metadata
license: apache-2.0
datasets:
- legacy-datasets/common_voice
language:
- en
- sw
metrics:
- perplexity
base_model:
- mistralai/Mistral-Small-24B-Instruct-2501
pipeline_tag: text-generation
tags:
- community
- surveys
- engagement
- referral-tracking
- community-engagement
Stahili LLM
Overview
Stahili LLM is a large language model designed for community-driven insights, localized interactions, and engagement tracking. Built with a focus on user participation, it facilitates structured data collection, analytics, and automation in survey-based applications.
Features
- Conversational AI: Trained to understand and generate human-like text.
- Survey and Referral Optimization: Helps track user participation and referrals.
- Customizable Workflows: Supports integration into diverse applications.
- Multilingual Support: Can process multiple languages, enhancing accessibility.
- Open-Source & Extensible: Licensed under Apache 2.0, allowing modifications and contributions.
Installation
To use Stahili LLM, you can either install it via pip
or run it using Hugging Face's API:
pip install transformers torch
Alternatively, load it via the Hugging Face model hub:
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "itshunja/stahili"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
Usage
Generating Text
input_text = "How does Stahili optimize survey engagement?"
inputs = tokenizer(input_text, return_tensors="pt")
output = model.generate(**inputs, max_length=200)
print(tokenizer.decode(output[0], skip_special_tokens=True))
Fine-Tuning
To fine-tune Stahili LLM on a specific dataset:
python train.py --model itshunja/stahili --dataset custom_dataset.json
API Integration
Use the Hugging Face Inference API:
from transformers import pipeline
generator = pipeline("text-generation", model="itshunja/stahili")
response = generator("Explain the Stahili rewards program.")
print(response[0]['generated_text'])
Contributing
We welcome contributions! To contribute:
- Fork this repository.
- Create a feature branch (
git checkout -b feature-name
). - Commit changes (
git commit -m 'Add new feature'
). - Push to your branch (
git push origin feature-name
). - Submit a Pull Request.
License
This project is licensed under the Apache 2.0 License - see the LICENSE file for details.
Contact
For questions or support, reach out via Hugging Face Discussions or contact Isaac Hunja.