HuggingFaceM4

Enterprise
company
Activity Feed

AI & ML interests

None defined yet.

Recent Activity

HuggingFaceM4's activity

merveย 
posted an update about 19 hours ago
view post
Post
690
Everything that happened this week in open AI, a recap ๐Ÿค  merve/jan-17-releases-678a673a9de4a4675f215bf5

๐Ÿ‘€ Multimodal
- MiniCPM-o 2.6 is a new sota any-to-any model by OpenBMB
(vision, speech and text!)
- VideoChat-Flash-Qwen2.5-2B is new video multimodal models by OpenGVLab that come in sizes 2B & 7B in resolutions 224 & 448
- ByteDance released larger SA2VA that comes in 26B parameters
- Dataset: VRC-Bench is a new diverse benchmark for multimodal LLM reasoning performance

๐Ÿ’ฌ LLMs
- MiniMax-Text-01 is a new huge language model (456B passive 45.9B active params) by MiniMaxAI with context length of 4M tokens ๐Ÿคฏ
- Dataset: Sky-T1-data-17k is a diverse dataset used to train Sky-T1-32B
- kyutai released Helium-1-Preview-2B is a new small multilingual LM
- Wayfarer-12B is a new LLM able to write D&D ๐Ÿง™๐Ÿปโ€โ™‚๏ธ
- ReaderLM-v2 is a new HTML parsing model by Jina AI

- Dria released, Dria-Agent-a-3B, new agentic coding model (Pythonic function calling) based on Qwen2.5 Coder
- Unsloth released Phi-4, faster and memory efficient Llama 3.3

๐Ÿ–ผ๏ธ Vision
- MatchAnything is a new foundation model for matching
- FitDit is a high-fidelity VTON model based on DiT architecture

๐Ÿ—ฃ๏ธ Audio
- OuteTTS-0.3-1B is a new multilingual text-to-speech model with voice cloning and emotion control capabilities

๐Ÿ“– Retrieval
- lightblue released a new reranker based on Qwen2.5 LB-reranker-0.5B-v1.0 that can handle 95+ languages
- cde-small-v2 is a new sota small retrieval model by
@jxm
merveย 
posted an update 1 day ago
m-ricย 
posted an update 2 days ago
view post
Post
778
๐— ๐—ถ๐—ป๐—ถ๐— ๐—ฎ๐˜…'๐˜€ ๐—ป๐—ฒ๐˜„ ๐— ๐—ผ๐—˜ ๐—Ÿ๐—Ÿ๐—  ๐—ฟ๐—ฒ๐—ฎ๐—ฐ๐—ต๐—ฒ๐˜€ ๐—–๐—น๐—ฎ๐˜‚๐—ฑ๐—ฒ-๐—ฆ๐—ผ๐—ป๐—ป๐—ฒ๐˜ ๐—น๐—ฒ๐˜ƒ๐—ฒ๐—น ๐˜„๐—ถ๐˜๐—ต ๐Ÿฐ๐—  ๐˜๐—ผ๐—ธ๐—ฒ๐—ป๐˜€ ๐—ฐ๐—ผ๐—ป๐˜๐—ฒ๐˜…๐˜ ๐—น๐—ฒ๐—ป๐—ด๐˜๐—ต ๐Ÿ’ฅ

This work from Chinese startup @MiniMax-AI introduces a novel architecture that achieves state-of-the-art performance while handling context windows up to 4 million tokens - roughly 20x longer than current models. The key was combining lightning attention, mixture of experts (MoE), and a careful hybrid approach.

๐—ž๐—ฒ๐˜† ๐—ถ๐—ป๐˜€๐—ถ๐—ด๐—ต๐˜๐˜€:

๐Ÿ—๏ธ MoE with novel hybrid attention:
โ€ฃ Mixture of Experts with 456B total parameters (45.9B activated per token)
โ€ฃ Combines Lightning attention (linear complexity) for most layers and traditional softmax attention every 8 layers

๐Ÿ† Outperforms leading models across benchmarks while offering vastly longer context:
โ€ฃ Competitive with GPT-4/Claude-3.5-Sonnet on most tasks
โ€ฃ Can efficiently handle 4M token contexts (vs 256K for most other LLMs)

๐Ÿ”ฌ Technical innovations enable efficient scaling:
โ€ฃ Novel expert parallel and tensor parallel strategies cut communication overhead in half
โ€ฃ Improved linear attention sequence parallelism, multi-level padding and other optimizations achieve 75% GPU utilization (that's really high, generally utilization is around 50%)

๐ŸŽฏ Thorough training strategy:
โ€ฃ Careful data curation and quality control by using a smaller preliminary version of their LLM as a judge!

