metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- csr
- generated_from_trainer
- dataset_size:99000
- loss:CSRLoss
- loss:SparseMultipleNegativesRankingLoss
base_model: mixedbread-ai/mxbai-embed-large-v1
widget:
- text: >-
Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi
Arabia continue to take somewhat differing stances on regional conflicts
such the Yemeni Civil War, where the UAE opposes Al-Islah, and supports
the Southern Movement, which has fought against Saudi-backed forces, and
the Syrian Civil War, where the UAE has disagreed with Saudi support for
Islamist movements.[4]
- text: >-
Economy of New Zealand New Zealand's diverse market economy has a sizable
service sector, accounting for 63% of all GDP activity in 2013.[17] Large
scale manufacturing industries include aluminium production, food
processing, metal fabrication, wood and paper products. Mining,
manufacturing, electricity, gas, water, and waste services accounted for
16.5% of GDP in 2013.[17] The primary sector continues to dominate New
Zealand's exports, despite accounting for 6.5% of GDP in 2013.[17]
- text: >-
who was the first president of indian science congress meeting held in
kolkata in 1914
- text: >-
Get Over It (Eagles song) "Get Over It" is a song by the Eagles released
as a single after a fourteen-year breakup. It was also the first song
written by bandmates Don Henley and Glenn Frey when the band reunited.
"Get Over It" was played live for the first time during their Hell Freezes
Over tour in 1994. It returned the band to the U.S. Top 40 after a
fourteen-year absence, peaking at No. 31 on the Billboard Hot 100 chart.
It also hit No. 4 on the Billboard Mainstream Rock Tracks chart. The song
was not played live by the Eagles after the "Hell Freezes Over" tour in
1994. It remains the group's last Top 40 hit in the U.S.
- text: >-
Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion
who is considered by Christians to be one of the first Gentiles to convert
to the faith, as related in Acts of the Apostles.
datasets:
- sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
co2_eq_emissions:
emissions: 39.03404179469692
energy_consumed: 0.1004215100377588
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.246
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: Sparse CSR model trained on Natural Questions
results:
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 4
type: nq_eval_4
metrics:
- type: cosine_accuracy@1
value: 0.333
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.51
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.608
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.701
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.333
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.17
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1216
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0701
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.333
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.51
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.608
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.701
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5048911324016669
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.44326626984126943
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.45271073834573333
name: Cosine Map@100
- type: query_active_dims
value: 4
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9990234375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 4
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9990234375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 8
type: nq_eval_8
metrics:
- type: cosine_accuracy@1
value: 0.471
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.675
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.75
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.825
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.471
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.225
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.15
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0825
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.471
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.675
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.75
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.825
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.6441336669789526
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.5863865079365083
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.5935240561774322
name: Cosine Map@100
- type: query_active_dims
value: 8
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.998046875
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 8
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.998046875
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 16
type: nq_eval_16
metrics:
- type: cosine_accuracy@1
value: 0.618
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.839
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.888
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.618
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2666666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1678
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08880000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.618
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.839
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.888
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7584976627273415
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7165746031746036
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7213877485505877
name: Cosine Map@100
- type: query_active_dims
value: 16
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.99609375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 16
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.99609375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 32
type: nq_eval_32
metrics:
- type: cosine_accuracy@1
value: 0.729
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.848
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.881
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.916
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.729
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2826666666666666
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1762
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09160000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.729
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.848
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.881
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.916
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8242272725827696
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7946277777777779
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7980770968534903
name: Cosine Map@100
- type: query_active_dims
value: 32
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9921875
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 32
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9921875
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 64
type: nq_eval_64
metrics:
- type: cosine_accuracy@1
value: 0.783
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.883
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.909
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.94
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.783
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.29433333333333334
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18180000000000002
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09400000000000001
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.783
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.883
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.909
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.94
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8633645356650496
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8386107142857145
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8412127714611879
name: Cosine Map@100
- type: query_active_dims
value: 64
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.984375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 64
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.984375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 128
type: nq_eval_128
metrics:
- type: cosine_accuracy@1
value: 0.858
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.942
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.953
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.966
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.858
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.31399999999999995
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19060000000000005
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0966
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.858
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.942
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.953
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.966
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9175695694881496
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9015206349206352
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9028827893432363
name: Cosine Map@100
- type: query_active_dims
value: 128
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.96875
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 128
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.96875
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: nq eval 256
type: nq_eval_256
metrics:
- type: cosine_accuracy@1
value: 0.905
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.972
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.982
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.987
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.905
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.32399999999999995
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19640000000000005
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09870000000000002
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.905
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.972
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.982
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.987
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9511220239850359
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9390623015873019
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9396249937318298
name: Cosine Map@100
- type: query_active_dims
value: 256
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
Sparse CSR model trained on Natural Questions
This is a CSR Sparse Encoder model finetuned from mixedbread-ai/mxbai-embed-large-v1 on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space with 256 maximum active dimensions and can be used for semantic search and sparse retrieval.
