|
|
--- |
|
|
license: mit |
|
|
pipeline_tag: image-segmentation |
|
|
library_name: transformers |
|
|
--- |
|
|
|
|
|
# MLLMSeg: Unlocking the Potential of MLLMs in Referring Expression Segmentation via a Light-weight Mask Decoder |
|
|
|
|
|
This repository contains the `MLLMSeg_InternVL2_5_8B_RES` model presented in the paper [Unlocking the Potential of MLLMs in Referring Expression Segmentation via a Light-weight Mask Decoder](https://huggingface.co/papers/2508.04107). |
|
|
|
|
|
Reference Expression Segmentation (RES) aims to segment image regions specified by referring expressions. While Multimodal Large Language Models (MLLMs) excel in semantic understanding, their token-generation paradigm often struggles with pixel-level dense prediction. MLLMSeg addresses this by fully exploiting the inherent visual detail features encoded in the MLLM vision encoder without introducing an extra visual encoder. It proposes a detail-enhanced and semantic-consistent feature fusion module (DSFF) and establishes a light-weight mask decoder (only 34M network parameters) to optimally leverage detailed spatial features and semantic features for precise mask prediction. Extensive experiments demonstrate that MLLMSeg generally surpasses both SAM-based and SAM-free competitors, striking a better balance between performance and cost. |
|
|
|
|
|
Code: https://github.com/jcwang0602/MLLMSeg |
|
|
|
|
|
<p align="center"> |
|
|
<img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/method.png" width="800"> |
|
|
</p> |
|
|
|
|
|
## Usage |
|
|
|
|
|
You can use this model with the `transformers` library. Below is an example demonstrating how to load and use the `MLLMSeg_InternVL2_5_8B_RES` model for inference. |
|
|
|
|
|
```python |
|
|
import torch |
|
|
from PIL import Image |
|
|
from transformers import AutoModel, AutoTokenizer |
|
|
import torchvision.transforms as T |
|
|
from torchvision.transforms.functional import InterpolationMode |
|
|
import requests |
|
|
from io import BytesIO |
|
|
|
|
|
# Define image preprocessing utility functions |
|
|
IMAGENET_MEAN = (0.485, 0.456, 0.406) |
|
|
IMAGENET_STD = (0.229, 0.224, 0.225) |
|
|
|
|
|
def build_transform(input_size): |
|
|
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD |
|
|
transform = T.Compose([ |
|
|
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), |
|
|
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), |
|
|
T.ToTensor(), |
|
|
T.Normalize(mean=MEAN, std=STD) |
|
|
]) |
|
|
return transform |
|
|
|
|
|
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): |
|
|
best_ratio_diff = float('inf') |
|
|
best_ratio = (1, 1) |
|
|
area = width * height |
|
|
for ratio in target_ratios: |
|
|
target_aspect_ratio = ratio[0] / ratio[1] |
|
|
ratio_diff = abs(aspect_ratio - target_aspect_ratio) |
|
|
if ratio_diff < best_ratio_diff: |
|
|
best_ratio_diff = ratio_diff |
|
|
best_ratio = ratio |
|
|
elif ratio_diff == best_ratio_diff: |
|
|
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: |
|
|
best_ratio = ratio |
|
|
return best_ratio |
|
|
|
|
|
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): |
|
|
orig_width, orig_height = image.size |
|
|
aspect_ratio = orig_width / orig_height |
|
|
|
|
|
target_ratios = set( |
|
|
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if |
|
|
i * j <= max_num and i * j >= min_num) |
|
|
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) |
|
|
|
|
|
target_aspect_ratio = find_closest_aspect_ratio( |
|
|
aspect_ratio, target_ratios, orig_width, orig_height, image_size) |
|
|
|
|
|
target_width = image_size * target_aspect_ratio[0] |
|
|
target_height = image_size * target_aspect_ratio[1] |
|
|
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] |
|
|
|
|
|
resized_img = image.resize((target_width, target_height)) |
|
|
processed_images = [] |
|
|
for i in range(blocks): |
|
|
box = ( |
|
|
(i % (target_width // image_size)) * image_size, |
|
|
(i // (target_width // image_size)) * image_size, |
|
|
