|
--- |
|
base_model: manucos/finetuned__roberta-base-bne__augmented-ultrasounds |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: test-finetuned__roberta-base-bne__augmented-ultrasounds-ner |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# test-finetuned__roberta-base-bne__augmented-ultrasounds-ner |
|
|
|
This model is a fine-tuned version of [manucos/finetuned__roberta-base-bne__augmented-ultrasounds](https://huggingface.co/manucos/finetuned__roberta-base-bne__augmented-ultrasounds) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3332 |
|
- Precision: 0.7926 |
|
- Recall: 0.8856 |
|
- F1: 0.8365 |
|
- Accuracy: 0.9236 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 206 | 0.2753 | 0.7460 | 0.8411 | 0.7907 | 0.9106 | |
|
| No log | 2.0 | 412 | 0.2692 | 0.7770 | 0.8603 | 0.8165 | 0.9238 | |
|
| 0.2993 | 3.0 | 618 | 0.3276 | 0.7493 | 0.8472 | 0.7952 | 0.9087 | |
|
| 0.2993 | 4.0 | 824 | 0.2983 | 0.7847 | 0.8704 | 0.8253 | 0.9180 | |
|
| 0.054 | 5.0 | 1030 | 0.3066 | 0.7852 | 0.8806 | 0.8302 | 0.9221 | |
|
| 0.054 | 6.0 | 1236 | 0.3211 | 0.7652 | 0.8806 | 0.8188 | 0.9211 | |
|
| 0.054 | 7.0 | 1442 | 0.3314 | 0.7883 | 0.8704 | 0.8273 | 0.9189 | |
|
| 0.0205 | 8.0 | 1648 | 0.3245 | 0.7827 | 0.8785 | 0.8278 | 0.9224 | |
|
| 0.0205 | 9.0 | 1854 | 0.3306 | 0.7825 | 0.8846 | 0.8304 | 0.9235 | |
|
| 0.0128 | 10.0 | 2060 | 0.3332 | 0.7926 | 0.8856 | 0.8365 | 0.9236 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.0 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |
|
|