Model Details
Model Description
- Model Type: CSR Sparse Encoder
- Base model: mixedbread-ai/mxbai-embed-large-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 4096 dimensions (trained with 256 maximum active dimensions)
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SparseEncoder(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq-cos-sim-scale-5-gamma-0.1-detach-2")
queries = [
"who is cornelius in the book of acts",
]
documents = [
'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
"Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
Evaluation
Metrics
Sparse Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.333 |
cosine_accuracy@3 |
0.51 |
cosine_accuracy@5 |
0.608 |
cosine_accuracy@10 |
0.701 |
cosine_precision@1 |
0.333 |
cosine_precision@3 |
0.17 |
cosine_precision@5 |
0.1216 |
cosine_precision@10 |
0.0701 |
cosine_recall@1 |
0.333 |
cosine_recall@3 |
0.51 |
cosine_recall@5 |
0.608 |
cosine_recall@10 |
0.701 |
cosine_ndcg@10 |
0.5049 |
cosine_mrr@10 |
0.4433 |
cosine_map@100 |
0.4527 |
query_active_dims |
4.0 |
query_sparsity_ratio |
0.999 |
corpus_active_dims |
4.0 |
corpus_sparsity_ratio |
0.999 |
Sparse Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.471 |
cosine_accuracy@3 |
0.675 |
cosine_accuracy@5 |
0.75 |
cosine_accuracy@10 |
0.825 |
cosine_precision@1 |
0.471 |
cosine_precision@3 |
0.225 |
cosine_precision@5 |
0.15 |
cosine_precision@10 |
0.0825 |
cosine_recall@1 |
0.471 |
cosine_recall@3 |
0.675 |
cosine_recall@5 |
0.75 |
cosine_recall@10 |
0.825 |
cosine_ndcg@10 |
0.6441 |
cosine_mrr@10 |
0.5864 |
cosine_map@100 |
0.5935 |
query_active_dims |
8.0 |
query_sparsity_ratio |
0.998 |
corpus_active_dims |
8.0 |
corpus_sparsity_ratio |
0.998 |
Sparse Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.618 |
cosine_accuracy@3 |
0.8 |
cosine_accuracy@5 |
0.839 |
cosine_accuracy@10 |
0.888 |
cosine_precision@1 |
0.618 |
cosine_precision@3 |
0.2667 |
cosine_precision@5 |
0.1678 |
cosine_precision@10 |
0.0888 |
cosine_recall@1 |
0.618 |
cosine_recall@3 |
0.8 |
cosine_recall@5 |
0.839 |
cosine_recall@10 |
0.888 |
cosine_ndcg@10 |
0.7585 |
cosine_mrr@10 |
0.7166 |
cosine_map@100 |
0.7214 |
query_active_dims |
16.0 |
query_sparsity_ratio |
0.9961 |
corpus_active_dims |
16.0 |
corpus_sparsity_ratio |
0.9961 |
Sparse Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.729 |
cosine_accuracy@3 |
0.848 |
cosine_accuracy@5 |
0.881 |
cosine_accuracy@10 |
0.916 |
cosine_precision@1 |
0.729 |
cosine_precision@3 |
0.2827 |
cosine_precision@5 |
0.1762 |
cosine_precision@10 |
0.0916 |
cosine_recall@1 |
0.729 |
cosine_recall@3 |
0.848 |
cosine_recall@5 |
0.881 |
cosine_recall@10 |
0.916 |
cosine_ndcg@10 |
0.8242 |
cosine_mrr@10 |
0.7946 |
cosine_map@100 |
0.7981 |
query_active_dims |
32.0 |
query_sparsity_ratio |
0.9922 |
corpus_active_dims |
32.0 |
corpus_sparsity_ratio |
0.9922 |
Sparse Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.783 |
cosine_accuracy@3 |
0.883 |
cosine_accuracy@5 |
0.909 |
cosine_accuracy@10 |
0.94 |
cosine_precision@1 |
0.783 |
