|
--- |
|
language: |
|
- en |
|
license: bsd-3-clause |
|
tags: |
|
- arxiv:2506.23151 |
|
- optical-flow-estimation |
|
pipeline_tag: image-to-image |
|
library_name: pytorch |
|
base_model: |
|
- egorchistov/MEMFOF-Tartan-T |
|
--- |
|
|
|
# MEMFOF-Tartan-T-TSKH |
|
|
|
<a href="https://arxiv.org/abs/2506.23151" style="text-decoration: none;">π Paper</a> | <a href="https://msu-video-group.github.io/memfof" style="text-decoration: none;">π Project Page</a> | <a href="https://github.com/msu-video-group/memfof" style="text-decoration: none;">π» Code</a> | <a href="https://colab.research.google.com/github/msu-video-group/memfof/blob/dev/demo.ipynb" style="text-decoration: none;">π Colab</a> | <a href="https://huggingface.co/spaces/egorchistov/MEMFOF" style="text-decoration: none;">π€ Demo</a> |
|
|
|
π This is a MEMFOF checkpoint trained from **MEMFOF-Tartan-T** on the combination of **FlyingThings3D, Sintel, KITTI, and HD1K** datasets. |
|
|
|
β
**Note:** This model is intended **for real-world videos** β it is trained with **higher diversity and robustness** in mind. |
|
|
|
## π οΈ Usage |
|
|
|
```shell |
|
git clone https://github.com/msu-video-group/memfof.git |
|
cd memfof |
|
pip3 install -r requirements.txt |
|
``` |
|
|
|
```python |
|
import torch |
|
from core.memfof import MEMFOF |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model = MEMFOF.from_pretrained("egorchistov/MEMFOF-Tartan-T-TSKH").eval().to(device) |
|
|
|
with torch.inference_mode(): |
|
example_input = torch.randint(0, 256, [1, 3, 3, 1080, 1920], device=device) # [B=1, T=3, C=3, H=1080, W=1920] |
|
backward_flow, forward_flow = model(example_input)["flow"][-1].unbind(dim=1) # [B=1, C=2, H=1080, W=1920] |
|
``` |
|
|
|
## π Citation |
|
|
|
``` |
|
@article{bargatin2025memfof, |
|
title={MEMFOF: High-Resolution Training for Memory-Efficient Multi-Frame Optical Flow Estimation}, |
|
author={Bargatin, Vladislav and Chistov, Egor and Yakovenko, Alexander and Vatolin, Dmitriy}, |
|
journal={arXiv preprint arXiv:2506.23151}, |
|
year={2025} |
|
} |
|
``` |