Spaces:
Running
on
Zero
Running
on
Zero
File size: 25,047 Bytes
30f6115 763f9d6 30f6115 7358664 30f6115 5401180 30f6115 95bd381 ff57491 520b1aa ff57491 9c7fd36 87024e1 c4bfaad 95bd381 763f9d6 ff57491 c4bfaad ff57491 8598670 c4bfaad 8598670 ff57491 c4bfaad 8598670 c4bfaad 8598670 c4bfaad 763f9d6 30f6115 9c7fd36 30f6115 763f9d6 30f6115 c4bfaad 30f6115 9c7fd36 30f6115 763f9d6 30f6115 87024e1 ff57491 30f6115 ff57491 520b1aa 30f6115 5401180 30f6115 ff57491 87024e1 30f6115 5401180 520b1aa 30f6115 87024e1 8598670 c4bfaad 8598670 c4bfaad 8598670 c4bfaad 8598670 c4bfaad 8598670 c4bfaad ff57491 763f9d6 30f6115 a32d376 30f6115 763f9d6 30f6115 a32d376 30f6115 9c7fd36 30f6115 ff57491 8e22109 30f6115 ff57491 c4bfaad a8819c4 c4bfaad 30f6115 763f9d6 30f6115 c4bfaad ff57491 30f6115 1a86650 30f6115 d8f6c66 c4bfaad ff57491 c4bfaad ff57491 c4bfaad ff57491 c4bfaad 8cfa058 c4bfaad 763f9d6 c4bfaad 763f9d6 c4bfaad 30f6115 c4bfaad 763f9d6 c4bfaad c56644d c4bfaad 763f9d6 c4bfaad 763f9d6 c4bfaad ff57491 c4bfaad c56644d 10752e5 c4bfaad 763f9d6 c4bfaad 95bd381 ff57491 9c7fd36 d34ddd1 8598670 d34ddd1 8598670 d34ddd1 8598670 d34ddd1 8598670 763f9d6 c4bfaad 763f9d6 c4bfaad 763f9d6 c4bfaad 763f9d6 c4bfaad 763f9d6 c4bfaad 8598670 763f9d6 c4bfaad 763f9d6 c4bfaad 763f9d6 c4bfaad ff57491 c4bfaad 763f9d6 c4bfaad 763f9d6 c4bfaad 763f9d6 c4bfaad 8598670 763f9d6 c4bfaad 763f9d6 c4bfaad 763f9d6 c4bfaad ff57491 30f6115 763f9d6 30f6115 763f9d6 c4bfaad 30f6115 ff57491 c4bfaad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
import spaces
import gradio as gr
import torch
from diffusers import AutoencoderKL, TCDScheduler
from diffusers.models.model_loading_utils import load_state_dict
from gradio_imageslider import ImageSlider
from huggingface_hub import hf_hub_download
from controlnet_union import ControlNetModel_Union
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
from PIL import Image, ImageDraw
import numpy as np
MODELS = {
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
"Lustify Lightning": "GraydientPlatformAPI/lustify-lightning",
"Juggernaut XL Lightning": "RunDiffusion/Juggernaut-XL-Lightning",
"Juggernaut-XL-V9-GE-RDPhoto2": "AiWise/Juggernaut-XL-V9-GE-RDPhoto2-Lightning_4S",
"SatPony-Lightning": "John6666/satpony-lightning-v2-sdxl"
}
config_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="config_promax.json",
)
config = ControlNetModel_Union.load_config(config_file)
controlnet_model = ControlNetModel_Union.from_config(config)
model_file = hf_hub_download(
"xinsir/controlnet-union-sdxl-1.0",
filename="diffusion_pytorch_model_promax.safetensors",
)
state_dict = load_state_dict(model_file)
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
)
model.to(device="cuda", dtype=torch.float16)
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
).to("cuda")
pipe = StableDiffusionXLFillPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=torch.float16,
vae=vae,
controlnet=model,
variant="fp16",
)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
pipe.to("cuda")
print(pipe)
def load_default_pipeline():
global pipe
pipe = StableDiffusionXLFillPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=torch.float16,
vae=vae,
controlnet=model,
).to("cuda")
return gr.update(value="Default pipeline loaded!")
