Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
observation.images
image
observation.state
sequence
action
sequence
timestamp
float32
frame_index
int64
episode_index
int64
index
int64
task_index
int64
[ 0, 0 ]
[ 0.5881286263465881, 0.8956220149993896, 0.10000000149011612 ]
0
0
0
0
0
[ 0, 0 ]
[ 0.590185284614563, 0.8950008153915405, 0.10000000149011612 ]
0.008333
1
0
1
0
[ 0, 0 ]
[ 0.5924467444419861, 0.8960322141647339, 0.10000000149011612 ]
0.016667
2
0
2
0
[ 0, 0 ]
[ 0.589547336101532, 0.8992427587509155, 0.10000000149011612 ]
0.025
3
0
3
0
[ 0, 0 ]
[ 0.5849131345748901, 0.9054120182991028, 0.10000000149011612 ]
0.033333
4
0
4
0
[ 0, 0 ]
[ 0.5812928080558777, 0.9092549085617065, 0.10000000149011612 ]
0.041667
5
0
5
0
[ 0, 0 ]
[ 0.5783118605613708, 0.9112328290939331, 0.10000000149011612 ]
0.05
6
0
6
0
[ 0, 0 ]
[ 0.5725248456001282, 0.9125993251800537, 0.10000000149011612 ]
0.058333
7
0
7
0
[ 0, 0 ]
[ 0.5599470734596252, 0.9116948246955872, 0.10000000149011612 ]
0.066667
8
0
8
0
[ 0, 0 ]
[ 0.5448750257492065, 0.9083523154258728, 0.10000000149011612 ]
0.075
9
0
9
0
[ 0, 0 ]
[ 0.5320539474487305, 0.9028199315071106, 0.10000000149011612 ]
0.083333
10
0
10
0
[ 0, 0 ]
[ 0.5186387300491333, 0.8879333138465881, 0.10000000149011612 ]
0.091667
11
0
11
0
[ 0, 0 ]
[ 0.5062205791473389, 0.8794161677360535, 0.10000000149011612 ]
0.1
12
0
12
0
[ 0, 0 ]
[ 0.48951879143714905, 0.8739611506462097, 0.10000000149011612 ]
0.108333
13
0
13
0
[ 0, 0 ]
[ 0.47094759345054626, 0.869816780090332, 0.10000000149011612 ]
0.116667
14
0
14
0
[ 0, 0 ]
[ 0.4546585977077484, 0.8672620058059692, 0.10000000149011612 ]
0.125
15
0
15
0
[ 0, 0 ]
[ 0.4427144229412079, 0.8681414723396301, 0.10000000149011612 ]
0.133333
16
0
16
0
[ 0, 0 ]
[ 0.4255754351615906, 0.8657009601593018, 0.10000000149011612 ]
0.141667
17
0
17
0
[ 0, 0 ]
[ 0.40408918261528015, 0.8563726544380188, 0.10000000149011612 ]
0.15
18
0
18
0
[ 0, 0 ]
[ 0.37947994470596313, 0.843876838684082, 0.10000000149011612 ]
0.158333
19
0
19
0
[ 0, 0 ]
[ 0.35877612233161926, 0.8173424601554871, 0.10000000149011612 ]
0.166667
20
0
20
0
[ 0, 0 ]
[ 0.33772826194763184, 0.7838228344917297, 0.10000000149011612 ]
0.175
21
0
21
0
[ 0, 0 ]
[ 0.3133935332298279, 0.7433632016181946, 0.10000000149011612 ]
0.183333
22
0
22
0
[ 0, 0 ]
[ 0.29156264662742615, 0.6977905035018921, 0.10000000149011612 ]
0.191667
23
0
23
0
[ 0, 0 ]
[ 0.26196804642677307, 0.6429725289344788, 0.10000000149011612 ]
0.2
24
0
24
0
[ 0, 0 ]
[ 0.23882238566875458, 0.5844107270240784, 0.10000000149011612 ]
0.208333
25
0
25
0
[ 0, 0 ]
[ 0.21519848704338074, 0.5247355699539185, 0.10000000149011612 ]
0.216667
26
0
26
0
[ 0, 0 ]
[ 0.19960996508598328, 0.47078120708465576, 0.10000000149011612 ]
0.225
27
0
27
0
[ 0, 0 ]
[ 0.17865589261054993, 0.418333500623703, 0.10000000149011612 ]
0.233333
28
0
28
0
[ 0, 0 ]
[ 0.15721014142036438, 0.3644227385520935, 0.10000000149011612 ]
0.241667
29
0
29
0
[ 0, 0 ]
[ 0.14029665291309357, 0.31136736273765564, 0.10000000149011612 ]
0.25
30
0
30
0
[ 0, 0 ]
[ 0.12780345976352692, 0.2622062861919403, 0.10000000149011612 ]
0.258333
31
0
31
0
[ 0, 0 ]
[ 0.11557119339704514, 0.22039222717285156, 0.10000000149011612 ]
0.266667
32
0
32
0
[ 0, 0 ]
