metadata
language:
- en
license: bsd-3-clause
tags:
- arxiv:2506.23151
- optical-flow-estimation
pipeline_tag: image-to-image
library_name: pytorch
base_model:
- egorchistov/MEMFOF-Tartan-T
MEMFOF-Tartan-T-TSKH
π Paper | π Project Page | π» Code | π Colab | π€ Demo
π This is a MEMFOF checkpoint trained from MEMFOF-Tartan-T on the combination of FlyingThings3D, Sintel, KITTI, and HD1K datasets.
β Note: This model is intended for real-world videos β it is trained with higher diversity and robustness in mind.
π οΈ Usage
git clone https://github.com/msu-video-group/memfof.git
cd memfof
pip3 install -r requirements.txt
import torch
from core.memfof import MEMFOF
device = "cuda" if torch.cuda.is_available() else "cpu"
model = MEMFOF.from_pretrained("egorchistov/MEMFOF-Tartan-T-TSKH").eval().to(device)
with torch.inference_mode():
example_input = torch.randint(0, 256, [1, 3, 3, 1080, 1920], device=device) # [B=1, T=3, C=3, H=1080, W=1920]
backward_flow, forward_flow = model(example_input)["flow"][-1].unbind(dim=1) # [B=1, C=2, H=1080, W=1920]
π Citation
@article{bargatin2025memfof,
title={MEMFOF: High-Resolution Training for Memory-Efficient Multi-Frame Optical Flow Estimation},
author={Bargatin, Vladislav and Chistov, Egor and Yakovenko, Alexander and Vatolin, Dmitriy},
journal={arXiv preprint arXiv:2506.23151},
year={2025}
}