@spaces.GPU(duration=12)
def fill_image(prompt, image, model_selection, paste_back):
print(f"Received image: {image}")
if image is None:
yield None, None
return
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(prompt, "cuda", True)
source = image["background"]
mask = image["layers"][0]
alpha_channel = mask.split()[3]
binary_mask = alpha_channel.point(lambda p: p > 0 and 255)
cnet_image = source.copy()
cnet_image.paste(0, (0, 0), binary_mask)
for image in pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
image=cnet_image,
):
yield image, cnet_image
print(f"{model_selection=}")
print(f"{paste_back=}")
if paste_back:
image = image.convert("RGBA")
cnet_image.paste(image, (0, 0), binary_mask)
else:
cnet_image = image
yield source, cnet_image
def clear_result():
return gr.update(value=None)
def can_expand(source_width, source_height, target_width, target_height, alignment):
if alignment in ("Left", "Right") and source_width >= target_width:
return False
if alignment in ("Top", "Bottom") and source_height >= target_height:
return False
return True
def prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
target_size = (width, height)
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
new_width = int(image.width * scale_factor)
new_height = int(image.height * scale_factor)
source = image.resize((new_width, new_height), Image.LANCZOS)
if resize_option == "Full":
resize_percentage = 100
elif resize_option == "80%":
resize_percentage = 80
elif resize_option == "50%":
resize_percentage = 50
elif resize_option == "33%":
resize_percentage = 33
elif resize_option == "25%":
resize_percentage = 25
else: # Custom
resize_percentage = custom_resize_percentage
resize_factor = resize_percentage / 100
new_width = int(source.width * resize_factor)
new_height = int(source.height * resize_factor)
new_width = max(new_width, 64)
new_height = max(new_height, 64)
source = source.resize((new_width, new_height), Image.LANCZOS)
overlap_x = int(new_width * (overlap_percentage / 100))
overlap_y = int(new_height * (overlap_percentage / 100))
overlap_x = max(overlap_x, 1)
overlap_y = max(overlap_y, 1)
if alignment == "Middle":
margin_x = (target_size[0] - new_width) // 2
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Left":
margin_x = 0
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Right":
margin_x = target_size[0] - new_width
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Top":
margin_x = (target_size[0] - new_width) // 2
margin_y = 0
elif alignment == "Bottom":
margin_x = (target_size[0] - new_width) // 2
margin_y = target_size[1] - new_height
margin_x = max(0, min(margin_x, target_size[0] - new_width))
margin_y = max(0, min(margin_y, target_size[1] - new_height))
background = Image.new('RGB', target_size, (255, 255, 255))
background.paste(source, (margin_x, margin_y))
mask = Image.new('L', target_size, 255)
mask_draw = ImageDraw.Draw(mask)
white_gaps_patch = 2
left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width - white_gaps_patch
top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
bottom_overlap = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height - white_gaps_patch
if alignment == "Left":
left_overlap = margin_x + overlap_x if overlap_left else margin_x
elif alignment == "Right":
right_overlap = margin_x + new_width - overlap_x if overlap_right else margin_x + new_width
elif alignment == "Top":
top_overlap = margin_y + overlap_y if overlap_top else margin_y
elif alignment == "Bottom":
botttom_overlap = margin = margin = margin = margin_y + new_height - overlap_y if overlap_bottom else margin_y + new_height
mask_draw.rectangle([
(left_overlap, top_overlap),
(right_overlap, bottom_overlap)
], fill=0)
return background, mask
def preview_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
preview = background.copy().convert('RGBA')
red_overlay = Image.new('RGBA', background.size, (255, 0, 0, 64))
red_mask = Image.new('RGBA', background.size, (0, 0, 0, 0))
red_mask.paste(red_overlay, (0, 0), mask)
preview = Image.alpha_composite(preview, red_mask)
return preview
@spaces.GPU(duration=12)
def inpaint(prompt, image, inpaint_model, paste_back):
global pipe
if pipe.config.model_name != MODELS[model_name]:
pipe = StableDiffusionXLFillPipeline.from_pretrained(
MODELS[model_name],
torch_dtype=torch.float16,
vae=vae,
controlnet=model,
).to("cuda")
print(f"Loaded new SDXL model: {pipe.config.model_name}")
mask = Image.fromarray(image["mask"]).convert("L")
image = Image.fromarray(image["image"])
inpaint_final_prompt = f"score_9, score_8_up, score_7_up, {prompt}"
result = pipe(prompt=inpaint_final_prompt, image=image, mask_image=mask).images[0]
if paste_back:
result.paste(image, (0, 0), Image.fromarray(255 - np.array(mask)))
return result
@spaces.GPU(duration=12)
def outpaint(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