[ 0.10004405677318573, 0.18082745373249054, 0.10000000149011612 ]
0.275
33
0
33
0
[ 0, 0 ]
[ 0.08610798418521881, 0.144368976354599, 0.10000000149011612 ]
0.283333
34
0
34
0
[ 0, 0 ]
[ 0.0681767612695694, 0.11059357225894928, 0.10000000149011612 ]
0.291667
35
0
35
0
[ 0, 0 ]
[ 0.05500095710158348, 0.08116576820611954, 0.10000000149011612 ]
0.3
36
0
36
0
[ 0, 0 ]
[ 0.04322438687086105, 0.055829696357250214, 0.10000000149011612 ]
0.308333
37
0
37
0
[ 0, 0 ]
[ 0.0325080007314682, 0.03397609665989876, 0.10000000149011612 ]
0.316667
38
0
38
0
[ 0, 0 ]
[ 0.022729886695742607, 0.011612012051045895, 0.10000000149011612 ]
0.325
39
0
39
0
[ 0, 0 ]
[ 0.010351506061851978, -0.008950864896178246, 0.10000000149011612 ]
0.333333
40
0
40
0
[ 0, 0 ]
[ 0.00233267224393785, -0.025004412978887558, 0.10000000149011612 ]
0.341667
41
0
41
0
[ 0, 0 ]
[ -0.0047262925654649734, -0.038371000438928604, 0.10000000149011612 ]
0.35
42
0
42
0
[ 0, 0 ]
[ -0.0109791848808527, -0.04937165230512619, 0.10000000149011612 ]
0.358333
43
0
43
0
[ 0, 0 ]
[ -0.01653219573199749, -0.05829208716750145, 0.10000000149011612 ]
0.366667
44
0
44
0
[ 0, 0 ]
[ -0.021252479404211044, -0.061946719884872437, 0.10000000149011612 ]
0.375
45
0
45
0
[ 0, 0 ]
[ -0.024479806423187256, -0.06442747265100479, 0.10000000149011612 ]
0.383333
46
0
46
0
[ 0, 0 ]
[ -0.02723093144595623, -0.0657401904463768, 0.10000000149011612 ]
0.391667
47
0
47
0
[ 0, 0 ]
[ -0.029850564897060394, -0.06676676869392395, 0.10000000149011612 ]
0.4
48
0
48
0
[ 0, 0 ]
[ -0.03227413073182106, -0.0672433003783226, 0.10000000149011612 ]
0.408333
49
0
49
0
[ 0, 0 ]
[ -0.03437819704413414, -0.06732792407274246, 0.10000000149011612 ]
0.416667
50
0
50
0
[ 0, 0 ]
[ -0.03603922948241234, -0.06706515699625015, 0.10000000149011612 ]
0.425
51
0
51
0
[ 0, 0 ]
[ -0.03736497089266777, -0.06648189574480057, 0.10000000149011612 ]
0.433333
52
0
52
0
[ 0, 0 ]
[ -0.031314071267843246, -0.06435268372297287, 0.10000000149011612 ]
0.441667
53
0
53
0
[ 0, 0 ]
[ -0.028693053871393204, -0.06273023039102554, 0.10000000149011612 ]
0.45
54
0
54
0
[ 0, 0 ]
[ -0.026566032320261, -0.06134342402219772, 0.10000000149011612 ]
0.458333
55
0
55
0
[ 0, 0 ]
[ -0.024638719856739044, -0.06006899103522301, 0.10000000149011612 ]
0.466667
56
0
56
0
[ 0, 0 ]
[ -0.022842109203338623, -0.058793894946575165, 0.10000000149011612 ]
0.475
57
0
57
0
[ 0, 0 ]
[ -0.021197183057665825, -0.05744316801428795, 0.10000000149011612 ]
0.483333
58
0
58
0
[ 0, 0 ]
[ -0.019698530435562134, -0.05593620613217354, 0.10000000149011612 ]
0.491667
59
0
59
0
[ 0, 0 ]
[ -0.017536580562591553, -0.05193352699279785, 0.10000000149011612 ]
0.5
60
0
60
0
[ 0, 0 ]
[ -0.01579713262617588, -0.04834403842687607, 0.10000000149011612 ]
0.508333
61
0
61
0
[ 0, 0 ]
[ -0.014300788752734661, -0.045167963951826096, 0.10000000149011612 ]
0.516667
62
0
62
0
[ 0, 0 ]
[ -0.012945506721735, -0.04232076182961464, 0.10000000149011612 ]
0.525
63
0
63
0
[ 0, 0 ]
[ -0.011767404153943062, -0.039697326719760895, 0.10000000149011612 ]
0.533333
64
0
64
0
[ 0, 0 ]
[ -0.010684745386242867, -0.03730982542037964, 0.10000000149011612 ]
0.541667
65
0
65
0
[ 0, 0 ]
[ -0.009724920615553856, -0.035092078149318695, 0.10000000149011612 ]
0.55
66
0
66
0
[ 0, 0 ]
