Spaces:
Running
Running
import streamlit as st | |
import logging | |
import os | |
from io import BytesIO | |
import pdfplumber | |
from pdf2image import convert_from_bytes | |
from PIL import Image | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain_community.vectorstores import FAISS | |
from sentence_transformers import SentenceTransformer | |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, Trainer, TrainingArguments | |
from datasets import load_dataset | |
from rank_bm25 import BM25Okapi | |
from rouge_score import rouge_scorer | |
import re | |
import time | |
import pytesseract | |
# Setup logging for Spaces | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
logger = logging.getLogger(__name__) | |
# Lazy load models | |
def load_embeddings_model(): | |
logger.info("Loading embeddings model") | |
try: | |
return SentenceTransformer("all-MiniLM-L6-v2") | |
except Exception as e: | |
logger.error(f"Embeddings load error: {str(e)}") | |
st.error(f"Embedding model error: {str(e)}") | |
return None | |
def load_qa_pipeline(): | |
logger.info("Loading QA pipeline") | |
try: | |
dataset = load_and_prepare_dataset() | |
if dataset: | |
fine_tuned_pipeline = fine_tune_qa_model(dataset) | |
if fine_tuned_pipeline: | |
return fine_tuned_pipeline | |
return pipeline("text2text-generation", model="google/flan-t5-small", max_length=300) | |
except Exception as e: | |
logger.error(f"QA model load error: {str(e)}") | |
st.error(f"QA model error: {str(e)}") | |
return None | |
def load_summary_pipeline(): | |
logger.info("Loading summary pipeline") | |
try: | |
return pipeline("summarization", model="facebook/bart-large-cnn", max_length=250) | |
except Exception as e: | |
logger.error(f"Summary model load error: {str(e)}") | |
st.error(f"Summary model error: {str(e)}") | |
return None | |
# Load and prepare dataset (e.g., SQuAD) | |
def load_and_prepare_dataset(dataset_name="squad", max_samples=1000): | |
logger.info(f"Loading dataset: {dataset_name}") | |
try: | |
dataset = load_dataset(dataset_name, split="train[:80%]") | |
dataset = dataset.shuffle(seed=42).select(range(min(max_samples, len(dataset)))) | |
def preprocess(examples): | |
inputs = [f"question: {q} context: {c}" for q, c in zip(examples['question'], examples['context'])] | |
targets = examples['answers']['text'] | |
return {'input_text': inputs, 'target_text': [t[0] if t else "" for t in targets]} | |
dataset = dataset.map(preprocess, batched=True, remove_columns=dataset.column_names) | |
return dataset | |
except Exception as e: | |
logger.error(f"Dataset load error: {str(e)}") | |
return None | |
# Fine-tune QA model | |
def fine_tune_qa_model(dataset): | |
logger.info("Starting fine-tuning") | |
try: | |
model_name = "google/flan-t5-small" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
def tokenize_function(examples): | |
model_inputs = tokenizer(examples['input_text'], max_length=512, truncation=True, padding="max_length") | |
labels = tokenizer(examples['target_text'], max_length=128, truncation=True, padding="max_length") | |
model_inputs["labels"] = labels["input_ids"] | |
return model_inputs | |
tokenized_dataset = dataset.map(tokenize_function, batched=True, remove_columns=['input_text', 'target_text']) | |
training_args = TrainingArguments( | |
output_dir="./fine_tuned_model", | |
num_train_epochs=2, | |
per_device_train_batch_size=4, | |
save_steps=500, | |
logging_steps=100, | |
evaluation_strategy="no", | |
learning_rate=3e-5, | |
fp16=False, | |
) | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_dataset, | |
) | |
trainer.train() | |
model.save_pretrained("./fine_tuned_model") | |
tokenizer.save_pretrained("./fine_tuned_model") | |
logger.info("Fine-tuning complete") | |
return pipeline("text2text-generation", model="./fine_tuned_model", tokenizer="./fine_tuned_model", max_length=300) | |
except Exception as e: | |
logger.error(f"Fine-tuning error: {str(e)}") | |
return None | |
# Augment vector store with dataset | |
def augment_vector_store(vector_store, dataset_name="squad", max_samples=300): | |
logger.info(f"Augmenting vector store with dataset: {dataset_name}") | |
try: | |
dataset = load_dataset(dataset_name, split="train").select(range(min(max_samples, len(dataset)))) | |
chunks = [f"Context: {c}\nAnswer: {a['text'][0]}" for c, a in zip(dataset['context'], dataset['answers'])] | |