if not can_expand(background.width, background.height, width, height, alignment):
alignment = "Middle"
cnet_image = background.copy()
cnet_image.paste(0, (0, 0), mask)
final_prompt = f"score_9, score_8_up, score_7_up, {prompt_input} , high quality, 4k"
print(f"Outpainting using SDXL model: {pipe.config.model_name}")
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(final_prompt, "cuda", True)
for image in pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
image=cnet_image,
num_inference_steps=num_inference_steps
):
yield cnet_image, image
image = image.convert("RGBA")
cnet_image.paste(image, (0, 0), mask)
yield background, cnet_image
@spaces.GPU(duration=12)
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
if not can_expand(background.width, background.height, width, height, alignment):
alignment = "Middle"
cnet_image = background.copy()
cnet_image.paste(0, (0, 0), mask)
final_prompt = f"{prompt_input} , high quality, 4k"
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = pipe.encode_prompt(final_prompt, "cuda", True)
for image in pipe(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
image=cnet_image,
num_inference_steps=num_inference_steps
):
yield cnet_image, image
image = image.convert("RGBA")
cnet_image.paste(image, (0, 0), mask)
yield background, cnet_image
def use_output_as_input(output_image):
return gr.update(value=output_image[1])
def preload_presets(target_ratio, ui_width, ui_height):
if target_ratio == "9:16":
changed_width = 720
changed_height = 1280
return changed_width, changed_height, gr.update()
elif target_ratio == "2:3":
changed_width = 1024
changed_height = 1536
return changed_width, changed_height, gr.update()
elif target_ratio == "16:9":
changed_width = 1280
changed_height = 720
return changed_width, changed_height, gr.update()
elif target_ratio == "1:1":
changed_width = 1024
changed_height = 1024
return changed_width, changed_height, gr.update()
elif target_ratio == "Custom":
return ui_width, ui_height, gr.update(open=True)
else:
return ui_width, ui_height, gr.update()
def select_the_right_preset(user_width, user_height):
if user_width == 720 and user_height == 1280:
return "9:16"
elif user_width == 1024 and user_height == 1536:
return "2:3"
elif user_width == 1280 and user_height == 720:
return "16:9"
elif user_width == 1024 and user_height == 1024:
return "1:1"
else:
return "Custom"
def toggle_custom_resize_slider(resize_option):
return gr.update(visible=(resize_option == "Custom"))
def update_history(new_image, history):
if history is None:
history = []
history.insert(0, new_image)
return history
def clear_cache():
global pipe
pipe = None
torch.cuda.empty_cache()
return gr.update(value="Cache cleared!")
css = """
.nulgradio-container {
width: 86vw !important;
}
.nulcontain {
overflow-y: scroll !important;
padding: 10px 40px !important;
}
div#component-17 {
height: auto !important;
}
"""
title = """<h1 align="center">Diffusers Image Outpaint</h1>
<div align="center">Drop an image you would like to extend, pick your expected ratio and hit Generate.</div>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<p style="display: flex;gap: 6px;">
<a href="https://huggingface.co/spaces/fffiloni/diffusers-image-outpout?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate this Space">
</a> to skip the queue and enjoy faster inference on the GPU of your choice
</p>
</div>
"""
with gr.Blocks(css=css, fill_height=True) as demo:
gr.Markdown("# Diffusers Inpaint and Outpaint")
with gr.Tabs():
with gr.TabItem("Inpaint"):
with gr.Column():
with gr.Row():
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
info="Describe what to inpaint the mask with",
lines=3,
)
with gr.Column():
model_selection = gr.Dropdown(
choices=list(MODELS.keys()),
value="RealVisXL V5.0 Lightning",
label="Model",
)
with gr.Row():
run_button = gr.Button("Generate")
paste_back = gr.Checkbox(True, label="Paste back original")
with gr.Row(equal_height=False):
input_image = gr.ImageMask(
type="pil", label="Input Image", layers=True
)
result = ImageSlider(
interactive=False,
label="Generated Image",
)
use_as_input_button = gr.Button("Use as Input Image", visible=False)
use_as_input_button.click(
fn=use_output_as_input, inputs=[result], outputs=[input_image]
)
run_button.click(
fn=clear_result,
inputs=None,
outputs=result,
).then(
fn=lambda: gr.update(visible=False),
inputs=None,
outputs=use_as_input_button,
).then(
fn=fill_image,
inputs=[prompt, input_image, model_selection, paste_back],
outputs=[result],
).then(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=use_as_input_button,
)
prompt.submit(
fn=clear_result,
inputs=None,
outputs=result,
).then(
fn=lambda: gr.update(visible=False),
inputs=None,
outputs=use_as_input_button,
).then(
fn=fill_image,
inputs=[prompt, input_image, model_selection, paste_back],
outputs=[result],