[ -0.008895087987184525, -0.03299146518111229, 0.10000000149011612 ]
0.558333
67
0
67
0
[ 0, 0 ]
[ -0.008113703690469265, -0.031006328761577606, 0.10000000149011612 ]
0.566667
68
0
68
0
[ 0, 0 ]
[ -0.007444578688591719, -0.029126670211553574, 0.10000000149011612 ]
0.575
69
0
69
0
[ 0, 0 ]
[ -0.006854566745460033, -0.027350405231118202, 0.10000000149011612 ]
0.583333
70
0
70
0
[ 0, 0 ]
[ -0.006319387815892696, -0.025622274726629257, 0.10000000149011612 ]
0.591667
71
0
71
0
[ 0, 0 ]
[ -0.004827266093343496, -0.021642714738845825, 0.10000000149011612 ]
0.6
72
0
72
0
[ 0, 0 ]
[ -0.003912931773811579, -0.018308231607079506, 0.10000000149011612 ]
0.608333
73
0
73
0
[ 0, 0 ]
[ -0.00317201716825366, -0.015553593635559082, 0.10000000149011612 ]
0.616667
74
0
74
0
[ 0, 0 ]
[ -0.0025807961355894804, -0.01328821387141943, 0.10000000149011612 ]
0.625
75
0
75
0
[ 0, 0 ]
[ -0.002090993570163846, -0.011394085362553596, 0.10000000149011612 ]
0.633333
76
0
76
0
[ 0, 0 ]
[ -0.0017166627803817391, -0.009865961037576199, 0.10000000149011612 ]
0.641667
77
0
77
0
[ 0, 0 ]
[ -0.0014331289567053318, -0.008610503748059273, 0.10000000149011612 ]
0.65
78
0
78
0
[ 0, 0 ]
[ -0.0012173120630905032, -0.007556668482720852, 0.10000000149011612 ]
0.658333
79
0
79
0
[ 0, 0 ]
[ -0.0010333121754229069, -0.006691767834126949, 0.10000000149011612 ]
0.666667
80
0
80
0
[ 0, 0 ]
[ -0.0009463757742196321, -0.0059620351530611515, 0.10000000149011612 ]
0.675
81
0
81
0
[ 0, 0 ]
[ -0.0008945436566136777, -0.005357615649700165, 0.10000000149011612 ]
0.683333
82
0
82
0
[ 0, 0 ]
[ -0.0008689528331160545, -0.004830780904740095, 0.10000000149011612 ]
0.691667
83
0
83
0
[ 0, 0 ]
[ -0.0008861548849381506, -0.004376094788312912, 0.10000000149011612 ]
0.7
84
0
84
0
[ 0, 0 ]
[ -0.0009154377621598542, -0.004000114277005196, 0.10000000149011612 ]
0.708333
85
0
85
0
[ 0, 0 ]
[ -0.0009975179564207792, -0.003634780179709196, 0.10000000149011612 ]
0.716667
86
0
86
0
[ 0, 0 ]
[ -0.0011045130668208003, -0.003332423744723201, 0.10000000149011612 ]
0.725
87
0
87
0
[ 0, 0 ]
[ -0.001206770888529718, -0.0030346002895385027, 0.10000000149011612 ]
0.733333
88
0
88
0
[ 0, 0 ]
[ -0.001322309602983296, -0.002770776394754648, 0.10000000149011612 ]
0.741667
89
0
89
0
[ 0, 0 ]
[ -0.0014924700371921062, -0.002499057911336422, 0.10000000149011612 ]
0.75
90
0
90
0
[ 0, 0 ]
[ -0.001592090935446322, -0.0022514723241329193, 0.10000000149011612 ]
0.758333
91
0
91
0
[ 0, 0 ]
[ -0.0017600771971046925, -0.0020106835290789604, 0.10000000149011612 ]
0.766667
92
0
92
0
[ 0, 0 ]
[ -0.0019221887923777103, -0.0017841870430856943, 0.10000000149011612 ]
0.775
93
0
93
0
[ 0, 0 ]
[ -0.0020780593622475863, -0.0015410172054544091, 0.10000000149011612 ]
0.783333
94
0
94
0
[ 0, 0 ]
[ -0.002234893850982189, -0.001298778224736452, 0.10000000149011612 ]
0.791667
95
0
95
0
[ 0, 0 ]
[ -0.002403761027380824, -0.001047287485562265, 0.10000000149011612 ]
0.8
96
0
96
0
[ 0, 0 ]
[ -0.002561714267358184, -0.0008008155273273587, 0.10000000149011612 ]
0.808333
97
0
97
0
[ 0, 0 ]
[ -0.002716410206630826, -0.0005897144437767565, 0.10000000149011612 ]
0.816667
98
0
98
0
[ 0, 0 ]
[ -0.0028628702275455, -0.00032739865127950907, 0.10000000149011612 ]
0.825
99
0
99
0
End of preview. Expand in Data Studio