Overall, not only is the model impressive, but the technical paper is also really interesting! ๐Ÿ“
It has lots of insights including a great comparison showing how a 2B MoE (24B total) far outperforms a 7B model for the same amount of FLOPs.

Read it in full here ๐Ÿ‘‰ MiniMax-01: Scaling Foundation Models with Lightning Attention (2501.08313)
Model here, allows commercial use <100M monthly users ๐Ÿ‘‰ MiniMaxAI/MiniMax-Text-01
m-ricย 
posted an update 3 days ago
view post
Post
2147
๐—ช๐—ฒ'๐˜ƒ๐—ฒ ๐—ท๐˜‚๐˜€๐˜ ๐—ฟ๐—ฒ๐—น๐—ฒ๐—ฎ๐˜€๐—ฒ๐—ฑ ๐˜€๐—บ๐—ผ๐—น๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€ ๐˜ƒ๐Ÿญ.๐Ÿฏ.๐Ÿฌ ๐Ÿš€, and it comes with a major feature: you can now log agent runs using OpenTelemetry to inspect them afterwards! ๐Ÿ“Š

This interactive format is IMO much easier to inspect big multi-step runs than endless console logs.

The setup is very easy, in a few lines of code.

Find a tutorial here ๐Ÿ‘‰ https://huggingface.co/docs/smolagents/tutorials/inspect_runs
  • 4 replies
ยท
MoritzLaurerย 
posted an update 3 days ago
view post
Post
1765
Microsoft's rStar-Math paper claims that ๐Ÿค ~7B models can match the math skills of o1 using clever train- and test-time techniques. You can now download their prompt templates from Hugging Face !

๐Ÿ“ The paper introduces rStar-Math, which claims to rival OpenAI o1's math reasoning capabilities by integrating Monte Carlo Tree Search (MCTS) with step-by-step verified reasoning trajectories.
๐Ÿค– A Process Preference Model (PPM) enables fine-grained evaluation of intermediate steps, improving training data quality.
๐Ÿงช The system underwent four rounds of self-evolution, progressively refining both the policy and reward models to tackle Olympiad-level math problemsโ€”without GPT-4-based data distillation.
๐Ÿ’พ While we wait for the release of code and datasets, you can already download the prompts they used from the HF Hub!

Details and links here ๐Ÿ‘‡
Prompt-templates docs: https://moritzlaurer.github.io/prompt_templates/
Templates on the hub: MoritzLaurer/rstar-math-prompts
Prompt-templates collection: MoritzLaurer/prompt-templates-6776aa0b0b8a923957920bb4
Paper: https://arxiv.org/pdf/2501.04519
megย 
posted an update 5 days ago
view post
Post
2830
๐Ÿ’ซ...And we're live!๐Ÿ’ซ Seasonal newsletter from ethicsy folks at Hugging Face, exploring the ethics of "AI Agents"
https://huggingface.co/blog/ethics-soc-7
Our analyses found:
- There's a spectrum of "agent"-ness
- *Safety* is a key issue, leading to many other value-based concerns
Read for details & what to do next!
With @evijit , @giadap , and @sasha
yjerniteย 
posted an update 5 days ago
view post
Post
2040
๐Ÿค—๐Ÿ‘ค ๐Ÿ’ป Speaking of AI agents ...
...Is easier with the right words ;)

My colleagues @meg @evijit @sasha and @giadap just published a wonderful blog post outlining some of the main relevant notions with their signature blend of value-informed and risk-benefits contrasting approach. Go have a read!

https://huggingface.co/blog/ethics-soc-7
davanstrienย 
posted an update 5 days ago
view post
Post
2902
Introducing scandi-fine-web-cleaner davanstrien/scandi-fine-web-cleaner, the first model trained on FineWeb-C community annotations!

FineWeb2 is a massive multilingual dataset for pre-training language models. Like any web-scale dataset, it contains low-quality content. How can we improve it?

Over the past months, an amazing community of 400+ annotators has been labelling content quality (using Argilla) across 23 languages through the FineWeb-C initiative.

Today, I'm happy to share the first classifier trained on this data.

๐Ÿ” What we've built:

- A lightweight classifier that efficiently removes low-quality content
- 90%+ precision demonstrated on Danish & Swedish
- Can process the 43M+ documents in Danish FineWeb2 with minimal compute

๐ŸŒ Why this matters: The approach can be reproduced for any of the 23 languages in FineWeb-C ( data-is-better-together/fineweb-c). We can improve training data quality at scale without massive compute resources by starting with community annotations and training small, efficient classifiers.

