|
--- |
|
language: |
|
- en |
|
tags: |
|
- text-generation |
|
- transformers |
|
- finetuned |
|
- phi-4 |
|
- lora |
|
- causal-lm |
|
license: apache-2.0 |
|
datasets: custom |
|
model-index: |
|
- name: mibera-v1-merged |
|
results: [] |
|
--- |
|
|
|
# π `mibera-v1-merged` π |
|
π **Fine-tuned model based on `microsoft/phi-4` using LoRA adapters** |
|
|
|
## πΉ Model Details |
|
- **Base Model**: `microsoft/phi-4` |
|
- **Fine-tuned on**: Custom dataset |
|
- **Architecture**: Transformer-based Causal LM |
|
- **LoRA Adapter Merging**: β
Yes |
|
- **Merged Model**: β
Ready for inference without adapters |
|
|
|
## π Training & Fine-tuning Details |
|
- **Training Method**: Fine-tuning with **LoRA (Low-Rank Adaptation)** |
|
- **LoRA Rank**: 32 |
|
- **Dataset**: Custom curated dataset (details not publicly available) |
|
- **Training Library**: π€ Hugging Face `transformers` + `peft` |
|
|
|
## π How to Use the Model |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "ivxxdegen/mibera-v1-merged" |
|
|
|
# Load tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
# Load model |
|
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto") |
|
|
|
print("β
Model loaded successfully!") |
|
|