((i % (target_width // image_size)) + 1) * image_size, |
|
|
((i // (target_width // image_size)) + 1) * image_size |
|
|
) |
|
|
split_img = resized_img.crop(box) |
|
|
processed_images.append(split_img) |
|
|
assert len(processed_images) == blocks |
|
|
if use_thumbnail and len(processed_images) != 1: |
|
|
thumbnail_img = image.resize((image_size, image_size)) |
|
|
processed_images.append(thumbnail_img) |
|
|
return processed_images |
|
|
|
|
|
def load_image(image_file, input_size=448, max_num=12): |
|
|
if image_file.startswith(('http://', 'https://')): |
|
|
response = requests.get(image_file) |
|
|
image = Image.open(BytesIO(response.content)).convert('RGB') |
|
|
else: |
|
|
image = Image.open(image_file).convert('RGB') |
|
|
|
|
|
transform = build_transform(input_size=input_size) |
|
|
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) |
|
|
pixel_values = [transform(image) for image in images] |
|
|
pixel_values = torch.stack(pixel_values) |
|
|
return pixel_values |
|
|
|
|
|
# Load model and tokenizer |
|
|
model_path = "jcwang0602/MLLMSeg_InternVL2_5_8B_RES" |
|
|
model = AutoModel.from_pretrained( |
|
|
model_path, |
|
|
torch_dtype=torch.bfloat16, |
|
|
low_cpu_mem_usage=True, |
|
|
trust_remote_code=True |
|
|
).eval().cuda() |
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False) |
|
|
|
|
|
# Load an example image (replace with your image path or URL) |
|
|
image_path = "https://github.com/jcwang0602/MLLMSeg/raw/main/assets/res_0.png" # Example image from the repo |
|
|
pixel_values = load_image(image_path, max_num=6).to(torch.bfloat16).cuda() |
|
|
|
|
|
# Define the referring expression |
|
|
question = "Please segment the person in the screenshot." |
|
|
|
|
|
# Set generation configuration |
|
|
generation_config = dict(max_new_tokens=1024, do_sample=False, temperature=0.0) |
|
|
|
|
|
# Generate response and segmentation mask |
|
|
# The output_segmentation_mask=True parameter is crucial for getting the mask directly. |
|
|
response, history, pred_mask = model.chat( |
|
|
tokenizer, pixel_values, question, generation_config, history=None, return_history=True, output_segmentation_mask=True |
|
|
) |
|
|
|
|
|
print(f'User: {question}\ |
|
|
Assistant: {response}') |
|
|
# `pred_mask` will contain the predicted segmentation mask. It's a torch.Tensor. |
|
|
# You can save or visualize it. For example, to save it as an image: |
|
|
# from torchvision.utils import save_image |
|
|
# save_image(pred_mask.float(), "segmentation_mask.png") |
|
|
``` |
|
|
|
|
|
## Performance Metrics |
|
|
|
|
|
### Referring Expression Segmentation |
|
|
<img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/tab_res.png" width="800"> |
|
|
|
|
|
### Referring Expression Comprehension |
|
|
<img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/tab_rec.png" width="800"> |
|
|
|
|
|
### Generalized Referring Expression Segmentation |
|
|
<img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/tab_gres.png" width="800"> |
|
|
|
|
|
## Visualization |
|
|
### Referring Expression Segmentation |
|
|
<img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/res.png" width="800"> |
|
|
|
|
|
### Referring Expression Comprehension |
|
|
<img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/rec.png" width="800"> |
|
|
|
|
|
### Generalized Referring Expression Segmentation |
|
|
<img src="https://github.com/jcwang0602/MLLMSeg/raw/main/assets/gres.png" width="800"> |
|
|
|
|
|
## Citation |
|
|
|
|
|
If our work is useful for your research, please consider citing: |
|
|
|
|
|
```bibtex |
|
|
@misc{wang2025unlockingpotentialmllmsreferring, |
|
|
title={Unlocking the Potential of MLLMs in Referring Expression Segmentation via a Light-weight Mask Decoder}, |
|
|
author={Jingchao Wang and Zhijian Wu and Dingjiang Huang and Yefeng Zheng and Hong Wang}, |
|
|
year={2025}, |
|
|
eprint={2508.04107}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.CV}, |
|
|
url={https://arxiv.org/abs/2508.04107}, |
|
|
} |
|
|
``` |