
o_grad(): outputs = inference_model(pixel_values=encoding.pixel_values) logits = outputs.logits upsampled_logits = nn.functional.interpolate( logits, size=image.size[::-1], mode="bilinear", align_corners=False, ) pred_seg = upsampled_logits.argmax(dim=1)[0] Next, visualize the results. We need a color palette for this. Here, we use ade_palette(). As it is a long array, so we don’t include it in this guide, please copy
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_45
d a color palette for this. Here, we use ade_palette(). As it is a long array, so we don’t include it in this guide, please copy it from the TensorFlow Model Garden repository. Copied import matplotlib.pyplot as plt color_seg = np.zeros((pred_seg.shape[0], pred_seg.shape[1], 3), dtype=np.uint8) palette = np.array(ade_palette()) for label, color in enumerate(palette): color_seg[pred_seg == label, :] = color color_seg = color_seg[..., ::
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_46
de_palette()) for label, color in enumerate(palette): color_seg[pred_seg == label, :] = color color_seg = color_seg[..., ::-1] # convert to BGR img = np.array(image) * 0.5 + color_seg * 0.5 # plot the image with the segmentation map img = img.astype(np.uint8) plt.figure(figsize=(15, 10)) plt.imshow(img) plt.show() As you can see, the results are far from perfect, however, this example is designed to illustrate the end-to-end workflow o
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_47
ow() As you can see, the results are far from perfect, however, this example is designed to illustrate the end-to-end workflow of fine-tuning a semantic segmentation model with LoRa technique, and is not aiming to achieve state-of-the-art results. The results you see here are the same as you would get if you performed full fine-tuning on the same setup (same model variant, same dataset, same training schedule, etc.), except LoRA allows to achie
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_48
full fine-tuning on the same setup (same model variant, same dataset, same training schedule, etc.), except LoRA allows to achieve them with a fraction of total trainable parameters and in less time. If you wish to use this example and improve the results, here are some things that you can try: Increase the number of training samples. Try a larger SegFormer model variant (explore available model variants on the Hugging Face Hub). Try different
ac9ce4df51e3faf3c5f330e30fe6f728.txt
ac9ce4df51e3faf3c5f330e30fe6f728.txt_chunk_49
raining samples. Try a larger SegFormer model variant (explore available model variants on the Hugging Face Hub). Try different values for the arguments available in LoraConfig. Tune the learning rate and batch size.
ac9ce4df51e3faf3c5f330e30fe6f728.txt
07f8c92a5b1e1218d01d76b64b6741e0.txt_chunk_1
Quicktour 🤗 PEFT contains parameter-efficient finetuning methods for training large pretrained models. The traditional paradigm is to finetune all of a model’s parameters for each downstream task, but this is becoming exceedingly costly and impractical because of the enormous number of parameters in models today. Instead, it is more efficient to train a smaller number of prompt parameters or use a reparametrization method like low-rank adapta
07f8c92a5b1e1218d01d76b64b6741e0.txt
07f8c92a5b1e1218d01d76b64b6741e0.txt_chunk_2
tead, it is more efficient to train a smaller number of prompt parameters or use a reparametrization method like low-rank adaptation (LoRA) to reduce the number of trainable parameters. This quicktour will show you 🤗 PEFT’s main features and help you train large pretrained models that would typically be inaccessible on consumer devices. You’ll see how to train the 1.2B parameter bigscience/mt0-large model with LoRA to generate a classification
07f8c92a5b1e1218d01d76b64b6741e0.txt
07f8c92a5b1e1218d01d76b64b6741e0.txt_chunk_3
n consumer devices. You’ll see how to train the 1.2B parameter bigscience/mt0-large model with LoRA to generate a classification label and use it for inference. PeftConfig Each 🤗 PEFT method is defined by a PeftConfig class that stores all the important parameters for building a PeftModel. Because you’re going to use LoRA, you’ll need to load and create a LoraConfig class. Within LoraConfig, specify the following parameters: the task_type,
07f8c92a5b1e1218d01d76b64b6741e0.txt
07f8c92a5b1e1218d01d76b64b6741e0.txt_chunk_4
se LoRA, you’ll need to load and create a LoraConfig class. Within LoraConfig, specify the following parameters: the task_type, or sequence-to-sequence language modeling in this case inference_mode, whether you’re using the model for inference or not r, the dimension of the low-rank matrices lora_alpha, the scaling factor for the low-rank matrices lora_dropout, the dropout probability of the LoRA layers Copied from peft import LoraConfig, Ta
07f8c92a5b1e1218d01d76b64b6741e0.txt
07f8c92a5b1e1218d01d76b64b6741e0.txt_chunk_5
tor for the low-rank matrices lora_dropout, the dropout probability of the LoRA layers Copied from peft import LoraConfig, TaskType peft_config = LoraConfig(task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1) 💡 See the LoraConfig reference for more details about other parameters you can adjust. PeftModel A PeftModel is created by the get_peft_model() function. It takes a base model - which you can
07f8c92a5b1e1218d01d76b64b6741e0.txt
07f8c92a5b1e1218d01d76b64b6741e0.txt_chunk_6
ters you can adjust. PeftModel A PeftModel is created by the get_peft_model() function. It takes a base model - which you can load from the 🤗 Transformers library - and the PeftConfig containing the instructions for how to configure a model for a specific 🤗 PEFT method. Start by loading the base model you want to finetune. Copied from transformers import AutoModelForSeq2SeqLM model_name_or_path = "bigscience/mt0-large" tokenizer_name_or_
07f8c92a5b1e1218d01d76b64b6741e0.txt