).then(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=use_as_input_button,
)
with gr.TabItem("Outpaint"):
with gr.Column():
with gr.Row():
with gr.Column():
input_image_outpaint = gr.Image(
type="pil",
label="Input Image"
)
with gr.Row():
with gr.Column(scale=2):
prompt_input = gr.Textbox(label="Prompt (Optional)")
with gr.Column(scale=1):
runout_button = gr.Button("Generate")
with gr.Row():
target_ratio = gr.Radio(
label="Expected Ratio",
choices=["9:16", "16:9", "1:1", "Custom"],
value="1:1",
scale=2
)
alignment_dropdown = gr.Dropdown(
choices=["Middle", "Left", "Right", "Top", "Bottom"],
value="Middle",
label="Alignment"
)
with gr.Accordion(label="Advanced settings", open=False) as settings_panel:
with gr.Column():
with gr.Row():
width_slider = gr.Slider(
label="Target Width",
minimum=720,
maximum=1536,
step=8,
value=1280,
)
height_slider = gr.Slider(
label="Target Height",
minimum=720,
maximum=1536,
step=8,
value=1280,
)
num_inference_steps = gr.Slider(label="Steps", minimum=4, maximum=12, step=1, value=8)
with gr.Group():
overlap_percentage = gr.Slider(
label="Mask overlap (%)",
minimum=1,
maximum=50,
value=10,
step=1
)
with gr.Row():
overlap_top = gr.Checkbox(label="Overlap Top", value=True)
overlap_right = gr.Checkbox(label="Overlap Right", value=True)
with gr.Row():
overlap_left = gr.Checkbox(label="Overlap Left", value=True)
overlap_bottom = gr.Checkbox(label="Overlap Bottom", value=True)
with gr.Row():
resize_option = gr.Radio(
label="Resize input image",
choices=["Full", "80%", "50%", "33%", "25%", "Custom"],
value="Full"
)
custom_resize_percentage = gr.Slider(
label="Custom resize (%)",
minimum=1,
maximum=100,
step=1,
value=50,
visible=False
)
with gr.Column():
preview_button = gr.Button("Preview alignment and mask")
gr.Examples(
examples=[
["./examples/example_1.webp", 1280, 720, "Middle"],
["./examples/example_2.jpg", 1440, 810, "Left"],
["./examples/example_3.jpg", 1024, 1024, "Top"],
["./examples/example_3.jpg", 1024, 1024, "Bottom"],
],
inputs=[input_image_outpaint, width_slider, height_slider, alignment_dropdown],
)
with gr.Column():
result_outpaint = ImageSlider(
interactive=False,
label="Generated Image",
)
use_as_input_button_outpaint = gr.Button("Use as Input Image", visible=False)
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
preview_image = gr.Image(label="Preview")
with gr.TabItem("Misc"):
with gr.Column():
clear_cache_button = gr.Button("Clear CUDA Cache")
clear_cache_message = gr.Markdown("")
clear_cache_button.click(
fn=clear_cache,
inputs=None,
outputs=clear_cache_message,
)
load_default_button = gr.Button("Load Default Pipeline")
load_default_message = gr.Markdown("")
load_default_button.click(
fn=load_default_pipeline,
inputs=None,
outputs=load_default_message,
)
target_ratio.change(
fn=preload_presets,
inputs=[target_ratio, width_slider, height_slider],
outputs=[width_slider, height_slider, settings_panel],
queue=False
)
width_slider.change(
fn=select_the_right_preset,
inputs=[width_slider, height_slider],
outputs=[target_ratio],
queue=False
)
height_slider.change(
fn=select_the_right_preset,
inputs=[width_slider, height_slider],
outputs=[target_ratio],
queue=False
)
resize_option.change(
fn=toggle_custom_resize_slider,
inputs=[resize_option],
outputs=[custom_resize_percentage],
queue=False
)
use_as_input_button_outpaint.click(
fn=use_output_as_input,
inputs=[result_outpaint],
outputs=[input_image_outpaint]
)
runout_button.click(
fn=clear_result,
inputs=None,
outputs=result_outpaint,
).then(
fn=infer,
inputs=[input_image_outpaint, width_slider, height_slider, overlap_percentage, num_inference_steps,
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
overlap_left, overlap_right, overlap_top, overlap_bottom],
outputs=[result_outpaint],
).then(
fn=lambda x, history: update_history(x[1], history),
inputs=[result_outpaint, history_gallery],
outputs=history_gallery,
).then(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=[use_as_input_button_outpaint],
)
prompt_input.submit(
fn=clear_result,
inputs=None,
outputs=result_outpaint,
).then(
fn=infer,
inputs=[input_image_outpaint, width_slider, height_slider, overlap_percentage, num_inference_steps,
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
overlap_left, overlap_right, overlap_top, overlap_bottom],
outputs=[result_outpaint],
).then(
fn=lambda x, history: update_history(x[1], history),
inputs=[result_outpaint, history_gallery],
outputs=history_gallery,
).then(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=[use_as_input_button_outpaint],
)
preview_button.click(
fn=preview_image_and_mask,
inputs=[input_image_outpaint, width_slider, height_slider, overlap_percentage, resize_option, custom_resize_percentage, alignment_dropdown,
overlap_left, overlap_right, overlap_top, overlap_bottom],
outputs=[preview_image],
queue=False
)
demo.launch(show_error=True) |