chunk_id
stringlengths
44
45
chunk_content
stringlengths
21
448
filename
stringlengths
36
36
2dc6cfa27d4b32a85ca96b1c6023acf2.txt_chunk_13
ou may also need to write your own preprocessing function. The script also creates a configuration for the πŸ€— PEFT method you’re using, which in this case, is LoRA. The LoraConfig specifies the task type and important parameters such as the dimension of the low-rank matrices, the matrices scaling factor, and the dropout probability of the LoRA layers. If you want to use a different πŸ€— PEFT method, make sure you replace LoraConfig with the approp
2dc6cfa27d4b32a85ca96b1c6023acf2.txt
2dc6cfa27d4b32a85ca96b1c6023acf2.txt_chunk_14
t probability of the LoRA layers. If you want to use a different πŸ€— PEFT method, make sure you replace LoraConfig with the appropriate class. Copied def main(): + accelerator = Accelerator() model_name_or_path = "facebook/bart-large" dataset_name = "twitter_complaints" + peft_config = LoraConfig( task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1 ) Throughout the script,
2dc6cfa27d4b32a85ca96b1c6023acf2.txt
2dc6cfa27d4b32a85ca96b1c6023acf2.txt_chunk_15
task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1 ) Throughout the script, you’ll see the main_process_first and wait_for_everyone functions which help control and synchronize when processes are executed. The get_peft_model() function takes a base model and the peft_config you prepared earlier to create a PeftModel: Copied model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path)
2dc6cfa27d4b32a85ca96b1c6023acf2.txt
2dc6cfa27d4b32a85ca96b1c6023acf2.txt_chunk_16
config you prepared earlier to create a PeftModel: Copied model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path) + model = get_peft_model(model, peft_config) Pass all the relevant training objects to πŸ€— Accelerate’s prepare which makes sure everything is ready for training: Copied model, train_dataloader, eval_dataloader, test_dataloader, optimizer, lr_scheduler = accelerator.prepare( model, train_dataloader, eval_dataload
2dc6cfa27d4b32a85ca96b1c6023acf2.txt
2dc6cfa27d4b32a85ca96b1c6023acf2.txt_chunk_17
der, eval_dataloader, test_dataloader, optimizer, lr_scheduler = accelerator.prepare( model, train_dataloader, eval_dataloader, test_dataloader, optimizer, lr_scheduler ) The next bit of code checks whether the DeepSpeed plugin is used in the Accelerator, and if the plugin exists, then the Accelerator uses ZeRO-3 as specified in the configuration file: Copied is_ds_zero_3 = False if getattr(accelerator.state, "deepspeed_plugin", None):
2dc6cfa27d4b32a85ca96b1c6023acf2.txt
2dc6cfa27d4b32a85ca96b1c6023acf2.txt_chunk_18
s specified in the configuration file: Copied is_ds_zero_3 = False if getattr(accelerator.state, "deepspeed_plugin", None): is_ds_zero_3 = accelerator.state.deepspeed_plugin.zero_stage == 3 Inside the training loop, the usual loss.backward() is replaced by πŸ€— Accelerate’s backward which uses the correct backward() method based on your configuration: Copied for epoch in range(num_epochs): with TorchTracemalloc() as tracemalloc:
2dc6cfa27d4b32a85ca96b1c6023acf2.txt
2dc6cfa27d4b32a85ca96b1c6023acf2.txt_chunk_19
) method based on your configuration: Copied for epoch in range(num_epochs): with TorchTracemalloc() as tracemalloc: model.train() total_loss = 0 for step, batch in enumerate(tqdm(train_dataloader)): outputs = model(**batch) loss = outputs.loss total_loss += loss.detach().float() + accelerator.backward(loss) optimizer.step()
2dc6cfa27d4b32a85ca96b1c6023acf2.txt
2dc6cfa27d4b32a85ca96b1c6023acf2.txt_chunk_20
total_loss += loss.detach().float() + accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() That is all! The rest of the script handles the training loop, evaluation, and even pushes it to the Hub for you. Train Run the following command to launch the training script. Earlier, you saved the configuration file to ds_zero3_cpu.yaml, so you’ll need to
2dc6cfa27d4b32a85ca96b1c6023acf2.txt
2dc6cfa27d4b32a85ca96b1c6023acf2.txt_chunk_21
lowing command to launch the training script. Earlier, you saved the configuration file to ds_zero3_cpu.yaml, so you’ll need to pass the path to the launcher with the --config_file argument like this: Copied accelerate launch --config_file ds_zero3_cpu.yaml examples/peft_lora_seq2seq_accelerate_ds_zero3_offload.py You’ll see some output logs that track memory usage during training, and once it’s completed, the script returns the accuracy and
2dc6cfa27d4b32a85ca96b1c6023acf2.txt
2dc6cfa27d4b32a85ca96b1c6023acf2.txt_chunk_22
ou’ll see some output logs that track memory usage during training, and once it’s completed, the script returns the accuracy and compares the predictions to the labels: Copied GPU Memory before entering the train : 1916 GPU Memory consumed at the end of the train (end-begin): 66 GPU Peak Memory consumed during the train (max-begin): 7488 GPU Total Peak Memory consumed during the train (max): 9404 CPU Memory before entering the train : 19411