embeddings_model = load_embeddings_model() | |
if embeddings_model and vector_store: | |
embeddings = embeddings_model.encode(chunks, batch_size=128, show_progress_bar=False) | |
vector_store.add_embeddings(zip(chunks, embeddings)) | |
return vector_store | |
except Exception as e: | |
logger.error(f"Vector store augmentation error: {str(e)}") | |
return vector_store | |
# Process PDF with enhanced extraction and OCR fallback | |
def process_pdf(uploaded_file): | |
logger.info("Processing PDF with enhanced extraction") | |
try: | |
text = "" | |
code_blocks = [] | |
images = [] | |
with pdfplumber.open(BytesIO(uploaded_file.getvalue())) as pdf: | |
for page in pdf.pages[:8]: | |
extracted = page.extract_text(layout=False) | |
if not extracted: | |
try: | |
img = page.to_image(resolution=150).original | |
extracted = pytesseract.image_to_string(img, config='--psm 6') | |
images.append(img) | |
except Exception as ocr_e: | |
logger.warning(f"OCR failed: {str(ocr_e)}") | |
if extracted: | |
lines = extracted.split("\n") | |
cleaned_lines = [line for line in lines if not re.match(r'^\s*(Page \d+|.*\d{4}-\d{4}|Copyright.*)\s*$', line, re.I)] | |
text += "\n".join(cleaned_lines) + "\n" | |
for char in page.chars: | |
if 'fontname' in char and 'mono' in char['fontname'].lower(): | |
code_blocks.append(char['text']) | |
code_text = page.extract_text() | |
code_matches = re.finditer(r'(^\s{2,}.*?(?:\n\s{2,}.*?)*)', code_text, re.MULTILINE) | |
for match in code_matches: | |
code_blocks.append(match.group().strip()) | |
tables = page.extract_tables() | |
if tables: | |
for table in tables: | |
text += "\n".join([" | ".join(map(str, row)) for row in table if row]) + "\n" | |
for obj in page.extract_words(): | |
if obj.get('size', 0) > 12: | |
text += f"\n{obj['text']}\n" | |
code_text = "\n".join(code_blocks).strip() | |
if not text: | |
raise ValueError("No text extracted from PDF") | |
text_splitter = CharacterTextSplitter(separator="\n\n", chunk_size=250, chunk_overlap=40, keep_separator=True) | |
text_chunks = text_splitter.split_text(text)[:25] | |
code_chunks = text_splitter.split_text(code_text)[:10] if code_text else [] | |
embeddings_model = load_embeddings_model() | |
if not embeddings_model: | |
return None, None, text, code_text, images | |
text_vector_store = FAISS.from_embeddings( | |
zip(text_chunks, [embeddings_model.encode(chunk, show_progress_bar=False, batch_size=128) for chunk in text_chunks]), | |
embeddings_model.encode | |
) if text_chunks else None | |
code_vector_store = FAISS.from_embeddings( | |
zip(code_chunks, [embeddings_model.encode(chunk, show_progress_bar=False, batch_size=128) for chunk in code_chunks]), | |
embeddings_model.encode | |
) if code_chunks else None | |
if text_vector_store: | |
text_vector_store = augment_vector_store(text_vector_store) | |
logger.info("PDF processed successfully") | |
return text_vector_store, code_vector_store, text, code_text, images | |
except Exception as e: | |
logger.error(f"PDF processing error: {str(e)}") | |
st.error(f"PDF error: {str(e)}") | |
return None, None, "", "", [] | |
# Summarize PDF with ROUGE metrics and improved topic focus | |
def summarize_pdf(text): | |
logger.info("Generating summary") | |
try: | |
summary_pipeline = load_summary_pipeline() | |
if not summary_pipeline: | |
return "Summary model unavailable." | |
text_splitter = CharacterTextSplitter(separator="\n\n", chunk_size=250, chunk_overlap=40) | |
chunks = text_splitter.split_text(text) | |
# Hybrid search for relevant chunks | |
embeddings_model = load_embeddings_model() | |
if embeddings_model and chunks: | |
temp_vector_store = FAISS.from_embeddings( | |
zip(chunks, [embeddings_model.encode(chunk, show_progress_bar=False) for chunk in chunks]), | |
embeddings_model.encode | |
) | |
bm25 = BM25Okapi([chunk.split() for chunk in chunks]) | |
query = "main topic and key points" | |
bm25_docs = bm25.get_top_n(query.split(), chunks, n=4) | |
faiss_docs = temp_vector_store.similarity_search(query, k=4) | |
selected_chunks = list(set(bm25_docs + [doc.page_content for doc in faiss_docs]))[:4] | |
else: | |
selected_chunks = chunks[:4] | |
summaries = [] | |
for chunk in selected_chunks: | |
summary = summary_pipeline(f"Summarize the main topic and key points in detail: {chunk[:250]}", max_length=100, min_length=50, do_sample=False)[0]['summary_text'] | |