cosine_precision@3 |
0.2943 |
cosine_precision@5 |
0.1818 |
cosine_precision@10 |
0.094 |
cosine_recall@1 |
0.783 |
cosine_recall@3 |
0.883 |
cosine_recall@5 |
0.909 |
cosine_recall@10 |
0.94 |
cosine_ndcg@10 |
0.8634 |
cosine_mrr@10 |
0.8386 |
cosine_map@100 |
0.8412 |
query_active_dims |
64.0 |
query_sparsity_ratio |
0.9844 |
corpus_active_dims |
64.0 |
corpus_sparsity_ratio |
0.9844 |
Sparse Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.858 |
cosine_accuracy@3 |
0.942 |
cosine_accuracy@5 |
0.953 |
cosine_accuracy@10 |
0.966 |
cosine_precision@1 |
0.858 |
cosine_precision@3 |
0.314 |
cosine_precision@5 |
0.1906 |
cosine_precision@10 |
0.0966 |
cosine_recall@1 |
0.858 |
cosine_recall@3 |
0.942 |
cosine_recall@5 |
0.953 |
cosine_recall@10 |
0.966 |
cosine_ndcg@10 |
0.9176 |
cosine_mrr@10 |
0.9015 |
cosine_map@100 |
0.9029 |
query_active_dims |
128.0 |
query_sparsity_ratio |
0.9688 |
corpus_active_dims |
128.0 |
corpus_sparsity_ratio |
0.9688 |
Sparse Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.905 |
cosine_accuracy@3 |
0.972 |
cosine_accuracy@5 |
0.982 |
cosine_accuracy@10 |
0.987 |
cosine_precision@1 |
0.905 |
cosine_precision@3 |
0.324 |
cosine_precision@5 |
0.1964 |
cosine_precision@10 |
0.0987 |
cosine_recall@1 |
0.905 |
cosine_recall@3 |
0.972 |
cosine_recall@5 |
0.982 |
cosine_recall@10 |
0.987 |
cosine_ndcg@10 |
0.9511 |
cosine_mrr@10 |
0.9391 |
cosine_map@100 |
0.9396 |
query_active_dims |
256.0 |
query_sparsity_ratio |
0.9375 |
corpus_active_dims |
256.0 |
corpus_sparsity_ratio |
0.9375 |
Training Details
Training Dataset
natural-questions
- Dataset: natural-questions at f9e894e
- Size: 99,000 training samples
- Columns:
query
and answer
- Approximate statistics based on the first 1000 samples:
|
query |
answer |
type |
string |
string |
details |
- min: 10 tokens
- mean: 11.71 tokens
- max: 26 tokens
|
- min: 4 tokens
- mean: 131.81 tokens
- max: 450 tokens
|
- Samples:
query |
answer |
who played the father in papa don't preach |
Alex McArthur Alex McArthur (born March 6, 1957) is an American actor. |
where was the location of the battle of hastings |
Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory. |
how many puppies can a dog give birth to |
Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22] |
- Loss:
CSRLoss
with these parameters:{
"beta": 0.1,
"gamma": 0.1,
"loss": "SparseMultipleNegativesRankingLoss(scale=5.0, similarity_fct='cos_sim')"
}
Evaluation Dataset
natural-questions
- Dataset: natural-questions at f9e894e
- Size: 1,000 evaluation samples
- Columns:
query
and answer
- Approximate statistics based on the first 1000 samples:
|
query |
answer |
type |
string |
string |
details |
- min: 10 tokens
- mean: 11.69 tokens
- max: 23 tokens
|
- min: 15 tokens
- mean: 134.01 tokens
- max: 512 tokens
|
- Samples:
query |
answer |
where is the tiber river located in italy |
Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks. |
what kind of car does jay gatsby drive |
Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry. |