2dc6cfa27d4b32a85ca96b1c6023acf2.txt
2dc6cfa27d4b32a85ca96b1c6023acf2.txt_chunk_23
rain (max-begin): 7488 GPU Total Peak Memory consumed during the train (max): 9404 CPU Memory before entering the train : 19411 CPU Memory consumed at the end of the train (end-begin): 0 CPU Peak Memory consumed during the train (max-begin): 0 CPU Total Peak Memory consumed during the train (max): 19411 epoch=4: train_ppl=tensor(1.0705, device='cuda:0') train_epoch_loss=tensor(0.0681, device='cuda:0') 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ
2dc6cfa27d4b32a85ca96b1c6023acf2.txt
2dc6cfa27d4b32a85ca96b1c6023acf2.txt_chunk_24
ppl=tensor(1.0705, device='cuda:0') train_epoch_loss=tensor(0.0681, device='cuda:0') 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 7/7 [00:27<00:00, 3.92s/it] GPU Memory before entering the eval : 1982 GPU Memory consumed at the end of the eval (end-begin): -66 GPU Peak Memory consumed during the eval (max-begin): 672 GPU Total Peak Memory consumed during the eval (max): 2654 CPU Memory befo
2dc6cfa27d4b32a85ca96b1c6023acf2.txt
2dc6cfa27d4b32a85ca96b1c6023acf2.txt_chunk_25
Peak Memory consumed during the eval (max-begin): 672 GPU Total Peak Memory consumed during the eval (max): 2654 CPU Memory before entering the eval : 19411 CPU Memory consumed at the end of the eval (end-begin): 0 CPU Peak Memory consumed during the eval (max-begin): 0 CPU Total Peak Memory consumed during the eval (max): 19411 accuracy=100.0 eval_preds[:10]=['no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint', 'no complai
2dc6cfa27d4b32a85ca96b1c6023acf2.txt
2dc6cfa27d4b32a85ca96b1c6023acf2.txt_chunk_26
ax): 19411 accuracy=100.0 eval_preds[:10]=['no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint', 'no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint'] dataset['train'][label_column][:10]=['no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint', 'no complaint', 'no complaint', 'complaint', 'complaint', 'no complaint']
2dc6cfa27d4b32a85ca96b1c6023acf2.txt
2dc6cfa27d4b32a85ca96b1c6023acf2.txt_chunk_27
o complaint', 'complaint', 'complaint', 'no complaint']
2dc6cfa27d4b32a85ca96b1c6023acf2.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_1
DreamBooth fine-tuning with LoRA This guide demonstrates how to use LoRA, a low-rank approximation technique, to fine-tune DreamBooth with the CompVis/stable-diffusion-v1-4 model. Although LoRA was initially designed as a technique for reducing the number of trainable parameters in large-language models, the technique can also be applied to diffusion models. Performing a complete model fine-tuning of diffusion models is a time-consuming task
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_2
ue can also be applied to diffusion models. Performing a complete model fine-tuning of diffusion models is a time-consuming task, which is why lightweight techniques like DreamBooth or Textual Inversion gained popularity. With the introduction of LoRA, customizing and fine-tuning a model on a specific dataset has become even faster. In this guide we’ll be using a DreamBooth fine-tuning script that is available in PEFT’s GitHub repo. Feel free t
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_3
e even faster. In this guide we’ll be using a DreamBooth fine-tuning script that is available in PEFT’s GitHub repo. Feel free to explore it and learn how things work. Set up your environment Start by cloning the PEFT repository: Copied git clone https://github.com/huggingface/peft Navigate to the directory containing the training scripts for fine-tuning Dreambooth with LoRA: Copied cd peft/examples/lora_dreambooth Set up your environ
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_4
aining the training scripts for fine-tuning Dreambooth with LoRA: Copied cd peft/examples/lora_dreambooth Set up your environment: install PEFT, and all the required libraries. At the time of writing this guide we recommend installing PEFT from source. Copied pip install -r requirements.txt pip install git+https://github.com/huggingface/peft Fine-tuning DreamBooth Prepare the images that you will use for fine-tuning the model. Set up
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_5
s://github.com/huggingface/peft Fine-tuning DreamBooth Prepare the images that you will use for fine-tuning the model. Set up a few environment variables: Copied export MODEL_NAME="CompVis/stable-diffusion-v1-4" export INSTANCE_DIR="path-to-instance-images" export CLASS_DIR="path-to-class-images" export OUTPUT_DIR="path-to-save-model" Here: INSTANCE_DIR: The directory containing the images that you intend to use for training your model