Want to build a classifier for your language? Check out the full blog post with code examples and implementation details: https://danielvanstrien.xyz/posts/2025/FineWeb-c/scandinavian-content-filtering-fineweb.html
  • 1 reply
ยท
merveย 
posted an update 5 days ago
view post
Post
3779
there's a new multimodal retrieval model in town ๐Ÿค 
LlamaIndex released vdr-2b-multi-v1
> uses 70% less image tokens, yet outperforming other dse-qwen2 based models
> 3x faster inference with less VRAM ๐Ÿ’จ
> shrinkable with matryoshka ๐Ÿช†
> can do cross-lingual retrieval!
Collection: llamaindex/visual-document-retrieval-678151d19d2758f78ce910e1 (with models and datasets)
Demo: llamaindex/multimodal_vdr_demo
Learn more from their blog post here https://huggingface.co/blog/vdr-2b-multilingual ๐Ÿ“–
m-ricย 
posted an update 6 days ago
view post
Post
560
๐—ข๐—ฆ-๐—š๐—ฒ๐—ป๐—ฒ๐˜€๐—ถ๐˜€: ๐—ป๐—ฒ๐˜„ ๐—ฟ๐—ฒ๐˜€๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต ๐—ฝ๐—ฎ๐—ฝ๐—ฒ๐—ฟ ๐—ฝ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ฒ๐˜€ ๐—ฎ ๐—ป๐—ผ๐˜ƒ๐—ฒ๐—น ๐˜๐—ฟ๐—ฎ๐—ถ๐—ป๐—ถ๐—ป๐—ด ๐—ฑ๐—ฎ๐˜๐—ฎ ๐—ด๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—บ๐—ฒ๐˜๐—ต๐—ผ๐—ฑ ๐—ณ๐—ผ๐—ฟ ๐—–๐—น๐—ฎ๐˜‚๐—ฑ๐—ฒ-๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ฒ๐—ฟ-๐—จ๐˜€๐—ฒ-๐—น๐—ถ๐—ธ๐—ฒ ๐—ฎ๐—ด๐—ฒ๐—ป๐˜๐˜€, ๐˜„๐—ถ๐˜๐—ต ๐—ถ๐—บ๐—ฝ๐—ฟ๐—ฒ๐˜€๐˜€๐—ถ๐˜ƒ๐—ฒ ๐—ฟ๐—ฒ๐˜€๐˜‚๐—น๐˜๐˜€! ๐Ÿ”ฅ

The main bottleneck in building GUI agents it to find training data.
GUI Agent trajectories are not easy to get by. Crowdsourcing trajectories, then manually annotating them, could be an option, but at scale, it's hard to do

You could use synthetic data generation (ask 1000s small existing GUI agents to solve tasks, keep only successful runs). But then it's hard to come up with many high level-tasks.

โžก๏ธ Well, a novel technique was just published that creates a new promising paradigm for synthetic data generation: Shanghai AI Lab researchers propose OS-Genesis, a novel way to create training data for GUI agents that flips the traditional approach on its head. Instead of starting with predefined tasks and having humans or machines execute them, OS-Genesis first explores the interface naturally, then derives meaningful tasks from those interactions.

๐Ÿ” Exploration-driven vs task-driven approach:
โ€ฃ Instead of starting with tasks, OS-Genesis first explores GUIs by clicking and interacting
โ€ฃ It then reverse-engineers high-level tasks from successful interaction patterns
โ€ฃ This leads to more natural and diverse training data than predefined tasks

๐ŸŽฏ Novel reward model for trajectory quality:
โ€ฃ Rather than discarding incomplete trajectories, OS-Genesis scores them based on coherence and completion
โ€ฃ This preserves valuable partial successes that would otherwise be wasted

๐Ÿ† Superior results across environments:
โ€ฃ Nearly doubles performance on AndroidWorld (9.8% โ†’ 17.4%)

By the way, this field of GUI agents is still in infancy, so you can still make a difference with "low-cost" setups: their paper gets SOTA results with only 8xA100!

Read the paper here ๐Ÿ‘‰ OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis (2412.19723)
MoritzLaurerย 
posted an update 7 days ago
view post
Post
2919
FACTS is a great paper from @GoogleDeepMind on measuring the factuality of LLM outputs. You can now download their prompt templates from @huggingface to improve LLM-based fact-checking yourself!

๐Ÿ“ The paper introduces the FACTS Grounding benchmark for evaluating the factuality of LLM outputs.

