Robotics
LeRobot
Safetensors
act

Model Card for act

Action Chunking with Transformers (ACT) is a imitation-learning method that, predicts short action chunks instead of single steps. It learns from tele-operated data and often achieves high success rates.

This policy has been trained and pushed to the Hub using LeRobot. See the full documentation at https://huggingface.co/docs/lerobot/index.


How to Get Started with the Model

For a complete walkthrough, see the training guidehttps://huggingface.co/docs/lerobot/il_robots#train-a-policy. Below is the short version for the two tasks you’ll run most:

1 Train from scratch

python lerobot/scripts/train.py \
  --dataset.repo_id=${HF_USER}/<dataset> \
  --policy.type=act \
  --output_dir=outputs/train/<desired_policy_repo_id> \
  --job_name=lerobot_training \
  --policy.device=cuda \
  --policy.repo_id=${HF_USER}/<desired_policy_repo_id>
  --wandb.enable=true

Writes checkpoints to outputs/train/<desired_policy_repo_id>/checkpoints/.

2 Evaluate the policy

python -m lerobot.record \
  --robot.type=so100_follower \
  --dataset.repo_id=<hf_user>/eval_<dataset> \
  --policy.path=<hf_user>/<desired_policy_repo_id> \
  --episodes=10

Prefix the dataset repo with eval_ and supply --policy.path pointing to a local or hub checkpoint.


Model Details

  • License: apache-2.0
Downloads last month
0
Video Preview
loading

Dataset used to train pepijn223/my_policy20