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_6
DIR="path-to-save-model" Here: INSTANCE_DIR: The directory containing the images that you intend to use for training your model. CLASS_DIR: The directory containing class-specific images. In this example, we use prior preservation to avoid overfitting and language-drift. For prior preservation, you need other images of the same class as part of the training process. However, these images can be generated and the training script will save them
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_7
f the same class as part of the training process. However, these images can be generated and the training script will save them to a local path you specify here. OUTPUT_DIR: The destination folder for storing the trained model’s weights. To learn more about DreamBooth fine-tuning with prior-preserving loss, check out the Diffusers documentation. Launch the training script with accelerate and pass hyperparameters, as well as LoRa-specific argume
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_8
he Diffusers documentation. Launch the training script with accelerate and pass hyperparameters, as well as LoRa-specific arguments to it such as: use_lora: Enables LoRa in the training script. lora_r: The dimension used by the LoRA update matrices. lora_alpha: Scaling factor. lora_text_encoder_r: LoRA rank for text encoder. lora_text_encoder_alpha: LoRA alpha (scaling factor) for text encoder. Here’s what the full set of script arguments may
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_9
encoder. lora_text_encoder_alpha: LoRA alpha (scaling factor) for text encoder. Here’s what the full set of script arguments may look like: Copied accelerate launch train_dreambooth.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --instance_data_dir=$INSTANCE_DIR \ --class_data_dir=$CLASS_DIR \ --output_dir=$OUTPUT_DIR \ --train_text_encoder \ --with_prior_preservation --prior_loss_weight=1.0 \ --instance_prompt="a photo of
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_10
dir=$OUTPUT_DIR \ --train_text_encoder \ --with_prior_preservation --prior_loss_weight=1.0 \ --instance_prompt="a photo of sks dog" \ --class_prompt="a photo of dog" \ --resolution=512 \ --train_batch_size=1 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --num_class_images=200 \ --use_lora \ --lora_r 16 \ --lora_alpha 27 \ --lora_text_encoder_r 16 \ --lora_text_encoder_alpha 17 \ --learning_rate=1e-4 \ --gra
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_11
--lora_r 16 \ --lora_alpha 27 \ --lora_text_encoder_r 16 \ --lora_text_encoder_alpha 17 \ --learning_rate=1e-4 \ --gradient_accumulation_steps=1 \ --gradient_checkpointing \ --max_train_steps=800 Inference with a single adapter To run inference with the fine-tuned model, first specify the base model with which the fine-tuned LoRA weights will be combined: Copied import os import torch from diffusers import StableDiffusionPi
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_12
th which the fine-tuned LoRA weights will be combined: Copied import os import torch from diffusers import StableDiffusionPipeline from peft import PeftModel, LoraConfig MODEL_NAME = "CompVis/stable-diffusion-v1-4" Next, add a function that will create a Stable Diffusion pipeline for image generation. It will combine the weights of the base model with the fine-tuned LoRA weights using LoraConfig. Copied def get_lora_sd_pipeline( ckp
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_13
ine the weights of the base model with the fine-tuned LoRA weights using LoraConfig. Copied def get_lora_sd_pipeline( ckpt_dir, base_model_name_or_path=None, dtype=torch.float16, device="cuda", adapter_name="default" ): unet_sub_dir = os.path.join(ckpt_dir, "unet") text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder") if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None: config = LoraCon
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_14
t_dir, "text_encoder") if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None: config = LoraConfig.from_pretrained(text_encoder_sub_dir) base_model_name_or_path = config.base_model_name_or_path if base_model_name_or_path is None: raise ValueError("Please specify the base model name or path") pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype).to(de
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_15
base model name or path") pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype).to(device) pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name) if os.path.exists(text_encoder_sub_dir): pipe.text_encoder = PeftModel.from_pretrained( pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name ) if dtype in (torch.float1
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_16