who sings if i can dream about you |
I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1] |
- Loss:
CSRLoss
with these parameters:{
"beta": 0.1,
"gamma": 0.1,
"loss": "SparseMultipleNegativesRankingLoss(scale=5.0, similarity_fct='cos_sim')"
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 64
per_device_eval_batch_size
: 64
learning_rate
: 4e-05
num_train_epochs
: 1
bf16
: True
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 64
per_device_eval_batch_size
: 64
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 4e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 1
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.0
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: None
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
include_for_metrics
: []
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
use_liger_kernel
: False
eval_use_gather_object
: False
average_tokens_across_devices
: False
prompts
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
router_mapping
: {}
learning_rate_mapping
: {}
Training Logs
Epoch |
Step |
Training Loss |
Validation Loss |
nq_eval_4_cosine_ndcg@10 |
nq_eval_8_cosine_ndcg@10 |
nq_eval_16_cosine_ndcg@10 |
nq_eval_32_cosine_ndcg@10 |
nq_eval_64_cosine_ndcg@10 |
nq_eval_128_cosine_ndcg@10 |
nq_eval_256_cosine_ndcg@10 |
-1 |
-1 |
- |
- |
0.2820 |
0.4878 |
0.6965 |
0.8627 |
0.9319 |
0.9578 |
0.9699 |
0.0646 |
100 |
0.5473 |
- |
- |
- |
- |
- |
- |
- |
- |
0.1293 |
200 |
0.4992 |
- |
- |
- |
- |
- |
- |
- |
- |
0.1939 |
300 |
0.4823 |
0.4529 |
0.4274 |
0.6028 |
0.7463 |
0.8377 |
0.8877 |
0.9224 |
0.9512 |
0.2586 |
400 |
0.4725 |
- |
- |
- |
- |
- |
- |
- |
- |
0.3232 |
500 |
0.4655 |
- |
- |
- |
- |
- |
- |
- |
- |
0.3878 |
600 |
0.4597 |
0.4344 |
0.4642 |
0.6281 |
0.7556 |
0.8281 |
0.8697 |
0.9163 |
0.9485 |
0.4525 |
700 |
0.4563 |
- |
- |
- |
- |
- |
- |
- |
- |
0.5171 |
800 |
0.4522 |
- |
- |
- |
- |
- |
- |
- |
- |
0.5818 |
900 |
0.4496 |
0.4256 |
0.4908 |
0.6406 |
0.7527 |
0.8232 |
0.8653 |
0.9146 |
0.9467 |
0.6464 |
1000 |
0.4478 |
- |
- |
- |
- |
- |
- |
- |
- |
0.7111 |
1100 |
0.4458 |
- |
- |
- |
- |
- |
- |
- |
- |
0.7757 |
1200 |
0.4448 |
0.4210 |
0.5008 |
0.6424 |
0.7659 |
0.8186 |
0.8649 |
0.9151 |
0.9502 |
0.8403 |
1300 |
0.4436 |
- |
- |
- |
- |
- |
- |
- |
- |
0.9050 |
1400 |
0.4425 |
- |
- |
- |
- |
- |
- |
- |
- |
0.9696 |
1500 |
0.4427 |
0.4193 |
0.5064 |
0.6434 |
0.7584 |
0.8229 |
0.8646 |
0.9178 |
0.9517 |
-1 |
-1 |
- |
- |
0.5049 |
0.6441 |
0.7585 |
0.8242 |
0.8634 |
0.9176 |
0.9511 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.100 kWh
- Carbon Emitted: 0.039 kg of CO2
- Hours Used: 0.246 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.1
- Datasets: 2.21.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CSRLoss
@misc{wen2025matryoshkarevisitingsparsecoding,
title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},
year={2025},
eprint={2503.01776},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2503.01776},
}
SparseMultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}