summaries.append(summary.strip()) | |
combined_summary = " ".join(summaries) | |
if len(combined_summary.split()) > 250: | |
combined_summary = " ".join(combined_summary.split()[:250]) | |
word_count = len(combined_summary.split()) | |
scorer = rouge_scorer.RougeScorer(['rouge1', 'rougeL'], use_stemmer=True) | |
scores = scorer.score(text[:500], combined_summary) | |
logger.info(f"ROUGE scores: {scores}") | |
return f"**Main Topic Summary** ({word_count} words):\n{combined_summary}\n\n**ROUGE-1**: {scores['rouge1'].fmeasure:.2f}" | |
except Exception as e: | |
logger.error(f"Summary error: {str(e)}") | |
return f"Oops, something went wrong summarizing: {str(e)}" | |
# Answer question with hybrid search | |
def answer_question(text_vector_store, code_vector_store, query): | |
logger.info(f"Processing query: {query}") | |
try: | |
if not text_vector_store and not code_vector_store: | |
return "Please upload a PDF first!" | |
qa_pipeline = load_qa_pipeline() | |
if not qa_pipeline: | |
return "Sorry, the QA model is unavailable right now." | |
is_code_query = any(keyword in query.lower() for keyword in ["code", "script", "function", "programming", "give me code", "show code"]) | |
if is_code_query and code_vector_store: | |
docs = code_vector_store.similarity_search(query, k=3) | |
code = "\n".join(doc.page_content for doc in docs) | |
explanation = qa_pipeline(f"Explain this code: {code[:500]}")[0]['generated_text'] | |
return f"**Code**:\n```python\n{code}\n```\n**Explanation**:\n{explanation}" | |
vector_store = text_vector_store | |
if not vector_store: | |
return "No relevant content found for your query." | |
# Hybrid search: FAISS + BM25 | |
text_chunks = [doc.page_content for doc in vector_store.similarity_search(query, k=10)] | |
bm25 = BM25Okapi([chunk.split() for chunk in text_chunks]) | |
bm25_docs = bm25.get_top_n(query.split(), text_chunks, n=5) | |
faiss_docs = vector_store.similarity_search(query, k=5) | |
combined_docs = list(set(bm25_docs + [doc.page_content for doc in faiss_docs]))[:5] | |
context = "\n".join(combined_docs) | |
prompt = f"Use the following PDF content to answer the question accurately and concisely. Avoid speculation and focus on the provided context:\n\n{context}\n\nQuestion: {query}\nAnswer:" | |
response = qa_pipeline(prompt)[0]['generated_text'] | |
logger.info("Answer generated") | |
return f"**Answer**:\n{response.strip()}\n\n**Source Context**:\n{context[:500]}..." | |
except Exception as e: | |
logger.error(f"Query error: {str(e)}") | |
return f"Sorry, something went wrong: {str(e)}" | |
# Streamlit UI | |
try: | |
st.set_page_config(page_title="Smart PDF Q&A", page_icon="📄", layout="wide") | |
st.markdown(""" | |
<style> | |
.main { max-width: 900px; margin: 0 auto; padding: 20px; } | |
.sidebar { background-color: #f8f9fa; padding: 10px; border-radius: 5px; } | |
.message { margin: 10px 0; padding: 10px; border-radius: 5px; display: block; } | |
.user { background-color: #e6f3ff; } | |
.assistant { background-color: #f0f0f0; } | |
.dark .user { background-color: #2a2a72; color: #fff; } | |
.dark .assistant { background-color: #2e2e2e; color: #fff; } | |
.stButton>button { background-color: #4CAF50; color: white; border: none; padding: 8px 16px; border-radius: 5px; } | |
.stButton>button:hover { background-color: #45a049; } | |
pre { background-color: #f8f8f8; padding: 10px; border-radius: 5px; overflow-x: auto; } | |
.header { background: linear-gradient(90deg, #4CAF50, #81C784); color: white; padding: 10px; border-radius: 5px; text-align: center; } | |
.progress-bar { background-color: #e0e0e0; border-radius: 5px; height: 10px; } | |
.progress-fill { background-color: #4CAF50; height: 100%; border-radius: 5px; transition: width 0.5s ease; } | |
</style> | |
""", unsafe_allow_html=True) | |
st.markdown('<div class="header"><h1>Smart PDF Q&A</h1></div>', unsafe_allow_html=True) | |
st.markdown("Upload a PDF to ask questions, summarize (~150 words), or extract code with 'give me code'. Fast and friendly responses!") | |
# Initialize session state | |
if "messages" not in st.session_state: | |
st.session_state.messages = [{"role": "assistant", "content": "Hello! Upload a PDF and process it to start chatting."}] | |
if "text_vector_store" not in st.session_state: | |