trained( pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name ) if dtype in (torch.float16, torch.bfloat16): pipe.unet.half() pipe.text_encoder.half() pipe.to(device) return pipe Now you can use the function above to create a Stable Diffusion pipeline using the LoRA weights that you have created during the fine-tuning step. Note, if you’re running inference on the same machine, the
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_17
g the LoRA weights that you have created during the fine-tuning step. Note, if you’re running inference on the same machine, the path you specify here will be the same as OUTPUT_DIR. Copied pipe = get_lora_sd_pipeline(Path("path-to-saved-model"), adapter_name="dog") Once you have the pipeline with your fine-tuned model, you can use it to generate images: Copied prompt = "sks dog playing fetch in the park" negative_prompt = "low quality
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_18
model, you can use it to generate images: Copied prompt = "sks dog playing fetch in the park" negative_prompt = "low quality, blurry, unfinished" image = pipe(prompt, num_inference_steps=50, guidance_scale=7, negative_prompt=negative_prompt).images[0] image.save("DESTINATION_PATH_FOR_THE_IMAGE") Multi-adapter inference With PEFT you can combine multiple adapters for inference. In the previous example you have fine-tuned Stable Diffusion
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_19
erence With PEFT you can combine multiple adapters for inference. In the previous example you have fine-tuned Stable Diffusion on some dog images. The pipeline created based on these weights got a name - adapter_name="dog. Now, suppose you also fine-tuned this base model on images of a crochet toy. Let’s see how we can use both adapters. First, you’ll need to perform all the steps as in the single adapter inference example: Specify the base
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_20
an use both adapters. First, you’ll need to perform all the steps as in the single adapter inference example: Specify the base model. Add a function that creates a Stable Diffusion pipeline for image generation uses LoRA weights. Create a pipe with adapter_name="dog" based on the model fine-tuned on dog images. Next, you’re going to need a few more helper functions. To load another adapter, create a load_adapter() function that leverages load_
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_21
you’re going to need a few more helper functions. To load another adapter, create a load_adapter() function that leverages load_adapter() method of PeftModel (e.g. pipe.unet.load_adapter(peft_model_path, adapter_name)): Copied def load_adapter(pipe, ckpt_dir, adapter_name): unet_sub_dir = os.path.join(ckpt_dir, "unet") text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder") pipe.unet.load_adapter(unet_sub_dir, adapter_name=
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_22
"unet") text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder") pipe.unet.load_adapter(unet_sub_dir, adapter_name=adapter_name) if os.path.exists(text_encoder_sub_dir): pipe.text_encoder.load_adapter(text_encoder_sub_dir, adapter_name=adapter_name) To switch between adapters, write a function that uses set_adapter() method of PeftModel (see pipe.unet.set_adapter(adapter_name)) Copied def set_adapter(pipe, adapter_na
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_23
that uses set_adapter() method of PeftModel (see pipe.unet.set_adapter(adapter_name)) Copied def set_adapter(pipe, adapter_name): pipe.unet.set_adapter(adapter_name) if isinstance(pipe.text_encoder, PeftModel): pipe.text_encoder.set_adapter(adapter_name) Finally, add a function to create weighted LoRA adapter. Copied def create_weighted_lora_adapter(pipe, adapters, weights, adapter_name="default"): pipe.unet.add_weigh
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_24
A adapter. Copied def create_weighted_lora_adapter(pipe, adapters, weights, adapter_name="default"): pipe.unet.add_weighted_adapter(adapters, weights, adapter_name) if isinstance(pipe.text_encoder, PeftModel): pipe.text_encoder.add_weighted_adapter(adapters, weights, adapter_name) return pipe Let’s load the second adapter from the model fine-tuned on images of a crochet toy, and give it a unique name: Copied load_ada
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_25
et’s load the second adapter from the model fine-tuned on images of a crochet toy, and give it a unique name: Copied load_adapter(pipe, Path("path-to-the-second-saved-model"), adapter_name="crochet") Create a pipeline using weighted adapters: Copied pipe = create_weighted_lora_adapter(pipe, ["crochet", "dog"], [1.0, 1.05], adapter_name="crochet_dog") Now you can switch between adapters. If you’d like to generate more dog images, set the a
