manucos's picture
End of training
9a8eed0 verified
metadata
base_model: manucos/finetuned__roberta-base-bne__augmented-ultrasounds
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: test-finetuned__roberta-base-bne__augmented-ultrasounds-ner
    results: []

test-finetuned__roberta-base-bne__augmented-ultrasounds-ner

This model is a fine-tuned version of manucos/finetuned__roberta-base-bne__augmented-ultrasounds on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3332
  • Precision: 0.7926
  • Recall: 0.8856
  • F1: 0.8365
  • Accuracy: 0.9236

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 206 0.2753 0.7460 0.8411 0.7907 0.9106
No log 2.0 412 0.2692 0.7770 0.8603 0.8165 0.9238
0.2993 3.0 618 0.3276 0.7493 0.8472 0.7952 0.9087
0.2993 4.0 824 0.2983 0.7847 0.8704 0.8253 0.9180
0.054 5.0 1030 0.3066 0.7852 0.8806 0.8302 0.9221
0.054 6.0 1236 0.3211 0.7652 0.8806 0.8188 0.9211
0.054 7.0 1442 0.3314 0.7883 0.8704 0.8273 0.9189
0.0205 8.0 1648 0.3245 0.7827 0.8785 0.8278 0.9224
0.0205 9.0 1854 0.3306 0.7825 0.8846 0.8304 0.9235
0.0128 10.0 2060 0.3332 0.7926 0.8856 0.8365 0.9236

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1