st.session_state.text_vector_store = None | |
if "code_vector_store" not in st.session_state: | |
st.session_state.code_vector_store = None | |
if "pdf_text" not in st.session_state: | |
st.session_state.pdf_text = "" | |
if "code_text" not in st.session_state: | |
st.session_state.code_text = "" | |
if "images" not in st.session_state: | |
st.session_state.images = [] | |
# Sidebar with toggle | |
with st.sidebar: | |
st.markdown('<div class="sidebar">', unsafe_allow_html=True) | |
theme = st.radio("Theme", ["Light", "Dark"], index=0) | |
dataset_name = st.selectbox("Select Dataset for Fine-Tuning", ["squad", "cnn_dailymail", "bigcode/the-stack"], index=0) | |
if st.button("Fine-Tune Model"): | |
progress_bar = st.progress(0) | |
for i in range(100): | |
time.sleep(0.008) | |
progress_bar.progress(i + 1) | |
dataset = load_and_prepare_dataset(dataset_name=dataset_name) | |
if dataset: | |
fine_tuned_pipeline = fine_tune_qa_model(dataset) | |
if fine_tuned_pipeline: | |
st.success("Model fine-tuned successfully!") | |
else: | |
st.error("Fine-tuning failed.") | |
if st.button("Clear Chat"): | |
st.session_state.messages = [] | |
st.experimental_rerun() | |
if st.button("Retry Summarization") and st.session_state.pdf_text: | |
progress_bar = st.progress(0) | |
with st.spinner("Retrying summarization..."): | |
for i in range(100): | |
time.sleep(0.008) | |
progress_bar.progress(i + 1) | |
summary = summarize_pdf(st.session_state.pdf_text) | |
st.session_state.messages.append({"role": "assistant", "content": summary}) | |
st.markdown(summary, unsafe_allow_html=True) | |
st.markdown('</div>', unsafe_allow_html=True) | |
# PDF upload and processing | |
uploaded_file = st.file_uploader("Upload a PDF", type=["pdf"]) | |
col1, col2 = st.columns([1, 1]) | |
with col1: | |
if st.button("Process PDF"): | |
progress_bar = st.progress(0) | |
with st.spinner("Processing PDF..."): | |
for i in range(100): | |
time.sleep(0.02) | |
progress_bar.progress(i + 1) | |
st.session_state.text_vector_store, st.session_state.code_vector_store, st.session_state.pdf_text, st.session_state.code_text, st.session_state.images = process_pdf(uploaded_file) | |
if st.session_state.text_vector_store or st.session_state.code_vector_store: | |
st.success("PDF processed! Ask away or summarize.") | |
st.session_state.messages = [{"role": "assistant", "content": "PDF processed! What would you like to know?"}] | |
else: | |
st.error("Failed to process PDF.") | |
with col2: | |
if st.button("Summarize PDF") and st.session_state.pdf_text: | |
progress_bar = st.progress(0) | |
with st.spinner("Summarizing..."): | |
for i in range(100): | |
time.sleep(0.008) | |
progress_bar.progress(i + 1) | |
summary = summarize_pdf(st.session_state.pdf_text) | |
st.session_state.messages.append({"role": "assistant", "content": summary}) | |
st.markdown(summary, unsafe_allow_html=True) | |
# Chat interface | |
if st.session_state.text_vector_store or st.session_state.code_vector_store: | |
prompt = st.chat_input("Ask a question (e.g., 'Give me code' or 'What’s the main idea?'):") | |
if prompt: | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
with st.chat_message("assistant"): | |
progress_bar = st.progress(0) | |
with st.spinner('<div class="spinner">⏳ Processing...</div>'): | |
for i in range(100): | |
time.sleep(0.004) | |
progress_bar.progress(i + 1) | |
answer = answer_question(st.session_state.text_vector_store, st.session_state.code_vector_store, prompt) | |
st.markdown(answer, unsafe_allow_html=True) | |
st.session_state.messages.append({"role": "assistant", "content": answer}) | |
# Display chat history | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"], unsafe_allow_html=True) | |
# Display extracted images | |
if st.session_state.images: | |
st.header("Extracted Images") | |
for img in st.session_state.images: | |
st.image(img, caption="Extracted PDF Image", use_column_width=True) | |
# Download chat history | |
if st.session_state.messages: | |
chat_text = "\n".join(f"{m['role'].capitalize()}: {m['content']}" for m in st.session_state.messages) | |
st.download_button("Download Chat History", chat_text, "chat_history.txt") | |
except Exception as e: | |
logger.error(f"App initialization failed: {str(e)}") | |
st.error(f"App failed to start: {str(e)}. Check Spaces logs or contact support.") |