๐Ÿค– Fact-checking is automated by an ensemble of LLM judges that verify if a response is fully grounded in a factual reference document.

๐Ÿงช The authors tested different prompt templates on held-out data to ensure their generalization.

๐Ÿ“š It's highly educational to read these templates to learn how frontier labs design prompts and understand their limitations.

๐Ÿ’พ You can now download and reuse these prompt templates via the prompt-templates library!

๐Ÿ”„ The library simplifies sharing prompt templates on the HF hub or locally via standardized YAML files. Letโ€™s make LLM work more transparent and reproducible by sharing more templates like this!

Links ๐Ÿ‘‡
- prompt-templates docs: https://moritzlaurer.github.io/prompt_templates/
- all templates on the HF Hub: MoritzLaurer/facts-grounding-prompts
- FACTS paper: https://storage.googleapis.com/deepmind-media/FACTS/FACTS_grounding_paper.pdf
dylanebertย 
posted an update 8 days ago
view post
Post
1757
๐ŸŸฆ New Image-to-3D model from Stability AI

stabilityai/stable-point-aware-3d

here's how it looks, with TRELLIS for comparison
merveย 
posted an update 8 days ago
view post
Post
3540
What a beginning to this year in open ML ๐Ÿค 
Let's unwrap! merve/jan-10-releases-677fe34177759de0edfc9714

Multimodal ๐Ÿ–ผ๏ธ
> ByteDance released SA2VA: a family of vision LMs that can take image, video, text and visual prompts
> moondream2 is out with new capabilities like outputting structured data and gaze detection!
> Dataset: Alibaba DAMO lab released multimodal textbook โ€” 22k hours worth of samples from instruction videos ๐Ÿคฏ
> Dataset: SciCap captioning on scientific documents benchmark dataset is released along with the challenge!

LLMs ๐Ÿ’ฌ
> Microsoft released Phi-4, sota open-source 14B language model ๐Ÿ”ฅ
> Dolphin is back with Dolphin 3.0 Llama 3.1 8B ๐Ÿฌ๐Ÿฌ
> Prime-RL released Eurus-2-7B-PRIME a new language model trained using PRIME alignment
> SmallThinker-3B is a new small reasoning LM based on Owen2.5-3B-Instruct ๐Ÿ’ญ
> Dataset: QWQ-LONGCOT-500K is the dataset used to train SmallThinker, generated using QwQ-32B-preview ๐Ÿ“•
> Dataset: @cfahlgren1 released React Code Instructions: a dataset of code instruction-code pairs ๐Ÿ“•
> Dataset: Qwen team is on the roll, they just released CodeElo, a dataset of code preferences ๐Ÿ‘ฉ๐Ÿปโ€๐Ÿ’ป

Embeddings ๐Ÿ”–
> @MoritzLaurer released zero-shot version of ModernBERT large ๐Ÿ‘
> KaLM is a new family of performant multilingual embedding models with MIT license built using Qwen2-0.5B

Image/Video Generation โฏ๏ธ
> NVIDIA released Cosmos, a new family of diffusion/autoregressive World Foundation Models generating worlds from images, videos and texts ๐Ÿ”ฅ
> Adobe released TransPixar: a new text-to-video model that can generate assets with transparent backgrounds (a first!)
> Dataset: fal released cosmos-openvid-1m Cosmos-tokenized OpenVid-1M with samples from OpenVid-1M

Others
> Prior Labs released TabPFNv2, the best tabular transformer is out for classification and regression
> Metagene-1 is a new RNA language model that can be used for pathogen detection, zero-shot embedding and genome understanding
davanstrienย 
posted an update 8 days ago
view post
Post
2075
The data-is-better-together/fineweb-c dataset is growing!

This week a few more languages have got 1,000 annotations for the educational quality of data from HuggingFaceFW/fineweb-2.

Why should you care?

The quality of pre-training data can have a big impact on the performance of downstream language models trained on that data ( HuggingFaceFW/blogpost-fineweb-v1).

Being able to filter by educational quality is on way of improving the quality of the data you use for training an LLM. Very importantly this approach can also reduce the amount of data needed for pertaining.

Why not use an LLM?

LLMs can be used to annotate educational quality for a subset of data. This data can then be used to train a smaller encoder only model to label the full dataset. However, this may not work well for languages outside of english. This is where fineweb-c (community) comes in.

The community is annotating the educational quality of fineweb2 data. Currently 114 languages have some annotations. These annotations will enable a number of things:

- Evaluate whether an LLM can label the educational quality for texts in that language well
- Directly be used for training quality classifiers
- Help discover other rules and huerisitcs for refining fineweb2 further for different languages.

