jcwang0602's picture
Improve model card for MLLMSeg: Add metadata, abstract, and usage example (#1)
54f5840 verified
---
license: mit
pipeline_tag: image-segmentation
library_name: transformers
---
# MLLMSeg: Unlocking the Potential of MLLMs in Referring Expression Segmentation via a Light-weight Mask Decoder
This repository contains the `MLLMSeg_InternVL2_5_8B_RES` model presented in the paper [Unlocking the Potential of MLLMs in Referring Expression Segmentation via a Light-weight Mask Decoder](https://huggingface.co/papers/2508.04107).
Reference Expression Segmentation (RES) aims to segment image regions specified by referring expressions. While Multimodal Large Language Models (MLLMs) excel in semantic understanding, their token-generation paradigm often struggles with pixel-level dense prediction. MLLMSeg addresses this by fully exploiting the inherent visual detail features encoded in the MLLM vision encoder without introducing an extra visual encoder. It proposes a detail-enhanced and semantic-consistent feature fusion module (DSFF) and establishes a light-weight mask decoder (only 34M network parameters) to optimally leverage detailed spatial features and semantic features for precise mask prediction. Extensive experiments demonstrate that MLLMSeg generally surpasses both SAM-based and SAM-free competitors, striking a better balance between performance and cost.
Code: https://github.com/jcwang0602/MLLMSeg
<p align="center">
<img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/method.png" width="800">
</p>
## Usage
You can use this model with the `transformers` library. Below is an example demonstrating how to load and use the `MLLMSeg_InternVL2_5_8B_RES` model for inference.
```python
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
import requests
from io import BytesIO
# Define image preprocessing utility functions
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12):
if image_file.startswith(('http://', 'https://')):
response = requests.get(image_file)
image = Image.open(BytesIO(response.content)).convert('RGB')
else:
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
# Load model and tokenizer
model_path = "jcwang0602/MLLMSeg_InternVL2_5_8B_RES"
model = AutoModel.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False)
# Load an example image (replace with your image path or URL)
image_path = "https://github.com/jcwang0602/MLLMSeg/raw/main/assets/res_0.png" # Example image from the repo
pixel_values = load_image(image_path, max_num=6).to(torch.bfloat16).cuda()
# Define the referring expression
question = "Please segment the person in the screenshot."
# Set generation configuration
generation_config = dict(max_new_tokens=1024, do_sample=False, temperature=0.0)
# Generate response and segmentation mask
# The output_segmentation_mask=True parameter is crucial for getting the mask directly.
response, history, pred_mask = model.chat(
tokenizer, pixel_values, question, generation_config, history=None, return_history=True, output_segmentation_mask=True
)
print(f'User: {question}\
Assistant: {response}')
# `pred_mask` will contain the predicted segmentation mask. It's a torch.Tensor.
# You can save or visualize it. For example, to save it as an image:
# from torchvision.utils import save_image
# save_image(pred_mask.float(), "segmentation_mask.png")
```
## Performance Metrics
### Referring Expression Segmentation
<img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/tab_res.png" width="800">
### Referring Expression Comprehension
<img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/tab_rec.png" width="800">
### Generalized Referring Expression Segmentation
<img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/tab_gres.png" width="800">
## Visualization
### Referring Expression Segmentation
<img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/res.png" width="800">
### Referring Expression Comprehension
<img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/rec.png" width="800">
### Generalized Referring Expression Segmentation
<img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/gres.png" width="800">
## Citation
If our work is useful for your research, please consider citing:
```bibtex
@misc{wang2025unlockingpotentialmllmsreferring,
title={Unlocking the Potential of MLLMs in Referring Expression Segmentation via a Light-weight Mask Decoder},
author={Jingchao Wang and Zhijian Wu and Dingjiang Huang and Yefeng Zheng and Hong Wang},
year={2025},
eprint={2508.04107},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2508.04107},
}
```