SonoGym Lerobot Dataset

This repository contains the expert datasets collected for the paper SonoGym: High Performance Simulation for Challenging Surgical Tasks with Robotic Ultrasound. These datasets are specifically designed to facilitate the training of imitation learning policies for complex robotic surgical tasks, particularly those involving robotic ultrasound.

The dataset is a part of the broader SonoGym project, a scalable simulation platform built on NVIDIA IsaacLab that enables parallel simulation for challenging robotic ultrasound tasks.

Project Page: https://sonogym.github.io/ Code/GitHub Repository: https://github.com/SonoGym/SonoGym

Dataset Details

The SonoGym_lerobot_dataset is an expert dataset designed for training imitation learning policies, particularly with the lerobot library. It contains trajectories collected under various settings, covering different ultrasound guidance and surgical tasks with single or multiple patient models, and both physics-based (model-based) and generative modeling (learning-based) ultrasound simulations.

The dataset is structured into several components, each representing a specific task and simulation configuration:

  • Isaac-robot-US-guidance-v0-single: Ultrasound guidance task, single patient, using model-based US simulation.
  • Isaac-robot-US-guidance-v0-single-net: Ultrasound guidance task, single patient, using learning-based US simulation.
  • Isaac-robot-US-guidance-5-models-v0: Ultrasound guidance task, single patient, using 4 learning-based US simulation networks.
  • Isaac-robot-US-guided-surgery-v0-single-new: Ultrasound-guided surgery task, single patient, using model-based US simulation.
  • Isaac-robot-US-guided-surgery-v0-single-net-new: Ultrasound-guided surgery task, single patient, using learning-based US simulation.
  • Isaac-robot-US-guided-surgery-v0-5-net: Ultrasound-guided surgery task, single patient, using 4 learning-based US simulation networks.
  • Isaac-robot-US-guided-surgery-v0-5: Ultrasound-guided surgery task, 5 patients, using model-based US simulation.

Sample Usage

This dataset is primarily used for training imitation learning (IL) policies. After downloading the dataset, you can train ACT or Diffusion Policy models using the lerobot library.

Example training command for ACT or Diffusion Policy with lerobot:

First, ensure you have the lerobot repository cloned and its dependencies installed.

# Example for training Diffusion Policy or ACT
python /path-to-lerobot/lerobot/scripts/train.py --config_path=workflows/lerobot/train_surgery_{method}_cfg.json

Replace {method} with either diffusion or act. Make sure to update the "dataset" root path in your configuration file (train_surgery_{method}_cfg.json) to point to the local path of your downloaded dataset. For example:

{
  "dataset": "/path-to-your-local-repo/SonoGym/lerobot-dataset/Isaac-robot-US-guidance-v0-single-net",
  // ... other config parameters
}

For more detailed usage instructions, including teleoperation, reinforcement learning training, and environment settings, please refer to the main SonoGym GitHub repository.

Downloads last month
364