This week the following languages where done:

Swedish thanks to: @Lauler @AntonVic @ohallstrom @bjarlestam @menbom @Ekgren @apsod

Ukrainian thanks to: @hannayukhymenko @robinhad @realPivo @RabotiahovDmytro @reciprocate

Assamese thanks to: @moyoor97 @Arpanjyoti @nawaf-helmi123 @pahigogoi1 @aelhence @kishorekashyap

Want to learn more: https://huggingface.co/blog/davanstrien/fineweb2-community

Contribute yourself here: data-is-better-together/fineweb-c
  • 1 reply
ยท
BrigitteTousiย 
posted an update 9 days ago
view post
Post
978
Community fine-tuned models are more carbon efficient than the models they are derived from! ๐Ÿฅณ๐ŸŒฟ

@alozowski @clefourrier @SaylorTwift @albertvillanova evaluated COโ‚‚ emissions associated with model inference for over 3000 models on the Open LLM Leaderboard. Interesting trends and new insights emerged...๐Ÿ‘€

Blog Post: https://huggingface.co/blog/leaderboard-emissions-analysis

Leaderboard: open-llm-leaderboard/open_llm_leaderboard
MoritzLaurerย 
posted an update 9 days ago
view post
Post
1678
The TRL v0.13 release is ๐Ÿ”ฅ! My highlight are the new process reward trainer to train models similar to o1 and tool call support:

๐Ÿง  Process reward trainer: Enables training of Process-supervised Reward Models (PRMs), which reward the quality of intermediate steps, promoting structured reasoning. Perfect for tasks like stepwise reasoning.

๐Ÿ”€ Model merging: A new callback leverages mergekit to merge models during training, improving performance by blending reference and policy models - optionally pushing merged models to the Hugging Face Hub.

๐Ÿ› ๏ธ Tool call support: TRL preprocessing now supports tool integration, laying the groundwork for agent fine-tuning with examples like dynamic temperature fetching in prompts.

โš–๏ธ Mixture of judges: The new AllTrueJudge combines decisions from multiple binary judges for more nuanced evaluation.

Read the release notes and other resources here ๐Ÿ‘‡
Release: https://github.com/huggingface/trl/releases/tag/v0.13.0
Mergekit: https://github.com/arcee-ai/mergekit
Mixture of judges paper: The Perfect Blend: Redefining RLHF with Mixture of Judges (2409.20370)
merveย 
posted an update 9 days ago
view post
Post
1746
ByteDance just dropped SA2VA: a new family of vision LMs combining Qwen2VL/InternVL and SAM2 with MIT license ๐Ÿ’— ByteDance/sa2va-model-zoo-677e3084d71b5f108d00e093

> The models are capable of tasks involving vision-language understanding and visual referrals (referring segmentation) both for images and videos โฏ๏ธ

> The models come in 1B, 4B and 8B and are based on InternVL2.5 for base architecture and Qwen2, Qwen2.5 and InternLM2 for language model part (depending on the checkpoint)

> The model is very interesting, it has different encoders for different modalities each (visual prompt, text prompt, image and video) then it concatenates these to feed into LLM ๐Ÿ’ฌ

the output segmentation tokens are passed to SAM2, to sort of match text (captions or semantic classes) to masks โคต๏ธ

> Their annotation pipeline is also interesting, they seems to use two open large vision LMs to refine the annotations, and have different levels of descriptions to provide consistency.
  • 1 reply
ยท
andrewrreedย 
posted an update 11 days ago
view post
Post
2610
๐Ÿš€ Supercharge your LLM apps with Langfuse on Hugging Face Spaces!

Langfuse brings end-to-end observability and tooling to accelerate your dev workflow from experiments through production

Now available as a Docker Space directly on the HF Hub! ๐Ÿค—

๐Ÿ” Trace everything: monitor LLM calls, retrieval, and agent actions with popular frameworks
1โƒฃ One-click deployment: on Spaces with persistent storage and integrated OAuth
๐Ÿ›  Simple Prompt Management: Version, edit, and update without redeployment
โœ… Intuitive Evals: Collect user feedback, run model/prompt evaluations, and improve quality
๐Ÿ“Š Dataset Creation: Build datasets directly from production data to enhance future performance

Kudos to the Langfuse team for this collab and the awesome, open-first product theyโ€™re building! ๐Ÿ‘ @marcklingen @Clemo @MJannik

๐Ÿ”— Space: langfuse/langfuse-template-space
๐Ÿ”— Docs: https://huggingface.co/docs/hub/spaces-sdks-docker-langfuse
  • 1 reply
ยท