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_26
.0, 1.05], adapter_name="crochet_dog") Now you can switch between adapters. If you’d like to generate more dog images, set the adapter to "dog": Copied set_adapter(pipe, adapter_name="dog") prompt = "sks dog in a supermarket isle" negative_prompt = "low quality, blurry, unfinished" image = pipe(prompt, num_inference_steps=50, guidance_scale=7, negative_prompt=negative_prompt).images[0] image In the same way, you can switch to the second ada
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_27
_steps=50, guidance_scale=7, negative_prompt=negative_prompt).images[0] image In the same way, you can switch to the second adapter: Copied set_adapter(pipe, adapter_name="crochet") prompt = "a fish rendered in the style of <1>" negative_prompt = "low quality, blurry, unfinished" image = pipe(prompt, num_inference_steps=50, guidance_scale=7, negative_prompt=negative_prompt).images[0] image Finally, you can use combined weighted adapters:
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_28
_steps=50, guidance_scale=7, negative_prompt=negative_prompt).images[0] image Finally, you can use combined weighted adapters: Copied set_adapter(pipe, adapter_name="crochet_dog") prompt = "sks dog rendered in the style of <1>, close up portrait, 4K HD" negative_prompt = "low quality, blurry, unfinished" image = pipe(prompt, num_inference_steps=50, guidance_scale=7, negative_prompt=negative_prompt).images[0] image
d07fa13a3fe1301188b103c336101329.txt
d07fa13a3fe1301188b103c336101329.txt_chunk_29
ipe(prompt, num_inference_steps=50, guidance_scale=7, negative_prompt=negative_prompt).images[0] image
d07fa13a3fe1301188b103c336101329.txt
a0892faec928d4d6117e1a772e14e515.txt_chunk_1
Configuration The configuration classes stores the configuration of a PeftModel, PEFT adapter models, and the configurations of PrefixTuning, PromptTuning, and PromptEncoder. They contain methods for saving and loading model configurations from the Hub, specifying the PEFT method to use, type of task to perform, and model configurations like number of layers and number of attention heads. PeftConfigMixin class peft.utils.config.PeftConfig
a0892faec928d4d6117e1a772e14e515.txt
a0892faec928d4d6117e1a772e14e515.txt_chunk_2
model configurations like number of layers and number of attention heads. PeftConfigMixin class peft.utils.config.PeftConfigMixin < source > ( peft_type: typing.Optional[peft.utils.config.PeftType] = None auto_mapping: typing.Optional[dict] = None ) Parameters peft_type (Union[PeftType, str]) β€” The type of Peft method to use. This is the base configuration class for PEFT adapter models. It contains all the methods that are common t
a0892faec928d4d6117e1a772e14e515.txt
a0892faec928d4d6117e1a772e14e515.txt_chunk_3
ft method to use. This is the base configuration class for PEFT adapter models. It contains all the methods that are common to all PEFT adapter models. This class inherits from PushToHubMixin which contains the methods to push your model to the Hub. The method save_pretrained will save the configuration of your adapter model in a directory. The method from_pretrained will load the configuration of your adapter model from a directory. from_j
a0892faec928d4d6117e1a772e14e515.txt
a0892faec928d4d6117e1a772e14e515.txt_chunk_4
ter model in a directory. The method from_pretrained will load the configuration of your adapter model from a directory. from_json_file < source > ( path_json_file **kwargs ) Parameters path_json_file (str) β€” The path to the json file. Loads a configuration file from a json file. from_pretrained < source > ( pretrained_model_name_or_path subfolder = None **kwargs ) Parameters pretrained_model_name_or_path (str) β€” The directory
a0892faec928d4d6117e1a772e14e515.txt
a0892faec928d4d6117e1a772e14e515.txt_chunk_5
( pretrained_model_name_or_path subfolder = None **kwargs ) Parameters pretrained_model_name_or_path (str) β€” The directory or the Hub repository id where the configuration is saved. kwargs (additional keyword arguments, optional) β€” Additional keyword arguments passed along to the child class initialization. This method loads the configuration of your adapter model from a directory. save_pretrained < source > ( save_directory **kwarg
a0892faec928d4d6117e1a772e14e515.txt
a0892faec928d4d6117e1a772e14e515.txt_chunk_6
his method loads the configuration of your adapter model from a directory. save_pretrained < source > ( save_directory **kwargs ) Parameters save_directory (str) β€” The directory where the configuration will be saved. kwargs (additional keyword arguments, optional) β€” Additional keyword arguments passed along to the push_to_hub method. This method saves the configuration of your adapter model in a directory. PeftConfig class peft.
a0892faec928d4d6117e1a772e14e515.txt
a0892faec928d4d6117e1a772e14e515.txt_chunk_7
the push_to_hub method. This method saves the configuration of your adapter model in a directory. PeftConfig class peft.PeftConfig < source > ( peft_type: typing.Union[str, peft.utils.config.PeftType] = None auto_mapping: typing.Optional[dict] = None base_model_name_or_path: str = None revision: str = None task_type: typing.Union[str, peft.utils.config.TaskType] = None inference_mode: bool = False ) Parameters peft_type (Union[Pef
a0892faec928d4d6117e1a772e14e515.txt
a0892faec928d4d6117e1a772e14e515.txt_chunk_8
k_type: typing.Union[str, peft.utils.config.TaskType] = None inference_mode: bool = False ) Parameters peft_type (Union[PeftType, str]) β€” The type of Peft method to use. task_type (Union[TaskType, str]) β€” The type of task to perform. inference_mode (bool, defaults to False) β€” Whether to use the Peft model in inference mode. This is the base configuration class to store the configuration of a PeftModel. PromptLearningConfig class
a0892faec928d4d6117e1a772e14e515.txt
a0892faec928d4d6117e1a772e14e515.txt_chunk_9
nference mode. This is the base configuration class to store the configuration of a PeftModel. PromptLearningConfig class peft.PromptLearningConfig < source > ( peft_type: typing.Union[str, peft.utils.config.PeftType] = None auto_mapping: typing.Optional[dict] = None base_model_name_or_path: str = None revision: str = None task_type: typing.Union[str, peft.utils.config.TaskType] = None inference_mode: bool = False num_virtual_tokens: in
a0892faec928d4d6117e1a772e14e515.txt
a0892faec928d4d6117e1a772e14e515.txt_chunk_10
: str = None task_type: typing.Union[str, peft.utils.config.TaskType] = None inference_mode: bool = False num_virtual_tokens: int = None token_dim: int = None num_transformer_submodules: typing.Optional[int] = None num_attention_heads: typing.Optional[int] = None num_layers: typing.Optional[int] = None ) Parameters num_virtual_tokens (int) β€” The number of virtual tokens to use. token_dim (int) β€” The hidden embedding dimension of the base
a0892faec928d4d6117e1a772e14e515.txt
a0892faec928d4d6117e1a772e14e515.txt_chunk_11
num_virtual_tokens (int) β€” The number of virtual tokens to use. token_dim (int) β€” The hidden embedding dimension of the base transformer model. num_transformer_submodules (int) β€” The number of transformer submodules in the base transformer model. num_attention_heads (int) β€” The number of attention heads in the base transformer model. num_layers (int) β€” The number of layers in the base transformer model. This is the base configurati
a0892faec928d4d6117e1a772e14e515.txt
a0892faec928d4d6117e1a772e14e515.txt_chunk_12
base transformer model. num_layers (int) β€” The number of layers in the base transformer model. This is the base configuration class to store the configuration of PrefixTuning, PromptEncoder, or PromptTuning.
a0892faec928d4d6117e1a772e14e515.txt